TU Delft

The role of membrane time constant in the training of spiking neural networks
Improving accuracy by per-neuron learning

Adam Pazderka'
Supervisors: Nergis Toémen', Aurora Micheli'

'EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements
For the Bachelor of Computer Science and Engineering
June 26, 2024

Name of the student: Adam Pazderka
Final project course: CSE3000 Research Project
Thesis committee: Nergis Tomen, Aurora Micheli, Lilika Markatou

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract

Spiking neural networks (SNNs) aim to utilize
mechanisms from biological neurons to bridge the
computational and efficiency gaps between the hu-
man brain and machine learning systems. The
widely used Leaky-Integrate-and-Fire (LIF) neuron
model accumulates input spikes into an exponen-
tially decaying membrane potential and generates
a spike when this potential exceeds a set threshold.
A LIF neuron is characterized by learnable input
weights and a manually selected membrane time
constant 7, which determines the decay rate of a
neuron’s membrane potential. Previous work in-
troduced the Parametric LIF (PLIF) neuron model
with a learnable 7. However, the published exper-
iments only featured a single 7 per spiking layer.
This leaves space for exploration of the effect of
having a learnable 7 for each neuron. The impor-
tance of 7 is given by the trade-off it inherently
introduces, prioritizing the neuron’s capability to
convey information about spatial or temporal fea-
tures. This work examines the effect of introducing
a learnable 7 per neuron with a new initialization
method and a new regularization term which incen-
tivizes low variance in each PLIF layer. The exper-
iments are done using the DVS128 Gesture dataset
and compared to a baseline model from the original
paper introducing the PLIF neuron model. Results
are inconclusive but suggest that introducing 7 per
neuron does not have a significant effect on the ac-
curacy of a spiking neural network. Moreover, the
evolution of 7 during training exhibits interesting
behavior and leads to two new hypotheses.

1 Introduction

Power-efficient machine learning is positioned to be dom-
inated by the emerging brain-inspired spiking neural net-
works (SNNs). Together with specialized neuromorphic
hardware [1; 2; 3; 4], SNNs have shown to perform com-
parably to artificial neural networks (ANNs) while consum-
ing two or more orders of magnitude less power [5; 6;

1. Several applications in robotics and medicine have al-
ready benefited from the enabled low-power capabilities [8;

; 10; 11]. However, ANNs are still better suited for a ma-
jority of tasks, and the competitiveness of SNNs in other ar-
eas than power-efficiency and latency remains unclear [12,
p. 10401.

The main characteristic of SNNs is that they are temporal
in nature and consist of spiking neurons. These neurons com-
municate using weighted binary (1-bit) spikes and perform
computation using their internal state called membrane poten-
tial. Biological neurons can be modeled in many ways with a
varying trade-off between computational cost and biological
accuracy. A commonly used neuron model in the context of
power-efficient deep learning is the Leaky-Integrate-and-Fire
(LIF) neuron, which accumulates weighted input spikes into
its exponentially decaying membrane potential [12, p. 1023].

If enough input spikes increase the membrane potential above
a set threshold, its value resets, and a spike is emitted.

Input weights are the only learnable parameters in the
highly simplified LIF neuron model. Experiments with
learnable decay rates and adaptive firing thresholds have
shown that extending the LIF neuron model with additional
biologically-inspired mechanisms can lead to both faster
training and better performance [13; 14]. This work focuses
on the Parametric Leaky-Integrate-and-Fire (PLIF) neuron
model with a learnable membrane time constant 7, which
determines the decay rate of a neuron’s membrane potential.
More concretely, it explores the effect of introducing a learn-
able 7 per neuron as opposed to having a single learnable 7
per layer as in the PLIF neuron paper [14]. More concretely,
the research question explored by this paper is: “What is the
effect of having a learnable membrane time constant per
neuron on the accuracy of a spiking neural network?”.

The membrane time constant 7 plays an important role in a
neuron’s ability to convey information about spatial and tem-
poral features. For example, in the case of 7 = 0, a neu-
ron’s membrane potential would instantly decay after receiv-
ing input, making it possible to only output a spike based on
a combination of input spikes that all arrive at the same time.
Conversely, in the case of 7 = 400, a neuron’s membrane
potential would not decay at all. Due to this dynamic, it can
be seen as analogous to the function of the “forget gate” in
LSTMs [15], which have recently been shown to get in lan-
guage modelling “At least as far as current technologies like
Transformers or State Space Models” [16, Sec. 6]. The “for-
get gate” analogy is explored in more detail in Section 2.3.

In the paper on PLIF neurons, having a single learnable 7
per layer is believed to be biologically plausible since “the
neighboring neurons have similar properties” [14, Sec. 3.3].
However, following the “forget gate” analogy, 7 should be
a parameter that can be trained for each neuron individually.
Similar to having a trainable forget gate per unit in an LSTM.
A new problem then arises, since this can introduce overfit-
ting due to the increased number of parameters. This is ad-
dressed by a newly introduced regularization term.

The experiments utilize the DVS128 Gesture dataset [7]
and the network structure from [14]. Four models are trained
and analyzed: First, the baseline model with a single learn-
able tau in each layer is replicated, where every tau is ini-
tially set to 79 = 2. Second, the “No Regularization” model
is trained, featuring a trainable membrane time constant per
neuron and a log-normal initialization of 7. Then an addi-
tional regularization term, in the form of AxVar(7;) per spik-
ing layer [, is introduced in the third and fourth models, with
coefficients A = 0.01 and A = 0.1, respectively. This regular-
ization approach follows from the assumption that setting A
to a high value should make a model perform at least as well
as the baseline. Furthermore, experiments with varying A val-
ues should enable interpolation between the two approaches,
leading to a more controlled and incremental approach over
the existing research.

Experimental results suggest that having a membrane
time constant per neuron instead of per layer does not
have a significant effect on final accuracy. However, this
conclusion needs to be treated with low confidence, and fur-

ther experiments across more datasets, ideally with multiple
initializations per model, are needed. Furthermore, two new
hypotheses are formed based on the interesting evolution of 7
during training;
e “There is an inverse relation between the number of T
parameters and their learning rate”, and

* “There is a general relationship between the learning
capacity of a spiking layer and the number of learnable
T and input weight parameters”

Similarly, four new areas for future work are identified.

This work is structured as follows; Section 2 provides the
necessary background. It introduces the PLIF neuron model,
motivates the case for having 7 per neuron, and describes
the replicated baseline model including its implementation
framework. Section 3 describes new initialization and reg-
ularization methods for 7. The three newly introduced mod-
els are then presented. Section 4 describes the experimen-
tal setup and analyses the results. Replicability and usage of
LLMs are discussed in Section 5. Section 6 further discusses
the results and the newly created hypotheses, while Section 7
outlines potential areas for future work. The conclusion is
presented in Section 8.

2 Background

This section provides a background for the methodology and
experiments conducted in Section 4. It begins with Section
2.1, introducing the Leaky-Integrate-and-Fire (LIF) neuron
model, followed by Section 2.2, which explains the Paramet-
ric LIF (PLIF) neuron model and introduces learnable param-
eters for a numerically stable way to indirectly optimize the
membrane time constant. An analogy between the PLIF neu-
ron’s membrane time constant and the forget gate in Long
Short-Term Memory (LSTM) units is discussed in Section
2.3. The SpikingJelly framework used for experiments is de-
scribed in Section 2.4, and the baseline model used to repli-
cate the experiment from [14] is detailed in Section 2.5.

2.1 LIF neuron

The Leaky-Integrate-and-Fire (LIF) neuron model used
throughout Section 4 can, in its charging state, be expressed
using Eq. 1, where 7 denotes the membrane time constant,
V (t) denotes the membrane potential at time ¢, X (¢) denotes
the input at time ¢, and V.., the resting membrane potential.

P VO Vi) + X0)
Solving this differential equation for V' (¢) when the input is
zero gives a function that exponentially decays towards V..
The resulting decay rate is expressed as % hence the relation
between the membrane time constant and the decay rate.
The LIF neuron equation follows from empirical observa-
tions and subsequent successful modelling of a neuron as a
low-pass filter circuit consisting of a resistor R and a capaci-
tor C [12, p. 1021]. In the context of circuits, the membrane
time constant 7 is referred to as the RC time constant. The
intuition behind 7 is that it is the duration after which a ca-
pacitor charge (membrane potential in the case of a neuron)
decays by 1 — e~ ! ~ 63.2% of its original value.

While many different neuron models exist, with a varying
degree of biological accuracy [17], the LIF neuron is often
considered to be a good choice for deep learning, having the
right trade-off between complexity and computational cost
[18; 19].

In addition to the charging state, a LIF neuron is defined
by its behavior when the membrane potential V' (¢) reaches
the threshold V;j. In such case, a spike is fired, expressed as
S(t) = 1, and the neuron’s membrane potential is reset to the
reset potential V,..s¢. The behavior of firing a spike and the
subsequent reset can be formally described using Eq. 2 and
Eq. 3 taken from [19].

S(t) =0V (t) = Vin))
Alii}%ﬁ V(t + At) = Vreset (3)

Where ©(x) is the Heaviside step function defined by
O(z) =1forz > 0and O(z) = 0 for z < 0.

All neurons in the replicated baseline model from [14] as
well os other models this paper, use the "hard reset” method
described by Eq. 3 and values Vi, .cset = Viest = 0 and Vi, =
1[20].

Simulation using discrete-time differential equations

The continuous dynamics of a LIF neuron can be simulated
on digital hardware using discrete-time differential equations.
Reducing the time-discretized general equations in [19, Eq. 5-
7] to a case with only the LIF neurons and substituting the
constants yields three time-discretized equations.

T(V'[t] = V[t—1])=-V[t—1] + X[t] 4)
Stl=eV’[]-1) (5)
Vi[t] = V'[t] - (1 - S[t]) (6)

The equations 4, 5, and 6 describe neuron’s charging, spik-
ing, and resetting behavior respectively. V’[t] denotes an in-
termediate membrane potential after input processing but be-
fore a potential reset. At a single time step, V'[¢] is first up-
dated using Eq. 4. Then spiking is determined by Eq. 5 and
if a spike occurs, V[t] is reset using Eq. 6. To numerically
solve these equations, the first-order Euler method is used for
all models in this paper as part of the SpikingJelly framework
[19,p.9].

Trainable parameters

The LIF neuron receives weighted input spikes from all its
connections. This is where optimization comes in since these
input weights can be updated via backpropagation and enable
learning. In the previous equations, the weighted input spikes
are hidden in the X (¢) term. To make them explicit, we can
write:

X(t) = Zwl . xi(t), where l‘l(t) € {0, 1}, w; € R

The term z;(t) represents a single binary connection that
is either spiking (1) or resting (0) at time ¢. The connection’s
weight is denoted as w,;. More details on backpropagation
using the surrogate gradient method can be found in Section
24

2.2 PLIF neuron

The Parametric LIF neuron, introduced in [14], enables nu-
merically stable optimization of the membrane time constant.

A naive approach to a learnable 7 would be optimizing it
directly. However, after rearranging Eq. 4 to solve for V'[¢],
we can see that 7 is in the denominator and would cause nu-
merical instability when outside the interval [1, 00), since we
are dealing with discretized time.

VI = Vi -1+ (V-4 X))

This problem is solved by parameterizing 7 using a newly
introduced parameter a. The parameter a and 7 are then re-
lated by a clamp function k(a) € (0, 1), which is substituted
in place of 1, ie. 7 = ﬁ € (1,+00). The clamp func-
tion used in the experiments is the sigmoid activation function

[14]. Le. k(a) = 75 (—ay- resulting in Eq. 8.

1

xﬁﬂ:Vﬁ—u+TI&a:a

(=VIE-1]+X[t) @
The parameter a can now be used to optimize 7 in a nu-
merically stable way.

For the derivation of the gradient equations, see [14,
Sec. 3.7].

2.3 The “Forget gate” analogy

The PLIF neuron paper features a single learnable 7 per layer,
arguing for its biological plausibility since “neighboring neu-
rons have similar properties” [14]. However, an analogy can
be found between 7 and the forget gate in the highly success-
ful LSTMs [16]. Conversely, in an LSTM, each unit (anal-
ogous to a spiking neuron) has a learnable forget gate that
determines how much of the previous state is retained, simi-
lar to the role of 7, suggesting that introducing a learnable 7
for each neuron is worth exploring.

To illustrate this similarity, let’s look at Eq. 9 and Eq. 11
from [16], describing a case of an LSTM memory cell with
scalar variables. A memory cell stores its information in a cell
state ¢; and a hidden state h;. The hidden state is a function
of the cell state and is omitted for simplicity. The cell state c;
is updated by adding a previous cell state c¢;—; multiplied by
a forget gate f, to a processed input z; multiplied by an input
gate iy.

¢t = fice—1 + iz 9

Rearranging Eq. 4 shows a clear similarity. When com-
puting a new V[t], the term % linearly interpolates between
the previous state and the current input. This analogy is also
briefly touched upon in [14].

V] = <1 - 1) VIE— 1)+ 2 X[(10)
T T

The case for exploring learnable 7 per individual neuron is
made even stronger by the fact that even in such a case, the
complexity of a LIF neuron still remains much lower than that
of an LSTM unit. We can see from Eq. 11, where w,, wp, b

are learnable parameters and o is the sigmoid activation func-
tion, that the forget gate is not a trained parameter, but a
trained function, dependent on the current input x; and the
previous hidden state h;_.

fe = o(w] z; + wphi_1 +b) (11)
2.4 Spiking]Jelly framework

All experiments in this paper, including the replicated base-
line mode, use the PyTorch-based Spikinglelly framework,
an open-source deep learning framework bridging deep learn-
ing and SNNs. The SpikingJelly framework was created with
three characteristics in mind [19]:

* exploits and accelerates spike-based operations

* supports both simulations on CPUs/GPUs and deploy-
ment on neuromorphic chips

* and provides a full-stack toolkit for building, training,
and analyzing deep SNNs

SpikingJelly shares a lot of similarities with the snnTorch
[12] and Norse [21] frameworks, which are also PyTorch-
based and represent viable alternatives. However, this work
builds on top of an already existing codebase implemented
using SpikingJelly.

Surrogate gradients

Backpropagation through the Heaviside function ©(z) used
in Eq. 5 is not possible since its derivative is 0 at # 0 and
oo at z = 0. The SpikingJelly framework offers the surro-
gate gradient method to solve this, using a smooth and differ-
entiable surrogate function to define the derivative of ©(x)
during backpropagation. Specifically, the sigmoid o(x) =

Trexp(—am With a hyperparameter o is used [19, p. 10].

2.5 Baseline model for the DVS128 Gesture dataset

The network structure for all models is the same as the repli-
cated baseline, except for the changes made to the PLIF neu-
ron layer to support having a learnable membrane time con-
stant per each neuron instead of each layer.

“c128k3sl represents the convolutional layer with
output channels 128, kernel size = 3 and stride =
1. BN is the batch normalization. MPk2s2 is the
max-pooling layer with kernel size = 2 and stride
= 2. PLIF is the PLIF spiking neurons layer. DP
represents the dropout layer. FC2048 represents the
fully connected layer with output features = 2048.
The symbol {}* indicates the repeated structure.”
[20, Sec. 2]

The structure used for all models (see Appendix B):

{c128k3s1-BN-PLIF-MPk2s2 }*5-DP-FC512-PLIF-
DP-FC110-PLIF-APk10s10

All parameters, except the ones used to optimize the mem-
brane time constants, are initialized implicitly, using the de-
fault PyTorch initialization.

The training and validation datasets are obtained by dedi-
cating 85% of samples of each class in the original training
set as the new training set and using the rest 15% as the vali-
dation set [20].

Input preprocessing and encoding
The events from the event-based DVS128 Gesture dataset are
split into 7" = 20 slices with nearly the same number of
events in each slice and integrated into frames. The exact
method can be found in [20, Sec. 51.

Instead of using a standard input encoding algorithm, “ the
input is directly fed to the network without being first con-
verted to spikes and the image-spike encoding is done by the
first Conv2d-Spiking Neurons module (BN is omitted), which
can be seen as a learnable encoder” [20, Sec. 10].

Hyperparameters
Except for the batch size, as discussed in Section 4.2, all hy-
perparameters are taken from [20].

“We use the Adam optimizer with a learning rate of
0.001 and the cosine annealing learning rate sched-
ule with Tipequie = 64. The batch size is set to 16 to
reduce memory consumption. The drop probability
p for dropout layers is 0.5. The clamp function for
PLIF neurons is k(a) = and the surrogate
gradient function is o/(z) = 1 arctan(rz)+1, thus
o'(x) = M#P We set Vieser = 0 and Vi, = 1 for
all neurons.” [20, Sec. 6]

1
1+e—a

Loss function
The loss function used for all models is taken from [14].

“Denote the simulating time-steps as 7' and the
number of classes as C. The output O = [0y ;]
is a C' x T tensor. For a given input with label [,
we encourage the neuron that represents class [to
have the highest excitatory level while other neu-
rons should remain silent. So the target output is
defined by Y = [y, ;] with y,; = 1 for i = [and
yi; = 0 for i # [. The loss function is defined by
the mean squared error (MSE) L MSE(O7 Y) =

1 T L, — T—1 1 (O o _)2
T Zit=0 Tt - T2t C 2ui= o ti — Yti)
And the predicted label [, is regarded as the in-

dex of the neuron with the maximum firing rate
l, = arg max; (Zt o Ot 7) , Sec. 3.71.

3 Methodology

In this section, we outline the methodology used to replicate
and extend the baseline model from Section 2.5. First, we
replicated the baseline model to verify our implementation,
achieving results close to those reported in the original paper.
The baseline model is then used as a foundation for new mod-
els with modified PLIF neuron layers, each featuring individ-
ual membrane time constants 7 per neuron. Section 3.2 de-
tails the initialization of the 7 parameters using a log-normal
distribution, while Section 3.3 explains the variance-based
regularization term, enabling an incremental approach over
the baseline. These subsections set the stage for Section 4.

3.1 Replication and extension of the baseline
model

To ensure a sound implementation of the new models, we first
replicated the baseline model described in Section 2.5.

The replicated model with a 15% validation set split was
expected to achieve a peak test set accuracy of 96.53% [20,
Table S2]. However, our model achieved a peak test set accu-
racy of 95.5%. This may have been caused by changing the
batch size during training due to interruptions and availabil-
ity of different GPUs (16, 24, and 32) as opposed to keeping
a batch size of 16 according to Section 2.5. Another possi-
bility is that the dataset loading method used in the original
experiment differed from the one provided in the published
implementation as noted in Section 4.1. Considering these
possibilities and the very slight deviation from the expected
accuracy, the replication was considered successful.

The three new models were built by extending the baseline
with PLIF neuron layers that instead of having a single 7 per
layer have a 7 per each neuron. This introduced a need for
new initialization and regularization methods as discussed in
Section 3.2 and 3.3.

3.2 T initialization

Parameter initialization can have a significant impact on the
learning process of a neural network [22; 23; 24]. However,
no research has been found about the collective initialization
of membrane time constants of a population of neurons at
the time of writing of this paper. Furthermore, rigorously
devising an initialization method is outside of the scope of
this work. Nevertheless, previous research suggests that ini-
tial parameters in a layer should be drawn from a distribution
instead of being all set to a single value [24].

This section follows the reasoning from Section 2.2, where
T is parameterized using a according to Eq. 12.

L 1

T= @) € (1, +00),

The optimized parameters a are initialized via 7 using a
log-normal distribution shifted by +1, resulting in samples
correctly lying in the interval (1, +00) as discussed in Sec-
tion 2.2. The reasoning behind initializing @ indirectly is
that future research may build upon this work and parame-
terize 7 differently. The indirect initialization is more robust
to changes in methodology and potentially prevents unneces-
sary work.

where k(a) = (12)

1+exp(—a)

Sampling from a log-normal distribution

The initial 7 parameters are sampled from a log-normal dis-
tribution. Given a mean p, and standard deviation o for the
desired distribution of 7, we can compute parameters of the
underlying normal distribution using p!. = u, — 1 and Eq.
13.

Ml2 2
Hlog = In \/ﬁ , Olog = {/In (1 + e)

13)
Using these, a sample 7 from the log-normal distribution
is generated where 7 = 1 + ¢ and Y ~ N(mog,afog).

This sample 7, which lies in the interval (1, +00), can then be
transformed to the directly trained parameters A using Eq. 14
derived from Eq. 12.

A=—-In(r-1) (14)
This maps 7 € (1,4+00) to A € (—o0, +00).

3.3 7 regularization

Recurrent neural networks (RNNs) have been shown to ben-
efit from different regularization methods than feedforward
neural networks [25]. Similarly, properly regularizing spik-
ing neural networks with learnable membrane time constants
may require novel research.

Thorough research on the regularization of SNNs with a
learnable 7 per neuron is outside of the scope of this work.
However, introducing a large number of new parameters may
lead to overfitting and needs to be addressed. Therefore, this
work adopts an incremental approach over the existing re-
search discussed in Section 2 and adds a new regularization
term designed for this purpose.

The regularization term follows from the assumption that
the baseline model rule, which constrains all membrane time
constants in a layer to a single shared parameter, can be
adapted to a model where each neuron has its own learnable
7 without degrading the model’s learning capacity. For this
purpose, a regularization term, A\ * Var(7;), is added to the
loss function for each spiking layer [. It is hypothesized that
a high value of A\ will keep the membrane time constants to-
gether while not harming performance, effectively simulating
the baseline model. Lowering A can then be seen as a sort of
interpolation between the former and the newly introduced
approach to the optimization of 7.

Using this approach, a “control” model with a high value
of A\ = 0.1 is introduced. This model is expected to behave
similarly to the baseline, in which case it will be easier to
analyze the effect of lowering A on the learning process and
the model’s accuracy. In the end, three different models are
analyzed, which is discussed in Section 4.2.

Later experiments show that the “\ = 0.1” model indeed
achieves a competitive performance. However, the learning
process and values of its membrane time constants differ from
the baseline model. More details can be found in Section 4.3.

The value A = 0.1 was found empirically by searching for
models with a high value of A, such that the standard devi-
ation of their membrane time constants for each layer stays
below 0.05 within the first 20 epochs, while their validation
set accuracy improves.

4 Experimental Setup and Results

This section presents the experimental setup and results, de-
tailing the use of the DVS128 Gesture dataset in Section 4.1,
introducing the baseline and extended models in Section 4.2,
and analyzing their comparative performance in Section 4.3.

4.1 DVS128 Gesture dataset

The experiments are performed on the DVS128 Gesture
dataset, which was collected using a 128x128 event-based
camera, specifically to be used with an SNN [7].

“The DvsGesture dataset comprises 1,342 in-
stances of a set of 11 hand and arm gestures [...],
grouped in 122 trials collected from 29 subjects

under 3 different lighting conditions. During each
trial, one subject stood against a stationary back-
ground and performed all 11 gestures sequentially
under the same lighting condition. The gestures in-
clude hand waving (both arms), large straight arm
rotations (both arms, clockwise and counterclock-
wise), forearm rolling (forward and backward), air
guitar, air drums, and an “Other” gesture invented
by the subject. The 3 lighting conditions are com-
binations of natural light, fluorescent light, and
LED light, which were selected to control the ef-
fect of shadows and fluorescent light flicker on the
DVS128. Each gesture lasts about 6 seconds.” [7,
Sec. 5.1]

The dataset is split as follows; 288 instances are dedicated
for testing. The remaining 1056 instances are split into 156
instances (15%) for validation and 900 instances (85%) for
training. The original paper states there are 1,342 instances.
However, after downloading the dataset [7], processing it us-
ing the provided implementation, and loading it, a total of
1,344 instances were found. It is possible that the test accu-
racy discrepancy, mentioned in Section 3.1, was caused by
some minor difference between the published preprocessing
implementation and the one actually used.

The DVS128 Gesture dataset was chosen for the follow-
ing reasons: it was used in one of the original experiments
with the baseline model, enabling us to verify our implemen-
tation through replication; the stated peak test set accuracy
of 96.53% left room for improvement; and the presence of
seven PLIF neuron layers provided a greater chance of im-
proved results than many other models if any of the layers
benefited from having a 7 per neuron.

4.2 Models

Baseline The baseline model from Section 2.5 uses a sin-
gle learnable 7 per layer, which is initialized as 7p = 2. The
purpose of this model is to verify the implementation before
conducting experiments with the new models. This replica-
tion was considered successful, as discussed in Section 3.1.

No Regularization A single 7 per layer is replaced with a
unique 7 per neuron. This model does not apply any regular-
ization to the individual 7 parameters. It is expected to suffer
from overfitting, potentially achieving a worse accuracy than
all the other models.

A =0.01and A = 0.1 On top of having a unique 7 per
neuron, a regularization term introduced into the loss func-
tion, in the form of A % Var(7;) per spiking layer . The
“A = 0.1” model serves as a “control” model. It is expected
to behave similarly to the baseline model. The “\ = 0.01”
is expected to show whether letting individual neurons opti-
mize their 7 increases final accuracy while avoiding potential
overfitting.

Hyperparameters

Except for a batch size of 32, all hyperparameters from the
baseline are also used in the new models. Details on the base-
line model’s hyperparameters are discussed in Section 2.5.

Initialization of the membrane time constant parameters in
the new models uses 1 = 2 and ¢ = 0.1. This translates
into an initialization of the optimized parameters around zero,
where the sigmoid activation function’s gradient is the largest.
Further details on initialization are provided in Section 3.2.

4.3 Results

As seen in Table 1 and Figure 2, the results suggest that hav-
ing a membrane time constant per neuron instead of per
layer does not have a significant effect on final accuracy.
Specifically, the models “A = 0.01” and “A = 0.1” outper-
form the baseline in terms of their peak test set accuracies by
only 0.3% and 0.7% respectively. This minor improvement
could easily be due to chance, considering the 1.03% differ-
ence between the baseline’s expected and replicated accuracy
discussed in Section 3.1. Therefore, this observation should
be taken with caution and requires further validation across a
more diverse set of datasets, such as CIFAR10-DVS [26], and
through initialization with multiple different seeds.

Model Test Accuracy Val Accuracy
Baseline 95.5% 100%
No Reg. 95.1% 99.2%
A=.01 95.8% 99.2%
A=.1 96.2% 100%

Table 1: Comparison of the maximum achieved test and validation
set accuracies. Each model has been trained once for 1200-1500
epochs using the seed 2020. All the best-performing instances on
the test set were encountered in the first 600 epochs.

Evolution of 7 during training

As seen in Fig. 1, the learning trajectory of membrane time
constant parameters is highly similar for all the new models.
However, their trajectories significantly differ from those of
the baseline model. This could be explained by the inherent
limitation of visualizing the evolution of parameters in the
new models using their mean value. Only a small subset of
parameters may be needed to significantly decrease the total
loss. However, this is contradicted by the final distributions
and extrema of parameters. For example, in the fifth layer,
none of the new model parameters are close to the 7 of the
baseline model, indicating a fundamental difference in how
the new models find a good set of parameters.

A new hypothesis may explain this: “Having a single T per
layer makes learning faster.” This is supported by the evolu-
tion of the baseline model’s sixth layer 7 during the 200 ini-
tial epochs. The baseline model overshoots and then corrects,
while other membrane time constants remain stable. This
points to the possibility that 7 is optimized too quickly be-
fore the input weights can adapt to it. On the other hand, the
evolution of the new models is slower and more stable. This
is likely because when a neuron’s 7 updates due to a spike
gradient, the membrane time constants of other neurons are
updated in a delayed manner through the variance term in the
loss function in subsequent time steps.

The final accuracy of all models is very similar despite a
widely different evolution of 7 between the baseline and the

new models. It is possible that the accuracy is not highly sen-
sitive to different values of 7 and that the input weights can
successfully adapt to a wide range of 7 values. The oppo-
site may also be true and can be reformulated into another
hypothesis: Given that the input is temporally encoded, there
is a general relationship between the learning capacity of a
spiking layer and the number of learnable membrane time
constant and input weight parameters. This implies that a
spiking layer with a single 7 could be replaced by a smaller
spiking layer with a 7 per neuron without negatively impact-
ing learning capability.

45 40

4.0 3.5

35 30
7(0) 3.0 (1)

25 |
2.0 \L—ﬂ Y 20 [h\-__/_____,.___l_i }
15 15

0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400
Epoch Epoch

35 4.0

35
3.0
3.0
T(2) 25 T(3)
2.5

— |11 / 20)

0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400
Epoch Epoch

4.0

35

35
3.0

(4) (5) *°
25 1

25

1
wm \ 20
15

0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400
Epoch Epoch

() —— Baseline

—— No regularization
— A=.01
— A=.1

0 200 400 600 800 1000 1200 1400
Epoch

Figure 1: Evolution of the membrane time constant 7 in indi-
vidual layers of PLIF neurons. While the baseline model from
[14] uses a single 7 per layer, the other models use 7 per each neu-
ron. Multiple parameters per layer are visualized using mean values.
Moreover, the final distributions of parameters and their extrema are
visualized using violin plots. The y axis denotes values of the 7
parameters in layer [as 7(!). The new models exhibit a vastly dif-
ferent learning trajectory compared to the baseline model. However,
despite these differences, all models achieve similar final accuracy.
This suggests that the input weights can adapt similarly well to a
wide range of 7 values.

Accuracy on the DVS128 Gesture Dataset, 64-epoch average

100% 1 100% |
95% 1 95% 1
X 90% X 90% 1
> >
© 85% 1 8 85% 1
—
3 S |
9 80%] O 80% 1
©
- -
0] ©
Q 75%71 | S 75%]
70%7 | 70% ‘
65% 1— : ; . . : : 65% 1— . : : ; . .
0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
Epoch Epoch
—— Baseline —— No regularization —— A=0.01 — A=0.1

Figure 2: Test and validation accuracy during training on the DVS128 Gesture dataset visualized as a 64-epoch moving average. The
baseline model from [14] uses a single learnable T per spiking layer. The “No regularization” model replaces the single 7 per layer with a
learnable 7 per neuron. The “A = 0.01” and “A = 0.1” models also add a regularization term to the loss function, calculated as A * Var(7;)
per spiking layer [. Despite their differences, all models achieve similar final accuracies, suggesting that having a membrane time constant

per neuron instead of per layer does not significantly affect final accuracy.

“No regularization” model

The “No regularization” model performed better than ex-
pected with an accuracy of 95.1%. Nevertheless, its perfor-
mance was marginally worse compared to the other models.

“\ = 0.1” model
The “A = 0.1” model performed as expected, achieving an

accuracy of 96.2%, comparable to the expected accuracy of
the baseline model at 96.5%.

“X = 0.01” model

The “)\ = 0.01” model performed worse than expected with
an accuracy of 95.8%. It was hypothesized that letting neu-
rons optimize 7 more freely would lead to increased accuracy
relative to the “A = 0.1” model. This hypothesis turned out
false.

5 Responsible Research

Replicability is ensured by making all code available on
GitHub. The repository includes a README file with a de-
tailed description of the project, as well as instructions on
how to install dependencies and run the experiments. All
experiments were conducted using the seed 2020, ensuring
replicability.

Large Language Models were extensively utilized for var-
ious purposes, which are listed, along with prompt examples,
in Appendix A.

6 Discussion

Due to the resource constraints of this work, the results were
obtained by training each of the four models only once on the

DVS128 Gesture dataset. This represents a significant limita-
tion to how confidently the results can be interpreted. Exper-
iments across more datasets, ideally with multiple initializa-
tions per model, are required to arrive at a definite conclusion.
However, two new hypotheses were identified.

There is an inverse relation between the number of 7
parameters and their learning rate. This hypothesis is
strongly supported by Fig. 1 and discussed in detail in Sec-
tion 4.3. In all layers, the baseline model’s 7 changes signif-
icantly faster than the mean of the other models’ parameters.
However, to verify this hypothesis, it is necessary to define
the learning rate in the context of both all 7 parameters and
input weights, since they learn together.

There is a general relationship between the learning ca-
pacity of a spiking layer and the number of learnable
7 and input weight parameters. This hypothesis is sup-
ported by the fact that despite different values of the 7 param-
eters, all models performed comparably well. This points to
a relation between input weights and 7 parameters, in which
they can be optimized interchangeably. Therefore, there may
be some equivalence, in terms of performance, between small
models with a large number of T parameters and large models
with a small number of 7 parameters.

7 Future Work

Layers as heterogeneous networks Both in this and the
previous work, it was assumed that a single layer of neurons
forms a population whose 7 parameters should be regularized
to stay together. However, there seems to be no reason why
a single layer should correspond to only one population. It
is possible that performance improvements can be achieved

https://github.com/Anananas42/tu-delft-bsc-thesis-computer-science

by treating spiking layers as heterogeneous networks [17,
Ch. 12.2.2]. This would require an improved regularization
term that incentivizes clustering but does not limit the num-
ber of clusters to one.

Initialization of 7 It still remains a mystery why the ini-
tializations of 79 = 2 and 79 = 16 in the previous work con-
sistently produced significantly different results [14, Fig. 6].
Further investigation into the effect of 7 initialization is
needed.

Adaptive 7 learning Despite differences in the evolution of
the 7 parameters in Fig. 1, all models achieved similar perfor-
mance. The baseline model’s 7 in the sixth layer overshoots
and corrects during the first 200 epochs, which suggests a
complex training dynamic between input weights and 7 pa-
rameters. This interplay requires further analysis and could
enable more efficient learning by dynamically adapting the
respective learning rates.

Local regularization It is possible that different layers
would benefit from different regularization terms.

8 Conclusion

The purpose of this work was to investigate the effect of
having a learnable membrane time constant 7 per neuron on
the accuracy of a spiking neural network (SNN). This was
achieved by introducing a modified version of the PLIF neu-
ron layer, featuring a learnable membrane time constant 7 per
neuron as opposed to per layer. This created the need for new
initialization and regularization methods for 7, which were
also introduced.

Experiments on the DVS128 Gesture dataset produced in-
conclusive results, suggesting with low confidence that hav-
ing a membrane time constant per neuron instead of per
layer does not have a significant effect on final accuracy.
However, experiments on more datasets are needed to vali-
date this conclusion, ideally with multiple initializations per
model.

The evolution of 7 during training exhibited interesting be-
havior. This was used to further analyze the role of the mem-
brane time constant in the training of spiking neural networks,
setting the groundwork for future research on this topic. This
includes the formulation of two hypotheses supported by ex-
perimental results and four concrete areas for future research.

Appendix
A Prompts for LLMs

This work has extensively utilized Large Language Models
(LLMs) for the following purposes:

* Providing feedback and improvements on the text’s
structure, readability, and grammar.

» Offering high-level interactive introductions to areas
previously unfamiliar to the author, including relevant
terminology and context within existing scientific disci-
plines.

* Ensuring consistent notation and terminology through-
out the text.

» Converting natural language or pseudo-code into LaTeX
equations.

* Evaluating the completeness and clarity of the presented
information from a reader’s perspective.

* Generating a section overview paragraph, which is then
used as a skeleton for a manually written overview para-
graph.

* Generation of python code for generation of figures.

Example prompts:

Q: “I need to convert the following into a latex equation:
”X(t) = sum over all w_i * x_i(t), where x_i is discrete
either O or 1 and w_i is a real number””

A: “Here’s a LaTeX equation that represents your de-
scription: X (t) = Y., w; - x;(t), wherexz,;(t) €
{0,1}, w; e R”

Q: “I have the following code: *** py [current code for fig-
ure generation]” ™~ I want to also color other “parts” of
the violin plot than just the “bodies”. Also, Id like to
remove the left part of the violin plot.”

A: “To customize the violin plots further according to your
requirements, including coloring additional parts and re-
moving the left part of the violin plot (which typically
represents the mirrored density), you can modify the
plotting parameters of the violin plots. Here’s how you
can do it: ** py [modified code]

NNNET

Q: “Reformulate this: However, it is necessary to first adopt
an incremental approach based on existing work and es-
tablish a new baseline to which new regularization meth-
ods can be compared.”

A: “However, it is essential to first take an incremental ap-
proach based on existing work and establish a new base-
line for comparing new regularization methods.”

B Network structure diagram

"""" ,:'["j X Naow: o X Ny
: [
G R«, i ‘ 40 ek, ‘
X, D g, an:: w%,,,,U pC‘ Nl o,
: ’y y
,,,,,,,,,,,,,,,,,,,,,,,,,,,,, X Neony.__._ .}
Unfold
GGG o Ny S e,
t=0 x, : F”"n i | };‘:’ 0
> H : ”*El: ?I : (
; R’l ; : B }
i P Sp |
t=1 X g L2 v 0,
I Ry Y Y
: "o \1 T "%:,,,' |k (,\;[
= H ’ I I : (
- | \1 :
v S
t=T—1 % i ,,:"u ! 0
! U j J "EI : [
Input Spiking Encoder T Classifier T Output

Figure 3: Network structure taken from the original work. “The
general formulation of our networks and its unfolded formulation.
X Neonw indicates there are Neon. {Conv2d-Spiking Neurons} con-
nected sequentially. X Ngown and XNy, have the same meaning.
Note that the network’s parameters are shared at all time-steps.”
Section 3.3 in [14]. For the DVS128 Gesture dataset, the specific
structure iS Neonv = 1, Ngown = 5, and Ny, = 2.

References

[1]

[2]

[10]

[11]

[12]

M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao,
S. H. Choday, G. Dimou, P. Joshi, N. Imam, S. Jain,
Y. Liao, C.-K. Lin, A. Lines, R. Liu, D. Mathaikutty,
S. McCoy, A. Paul, J. Tse, G. Venkataramanan, Y.-H.
Weng, A. Wild, Y. Yang, and H. Wang, “Loihi: A neu-
romorphic manycore processor with on-chip learning,”
IEEE Micro, vol. 38, no. 1, pp. 82-99, 2018.

C. Pehle, S. Billaudelle, B. Cramer, J. Kaiser,
K. Schreiber, Y. Stradmann, J. Weis, A. Leibfried,
E. Miiller, and J. Schemmel, “The brainscales-2 acceler-
ated neuromorphic system with hybrid plasticity,” 2022.

S. B. Furber, D. R. Lester, L. A. Plana, J. D. Garside,
E. Painkras, S. Temple, and A. D. Brown, “Overview of
the spinnaker system architecture,” IEEE Transactions
on Computers, vol. 62, no. 12, pp. 2454-2467, 2013.

N. Qiao, H. Mostafa, F. Corradi, M. Osswald, F. Ste-
fanini, D. Sumislawska, and G. Indiveri, “A reconfig-
urable on-line learning spiking neuromorphic processor
comprising 256 neurons and 128k synapses,” Frontiers
in Neuroscience, vol. 9, 2015.

A. Henkes, J. K. Eshraghian, and H. Wessels, “Spik-
ing neural networks for nonlinear regression,” CoRR,
vol. abs/2210.03515, 2022.

Y. Sandamirskaya, M. Kaboli, J. Conradt, and T. Ce-
likel, “Neuromorphic computing hardware and neural

architectures for robotics,” Sci. Robotics, vol. 7, no. 67,
2022.

A. Amir, B. Taba, D. Berg, T. Melano, J. McKinstry,
C. Di Nolfo, T. Nayak, A. Andreopoulos, G. Garreau,
M. Mendoza, J. Kusnitz, M. Debole, S. Esser, T. Del-
bruck, M. Flickner, and D. Modha, “A low power, fully
event-based gesture recognition system,” in 2017 IEEE

Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pp. 73887397, 2017.

F. C. Bauer, D. R. Muir, and G. Indiveri, “Real-time
ultra-low power ECG anomaly detection using an event-
driven neuromorphic processor,” IEEE Trans. Biomed.
Circuits Syst., vol. 13, no. 6, pp. 1575-1582, 2019.

Z. Yan, J. Zhou, and W. Wong, “Energy efficient ECG
classification with spiking neural network,” Biomed.
Signal Process. Control., vol. 63, p. 102170, 2021.

S. Afshar, A. P. Nicholson, A. van Schaik, and
G. Cohen, “Event-based object detection and
tracking for space situational awareness,” CoRR,

vol. abs/1911.08730, 2019.

J. Timcheck, S. B. Shrestha, D. B. D. Rubin, A. Kupry-
janow, G. Orchard, L. Pindor, T. M. Shea, and
M. Davies, “The intel neuromorphic DNS challenge,”
Neuromorph. Comput. Eng., vol. 3, no. 3, p. 34005,
2023.

J. K. Eshraghian, M. Ward, E. O. Neftci, X. Wang,
G. Lenz, G. Dwivedi, M. Bennamoun, D. S. Jeong,
and W. D. Lu, “Training spiking neural networks using

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

lessons from deep learning,” Proceedings of the IEEE,
vol. 111, no. 9, pp. 1016-1054, 2023.

G. Bellec, D. Salaj, A. Subramoney, R. Legenstein,
and W. Maass, “Long short-term memory and learning-
to-learn in networks of spiking neurons,” in Advances
in Neural Information Processing Systems 31: Annual
Conference on Neural Information Processing Systems
2018, NeurIPS 2018, December 3-8, 2018, Montréal,
Canada (S. Bengio, H. M. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, eds.),
pp- 795-805, 2018.

W. Fang, Z. Yu, Y. Chen, T. Masquelier, T. Huang, and
Y. Tian, “Incorporating learnable membrane time con-
stant to enhance learning of spiking neural networks,”
in 2021 IEEE/CVF International Conference on Com-
puter Vision, ICCV 2021, Montreal, QC, Canada, Octo-
ber 10-17, 2021, pp. 2641-2651, 1IEEE, 2021.

F. Gers, J. Schmidhuber, and F. Cummins, “Learning to
forget: continual prediction with Istm,” in 1999 Ninth
International Conference on Artificial Neural Networks
ICANN 99. (Conf. Publ. No. 470), vol. 2, pp. 850-855
vol.2, 1999.

M. Beck, K. Poppel, M. Spanring, A. Auer, O. Prud-
nikova, M. Kopp, G. Klambauer, J. Brandstetter, and
S. Hochreiter, “xIstm: Extended long short-term mem-
ory,” 2024.

W. Gerstner, W. Kistler, R. Naud, and L. Paninski, Neu-
ronal Dynamics: From Single Neurons to Networks and
Models of Cognition. 08 2014.

S. S. Chowdhury, C. Lee, and K. Roy, “Towards under-
standing the effect of leak in spiking neural networks,”
Neurocomputing, vol. 464, pp. 83-94, 2021.

W. Fang, Y. Chen, J. Ding, Z. Yu, T. Masquelier,
D. Chen, L. Huang, H. Zhou, G. Li, and Y. Tian, “Spik-
ingjelly: An open-source machine learning infrastruc-
ture platform for spike-based intelligence,” 2023.

W. Fang, Z. Yu, Y. Chen, T. Masquelier, T. Huang, and
Y. Tian, “Supplementary materials for: Incorporating
learnable membrane time constant to enhance learning
of spiking neural networks,”

C. Pehle and J. E. Pedersen, “Norse - A deep learning
library for spiking neural networks,” Jan. 2021. Docu-
mentation: https://norse.ai/docs/.

K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into
rectifiers: Surpassing human-level performance on ima-
genet classification,” CoRR, vol. abs/1502.01852, 2015.

X. Glorot and Y. Bengio, “Understanding the diffi-
culty of training deep feedforward neural networks,” in
Proceedings of the Thirteenth International Conference
on Artificial Intelligence and Statistics (Y. W. Teh and
M. Titterington, eds.), vol. 9 of Proceedings of Ma-
chine Learning Research, (Chia Laguna Resort, Sar-
dinia, Italy), pp. 249-256, PMLR, 13-15 May 2010.

[24] J. Frankle and M. Carbin, “The lottery ticket hy-
pothesis: Training pruned neural networks,” CoRR,
vol. abs/1803.03635, 2018.

[25] W. Zaremba, 1. Sutskever, and O. Vinyals, “Recurrent
neural network regularization,” 2014.

[26] H.Li, “CIFAR10-DVS,” 5 2017.

	Introduction
	Background
	LIF neuron
	Simulation using discrete-time differential equations
	Trainable parameters

	PLIF neuron
	The ``Forget gate'' analogy
	SpikingJelly framework
	Surrogate gradients

	Baseline model for the DVS128 Gesture dataset
	Input preprocessing and encoding
	Hyperparameters
	Loss function

	Methodology
	Replication and extension of the baseline model
	 initialization
	Sampling from a log-normal distribution

	 regularization

	Experimental Setup and Results
	DVS128 Gesture dataset
	Models
	Hyperparameters

	Results
	Evolution of during training
	``No regularization'' model
	``= 0.1'' model
	``= 0.01'' model

	Responsible Research
	Discussion
	Future Work
	Conclusion
	Prompts for LLMs
	Network structure diagram

