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Abstract
Optical flow estimation models are currently
trained and evaluated on synthetic datasets. How-
ever, the generalizability of these models to real-
world applications remains unexplored. This study
investigates how well two state-of-the-art optical
flow estimation models perform on real-world Ar-
ticulated, Homothetic, and Conformal non-rigid
motion. To facilitate evaluation, a manually an-
notated dataset comprising twenty-four real-world
image pairs and sparse vector fields was created.
Both models demonstrated performance consis-
tent with synthetic benchmarks on Homothetic and
Conformal motion. However, results degraded
when evaluating Articulated motion, revealing lim-
itations in real-world applicability for practical ap-
plications such as controlled robotics and object
tracking.

1 Introduction
1.1 Optical Flow
Optical flow is the perceived motion of brightness patterns
in an image. It occurs from the motions of objects, viewers,
or light sources [6]. Optical Flow Estimation is the task of
finding the optical flow between two images, represented as a
vector field. Each element of this vector field corresponds to
a pixel translation between frames.

Estimating optical flow is a fundamental task in computer
vision, and has applications in fields such as object tracking,
autonomous driving, view reconstruction, image segmenta-
tion, and surveillance [9]. Optical flow estimators (OFEs) are
models designed to estimate this vector field given two im-
ages. A variety of OFEs exist, each having distinct model
architectures and approaches to solving the optical flow esti-
mation problem. Current state-of-the-art models achieve es-
timation errors below 1% of the image size, across a variety
of datasets.

1.2 The Knowledge Gap
Currently, OFEs are trained & evaluated using synthetic
datasets, consisting of dense vector fields. However, all prac-
tical applications of optical flow estimation occur in real-
world contexts, and there are currently no real-world datasets
containing dense vector fields. Thus, there is no benchmark
to accurately assess OFE performance in real-world scenar-
ios. Judging performance solely based on synthetic data may
not accurately reflect a model’s effectiveness on real-world
data.

Attempts to tackle this issue have been proposed before.
For example, The KITTI [5] dataset uses additional sensors
alongside their video data, cross-referencing points to create
a dense vector field. However, real world sensor information
is noisy and can lead to overcorrection. Another proposed so-
lution is to manually annotate dense vector fields for frame
pairs. However, this presents multiple issues for both feasi-
bility and accuracy. Manual annotation beyond a small scale
has been described as infeasible [11], making the creation of

a large-scale real-world dataset manually annotated dataset
largely impractical.

1.3 Area of Research
This research looks to investigate the performance of OFEs in
real-world scenarios. For this, we focus specifically on non-
rigid motion, where an object in motion does not retain its
original shape. This kind of motion occurs frequently in the
real world [1], but is poorly represented in widely used optical
flow datasets such as KITTI or FlyingChairs [3]. Although
synthetic datasets such as Sintel [2] or Spring [7] include ex-
amples of non-rigid motion, these datasets cover only a small
subset of possible cases. Additionally, OFE performance on
these datasets may not be generalizable to the real world. To
address this knowledge gap, our research aims to answer the
following question:
How well do optical flow estimators perform on real-world
non-rigid motion?

2 Background Information
2.1 Non-Rigid Motion Taxonomy
A taxonomy on non-rigid motion is presented by [1]. It is
composed of Articulated, Quasi-rigid, Homothetic, Isomet-
ric, Conformal, Elastic, and Fluid motion, ordered by increas-
ing non-rigidity. The following explanations of each class of
non-rigid motion are adapted from [1], and examples have
been added for clarity.

Articulated Motion occurs when two rigid objects are con-
nected via one or multiple joints. Despite the rigidity of each
individual object, the motion of the joined object is non-rigid.
Examples include limb movements in humans and animals,
such as elbow or knee flexions.

Quasi-rigid Motion describes when a deforming object
can be seen as rigid up to some point in time. For a short
time interval, the body behaves as a rigid object, with mini-
mal deformation. However, when viewed along longer time
intervals, the motion of the object is non-rigid. Examples in-
clude oscillating aeroplane wings, and tree branches bending
in wind.

Homothetic Motion occurs when an object scales while
preserving shape. In this, the distance between points scales
uniformly, while angles and proportions remain consistent.
This type of motion is best described as an expansion or con-
traction. Examples include the magnification or reduction of
a digital image, and the uniform inflation or deflation of a
balloon.

Isometric Motion occurs when the distances between
points on the object’s surface are preserved. The object un-
dergoes bending or folding without stretching, compressing,
or altering internal angles significantly. While the overall
shape may change, the local lengths and angles remain con-
sistent across the surface. Examples include folding clothes,
rolling paper, and waving flags.

Conformal Motion occurs when an object’s distances scale
non-uniformly while preserving internal angles. While a



global object shape distortion can occur, the object’s local ge-
ometry remains relatively similar. Examples include stretch-
ing cloth with printed designs, and 3D shapes transforming
on a 2D projected plane.
Elastic Motion describes an arbitrary deformation of an
object, which returns to its original form once forces are re-
moved. The only constraint to this motion is a form of conti-
nuity, where objects do not change their topology due to de-
formation. Examples include a rubber band being stretched,
and a spring being compressed.
Fluid Motion describes the motion of objects with no de-
fined shape, and no resistance to external forces. In this
type of motion, angles and distances between two points can
change arbitrarily. Examples include smoke drifting in air,
and liquid being poured onto a surface.

2.2 Optical Flow Estimators
Estimators Optical Flow Estimators (OFEs) are models
that can be used to estimate the translation vector field be-
tween two images. OFEs can be categorized into two main
classes: knowledge-based and learning-based approaches.
Knowledge-based models operate via mathematical mod-
elling, under the assumption that the brightness of a pixel
stays consistent between frames [4]. However, their perfor-
mance is limited due to significant computational demand [9].
Learning-based models instead use deep learning architec-
tures to abstract away from handcrafted features. These ar-
chitectures outperform classical approaches in both accuracy
and runtime [9], and are the current state-of-the-art model
paradigm for optical flow estimation.
Limitations All current OFE performance is evaluated us-
ing synthetic datasets such as Sintel [2], KITTI [5],or Fly-
ingChairs [3]. Synthetic datasets provide a dense translation
vector field, where all pixels are annotated with a correspond-
ing translation. This is used to train models and validate per-
formance. However, practical applications of optical flow es-
timation occur in real-world environments, yet datasets re-
flecting these conditions with dense ground truth vectors are
notably scarce. None of the commonly used optical flow esti-
mation datasets provide densely annotated real-world scenes.
This limitation occurs due to the difficulty of manual annota-
tion. Creating dense ground truth vector fields requires pixel-
level labelling across multiple images, a process that has been
described as ”unmanageable and error prone” beyond a small
scale [11]. As a result, performance benchmarks on synthetic
data offer limited insight into how models generalize to real-
world scenarios.

3 Methodology
3.1 Model Selection
AOptical Flow Estimator (OFE) architectures take various ap-
proaches to solving the estimation problem. To make the
evaluation more robust, we have chosen to use two OFE ar-
chitectures; RAFT [10] and DPFlow [8]. These were chosen
due to their consistent model performance on Sintel [2] and
Spring [7] datasets, which include scenes of non-rigid mo-
tion. Additionally, both RAFT and DPFlow reported state-
of-the-art performance on the Sintel dataset at release.

3.2 Data Collection

Due to the absence of a real-world validation dataset, a be-
spoke dataset was created for evaluation. Gathering a com-
plete dataset comprised of all classes in the non-rigid mo-
tion taxonomy was infeasible due to time constraints. There-
fore, the dataset consists of only Articulated, Homothetic, and
Conformal motion examples. This subset was chosen as it
encompasses a large range of deformation types and varying
degrees of rigidity, as well as its relevance to practical appli-
cations in real-world optical flow estimation.

The dataset consists of multiple video scenes, organized by
motion class. Each motion class has a corresponding folder.
Each folder contains two scenes. From each scene, 4 frame
pairs were extracted and annotated, resulting in a total of 24
image pairs and vector fields. This dataset will be made avail-
able alongside the project.

3.3 Data Annotation

Creating an Annotation Tool

The ground truth values necessary for evaluation had to to be
annotated manually. For this, a custom annotation tool was
developed. This tool enables users to import and display a
pair of images (.jpg, .png, or .jpeg) or a video (.mp4, .avi, or
.mov). Users can navigate through video frames using single-
frame skip buttons, or via a scrollbar. They can also specify a
frame offset to simulate larger displacements or time periods
between frames. Clicking a pixel in the left image marks it
with a randomly coloured cross. Clicking a pixel on the right
image while one is marked creates a pair, and both crosses
change colour to indicate a successful match. A maximum
number of allowed pairs can be specified to control annota-
tion density. An undo function is provided to remove the most
recently matched pair, both visually and from the stored list.
Users can also clear all existing mappings at once using a but-
ton. Finally, the tool allows for the export of annotated frame
pairs and their corresponding pixel mappings in the format
of the KITTI2015 dataset. The images and vector field are
saved to the image 2 and flow occ folders, respectively. The
code to the annotation tool will be made available alongside
the project.

Determining Annotation Count

Creating a densely annotated vector field for all image pairs in
the dataset was infeasible. Instead, each image was sparsely
annotated, with a limited number of annotations on key ob-
jects within each frame. However, model performance on
sparsely annotated data is poorly documented. Specifically,
how the number of annotations influences accuracy. The an-
notation process had to remain feasible within the constraints
of time and resources. Finally, any analysis needed to con-
sider the potential for human error. For this, we needed to
find a balance of model performance and annotation density.
Table 1 shows the results of brief experimentation using an-
notation counts on one image pair per taxonomy class.



Table 1: Endpoint Errors of listed models evaluated across varying
annotated pixel counts for specified dataset subfolders

Points fish-1 flowers-2 cloth-4

RAFT DPF RAFT DPF RAFT DPF

10 5.4 3.5 2.4 2.5 0.61 0.55
20 7.3 8.5 2.1 2.2 0.79 0.80
30 5.6 6.2 1.7 1.8 0.75 0.74
40 4.8 5.3 1.5 1.5 0.70 0.70
50 4.8 5.3 1.4 1.5 0.68 0.69

From the results, displayed in Table 1, we determined that
40 annotations are optimal for sparse manual annotation of
the dataset. This number of annotations remains feasible
across all images found in the dataset. An increase to 50
annotations did not produce significant change to Endpoint
Error values. Thus, remaining at 40 is sufficient, resulting in
a total of 960 annotated pixels across the entire dataset.

4 Optical Flow Model Architectures
The RAFT [10] and DPFlow [8] model architectures were
chosen for evaluation based their performance on the Sintel
[2] and Spring [7] datasets. These datasets are widely used
and primarily contain non-rigid motion. Thus, we assume
these architectures are best suited for accurately estimating
examples of unseen non-rigid motion.

RAFT
The RAFT model architecture follows a 3 stage pipeline.
First, features are encoded using a convolutional network.
This encoder network is applied to both images, and maps
the inputs to a feature pyramid using multiple residual blocks,
each scaled relative to image size. Additionally, an identi-
cal context network architecture is used to extract features
from only the first image. Next, RAFT constructs a 4D all-
pairs correlation volume by taking the dot product of each
extracted feature vector across both images. This set of vol-
umes gives information about both large and small displace-
ments. Lookups are performed on all levels of the feature
pyramid. The resulting correlation pyramid enables RAFT
to retrieve multi-scale similarity information during estima-
tion. The model iteratively refines an estimated flow through
a recurrent update operator, based on a convolutional Gated
Recurrent Unit (GRU). Each iteration, updates are made to
the current flow, progressively improving accuracy. After a
fixed number of iterations, the final low-resolution flow field
is upsampled to the original image solution.

DPFlow
DPFlow makes use of a ”recurrent encoder-decoder” archi-
tecture. The first stage involves using a recurrent dual-
pyramid encoder, utilizing both image and feature pyramids.
This allows DPFlow to share multi-scale information across
different resolutions, while using the image pyramid to re-
tain the input information at many levels. They also allow
for shallower levels to access information from deeper lev-
els. This process is applied to both images in the input pair.

The DPFlow architecture replaces standard attention mech-
anisms with a convolutional Cross-Gated Unit (CGU) as its
core component. While attention is commonly used for ex-
tracting matching features, they are computationally expen-
sive and generalize poorly to varying input sizes. A CGU in-
stead allows for efficient and scalable processing using local
convolutions. The model is trained using Mixture of Laplace
loss, similar to that found in SEA-RAFT [12], but adapted
for training on multiple scales. The models are trained using
3 scales and 4 iterations per scale.

5 Experimental Setup and Results

5.1 Experimental Setup

Model Checkpoint Selection

Training an optical flow estimation model was infeasible due
to time and resource constraints, so pre-trained model check-
points were used during testing. For both RAFT [10] and
DPFlow [8], we used a model checkpoint trained on the Sin-
tel dataset. This was the only available checkpoint where the
training set contained examples of non-rigid motion.

Evaluation Metrics

The annotation tool outputs data in the KITTI2015 [5] for-
mat. For evaluation, we replace the image 2 and flow occ
folders in a local installation of the KITTI2015 dataset with
a combined folder containing all 24 image pairs and their an-
notations. We evaluate our results using the standard evalua-
tion metrics of the KITTI2015 dataset: Endpoint Error (EE)
and Fl-all score. The EE measures the Euclidean distance be-
tween a models’ predicted optical flow vector and our man-
ually annotated data points. A lower EE indicates higher ac-
curacy and better model performance in estimating optical
flow. The Fl-all score is specific to the KITTI2015 dataset,
and measures the percentage of optical flow pixels that are
considered outliers. A lower Fl-all score indictes more ac-
curate flow estimation, as there are fewer outlier pixels. A
pixel is marked as an outlier if the EE is ≥ 3 pixels, and the
magnitude of error is ≥ 5% of the ground truth displacement.

Evaluation Criteria

We must also consider how we classify a successful estima-
tion. We consider an ideal estimation score for model evalua-
tion to be an EE score of ≤ 0.5 % of the image resolution, or
3 pixels. When accounting for human error, we established
an upper bound for an ideal EE value to be 5 pixels. An EE
of ≤ 1 % of the image resolution, or 7 pixels, will be consid-
ered satisfactory performance, and still count as an accurate
estimation. All EE values > 7 pixels will be considered inac-
curate. We do not set a bound on Fl-all score, as it is specific
to performance on the KITTI2015 dataset. However, conclu-
sions will still be drawn from the Fl-all value.



5.2 Results

Articulated motion

Table 2: Endpoint Error and Fl-Scores for Articulated motion

Scene RAFT DPFlow

EE Fl-All EE Fl-All

Fish 5.29 33.75 4.57 27.50
Horses 4.21 38.75 3.23 35.60
Combined 4.75 36.25 3.90 31.60

Table 2 shows the performance of both models per Artic-
ulated motion scene. All EE measurements fall within the
range of 3 to 6 pixels. Fl-all scores show a high rate of inac-
curacy, with more than 30% of all estimations being marked
as errors. Across both scenes, DPFlow outperforms RAFT
by a significant margin. In the Fish scene, DPFlow achieves
an EE of 0.72 pixels lower than RAFT, and a 6.25% lower
Fl-all score. Similarly, in the Horses scene, DPflow has an
EE of 0.98 pixels less than RAFT, and a 3.15% lower Fl-all
score. Articulated motion, represented by abrupt changes in
colour, are well illustrated in Figures A2, A4, and A5. How-
ever, some flow maps show a gradient change, uncharacteris-
tic of rigid, jointed Articulated movement. Examples include
Figures A4 and A7. The models demonstrate that they can
recognize the outlines of non-rigid objects, and can estimate
non-rigid motion within such objects.

Homothetic motion

Table 3: Endpoint Error and Fl-Scores for Homothetic motion

Scene RAFT DPFlow

EE Fl-All EE Fl-All

Flowers 1.17 2.50 1.13 2.50
Buns 2.12 3.13 0.97 2.50
Combined 1.65 2.81 1.05 2.50

Table 3 shows the performance of both models per Homo-
thetic motion scene. All EE values fall below 3 pixels. Fl-
all scores remain under 3% for all but one evaluation, which
marginally exceeds it. RAFT and DPFlow have varying per-
formances for this class of motion. In the Flowers scene, we
notice a negligible 0.04 EE difference between both models,
and an identical Fl-all score. In contrast, the Buns scene high-
lights a notable performance gap. RAFT records an EE that
is 1.15 greater than that of DPFlow. Additionally, RAFT ex-
hibits a higher Fl-all score, increasing from DPFlow’s 2.5%
to 3.13%. Homothetic transformations result in a gradient
across the entire screen, best illustrated in Figures B2, B4,
and B7. The models demonstrate consistent performance in
estimating optical flow under Homothetic transformations in-
volving pan and zoom dynamics. This holds true for both
magnification and reduction across the entire field of view.

Conformal motion

Table 4: Endpoint Error and Fl-Scores for Conformal motion

Scene RAFT DPFlow

EE Fl-All EE Fl-All

Cloth 1.16 5.00 1.09 2.50
Rubix 1.75 11.86 1.09 1.88
Combined 1.45 8.44 1.09 2.19

Table 4 shows the performance of both models per Confor-
mal motion scene. All EE scores remain under 2 pixels. Fl-
all results vary between models, but both remain under 10%.
DPFlow outperforms RAFT in all instances. For the Cloth
scene, there is a negligible 0.07 EE difference between the
models. However, RAFT’s Fl-all score of 5% is significantly
higher than DPFlow’s 2.5%. For the Rubix scene, there is a
much more notable performance gap. There is a 0.66 pixel in-
crease from DPFlow to RAFT. Similarly, the Fl-all scores are
significantly higher, as RAFT misclassified 12% of all points.
DPFlow only misclassified 2% of all points. Conformal mo-
tion is visualized by various gradual gradient changes within
a single object, representing the deformations. These is best
illustrated in Figures C1, C2, and C7. The models perform
consistently well when evaluating optical flow for Conformal
transformations, such as oblique rotation or smooth, topolog-
ical deformations that preserve local angles.

General Performance

Table 5: Endpoint Error and Fl-Scores for the full dataset

Dataset RAFT DPFlow

EE Fl-All EE Fl-All

Articulated 4.75 36.25 3.90 31.60
Homothetic 1.65 2.81 1.05 2.50
Conformal 1.45 8.44 1.09 2.19
Full Set 2.62 15.83 2.01 12.10

When evaluating the complete dataset, both models achieve
EE values below 3 pixels Fl-all scores range between 12%
and 16%. Table 5 shows the average EE and Fl-all scores for
all three classes of the motion taxonomy, as well as the com-
bined results for the full dataset. Across all types of motion,
DPFlow outperforms RAFT in both metrics. On average,
RAFT has an EE that is 0.61 pixels and an Fl-all score 3.73%
higher than DPFlow. The largest performance gap is seen
in Articulated motion, where both EE and Fl-all scores are
significantly higher for both models. In contrast, both models
show comparable performance in Homothetic and Conformal
motion. In all cases, DPFlow maintains a slight advantage in
both EE and Fl-all scores.

6 Responsible Research
Data Collection & Annotation All videos included in this
dataset were gathered by the author, and not derived from



any external, third-party, or online sources. There is no con-
tractual obligation to the confidentiality of this data. All col-
lected data will be publicised alongside this paper. No images
within the dataset contain private information on any individ-
ual or property. No confidential or personal information was
collected or stored.
Motion & Model Selection Taxonomy classes were se-
lected based on real-world abundance. Models trained on
Sintel may provide a positive performance bias of optical flow
models on real-world settings. However, it is likely that mod-
els trained on relevant datasets will be used in real-world set-
tings. Thus, taking the most suitable training checkpoint is
reasonable.
Results & Implications This research provides insight into
the real-world performance of optical flow models trained ex-
clusively on synthetic data. The conclusions drawn allows
current and future researchers to more accurately assess the
generalizability of their models beyond synthetic environ-
ments. This can reveal potential limitations to current mod-
els that are not prevalent in controlled environments, which
to be addressed for generalization into real-world settings.
Such evaluations are particularly important in safety-critical
applications, such as autonomous driving or robotics, where
having inaccurate motion estimation could lead to potentially
harmful or dangerous outcomes. In this regard, having a lim-
ited training set for real-world scenarios can aid with assess-
ing performance in these settings.

7 Discussion
7.1 Summary
Evaluating the full dataset, both RAFT [10] and DPFlow
[8] achieve Endpoint Error (EE) values below 3 pixels, with
Fl-all scores of 12.10% and 15.83% respectively. However,
model performance varies significantly across motion types.
The models perform worst on Articulated motion, where EE
values range between 3.23 and 5.29 pixels. Similarly, Fl-all
scores are consistently high, between 27.5% and 38.75% mis-
classified points. In contrast, the models perform comparably
on Homothetic and Conformal motion. For Homothetic mo-
tion, all EE values fall below 3 pixels, All Fl-all scores remain
below 3% in all but once instance, where it reaches 3.13%.
Finally, the models have varying results for Conformal mo-
tion. All EE values fall below 2 pixels, but Fl-all scores vary
between 1.88 % and 11.86%.

7.2 Interpretations
When assessed against the evaluation criteria defined in sec-
tion 5.1, both models demonstrate acceptable performance.
Both have an average EE below 3 pixels, which is the
boundary for perfect annotation without human error. RAFT
achieves an EE of 2.62 pixels, with an Fl-all score of 15.83%.
DPFlow achieves an EE of 2.01 pixels, and an Fl-all score
of 12.10%. For both models, it is important to recognize the
differences that each data subset had on these value totals.

Articulated
The models perform adequately on Articulated motion. Both
total EE measurements exceed the 3 pixel bound, but fall

within the 5 pixel bound for ideal estimation including a hu-
man error offset. However, all Fl-all scores are consistently
high. Roughly a third of the data was marked as inaccurate,
with an upwards of 62 (38.75% of 160) misclassified points
when evaluating the Horses scene. While both models pro-
duce higher EE values on the Fish scene, they achieve lower
Fl-all scores compared to their performance on the Horses
scene. Both models show EE and Fl-all values that are signif-
icantly higher than synthetic benchmarks on many datasets.
Visual inspection of the estimated flow fields indicate that the
models sometimes estimate gradual motion gradients. This is
inconsistent with the rigid, jointed motion patterns of Articu-
lated motion.

Homothetic
The models perform exceptionally well on Homothetic mo-
tion. Both average EE measurements fall within the 3 pixel
threshold for ideal estimation, and Fl-all scores are consis-
tently low, with a maximum of 5 pixels (3.13% of 160 annota-
tions) being misclassified in a single scene. These EE values
are consistent with Sintel-clean benchmark results. RAFT
has an EE of 1.65 and an Fl-all score of 2.81. The EE val-
ues are comparable to the benchmark average EE of 1.61.
Similarly, DPFlow achieves an EE of 1.05, which is virtu-
ally identical as its synthetic benchmark of 1.046. Visually,
the models appear to recognize and allocate appropriate gra-
dients throughout the full image for instances of Homothetic
motion.

Conformal
Both models perform reliably on Conformal motion. All EE
values fall well below the 3 pixel threshold for ideal estima-
tion. However, Fl-scores vary per model, ranging anywhere
between 3 (1.88% of 160) and 19 (11.86% of 160) misclas-
sified pixels for the same scene. The average EE values for
these models is comparable to that of Homothetic Motion.
RAFT achieves an EE 0.16 pixels lower than its Sintel-clean
benchmark, while DPFlow scores only 0.04 pixels higher
than its benchmark. These deviations are negligible, indicat-
ing that both models perform at a level consistent with their
performance on synthetic datasets. However, the Fl-all scores
vary significantly per model. In the Cloth scene, RAFT mis-
classifies twice as many points as DPFlow. This disparity is
even more prevalent in the Rubix scene, where RAFT pro-
duces nearly 6.5 times more misclassifications. The models
appear to capture both abrupt and gradual texture deforma-
tions on the surface of the object, without generalizing mo-
tion to the outline of the object, Thus recognizing instances
of Conformal motion..

7.3 Implications
These results have several implications for the optical flow
estimation of non-rigid motion in real-world scenarios. Both
RAFT and DPFlow achieve our ideal estimation, with aver-
age EE values falling below 3 pixels for both models. How-
ever, the accuracy of these models is largely dependent on
the type of motion being estimated. When estimating Articu-
lated motion, both models had abnormally high EE and Fl-all
scores, indicating poor accuracy and consistency. For appli-
cations of optical flow estimation in the real world, we must



consider these limitations. The poor performance in estimat-
ing Articulated motion highlights a limitation of these mod-
els in estimating complex, jointed deformations. Though the
values for EE still fall within our classification of satisfactory,
the high Fl-all scores suggest estimation inconsistency. This
indicates that these models should be adapted or modified be-
fore use in practical applications such as object tracking or
autonomous robotics. In contrast, the high consistency of per-
formance across Homothetic and Conformal motion suggest
that both models are well suited for scenes exhibiting smooth
deformations across varying scales and contexts. In these set-
tings, EE and Fl-all remain close to synthetic benchmarks.
This indicates reliable performance in settings where such
motion is present, such as autonomous driving, controlled
robotics, or image and video processing applications. For any
of these applications, the data suggests DPFlow to be the bet-
ter choice, consistently outperforming RAFT in both EE and
Fl-all values.

7.4 Limitations
While the results presented seem promising, several limita-
tions need to be acknowledged. Firstly, our analysis covered
only three out of seven classes within the non-rigid motion
taxonomy. As a result, not all behaviours of non-rigid motion
are represented in the dataset. Additionally, we focused ex-
clusively on non-rigid motion. Thus, no conclusions can be
drawn from this data regarding optical flow performance on
rigid, quasi-rigid, isometric, elastic or fluid motion.

Furthermore, the dataset used in this study was limited
in scope. Combinations of different motion types were not
considered. The number of annotated frames was relatively
small, and manual annotation introduced potential for human
error. Though this was corrected for, conclusions are only
accurate to a certain extent. Moreover, we only evaluated
two optical flow estimation model architectures – RAFT&
DPFlow . While these models represent different approaches
and were both state-of-the-art at the time of their release, a
broader evaluation across a larger set of models would pro-
vide more generalizable results.

Additionally, our analysis utilized only two metrics.
Though EE and Fl-all are widely used and standardized met-
rics, they may not fully capture model behaviour under di-
verse conditions. Finally, the visual conditions in our dataset
were clean, with minimal presence of real-world artefacts.
Image effects such as motion blur, occlusion, noise, or dis-
tortion were not present. This clarity could contribute to the
performance of the models, and does not represent the full
range of challenges encountered in real-world applications.
Thus, though the results are promising, they can not be as-
sumed to generalize across all current and future real-world
datasets, motion types, or artefacts.

8 Conclusions and Future Work
This study aimed to evaluate the performance of Optical Flow
Estimators (OPEs) on real-world non-rigid motion, address-
ing the knowledge gap presented by a limited non-rigid mo-
tion examples in existing data and a lack of real-world bench-
marks. For this, we created a dataset consisting of real-
world Articulated, Homothetic, and Conformal motion. This

dataset was composed of 24 image pairs, each with 40 manu-
ally annotated ground truth vectors. For evaluation, we used
the standard metrics of the KITTI2015 [5] benchmark; the
Endpoint Error (EE) and the percentage of misclassified pix-
els (Fl-all). Based on our image resolution, we defined a
successful estimation as having an EE of ≤ 5 pixels. How-
ever, we considered estimations with errors of ≤ 7 pixels
as accurate, being ≤ 1% of the total image resolution. We
then evaluated two state-of-the-art OPE architectures, RAFT
[10] and DPFlow [8], against these criteria. These architec-
tures were chosen for their consistent performance on Sintel
[2] and Spring [7] datasets, which contain examples of non-
rigid motion. Evaluation was done using model checkpoints
trained on the Sintel dataset.

While both RAFT and DPFlow demonstrated successful
estimations under these conditions, the varied range in per-
formance between different classes of motion reveals limita-
tions to generalizability in real-world applications. For Ho-
mothetic and Conformal motion, both OPEs performed con-
sistently with synthetic benchmarks. Visual analysis confirms
that both models generalize well to smooth, continuous non-
rigid motions. However, performance declined when evaluat-
ing Articulated motion. The complex, partially rigid behavior
presented significant challenges for both models. Despite EE
values for Articulated motion remaining within our accept-
able threshold, high Fl-all scores indicate a lack of consis-
tency and robustness required for many real-world applica-
tions.

These findings highlight the importance of varied datasets
for evaluating OPEs. Though the selected models perform
well on synthetic datasets, real-world evaluations suggest
under-represented motions in synthetic datasets. This rein-
forces the need for more comprehensive datasets containing
real-world motion patterns. Furthermore, the study did not
include visual artefacts, which likely contributed to such high
performances across motion classes. In real world scenar-
ios, models must perform well against repeating patterns, oc-
clusions, motion blur, and various lighting scenarios, among
others. In conclusion, while this study shows that current
OPEs are capable of achieving performance comparable to
synthetic benchmarks in real-world non-rigid motion, it also
reveals limitations in their consistency between motion types.
Our study highlighted a significant performance drop in Ar-
ticulated motion, which is most relevant to real-world appli-
cations such as autonomous robotics or object tracking.

Future work may extend this study by expanding the
dataset to include more classes of non-rigid motion, or by
increasing the number of scenes within existing classes. Ad-
ditionally, more optical flow estimation architectures could
be tested, beyond the two covered in this paper. Furthermore,
a more realistic performance indication may be achieved by
adding various image effects that would be present in real-
world applications.
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The appendices contain the predicted optical flow map-
pings from DPFlow only. Performance was sufficiently sim-
ilar ( < 2 pixels) in EE measurements that conclusions for
both models can be drawn from these visualizations.

A Articulated Motion Flow Images

Figure A1: fish-1 Flow Map (DPFlow)

Figure A2: fish-2 Flow Map (DPFlow)

Figure A3: fish-3 Flow Map (DPFlow)

Figure A4: fish-4 Flow Map (DPFlow)

Figure A5: horses-1 Flow Map (DPFlow)

Figure A6: horses-2 Flow Map (DPFlow)

Figure A7: horses-3 Flow Map (DPFlow)

Figure A8: horses-4 Flow Map (DPFlow)



B Homothetic Motion Flow Images

Figure B1: buns-1 Flow Map (DPFlow)

Figure B2: buns-2 Flow Map (DPFlow)

Figure B3: buns-3 Flow Map (DPFlow)

Figure B4: buns-4 Flow Map (DPFlow)

Figure B5: flowers-1 Flow Map (DPFlow)

Figure B6: flowers-2 Flow Map (DPFlow)

Figure B7: flowers-3 Flow Map (DPFlow)

Figure B8: flowers-4 Flow Image



C Conformal Motion Flow Images

Figure C1: cloth-1 Flow Image

Figure C2: cloth-2 Flow Image

Figure C3: cloth-3 Flow Image

Figure C4: cloth-4 Flow Image

Figure C5: rubix-1 Flow Image

Figure C6: rubix-2 Flow Image

Figure C7: rubix-3 Flow Image

Figure C8: rubix-4 Flow Image
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