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1
Introduction

The motivation behind this research project along with some background is given in section 1.1. Next, some
of the previous research work is briefly discussed in section 1.2. In section 1.3.1, the research objective is
formulated. Finally, the outline of the thesis is given in section 1.4.

1.1. Motivation
The recent trend of shifting towards autonomous mobility has given birth to autonomous racing. Racing
involves the vehicle being at the limits of handling to extract maximum performance. During a race, the
vehicle performs extreme maneuvers which push the tires to the non-linear regime. An autonomous race-car
hence needs a system to control the vehicle at the limits of handling.

Current research in the domain of intelligent vehicles portray that in order to keep the vehicle stable in
adverse driving or environmental conditions, these systems need to be equipped to monitor current vehicle
states, learn changes in operating conditions, and to adapt their behaviour depending on the scenario.

In order to make use of highly accurate vehicle models, it is necessary to encapsulate the non-linear ve-
hicle dynamic behaviour which is well exploited in a racing environment. The proposed control framework
is that of model predictive control (MPC). MPC plays a crucial role in advanced control of vehicles due to its
ability over other control techniques, to handle constraints, provide optimal control as well as capture non-
linearities. The aggressive nature of racing has a lot of effects on the tires which causes dynamic changes in the
tire properties. In contrast to traditional racing, where professional racing drivers adapt their behavior based
on the current vehicle state, the conventional controllers in an autonomous race-car have a non-adaptive tire
model and thus fail to adapt to the varying dynamics of the tires.

Since it is difficult to predict the tire behavior during the race, online learning of the tire properties is con-
sidered. A potential solution is locally weighted projection regression (LWPR), a non-linear function approxi-
mation technique, used to learn the tire dynamics incrementally. This learning defines a notion of experience
for the controller as it captures the complete input-output relationship for all previous control actions. In or-
der to utilize online learning, the application must involve repeatability in terms of the working range of the
tire. This is prevalent in a racing environment where the vehicle operates on multiple laps of the same circuit.

In this project, a combined framework of LWPR and non-linear model predictive control (nMPC) is pro-
posed. The LWPR algorithm updates the tire model constantly online with sensor data to encapsulate the
complete vehicle dynamic behavior. A distinct feature of the suggested technique is that along with its ability
to adapt to dynamically changing tire behavior, the controller can also handle abrupt disturbances such as
gust. This paper focuses on the design of an nMPC controller with online learning of tire properties, intending
to improve performance in autonomous racing.

1.2. Previous Research Work
Over the past years, a variety of control techniques have been researched upon for the autonomous racing
application. The controller to be designed, requires a reference trajectory to be followed. Once a reference
trajectory is known, a control scheme must be put in place to make sure that the vehicle follows the generated
trajectory.

1



2 1. Introduction

1.2.1. Trajectory tracking control
One of the most basic control methods involves a proportional feedback controller that helps control the
path error, by the use of evasive steering [67]. The future path information (yr oad ), deviation in position at
the current instant (y) and the lateral error based on heading angle (ypr o j ected ) are used to compute the path
error. The lateral path error is defined as,

d = y + ypr o j ected + yr oad (1.1)

A speed varying proportional feedback gain (Kp ) is calculated at each iteration step. This gain has a physical
meaning and is computed using "curb following" concept where, at every time instant, a circular path of
radius R is defined using the rear axle, heading angle and future projection in the reference trajectory. From
vehicle dynamic analysis, the gain is computed as a function of the understeer gradient (Kus ), wheelbase (L)
and longitudinal velocity (u). The control law is then given by equation (1.3).

Kp = L+Kus u2

R
(1.2)

δ= Kp d (1.3)

The vehicle’s trajectory depends hugely on the look-ahead time. The look-ahead time must be chosen care-
fully. A trade-off must be made between phase lag and overshoot in the trajectory, and the vehicle cutting
corners. It was also observed that this controller cannot perform at high speeds which is crucial for competi-
tive racing scenarios.

In order to deal with the phase delays that come with feedback control, a feedforward control law is intro-
duced. This results in a feedforward and feedback controller [60]. The feedback control action is designed
to be a PID to follow the reference yaw rate and heading angle.

δ f b = kp eψ+ki

∫ t f

t0

eψ+kd ėψ (1.4)

The gains kp ,ki and kd are chosen by gain scheduling at varying velocities. The feedforward control law
based on steady state steering corresponding to bicycle model.

δ f f =
L

R
+Kus ay (1.5)

The use of linear quadratic regulator (LQR) to compute the optimal feedback control action has been pre-
sented in [62]. The distance of the centre of gravity from the reference (e1) and the difference in yaw an-
gle with the reference yaw angle (e2) are the controlled states. The state-space model with the state vector
ε= [e1, ė1,e2, ė2] and input vector δ make up the following cost function,

J = 1

2

∫ ∞

0
[εT Qε+δT Rδ]d t (1.6)

where Q and R are penalty matrices on the states and input respectively. In addition, with the use of a state
observer to estimate the lateral velocity, this technique shows good performance using steering. The limita-
tion of such a technique however, is that it cannot handle constraints.

It was observed that optimal distribution of lateral and longitudinal forces can be computed to match the
required yaw moment and total lateral force [41]. Other control strategies that have been researched upon
include sliding mode control (SMC) [6], friction based control techniques [3] and non-linear back-stepping
with adaptive fuzzy sliding mode control [27]. It can thus be concluded that, an integrated control scheme
that uses optimal control methods designed in the non-linear range provides best performance.

1.2.2. Path following control
An issue faced with trajectory tracking methods as explained in [26], is that the generation of feasible tra-
jectories in real-time is difficult especially at the limits of handling. Moreover, oversimplified models yield
inaccurate trajectories and highly complex models prove to be computationally demanding. This is the main
motivation to look into path following control techniques.

As defined in [20], path following control is "the tracking of a geometric reference with high precision,
whereby the timing to move along the reference is of secondary interest, and can be considered as an additional
degree of freedom". Since the reference is parameterized, the control structure influences both the evolution
of the reference as well as the vehicle dynamic parameters. Most control methods employing path following
make use of model predictive control framework. Further elaboration of this control technique is done in
chapter 1.
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1.2.3. Learning control
As stated earlier, racing exploits the non-linear regime of the tire resulting in non-linear vehicle dynamics
which is difficult to model accurately. As a result, it is difficult to achieve accurate control when the vehicle
is subjected to such aggressive maneuvers. A promising approach of using iterative learning control (ILC) is
elaborated in [34]. This technique is used to gradually determine appropriate steering inputs for a transient
maneuver by using information from repeated instances to improve performance.

Race tires are crucial to performance and undergo significant changes during the course of a race. Con-
ventional controllers however, use fixed tire models that are unable to adapt to changing tire properties dur-
ing the race, and thus do not capture the complete vehicle dynamic behaviour. This ultimately contributes
to sub-optimal performance. An inviting solution is to employ online learning of tire properties, which shall
further be discussed in part II.

1.3. Research formulation
In order to complete this project, a research framework was developed, such that the effectiveness of this
unique combination of LWPR and MPC provides improved performance in autonomous racing.

1.3.1. Research objective
The main research objective is formulated as follows:

Research Objective : To design an MPC for autonomous racing which utilizes the online learning of tire prop-
erties to improve performance and minimize lap time

Since model accuracy is an integral part of MPC design and tires are crucial to vehicle performance dur-
ing a race, a challenge to address is the fast changing system dynamics in such an environment involving
aggressive maneuvers. This served as a motivation to look into online learning methods to help the system
adapt to the changing dynamics and to account for unmodeled non-linearities. Research work on learning
methods portray LWPR as a suitable alternative to neural networks in this domain. The result of combining
the MPC framework with online learning using LWPR is an advanced autonomous system that is capable
of learning the varying dynamics online as well as ensuring vehicle motion control even at the limits of
handling. Learning based control techniques are still an area of active research in the industry. A gap was
observed in the implementation of such techniques in real-time.

Autonomous racing is an ideal application for such learning based control techniques, because the vehi-
cle is subjected to repeated instances of the same circuit and hence can utilize learning to enhance lap-by-lap
performance. Finally, the designed controller shall be compared in terms of performance with some bench-
mark controllers.

1.4. Thesis Outline
The report comprises of three parts. The scientific article pertaining to the application of LWPR with MPC
for autonomous racing is presented in part I. Following it, part II provides the necessary background infor-
mation and consists of four chapters. Chapter 2 describes the design of the MPC. A brief section is devoted
to the theory behind MPC, along with the motivation to design a non-linear MPC (nMPC). Some challenges
regarding MPC design are also highlighted. Finally this chapter reviews previous research on MPC imple-
mentations for the autonomous racing scenario. Next, chapter 3 of part II discusses some of the tire models
used. Apart from the standard tire models, an incremental learning algorithm is introduced in an attempt to
learn tire force behaviour online. Some theory is provided along with the applicability of this algorithm. This
chapter also highlights some of the previous research work done on the use of this algorithm in real-time.
More detail regarding the benchmark controllers used for comparison can be found in chapter 4 of this doc-
ument. This comparison will try to highlight some possible benefits of using this control scheme and stress
the importance of learning based MPC, especially for scenarios like autonomous racing. Finally, chapter 5
provides a conclusion on the master thesis along with some recommendations. The author’s previous work
on the application of LWPR for tire force reconstruction is also made available in part III.
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Article

Online Learning of Tire Properties Combined With
Non-linear Model Predictive Control for Autonomous
Racing

Abstract: In this paper, a unique method of combining online learning with model predictive control
is applied to autonomous racing. A concern in autonomous racing is that accurate models that
encapsulate the dynamics of the vehicle, are complex, nonlinear, and difficult to identify. In order
to make this more practical for control purposes, the controller is initialized with a nominal tire
model, which then learns tire properties online using locally weighted projection regression during
the course of the race. This makes it more practical for control purposes while maintaining model
accuracy. Focus is placed on learning the tire properties which in reality, keep varying due to wear,
temperature and pressure fluctuations, etc. The main objective is to minimize lap times by allowing
the controller to "learn" its varying tire behaviour while on the track.

Keywords: Autonomous racing, vehicle dynamics, online learning, locally weighted projection
regression, model predictive control.)

1. Introduction

The evolution of autonomous driving has sparked the growth of autonomous racing [1]. With
recent technological advancements working towards full autonomy, the birth of autonomous racing
and its growth was inevitable. Though relatively new, autonomous racing technology is rapidly
increasing. Roborace is the company which started the world’s first motorsports series for driver-less
cars [2]. The aim is to pit autonomous cars against each other on track.

A lot of innovations in the automotive industry has come from racing. For example, research
work in Formula One on "racing-line" driver models [3], have found applications in path-following
scenarios and have helped develop ADAS functions such as Lane Keeping Assist (LKA). Similarly, the
big picture regarding autonomous racing, is that the innovations and research work that is done on
the track will eventually find its way on road cars. The development of autonomous vehicles that are
robust enough to race will push the boundaries of research and technology and eventually lead us to
the age of driver-less cars. Autonomous racing thus, plays an vital role in the future of mobility, by
providing a platform to test and develop new technologies. Organizations like Roborace are aimed
at developing advanced platforms to test autonomous vehicle technology in highly competitive and
demanding environments [4].

Professional drivers are very talented in knowing when to hit the throttle, when to brake
and how to apply fast steering corrections, all with a limited preview horizon. Moreover, they
are able to adapt their driving behaviour based on tire wear, tire temperatures, road irregularities
and other environmental conditions. These professional drivers are thus, analogous to extremely
robust controllers which can operate the vehicle safely at its handling limits and adapt to changing
characteristics. Furthermore, this adaptation is carried out without having a fixed vehicle or tire
model, but based on drivers sensory feedback and racing experience. The objective is that future
control systems with modern sensors in autonomous vehicles must incorporate such adaptation and
robustness characteristics.

Since this paper looks mainly into the dynamics of an autonomous race-car, focus shall be
placed on the control system design. The main idea for designing a path following controller for an
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autonomous race-car, is to compute a reference path and to follow it as accurately as possible. The
generation of the reference path is such that it results in minimal lap-time. The controller on the other
hand, enables path tracking by estimating the speed of the vehicle, the steering input, and other vehicle
dynamic parameters. It is assumed that the reference is always available to the controller and attention
is placed on the controller design itself. The following section briefly introduces a unique solution to
the autonomous racing scenario.

1.1. Proposed solution

With developments being made to increase computational power, machine learning techniques
and methods based on optimization have been studied [5] to tackle these problems. Model Predictive
Control (MPC) is an advanced control method that is useful for path following and autonomous racing
[6], [7], [8]. An iterative learning control (ILC) method has been proposed in [9] to reduce tracking error
by improving lap-by-lap performance. The authors proved the effectiveness of the ILC experimentally
on a vehicle. The authors in [10] have used a learning-based MPC to solve the lap time minimization
problem.

MPC uses a prediction model and an optimization algorithm over a certain horizon to obtain the
optimal control sequence that satisfy a set of constraints. The cost function can be shaped intuitively by
analyzing the trade-offs to be made based on the control objectives. It is desired for the prediction
model to be able to capture the dynamics of the system accurately while being simple enough to
facilitate optimization online. Autonomous racing exploits this trade-off as it exposes the vehicle to its
limits of handling. While a simple prediction model facilitates seamless optimization, it can result in
reduced performance. Similarly, an accurate complex model results in a large computational burden.
Additionally, during a race, the dynamics is constantly varying. The changes in dynamics can be
attributed to variations in tire properties due to tire wear, tire temperature and pressure fluctuations or
changes in the race environment. The model thus needs to adapt to this online during the race.

The concept of using a regressor to identify the varying dynamics of the prediction model within
an MPC is a technique discussed in the literature and implemented in other domains [11], [12]. In [13],
the authors present a solution to the aforementioned problems by using a nominal prediction model
which is augmented online using Gaussian process regression (GPR). The authors have also presented
experimental results by implementing their technique on a full-scale autonomous race car and have
proved a reduction in lap times.

This paper presents the application of locally weighted projection regression (LWPR) in tandem
with MPC for autonomous racing. LWPR is a non-linear function approximation algorithm that is used
to learn the varying tire properties online, thus allowing the MPC to adapt to the fluctuating dynamics.

2. Locally Weighted Projection Regression

LWPR is a unique algorithm that supports non-linear function approximation in high dimensional
spaces [14]. The non-linear system behaviour, can be accurately captured by using this technique.

The key use of this technique is to use piece-wise linear models to approximate non-linear
functions. The characteristics of LWPR include being numerically robust, especially in high
dimensional spaces and its capability to perform incremental online learning with the predefined
learning rate.

2.1. Algorithm

The fundamental parts of the algorithm are discussed under this section. The entire algorithm is
presented under chapter 3 in part II of the thesis report.
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2.1.1. Activation

A weight wk,i, also called the weighting kernel or "activation", is defined for every data point
(xi, yi) corresponding to its distance to the kernel centre ck within every local unit. This is used
primarily to determine the locality. Usually, Gaussian kernels are chosen,

wk,i = exp(−1
2
(xi − ck)

T Dk(xi − ck)), (1)

The shape of the receptive fields (RF) or the region of validity, is influenced by the distance metric
Dk in (1). Assuming the prediction comprises of K locally linear models, a prediction yk is computed
from each linear model, given an input vector x. The net output is the weighted mean of all the linear
models.

2.1.2. Partial Least Squares

Algorithm 2 shows how an incrementally locally weighted variant of partial least squares (PLS) is
used to generate linear model parameters within the LWPR scheme. The PLS predictor adds linear
projections in an incremental fashion until the point where adding further projections does not improve
the accuracy.

2.1.3. Distance Metric

The distance metric D influences the shape and size of each RF and thus also influences the
effectiveness of each local model. This distance metric is optimized separately for each RF using
an incremental gradient descent based on stochastic leave-one-out cross validation criterion. This is
shown in the algorithm 3.

2.1.4. Forgetting factor

In the algorithm 2, λ ∈ [0, 1] is the forgetting factor. This decides how much of the old data of the
parameters used in the regression will be forgotten. This parameter is useful especially in the case of
online learning.

An incremental learning system which embeds the above update laws, and generates additional
locally linear models as and when needed is shown in algorithm 4.

2.2. Current state-of-the-art

The application of this algorithm for real-time robot learning has been presented in [15]. The
results shown in the aforementioned paper demonstrates the successful application of autonomous
learning to complex robotic systems. It was also concluded that this technique, using its learning
abilities outperforms traditional control techniques.

Previous literature shows that the LWPR algorithm has been used for dynamic model learning of
a robotic manipulator [16]. The use of LWPR in the aforementioned application was aimed at assisting
model-based control techniques by introducing adaptive learning of the dynamic model of the robot.

Offline and online learning performance of this algorithm, specifically pertaining to tire behaviour,
is demonstrated in [17]. These results show the feasibility of this algorithm to reconstruct non-linearities
in tire-force behaviour.

Keeping the above-mentioned advantages in mind, this method is an alluring candidate for
learning dynamic tire behaviour. In order to utilize online learning, the application must involve
repeatability in terms of the working range of the tire. This is prevalent in a racing environment where
the vehicle operates on multiple laps of the same circuit.
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2.3. Implementation

This section focuses on an online implementation of LWPR for autonomous racing on the
Hockenheim circuit. It is to be noted that no control has been applied for these simulations.

The LWPR online learning module is deliberately initialized with a highly inaccurate tire model.
The model is then updated online with the sensing force information based on the Delft-tire model
for the simulations. The learnt tire force information is then compared with the bad model without
adaptability to analyze the learning performance. To assess real-time capability, simulation was
conducted using dSPACE real-time (DS1006) machine with IPG/CarMaker HIL. The simulation
parameters used can be seen in Table 1.

Table 1. Parameters for online learning of lateral force

Parameter Value Unit
Initial distance metric 10e4 I2 [-]

Initial component-wise learning rate 0.05 I2 [-]
Pre-factor of smoothness penalty 0.5 [-]

Initial forgetting factor 0.55 [-]
Final forgetting factor 0.85 [-]

Annealing constant for forgetting factor 0.8 [-]

Figure 1 shows the lateral force learning from the poorly initialized model to the Delft tire model.
The algorithm shows good learning performance and adaptability.

Figure 1. Online learning performance

3. Model Predictive Control

3.1. Motivation

A driver has the inherent ability of observing his surroundings and to predict the future state
of the vehicle according to the current vehicle state and road information. The driver is then able to
plan a feasible trajectory merely by comparing the future state with the desired one. Based on this,
the driver supplies an input to the system in real time. When the vehicle achieves a new state, the
driver must be able to comprehend this change and react to it. In this light, the driver behaviour goes
hand-in-hand with the basic idea of MPC [18].

MPC’s implicit predictive nature is useful in anticipating external disturbances or sudden changes
in the system which can be incorporated into the prediction model [19]. This is highly advantageous
and beneficial especially when it comes to aggressive manoeuvres, which are encountered during
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racing. Any abrupt changes in surroundings causes a swift change in the dynamics of the system.
Prediction of such changes in states results in more efficient computation of control actions. The ability
of the controller to look ahead and realize any potential dynamical changes in the system helps it to
take remedial action sooner.

The domain of vehicle motion control especially at the limits of handling comprises of a
multi-variable, non-linear system subject to physical as well as operational constraints on its inputs
and states. In contrast to the classical approaches, model predictive control seeks to bring a balance
between the predictive nature of infinite-horizon control and reactive nature of traditional control
techniques [20]. As seen in [21], the concept of non-linear model predictive control (nMPC) along with
its underlying principle of optimal control is an inviting alternative. This is due to its ability to handle
complex processes with a lot of inputs and states that simultaneously fulfill the respective constraints
imposed on the system.

3.2. Theory

A detailed theoretical background is provided under chapter 2 of part II in the thesis report. As
mentioned in [22], the important aspects of an MPC are the prediction model, the constraints imposed
on the system and the designed cost function.

3.3. Prediction Model

For the designed MPC to be efficient, the prediction model in the MPC formulation must be as
accurate as possible. The model equations must represent the vehicle’s dynamic behaviour accurately.
It is unwise to rely on the control actions from the MPC if the model is not well-defined.

This is the most crucial part of MPC design. The prediction model encapsulates the dynamics of
the vehicle and thereby helps the MPC realise how the system behaves for a certain control action. A
general representation of the prediction model is shown in equation (2).

x(k + 1) = f (x(k), u(k)) (2)

In the above equation, x(k), u(k) represents the states of the system and control input to the system at
the current instance respectively. Refer table 2 for the different variables and their significance in the
prediction model.

Table 2. Parameters in the prediction model

Parameter Symbol
Longitudinal velocity vx

Lateral velocity vy
Yaw angle ψ

Yaw rate r
Longitudinal position of centre of gravity Xp

Lateral position of centre of gravity Yp
Steering angle δ

Steering rate dδ

Front axle cornering stiffness C f
Rear axle cornering stiffness Cr

Vehicle mass m
Overall steering ratio is

Body inertia around z-axis Izz
Distance from front axle to centre of gravity l f
Distance from rear axle to centre of gravity lr

Initial longitudinal velocity V0
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The prediction model comprises of the states : x = [vx, vy, r, Xp, Yp, ψ, δ] and the control input :
u = dδ. Equations (3),(4),(5),(6),(7),(8) and (9) represent the non-linear bicycle model. The controller is
designed to track a lateral position and heading angle reference (xre f = [0, 0, 0, 0, yre f , ψre f , 0]).

v̇x = vyψ̇ (3)

v̇y = −
C f + Cr

mV0
vy + (

lr ∗ Cr − l f ∗ C f

mV0
−V0) ∗ r +

C f

m
δ (4)

ṙ =
lrCr − l f C f

IzzV0
vy −

(lr)2Cr + (l f )
2C f

IzzV0
r +

l f C f

Izz
δ (5)

Ẋp = vxcos(ψ)− vysin(ψ) (6)

Ẏp = vxsin(ψ) + vycos(ψ) (7)

ψ̇ = r (8)

δ̇ = dδ (9)

It must be noted that the cornering stiffness (C f , Cr) values are obtained in a dynamic fashion
as elaborated under section 4.2. This dynamic cornering stiffness along with the system dynamics
contributes to the non-linearity in the prediction model. The non-linear prediction model is thus
developed using the plant dynamics, and is further used for optimal control action calculation by
solving an optimization problem.

3.4. Optimization problem

An optimization problem is set up which minimizes a cost function (VN) subject to the system
dynamics and constraints (G(x, u, ∆u)), in order to obtain the optimal control sequence (uNp ). The
general structure of the optimal control problem is as shown in equation (10) subject to the system
dynamics in equation (2) and constraints within a specified bound (ε) in equation (11).

minuNp
VN(x0, uN p) (10)

G(x, u, ∆u) ≤ ε (11)

3.4.1. Cost function

The cost function is split into a stage cost (l(x(k), u(k)) and terminal cost (Vf ) as per equation (12)

VN p(x0, uN p) =
Np−1

∑
k=0

l(x(k), u(k))︸ ︷︷ ︸
stage cost

+Vf (x(Np))︸ ︷︷ ︸
terminal cost

(12)

The stage cost comprise of state penalty weight Qstage and a weight for the control input Rstage. This is
of the form shown in equation (13).

l(x, u) = (x− xre f )
TQstage(x− xre f ) + uT Rstageu (13)

The terminal cost is designed with a state penalty weight Qterm as shown in equation (14).

Vf (x(Np)) = x(Np)
TQtermx(Np) (14)

The tuning weight Q is a diagonal matrix with the values on the main diagonal corresponding to the
penalty on the respective states and the weight R penalises the control input. This results in the state
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penalty matrix with individual penalty weights ([Wvx , Wvy , Wr, WXp , WYp , Wψ, Wδ]) as per equation
(15).

Qstage =




Wvx . . . 0
...

. . .
...

0 . . . Wδ


 (15)

Similarly the control input penalty is assigned as per equation (16).

Rstage = Wdδ (16)

The terminal state penalty matrix Qterm is constructed in a similar manner to Qstage as in equation (15)
with weights ([Svx , Svy , Sr, SXp , SYp , Sψ, Sδ]).

3.4.2. Constraints

As mentioned under section 3.1, one of the benefits of using MPC is its ability to handle constraints
imposed on the system. In the autonomous racing scenario, the race-car is a mechanical system with
various components working together. Its performance is thus directly impacted by working limits
of the vehicle. Actuator limits which impose bounds on vehicle performance, can be expressed as
constraints within the MPC.

− 50π

180
≤ r ≤ 50π

180
(17)

− 330π

180is
≤ δ ≤ 330π

180is
(18)

− 750π

180is
≤ δ̇ ≤ 750π

180is
(19)

Equation (17) represents the constraint on the yaw rate (rad/s). Equations (18) and (19) show the
limits applied to the steering wheel angle (SWA) and steering rate. Here, the use of is is to express
the constraint on wheel angle as a bound on the state. The SWA can turn a maximum of 330 degrees.
This is converted into radians as shown in equation (18). The limits for steering angle and steering
rate were chosen based on moose tests performed by Daimler [23]. The steering rate was limited to
750deg /s and resulted in satisfactory performance. Similarly, the usage of is in order to obtain the
bounds in wheel velocities is shown in equation (19).

4. Simulation setup

The simulation setup is elaborated under this section. Details regarding the setup of IPG CarMaker,
MPC, LWPR and the benchmark controllers are provided in this section. Furthermore, some key
performance indicators are defined in order to compare and evaluate the performance of the different
controllers.

4.1. IPG CarMaker setup

This section elaborates the different settings chosen on IPG CarMaker for the simulations.

4.1.1. Vehicle and Tire

To ensure that the simulations are as close to the real-world implementation of control systems in
an actual car, it is crucial that the vehicle chosen as the plant encapsulates all the important dynamics
in all directions. This is achieved by choosing the Audi A6 multi-body vehicle modelled in the IPG
CarMaker software with the Delft tire model. The vehicle parameters used are reported in table A1.

Tire property variation has been implemented by scaling the cornering stiffness coefficient. This
tire degradation is simulated as a linearly deteriorating factor of the cornering stiffness coefficient over
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time. Conventional controllers with fixed tire models will not be able to adapt accurately with this
change in tire behaviour.

4.1.2. Sensor setup

The vehicle is equipped with two types of sensors. Slip angle sensors are placed at the middle
of the front and rear axle in order to measure the front and rear slip angle. The second sensor is a
road preview sensor with a preview distance of 1 meter. This sensor measures the lateral position and
heading angle deviation from the path center line. This reference information is then passed on to the
controller.

4.1.3. Race track

The Hockenheim race track is selected for all the simulations. The plot of the center-line of this
circuit is shown in figure 2. All simulations are performed for 3 laps of this circuit. The width of the
track is 12 meters.

Figure 2. Hockenheim race track

4.1.4. Driving behaviour

An aggressive race driving behaviour was chosen on IPG CarMaker. The acceleration limits
(aymax , axmax , axmin ) of this setting is shown in table 3.

Table 3. Acceleration limits

aymax axmax axmin Units
4 4 -6 m/s2

4.2. MPC setup

As discussed under section 3, MPC computes an optimal control sequence from the predicted
output. In this case, the MPC computes an optimal steering wheel rate which can in turn be used to
obtain an optimal steering wheel angle. Therefore, the MPC provides lateral control to the vehicle. A
suitable speed profile as shown in figure 3 is chosen and is constant throughout the simulation. This
controls the vehicle in the longitudinal direction. These inputs are then fed to the IPG vehicle.
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Figure 3. Velocity profile

Figure 4. MPC overview

An overview of the work flow of the control setup can be seen in figure 4. The sensor data from
the IPG vehicle is utilized as shown in the figure. The longitudinal velocity signal (Vx) is used to
determine the penalty weight matrices for the cost function via a weight scheduling method. This,
along with the designed constraints are fed to the optimizer. The current vehicle states (x(n)) are made
available to the prediction model within the MPC. Online data variables consisting of the dynamic
cornering stiffness of the front and rear axle are obtained either through online learning or a static
Dugoff tire model. A set of predicted future states (x̃(n+ k)) is then obtained and is fed to the optimizer.
The reference values (ψre f , yre f ) along with the state prediction is utilized by the optimizer in order to
calculate the optimal control sequence. As per the receding-horizon principle, only the first input from
this sequence (u0) is applied to the plant.

The wheel slip angle and force signals from IPG CarMaker are filtered before being accessed.
A low-pass filter was designed by choosing the cutoff frequency after analyzing the power spectral
density (PSD) of the individual signals. While choosing the cutoff frequency, it must be kept in mind to
retain as much information as possible while eliminating noise. The PSD of the IPG CarMaker lateral
force signals of front and rear axle can be seen in figure 5.
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Figure 5. Power spectral density - Lateral Force

4.2.1. ACADO

In this project, ACADO toolkit is used to solve the optimal control problem (OCP). Other than its
capability of working in the MATLAB and SIMULINK domain, ACADO can handle non-linear OCPs
effectively.

4.2.2. Online data

Apart from the reference values (heading angle deviation and lateral position offset), the controller
requires the updated information of all the states in the prediction model. This is vital to know the
vehicle parameters at the current time-step. These values are measured using vehicle sensors and
estimators.

The controller also requires additional data in order to compute the optimal control action. The
dynamic cornering stiffness of the front and rear axle are computed online. These values are then used
in the prediction model. In ACADO syntax, this is referred to as "Online Data".

The estimation of dynamic cornering stiffness was done by setting a threshold for wheel slip
angle (α) defining the linear working range of the tire (±0.03 rad ≈ ±2 deg). In this range the static
value of cornering stiffness is used with the assumption of linear tire model (20).

Fy = Cαα (20)

Outside of this range, the dynamic cornering stiffness at instant k is computed as a slope between the
lateral force values and wheel slip angle values as per (21).

Cαk =
|Fyk − Fyk−1 |
|αk − αk−1|

(21)

4.2.3. Tuning Parameters

Lastly, the controller requires its parameters to be tuned for best performance. An important
parameter to be set while designing an MPC is how far ahead in the future can the controller predict.
The performance of the controller is directly dependant on its future predictions. Ideally, in theory, MPC
gives best performance when it can predict more. However, this comes at the cost of computational
effort. The controller designed must have a low enough computational time to facilitate real-time
computation of the optimal control action and to minimize the effect of delays due to the computational
burden.



11 of 20

Figure 6. Computational time for varying prediction horizon with Ts = 0.02s

Figure 7. Computational time for varying prediction horizon with Ts = 0.01s

Figures 6 and 7 show a clear comparison for varying prediction horizon for the MPC running
at 50Hz and 100Hz respectively. It is clearly evident that large prediction horizon shows peaks
which reach execution times larger than the respective MPC sampling times. This is a potential
stumbling block for real-time implementation. Furthermore, Np = 25 shows that the execution times
are well below the sample time. This shows the real-time applicability of the designed controller. This
comparison validates the choice of the sampling time for the MPC as Ts = 0.01s with a prediction
horizon of Np = 25. These values also ensure that the LWPR module receives data at 100 Hz. Previous
studies [14],[15],[24],[25] show that an update rate of 20-200Hz is required for LWPR for real-time
online learning. A controller frequency of 100 Hz is also feasible in real-time. In order to refrain from
compromising on MPC performance and its predictions, the control horizon was set to be the same as
the prediction horizon (Nc = Np).

Apart from these parameters, the MPC also requires the stage and terminal cost weight
matrices to be defined. These weights depend on the instantaneous longitudinal velocity of the
vehicle. Hence, a weight scheduling method has been applied for varying velocity set points
([30, 50, 70, 100, 120, 150]Km/h). These weights are then linearly interpolated for intermediate velocities.

The idea behind choosing the initial weights for each velocity set-point was adapted from [22].
Firstly, the states to be controlled were decided. Only these states are penalized in the cost function.
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Hence, the states to be omitted from the cost function, is done by setting their penalty to zero. The
states to be controlled were chosen to be [Yp, ψ, δ̇]. Since only lateral control is implemented in the MPC,
it does not make sense to minimize the error for states in the longitudinal direction (vx, Xp). Apart from
the aforementioned states to be controlled, the wheel angle rate (dδ) was also chosen. As elaborated in
[22], ideally the SWA needs to have minimum variation to achieve the desired performance. This is
done by penalizing the SWA by penalizing the control action dδ. Hence, the stage cost weights are
constructed as shown in equations (22) and (23).

Qstage =




0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 WYp 0 0
0 0 0 0 0 Wψ 0
0 0 0 0 0 0 0




(22)

Rstage = Wdδ (23)

Similarly, the terminal cost weight matrices are constructed using terminal weights ([SYp , Sψ]) as shown
in equation (24).

Qterm =




0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 SYp 0 0
0 0 0 0 0 Sψ 0
0 0 0 0 0 0 0




(24)

Each of the tuning weights (stage and terminal) Wε are initially computed based on the equation (25).

Wε =
1

εerror
(25)

Here, the smaller the desired error (εerror), the larger the tuning weight (Wε). Additionally, a state with
a high penalty weight means that more emphasis is placed on controlling that respective state relative
to the other states. It is thus a general practice to set a high value for the tuning weight to minimize the
error leading to best achievable performance.

Once the ballpark values have been established, the controller is fine tuned via simulations where
the tuning weights are varied and the corresponding performance is analyzed. By doing so, it is
possible to understand the effect of varying the tuning parameters on vehicle performance. This
process was repeated for all the velocity set-points and then linear interpolation was applied.

During the fine-tuning of the controller for different velocities and different scenarios, few key
trends emerged. It must be noted that the chosen weights for each state to be controlled, correspond to
the relative importance of the respective state in the cost function.

• An increase in Wdδ, led to less chatter in the control input. If this value was set to be too large, it
led to understeer.

• An increase in SYp led to increased corner cutting.
• At high speeds (>120 Km/h), the weights WYp , SYp are increased to ensure proper tracking on

straights.
• In general, smaller stage weights led to smoother convergence of the state to its desired value and

small terminal weights led to delayed convergence. However, on the other hand, stage weights
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that were too small led to delayed convergence and terminal weights which were too large failed
to converge.

It must be noted that the states being controlled are vastly different in their order of magnitude.
Hence, these weights have been normalized before being applied to the cost function. It is also
important to realize that each of the weights are designed in the relative scale. This means that in order
to increase the importance of a particular state in the cost function, increasing the penalty weight of
the desired state or decreasing the penalty weight of the other states have the same effect. The tuned
weights for the racing scenario have been reported in table A3 in appendix B.

4.3. LWPR setup

In order to demonstrate the working of MPC in combination with LWPR, the simulation setup
shown in figure 4 was used. True force data from the IPG vehicle sensors are fed to the LWPR learning
module. This includes the true lateral force and normal force per axle. Using this information along
with data from the slip angle sensors, the LWPR module "learns" the transient tire behaviour and
adapts the online data variables (cornering stiffness) within the prediction model of the MPC. This
ensures that the MPC is always able to adapt to the varying tire behaviour online during the race.
An upper limit is applied on the memory allocated for the algorithm. This is done by limiting the
maximum number of receptive fields to 500. The learning module is initialized with the Delft tire
model.

The training data for the initialization of the learning module was chosen as expressed in table 4.
These values were chosen after carefully analyzing the range of values of wheel slip angle and normal
load variation for the vehicle with a race driving behaviour (without control). The general parameters
for the learning module for the simulation can be found under table 5.

Table 4. Training data for initialization of learning module

Input Range Unit
Wheel slip angle (front and rear) ±5 [deg]

Normal load 5000− 16000 [N]

Table 5. LWPR parameters for the autonomous racing scenario

Parameter Value Unit
Initial distance metric 4e4 I2 [-]

Initial component-wise learning rate 30 I2 [-]
Pre-factor of smoothness penalty 0.01 [-]

Initial forgetting factor 0.55 [-]
Final forgetting factor 0.80 [-]

Annealing constant for forgetting factor 0.90 [-]

4.4. Other controllers

Apart from analysing the performance of the MPC with a fixed Dugoff tire model, with the vehicle
sensor data and with online learning, some other benchmark controllers, namely, the stanley controller
[26] and path control with preview [27], were also used for comparison in this autonomous racing
scenario. More details regarding these controllers can be found under chapter 4 of part II in the thesis
report.

4.5. Performance indicators

Some key performance indicators have been defined to help compare the performance of the
designed controllers.
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4.5.1. Laptime

Since this is a racing scenario, an indicator of performance is the time it takes for the vehicle to
complete a lap of the circuit. This value is directly obtained from the IPG software.

4.5.2. Control effort

In order to compare the control effort of the different controllers, the root-mean-squared (RMS)
tool is used. The RMS of the control action gives an idea about how much control effort is required.
For a data set x with n data points, the RMS is calculated as per equation (26).

RMS =

√
1
n

Σn
i=1(xi)2 (26)

For the autonomous racing scenario, the RMS of steering wheel angle (δswa) is given by equation (27).

δswarms =

√
1
n

Σn
i=1(δswai )

2 (27)

4.5.3. Tire utilization

The lateral and longitudinal acceleration limits give an idea on how much of the tire is utilized
during the race. This can be pictorially represented using a g-g diagram. This is an important metric to
compare how much of the tire is used with each controller. The mean absolute lateral acceleration can
be computed and used to compare with other controllers as shown in equation (28).

aymean =
1
n

Σn
i=1|ayi | (28)

A controller that utilizes the tire to its maximum potential in the lateral direction will have the largest
mean absolute value of lateral acceleration.

5. Results

All simulations were carried out for peak acceleration values as per section 4.1.4. These values
were chosen based on the fact that the benchmark controllers could not handle a more aggressive
driving behaviour along with tire degradation. Thus, an appropriate driving behaviour was chosen
so as to perform comparative analysis of the designed MPC-based controllers with the benchmark
controllers.

As mentioned in section 4.1.1, tire degradation was implemented by scaling the cornering stiffness
factor of each tire continuously such that there is a 5 percent degradation per lap for 3 laps. This can be
seen from the tire force behaviour in figure 8.



15 of 20

Figure 8. Tire degradation trend

5.1. Performance indicators

As per the performance indicators defined under section 4.5, the results are as shown in table 6.

Table 6. KPI comparison - 3 Laps with tire degradation

MPC
KPI Dugoff Sensor data LWPR PCwP Stanley

Total Lap time [s] 372.210 372.370 372.160 374.420 373.910
Final Lap time [s] 121.821 121.510 121.300 122.386 122.189

δswarms [rad] 0.660 0.661 0.658 0.663 0.672
aymean [g] 0.228 0.228 0.230 0.222 0.224

5.2. Other results

Some other results have been reported in figures 9,10,11,12 and 13.

Figure 9. Results : PCwP
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Figure 10. Results : Stanley

Figure 11. Results : MPC with Dugoff tire model

Figure 12. Results : MPC with sensor data
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Figure 13. Results : MPC with LWPR learning

5.3. Real-time implementation

The real-time feasibility of the proposed design as verified in section 4.2.3, was also validated
on the SCALEXIO real-time system. SCALEXIO is based on a state-of-the-art technological setup
of real-time modular systems for hardware-in-the-loop applications. It also offers a high degree of
flexibility in its configurations. The task-turnaround time for the controller was found to be 50 times
lesser than the sample time.

6. Conclusion

The computed performance indicators in each case were normalized and compared as shown in
figure 14.

Figure 14. Comparison of controller performance

6.1. Lap time

It can be inferred from the above figure, that in terms of total lap time as well as the final lap time,
the MPC with learning shows marginally better performance than the other MPC based controllers as
well as the benchmark controllers.
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6.2. Mean lateral acceleration

Among the discussed control techniques, the combination of MPC with online learning shows
higher values of mean lateral acceleration (aymean ). This shows the better utilization of the tire by
learning based MPC control.

6.3. Control effort

The metric δRMS gives an idea regarding the control effort of each controller. It can be seen that
the benchmark controllers apply larger control actions as compared to the MPC-based techniques. This
can be attributed to the fact that MPC can handle constraints on the vehicle states such as δ. However,
the benchmark controllers do not have this provision of imposing constraints on the steering angle,
leading to a large control action.

6.4. Summary

In summary, it can be seen that the benchmark controllers apply larger control actions to the
vehicle as compared to the MPC based techniques. If the control effort is taken into account, as
it is by imposing constraints on the MPC based control techniques, it can further be inferred that
MPC with online learning shows best performance. The learning based MPC, is able to adapt to the
continuously degrading tire and show better lap times as well as higher mean lateral accelerations,
while simultaneously keeping the control effort in an acceptable range. The MPC based on the
fixed Dugoff tire model, however, is not able to adapt to varying tire properties.

It must also be noted that this marginal improvement in performance is seen only within 3 laps
of the same circuit. Over multiple laps, it is fair to say that this improvement will be scaled up.
Furthermore, as mentioned in section 5, the driving behaviour was chosen such that a comparative
study was possible with the benchmark controllers in mind. However, it was observed that the
MPC-based learning controller was able to run on the SCALEXIO real-time machine with the same
controller settings, even for more aggressive peak accelerations.

7. Future work

Since the designed MPC only controls the vehicle laterally, it makes sense to extend this
implementation to compute an optimal velocity profile dynamically for longitudinal control instead
of using a pre-defined velocity profile. Apart from this, steering actuator dynamics can be included
within the prediction model of the MPC which takes into account the delay between steering actuation
and its realization on the tire. Furthermore, a planar prediction model which takes into account load
transfer can be used instead of a bicycle model.

It must be noted that the current implementation makes use of fixed constraints within the MPC.
The inclusion of adaptive constraints is necessary in the case of tire degradation. The capabilities of
the tire dictate the maximum permissible lateral acceleration and yaw rates. Thus, the constraints need
to be varying in correspondence with the dynamic tire behaviour.

In order to accurately replicate a racing scenario, the reference must consist of the optimal racing
line which needs to be calculated in a dynamic fashion. The current implementation can directly be
used with the optimal racing line as a reference to provide better performance in terms of racing.

From the point of view of learning, the LWPR algorithm can be extended for multiple inputs other
than normal load and wheel slip angle. This needs to be done in order to fully learn the tire behaviour.

An accurate simulation of tire degradation due to wear, changes in temperature and pressure
needs to be implemented. This will be more realistic than linearly degrading the tire cornering stiffness
coefficient over multiple laps.
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Appendix A Simulation Parameters

Table A1. Vehicle and tire parameters

Parameter Value Unit
Vehicle mass 1659 [Kg]

Body inertia around z-axis 2916.6 [Kgm2]
Wheelbase 2.91 [m]

Distance from front axle to center of gravity 1.2966 [m]
Half of front track width 0.808 [m]
Half of rear track width 0.802 [m]

Overall steering ratio 17 [-]
Half of rear track width 0.802 [m]

Front axle static cornering stiffness 1.65e5 [N/rad]
Rear axle static cornering stiffness 1.5e5 [N/rad]

Table A2. ACADO solver settings

Parameter Setting
Hessian approximation Gauss

Newton
Discretization type Multiple

Shooting
Quadratic Programming (QP) solver QP OASES
Levenberg-Marquardt
regularization of the QP

1e-4

Integration method to discretize the
time-continuous model formulation
in the OCP

Explicit Euler

Number of integrator steps along the
prediction horizon

3*Np

Appendix B Tuning parameters

Table A3. MPC tuning - Race driving behaviour with tire degradation

Velocity set-points [Km/h]
Tuning weight 30 50 70 100 120 150

WYp 3e2 4e2 4.5e2 4.5e2 3e3 3.5e3
Wψ 7e9 7.5e9 7e9 7e9 6.5e9 7.5e9
Wdδ 2e6 2e6 2.5e6 2e6 1e4 1e3
SYp 7e1 7.5e1 7e1 7e1 3.5e3 4.5e3
Sψ 4e12 1.5e12 2.5e12 2.5e12 1e11 1e11
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16. Cruz, J.S.D.L.; Calisgan, E.; Kulić, D.; Owen, W.; Croft, E.A. On-line Dynamic Model Learning for
Manipulator Control. IFAC Proceedings Volumes 2012, 45, 869–874. doi:10.3182/20120905-3-hr-2030.00149.

17. Iyer, K.; Shyrokau, B.; Ivanov, V. Offline and online tyre model reconstruction by locally weighted projection
regression.

18. Hong Chen, Shuyou Yu, X.L.F.X.T.Q.; Wang, F. Applying Model Predictive Control in Automotive 2012.
doi:10.1109/wcica.2012.6357828.

19. Bruyne, S.D. Model-based control of mechatronic systems 2013. 16, 1425–1436. doi:10.1002/asjc.863.
20. Desaraju, V.R.; Michael, N. Leveraging Experience for Computationally Efficient Adaptive Nonlinear

Model Predictive Control 2017. doi:10.1109/icra.2017.7989625.
21. Johansen, T.A. Chapter 1: Introduction to nonlinear model predictive control and moving horizon

estimation 2018. 39, 904–918. doi:10.1002/oca.2388.
22. Chowdhri, N. Model Predictive Control for Automated Driving and Collision Avoidance. Master’s thesis,

2019.
23. Breuer, J.J. Analysis Of Driver-Vehicle-Interaction In An Evasive Manoeuvre - Results of "Moose Test"

Studies no. 98-S2-W-35, 1998.
24. Asadi, F.; Mollakazemi, M.J.; Ghafouri, A. Influence of Parameters of Modeling and Data Distribution

for Optimal Condition on Locally Weighted Projection Regression Method. World Academy of Science,
Engineering and Technology, International Journal of Mechanical, Aerospace, Industrial, Mechatronic and
Manufacturing Engineering 2015, 8, 1800–1807.

25. Vijayakumar, S. Incremental Online Learning in High Dimensions 2005. 17, 2602–2634.
doi:10.1162/089976605774320557.

26. Thrun, S.; Montemerlo, M.; Dahlkamp, H.; Stavens, D.; Aron, A.; Diebel, J.; Fong, P.; Gale, J.; Halpenny, M.;
Hoffmann, G.; Lau, K.; Oakley, C.; Palatucci, M.; Pratt, V.; Stang, P.; Strohband, S.; Dupont, C.; Jendrossek,
L.E.; Koelen, C.; Markey, C.; Rummel, C.; van Niekerk, J.; Jensen, E.; Alessandrini, P.; Bradski, G.; Davies,
B.; Ettinger, S.; Kaehler, A.; Nefian, A.; Mahoney, P. Stanley: The Robot That Won the DARPA Grand
Challenge: Research Articles. J. Robot. Syst. 2006, 23, 661–692.

27. Lu, Z.; Shyrokau, B.; Boulkroune, B.; van Aalst, S.; Happee, R. Performance Benchmark of State-of-the-art
Lateral Path-following Controllers. 2018. doi:10.1109/AMC.2019.8371151.



II
Background

27





2
Model Predictive Control

This chapter provides a background on model predictive control (MPC). Firstly, section 2.1 introduces the
reader to MPC along with a motivation behind exploring non-linear model predictive control (nMPC). Section
2.2 briefly discusses the theory behind MPC. Following this, section 2.3 the fundamentals of MPC design is
presented. The challenges that come with MPC are given in section 2.4. Finally, the implementation of MPC
for autonomous racing is presented in section 2.5.

2.1. Introduction
With the advancement in science and technology over recent years, the requirement of efficient control tech-
niques is ever increasing. Instead of classical techniques that satisfy a stable control design, optimization is
integrated in the design of the controller in order to attain better control performance.

The need for nMPC
The domain of vehicle motion control especially at the limits of handling comprises of a multiple non-
linearities in a system which is bound to physical as well as operational constraints on its inputs and states.
Previous research shows that the prominent non-linear control techniques such as feedback linearization [2]
[50] [28] and Lyapunov based methods [36] [59] that result in effective solutions. These techniques, however,
depend on complicated procedures that cannot be scaled to larger systems and cannot handle constraints in
an orderly manner. High-rate adaptive control techniques [44] [32], even though simple fail yo satisfy con-
straints and are merely reactive in nature in order to eliminate unmodeled dynamics.

In contrast to the aforementioned approaches, model predictive control seeks to bring a balance between
the predictive nature of infinite-horizon control and reactive nature of traditional control techniques [16]. As
seen in [33], the concept of non-linear model predictive control (nMPC) along with its underlying principle
of optimal control is an inviting alternative. This is due to its ability to handle complex processes with a lot of
inputs and states that simultaneously fulfill the respective constraints imposed on the system.

2.2. Theory
MPC comprises of defining an optimal control problem (OCP) within a finite horizon at every sampling in-
stance. The states of the plant are updated at every sample, this results in a new optimization problem to be
solved at each sample time. This is the underlying concept of the receding-horizon approach.

MPC uses a prediction model which makes use of the open loop dynamics of the system to predict its
future behaviour over a finite time interval called the prediction horizon. The corresponding control actions
required to drive the predicted response to its reference optimally, are computed by solving an OCP over the
prediction horizon. The OCP consists of minimizing a cost function based on the control objectives of the
MPC while satisfying various constraints which are imposed on the system.

On solving the OCP at each sampling instant over the prediction horizon, results in an optimal control
"sequence". Only the first control input from this "sequence" of control actions, is provided to the system.
This is the main idea behind the receding horizon principle. The new system states and measurements are
then used to formulate the new OCP to be solved at the next sampling instant. This procedure is continued
over the entire horizon, thus giving optimal control at each and every sampling instant [11].
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The authors in [14] show the fundamental concept of MPC applied to a SISO system. It can be noted that,
we predict the evolution of the output for the next P steps, parametrically on the initial condition and the
control sequence. The receding horizon principle can be seen here, where the past control action sequence is
completely ignored and the future "optimal" control sequence is obtained by solving the OCP at that particu-
lar sampling instance. At the current instance k, the MPC framework computes a set of M values of the input
sequence u(k + i −1), i = 1,2, ...M . The number of control actions M is called the control horizon. The con-
trol action is held constant after the stipulated M control inputs. These control inputs are computed so that
the set of P predicted outputs ŷ(k +1), i = 1,2...P reaches its respective set-point or reference in an optimal
fashion. Here, the number of predictions P represents the prediction horizon.

The receding horizon principle allows the utilization of new information immediately. Otherwise, the
predictions and subsequently computed control actions will be purely dependant on past data, thereby ad-
versely affecting the system dynamics on account of unmeasured disturbances. A driver, who is not able to
predict the behaviour of the system over a long prediction horizon will naturally find it difficult to react when
sudden evasive action is required. This is what sets MPC apart from the skills of a driver.

However, for MPC to be efficient, the prediction model in the MPC formulation must be as accurate as
possible. The model equations must represent the vehicle’s dynamic behaviour accurately. It is unwise to rely
on the control actions from the MPC if the model is not well-defined.

2.3. Design

Figure 2.1: MPC control scheme [25]

As seen in figure 2.1, there are two parts that form the core of a model predictive controller,

• A prediction model : to predict the future evolution of vehicle states

• An optimization algorithm : to obtain the best possible control action at the present instant

2.3.1. The prediction model
The system model can be given in general in the form,

x(k +1) = f (x(k),u(k)) (2.1)

x(k) represents the states of the system, u(k) is the control action and f is the function representing the
system dynamics. Generally, f can be either linear or non-linear, both of which can be handled well within
the MPC framework.

The prediction model is derived from the system model which is then used to compute the optimal con-
trol action. Considering a linear time invariant (LTI) system, the model equation (2.2) is given by,

x(k +1) = Ax(k)+Bu(k) (2.2)
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By propagating the above equation further in time, the j th system state prediction is given by (2.3),

x(k + j ) = A j x(k)+
j−1∑
i=0

(Ai Bu(k + j −1− i )) (2.3)

Considering the output y(k) of the LTI system as,

y(k) =C x(k) (2.4)

From (2.4) and (2.2), the prediction equation for the system output is obtained,

y(k + j ) =C A j x(k)+
j−1∑
i=0

(C Ai Bu(k + j −1− i )) (2.5)

For a prediction horizon Np , the prediction model (2.6) is obtained as,

Yp (k) = Ap x(k)+BpU (k) (2.6)

where,

Yp (k) =



y(k +1)
y(k +2)

.

.

.
y(k +Np )

, Ap =



C A
C A2

.

.

.
C ANp

, Bp =
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, U (k) =



u(k)
u(k +1)

.

.

.

.
u(k +Np −1)


As seen above, Yp is the predicted output at instance k, U is the predicted control action at the k th instance.
Ap is the extended observability matrix and Bp is the Toeplitz matrix. The prediction model is thus devel-
oped using the plant dynamics and this is further used for optimal control action calculation by solving an
optimization problem.

2.3.2. The optimization problem
The general structure of the optimal control problem is as shown,

mi nuNp
VN (x0,uN p )

s.t system dynamics
s.t system constraints

x(Np ) ∈ X f

where, x(t ) = x0

Xf represents the terminal set. It is defined such that an admissible control sequence must be able to drive
the state from its initial value x0 to Xf within Np steps. The system dynamics is as shown in (2.1). The cost
function is defined as,

VN p (x0,uN p ) =
Np−1∑
k=0

l (x(k),u(k))︸ ︷︷ ︸
stage cost

+V f (x(Np ))︸ ︷︷ ︸
terminal cost

(2.7)

The cost function is designed to be in two parts. Firstly, the stage cost comprises of penalties on states and
inputs (Q and R positive definite matrices). This helps keep the error between the reference and actual output
to be low while, simultaneously minimizing the control action energy.

Jst ag e (k) =
Np−1∑

i=1
((y(k + i )− r (k + i ))T Qi (y(k + i )− r (k + i ))+u(k + i −1)T Ri u(k + i −1)) (2.8)

Secondly, the terminal cost is important for asymptotic stability. This cost function helps ensure that the
plant is near the desired trajectory at the end of the prediction horizon. It also makes sure that the optimal
control action keeps the plant in the stable region.

Jter mi nal (k) =V f (x(Np )) = (y(k +Np )− r (k +Np ))T P (y(k +Np )− r (k +Np )) (2.9)
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where, P is the penalty for the terminal cost. The future state values comes from the prediction model as in
(2.6) for linear systems.

As touched upon earlier in sections, constraint handling makes MPC a very powerful control technique.
There may be equality or inequality constraints on states, control action or their rates. It can be represented
as,

G(x,u,∆u) ≤ ε (2.10)

where, ε is the bound value. An equality constraint that forms the definition of the control horizon (Nc ) is as
follows,

∆u(k + j ) = 0, j ≥ Nc (2.11)

The control horizon is defined such that after Nc the control input is assumed to be held at the same value
(u(k +Nc −1)) for remaining predictions. Usually, Nc ≤ Np . This helps reduce the computational effort of the
controller.

2.3.3. Outline
The general MPC law can be described using the following algorithm,

Algorithm 1: Basic MPC law

1. Obtain the new set of vehicle states x(t)

2. Obtain optimal control sequence by solving the OCP (2.3.2)

3. Use the first control action from the optimal sequence, u(t ) = u(t +0|t )

4. t ←− t +1

Repeat from step 1

2.4. Challenges
The framework of an MPC, however well designed has its own problems.

Computational Effort
One such issue that comes with implementing MPC in control problems is the heavy computational demand
specifically when the controller deals with non-linearities. The optimization problem along with its con-
straints should be solved online. At each iteration, the controller makes use of standard algorithms which
results in heavy computational burden and thus large computational time. Due to its computational com-
plexity, MPC was deemed suitable, mainly for processes with slow dynamics and with larger sampling periods
[74].

However, a vehicle dynamic system is the exact opposite. It involves fast changing dynamics at small
sampling rates. In areas such as manufacturing, mechanical, electrical and aerospace, where fast dynamical
systems are prevalent, conventional algorithms used for optimization, usually fail to satisfy the demands of
real-time computing with small sampling periods. Highly efficient MPC design is thus required in order to
achieve real-time computing.

The need of developing nMPC is increasingly recognized by both the control society and industry. Nowa-
days, high performance computing is readily available with the growth of the process-building industry. This
allows nMPC to process fast dynamics and the OCP can be solved at small sampling times.

Feasibility
Ensuring the feasibility of the optimization problem shown in section 2.3.2 at each time instance t is another
stumbling block in the MPC formulation. As stated in [9], the problem is assumed to be feasible at the initial
instant (t = 0), while the cost function (2.7) is chosen with the idea of conserving feasibility at later time
instances. One way to do this is by ensuring that the shifted optimal control sequence {u(t+1|t ), ...,u(t+Np |t )}
is feasible at t +1.

Additionally, constraints involving the state components are treated as "soft" constraints with the use of slack
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variables (s) as follows,

G(x,u) ≤ ε+ s


1
.
.
1

 (2.12)

Pure input constraints are kept "hard", since the inputs are obtained after the optimization. By relaxing the
state constraints, the issue regarding feasibility can be eliminated in case of stable systems.

Stability
As seen in [42], it is not straightforward as to the conditions under which the closed loop system is stable
in either the infinite or finite horizon constrained MPC. Some of the techniques used in the literature to
"enforce" stability are reviewed in [9].

End (Terminal) Constraint
The stability of the overall system in the linear case, can be ensured by specifically ensuring that the system
converges to the region of feasibility at the end.

x(t +Np ) = 0 (2.13)

Such constraints have the problem of resulting in high control actions that may be needed to drive the state
to its reference, particularly for a small prediction horizon. The region of attraction of the closed loop system
(which includes MPC and the plant) is restricted to the set of initial states x0 that can be steered to origin
within Np steps.

A modification of the idea of the terminal constraint has been proposed in [51], where only the unstable
modes are driven to the origin at the end of the horizon.

Terminal Weight Matrix
The terminal cost function (2.9) has a weight matrix P . This can be chosen as the solution of a Riccati in-
equality in order to guarantee stability for the linear case without the addition of separate constraints.

Robustness
Another point of concern regarding MPC is its robustness to model uncertainties and noise. As stated in
[9], a control system is deemed "robust" if it is possible to ensure its stability and its performance meets
the necessary specifications for a particular uncertainty range. There is more scope of research regarding
controlling systems with constraints while ensuring robustness.

2.5. Implementation in autonomous racing
Two approaches of tackling the autonomous racing problem have been addressed in [37]. The first approach
employs a high level MPC to create a suitable reference for the low level MPC to track. The next technique
makes use of Model Predictive Contouring Control (MPCC) to strike a balance between track progress and
contouring error. A comparison of two applications of MPC in autonomous racing is presented in [68]. The
authors compare a tracking based MPC with an MPC that is designed to minimize lap time.

In general, designing an MPC is challenging in the presence of model uncertainty. In [7], a nominal model
is used to validate constraints and a learned model to enhance performance. It is however difficult to pre-
define a feasible model for the racing problem. An alternative proposed in [47], involves an MPC framework
using a simplified vehicle model in combination with a learned disturbance model. The authors have high-
lighted the effectiveness of using this technique for simple path following. For the racing problem however,
it is desired to have a vehicle model that can capture the limit handling behaviour. The authors in [66], have
formulated a solution to the racing problem which is based on the linearization of the dynamics as well as the
reference trajectories. The aforementioned paper pays close awareness to the cost function and constraints
in order to reduce the effect of linearization.

In [52], the authors investigate a learning nMPC for autonomous racing. The proposed technique utilizes
previous lap information to improve the closed loop performance on track. Furthermore, this is made to work
hand-in-hand with a system identification algorithm that is able to recognize the vehicle dynamic behaviour
at the handling limits. It is proved through simulations that the designed system allows the vehicle to operate
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at its limits. The authors, in [10], have experimentally verified that the aforementioned repetitive formulation
of MPC improves the track performance on a 1:10 scaled setup.

It must be noted that, there is a mismatch between the tire model within the MPC and real-world tire
behaviour. This therefore poses a limitation in terms of robustness of the designed nMPC. An attempt to
overcome this, is to somehow "learn" the tire properties using sensor data from the vehicle. This shall be
further discussed in the following chapter.



3
Tire Models

This chapter provides some context regarding tire models. Section 3.2 and section 3.3 introduce the reader
to the Dugoff and Delft tire models respectively. Finally, section 3.4, starts off with the motivation behind
using learning based techniques. This is followed by the theory behind the LWPR algorithm, its applicability
and some possible challenges. Finally, some implementations of this algorithm have been presented to the
reader.

3.1. Introduction
Tires are one of the most crucial components to be considered while designing a vehicle control system. Ac-
curate representation of the capabilities of a tire to generate force both laterally and longitudinally is crucial in
racing. Extensive research work has been done on tire modelling. This can be classified into two fundamental
approaches - physical methods and empirical methods.

The physical methods are centered around the understanding of the physical mechanism which gives
rise to tire forces. This ranges from the fundamentals of mechanics to complex finite element methods to
try to comprehend tire behaviour. Usual practice is to model the tire contact patch as a spring-mass-damper
system. Under this classification, different models such as LuGre, Dugoff and brush tire model have been
developed.

The empirical methods involve interpolating or fitting data in which a set of parameters are designed to fit
a curve that encapsulates as much of the tire characteristics as possible. This type of tire modeling is heavily
reliant on tire data. The more data available, the more accurate the fit. The most accurate empirical tire
model is the Magic Formula (MF) tire model [48].

As elaborated under section 2.3, the prediction model within the MPC includes tire force behaviour which
comes from either a static Dugoff tire model or via online learning. Furthermore, the IPG vehicle used as the
plant comprises of the Delft tire model. This chapter discusses the different tire models used as well as the
algorithm used for online learning of tire force behaviour.

3.2. Dugoff Model
The Dugoff model [17] is a widely accepted mathematical tire model that includes the rotational degrees of
freedom of the wheel as well as the influence of longitudinal and lateral tire forces (Fx ,Fy ) as a function of
normal load on the tire (Fz ), coefficient of friction (µ), wheel slip angle (α) and longitudinal slip (κ).

The following equations (3.1) to (3.5) represent the Dugoff tire model. Equation (3.1) represents the fric-
tion coefficient computation based on the peak friction coefficient (µ0), the friction reduction coefficient (er ),
the longitudinal velocity (Vx ), κ and α. Equations (3.2) and (3.3) represent the weighting coefficient (λ) and
the corresponding weighting function ( f (λ)). The equations (3.4) and (3.5) show the calculation of Fx and Fy

which are a function of the longitudinal and lateral tire stiffness (Cxκ,Cxκ).

µ=µ0(1−er Vx

√
κ2 + t an2(α)) (3.1)

λ= µFz (1−κ)

2
√

(Cxκκ)2 + (Cyαt an(α))2
(3.2)
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f (λ) =
{
λ(2−λ), if λ< 1

1, otherwise
(3.3)

Fx = Cxκκ

1−κ f (λ) (3.4)

Fy =
Cyαt an(α)

1−κ f (λ) (3.5)

3.3. Delft Model
The Delft tyre model [1] was used in order to implement tyre degradation within the IPG CarMaker vehicle. A
scaling factor was applied to the cornering stiffness coefficient, degrading the tire throughout the simulation.

3.4. LWPR learning
3.4.1. Motivation
Autonomous vehicles require precise control to satisfy safety and comfort constraints. In some cases, the ac-
curacy of models are not enough to ensure effective control performance due to unmodeled non-linearities.
As a result, accurate dynamic models are required. A major obstacle to overcome is the continuously vary-
ing system dynamics. This may be due to external factors (e.g. road surface) or internal vehicle dynamic
parameters, whose estimation may be difficult (e.g. cornering stiffness, slip angle changes etc).

In order to capture the entire vehicle dynamic behaviour a complex non-linear model is required. Even
for relatively simple maneuvers in which the tire predominantly resides in the linear regime, tire stiffness
changes with changes in vehicle velocity and environment [12]. As stated in [13], the authors used adaptive
control techniques to estimate dynamic model parameters online. However, despite such advancements,
these methods still rely on adequate knowledge of system model and are thus prone to modelling uncertain-
ties. An alternative to this is sliding mode control (SMC) which, even though robust to modelling errors, is
susceptible to chattering.

While adaptive techniques assume an inherent dynamic model structure, model learning controllers at-
tempt to "learn" the model. Conventional control techniques follow the trend of considering known tire pa-
rameters while modelling for a fixed condition. In this sense, there exists a research gap in the development
of systems that can adapt to varying tire behaviour. Online learning is beneficial to adapt to fast changing
dynamics. Therefore, in order to further enhance the tracking performance of the above elaborated nMPC,
an attempt is made to infuse online learning within the control structure.

The concept of making use of a regressor to determine the dynamics of a system used in the MPC has been
well documented in different applications [7]. Non-linear regression techniques come with high computa-
tional complexity and hence, usually dynamic models are only learned offline for pre-sampled trajectories
[19][54]. In order to utilize a learning approach to its fullest, online learning becomes necessary to help adapt
due to changes in dynamics. When it comes to vehicle dynamics at the limits of handling, a training data set
used for offline learning will not suffice. The model needs to be updated constantly via online learning with
sensor measurements in order to encapsulate the complete behaviour of the vehicle.

Online learning using neural networks has been portrayed to be effective in high performance vehicle
control [23] and in robotics control [43] [30] [21] [29]. As stated in [24], online adaptation of neural networks
comes with the problem of "catastrophic forgetting", which can be described as "the tendency of neural net-
works to forget old data when fed new data from another distribution". This may lead to controller failure. In
an attempt to overcome this issue, attention is turned to a technique that is immune to catastrophic forget-
ting, namely locally weighted projection regression (LWPR).

3.4.2. Theory
LWPR is a relatively new algorithm that is used to approximate non-linearities in high dimensions in the
presence of redundant input dimensions [71]. Recent studies shows that non-linear function approximation
while dealing with input data of high dimensions is still an area of active research, especially for real-time
applications. As proposed in [70] an algorithm is needed that

• avoids numerical problems due to redundant inputs

• eliminates irrelevant input dimensions
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• maintains a low computational complexity in its learning updates

• allows online learning

• accurately approximates functions with adequate generalization

There are two main classes of techniques used for function approximation .

Global fitting
Firstly, the technique of fitting non-linear functions globally. This technique is in line with current research
trends. For example, Gaussian process regression (GPR) [73], variational Bayes for mixture models (VBM) [22]
and support vector machine regression (SVMR) [57] come under this category. Even though these techniques
have a sound theoretical base in terms of convergence, they are not suited for high dimensional real-time
applications. This is because,

• They require appropriate determination of kernels or basis functions in the case of SVMR and GPR and
proper initialization in case of VBM

• They are not suited for incrementally arriving data. Adding new data points is computationally costly
in case of SVMR and GPR, whereas VBM needs storing data when new mixture components are being
added.

• They are computationally expensive for real-time learning

Previous work [46], comparing these methods report that although SVMR and GPR may lead to higher accu-
racy than LWPR, their heavy computational loads does not allow for incremental online learning.

Local fitting
In contrast to this, the second class of function approximation techniques involve fitting non-linear functions
with spatially localized models. This is suitable for real-time incremental learning. In this domain, locally
weighted learning (LWL) [8] methods are handy when there is little known regarding model complexity. As
elaborated in [55], with LWL, it is possible to increase the model resources in a data-driven and incremental
way. However, with increasing number of input dimensions, in order to maintain accuracy, these techniques
suffer from an exponential increase in the number of local models, also known as the "curse of dimensional-
ity" [58].

Projection regression
Additionally, projection regression (PR) techniques are able to cope with high dimensional inputs. The multi-
variate regressions are dissolved to form a cluster of single-variate regressions along selected input directions.
A problem encountered is the selection of efficient projections to achieve accurate fitting.

Locally weighted projection regression
LWPR, as suggested by its full form, is an algorithm that extends the useful properties of localized learn-
ing to non-linear function approximation. As seen in [70], a prerequisite for this approach is that the high-
dimensional problem has locally low dimensional distributions. This assumption is seen to cover a broad
class of real-world data [64] [53] [72] [18].

With this assumption in mind, local models are allocated within the locally low dimensional distributions.
Thus, the local models only occupy a small part of the high dimensional space. This eliminates the problem
caused by the "curse of dimensionality" of LWL. Under these conditions, an alternate method of PR can be
used which finds efficient local projections. The result is a learning algorithm that fuses the speed, efficiency,
and incremental capabilities of LWL techniques without having to face the problems due to high dimensional
input spaces with the help of local projections.

3.4.3. Algorithm
The LWPR algorithm involves two main steps namely, the incremental partial least squares and the distance
metric update. These are elaborated under this section.
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Algorithm 2: Incremental PLS

Given : A training point (x, y)

Update the means of input and output :

xn+1
0 = λW n xn

0 +w x

W n+1

βn+1
0 = λW nβn

0 +w y

W n+1

where W n+1 =λW n +w and x0
0 = u0

i =β0
0 =W 0 = 0

Update the local model :

1. Initialize : z = x,r es1 = y −βn+1
0

2. For i = 1 : r

(i) un+1
i =λui +w zr esi

(ii) s = zT un+1
i

(iii) SSn+1
i =λSSn

i +w s2

(iv) SRn+1
i =λSRn

i +w sr esi

(v) SZn+1
i =λSZn

i +w zs

(vi) βn+1
i = SRn+1

i

SSn+1
i

(vii) pn+1
i = SZn+1

i

SSn+1
i

(viii) z = z − spn+1
i

(ix) r esi+1 = r esi − sβn+1
i

(x) MSE =λMSEn
i +wr es2

i+1

Predicting with novel data :

Initialize : y =β0, z = x −x0

For i = 1:k

(i) s = uT
i z

(ii) y = y +βi s

(iii) z = z − spn
i

SS,SR and SZ are memory terms that help perform uni-variate regression using recursive least squares as
shown in step (vi) in the model update. Step (vii) helps regress the projection from the current input data
z and the current projected data s. This ensures that ui+1 is orthogonal to ui . There are two important
properties of the local projection scheme. Firstly, if we have statistically independent input variables, PLS
takes only a single iteration to find the optimal projection direction ui . This corresponds to the gradient of
the locally linear function to be approximated. Secondly, step (i) in the model update in algorithm 2 ensures
that the projection direction is chosen by correlating the input and output data. This results in the automatic
exclusion of input dimensions that do not contribute to the output. Finally, since the uni-variate regressions
will never be singular, there is no concern of numerical problems in PLS.

Algorithm 3: Distance metric update

D = M T M , where M is upper triangular

M n+1 = M n −α δJ
δM where the cost function to be minimized is chosen to be,

J = 1
W

∑M
i=1

∑r
k=1

wi r es2
k+1,i

1−wi
sk,i

sT
k

W sk

+γ∑N
i , j=1 D2

i j

The first term in the cost function represents the mean leave-one-out cross-validation error of the local
model. The second term is a penalty term which ensures that the receptive fields do not shrink in case of
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huge amounts of training data.

Algorithm 4: LWPR Outline

1. Initialize the LWPR with no receptive fields

2. For every new training sample (x, y)

- For k = 1 : RF

(i) Calculate the activation from eq. (??)

(ii) Update according to algorithms 2 and 3

- End

- If no linear model was activated by more than wg en ,

create a new RF with r = 2,c = x,D = Dde f

- End

End

The major assignment within the LWPR framework consists of determining the number of local models
k, computing the regression coefficient βk and the weight wk for the k th locally linear model. Additionally, it
consists of regulating the local model’s receptive field. In the algorithm 4, a threshold wg en is predefined. This
determines when to create new receptive fields. The closer this value is to 1, the more overlap local models
will have, but will be more costly to compute. The distance metric D is initialized to Dde f and is usually
diagonal.

3.4.4. Applicability of LWPR
As stated in [35] the proposed LWPR technique is most applicable for the following problems

• A non-linear function needs to be learnt. Otherwise there is no justification of having multiple locally
linear models.

• There is large amount of training data.

• The application requires online and incremental learning. In comparison with global function ap-
proximators such as multi-layer neural networks, this algorithm has a benefit that its local models are
able to learn independently.

• The model requires adaptation to changes in the target mapping with time. LWPR excels in such cases
because a tune-able built-in forgetting factor is available. This can be used to match the expected time
scale of the transience. The adaptation is quick because all other parameters such as the receptive field
placements and sizes, and local projection directions of a well trained model can be retained while the
forgetting factor and regression parameters are adjusted.

3.4.5. Previous research
Apart from the state of the art mentioned in the attached paper, the authors in [31] have analyzed the online
learning performance of this algorithm specific to tire force reconstruction. The results were a motivation to
implement this algorithm for autonomous racing in combination with MPC. The research paper concerning
this is made available to the reader in part III.

3.4.6. Challenges
An obstacle faced while utilizing locally linear methods is the computational cost. For this method to be
accurate, usually tens of thousands of local models are needed. Considering that tire input data is received at
high frequencies, the algorithm needs to produce a lot of predictions per second. In contrast to this, even less
intensive MPC algorithms need an order of tens of thousands of predictions per second. As stated in [24], the
computational demands on the model using LWPR is 3 orders of magnitude less than the that used for model
predictive control. This essentially means that, when used in tandem with MPC, it is possible to make use of
LWPR models that demand more computationally, which are suitable for online adaptation.

The authors in [39] state that, the accuracy of this algorithm is affected by the linearity of each projected
subset. Subsets with more linearity will result in better accuracy. However, a common misconception is that
if there are more projection directions, the prediction will be more accurate. The final reconstructed model



40 3. Tire Models

may deviate a lot from the true value if too many projections are used. This is because there is some deviation
between the prediction and true values on each projection direction which may be compounded if too many
projections are taken.

As mentioned in [45], the main stumbling block of this algorithm is the manual tuning of highly data-
specific parameters. Compared to other techniques it is difficult to determine the suitable learning rates
and a appropriate initial size for the receptive fields [63]. Therefore, parameter sensitivity is a concern while
employing this technique.

3.4.7. Implementation
The racing environment is an ideal area of application of learning based control because the race-cars are
exposed to repeated laps of the same circuit while operating at the limits of handling. This creates an scenario
where the vehicles are repeatedly subjected to non-linear varying dynamics and road conditions from lap to
lap. In this project, online learning is attempted with focus on the tires. The tires are the most complex part of
a vehicle dealing with a lot of non-linearities especially when considering vehicle motion control at handling
limits. The tire model is updated online using LWPR in order to capture non-linearities. This "learning" helps
the controller develop a notion of experience while it fully encompasses the input-output behaviour for all
previous control actions [15].

Problems faced

Even though the MATLAB library for this algorithm provided in [69] is useful, it is important to note that it can
be used only for offline learning. As explained in [49], the provided code is restricted to offline usage where
the update of receptive field parameters needs to be done offline first using a fixed training data set. Model
approximation is then done using the trained parameters. This is because the MATLAB code uses a slightly
different function library than SIMULINK. Since C code is used to compile SIMULINK programs running in
real-time, it cannot access any MATLAB files or functions from the base workspace. Furthermore, since the
structure of the code in the provided library is not suitable to implement online learning in SIMULINK, a
solution was to rewrite the code provided.

Similar to the approach used in [24], three different types of tests will be used to validate this algorithm.

• Offline learning : Model adaptation is not allowed in the simulation.

• Online learning : Model adaptation is allowed during simulations, but no control is applied.

• Active learning : Model adaptation is allowed and the vehicle is controlled with the adapted model.

1. Offline learning

(a) Non-linear function approximation

This section shall demonstrate the function approximation capabilities of the LWPR algorithm.
LWPR was run on 500 noisy training data points from the two dimensional cross function,

y = max(e10x2
1 ,e50x2

2 ,1.25e5(x2
1+x2

2 ))+N (0,0.01) (3.6)

This function was chosen since it has a combination of areas with varying curvature [70], which
makes it suitable to test the algorithm’s learning capabilities. Figure 3.1 shows the fitted func-
tion with a normalized mean square error of 0.045. The table 3.1 shows the values of the tuning
parameters used.
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Figure 3.1: Non-linear function approximation using LWPR

Parameter Value
Initial distance metric 0.25I

Initial element-wise learning rate 250
wg en 0.2

wpr une 0.7
Learning rate for 2nd order distance metric updates 250

Kernel Gaussian

Table 3.1: LWPR parameters for non-linear function approximation

The results show that LWPR is an excellent non-linear function approximation technique.

(b) Offline learning of tire model - Lateral force vs slip angle

The implementation of LWPR scheme to estimate tire properties are shown in this section. First,
simple learning of pure lateral force is shown. The LWPR algorithm is presented with training data
comprising of lateral force Fy versus wheel slip angle α. A constant normal force is assumed and
the slip angle is varied between -20 and 20 degrees. The camber is set to zero. The algorithm then
"learns" the given model and is presented with test data which lies in the same range as the train-
ing data.

The figures shown below represent four separate iterations of the learning procedure by increasing
the initial distance metric by an order of 10 each iteration. It is evident that as the initial distance
metric changes, there is a change in the number of receptive fields generated as well as the mean
square error. Bad choices of the initial distance metric can affect the learning procedure. If the
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initial distance metric is set to be too small, the receptive fields are larger and this may result in lo-
cal minima and slow convergence. Moreover, if this metric is set to a large value, smaller receptive
fields are generated which may lead to over-fitting. As seen in section 3.4.3, the algorithm takes
care of updating the distance metric. However, a good initialization helps simplify the algorithm.

Figure 3.2: Iteration 1 Figure 3.3: Iteration 2

Figure 3.4: Iteration 3 Figure 3.5: Iteration 4

Figure 3.5 has the least mean square error from the training data showing that the LWPR scheme
can be used to successfully learn the tire characteristics presented to it. This can be seen by the
accurate matching of test data on the training data set. However, it is important to note that
with fewer RFs, figure 3.4 shows satisfactory matching with the training data set. The number
of training and test data points input into the model was set to 400 data points each. The training
data presented to the model was obtained using the TNO-Delft tire model. The parameters used
for learning which are kept same for all iterations, are shown in table 3.2. Further tuning of the
parameters to achieve best fit was done as per [35].
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Parameter Value
Pre-factor of smoothness penalty term 10−4

Initial element-wise learning rate 40
Kernel Gaussian

Table 3.2: LWPR parameters for offline learning of pure lateral force Fy (α)

This offline learnt model, can then be used within the control scheme to compute the lateral forces
for changing slip angles. The cornering stiffness can then be computed from this value. Further,
the number of inputs to the model is increased by attempting to reconstruct combined effects of
wheel slip (κ) and slip angle (α) on the longitudinal force (Fx ).

(c) Offline learning of tire model - Longitudinal force vs wheel slip and slip angle

In order to reconstruct combined behaviour, the wheel slip (κ) is varied from -0.5 to 0.5 and the
slip angle (α) is varied from -10 to 10 deg. The normal force is kept constant and camber is set
to zero. The model is trained using the TNO-Delft tire model. Two separate iterations were per-
formed by increasing the initial distance metric by an order of 10.

Figure 3.6: Delft-tire model

Figure 3.7: Iteration 1
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Figure 3.8: Iteration 2

Figures 3.6,3.7 and 3.8 demonstrate the capability of this algorithm to reconstruct complex non-
linear tire behaviour. A drastic improvement in terms of mean square error can be seen with the
increase in the value of the initial distance metric. 400 data points were fed to the algorithm while
training. The parameters used for learning which are kept same for both iterations, are shown in
the table 3.3. Further tuning of parameters to achieve better results was done as per [35].

Parameter Value
Initial element-wise learning rate 50 I2

wg en 0.2
Learning rate for 2nd order distance metric updates 250

Kernel Gaussian

Table 3.3: LWPR parameters for offline learning of combined effect on longitudinal force Fx (κ,α)

2. Online learning

In order to implement online learning, the offline trained model is updated constantly with new infor-
mation which it needs to "learn". To analyse the online learning capabilities of this method, a badly
trained model is first loaded. Further, more data points corresponding to the true lateral force are sup-
plied to the badly trained model. The model is then updated online and the predicted result is com-
pared to the badly trained model without adaptation or learning. This test is expected to portray the
learning capabilities of the algorithm.
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Figure 3.9: Badly trained model initialization

The simulations are carried out for the simple one-dimensional case of pure lateral force. The true
model used in the simulations is the Delft tire model. A badly trained model as shown in figure 3.9 is
used to initialize the algorithm before learning commences.

Since the model has been trained for a range of -20 to 20 degrees of wheel slip (α), the steering wheel
angle input is set to vary sinusoidally within this range throughout the simulation to analyse the learn-
ing ability. The steering wheel angle input is set as : y(t ) = 30si n(2π f t ) degrees. The frequency f is
initially set to 0.2Hz. The rate at which data is obtained from the true model is set at 100Hz. The LWPR
parameters are kept the same in all the simulations to have uniformity. These parameters are set as
shown in table 3.4.

Parameter Value
Initial distance metric 50 I2

Initial element-wise learning rate 10−7

Pre-factor of smoothness penalty term 10−4

Initial forgetting factor 0.5
Final forgetting factor 0.55

Annealing constant for the forgetting factor 0.8
Kernel Gaussian

Table 3.4: LWPR parameters for online learning of lateral force behaviour Fy (α)

Figure 3.10: Sinusoid of frequency 0.2Hz, Noiseless sensor data at 100Hz
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Figure 3.10 shows that LWPR is able to learn satisfactorily well even when initialized with a bad training
model. As seen from the error plot, there is a marginal error in the learnt force measurements.

(a) Effect of noise

Noise is applied to the input data being made available to the learning module. Since the force
data from sensors may contain noise, the effect of noise on sensor data is also evaluated. All other
parameters are kept the same as the previous simulation.

Figure 3.11: Sinusoid of frequency 0.2Hz, Noisy sensor data at 100Hz

Figure 3.11 shows that noise does not have a significant effect on learning performance. The algo-
rithm is able to learn the true model online with reasonable accuracy and a similar marginal error
to the noiseless case.

(b) Effect of input frequency

The sinusoidal input frequency is increased to 0.8Hz to examine its effect on learning. All other
parameters are kept the same during the simulation.

Figure 3.12: Sinusoid of frequency 0.8Hz, Noisy sensor data at 100Hz

The effect of the increased input frequency is clearly evident from the error plot in figure 3.12. The
magnitude of error is seen to have increased significantly implying poorer learning performance.

(c) Effect of data buffer

The sensor data being made available to the is varied to 1KHz and its consequence on learning
performance is analysed. All other parameters are kept the same as previous simulations.
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Figure 3.13: Sinusoid of frequency 0.8Hz, Noisy sensor data at 1KHz

Figure 3.13 shows a significant decrease in the magnitude of error enhancing tracking perfor-
mance.

3. Active learning

For the application of autonomous racing, LWPR has been used with MPC in order to learn the changes
in tire force behaviour online. This learnt model is then made available to the prediction model within
the MPC. This helps the MPC to solve an optimization problem at each sampling instance and thereby
obtaining the optimal control action, while adapting to varying tire behaviour online.

Some key trends that were observed while choosing the LWPR parameters [35] are reported below.

• Initial learning rate : A large value leads to instability in convergence, whereas if there is delayed
convergence, this value needs to be larger. This learning rate gets updated by the algorithm caus-
ing the local models to adapt quickly to the data.

• Penalty term : A small value results in larger distance metrics, which corresponds to narrow recep-
tive fields. This further implies functions that are not smooth. In order to obtain smooth function
reconstruction, a larger value needs to be set.

• Initial distance metric : A large initialization may lead to over-fitting due to allotment of a large
number of receptive fields. However, if this value is too small, it could result in delayed conver-
gence and possible lead to local minima. Once initialized, this value gets updated by the algo-
rithm.





4
Benchmark Controllers

Details regarding some of the benchmark controllers designed for comparative analysis are discussed in this
chapter. Firstly section 4.1 gives the reader some idea behind the design of the Stanley controller for lateral
path following. Following this, section 4.2 discusses the idea behind path control with preview. Finally a
summary of the benchmark controllers can be found under section 4.3.

4.1. Stanley
The "Stanley" autonomous vehicle won the DARPA grand challenge using steering control based solely on
a simple kinematic model [61]. This method is based on a non-linear feedback function of the lateral posi-
tion error and the heading error. Exponential convergence has been shown for this method [65]. Figure 4.1
showing the error definitions for this method is adapted from previous research [61].

Figure 4.1: Error definitions : Stanley controller

The error metrics are the lateral position error (yer r or ) which is the distance from the centre of the front
axle to the nearest point on the path (cx ,cy ) and the heading error (θe ) which is the difference between the
vehicle’s actual heading angle and the heading angle of the nearest point on the path (cx ,cy ). Two gain pa-
rameters Ky e and Kψe are tuned to get desirable results. The steering control action (δe ) is given by equation
(4.1).

δe = ar ct an(Kye

yer r or

Vx
)+Kψeθe (4.1)

4.2. Path control with preview
A conclusion can be made based on previous research, that lateral path following control must include a
feedback term that is either designed with a lateral position and heading error [5] or with the displacement
in the lateral direction computed at a particular look-ahead distance [4] and a feedforward term in order to
decrease the effect of disturbances. A generic combination of these two ideas is proposed in [56].

49
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The control objective of this technique is to ensure that the vehicle centre of gravity follows the path while
maintaining the heading angle of the vehicle along the tangent to the path [56]. The lateral position error (ye )
and the heading error (ψe ) are defined as shown in figure 4.2, adapted from [56]. Some additional parameters
include longitudinal velocity (Vx ), understeer gradient (Kus ), curvature (κ= 1

R ), wheelbase (L), distance from
vehicle centre of gravity to rear axle (lr ) and look-ahead distance (xl a).

Figure 4.2: Error definitions : Path control with preview

The look-ahead distance can be expressed in terms of the look-ahead time (tl a) as shown in equation
(4.2).

xl a =Vx tl a (4.2)

The general steering control action (δ) is split into a feedforward (δ f f ) and a feedback (δ f b) part as per
equation (4.3).

δ= δ f f +δ f b (4.3)

According to the concepts of gain determination reported in [40], the two parts of the control law is as per
equations (4.4) and (4.5).

δ f f =
(KusV 2 +L)

R
(4.4)

δ f b = 2(KusV 2 +L)

(V tl a + lr )2 (ye + (V tl aψe )) (4.5)

4.3. Summary
Since this technique is based on geometric model, the Stanley controller is one of the simplest and intuitive
control methods for lateral path following. This technique however is not suitable for aggressive maneuvers
and is not robust in handling large deviations in the path. It must be kept in mind that this controller can be
tuned specifically for a particular path by having high values for the gains which may prove to be unstable for
other paths. Since this technique does not have a look-ahead, an over-tuned Stanley controller may overshoot
during cornering.

The path control with preview takes into account the look-ahead distance as well as has information
regarding the desired heading angle. This makes this technique robust for different paths at moderate ve-
locities. Choosing the look-ahead distance while tuning is not very straightforward. This parameter is varied
based on different longitudinal velocities, since the look-ahead distance is dependant on the velocity with
which the vehicle is following the path. Over-tuning is an issue with this control technique also. Changing
the look-ahead distance varies the turn radius and may lead to corner-cutting. A trade off has to be made be-
tween tuning this parameter to ensure stability (large look-ahead distance) while sacrificing on performance.



5
Conclusion and Recommendations

The results of this research project demonstrates that MPC with online learning using LWPR is an interesting
and effective solution to the autonomous racing problem. A comparative study shown in part I, demonstrates
the effectiveness of this combination in comparison to the other controllers. The scientific article also shows
the real-time applicability of the learning based MPC, which is validated by running the simulations success-
fully on Scalexio.

Chapter 1 provides the reader with an introduction to the research project with the necessary context.
Following this, chapter 2 gives some background regarding MPC design. Next, chapter 3 presents the tire
models used and discusses the online learning algorithm proposed in this project. Finally, the benchmark
controllers used for comparison are presented in chapter 4.

5.1. Future Work
The designed MPC can be extended to two control inputs, one for lateral direction and the other for the
longitudinal. This can be made possible by dividing the entire design problem into two sub-problems. Firstly,
a longitudinal control sub-problem where the MPC computes an optimal speed profile for a given circuit.
Secondly, a lateral control sub-problem where the MPC provides lateral control in order to follow a dynamic
racing line reference, while ensuring the vehicle remains within the circuit boundaries.

Since the racing scenario exploits the vehicle to its limits of handling, designing control techniques for
autonomous racing could potentially be useful for autonomous passenger vehicles of the future. Apart from
passenger vehicles, learning algorithms can be applied to other domains. With growing interest in automa-
tion, and the effectiveness of learning algorithms in repetitive scenarios, new avenues for applying this algo-
rithm are emerging. Agricultural vehicles that are required to move in specified paths [38] could make use of
such learning based path following algorithms. Apart from this, other applications could be for vehicles in
warehouses or in an industrial setting. Shuttle services and other public modes of transport that take people
to and from specified locations along fixed paths could also be a potential application for learning based path
following.
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Abstract—This paper provides an analysis of methods used
in automotive control applications for finding the tyre forces.
An attention is given to three main classes of relevant meth-
ods: tyre-model-based, tyre-model-free, and sensor-based. After
analysis of advantages and disadvantages of each class, an
original application of the approach based on locally weighted
projection regression (LWPR) is discussed. This approach can
find combined use for both model-free and sensor-based tyre
force reconstruction.

Index Terms—tyre, vehicle dynamics, vehicle control, tyre
model, locally weighted projection regression

I. OVERVIEW OF METHODS FOR TYRE FORCE
RECONSTRUCTION

A. Introduction

The problem of tyre force reconstruction belongs to one
of the most important tasks by designing the vehicle motion
control systems. To ensure proper control on the vehicle safety,
comfort, driving efficiency and other functions, corresponding
on-board systems should handle in real-time the information
about longitudinal, lateral and vertical tyre forces. This can
be done either by use of corresponding state observers or
by direct measurement of tyre forces. The latest option is
definitely more advantageous for the system design from
practical viewpoint. However, sensor technologies for tyre
forces and torques have still various technological obstacles for
the use on mass-production vehicles. Available solutions in this
area are therefore mainly implemented on experimental and
test vehicles. As a result, the observation remains as the main
tool for tyre force reconstruction in the automotive controllers.
Here two main techniques can be identified: tyre-model-based
and tyre-model-free. Next sections provide an overview for
the most typical solutions for each class of the methods.

B. Tyre-model-based Force Reconstruction

The tyre-model-based force reconstruction represents a vir-
tual tyre sensor, which observer is using one or another tyre
models. Considering requirements to real-time operation of
virtual tyre sensors, highly precise and complex tyre models
are finding less application here, and the priority is given to
semi-empirical and sufficiently simplified physical models of
tyre-surface interaction. As applied to longitudinal and lateral

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Marie Skłodowska-Curie grant
agreement No 734832.

tyre forces, widely-accepted techniques cover predominantly
the Dugoff tyre model (linear and non-linear variants) [1],
[2], [3] and the Magic Formula tyre model [4]. Few studies
are also proposed the solutions with other models of different
complexity as the Burckhardt model [5], the arctan-function-
based model [6], and TMeasy [7].

In most cases the variations of the Kalman filter (extended,
unscented and dual) are applied as the corresponding estima-
tion tools. They require a priori knowledge about relevant tyre
states as tyre longitudinal slip, tyre lateral slip, vertical load et
al. This causes certain limitations of this method. Firstly, not
all the states can be directly measured with the conventional
automotive on-board systems and, as a result, extra estimators
can be required, e.g. for the slip-related parameters. Secondly,
tyre forces are influenced by many operational factors, for
instance, by tyre inflation pressure, contact temperature, and
road surface roughness. Despite the consideration of these
and another factors reduces the tyre model uncertainty, this
increases the model complexity.

C. Tyre-model-free Force Reconstruction

The limitations of the previous class have motivated many
studies, where a tyre model is not required for the force
reconstruction. One of the main ideas behind such tyre-model-
free approach is to emulate the tyre forces as random variables.
These variables can then be embedded into a model-based state
estimator of the vehicle planar dynamics, which is used by the
vehicle motion controller.

The work [8] proposes to identify three methods for build-
ing the tyre-model-free reconstruction of the longitudinal
force: based on vehicle dynamics, based on wheel rotation
dynamics, and stochastic. The methods based on vehicle
dynamics use predominantly the vehicle acceleration sensor
information and GPS signals to derive the forces from the
longitudinal force balance equations with consideration of
driving resistance parameters [9], [10]. The methods based
on the wheel rotation dynamics require the information from
the wheel speed sensors to reconstruct the longitudinal tyre
force, for example, from wheel torque balance equations.
The corresponding examples can be found in [11], [12] and
[13]. Finally, by the stochastic methods, the forces are mainly
interpreted as random-walk or ”black-box” variables and can
be derived using different vehicle planar models [14], [15]. As



for the lateral force reconstruction, both stochastic and vehicle-
dynamics-based methods can be also applied.

The tyre-model-free force reconstruction is especially bene-
ficial in the case of uncertain road friction parameters because
an estimation of a corresponding friction scaling factor is not
required to correct the reconstructed tyre forces. Nevertheless,
this approach can have limitations in terms of complex tuning
and computations costs.

D. Sensor-based Force Reconstruction

The force sensing technology has been intensively studied
for last decades to develop accurate, robust and inexpensive
solution. Due to the fact that transmission of forces and
moments affects all components between tire road contact
and vehicle body, all components carrying the load can be
used to force/torque measurement and reconstruction, e.g. tyre,
rim, bearing and suspension. Several approaches and their
limitations are discussed below:

a) Suspension bushing deformation: the forces transmit-
ted through the suspension bushing can be reconstructed via
direct deformation measurement using eddy-current displace-
ment sensors [16] or the estimation of the relative bushing
deformation based on acceleration measurement [17]. The
main drawbacks are complexity of the approach and the
durability of the bushings.

b) Deformation between knuckle and brake calipers:
this approach is based on the installation of a sensor bracket
with strain resistance elements between knuckle and brake
calipers to measure brake torque [18]. Only brake torque can
be reconstructed in such approach and the method performance
is temperature dependent.

c) Wheel force transducer: force/torque measurement is
performed by strain measurements in the wheel rim [19].
Only this method is currently applied for commercial prod-
ucts (Kistler, MTS, Michigan Scientific Corporation , etc.)
Although it provides high accuracy and bandwidth, the appli-
cation of wheel force transducer as a standard vehicle sensor
is too expensive even for premium class vehicles.

d) Tyre sidewall deformation: tyre deformation measure-
ment can be used to reconstruct force using an optical position
detection sensor [20], laser-based sensor system [21], a passive
surface acoustic wave sensor [22] or by combination of a
Hall sensor and magnet [16]. The common drawback of these
approaches is the necessary adjustment and calibration after
tyre replacement.

e) Tyre inner liner accelerometer: a MEMS accelerom-
eter is located and fixed to the inner liner of the tyre
[23]. The reconstruction of longitudinal and normal forces is
demonstrated both in laboratory and road test conditions [24].
Furthermore also the measurement of lateral contact forces
was recently demonstrated [25]. The common limitations
are discontinuous measurement signal and durability of the
approach due to the relatively short lifetime of tyres.

f) Bearing displacement or deformation based: Using
the wheel-end bearing two principally different approaches can
be applied. The first approach is displacement based (relative

inner- to outer-ring displacement) using Hall effect [26], eddy-
current sensors [27] or capacitive [28] sensors. Its limitation
is that a limited number of loads can be reconstructed.
The second approach is to measure outer-ring deformation
using strain gauges [29], [30]. The measured strain should
be translated to the bearing loading using empirical methods,
e.g. least squares fitting or artificial neural networks. However,
due to nonlinear behaviour, such translation is nontrivial and
significantly affects accuracy of force reconstruction. Instead
of empirical methods, the model-based approach for the esti-
mation of bearing forces is proposed [31] using a cascaded
extended and unscented Kalman filtering. An experimental
study covering both laboratory and field tests showed that the
model-based approach led to accurate load estimates in various
conditions and outperforms the data-driven methods.

E. Summarising Remarks

The introduced short overview of basic approaches for the
tyre force reconstruction demonstrates a variety of tools, which
can be used in vehicle motion control systems. Taking into
account such factors as uncertainties of tyre models as well as
for demand on extensive test procedures for proper parame-
terisation of tyre models, the model-free reconstruction can be
considered as a more advantageous candidate. An interesting
advancement can be proposed in the case of development of
hybrid approaches, where the same analytical base can be used
both for the model-free and sensor-based reconstruction. Here
it makes sense to apply not only conventional stochastic meth-
ods but also another variants of computational intelligence
tools. One example of such an approach is discussed in next
section.

II. CASE STUDY : LOCALLY WEIGHTED PROJECTION
REGRESSION

Locally weighted projection regression (LWPR) is an al-
gorithm that supports non-linear function approximation in
high dimensional spaces [32]. The nonlinear system behaviour,
especially steady state, can be accurately captured by using
this technique.

The key idea of this method is to approximate non-linear
functions by using piece-wise linear models. The features of
LWPR are numerical robustness in high dimensional spaces
and the capability to perform incremental online learning with
the predefined learning rate.

A. The LWPR algorithm [32]

A weighting kernel used to determine the locality is defined
in the way that computes a weight wk,i for each data point
(xi, yi) corresponding to the distance from the centre ck of
the kernel within each local unit. Usually, a gaussian kernel is
chosen,

wk,i = exp(−1

2
(xi − ck)TDk(xi − ck)), (1)

where Dk is the distance metric that influences the size and
shape of the region of validity or receptive field (RF). It
is assumed that there are K locally linear models that are



combined to form the prediction. Each linear model calculates
a prediction yk given an input vector x. The net output is the
weighted mean of all the linear models.

Algorithm 1 shows how an incrementally locally weighted
variant of partial least squares (PLS) is used to generate linear
model parameters within the LWPR scheme. In the algorithm
1, λ ∈ [0, 1] is the forgetting factor that decides amount of
the old data of the parameters used in the regression will
be forgotten. The PLS predictor adds linear projections in
an incremental fashion until the point where adding further
projections does not improve the accuracy.

The distance metric D influences the shape and size of each
RF and thus also influences the effectiveness of each local
model. This distance metric is optimized separately for each
RF using an incremental gradient descent based on stochastic
leave-one-out cross validation criterion. This is shown in the
algorithm 2.

An incremental learning system which embeds the above
update laws, and generates additional locally linear models as
and when needed is shown in algorithm 3.

B. Current state of the art

The LWPR algorithm has been used to learn the dynamic
model of a robot manipulator [33]. In comparison to other
classical learning controllers, it was reported that the LWPR
provides best performance when there is no a-priori knowledge
of the system dynamics. The application of this algorithm
for real-time robot learning has been presented in [34]. The
results demonstrates the successful application of autonomous
learning to complex robotic system. It was also concluded
that this technique, using its learning abilities outperforms
traditional control techniques. Comparison of the LWPR with
a few other regression techniques to estimate the inverse
dynamic model of a robot from measured data is demonstrated
in [35]. This is mainly done in order to capture non-linearities
arising from dynamics of hydraulic cables, actuator dynamics
or complex friction dynamics.

Regarding automotive domain, this method has been only
applied for the scaled off-road vehicle [36]. Based on the
authors’ knowledge, this paper is the first application of LWPR
for tyre force reconstruction. Taking into account the above-
mentioned advantages, it can be an interesting candidate for
tyre force reconstruction, especially, regarding steady-state
tyre properties. To evaluate the LWPR capability for tyre
force reconstruction, two main features should be discussed:
(i) capability to reconstruct tyre force based on offline training
similar to data-driven learning techniques required a large data
set; (ii) capability to learn tyre characteristic online assuming
a repeatable track, e.g. racing laps. The following discussion
is organized according to these features.

C. Offline learning

1) Pure longitudinal force reconstruction: The algorithm
is presented with training data comprising of the longitudi-
nal force Fx behaviour with wheel slip κ. See table I for
the parameters set during training. The wheel slip is set

to κ ∈
[
−0.5 0.5

]
and the algorithm is trained with the

corresponding longitudinal force behaviour obtained from the
baseline Delft-tyre model. The LWPR model is presented with
test data and the result of reconstruction is shown in Fig. 1.

Fig. 1. Longitudinal force reconstruction Fx(κ))

TABLE I
PARAMETERS FOR LONGITUDINAL FORCE RECONSTRUCTION

Parameter Value Unit
Camber 0 rad

Longitudinal velocity 80 km/h
Turnslip 0 1/m

Normal load 4000 N
Initial distance metric (LWPR) 5000 [-]

2) Combined force reconstruction: The combined force
behaviour with wheel slip κ, slip angle α and normal load
Fz is presented as the training data set to the algorithm. The
corresponding lateral and longitudinal force behaviour from
the Delft-tyre model is used while training. The LWPR tuning
parameters and the ranges for the three inputs (κ, α, Fz) are
set as per table II. The results of reconstruction are shown in
Fig. 2 and Fig. 3.

TABLE II
PARAMETERS FOR COMBINED FORCE RECONSTRUCTION

Parameter Value Unit
Camber 0 rad

Longitudinal velocity 80 km/h
Turnslip 0 1/m

Normal load [2000 8000] N
Wheel slip [-0.5 0.5] [-]
Slip angle [-15 15] deg

Initial distance metric (LWPR) [1e+3 0 0; 0 1e+3 0; 0 0 5e+1] [-]

D. Online learning

To analyse the online learning capabilities of the LWPR
method for tyre force reconstruction, a badly trained model as



Fig. 2. Longitudinal force reconstruction Fx(κ, α, Fz)

Fig. 3. Lateral force reconstruction Fy(κ, α, Fz))

shown in Fig. 4 is used to train the LWPR learning module
before learning commences. The model is then updated online
with the sensing force information (based on the Delft-tyre
model) corresponding to the slip angle range used for training
and the predicted result is compared to the badly trained model
without adaptation or learning. The simulation parameters used
can be seen in table III. It can be inferred from Fig. 5 and
Fig. 6 that the LWPR algorithm is able to learn the true tyre
behaviour online when initialized with a poor tyre model.

A significant improvement in tyre force reconstruction, due
to online learning, can be inferred from table IV.

Fig. 4. Initialization for LWPR learning module

Fig. 5. Online learning of lateral force Fy(α) for 10 seconds

Fig. 6. Online learning of lateral force Fy(α) for 60 seconds



TABLE III
PARAMETERS FOR ONLINE LEARNING OF LATERAL FORCE

Parameter Value Unit
Camber 0 rad

Longitudinal velocity 80 km/h
Turnslip 0 1/m

Normal load 5000 N
Wheel slip 0 [-]
Slip angle [-20 20] deg

Initial distance metric (LWPR) 5000 [-]
Initial component-wise learning rate (LWPR) 40 [-]

Pre-factor of smoothness penalty (LWPR) 0.01 [-]
True force data input rate 100 Hz

TABLE IV
AVERAGE ERROR DURING ONLINE LEARNING OF LATERAL FORCE

Learning duration [s] Average Error [N]
10 523.1
60 180.0

E. Future work

A possible application of this algorithm is in autonomous
racing. Since it is difficult to predict the tire behavior during
the race, online learning of the tyre properties is considered.
Throughout the course of the race, the algorithm can continu-
ously update the tyre model in the controller with sensor data,
thereby making it adaptive to changing tire behaviour. This
is a potential method of improving tracking performance and
minimizing lap time for autonomous racing.

III. CONCLUSIONS

The paper discusses various methods for tyre force re-
construction and summarizes three major directions: tyre-
model-based, tyre-model-free, and sensor-based approaches.
Besides the state-of-the-art overview, the application of a new
method named as locally weighted projection regression is
considered for tyre force reconstruction. The main advantage
of the considered method is a capability to perform learning
through both offline and online training. The simulation results
demonstrate that the method can be effectively used to learn
steady-state tyre characteristics with a high accuracy.
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APPENDIX

Algorithm 1 Incremental PLS
Given : A training point (x, y)
Update the means of input and output :
xn+1
0 =

λWnxn
0 +wx

Wn+1

βn+1
0 =

λWnβn
0 +wy

Wn+1

where Wn+1 = λWn + w and x00 = u0i = β0
0 = W 0 = 0

Update the local model :
1. Initialize : z = x,res1 = y − βn+1

0

2. For i = 1 : r
(i) un+1

i = λui + wzresi
(ii) s = zTun+1

i

(iii) SSn+1
i = λSSni + ws2

(iv) SRn+1
i = λSRni + wsresi

(v) SZn+1
i = λSZni + wzs

(vi) βn+1
i =

SRn+1
i

SSn+1
i

(vii) pn+1
i =

SZn+1
i

SSn+1
i

(viii) z = z − spn+1
i

(ix) resi+1 = resi − sβn+1
i

(x) MSE = λMSEni + wres2i+1

Predicting with novel data :
Initialize : y = β0, z = x− x0
For i = 1:k
(i) s = uTi z
(ii) y = y + βis
(iii) z = z − spni

SS,SR and SZ are memory terms that help perform uni-
variate regression using recursive least squares as shown in
step (vi) in the model update. Step (vii) helps regress the

projection from the current input data z and the current
projected data s. This ensures that ui+1 is orthogonal to ui.
There are two important properties of the local projection
scheme. Firstly, if we have statistically independent input
variables, PLS takes only a single iteration to find the optimal
projection direction ui. This corresponds to the gradient of the
locally linear function to be approximated. Secondly, step (i)
in the model update in algorithm 1 ensures that the projection
direction is chosen by correlating the input and output data.
This results in the automatic exclusion of input dimensions
that do not contribute to the output. Finally, since the uni-
variate regressions will never be singular, there is no concern
of numerical problems in PLS.

Algorithm 2 Distance metric update
D =MTM , where M is upper triangular
Mn+1 =Mn−α δJ

δM where the cost function to be minimized
is chosen to be,
J = 1

W

∑M
i=1

∑r
k=1

wires
2
k+1,i

1−wi
sk,i

sT
k

Wsk

+ γ
∑N
i,j=1D

2
ij

The first term in the cost function represents the mean leave-
one-out cross-validation error of the local model. The second
term is a penalty term which ensures that the receptive fields
do not shrink in case of huge amounts of training data.

Algorithm 3 LWPR Outline
1. Initialize the LWPR with no receptive fields
2. For every new training sample (x, y)
- For k = 1 : RF
(i) Calculate the activation from eq. (1)
(ii) Update according to algorithms 1 and 2
- End
- If no linear model was activated by more than wgen,
create a new RF with r = 2, c = x,D = Ddef

- End
End

The major assignment within the LWPR framework consists
of determining the number of local models k, computing
the regression coefficient βk and the weight wk for the kth

locally linear model. Additionally, it consists of regulating the
local model’s receptive field. In the algorithm 3, a threshold
wgen is predefined. This determines when to create new
receptive fields. The closer this value is to 1, the more overlap
local models will have, but will be more costly to compute.
The distance metric D is initialized to Ddef and is usually
diagonal.
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