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ABSTRACT In this paper, we develop what we refer to as economic circuit theory. Our purpose is to
exploit the proven effectiveness of electrical circuit theory for the design, modeling, and analysis of complex
electrical networks to economic systems; in particular, it permits us to incorporate the dynamics of price into
those of the flow of physical commodities, analogous to how this is done for magnetic flux and electrical
charge. The theory is agent-based, wherein agents are conceptualized as electrical components, and the
dynamics are determined by matching the agents’ behavioral laws with the constitutive equations of the
analogous components. We take a modern graph-theoretic approach, identifying the conditions for stock-flow
consistency (Kirchhoff’s current law) and price clearing (Kirchhoff’s voltage law). With this, we develop
the theory to model representative agents (equivalent networks), single-good markets (circuits), and general
competitive markets (magnetically coupled circuits). We show how to apply the theory by designing and
analyzing an economic circuit model for a two-good market in detail. To prove the effectiveness of the theory,
we fit and validate a circuit for the global market in crude oil to the historical data, and we examine a relatively
complex circuit for a hypothesized market in hydrogen.

INDEX TERMS Economic circuit theory, graph theory, systems modeling, systems thinking.

I. INTRODUCTION
Understanding and modeling dynamics is a fundamental
challenge in modeling economic systems (see, e.g., [1], [2],
[3], [4]). This contrasts with the engineering disciplines, which
can rely on several well-established theories and methods to
model physical dynamic systems [5], [6].
Traditionally, economic theory has focused on identifying

the conditions for economic equilibrium, in particular that
of price equilibrium. Although recently there has been a
shift of focus towards modeling disequilibrium, there is
currently no generally accepted economic force law to
govern the dynamics of price (see [7]). Instead, economists
rely on ad hoc methods. For instance, in the Dynamic
Stochastic General Equilibrium (DSGE) models common
in macroeconomic theory [8], [9], [10], prices are assumed
to adjust instantaneously [11]. In System Dynamics (SD)
modeling common in business applications, price changes

The associate editor coordinating the review of this manuscript and
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are modeled through look-up tables and other ad hoc
methods [12]. Agent-Based Computational Economics (ACE)
models rely on various ad-hoc behavioral heuristics for price
determination [8], [11], [13], [14], [15]. Finally, in complexity
economics price laws are only observed at the macro scale,
see e.g. [16].
In contrast, the engineering disciplines have traditionally

focused on dynamic behavior. Especially in electrical circuit
theory, this has led to an effective and sophisticated modeling
tradition that can rely on a rigorous theoretical basis (e.g. [5],
[17]). The ubiquitous sophisticated electronic devices that
are part of contemporary life testifies to the effectiveness of
electrical circuit theory to model complex and highly dynamic
systems.
Our vision with economic circuit theory is to exploit this

effectiveness for economic modeling. In the engineering
literature, there does exist an established line of research
that attempts to model economic systems through an analogy
with electrical networks [18], [19], [20], [21], [22]. The
underlying idea is that electrical networks can be thought of as

172696

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0009-0006-9312-1072
https://orcid.org/0000-0002-7949-8766


C. Hutters, M. B. Mendel: Economic Circuit Theory: Electrical Network Theory for Dynamical Economic Systems

agent-based, with each economic agent corresponding to an
electrical component. Agents exchange goods or services in
the same manner as electrical components exchange electric
charge, thought of as a current or flow passing through the
wiring that represents the trade connections.

Our economic circuit theory builds on this line of research.
However, our theory differs from this line in one crucial
assumption that is essential for modeling price dynamics. This
is the choice of the magnetic flux stored in an inductor to
represent the price that an agent ascribes to a good. We rely on
a recent publication [7], where this is first proposed and where
the implied economic force law is worked out as the analog of
Faraday’s law. This assumption implies that the voltage over
the inductor is interpreted as an incentive. Such an incentive
determines the agent’s price dynamics in the same manner as
the voltage determines the dynamics of the flux [17].
In the aforementioned line of research, instead, price

is invariably assumed to be the analog to voltage, rather
than the flux. However, there is no electrical component
whose constituent determines the rate of change of a voltage.
Therefore, this analogy cannot be implemented in an electrical
circuit to model price dynamics. Indeed, the circuits that have
been proposed in these works all concern equilibrium models.
In Section II we adapt the analogy from [7] for economic

circuit theory. Although many aspects of this analogy are the
same as in the aforementioned line of research, we mention
here several important distinctions. First and foremost, the
inductor represents a location of demand rather than a source
of reinvestment. Although we also use a capacitor as a storage
location, it requires an incentive rather than a price to increase
its inventory level. Using an inductor for the location of
demand frees up the resistor, which now locates the presence
of economic friction in close analogy with its physical role.
Rather than a price, it requires an incentive to mediate the
exchange of goods.
In Section III, we introduce the main contribution of our

paper: the use of the modern topological graph-theoretic
approach to electrical networks to model economic price
dynamics in a unified, comprehensive, and rigorousmanner for
complex economic systems [17], [23], [24], [25]. Specifically,
we associate the Kirchhoff loop law with a price-incentive
consistency condition. It determines how, in an economic
system, the incentives drive the prices of the individual
agents. This contrasts with its use in the aforementioned line
of research where it serves as a static balancing of prices.
It complements the Kirchhoff node law serving as a stock-flow
consistency requirement. Although our interpretation of the
node law remains the same, their combination into the
economic equivalent of Tellegen’s theorem provides us with
a dynamic version of Walras’s law, rather than its traditional
price equilibrium interpretation [22], [26].
In Section IV, we develop several concepts from elec-

trical network analysis for their use in economics. These
include the use of closed circuits for single-good markets
and model-simplification techniques to aggregate agents
into representative agents, including cooperative agents as

series and competitive agents as parallel interconnections.
In addition, we show how real electrical power sources can be
used to incorporate the dynamics of exogenous sources. These
include the real agents such as consumers and producers who
supply economic surplus to the system.
Our development of economic circuit theory culminates

in Section V, where we show that the price dynamics of
an economic circuit can be modeled using a state-space
representation. This relies crucially on the price-flux analog,
used in conjunction with the price-incentive consistency
condition. Since the flux linkage is a state variable of an
electrical system, so is the price (say p) of an economic
system within circuit theory. The state-space representation
then specifies the time-rate of change of the price (i.e., ṗ =

dp
dt ).

This argument would not be valid if the voltage were the analog
to the price. Complementing the prices with the inventory
stocks creates the state vector of a dynamical system and
we detail the procedure for deriving both the state and input
matrices of its state-space representation for an arbitrary
economic circuit.
We then show how the state-space representation allows

us to analyze the transient behavior of an economic system.
We refer to this as dynamic economic scenario analysis. This
is achieved in two steps. First, we establish the dynamics of
the equilibrium state as a function of the exogenous sources.
Then, we determine the transient behavior of the price and
stock levels as they attempt to move towards this, possibly
changing, equilibrium state.
In Section VI-A, we apply the theory to the design and

analysis of several economic circuits. For a relatively simple
system consisting of two competitive markets, we show
that the design of the economic circuit proceeds in the
same manner as an electrical engineer would design an
electronic network: We identify the requisite elementary
agents, simplify by aggregating them into representative
agents, and then establishing the state-space representation
of the dynamics. With that, we illustrate the dynamics by
investigating the inventory and price responses in the markets
due to a particular demand shock using the dynamic scenario
analysis. Subsequently, we provide experimental verification
of the theory with an application to the spot market for crude
oil. We conclude the section with an application to a rather
complex application to the design of a hypothetical hydrogen
economy. This application shows the power of economic
circuit theory to conceptualize, design, and build prototypes
of complex economic systems even in situations where there
is no data available.

II. DYNAMIC STRUCTURE
A. STOCK AND PRICE AS CONJUGATE VARIABLES
In our theory, we employ a recently published analogy [7]
that enables us to incorporate price dynamics in analogous
electrical networks. The economic analogs to the electrical
signals resulting from this analogy are summarized in Table 1.

The critical distinction is the choice of the magnetic flux as
the analog to price. In this interpretation, the inductor becomes
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TABLE 1. Conjugate pairs of dynamic variables and their stock-flow
relationships.

an agent with a demand (or supply) function, that maintains
a price level p. Its role is then conjugate to the role of the
capacitor as an agent that maintains a commodity stock level
(or scarcity) q.

The flow variable corresponding to the price as a stock
variable is what [7] refers to as a want and what we
will additionally refer to as an incentive or a motive (see
Section III-C). In this analogy, an incentive causes a change
in an agent’s price level and will thereby change their flow
demanded or supplied, necessitating the rest of the economic
network to adapt. In the same way that a flow of commodities
equals the time derivative of a commodity stock, an incentive
is the time-derivative of the price. This is properly analogous
to how a voltage is the time-derivative of the magnetic
flux [17]. Conversely, in the same way that integrating a
flow of commodities over time results in a commodity stock,
integrating an incentive over time leads to a price – for example
an agent’s contemporaneous willingness to pay. Incorporating
the effect of incentives on economic activity leads to dynamic
models instead of kinematic ones.

B. BEHAVIORAL LAWS
The relationships between the stock and flow variables in
Table 1 are determined by the behavioral laws of elementary
agents. We represent these agents by analogous electrical
elements of which the constitutive relations [6] emulate the
behavioral laws. The dynamics within an economic network
are then emulated by the electrodynamical interactions of the
analogous electrical elements.

1) MARSHALLIAN AGENTS
In Table 2, we provide a summary of the two-terminal
electrical elements, their economic analogs, and behavioral
laws. Two-terminal elements conduct a single current, from
one terminal to the other. We refer to their economic analogs as
Marshallian agents, because they are limited to processing only
a single commodity flow (see Section II-B2 for a description
of general Walrasian agents). The behavioral law pertaining
to an agent with demand is the familiar Marshallian law of
demand, relating the price p to the quantity demanded f . The
storage law relates the stock level q of the storing agent to a
desire to holdmore (or less) of the commodity. The friction law
specifies that the corresponding agent must be motivated with
an incentive v in order to transport the flow f of the commodity.
See [7] for an in-depth discussion of these relationships.
Insatiable and inelastic agents are active agents whose

behavior is independent of other variables in the network.

These agents are analogous to a voltage and a current source,
respectively. The incentive or the flow supplied by an active
agent may be deterministic or stochastic. When deterministic,
they are specified as a function of time and, when stochastic,
they follow some probability distribution.

TABLE 2. Elementary Marshallian agents as electrical two-terminal
elements and their behavioral laws.

2) WALRASIAN AGENTS
Agent that trade more than one type of commodity can
be represented by electrical elements with four and more
terminals. We refer to such agents as Walrasian agents.
In Figure 1, we show the analog to a Walrasian demander

handling two separate commodities flows while maintaining
a price for each. In electrical networks, this element is known
as a mutual inductance. It consists of two or more coils
that interact through their magnetic fields, depicted by the
magnetic flux lines, and thereby couple any change in the one
current (f1) to a change in the other (f2). The mutual inductance
emulates the effect of cross-elasticity of demand where the
demand for two goods are related through their relative prices.
This analogy enforces our choice to model prices as magnetic
flux rather than as voltages.

FIGURE 1. Walrasian demander for two commodities. The magnetic flux
lines shared by the two Marshallian demanders quantify the price coupling.

The behavioral law of the Walrasian demander is given
by a tensorial version of the Marshallian law of demand
f = εp (see Table 2). For a Walrasian demander trading in G
commodity types, the matrix representation of the behavioral
law becomes:

f1
f2
...

fG

 =

ε11 . . . ε1G

...
. . .

...

εG1 . . . εGG


p1

...

pG

 . (1)
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Here, εii is the Marshallian price elasticity of demand and
εij, i ̸= j the cross-elasticity of demand. The latter is
positive for substitutes, negative for complements, and zero
for independent goods (see further [7] for a discussion in the
context of a mechanical analog).
The other Walrasian agents can be defined in a similar

manner. A Walrasian storage is equipped to store different
types of commodities simultaneously, where the desirability
of receiving one type is dependent on the amount of the
other. Its behavioral is likewise a tensorial version of the
Marshallian agent’s law. Such an agent is analogous to a
mutual capacitance. Walrasian frictional agents are defined
similarly.

C. CAUSALITY
The dynamic structure established by the behavioral laws
and the stock-flow relationships can be conveniently pictured
together in what is known as a tetrahedron of state (see [6]).
Figure 2 contains a tetrahedron pertinent to the economic
analogy. The pairs of conjugate stock and flow variables are
enclosed within dotted boxes on the horizontal and vertical,
respectively. The stock-flow relationships and behavioral laws
are contained within the dashed box on the left-leaning and
the right-leaning diagonal, respectively. Friction connects the
incentive directly with the flow over the vertical.

FIGURE 2. Tetrahedron of state for economic systems.

The causality enforced by a relationship is indicated in the
tetrahedron by the direction in which the arrowhead points.
For the stock-flow relationships, the causal direction coincides
with that of the integration operator. Integration determines
the present based on the past and, hence, is causal. To wit, the
current stock is created by accumulating the preceding flows
and the current price is arrived at by accruing the preceding
incentives. Differentiation, on the other hand, compares the

current stock to the stock a little time later. It is, therefore,
forward looking and cannot be strictly causal.

For the behavioral laws, the causal direction is determined
by the economic reality. The economic law of demand is a
causal law, stipulating that the change in the flow is caused by
a change in price (see e.g. [27]). For the storage law, one first
registers the stock amount, which then becomes the cause for
wanting to store more or less of the commodity in question.
The friction law forms an exception, being bicausal. Either
the flow is the cause of an incentive – as it would be for, e.g.,
a broker that offers price premiums or discounts based on a
mismatch between supply and demand– or the incentive is
the cause of a flow, which would for example be the case of
an inventory manager that reduces the inflow of commodities
based on a storage’s needs.

III. TOPOLOGICAL STRUCTURE OF ECONOMIC NETWORKS
Economic networks can be structured analogously to
electrical networks, achieved by ‘‘wiring’’ agents together to
facilitate trade in a predetermined manner. In network theory,
a particular wiring is specified by a topological structure.
This structure prescribes the transmission of currents and the
balancing of voltages in the electrical network. In economic
networks, we let the topology determine how agents interact
with each other by prescribing the movement of commodities
and the balancing of incentives among them.

A. TOPOLOGICAL CONCEPTS FOR ECONOMIC NETWORKS
In Table 3 we list the economic interpretations of the
topological building blocks of a network. In the following,
we consider these in detail.

TABLE 3. Topological concepts and their economic roles.

Agents make up the edges of the network. We think of the
commodities as flowing through the agents and incentives
to be measured across agents. While in Table 3 we depict
a generic electrical component, agents are represented by
their specific analogous electrical component (Table 2) in
a particular network.
The nodes of the network represent the loci at which

the commodities are exchanged. Each node is depicted by
a thick dot between any number of components. However,
in practice the node comprises the entire region (the wires)
between the components. Commodities flow through a node
and are distributed over the incident agents, as we show in
Section III-B. At each node, i.e. exchange locus, there is a
particular level of desirability that results from the incident
agents. The difference between the level of desirability at
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the two nodes at each end of an agent is equal to the agent’s
incentive, as we further show in Section III-C.
There is one special type of node which is referred

to as a ground node in network theory. It is used as a
reference desirability level, usually set to zero, to calibrate the
desirability level of the remaining nodes. One can think of it
as a very large reserve where the commodity is abundant such
that its desirability does not change upon receipt or delivery
of additional units.
In network theory, a mesh is a loop that contains no other

loops. For economics, such a mesh can sustain a single
circular flow of the commodity, referred to as the mesh
current in network theory [23]. Agents that form a mesh can
exchange commodities while having a mutual reference for
the desirability level. As we show in Section III-C, meshes
are necessary for agents to communicate their incentives.
With the establishment of a topological structure, we can

use algebraic graph theory [25] to systematically analyze
and model economic networks, rather than relying on ad-hoc
methods. In itself, the use of network theory for modeling
economic systems is not new (see e.g. [28], [29], [30]).
However, in these attempts the agents make up the nodes
of a network, while the edges represent their interactions.
The disadvantage of such a choice is that the flow of the
goods cannot be read-off explicitly as a network current and,
consequentially, the edges cannot accommodate the behavioral
laws that determine the dynamic structure. By adhering to
convention in network theory, its use for modeling and design
in economics becomes transparent.

B. STOCK-FLOW CONSISTENCY AND THE KIRCHHOFF
NODE LAW
The analogy between electric charge and commodities implies
that the Kirchhoff current law (KCL), also known as the node
law, assures that the distributed commodities clear at each
exchange locus (see e.g. [21], [31]). By using the KCL’s
formulation in algebraic graph theory [23], [25], we can
efficiently ensure a stock-flow consistent distribution of
commodities throughout an entire network. To do so, we first
introduce the network flow vector

f =
(
f1 . . . fE

)T
, (2)

containing a flow fj for each agent j ∈ {1, . . . ,E}. Then we
define an incidence matrix N as follows: At a particular node
we identify the edges that are incident to it. These represent
the agents who exchange commodities through that particular
locus. To keep track of the movements through the node,
we define for each node a row of incidence descriptors. This
yields a matrix with entries

N ij =


1 if Ej provides commodities to Ni

−1 if Ej receives commodities from Ni

0 if Ej is not incident to Ni,

(3)

where i ∈ {1, . . . ,N } for N exchange loci.

FIGURE 3. The exchange loci (nodes N1 and N2) clear the commodities
among the agents incident to them. The KCL requires that f1 = f2 + f3 and
f2 = f4.

With the aid of the incidence matrix and the flow vector, the
stock-flow consistency condition for an arbitrary economic
network can be concisely stated as follows:

Nf = 0 (4)

Here 0 is the N -dimensional zero flow vector.
To illustrate the procedure, consider node N1 from the

network in Figure 3. From the choice of flow directions in
the figure, we see that agent E1 provides commodities and
therefore N11 = 1. Agents E2 and E3 receive commodities,
hence N12 = N13 = −1. Because agent E4 is not incident to
N1, i.e. commodities do not directly flow from the storage to
this exchange locus, N14 = 0. Collecting the entries into a
row for each node in a network and arranging the rows into a
matrix gives the incidence matrix for that particular network.

C. PRICE-INCENTIVE CONSISTENCY AND THE KIRCHHOFF
MESH LAW
The topological structure of a network also allows us to
formulate a price-incentive consistency that ensures that each
price change within a network is consistent with the incentives.
Its electrodynamic analog is known as the Kirchhoff voltage
law (KVL), also referred to as the mesh law. This law is based
on the principle of conservation of the magnetic flux linked to
a mesh by the inductors [17]. For economic meshes, we link
the prices of the individual demanders (or suppliers) to the
mesh. A price linked in this manner represents the personal
value the agent ascribes to the commodity. In [7], it is shown
that the total of these personal values in a mesh is indeed a
conserved quantity, similar to the total flux linkage. In this
subsection, we formulate the price clearing condition in terms
of a conservation law for the total value linked to the network.
A flow of value is a want, as evidenced by the p-v stock-

flow relationship (see the tetrahedron of state in Figure 2).
To describe the various manifestations of a want within a
network, we use the analogs to some specialized terminology
that has been developed in electrodynamics for this purpose
(see Table 4).

At each locus, there is a level of desirability that the agents
incident to the locus have in common. Following custom
in electrodynamics, we set the desirability of the reference
node (electrical ground) to zero so that no value flows there.
We measure the desirability φi at node i relative to the ground
level and collect these into an N -dimensional desirability
vector φ.
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TABLE 4. The manifestations of a want in economic networks: incentive,
motive, and desirability.

Associated to each edge, there is a unique drop vj in
desirability representing the incentive that the agent requires
to process the commodities from one locus to the other. The
flow of value associated with this drop is depicted by a
curved arrow pointing in the direction of positive incentives.
The curve emphasizes that the drop occurs over the agent
(rather than through it as a flow). When the desirability
jumps, we speak of an economic motive, which is generated
by an active agent (Table 2). The difference in incentives
and a motives is analogous to the difference in voltages and
electromotive forces in electronics [17]. We adhere to the
same sign convention as used in electrical network theory,
with incentives directed opposite to the commodity flow and
motives directed with the commodity flow (see Figure 4).

FIGURE 4. Sign convention: an incentive v measures the (passive)
desirability drop across an agent and a motive e measures the desirability
jump induced by an active agent.

The incidence matrix allows us to efficiently determine the
network-wide incentives from the desirability levels. With v
as an E-dimensional vector containing all incentives within a
network, we find that

v = NTφ, (5)

whereφ =
(
φ1 . . . φN

)T is a vector containing the desirability
levels of all nodes in the network and NT is the transpose of
the incidence matrix (3). The use of a matrix transpose in this
connection reflects the conjugacy between the flows of value
and the commodities and ensures a consistent accounting of
the flows and incentives.

FIGURE 5. Price clearing among the agents in a circular flow. In mesh M1
KVL requires that v1 = v2 + v3.

The price-incentive consistency condition can now be
formulated in terms of a conservation law for economic

value. To formulate the KVL for all M meshes in an
economic network, we choose a direction for each circular
flow and construct an M × E-dimensional matrix M with
entries

Mkj =


1 if Ej is inMk and directions agree

−1 if Ej is inMk and directions disagree
0 if Ej is not part ofMk ,

(6)

where k ∈ {1, . . . ,M} for M exchange loci. In algebraic
graph theory,M is known as a branch-mesh matrix [24]. In the
economic setting, we refer to it as the agent-mesh matrix. With
it, the KVL becomes

Mv = 0, (7)

where 0 is now an M−dimensional zero incentive vector.
For economic networks, it gives a network-wide formulation
of the price-clearing condition based on the conservation
of the personal economic value of the demanders and
suppliers.
We illustrate this procedure with the aid of the meshes in

M1 andM2 Figure 5. After constructing the incidence matrix,
(5) yields the incentives of the agents: v1 = φ2 − φ0, v2 =

φ2 − φ1, etc. In meshM1, the incentive of agent E1 is against
the direction of circular flow, while the incentives of E2 and
E3 are along the flow. Hence,M11 = −1 andM12 = M13 = 1.
Agent E4 is not part ofM1 and thusM14 = 0. For the network
in Figure 5, the KVL determines that v1 = v2 + v3 = −v4.

The use of the KVL for price-incentive consistency is new.
Moreover, its formulation represents a radical departure from
economic traditions concerning the role of price and, also, the
existing attempts to model economic systems using circuit
theory mentioned in the introduction.

In our theory, we associate a unique desirability level with a
node. In economics, in contrast, it is conventional to associate
a price with a locus where exchange takes place (e.g. [32]).
A ground node, in particular, allows agents to dispose of the
commodities at a zero desirability level, rather than at a zero
price as would be understood by the traditional notion of free
disposal. The use of desirability rather than price, allows us to
think of the goods as flowing to where they are wanted from
where they are less desired, thus establishing a cause for the
change in a flow.
A price is associated with those edges that represent a

demander (or a supplier). This makes the price p a property
of an agent. Agents adjust their price over time following
the incentives they are subject to. Subsequently, the flow
supplied or demanded by such agents change according to
their behavioral laws that link the flows of goods to the prices.
This causal chain of dynamic responses contrasts with the
typical role of price in economic models as a property of
market equilibrium. In Section VI-A we show that under
certain conditions, the prices of individual agents align into a
common market price.
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D. MARSHALLIAN MARKETS AS CLOSED CIRCUITS
A Marshallian market —i.e., a market limited to a single type
of commodities— can be defined in a purely topological
manner, in analogy with an electrical circuit. A circuit is
a network that consists of a single closed loop, possibly
containing any number of meshes [17]. For a market, this
definition implies that the commodities have a trade route
to arrive to an agent from any other market participant.
In addition, it provides the means for the market participants
to communicate their incentives among each other. Typically
one adds the requirement that there is also at least one active
element present that drives the circuit (e.g. a battery) and we
do likewise by adding at least one active agent.
The agent-mesh matrix M can be used to systematically

identify the markets within a network. The matrix’s rows
represent the interactions among agents within the same mesh,
while its columns reflect the inter-mesh communications
between agents. Consequently, markets emerge as blocks
marked off by blocks of zeros in the matrix (see Figure 6).
This analysis is done even more efficiently if we introduce the
markets-mesh matrix1

T = MMT , (8)

which is a block diagonal matrix that reveals the number of
markets in a network through the number of submatrices.
For the network in Figure 6, for instance, the number of
submatrices is two, both when mesh M4 does and does
not exist. In each submatrix, the diagonal entries indicate
the number of agents in each mesh, while the off-diagonal
entries indicate the number of agents shared between the two
corresponding meshes.

FIGURE 6. Each closed circuit represents a market.

In Figure 6 we show a network with two separate
Marshallian markets. In both markets an active agent is present.
One verifies indeed that in Market 1, agents E1 through E4 are
able to, directly or indirectly, deliver the goods to one another
through the nodes and communicate their incentives through
the meshes. Agents E5 and E6 are prevented from trading with
Market 1 and form separate market on their own. Agent E7
is not incorporated into any closed circuit, excluding it from
market activities. This changes when the switch between nodes
NC andND closes and the agent enters the Market 2, forming
a new mesh meshM4 (the switch enables us to model the

1In algebraic graph theory this matrix is not commonly used; however,
it bears resemblance to the well-known Laplacian matrix L = NNT , where
N denotes the incidence matrix. The Laplacian matrix is particularly notable
for its role in determining the number of spanning trees within a graph.

entrance or exit of agents). The corresponding matrices are
displayed in 9. The dotted lines represent the separation of the
markets and the gray entries apply when the switch between
NC and ND is closed.

M =


E1 E2 E3 E4 E5 E6 E7

M1 −1 1 0 0 0 0 0

M2 0 −1 1 1 0 0 0

M3 0 0 0 0 −1 1 0

M4 0 0 0 0 0 −1 1

, (9)

and

T =


M1 M2 M3 M4

M1 2 −1 0 0

M2 −1 3 0 0

M3 0 0 2 −1

M4 0 0 −1 2

. (10)

E. NETWORK CONNECTIVITY AS MARKET RESILIENCE
The resilience of a market due to agents exiting can be
determined by inspecting the circuit’s connectivity. In network
theory, the connectivity is defined to be the minimum number
of edges that must be removed to disconnect two nodes [33].
In an economic network, these are the minimum number of
agents that need to exit the market to disrupt the connection
between two exchange loci.
Markets with a high degree of competition are naturally

resilient, while markets with a high degree of cooperation are
particularly vulnerable. Competitive agents trade in parallel
(Section IV) and all agents have to be removed for the trade
to cease. On the contrary, when agents cooperate, which
corresponds to agents in series interconnection, the exit of
but a single agent severs the flow of the goods between the
loci. This highlights the critical role of network topology for
market resilience analysis.

F. WALRASIAN MARKETS AND MAGNETIC COUPLING
Walrasian demanders couple separate Marshallian markets
into a single Walrasian market by virtue of their ability to
maintain prices for two distinct types of commodities. The
effect of one price on another is analogous to the magnetic
coupling of topologically uncoupled circuits in electrical
networks [17]. This analogy underscores the necessity of
modeling price as the analog of magnetic flux and not as
the analog of voltage.
The price coupling between two markets is visualized

in Figure 7 in the same manner as magnetic coupling is
visualized. The magnetic field lines permeating the coil at
a market represent the demander’s price for the commodity
traded on it. The density of field lines permeating both coils
represent the degree to which the two prices influence each
other. The behavioral law 1, then specifies how any price
changes then lead to adjustments in the quantities demanded
on both markets.
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FIGURE 7. Walrasian market as two Marshallian market coupled through
demand. The field lines permeating both inductors represent the price
coupling between the two commodities.

G. GENERAL MARKET CLEARING AND TELLEGEN’S
THEOREM
Both physical and price clearing conditions can be combined
into a single general clearing condition for any economic
network. In electrical network theory, the corresponding
condition is known as Tellegen’s theorem [25]. Using the
network flow vector f (2) and the incentives vector v (5),
it can be concisely formulated as:

f T v = 0 (11)

The product of the flows and their conjugate incentives is the
rate at which the agents allocate the economic surplus among
each other in the network (see [7]). In electrical networks,
this is the electrical power that is being transferred between
the elements in a network. Tellegen’s theorem can thus be
seen to assert a fundamental principle of conservation of
economic surplus within an economic network, analogous
to the conservation of energy in a electrical network. At a
node, where the desirability level is equal among the agents,
this manifests itself as physical clearing. In a mesh, where the
mesh flow is shared among the agents, this manifests itself
as price clearing. Together, they form a more fundamental
principle of clearing of the economic surplus, consistent with
the conservation law of surplus and energy (see, further, [7]).
Tellegen’s theorem serves as an efficient framework for

maintaining stock-flow consistency in Walrasian markets.
By allowing the examination of the entire network of
interconnected markets, it ensures that the sum of the products
of flows and incentives around anymarket is zero, streamlining
the process of confirming consistency across the market
system without repetitive individual checks.

IV. AGGREGATE AGENTS AS CIRCUIT MODULES
Network simplification allows multiple components to be
represented by a single equivalent component, reducing the
complexity of a network [17]. In economic circuits, this allows
us to aggregate the behavior of a group of elementary agents
into a single representative behavioral law. In this section,
we analyze two types of such aggregate agents.

A. ACTIVE MARSHALLIAN AGENTS
By aggregating a passive and an active agent, we obtain
what we refer to as active Marshallian agents or real agents,

which include consumers, producers, and traders. Active
agents are analogous to real power sources in electronics,
where the addition of a passive element to the ideal source
is designed to capture the non-ideal behavior of the device.
Active agents agents drive economic activity by allocating
economic surplus [7] to the economic network.
In Figure 8, we illustrate how a consumer can be

configured as an active Marshallian agent by combining
the price-inelastic demand (current source) with price-elastic
demand (inductor). The effective behavioral law of the
consumer follows the behavioral laws of the elementary agents
combined with the KCL (4):

fd = u− εdpd , (12)

where u is the inelastic demand and εdpd is the elastic demand.
This behavioral law yields the familiar downward-sloping
demand line of a consumer.

FIGURE 8. Active demander consisting of a current source and an inductor
(left). The behavioral law fd = u − εd p results in the familiar downward
sloping demand schedule of a consumer (right).

Numerous other configurations of active agents are possible.
For instance, another type of consumer can be configured by
taking insatiable incentives in parallel with an elastic demander
and a frictional element that encapsulates the consumption
itself [7]. Similarly, producers can be configured by reversing
the flow direction of u, forcing the demander to act as a
supplier. This leads to a flow quantity supplied of fs = u+εsps
and the familiar upward sloping supply line.

B. REPRESENTATIVE AGENTS AS EQUIVALENT NETWORKS
Elementary agents of the same type can be aggregated into a
single representative agent with an equivalent behavioral law.
We consider two specific topologies within which the agents
are aggregated: a competitive and a cooperative configuration.
In a network, we configure competitive agents in parallel and
cooperative agents in series (see Table 5). When in parallel
—as, e.g., in a competitive market— the agents compete for
the total flow available while being subjected to a common
incentive and when in series —as, e.g., in a linear supply
chain— the agents cooperate to establish a common flow
while their incentives add up to that of a representative agent.

In Table 5 we summarize the behavioral laws for the various
representative agents that can be constituted with each of
the elementary Marshallian agents. In particular, it is seen
that competitive demanders (or suppliers) act like a single
representative demander whose price elasticity is the sum of
the individual price elasticities. This is shown graphically in
Figure 9 for the case of three suppliers and corresponds to the
standard analysis of market supply (see e.g. [27]). The more
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TABLE 5. Behavioral laws of representative agents.

individual demanders, the more price elastic the equivalent
representative demander. Conversely, when cooperating, the
resultant price elasticity is the inverse of the sum of the inverse
price elasticities, which is shown graphically in Figure 10.
There, the equivalent supplier has a lower price elasticity, thus
rendering it less and less elastic as agents are added.

FIGURE 9. Competitive suppliers as parallel inductors (left). The three
suppliers can be represented by a single equivalent inductor (center). The
market supply aggregates over the individual supply schedules at the
contemporary market price (right).

FIGURE 10. Cooperative suppliers as series inductors (left) and single
equivalent supplier (center). The price p is aggregated over the supply
schedules of the suppliers (right).

V. ECONOMIC NETWORKS AS DYNAMICAL SYSTEMS
The imposed analogy enables us to formulate economic
networks as abstract dynamical systems and leverage the
methods thereof. In this section we demonstrate how this
contributes to the analysis and computation of the dynamics
of economic networks.

A. STATE-SPACE REPRESENTATION
By combining the dynamic structure presented in Section II
with the topological structure presented in Section III,
we obtain a dynamical systems model [6]. Such a model
specifies how the prices and stock levels within the economic
network change in time. Here we consider behavioral laws that
are linear and whose parameters do not change over time (see
Table 2), leading to linear time invariant (LTI) models [34].

The assumption that the behavioral laws are LTI allows us to
express the dynamics of an economic network in a state-space
representation

ẋ = Ax+ Bu+ w, (13)

where the overdot forms the standard notation for a time
derivative. This representation simultaneously captures the
endogenous (Ax), exogenous (Bu), and stochastic (w)
influences on the dynamics of the state variables within the
network, see Figure 11. As we show in Section V-C, this
perspective enables us to conduct dynamic economic scenario
analyses. In the following, we demonstrate how the state-space
representation of an economic network is derived.

FIGURE 11. Block diagram of the state-space representation in (13).

The state of an economic network is determined by the
stock levels of the storages and the price levels maintained by
the demanders. We collect these into a single state vector

x =
(
q1 · · · qK p1 · · · pL

)T
, (14)

where K is the number of storages and L the number of
demanders. Of the passive agents, the frictional agents act as
intermediaries in the trade activity and they do not contribute
a state variable to the state vector (see Table 2). While
the particular arrangement of the state variables is arbitrary,
it is often convenient to arrange them into conjugate pairs
(see (27)).

The inputs are determined by the active agents. Supposing
that there are I active agents in a network, we have an input
vector

u =
(
u1 · · · uI

)T
, (15)

of which each component is either an insatiable motive
or an inelastic flow depending on the nature of the agent.
Specifically, for agent j

uj =

{
fj(t) when j ∈ inelastic
vj(t) when j ∈ insatiable

(16)

The particular arrangement of u is arbitrary and can be chosen
for convenience. The behavior of the active agents depends
on time alone. For this reason, they are properly considered to
be exogenous variables, consistent with their role of inputs.

The input and state vectors determine the deterministic part
of the rate of change,

ẋ =
(
q̇1 · · · q̇K ṗ1 · · · ṗL

)T
, (17)

of the state vector. Its components are the rates q̇k at which
the commodities are stocked up and the rates ṗl with which

172704 VOLUME 12, 2024



C. Hutters, M. B. Mendel: Economic Circuit Theory: Electrical Network Theory for Dynamical Economic Systems

the prices are adjusted. These equal the flow rate into the kth
storage and the incentive over the lth demander, respectively,
i.e.:

q̇k = fk and ṗl = vl

We use the topological structure of the network to formulate
the contribution of the agents participating in the network to
the rate of change ẋ of the state. This involves that for the
stock up rate q̇k , we consider either one of the exchange loci,
say Nn, to which the storage is connected and clear this with
the flows from the other agents into this locus consistent with
the KCL. For the price movement ṗl we consider the mesh
Mm in which that demander is adjusting its price and clear
it with the incentives of the remaining agents contributing to
this mesh consistent with the KVL.

Next, we use the dynamic structure to express the flows and
incentives, either as a function of the state x or of the time t .
This is achieved by substituting the behavioral laws for the
flows and incentives until we recover either a function of x
or of t and arranging these obtained functions in the order
in which they appear in the state vector. The procedure is
summarized in (18), as shown at the bottom of the next page.2

The result is the state-space representation of the
dynamical-systems model of the network. The procedure
makes it evident that it is determined by the topological
structure —as given by the matrices N and M— together
with dynamical structure —as given by behavioral laws fj and
vj.
Because the behavioral laws are linear, the dependence of

the vector ẋ on the state can be summarized by a single matrix
equation Ax, which captures the endogenous dynamics of the
network. The matrix A is known as the state matrix and it
contains the parameters of the behavioral laws of the agents
within the network. The flows and incentives that depend on
time are inputs, conform (16), and hence the dependence of ẋ
on time can be summarized by the equationBu, which captures
it as a dependence on the exogenous inputs. The matrix B is
known as the input matrix. The sum of Ax and Bu then gives
the total of the deterministic effects on ẋ.
The stochastic agents determine the uncertainty in the

dynamics of the state. We collect their contribution into a
noise vector

w =
(
w1 · · · wK+L

)T
,

which has the same dimension as the state vector. The
influence of a stochastic agent on a storage or a price is
determined by placing the components at the appropriate
location in the noise vector. In the absence of any noise,
a zero is entered. This arrangement allows us to express the
contribution of the noise on the rate of change of the state
vector as ẋ = w, which is added to the deterministic solution
to give the state space representation in (13).

2Note that in this procedure each particular fj or vj is either a function of x
OR a function of t .

B. EQUILIBRIUM
Equilibrium for an economic network requires that both the
prices and the stocks remain stationary in time (see e.g. [34]).
The requirement for equilibrium is formulated by requiring
that either

ẋ = 0 or E[ẋ] = 0 (19)

The first formulation suffices for deterministic systems,
while the second formulation generalizes to stochastic
systems.
The value of an equilibrium state, x∗, can be found under

the condition that the state matrix is invertible in the following
manner:

x∗
= −A−1 (Bu+ E[w]) (20)

When the state matrix is not invertible, alternative approaches
such as null-space analysis, numerical techniques, parame-
terized solutions, or the use of a psuedoinverse can be used
to find equilibrium states (see e.g. [35]). The input-output
perspective allows us to consider equilibria that change in
time, depending on the nature of the exogenous influences (u)
and the mean of the stochastic influences (E[w]). For instance,
if the network is subjected to an exogenous sustained shock in
inelastic demand, it will have two equilibrium states, an initial
one before the shock and a final to which it attempts to move.
In the theory of demand, this is interpreted as a shift in the
demand curve (see Figure 12 in the next subsection, wherein
the actual movement in time to equilibrium is analyzed).
More drastically, if the network is instead subjected to a
periodically changing inelastic demand, its equilibrium state
changes continually over time. A changing E[w] on the other
hand will result in a drift of the equilibrium state.
The existence of an equilibrium state does not guarantee

that the economic network will achieve this equilibrium.When
the eigenvalues of A are negative, the network is unstable and
the prices and inventories will diverge from the equilibrium
(see e.g. [36]). In addition, when the time-period of a varying
exogenous input (such as a cyclical inelastic demand) is shorter
than the time it takes the network to adjust to the changing
equilibrium, the economic network finds itself chasing but not
reaching equilibrium.

C. TRANSIENT ANALYSIS FOR DYNAMIC ECONOMIC
SCENARIO ANALYSIS
The state-space representation of the dynamics allows us to
analyze how the network transitions from one equilibrium state
to another after being subjected to a shock. In control theory,
this is known as transient analysis. For simple economic
networks, transient responses can be determined analytically,
while for more complex models they can be approximated
or determined numerically [34]. For economics, the methods
of transient analysis allow us to conduct dynamic scenario
analyses, where the emphasis is on the precise movements of
price levels and stock quantities within an economic network.
The plot in Figure 12 shows a typical response of a

second-order system to a step input consisting of a sudden
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sustained shock. A corresponding second-order economic
network consists of a single representative demander, storage,
and frictional agent as passive agents. Such systems represent,
e.g., traders who maintain both a price and an inventory (see
also [7]). Under a demand shock, the price response exhibits
the damped cyclical passage to the equilibrium value p∗

f from
the initial equilibrium value p∗

i .

FIGURE 12. Transient response to a demand shock of a network consisting
of a demander, storage, and trade friction.

From control theory [34], we can adapt several metrics
to quantify the price movement. In Figure 12, we include
the rise time tr , the maximum overshoot Mp over the final
equilibrium price, and the time ts at which the price settles to
within a certain error of the final equilibrium price. The rise
time quantifies the short-run price rigidity and the overshoot
shows how much the price rises above its new equilibrium

before settling to it. The settling time provides a point in
time separating the short run from the long run. A related
concept used in econometrics is the speed-of-adjustment
parameter [37]. In the absence of any friction, the system
exhibits an indefinite cycle around the equilibrium state, never
settling.
Figure 12b contains an illustrative picture the transient as

a time-parameterized curve in the price-flow plane wherein
demand and supply lines are typically graphed. The actual
movement consists of a simultaneous damped oscillations
along the supply and demand curves.

VI. APPLICATIONS
Economic network theory enables us to design and analyze
economic systems models in the same manner as an electrical
engineer would design an analyze an electronic system.
In this section, we demonstrate this design process for several
economic systems.

A. DESIGN AND ANALYSIS OF A TWO-COMMODITY
WALRASIAN MARKET
In this subsection, we illustrate the application of the theory
by analyzing a two-commodity Walrasian market shown in
Figure 13. The market model serves to demonstrate the various
analogies between the electrical components and agents and
between the topologies and interactions introduced in this
paper.

1) DESIGN OF THE NETWORK
To model the trade in two commodities we consider two
Marshallian markets formed by the two circuits in Figure 13.
We label the agents with a superscript i ∈ {1, 2} to indicate
the market in which they are active. The markets are identical
with the exception of the stochastic agent V1 which is active
in Market 1 alone.

In each market, a cooperative monopoly of, say a wholesaler
S i1 and a retailer S i2, delivers the commodity. In addition, two
storages Ci1 and C

i
2 compete for the inventory stock and two

brokersRi
1 andR

i
2 compete to benefit from any mismatches

between the flows supplied and demanded by offering
premiums or discounts on the price level. Two Walrasian
demanders, D1 and D2, compete for both commodities.
By choosing between the commodities from both markets
based on their cross-elasticity, they establish the price coupling
between the two markets. The demanders are also configured
in an active role as consumers by being paired with a source

q̇k =
1
Nnk

∑
j̸=k

Nnjfj =
1
Nnk

∑
j̸=k

Nnjfj(x) +
1
Nnk

∑
j̸=k

Nnjfj(t)

ṗl =
1

Mml

∑
j̸=l

Mmjvj =
1

Mml

∑
j̸=l

Mmjvj(x) +
1

Mml

∑
j̸=l

Mmjvj(t) (18)

ẋ = Ax +Bu
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FIGURE 13. Network for a Walrasian market in two commodities. Each Marshallian submarket consists of two
suppliers (inductors on the outside), two consumers (inductor-source combinations in the middle), brokers (resistors),
and storages (capacitors). The Walrasian nature of the demanders is indicated by the overlapping flux lines (red
arrowheads).

of inelastic demand in each market, U i1 and U i2, providing
economic surplus. In the market for commodity 1, there is
a stochastic agent V1 that introduces noise in the form of a
stochastic insatiable motive.

2) NETWORK SIMPLIFICATION
Before deriving a state-space representation, we simplify
the network by identifying any representative agents,
consolidating the elementary agents based on whether
they act competitively or cooperatively. From Figure 13,
we immediately see that the storages Ci, brokeragesRi, and
the inelastic agents U i act competitively. We simplify each of
those into a representative agent with the parameters

ki =

kCi1
kCi2

kCi1
+ kCi2

, bi =

bRi
1
bRi

2

bRi
1
+ bRi

2

, ui = uU i1
+ uU i2

,

(21)

respectively. We consolidate the demanders and suppliers into
a single representative Walrasian agent. This requires several
steps. First, we consolidate the cooperative suppliers and
competitive demanders in each Marshallian market into the
representative suppliers S i and demanders Di with respective
price elasticities

εS i =

εS i1
εS i2

εS i1
+ εS i2

, and εDi = εDi
1
+ εDi

2
. (22)

Then, we consolidate these into a single representative
Walrasian demander/supplier DS. To determine its elasticity
tensor ε, we note that the representative supplier and demander
act competitively in eachMarshallian market and that the price
coupling between the markets follows from the demand alone.
These two observations lead to the following expressions for
the principal and cross-elasticities of demand, respectively:

εii = εiiS i + εiiDi , ε12 = ε12D1 + ε12D2 (23)

These form the components of the elasticity tensor ε, which
is the parameter of the behavioral law of the representative

agent DS. The law relates the vector of excess flows in the
markets to the vector of markets’ price levels.
Consolidating the elementary agents in the network of

Figure 13 into representative ones leads to the simplified
network given in Figure 14. Its dynamics are equivalent to
those of the original design.

3) STATE-SPACE REPRESENTATION
To determine the state-space representation of the dynamics
of the reduced network, we first establish its incidence and
agent-mesh matrices. Following the procedure outlined in
Section III, we find:

N =



−1 0 0 1 1 0 0 0 0
1 −1 0 0 0 0 0 0 0
0 1 −1 0 0 0 0 0 0
0 0 1 −1 −1 0 0 0 0
0 0 0 0 0 1 1 −1 0
0 0 0 0 0 0 0 1 −1
0 0 0 0 0 −1 −1 0 1


, (24)

and

M =


1 1 1 −1 0 0 0 0 0
0 0 0 1 −1 0 0 0 0
0 0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 −1 −1

. (25)

Here, the rows ofN in top-down order representN 1
0 ,N

1
1 ,N

1
2 ,

N 1
3 ,N

2
0 ,N

2
1 , andN

2
2 ; the rows ofM representM1

1,M
1
2,M

2
1,

andM2
2; and the columns of both matrices represent, from

left to right, C1, V1,R1, U1,DS1, DS2, U2, C2, andR2. The
dotted lines indicate the separation between the markets. This
is further corroborated by the markets-mesh matrix

T =


4 −1 0 0

−1 2 0 0

0 0 2 −1

0 0 −1 3

, (26)

consisting of two diagonal blocks.
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FIGURE 14. Reduced network with representative agents.

With the incidence and branch-mesh matrices established,
our next step is to follow the procedure in Section V-A.
In total, there are two price levels and two stock quantities
(see Figure 14), making the state vector four-dimensional.
We organize it (for the purpose of the following analysis)
into two consecutive conjugate price-stock pairs, one for each
market, as follows:

x =
(
q1 p1 q2 p2

)T (27)

We have color-coded the state variables to assist with the
interpretation of the simulation results in the next subsection.
Figure 14 depicts the agents to which the state variables
pertain.

The input vector consists of the inelastic-flow components
of the consumers and the noise vector has a single component
containing the motives of the stochastic agent. Following the
procedure, we find the state-space model:

q̇1
ṗ1
q̇2
ṗ2

 =


0 −ε11 0 −ε12

k1 −b1ε11 0 −b1ε12

0 −ε12 0 −ε22

0 −b2ε12 k2 −b2ε22



q1
p1
q2
p2



+


1 0
b1 0
0 1
0 b2

 (
u1
u2

)
+


0
w
0
0

 (28)

The state-space model allows us to analyze various aspects
of the market’s dynamics, including its causality and the
conjugacy between the state variables. We consider the effects
of the stochastic and inelastic agents first and then how the
state matrix determines how these effects are propagated in
time by the network’s endogenous dynamics.

The stochastic motives are configured to directly contribute
to the time rate ṗ1 at which the price in Market 1 changes.
It requires the representative demander to constantly readjust
its price level in a random manner.
We next consider the input matrix that captures the

exogenous effect of the inelastic agents on the dynamics.
In each market, the inelastic demand directly relieves the
inventory stock of the commodity it is demanding (first and

third row of the input matrix). Concurrently, they adjust the
market price levels, a process intermediated by the frictional
representative agent who broker the flow. The latter is captured
by the second and fourth row of the input matrix.

Finally, we consider the endogenous effects captured by the
state matrix. The state matrix consists of four 2 × 2 blocks
and the network consists of two coupled Marshallian second-
order markets. The diagonal blocks determine the internal
endogenous dynamics of the Marshallian markets and the
off-diagonal blocks the coupling between them. Indeed, if we
remove the price coupling by setting the cross-elasticity of
demand ε12 = 0, the off-diagonal blocks contain only zeroes
and theMarshallian markets become dynamically independent.
For non-zero values of ε12, the price in one markets affects
both the flow and the price in the other. Positive values of
ε12 lead to the quantity in the other market decreasing and
the commodities are substitutes of one another. Negative
values, on the other hand, characterize commodities that are
complements. The zeros in the off-diagonal blocks acting
on the inventory state variables show that the markets are
physically disconnected.
The market friction is given by the diagonal elements of

the blocks. In this position, they determine the influence of
one price on itself or on the price in the other market. The
internal market friction is given by the rate of discount biεii,
in units of inverse time [7], on the price that is required to
adequately incentivize the intermediating broker to pass the
commodities from the storage to the rest of the market. For the
intermarket price coupling, the required discount rate depends
on the cross-elasticity of demand instead.
The conjugacy of the state variables is borne out by

the off-diagonal elements of the blocks. The price level
in a market places downward pressure on the conjugate
stock-up rate due to reduced demand. Consistent with a
linear law of demand, the effect is proportional to the price
elasticity −εii. The stock level, in turn, exercises an upward
pressure on the conjugate price due to the increased incentive
to hold the commodity. This incentive gives a measure
to the convenience of holding the commodity and it is
proportional to the storage preference ki. The stock-up rate
in one market is also pressured by the price level in the other
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FIGURE 15. Transient responses of the state variables to a step demand shock in Market 1 for various choices of the model parameters. State variables are
q1 (red), p1 (blue), q2 (purple), and p2 (green). Parameters k = k1 = k2 and b = b1 = b2 for all figures and, unless indicated otherwise, ε11 = 2.15,
ε12 = 0.5, ε22 = 1.3, k = 0.25, and b = 0.2.

market. This effect is proportional to the cross elasticity of
demand −ε12, consistent with the Walrasian nature of the
demanders.

4) DYNAMIC SCENARIO ANALYSIS
To demonstrate the influence that the agents in the Walrasian
market have on the dynamics, we subject the network to a
sustained inelastic demand shock in Market 1 and analyze
how it adjusts to this. Specifically, for the inputs in the state-
space representation, we set:

u1(t) =

{
30 #1/dy, t ≥ 1 dy
20 #1/dy, t < 1 dy

and u2(t) = 20 #2/dy (29)

The shock induces both markets to move from an initial
equilibrium state to a final one. In the following, we analyze
the transient response of the markets under different variations
of the parameter values. The results are contained in Figure 15.

In addition, we have made an interactive version of the source
code available.3

From Figure 15a we see that when k = 0 and there is
no preference to store the commodity, Market 1 remains
understocked and Market 2 remains overstocked in the long
run. However, when k > 0 and there is a convenience to
holding the stock, inventories settle at their desired level.
Prices in both markets, on the other hand, remain at elevated
levels in the long run, regardless of a preference to store. This
in reaction to the permanent increase in quantity demanded.
Figure 15c shows the effect of the stochastic agent on the

equilibrium state. The stochastic motive follows a normal
distribution with zero mean and variance σ 2. We observe that
the state variables have no deterministic equilibrium and only
achieve an equilibrium in expectation. The intensity of the
random behavior increases with increasing variance. Its effects
are most pronounced on p1 since the stochastic motive acts
directly on it. It causes its conjugate storage to be affected

3https://colab.research.google.com/drive/1wOQ6LXt1PW74byJQyo_
UBV2xnxLvlmPO?usp=sharing
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and then, through the inter-market price coupling, the price
and storage levels in Market 2. Each causal step in this chain
attenuates the intensity of the random behavior.

From Figure 15b we see how the market friction influences
the settling time. It determines the separation of the short
run from the long run. When b = 0 and there are no trade
frictions, neither stocks nor prices ever settle and, instead,
remain volatile by cycling around their equilibrium values.
For values of b > 0, the signals settle, with the settling time
itself shortening with increasing trade friction, as the available
the surplus is consumed more and more rapidly.
Other factors that influence the settling time are the

preference to store and the price elasticity. Figure 15a shows
that increasing k ensures shorter settling times, as the agents
are motivated by the perceived convenience of holding the
commodity. In general, settling times improve with higher
price elasticities, as market participants are increasingly
motivated to adjust their price. Figure 15d illustrates the effect
of the cross-elasticity of demand ε12. We see that independent
goods have the shorter settling times and that complementary
and substitutions are comparable in the long run.

As concerns the rise time, both the storage and the friction
are important factors in its determination. We see that when
the commodity is convenient to hold, rise times shorten and,
as a result, prices appear less sticky and inventories are more
responsive. A similar effect occurs with increasing friction,
extending rise times and making prices stickier due to the
reduction in market liquidity.

Figure 15a shows that, although higher storage preferences
lead to shorter rise and settling times, this comes at the expense
of increased price volatility, both in frequency and maximum
overshoot. An increased convenience of storage induces the
agents to turn over their inventories at a higher rate. Friction,
instead, reduces volatility. Whereas rapid stock turnover rates
would be attractive to benefit from anticipated changes in
demand when costs are low, the added costs of trading causes
the market participants to slow down their trade cycles and
also reduces their desire to hold the stock too far from the
desired levels.4

The cyclical nature of the responses allows to also identify
which state variables are leading, lagging, and contrarian
indicators of others. In network theory, the phase shifts
between the signals is used for this purpose. From Figure 15a
we see that the stock level in Market 1 leads its conjugate price
by a relatively small phase shift. This is because the demand
shock is met at the onset by the available inventory. The price
in Market 1 then leads the price in Market 2 and finally the
latter’s conjugate stock level. Each step in the causal chain
adding to the phase shift with the stock level in Market 1.
As a result, the price in Market 2 is almost half a turn out of
phase with the stock level in Market 1, with the two variables
become close to being contrarian indicators of each other. The

4Although this is not shown in the figure, the overshoot and the frequency
disappear entirely when the friction is high enough. Instead of volatility, one
observes a hyperbolic discounting of the price (see [7]).

leading, lagging, and contrarian nature of the state variables is
congruent to the causality embedded in the state-space model.

B. SYSTEM IDENTIFICATION OF A PRICE-DYNAMICAL OIL
MARKET MODEL
The use of circuit theory has the advantage that established sys-
tem identification techniques for determining the parameters
of dynamic models can be exploited for economic modeling.
In this section, we summarize its application to a model for
the spot market for crude oil. The material is taken from [38],
to which the reader is referred to for the details.

FIGURE 16. Left: Economic circuit for the oil-market model. Right:
Schematic of the EIA model from [38].

Figure 16 shows a circuit representing the spot market
for crude oil. The circuit is based on the bond-graph model
in [38]. It contains the price drivers identified by the USEnergy
Information Administration (EIA) [39], also shown in the
figure. These include the OPEC (current source) and non-
OPEC (inductor) supply on the left, the financial markets
(resistor) and inventory (capacitor) effects in the center, and
the OECD (inductor) and non-OECD (current source) demand
components on the right.
The circuit can be reduced to a two-state system with

market price p and inventory q with the following state-space
representation:(

ṗ
q̇

)
=

(
−b(εs − εd ) −k
(εs − εd ) 0

) (
p
q

)
+

(
−b
1

)
u, (30)

where the input u = fOPEC − fnOECD is the net inelastic supply.
The parameters (b, k , εs and εd ) were estimated using grey-box
identification, thus incorporating the structure of the circuit.
For comparison, a third-order black-box model was trained
on the same dataset.
The circuit was subjected to the historical net supply for

oil during the period July 2002 to May 2003, during which
a substantial supply shock occurred due to the Venezuelan
oil strike. The input and the price responses are graphed
in Figure 17 against the actual realized price in the period.
Despite being of a lower order than the black-box model, the
price response of the circuit provided a closer fit with the actual
price movement (VAF=83% vs. VAF=55%). This should be
contributed to the causal structure of the circuit model.

The conjugacy between price and stock variables allows us
to validate the grey-box model on historical inventory data,
since this dataset has not been used for identification. The
results, plotted in Figure 18, show that the circuit is capable
of following the dominant frequency component of the stock.
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FIGURE 17. Price response as determined by the economic circuit (red)
and by black-box model (green) vs. the historical price data (blue),
together with the supply input (purple dashed). (From [38].)

Such a validation step would not be possible with the black-
box model.

The performance of the circuit can be improved bymodeling
additional price drivers, thereby increasing the order of the
model beyond two. For instance, the dip in measured inventory
stocks during the winter of 2002-2003 appears to be due to the
increase in demand during cold weather. By including such
effects in the design of the circuit, its performance can be
systematically improved.

FIGURE 18. Out-of-sample prediction of inventory levels (red) vs. historical
inventory data (purple). (From [38].)

C. A PRICE DYNAMIC MODEL FOR THE HYDROGEN
ECONOMY
In this section, we overview an application of economic circuit
theory to a more complex system: the hydrogen economy.
The development of a price-dynamic hydrogen economy
is considered to be an important component of the energy
transition. Due to its conceptual nature, however, no historical
data is available on the functioning of such an economy. In this
section, we show how economic circuit theory can be used to
design and analyze a price dynamic model, even in the absence
of any historical data. We draw on the thesis [40], to which
we refer the reader for the details.

Figure 19 contains the circuit diagram of a price-dynamic
hydrogen economy. The design is based on the projected
hydrogen backbone in the Netherlands, which is also shown
in the figure. The model includes multiple price drivers for
gaseous hydrogen: (1) its supply and demand, (2) supply from
coupled markets (off-shore wind, liquid hydrogen, natural
gas), (3) the current inventory (salt caverns and industry), and
(4) price steering from a market operator. The state space
representation of the reduced model contains four prices and

three stocks for a total order of seven (see [40] for the explicit
expression).
In Figure 20 we show the price response of gaseous

hydrogen to a dunkelflaute. Also included are the price
responses in several of the coupled markets. A dunkelflaute is
a period of several consecutive days where no wind power is
generated due to weather conditions, thus causing a downward
supply shock in the wind energy. From the figure, we see that
the dunkelflaute causes a very rapid price increase in gaseous
hydrogen, which becomes volatile for an extended period until
settling to a new equilibrium price level. The volatility contains
several frequency components due to the high order of the
model. The figure also shows the effect of the dunkelflaute on
the prices for liquid hydrogen and natural gas, which increase
due to their coupling with the gaseous hydrogen market.
The model can be used to change the design in order to

improve the functioning of the hydrogen economy. Using
dynamic scenario analysis, the price overshoot and settling
time can be expressed as functions of the system parameters.
These can then be adjusted to provide a more desirable
response. For instance, one can consider adjusting the capacity
of the salt cavern storage, or provide the market operator with
some specific policies. The market operator can be thought of
as a controller. In [40], a simple PID controller was applied
and found to be both effective in improving price stability as
well as intuitive in its operation.

VII. CONCLUSION AND FURTHER RESEARCH
In this paper, we propose an economic circuit theory. It is
based on electrical circuit theory and, similar to its electrical
counterpart, it is particularly applicable to economic systems
that are out of an equilibrium state, where prices are volatile
and demand is continuously changing. In addition, its basis
in economic laws and its causal structure make the models
predictive and interpretable. This allows for an engineering
perspective on economic modeling, focusing on the design of
new systems in addition to describing existing ones.

The distinguishing feature of an economic circuit model is
that it combines a physical stock-flow with a price-incentive
consistency condition. This combination yields a causal
description of the network dynamics, with prices levels
driving the flows and the conjugate stock quantities driving
the incentives. This allows us to derive our main result:
a state-space representation of the dynamics, i.e., a set of
differential equations specifying the rate of change of the
price levels and stock quantities of the market participants. The
representation accounts for both endogenous and exogenous
influences, the latter both deterministic and stochastic.
The economic circuit theory presented in the paper has

several shortcomings and potentials for further development.
In our derivation we assume that the agents’ behavioral

laws are linear and time invariant. In practice, this implies that
the models are valid only for relatively small variations in the
price levels and stock quantities and that the parameters are
stationary in the relatively short run. Nevertheless, applications
to electrical systems have shown that complex dynamic
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FIGURE 19. Circuit diagram of a conceptual hydrogen economy (left) and the proposed hydrogen back bone (right). (From [40].)

FIGURE 20. Price response of gaseous hydrogen (cyan), liquid hydrogen
(purple), and natural gas (brown) to a downward shock in the supply of
off-shore wind energy (a dunkelflaute). (From [40].)

behavior can be described with linear models alone, simply
by increasing the order of the model. Alternatively, one can
resort to nonlinear and time-varying network theories.

To test the validity of the models in real-world applications,
its parameters have to be estimated. This issue is not addressed
in the paper. It should be noted that the assessment burden
is comparatively light, as the structure strongly constrains
the class of possible models. (To wit, the example market in
Section VI-A requires only six real parameters to be estimated,
despite the complexity of the response.) Although efficient
methods for system identification exist in the engineering
literature (e.g. [41]) and identification has been applied to
a comparative model in [38], more research is needed to
determine what type of data sets are needed for economic
systems and to determine whether these are available.
Although our theory is agent-based, its reliance on

elementary agents (i.e., as electrical two-terminal components)
limits its potential for agent-based modeling. Specifically,

the representative agents defined in the paper consist of
elementary agents of the same type. To develop agent-based
systems, a more general definition of representative agents that
combines several types of elementary behavior, together with
the rules specifying their interaction, is required. In electrical
network theory, this matter is resolved by taking a port-based
approach. In a forthcoming publication, we show how it allows
one to configure representative agents (known as multiports)
that exhibit highly complex emergent behavior and interact
through their ports. Using network analysis methods, systems
can be designed in a bottom-up fashion. Using network
synthesis methods, one can proceed in a top-down fashion,
by prescribing the behavior and then determining an actual
network that behaves accordingly.

An opportunity presented by economic circuits is that they
are amenable to being controlled using methods from control
theory. One thinks of a government, policy makers, or a
regulating agency as separate from the system as represented
by the network. With a state-space representation, an output
representing some endogenous variable can be fed back
and compared to a desired value. The loop is closed by
the controller who provides the appropriate incentives at
the input for the system to adjust its behavior. For linear
systems, efficient methods exist for their control. An additional
theoretical benefit is that the behavior of the system and the
policy makers are not commingled, enabling the designer to
circumvent the Lucas critique. We consider the exploitation
of control theory a particularly fruitful avenue of investigation
and we are currently actively researching it.
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