
A Comparative Study of Fine-Tuning Pipelines for Integrating Large Language
Models in Multimodal Data Analysis

Cătălin Grı̂u1

Supervisor(s): Kubilay Atasu1, Atahan Akyıldız1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 23, 2024

Name of the student: Cătălin Grı̂u
Final project course: CSE3000 Research Project
Thesis committee: Kubilay Atasu, Atahan Akyıldız, Burcu Ozkan

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract

While LLMs are proficient in processing textual
information, integrating them with other models
presents significant challenges. This study eval-
uates the effectiveness of various configurations
for integrating a large language model (LLM) with
models capable of handling multimodal data.

We explore the advantages of using pre-trained
LLMs for generating text embeddings and the ben-
efits of fine-tuning LLMs for specific tasks. Our in-
vestigation includes various fine-tuning strategies,
such as Low-Rank Adaptation (LoRA), prompt
tuning, and full fine-tuning, applied to both smaller
and larger language models. Additionally, we ana-
lyze different training setups, including sequential
and cascaded training of LLMs and downstream ar-
chitectures. Our comparative analysis evaluates the
performance and cost-effectiveness of these meth-
ods. The findings indicate that while full fine-
tuning achieves the best results, LoRA offers a
practical balance between computational efficiency
and model performance. We also highlight the cor-
relation between increased LLM size and corre-
sponding increases in cost and performance.

1 Introduction
In today’s data-driven environment, companies generate
and utilize a vast amount of information. This data is often
organized in tables containing categorical, numeric, and
textual columns. These tables can sometimes be relational,
allowing for the creation of graph representations. Given the
vast quantity of data, manual processing becomes unfeasible
and prone to errors, highlighting the necessity for advanced
artificial intelligence capabilities. Therefore, developing AI
solutions to accurately analyze such diverse and multimodal
data formats and extract meaningful insights is imperative.

With developments in transformers [1], [2], large lan-
guage models (LLMs) [3], [4], and graph neural networks
(GNNs) [5], some data analytics tasks can now be automated.
However, integrating textual data with other data types and
subsequent models poses distinct challenges [6].

A typical approach to managing datasets containing text, as
described in [6], [7], involves a two-stage process: an initial
embedding phase and a subsequent supervised learning
phase. Initially, data is embedded into a format suitable for
analysis. Then, subsequent models such as GNNs are used
for tasks like classification or prediction.

Although there is already some work on integrating LLMs
and GNNs [6], [7], [8], existing approaches either focus
solely on textual datasets without covering multimodal data
or neglect certain language model fine-tuning techniques.

This paper investigates the integration of pre-trained large
language models (LLMs) with a downstream model, specif-
ically the FT-Transformer [2], for processing multimodal
tabular data. We evaluate various training configurations,
analyzing the effects of training the LLM and the down-
stream model together versus separately. To capture the
most out of textual data, we compare multiple language
model fine-tuning strategies, including Low-Rank Adap-
tation (LoRA), prompt tuning, and full fine-tuning. This
comparative analysis aims to assess the performance and
cost-effectiveness of these methods. Our setup is flexible, fo-
cusing on method differences, which makes our observations
applicable to various downstream models.

The structure of this paper is organized as follows: section 2
begins with background information on the key components
of our experiments. Section 3 describes the configurations
being tested. The experimental setup is detailed in section 4.
The results are presented in section 5. Responsible research
practices are discussed in section 6, and the conclusion along
with future work is covered in section 7.

2 Background
Understanding the concepts discussed in this section is es-
sential for developing the methodology and deciding which
configurations to test. Additionally, it helps in interpreting
the results. In subsection 2.1, we introduce key concepts re-
lated to LLMs. subsection 2.2 explains how these models can
be fine-tuned. The various training pipelines are presented in
subsection 2.3. Finally, subsection 2.4 introduces the down-
stream models that are combined with the LLM.

2.1 Large Language Models
Large Language Models (LLMs) are an essential component
of natural language processing (NLP) and are focused on un-
derstanding and generating text based on statistical distribu-
tions. It’s important to note the distinction between LLMs
and LMs (language models). He et al. [8] use the terms in a
way that implies LMs are smaller models primarily used for
text embedding, while LLMs refer to much larger models uti-
lized for text generation and reasoning. However, Jin et al.
[6] argue that there is no specific threshold between them and
that ”Large” in LLM refers to the direction of evolution for
language models. We adhere to this latter approach.

The Transformer Architecture
Most modern LLMs utilize the Transformer architecture,
which has transformed NLP by effectively capturing long-
range dependencies within the text and enabling efficient par-
allel processing [1]. A key innovation of the Transformer
model is the self-attention mechanism, which allows the
model to weigh the importance of different words in a sen-
tence when encoding or decoding, thereby capturing context
more effectively. The Transformer model consists of an en-
coder, which processes the input text into a dense representa-
tion, and a decoder, which generates the output text from this
representation. These can be used independently or together
for various NLP tasks such as feature extraction, summariza-
tion, classification, and more.



Encoder-Only Models
BERT (Bidirectional Encoder Representations from Trans-
formers) is an encoder-only model introduced by [9]. BERT’s
primary innovation is its use of bidirectional self-attention, al-
lowing the model to consider both the left and right context
when generating embeddings. During training, a percentage
of the input tokens are randomly masked, and the model is
tasked with predicting these masked tokens based on their
context. This training method is called Masked Language
Modeling (MLM) objective and is mathematically described
as:

ES∼D

[∑
si∈S

log p(si|s1, . . . , si−1, si+1, . . . , sN )

]
, (1)

where S is a sentence sampled from the corpus D, si is
the i-th word in the sentence, and N is the length of the
sentence [6]. This allows BERT to learn deep bidirectional
representations of text. Other masked language models have
followed, such as RoBERTa (Robustly Optimized BERT)
[4], which optimizes BERT’s pre-training methodology by
using larger mini-batches and more data.

DistilRoBERTa [10] is a distilled version of the RoBERTa
model. It leverages knowledge distillation [11], a process
where a smaller model (the student) learns to mimic the
behavior of a larger model (the teacher) to achieve similar
results with reduced computational resources.

Decoder-Only Models
Decoder-only models, such as Mistral 7B [3], GPT-3 [12]
use only the decoder stack from the Transformer architecture.
These models are particularly effective for generative tasks,
as they predict the next token in a sequence. Decoder-only
models are typically trained with an autoregressive objective,
where the model predicts the next token in the sequence based
on the preceding context [13]. This is formulated as:

ES∼D

[∑
si∈S

log p(si|s1, . . . , si−1)

]
. (2)

where S is a sentence sampled from the corpus D and si is
the i-th word in the sentence [6].

Embedding Extraction
Both encoder-only and decoder-only models are used to gen-
erate text embeddings. Encoder models, such as BERT, uti-
lize either the [CLS] token embedding [9] or mean pooling
of token embeddings [14]. Mean pooling involves averaging
the hidden states across all tokens in the sequence to produce
a fixed-size vector representation. Let H = [h1, h2, . . . , hn]
be the sequence of hidden states from the last layer, where hi

represents the hidden state of the i-th token and n is the se-
quence length. The mean-pooled embedding h̄ is calculated
as:

h̄ =
1

n

n∑
i=1

hi (3)

On the other hand, decoder models use the embedding of the
last token in the sequence for text representation. This ap-
proach works well because, in autoregressive models, the last
token’s embedding carries information from the entire input
sequence, making it a suitable summary of the sequence [15].

2.2 Parameter-Efficient Fine-Tuning (PEFT)
While LLMs like [3], [9] are trained on vast and diverse
datasets, fine-tuning allows these models to perform well on
specialized tasks by further training them on a smaller, task-
specific dataset.

Full fine-tuning
Full fine-tuning involves initializing the model with pre-
trained weights and then updating all these weights based on
task-specific data through backpropagation, effectively trans-
ferring the knowledge acquired during pre-training to the new
task [9]. The number of parameters updated is equal to the
total number of parameters of the model, which can be quite
slow and sometimes unnecessary.

LoRA
Low-Rank Adaptation (LoRA) [16] is a technique that
reduces the number of parameters that need to be updated
during fine-tuning by decomposing the weight matrices of
the model into low-rank matrices (Figure 1).

Starting with a pre-trained weight matrix W0 ∈ Rd×k,
LoRA introduces an additive change, ∆W , represented by
a low-rank decomposition BA, where BA has a rank r,
considerably smaller than both the input dimension k and
the output dimension d. The initial matrix is updated to
W0 + ∆W = W0 + BA, with B ∈ Rd×r and A ∈ Rr×k.
During training, W0 remains unchanged and does not receive
gradient updates, while A and B are trainable.

As the number of trainable parameters increases, train-
ing LoRA roughly converges to training the original model
with no additional inference latency. When deployed in pro-
duction, it can explicitly compute and store W = W0 +BA,
and perform inference as usual.

Figure 1: LoRA reparametrization: The left side represents the pre-
trained weights of the LLM, while the right side shows the additive
change matrix computed during fine-tuning. Only matrices A and B
are trainable. Taken from [16].



Prompt Tuning
Prompt tuning [17] is an alternative to traditional fine-tuning
that focuses on optimizing the prompts given to a pre-trained
language model rather than adjusting its internal weights. In
this approach, the model is frozen, and learnable parameters
are prepended to the input. These parameters are updated
through backpropagation, allowing the adaptation to specific
tasks without altering the core structure of the model.

2.3 Training Pipelines
Jin et al. [6] provide a comprehensive survey on combining
LLMs and GNNs and categorize the cases based on the
role of LLMs and the graph types. For the use of LLMs as
encoders, they outline several training pipelines, including
one-step training and two-step training.

One-step training involves training the LLM and the
downstream model together in a cascaded architecture for
downstream tasks. This method integrates textual and
structural information simultaneously, allowing the model to
learn both representations jointly [18], [19]. While one-step
training is convenient, it may suffer from local minima issues
where the LLM underfits the data [7].

Two-step training separates the training process into two dis-
tinct stages. First, the LLM is fine-tuned on task-specific
textual data. Then, the fine-tuned model generates embed-
dings, which are subsequently fed into a downstream model
for further training. In related work, the two-step process is
approached differently: some train the LLM only in stage one
[7], while others train it in both stages [20].

2.4 FT-Transformer
FT-Transformer is an adaptation of the Transformer architec-
ture designed for tabular data. This model, introduced by
Gorishniy et al. [2], transforms both numerical and categori-
cal features into embeddings and processes these embeddings
using a stack of Transformer layers. The final representation
of the [CLS] token is used for prediction. (Figure 2)

Figure 2: The FT-Transformer architecture. Firstly, Feature Tok-
enizer transforms features to embeddings. The embeddings are then
processed by the Transformer module, with the [CLS] token’s final
representation used for prediction. Taken from [2].

3 Methodology
In this section, we present the components of the configura-
tions being tested and explain how they interact with each
other to illustrate the overall workflow. Our contributions
include conducting a series of experiments to evaluate the
integration of LLMs with subsequent models that handle
tabular data. The study involves constructing a pipeline

that starts with embedding textual data using pre-trained
or fine-tuned LLMs. These text embeddings are then
incorporated into a downstream model, which can be trained
alongside or independently of the LLM. The study evaluates
and compares these configurations to find the most effective
approaches across different datasets and language models.

We begin by explaining how the LLM and chosen down-
stream model are combined in subsection 3.1. Next, we de-
scribe how we train this combined architecture in subsec-
tion 3.2. Finally, we outline the fine-tuning techniques ap-
plied to the LLM in subsection 3.3.

3.1 Combining LLM with FT-Transformer
Our setup is designed to be flexible, allowing for the selection
of a downstream model that can handle multiple modalities
in both graph and tabular forms. To test our pipelines, we
selected a simple model for handling tabular data: the FT-
Transformer [2].

Figure 3: Integration of the LLM with the Feature Tokenizer stage
of FT-Transformer. Let v′ denote the embeddings generated by the
LLM for text fields, where their size d′ depends on the LLM. Us-
ing a linear layer, these embeddings are reduced to dimension d, a
hyperparameter of FT-Transformer. The resulting matrix T of con-
catenated embeddings serves as input to a Transformer architecture.
Adapted from [2].

When the LLM is combined with the FT-Transformer, text
fields are replaced with their embeddings generated by the
LLM. These embeddings are concatenated with embeddings
of other modalities created by the Feature Tokenizer part of
FT-Transformer. If the embeddings differ in size, a linear
transformation is applied to ensure uniform dimension d. Fi-
nally, a matrix of dimension d (embedding dimension) by k
(number of features) is created for each entry, which is further
processed by layers of Transformers. This process is depicted
in Figure 3.



Figure 4: The illustration of 3 training techniques: (a) No Fine-tuning, (b) One-step Training, (c) Two-step Training. Adapted from [6].

3.2 Training Pipelines
We compare three training pipelines depicted in Figure 4.
The initial tested pipeline involves no fine-tuning: the
large language model (LLM) is used solely to generate
embeddings, and the downstream model is trained while the
LLM remains fixed. It is particularly convenient as it allows
for precomputing the text embeddings and reusing them
whenever modifications are made to the downstream model.

In the one-step training method, after each step, when
the weights of the downstream model are updated through
backpropagation, the update is propagated further, and the
weights of the LLM are updated as well. After each epoch,
the new version of the LLM is used to generate embeddings
for the text columns.

In the two-step training pipeline, stage 1 involves fine-tuning
the LLM, which is then used in stage 2 to generate text em-
beddings without further training. The fine-tuning in stage 1
is performed on the same downstream task as in stage 2, but
it utilizes only concatenated text fields. To compute the loss,
the extracted embedding (with a fixed size determined by the
LLM) is reduced to the desired size using a multi-layer per-
ceptron (MLP) with one hidden layer. The output size is equal
to the number of classes for classification or a single unit for
regression. Notably, stage 1 by itself is equivalent to the one-
step process, with the downstream model being the MLP.

3.3 Fine-tuning Strategies
To fine-tune the LLM on specific datasets, we use several
methods: LoRA, prompt tuning, and full fine-tuning pre-
sented in subsection 2.2. For LoRA, we conduct a grid
search to find the best values for alpha and rank parameters,
determining whether a universal set can be applied across
all our configurations or if distinct sets are required for each
configuration.

In prompt tuning, we need to find the optimal number of vir-
tual tokens added to the input. Adding more tokens increases
the input length, which may require more truncation of the
original data to fit within LLM’s token limit. We experiment
with both including and excluding the virtual tokens in the
mean pooling process. In the exclusion scenario, the virtual

tokens are used solely for influencing the attention mecha-
nisms within the LLM’s layers.

4 Experimental Setup
This section begins with a discussion on the chosen datasets
in subsection 4.1. Following that, we present the LLMs used
for the experiments in subsection 4.2.

4.1 Datasets and evaluation metrics
To increase the flexibility of our study and enable integration
with downstream models that handle multiple modalities in
both graph and tabular formats, we use datasets that meet
these criteria.

One such dataset is the Amazon Fashion dataset, which
includes 883,636 reviews of 186,637 products, forming
a network that links users and products through reviews.
Due to computing constraints, we select a random subset of
100,000 reviews for our experiments. The column names
and types, highlighting the multimodal nature of the dataset,
are detailed in Table 1. Our task is to predict the correct
rating for each review. We use mean squared error (MSE)
as our evaluation metric because it effectively measures our
model’s performance by treating ratings as continuous values
and penalizing larger errors more heavily.

Table 1: Overview of Amazon Fashion dataset columns, data types,
and descriptions.

Column Name Data Type Description
reviewerID categorical ID of the reviewer
asin categorical ID of the product
overall numerical Rating given
reviewText text Text of the review
summary text Summary of the review
unixReviewTime timestamp Time of the review
vote numerical Upvotes of the review
verified categorical Verification status

The second dataset used in our study is the ogbn-arxiv. It
is a citation network consisting of 169,343 nodes (papers)



and 1,166,243 edges (citations). Each node is a paper rep-
resented by title, abstract, and year of publication (Table 2).
Each directed edge indicates that one paper cites another one.
Its extensive use in the research community offers numerous
benchmarking opportunities, making it an excellent choice
for validating our results. Our task is node classification, for
which we use cross-entropy [21] as the loss function and ac-
curacy as the evaluation metric.

Table 2: Overview of ogbn-arxiv dataset columns, data types, and
descriptions.

Column Name Data Type Description
title text Title of the paper
abstract text Abstract of the paper
year numerical Publishing year
category index categorical Category

4.2 Large Language Model Selection

To select the LLMs for our experiments, we reviewed
the state-of-the-art models for text embedding, focusing
on sources such as the Massive Text Embedding Bench-
mark (MTEB) Leaderboard1 and examples used in related
work [22]. Additionally, we considered our computational
resource constraints. We chose two models with distinct ar-
chitectures:

• all-distilroberta-v12 - a fine-tuned version of the
DistilRoBERTa model presented in subsection 2.1. It
has 82.8 million parameters, a context length of 512, and
an embedding output size of 768.

• e5-mistral-7b-instruct3, which ranks among the top 10
models on the MTEB leaderboard. It is a fine-tuned ver-
sion of Mistral 7b [3], with a decoder-only architecture
as described in subsection 2.1. This model has 7 billion
parameters, with a context length of 4096, and an em-
bedding size of 4096.

To input our text into the LLM, it must first be tokenized. This
process converts the text into smaller units, and maps them to
numerical IDs using a fixed vocabulary [23]. We examine the
length of the tokenized text to ensure it fits within the LLM’s
context length (Figure 5). If the tokenized text exceeds the
context length, it must be truncated, which can potentially im-
pact the model’s performance. For DistilRoBERTa, this oc-
curs in 0.5% of cases with the ogbn-arxiv dataset and 0.08%
of cases with the Amazon Fashion dataset. In contrast, for e5-
mistral, no entity in either dataset approaches its 4096 context
length.

1https://huggingface.co/spaces/mteb/leaderboard
2https://huggingface.co/sentence-transformers/

all-distilroberta-v1
3https://huggingface.co/intfloat/e5-mistral-7b-instruct

Figure 5: Distribution of token counts using the tokenizers of Distil-
RoBERTa and e5-Mistral. For each dataset, the text columns were
concatenated.

Next, the number of trainable parameters for each LLM and
fine-tuning strategy is shown in Table 3. An increase in train-
able parameters affects both training time and memory usage.

Table 3: Trainable parameter analysis of DistilRoBERTa and e5-
mistral-7b under different fine-tuning strategies.

LLM
LLM Fine-tuning

Strategy
LLM Trainable

Params

DistilRoBERTa

No fine-tuning 0
LoRA (rank 64) 1.18M
Prompt (24 tokens) 18,432
Full 83.1M

e5-mistral-7b

No fine-tuning 0
LoRA (rank 64) 27.26M
Prompt (24 tokens) 98,304
Full 7.11B

5 Results
The results of our experiments are detailed in Table 4, which
compares the configurations made by the two LLMs, across
two datasets and several different training pipelines.

Downstream Model
We observe the best results across both datasets and both lan-
guage models with just the MLP as the downstream model.
Further using FT-Transformer for Amazon Fashion to try and
take advantage of other modalities did not improve the re-
sults. The lack of performance may be attributed to insuffi-
cient hyperparameter tuning for the FT-Transformer model.
With the ogbn-arxiv, the accuracy of the FT-Transformer is
closer to that of the MLP, but it may not have enough modal-
ities and columns to take advantage of.

Fine-tuning pipelines
Our findings indicate that fine-tuning the LLM specifically
for each dataset significantly enhances the results. Among the
methods tested, full fine-tuning yields the best performance,
closely followed by LoRA, and then prompt tuning. Compar-
ing one-step and two-step pipelines for FT-Transformer, the
two-step approach consistently yields the best results across
all datasets and fine-tuning techniques. This aligns with [7],
who reported experiencing convergence issues with the one-
step method.

https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/sentence-transformers/all-distilroberta-v1
https://huggingface.co/sentence-transformers/all-distilroberta-v1
https://huggingface.co/intfloat/e5-mistral-7b-instruct


Table 4: Comparison of LLM fine-tuning pipelines and their impact on downstream model performance across multimodal datasets. For each
configuration: LLM - Downstream Model - Dataset, we bold the best and underline the second-best result.

LLM Downstream
Model

LLM Fine-tuning
Pipeline

Amazon Fashion OGBN-ArXiv

MSE ↓ Time Accuracy ↑ Time

DistilRoBERTa

MLP

No fine-tuning 0.3087 13min 73.62 20min
One-step (LoRA) 0.2244 5h 74.42 5.7h
One-step (Prompt) 0.3043 4.5h 73.48 5.6h
One-step (Full) 0.1972 5.8h 74.38 6.5h

FT-Transformer
No fine-tuning 0.5379 30min 73.00 50min
One-step (LoRA) 0.5196 6.4h 73.22 9.4h
One-step (Prompt) 0.63 6.4h 73.24 9.4h
One-step (Full) 0.6012 9.2h 73.22 10.7h
Two-step (LoRA) 0.5112 5.5h + 30min 73.85 5.7h + 50min
Two-step (Prompt) 0.5704 4.5h + 30min 73.45 5.6h + 50min
Two-step (Full) 0.3598 5.8h + 30min 74.02 6.5h + 50min

e5-mistral-7b
MLP No fine-tuning 0.1778 3h 76.02 20h

One-step (LoRA) 0.1858 60h 75.46 75.7h

FT-Transformer No fine-tuning 0.4544 10h 75.61 20h
Two-step (LoRA) 0.4857 60h + 3h 75.18 75.7h + 20h

LLM
The difference in size between the models is very observable
in our results. The simplest baseline using e5-mistral with no
fine-tuning and an MLP manages to outperform all metrics
achieved with DistilRoBERTa. Text embedding generation is,
however, much more costly. Thus, fine-tuning for the desired
number of epochs was unfeasible with our time and computa-
tional resources. Our 10 epochs of fine-tuning e5-mistral for
Amazon Fashion and 5 epochs for ogbn-arxiv yielded slightly
worse results, but the metrics did not converge, and we expect
better results with more epochs.

Runtime
The runtime is significantly shorter for pipelines without
fine-tuning because the LLM only needs to embed the text
once, with the remaining epochs dedicated to training the
downstream model. For instance, using the FT-Transformer,
the no fine-tuning pipeline for Amazon Fashion takes 30
minutes, which includes embedding the text once and then
training the model. In the two-step pipeline, the total time
includes both the duration to fine-tune the LLM in stage 1
and the 30 minutes required in stage 2 for text embedding
and downstream model training. The runtime of the 3 fine-
tuning strategies is proportional to the number of learnable
parameters: full fine-tuning consistently takes more time,
followed by LoRA and prompt-tuning.

For the e5-mistral model, the runtime is largely dominated
by the forward pass. For instance, embedding the ogbn-
arxiv dataset took around 20 hours. However, a brief ex-
periment with bfloat16 quantization [24] indicated that the
runtime could be reduced by several factors. Given the dom-
inance of the forward pass, the time differences among vari-
ous fine-tuning techniques are less pronounced. Nonetheless,
the choice of technique significantly impacts memory usage,

which is proportional to the number of trainable parameters.
With our constraints, fully fine-tuning all 7 billion parameters
is impractical, as it requires over 100GB of VRAM.

Comparisons
For the ogbn-arxiv dataset, Duan et al. [7] report an accu-
racy of 74.32 using a 355M parameters language model and
an MLP. They further increase the accuracy to 76.18 by us-
ing a GNN as downstream model. In comparison, our re-
sults demonstrate that with a larger language model, we can
achieve a significantly higher accuracy of 76.02 using just an
MLP. This accuracy is expected to improve further by incor-
porating the graph structure of the dataset.

6 Responsible Research
Dataset and Language Model Transparency
In this research, transparency regarding the training data of
the language models used is a critical ethical consideration.
Selecting models with fully disclosed training data ensures
that there is no data leakage when evaluating the model’s
performance on our chosen datasets. This approach supports
the integrity and reproducibility of our research. The training
details and data sources for the used LLMs are available on
Hugging Face4.

Following the FAIR principles (Findable, Accessible,
Interoperable, and Reusable), we selected well-known
public datasets that are easy to locate and have been used
in prior research. To ensure a fair comparison with existing
benchmarks for the ogbn-arxiv dataset, we followed the
default train/validation/test split provided by the ogbn
library. This consistency with previous studies enhances the

4https://huggingface.co

https://huggingface.co


reproducibility of our methods, enabling other researchers to
verify and build upon our work effectively.

Objective Metric Reporting
All experiments using DistilRoBERTa were run for 20
epochs. The ”no fine-tuning” pipelines with e5-mistral were
also run for 20 epochs. Due to computational constraints, we
were unable to fine-tune e5-mistral for more than 10 epochs
for the Amazon fashion dataset and 5 epochs for the ogbn-
arxiv dataset. We report the best metric achieved for each
run. Additionally, for time metrics, we report the fastest time
among the same runs.

Hyperparameter Tuning
We conducted hyperparameter tuning using a grid search.
Our findings indicated that for LoRA, a rank of 64 and an
alpha of 16 worked best across all setups. For prompt tun-
ing, we tested different numbers of virtual tokens, with the
best performance observed at 24 virtual tokens, without tak-
ing them into the mean pooling process.

Reproducibility
All experiments were conducted on an A6000 GPU. The logs
of our results along with the code to reproduce them can be
found at https://gitlab.ewi.tudelft.nl/takyildiz/cse3000.

Environmental Impact
One significant advantage of task-specific fine-tuning is its
contribution to reducing the overall carbon footprint of AI
model training. By leveraging pre-trained models, the need
for training models from scratch on large datasets is elim-
inated, leading to substantial energy savings. Techniques
like LoRA and prompt tuning enable efficient fine-tuning by
updating only a fraction of the model’s parameters, which
further reduces computational requirements and energy con-
sumption.

7 Conclusions and Future Work
This research investigates the integration of pre-trained
large language models (LLMs) with subsequent models for
multimodal data analysis. Various fine-tuning techniques
were evaluated across different training setups. The findings
provide a valuable guide for making informed decisions in
future multimodal data analysis tasks.

We present the performance and trade-offs between dif-
ferent configurations, highlighting that the choice of LLM
significantly impacts the results, with larger models like e5-
mistral-7b outperforming smaller ones like DistilRoBERTa.
Our results indicate that fine-tuning the LLM significantly
improves metrics, with both full fine-tuning and LoRa being
effective options. Additionally, we find that decoupling the
fine-tuning of the LLM from the training of the downstream
model is the most effective approach.

Future work could benefit from benchmarking other down-
stream models, such as combined GNN/tabular transformer
architectures, using insights from this study. Another promis-
ing direction is to apply our findings to improve self-
supervised learning by using masked fields from the dataset

as labels. Additionally, future research could explore quanti-
zation, specifically using smaller data types like bfloat16, in
larger LLMs to evaluate the speed and memory advantages
and the associated trade-offs.

References
[1] A. Vaswani, N. Shazeer, N. Parmar, et al., “Attention

is all you need,” Advances in neural information pro-
cessing systems, vol. 30, 2017.

[2] Y. Gorishniy, I. Rubachev, V. Khrulkov, and A.
Babenko, “Revisiting deep learning models for tabu-
lar data,” Advances in Neural Information Processing
Systems, vol. 34, pp. 18 932–18 943, 2021.

[3] A. Q. Jiang, A. Sablayrolles, A. Mensch, et al., “Mis-
tral 7b,” arXiv preprint arXiv:2310.06825, 2023.

[4] Y. Liu, M. Ott, N. Goyal, et al., “Roberta: A robustly
optimized bert pretraining approach,” arXiv preprint
arXiv:1907.11692, 2019.

[5] B. Egressy, L. Von Niederhäusern, J. Blanuša, E. Alt-
man, R. Wattenhofer, and K. Atasu, “Provably power-
ful graph neural networks for directed multigraphs,” in
Proceedings of the AAAI Conference on Artificial In-
telligence, vol. 38, 2024, pp. 11 838–11 846.

[6] B. Jin, G. Liu, C. Han, M. Jiang, H. Ji, and J. Han,
“Large language models on graphs: A comprehensive
survey,” arXiv preprint arXiv:2312.02783, 2023.

[7] K. Duan, Q. Liu, T.-S. Chua, et al., “Simteg: A frustrat-
ingly simple approach improves textual graph learn-
ing,” arXiv preprint arXiv:2308.02565, 2023.

[8] X. He et al., “Harnessing explanations: Llm-to-lm in-
terpreter for enhanced text-attributed graph representa-
tion learning,” Journal of Machine Learning, 2024.

[9] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova,
“Bert: Pre-training of deep bidirectional transform-
ers for language understanding,” arXiv preprint
arXiv:1810.04805, 2018.

[10] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “Distil-
bert, a distilled version of bert: Smaller, faster, cheaper
and lighter,” arXiv preprint arXiv:1910.01108, 2019.

[11] G. Hinton, O. Vinyals, and J. Dean, “Distilling
the knowledge in a neural network,” arXiv preprint
arXiv:1503.02531, 2015.

[12] T. B. Brown, B. Mann, N. Ryder, et al., “Lan-
guage models are few-shot learners,” arXiv preprint
arXiv:2005.14165, 2020.

[13] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever,
et al., “Improving language understanding by genera-
tive pre-training,” 2018.

[14] N. Reimers and I. Gurevych, “Sentence-bert: Sen-
tence embeddings using siamese bert-networks,” arXiv
preprint arXiv:1908.10084, 2019.

[15] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and
I. Sutskever, “Language models are unsupervised mul-
titask learners,” OpenAI Blog, 2019.

https://gitlab.ewi.tudelft.nl/takyildiz/cse3000


[16] E. J. Hu, Y. Shen, P. Wallis, et al., “Lora: Low-rank
adaptation of large language models,” arXiv preprint
arXiv:2106.09685, 2021.

[17] B. Lester, R. Al-Rfou, and N. Constant, “The power
of scale for parameter-efficient prompt tuning,” arXiv
preprint arXiv:2104.08691, 2021.

[18] B. Xin, Y. Zhou, L. Wu, and J. Luo, “Xr-transformers:
Cross-resolution transformers for efficient image
super-resolution,” arXiv preprint arXiv:2206.04517,
2022.

[19] C. Author and D. Author, “Adsgnn: Aggregated graph
neural networks for edge-level information,” Journal
of Advertising Research, 2023.

[20] V. N. Ioannidis, X. Song, D. Zheng, et al., “Efficient
and effective training of language and graph neural
network models,” arXiv preprint arXiv:2206.10781,
2022.

[21] Z. Zhang and M. Sabuncu, “Generalized cross entropy
loss for training deep neural networks with noisy la-
bels,” Advances in neural information processing sys-
tems, vol. 31, 2018.

[22] W. Hu, Y. Yuan, Z. Zhang, et al., “Pytorch frame: A
modular framework for multi-modal tabular learning,”
arXiv preprint arXiv:2404.00776, 2024.

[23] C. W. Schmidt, V. Reddy, H. Zhang, et al., “Tok-
enization is more than compression,” arXiv preprint
arXiv:2402.18376, 2024.

[24] D. Kalamkar, D. Mudigere, N. Mellempudi, et al., “A
study of bfloat16 for deep learning training,” arXiv
preprint arXiv:1905.12322, 2019.

A Downstream Models

Table 5: Comparison of model parameters for MLP and FT-
Transformer across ogbn-arxiv and Amazon Fashion datasets. The
model size is influenced by the number of output classes and, for
the FT-Transformer, also by the number of categorical values in the
datasets.

Downstream
Model

Dataset Model size
(Params)

MLP ogbn-arxiv 207K
Amazon Fashion 197K

FT-Transformer ogbn-arxiv 801064
Amazon Fashion 22M


	Introduction
	Background
	Large Language Models
	The Transformer Architecture
	Encoder-Only Models
	Decoder-Only Models
	Embedding Extraction

	Parameter-Efficient Fine-Tuning (PEFT)
	Full fine-tuning
	LoRA
	Prompt Tuning

	Training Pipelines
	FT-Transformer

	Methodology
	Combining LLM with FT-Transformer
	Training Pipelines
	Fine-tuning Strategies

	Experimental Setup
	Datasets and evaluation metrics
	Large Language Model Selection

	Results
	Downstream Model
	Fine-tuning pipelines
	LLM
	Runtime
	Comparisons


	Responsible Research
	Dataset and Language Model Transparency
	Objective Metric Reporting
	Hyperparameter Tuning
	Reproducibility
	Environmental Impact


	Conclusions and Future Work
	Downstream Models

