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Abstract 

The study of the transition to turbulence in parallel shear flows without linear instability of the laminar 
profile has profited immensely from the application of dynamical systems ideas. Studies of the transition 
in plane Couette flow and pipe flow, in particular, have shown that the transition is connected with the 
appearance of 3-d coherent structures that form a chaotic saddle which shows up in a transient turbulent 
dynamics. It is remarkable that these concepts, initially developed for low-dimensional systems, also 
work in such a high-dimensional setting. The present note contains a brief summary of key features and a 
short list of references for further reading.  
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1. Introduction 

Pipe flow, plane Couette flow and boundary layers show turbulent behavior without a linear instability 
of the underlying laminar profile. Accordingly, the well established routes to chaos and turbulence 
through sequences of instabilities that give rise to progressively more complex states cannot apply in their 
original form since the first step, the linear instability of the laminar profile, is missing. Experimentally, 
one finds that the flow rates above which turbulence can be observed are not well characterized and cover 
a range of values, that turbulence is transient and shows characteristics of a strange saddle rather than a 
chaotic attractor, and that there is a transition from localized turbulent patches to a spreading phase with 
spatio-temporal chaotic dynamics. For recent reviews, see [1-7]. The extension of dynamical systems 
theories and concepts to high-dimensional spaces has provided the framework in which many of these 
phenomena can be explained and studied. In the following I will highlight four elements to which we 
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have contributed: the formation of coherent structures, the transient lifetimes of the turbulent state, the 
possible transition to persistent turbulence in spatially extended flows, and the identification of edge 
states intermediate between laminar and turbulent. 

2. Exact coherent states 

Typical chaotic attractors in low-dimensional systems can be analyzed through persistent structures 
such as fixed points or periodic orbits [8]. Adopting this point of view to turbulent states suggests to 
search for persistent structures with relatively simple spatial and temporal characteristics. The temporally 
simplest states are fixed points (as identified in plane Couette flow, [9-11]) or travelling waves (as in pipe 
flow, [12,13]). These states typically appear in saddle node bifurcations and are dynamically unstable. 
Nevertheless, they show up transiently during the evolution of the flow [14,15]. The complete bifurcation 
structure for one family of states in pipe flow has been analyzed in [16] and a similar analysis for plane 
Couette flow, where the bifurcations are simpler, is under way (T. Kreilos and B. Eckhardt, in 
preparation).  

3. Transient turbulence and lifetimes 

Much of the variability in the critical Reynolds numbers that are quoted in the literature [5] can be 
attributed to the fact that even if a turbulent state is realized, it does not persist forever but can decay 
[17,18]. Much information is carried in the distribution of lifetimes of localized turbulent patches, which 
in all cases studied turns out to be exponential, i.e. the probability P (t) to be turbulent at time t varies like 
P(t)   exp(-t/ (Re)) [17-22]. This exponential decay is characteristic of the escape from a strange saddle. 
The mean lifetime (Re) increases with Reynolds numbers, as is to be expected. According to the most 
complete studies [21, 22], the lifetimes increase superexponentially, very much like (Re)   exp(a exp(b 
Re). While this quickly becomes very large, it does not diverge at a finite Reynolds number, so that these 
localized perturbations will not show a transition to a persistent chaotic attractor. 

4. Spatio-temporal dynamics and percolation transition 

In pipe flow, turbulence is localized in the form of puffs (at lower Re) and slugs (at higher Re) [23]. As 
the Reynolds number is increased, one finds that puffs can split and spread into the neighboring laminar 
regions [23,24]. The fraction of space covered by turbulence therefore increases with Re [25]. In the limit 
of an infinite system size the transition from localized to spreading turbulence is connected with a 
transition in the asymptotic state from one with vanishing turbulence to one with finite coverage. This 
transition is considered to be in the universality class of directed percolation [26,27]. 

5. Edge tacking and edge states  

The coexistence of laminar and turbulent flows (even if they are only transient) implies the existence 
of some boundary between small perturbations that relax to the laminar profile and stronger ones that 
become turbulent. Using the technical tool of edge tracking [28, 29] it is possible to follow trajectories 
that neither relaminarize nor become turbulent for very long times. Typically, they will converge to an 
invariant object in this subspace, the so-called edge state. The boundary between laminar and turbulent is 
then formed by the stable manifold of this co-dimension one relative attractor [30]. In spatially extended 
systems, these edge states are localized [31, 32], consistent with the expectation that a localized 
perturbation should be sufficient to initiate turbulence in the system.
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