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Abstract

Computer models of fluid flow play an important role in the study of the
world’s oceans and seas. Previous generations of models have generally em-
ployed Cartesian structured grids. That is to say, the equations of motion have
generally been discretised onto grids composed of rows and columns of points
arranged in the manner of a chess board. While this can greatly simplify the
numerics of such models and can contribute to the computational efficiency
of simulations, such grids have difficultly in representing regions with com-
plex geometry, such as the coastlines, and impose limits on the extent to which
model resolution, and hence computational effort, can be focused on regions of
interest or complexity.

In this thesis, a new unstructured mesh model for coastal and ocean flow is
described. In an unstructured mesh, the nodes at which the equations of motion
are discretised are placed so as to best represent the geometry of the domain
and the flow features of interest to the modeller. The cells which are formed
from these nodes do not have a regular chess board structure but rather form
an unordered decomposition of the domain. Unstructured meshes provide the
flexibility which is lacking in structured grids to focus resolution on features of
interest and avoid the unfortunate staircase representation of coastlines which
is typical of structured meshes.

Delfin, the model developed in this work and presented here, is a mem-
ber of the class of C grid staggered variable models which includes many of
the existing structured grid models and several new unstructured mesh codes.
Three new contributions to the development of this class of model which are
implemented in Delfin are described. First, the expanded stencil path inte-
gral pressure gradient formulation is applied for the first time in a coastal or
ocean model. The advantage of this approach is that poorer quality meshes
can be tolerated than is possible with the previously published circumcentre
based schemes. The cost of this generality is that the symmetry properties of
the continuous pressure gradient operator are not preserved by the discontin-
uous operator. The implications of this for the stability of the resulting scheme
are analysed. The second new development is a trajectory tracking algorithm
for semi-Lagrangian advection schemes which is based on analytic rather than
numerical integration of the velocity field. This approach prevents the unphys-
ical errors of trajectories crossing or leaving the computational domain. The
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analytic integration scheme is derived here and its advantage in preserving the
physical properties of trajectories are demonstrated. Finally, an analysis is un-
dertaken of the symmetry properties of the discrete Coriolis operator in the
unstructured C grid discretisation. An instability caused by a failure to pre-
serve the symmetry of the continuous Coriolis and pressure gradient operators
is identified and a symmetry preserving Coriolis scheme which removes this
instability for models with a suitable pressure gradient discretisation is pre-
sented.

The value of model development lies in delivering tools which are useful for
the study of flow phenomena. As a demonstration of the utility of this work,
results of the application of Delfin to the study of the Indian Ocean tsunami
are presented as are tests of the model against the problem of calculating the
propagation of tides in the North Sea. The Indian Ocean tsunami of 26 De-
cember 2004 was caused by ocean bed displacements resulting from an earth-
quake. For the first time, data from fixed GPS stations were used to determine
the motion of the Earth’s crust and hence of the sea bed in this event. Delfin
was used to model the tsunami wave predicted by the GPS based model of
the ocean bed uplift and has been used to validate and differentiate different
bed displacement scenarios. The results of a comparison between Delfin and
the Dutch Continental Shelf Model (DCSM98) in computing the M2 tide in the
North Sea are presented. It is demonstrated that the untuned Delfin simulation
produces results which are in general poorer than the highly tuned DCSM98 re-
sults but that particular coastal results suggest that the superior representation
of coastlines made possible by the unstructured mesh has tangible benefits. It is
therefore argued that a fully tuned unstructured mesh simulation of this prob-
lem might be expected to exceed the performance of the current structured grid
model.
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Samenvatting

Numerieke stromingsmodellen spelen een belangrijke rol bij het bestuderen
van de oceanen en zeeén op aarde. De vroegere modelgeneraties zijn over
het algemeen gebaseerd op Cartesiaanse gestructureerde roosters. Met andere
woorden, de bewegingsvergelijkingen worden normaal gesproken gediscre-
tiseerd op roosters, die uit rijen en kolommen zijn samengesteld net zoals op
een schaakbord. Hoewel dit de numerieke oplossing van dergelijke modellen
zeer kan vereenvoudigen en tot efficiénte computersimulaties kan bijdragen,
hebben dergelijke roosters moeite gebieden met complexe geometrieén, zoals
de kustlijnen, te representeren en leggen ze grenzen aan de modelresolutie en
dus de computerinspanning op, die op ingewikkelde of van belang zijnde ge-
bieden geconcentreerd kan worden.

In dit proefschrift wordt een nieuw model voor kust- en oceaanstromingen
beschreven, dat op ongestructureerd roosters gebaseerd is. In een ongestruc-
tureerd rooster worden de knopen, waar de bewegingsvergelijkingen gediscre-
tiseerd zijn zo geplaatst, dat ze de vorm van het domein en de voor de mod-
elleur van belang zijnde stromingskenmerken zo goed mogelijk weergeven. De
cellen die met deze knopen worden gevormd, hebben geen regelmatige schaak-
bordstructuur, maar vormen een ongeordende weergave van het domein. Het
ongestructureerde rooster geeft in tegenstelling tot het gestructureerde rooster
de flexibiliteit om de resolutie op de van belang zijnde kenmerken te concentr-
eren. De ongelukkige trapvormige discretisatie van de kustlijn, die voor gestruc-
tureerd roosters kenmerkend is, wordt vermeden.

Delfin, het model dat in dit werk ontwikkeld en gepresenteerd wordt, is
één van het staggered C-rooster model type, waartoe veel van de bestaande
gestructureerde rooster modellen en verscheidene nieuwe ongestructureerde
rooster codes behoren. Drie nieuwe bijdragen aan de ontwikkeling van dit
modeltype, die in Delfin geimplementeerd zijn, worden beschreven. Ten eerste
wordt de uitgebreide stencil path integraal formulering voor de drukgradiént
voor het eerst in een kust- of oceaanmodel toegepast. Het voordeel van deze
methode is dat een slechtere kwaliteit rooster gebruikt kan worden dan met
eerder gepubliceerde, op de circumcenter gebaseerde formuleringen mogelijk
is. Deze generalisatie gaat ten kostte van het behoud van de symmetrie-
eigenschappen van de continue vorm van de drukgradiént bij de discretisatie
ervan. De implicaties hiervan voor de stabiliteit van het resulterende schema

iii
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worden geanalyseerd. De tweede nieuwe ontwikkeling is een stroomlijn al-
goritme voor een semi-Lagrangiaans advectieschema, dat op de analytische in
plaats van de numerieke integratie van het snelheidsveld gebaseerd is. Deze be-
nadering verhindert het onfysische gedrag, dat stroomlijnen elkaar kruisen of
het computerdomein verlaten. Het analytische integratieschema wordt afgeleid
en het voordeel van het bewaren van de fysische eigenschappen van stroomlij-
nen wordt aangetoond. Ten slotte wordt een analyse uitgevoerd van de
symmetrie-eigenschappen van de gediscretiseerde Coriolis term in een
ongestructureerd C-rooster. Een instabiliteit, die veroorzaakt wordt door het
verlies van de symmetrie-eigenschappen bij de discretisatie van de drukgradiént
en de Coriolis term wordt geidentificeerd en een discretisatie, die de symmetrie
van de Coriolis term bewaart en daardoor deze instabiliteit bij modellen met
een geschikte discretisatie van de drukgradiént verwijdert, wordt voorgesteld.

Het belang van modelontwikkeling ligt in het leveren van hulpmiddelen,
die voor het bestuderen van stromingsfenomenen bruikbaar zijn. Ter demon-
stratie van het nut van dit werk, worden de resultaten van het toepassen van
Delfin op de tsunami in de Indische Oceaan en van getijvoortplantingsberekenin-
gen in de Noordzee gepresenteerd. De tsunami van 26 December 2004 in de
Indische Oceaan werd veroorzaakt door verplaatsingen van de oceaanbodem
ten gevolge van een aardbeving. Voor het eerst werden de gegevens van vaste
GPS posten gebruikt om de beweging van de aardkorst en daardoor die van de
zeebodem in deze gebeurtenis te bepalen. Delfin is gebruikt om de tsunamigolf
te modelleren die door het GPS gebaseerde model van de oceaanbodemver-
plaatsing wordt voorspeld. Het is bovendien gebruikt om de verschillende
scenario’s voor de bodemverplaatsing te valideren en te onderscheiden. De
resultaten van een vergelijking tussen Delfin en het Dutch Continental Shelf
Model (DCSM98) worden gepresenteerd voor een berekening van het M2 getij
in de Noordzee. Er wordt aangetoond dat een ongekalibreerde Delfin simulatie
resultaten geeft, die in het algemeen slechter zijn dan de sterk gekalibreerde
resultaten van DCSM98, maar dat bepaalde kustresultaten suggereren dat de
superieure representatie van de kustlijn, die door het ongestructureerd rooster
mogelijk wordt gemaakt, tastbare voordelen biedt. Het is daarom waarschijn-
lijk, dat een volledig gekalibreerde simulatie van dit probleem met een
ongestructureerde rooster, de prestaties van het huidige gestructureerde rooster
model zal overtreffen.
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Notation

Differential equation notation

velocity vector.

surface elevation.

vertical viscosity.
horizontal viscosity.

water density.

bed elevation.

the Earth’s rotation vector.
the Coriolis parameter.

u, wind velocity.

Tdd =1

A
>

e IR RS

Pa density of air.

Ca wind drag coefficient.

Cp bottom drag coefficient.

K the von Karmen constant.

ix
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Mesh notation

=Q
=

SF}}}Q.&
ES

*[,K]

N Z

a mesh.

the vertices and the edges of the graph of G.
anindexin V.

an index in E.

water column cross section area.

column side area.

cell face area.

set of layer indices of a water column or column side.
cell or column face outward normal vector.
cell or column face normal vector.

set of column side indices of water column 3.
cell face normal velocity component.

cell face tangent velocity component.
velocity vector.

position.

Xi(,1) ~ Xi2) -

X*,’H—% - X*,k—% .

free surface elevation.
bed elevation.

length of polygon edge.

Discrete operators

column face normal pressure gradient.

column face tangent pressure gradient.
mass matrix.

cell face normal advection and Coriolis.
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Chapter 1

Introduction

The flow of the world’s seas and oceans plays a constant and important part
in the lives of the billions of people around the world who live on or near the
coast. Recently this has been illustrated most graphically and tragically in the
Indian Ocean Tsunami and the flooding of New Orleans by Hurricane Katrina.
However, the ongoing processes of transport, erosion, deposition and flood-
ing are omnipresent in the coastal and marine environment. Understanding
these processes is an essential part of coastal engineering and of all aspects of
oceanography. The importance of these fields and of this understanding will
become all the more significant in the coming decades as we attempt to under-
stand and live with the effects on oceans and coastal areas of climate change
and sea level rise.

Computer flow models implementing approximate mathematical solutions
to the equations of fluid flow have been an important tool in understanding
flow processes for decades. Over that period, the amount of processing power
available has increased and the numerical techniques used to discretise the
equations have become more sophisticated. Nonetheless, computing power
is still limited and every algorithm still suffers from limitations whether they
be of efficiency, accuracy or applicability. This thesis is an attempt to increase
our understanding of one class of models, the staggered variable unstructured
mesh finite difference/finite volume models, and to improve the efficiency, ac-
curacy and applicability of those techniques.

A further important goal of this research project was to build a software
framework, a toolkit which can be used both by numericists as a test bed for
new techniques and by oceanographers and engineers to research flow pro-
cesses. With the goal of a versatile and useful tool base in mind, the discretisa-
tions presented here have been formulated in three dimensions. In particular,
it is hoped that a future version of the model will be used to investigate den-
sity driven currents in coastal regions. For this purpose, a three dimensional
model incorporating baroclinic forcing will be essential. However, the numer-
ical research carried out in this project and presented here has been primarily

1
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2 Introduction

directed at the important two dimensional terms in the equations. Fully ex-
ploiting the three dimensional nature of the model will be the subject of future
research projects.

1.1 C grid models

Various flow models are in use in the Netherlands in research, engineering
and operational contexts. Particularly prominent models in current use are
the Delft3D package developed and maintained by WL|Delft Hydraulics and
Simona developed and maintained by Rijkswaterstaat, the Dutch Directorate
for Public Works and Water Management. These models share important fea-
tures. They are based on structured curvilinear grids and employ the variable
staggering scheme known as the C grid.

Structured grids have limited flexibility as a mechanism for describing prob-
lem domains so it seems natural to attempt to generalise this C grid approach
to unstructured meshes. Nicolaides (1993) developed the idea of a staggered
finite volume scheme on an unstructured mesh with his covolume method but
it was in Casulli and Walters (2000) that a scheme directly analogous to the
structured C grid was published. The existing C grid models benefit from the
computational efficiency of the alternating direction implicit (ADI) scheme, a
scheme which relies on the rows and columns of cells present in a structured
grid and which is therefore totally inapplicable to an unstructured mesh. To
keep the computational costs within reasonable limits, Casulli and Walters de-
vised as scheme in which certain terms were dealt with explicitly. This in turn
produces a matrix which is partially block diagonal which in turn facilitates the
partial solution of the ultimate difference equation with fast direct methods.
An implementation of Casulli and Walters (2000) by the authors of that paper
is available under the name UnTRIM.

Finite element schemes for computational fluid dynamics on unstructured
meshes related to the C grid have also been developed. In particular, the Casulli
and Walters (2000) scheme is a close relative of the schemes proposed in Walters
and Casulli (1998) and Miglio et al. (1999). Among finite difference/finite vol-
ume models, there are also at least three descendants of the Casulli and Walters
scheme. The ELCIRC model (Zhang and Baptista, 2005) differs from the other
schemes in that full velocity vectors rather than individual velocity components
are solved for. This arrangement is known as the C-D grid. Most recently Stan-
ford University have announced their SUNTANS model (Fringer et al., 2006).

The model developed in this project and whose numerics are described in
this thesis, Delfin, forms a further member of this growing class of models. In
developing Delfin three key aspects of the model have been the focus of work
which differs from, and arguably extends, the contributions made by the other
models in this class. First, a different pressure gradient formulation enables
the use of a wider class of unstructured mesh than is suitable for the other
models. Semi-Lagrangian advection schemes are a common feature of the class
of models, however the semi-Lagrangian scheme employed in Delfin is based
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on an innovative trajectory tracking algorithm which addresses some of the
limitations of a semi-Lagrangian approach. Finally, the development of Delfin
has lead to the derivation of a symmetry preserving Coriolis scheme which
removes an instability observed in other Coriolis discretisations on this form of
mesh.

1.2 Structure of the thesis

The thesis can be divided into three groups of chapters. In chapters 2 to 4 the
shallow water equations are introduced and the core structure of the discretisa-
tions including the mesh structure and variable placement are discussed. In the
following three chapters three important horizontal terms in are discussed. In
chapter 5 the path integral pressure formulation presented in Wenneker (2002)
is compared with the orthogonal formulation of Casulli and Walters (2000). The
former scheme is found to facilitate the use of a wider variety of meshes at the
cost of the symmetry properties of the discrete pressure gradient operator. The
path integral pressure gradient formulation is clearly not original, however this
is believed to be the first demonstration of a model in the Casulli class which
employs an extended pressure stencil to avoid the mesh orthogonality require-
ment. Many of the core ideas in these chapters are published in Ham et al.
(2005) while the linear algebra stability analysis is also found in Ham et al. (In
press).

Chapter 6 is primarily concerned with the trajectory tracking algorithm nec-
essary for the semi-Lagrangian advection scheme. The concept of analytically
solving a velocity field for the trajectory was introduced for a structured grid
in Dunsbergen (1994) but its generalisation to an unstructured mesh based on
triangles is believed to be new. The concepts covered in this chapter have been
published in Ham et al. (2006).

In chapter 7 the discretisation of the Coriolis term is addressed. The linear
algebra approach to stability employed in chapter 5 is employed to derive a
velocity interpolation with favourable symmetry properties. Nonetheless, it
is discovered that the lack of symmetry of the path integral pressure gradient
scheme results in a much more severe instability in the presence of Coriolis.
Stability problems associated with operators which fail to preserve symmetry
are well known and well studied, however this is believed to be one of the first
investigations of the symmetry properties of the Coriolis term on unstructured
C grids. This work has been accepted for publication as Ham et al. (In press).

In chapters 8 and 9 Delfin is applied to two actual flow problems of scien-
tific interest. In the first of these chapters, the 2004 Indian Ocean tsunami is
simulated. This is believed to be the first set of simulations conducted based
on GPS rather than seismic data. A paper documenting this approach to un-
derstanding tsunamis is in preparation (Pietrzak et al., 2006). Chapter 9 is a
verification or proof of concept for the use of Delfin to simulate tidal processes
in the North Sea. It is found that Delfin performs as well as may be expected
given the limitations in the input data and the lack of calibration.
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Finally, appendix A provides the vector calculus which is used in the main
body of the thesis.
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Chapter 2

Equations and boundaries

2.1 The shallow water equations

Coastal flows may be modelled using the shallow water equations, a well known
simplification of the Navier-Stokes equations. The shallow water equations
may be derived by making the following assumptions about the flow:

1. Vertical accellerations are small compared with gravity. This is equivalent
to assuming that the pressure is hydrostatic (% = —pg)

2. Density differences are small compared to the reference density pg (%)E <
1). This is known as the Boussinesq approximation. The result of this
is that the density may be assumed to be constant except in the pressure
gradient term.

Let d be any unit vector in the horizontal plane and let uq = u - d. Then the
shallow water equations may be presented as follows:

V-u=0 21)
D 1 #=n
ﬁ = —ny / pgdz’ -d + VJ,y ' thwyud
Dt P . 2.2)
0 aud
—v'— +20Q -k (k .
+ 821/ 0z * (k>xu)-d

Here, 7 is the free surface height, v and ¥ are the horizontal and vertical
turbulence viscosities, 2 is the Earth’s rotation vector, k is the upward unit
normal vector and g is acceleration due to gravity.

The Lagrangian or material derivative in the momentum equation:

D 0

5
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6 Equations and boundaries

is deliberately chosen rather than an explicit advection term. For reasons which
will be explained in chapter 6, we will adopt a semi-Lagrangian discretisation
for the advection of momentum. A derivation of the material derivative and
further explanation of the vector calculus notation used in this thesis is pre-
sented in appendix A.

We choose to present equation (2.2), the momentum equation, in this form to
demonstrate its rotational invariance: it is not necessary to solve for horizontal
momentum components in the directions of the conventional basis vectors, and
we do not propose to do so. As is usual for the shallow water equations, the
vertical velocity may be obtained from equation (2.1), the continuity equation.

In this work, we have not considered the effects of density differences so
the density cancels out of the pressure gradient term. In common with similar
models (Casulli and Walters, 2000; Zhang and Baptista, 2005), we also disregard
horizontal mixing. The actual flow equations solved by Delfin are therefore:

V-u=0 (2.4)
Dud, 8 Uaud
D7 = Ve d+5v' ==+ 20 k(k xu)-d (2.5)

2.2 Boundary conditions

2.2.1 Kinematic boundaries at the surface and bed

The water surface and bed are presumed to be impermeable. The result of this
is that the Lagrangian surface movement must be equal to the vertical velocity
of the fluid at that point. If the surface elevation, 7 is a suitably smooth function
of position in the z, y plane:

_ Dn

gnt (2.6)
= 8_ + uwy'z:n : sz77
t

w|n

Similarly, assuming that the bed elevation, b, is a smooth function of (z, y) and
that the bed is stationary in time we have:

D
Dt (2.7)
= U—zylz:h : sz77

’LU|h

2.2.2 Wind stress

The wind stress at the surface is given by a quadratic formulation:

» OUgy

_ P
ot~ pyCalmallua (2.8)
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where p, is the air density, u, is the wind speed at some reference height and
C, is a dimensionless drag coefficient. This formulation assumes that the wind
velocity is large with respect to the surface water velocity. For situations in
which this assumption is not valid, alternative formulations which account for
the difference between the wind velocity and the surface water velocity must
be employed.

The default air density is set to 1.25kg/m® while a typical value for C,, would
be 0.0016.

2.2.3 Bottom stress

The friction with the bed is likewise represented with a quadratic dependence
on velocity:

v 8ub o
Ve = Cp||up|jup (2.9)
Where uy, is the horizontal fluid velocity at the cell nearest the bed. The di-
mensionless drag coefficient Cp may either be specified as a constant (typically
0.0025 for a single layer, depth averaged simulation) or it may be given by:

2
Cp = (ﬁ/ In (M)) (2.10)
20

where zy, is the distance from the bed to the point at which uy, is evaluated and
the von Karmen constant « has the value 0.4. zo, the characteristic roughness
length of the bed, is a system parameter.

2.3 The depth integrated continuity equation

The kinematic boundary conditions presented in section 2.2.1 may be used in
combination with the continuity equation integrated over the water column to
produce an expression for the free surface. In the first instance, the divergence
of the velocity is integrated over z using the Leibniz integral rule in its diver-
gence operator form:

n n
/ V-udz = W=y — w|=p + Vay - / Upydz — Uyy - VI +uyy - VA (2.11)
h h

Substituting in the kinematic boundary conditions and using equation (2.4),
this becomes:
P n
ar Voy- | Ugydz=0 (2.12)
ot h
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2.4 The linear shallow water equations

For the purpose of testing individual components of numeric schemes, it is
often useful to investigate a simplified problem. In particular, the study of lin-
ear differential equations is frequently more straightforward than the nonlinear
case. The linear shallow water equations are a two dimensional linear simpli-
fication of the shallow water equations. Advection and viscosity are both ne-
glected and the height of the water column is assumed to be almost constant.
Representing the water column height as a fixed component, d and a small
varying component 7 and disregarding the varying component in the applica-
tion of the kinematic boundary conditions, we arrive at:

In _
5 HAV a=0 (2.13)
o 20 x a4+ gV =0 (2.14)

where 1 is the depth averaged horizontal velocity vector. Note that d may be
allowed to vary in space, so that variable bathymetry may be represented. The
linearisation merely demands that d be constant in time. When the effect of
dissipative terms is important, a bottom friction term may be added:

P
a—‘t‘ +2Q x @i+ gV — Cpiif|ill, = 0 (2.15)
where Cp is a dimensionless drag coefficient and || - ||2 is the Euclidean norm,

also referred to as the 2-norm.

2.5 Properties of the shallow water equations

Consider equations (2.13) and (2.14) restricted to one horizontal dimension and
in the absence of rotation. Then we have:

on ou
ot + d% =0 (2.16)
ou on
En + g% =0 (2.17)

This is a linear wave equation whose solutions are disturbances travelling at
speed ++/gd relative to the water. These solutions also admit a an arbitrary
background velocity, U, so long as it is constant in space and time. The total
propagation speed of the disturbances in a stationary frame of reference is then
U £ /gd. The traveling wave solutions with velocity \/gd (often also written
v/gh with h now standing for total water depth) are driven by the gravitation
force and are therefore known as gravity waves. In two spatial directions, the
same solution types exist but can clearly travel in any direction. From the grav-
ity wave celerity, /gd and the background velocity U it is possible to construct
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a dimensionless quantity known as the Froude number:

Fr = [U|/v/gd (2.18)

A number of important characteristics of fluid flow are related to the Froude
number. For example, where the Froude number is greater than 1, gravity
waves cannot propagate in the upstream direction. This flow regime is known
as supercritical flow. The assumption in the previous section that advection
could be ignored is, in fact, valid precisely in a very low Froude number (Fr <
1) regime. For a more extensive exploration of the wave solutions of the linear
shallow water equations, see Wesseling (2001) chapter 8.



10
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Chapter 3

Unstructured Meshes and
Variable Placement

3.1 Meshes

Discrete methods for the approximate solution of partial differential equations
rely on approximating the continuous fields of state variables by the values of
those state variables at a finite set of points. The grid or mesh used describes
the adjacency relationships of that finite set of points and this in turn deter-
mines which values directly affect which other values. Associated with a mesh
is a graph whose vertices coincide with the mesh elements and whose edges
describe the adjacency relationships of the mesh. To complete the topological
description of a mesh, we allow for boundary edges which indicate the adja-
cency of a vertex with a boundary of the problem domain. Notationally, if G is
a mesh then we will write an ordered pair (V, E) for its graph where V' is the
set of vertices of G and F is the set of edges. For further details of graph theory
applicable to the understanding of meshes, the reader is referred to Bollobas
(1979).

Historically, most environmental flow models have been based on regular
quadrilateral or, in three dimensions, hexahedral structured meshes. The term
grid is usually used for such a mesh and it is adopted here. Being structured is
a graph property of the mesh:

Definition 3.1 A mesh (V, E) is structured if there exists an integer n, an injective
function i : V' — Nand a set of integer offsets {m, ..., my} such that:

1. Every vertex in 'V is associated with exactly n edges.
2. Ifvi, v € V are adjacent then i(vi) = i(ve) + m; for some 1 < j < n.

Note that the direction of the implication in condition two is important, it is
not true that i(v1) = i(v2) + m; implies that v, and v, are adjacent. Informally,

11
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Figure 3.1: Variable placement on an A grid (left) and C grid (right). Dotted
lines represent the edges of the associated graph.

a quadrilateral structured mesh is topologically similar to a chess board with
rows and columns of cells. The advantage of such structure is that it is not
necessary to explicitly store the adjacency relationships between vertices. This
dramatically simplifies the task of implementing a discretisation as a computer
program and significantly reduces the memory required to store the mesh infor-
mation. If an implicit time stepping scheme is used, structured meshes usually
produce system matrices with at most kn non-zero diagonals where £ is a fixed
positive integer (and is 5 for many low order schemes in two dimensions). If
direct linear algebra solvers are to be used, it is also possible to choose a node
enumeration which minimises the matrix bandwidth thereby decreasing the
solution time. Indeed, time stepping schemes such as the alternating direction
implicit (ADI) scheme have been developed which depend on the row and col-
umn structure of quadrilateral structured grids (Peaceman and Rachford, 1955).
An unstructured mesh, conversely, is simply any mesh which is not structured.
The term unstructured grid is also in use and is synonymous with unstructured
mesh.

To this point, we have identified all of the flow variables with the mesh ver-
tices. This approach, dubbed the A grid in the canonical taxonomy of variable
placements presented in Arakawa and Lamb (1977) and referred to generally
as the collocated grid, is not the only one. Arrangements of the variables which
place the discrete velocity points at different locations in space to the discrete
surface elevations are referred to as staggered schemes. Of particular impor-
tance in many models of free surface flow is the C grid. In this approach, the
surface elevation nodes are placed at the centre of rectangular (in three dimen-
sions, hexahedral) cells and only the water elevation or pressure is associated
with these points. The full velocity vector is not explicitly represented at any
point in space. Rather, the flux from one cell to the next is solved for at the
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centre of each cell boundary. Figure 3.1 illustrates the difference between these
approaches. From this figure it is apparent that a C grid actually has two graphs
associated with it. First there is the mesh which is usually drawn and whose
edges make up the boundaries of the cells and whose vertices are the intersec-
tions of these edges. Secondly there is a graph whose vertices are the surface
elevation points associated with the cells and whose edges are associated with
the velocity components stored at the cell boundaries. In the terminology of
graph theory, each of these two meshes is the dual of the other. In a C grid dis-
cretisation, the former defines geometric properties such as the cell volume, but
the latter determines the adjacency relationships which are used to formulate
discrete differential operators.

The key advantage of the C grid arises directly out of this staggered place-
ment of variables: inspection of equations (2.5) and (2.12) reveals that the evo-
lution of the free surface elevation in the continuity equation is governed by
the divergence of the velocity while the evolution of velocity in the momen-
tum equation is driven by the gradient of the surface elevation. The C grid
therefore facilitates the use of central difference type schemes without produc-
ing odd-even or checkerboard type instability. The result of this is that, in an
inertial frame of reference, the C grid is free of spurious velocity or pressure
modes. In the presence of Coriolis acceleration, the C grid suffers from a sin-
gle Coriolis mode due to the necessity of interpolating the component of the
velocity tangent to the cell face. These features of the C grid have been known
for decades (see, for example, Walters and Carey (1984)) although an interest-
ing new demonstration based on the linear algebra of the discretised system
was presented in Le Roux et al. (2005). It is therefore unsurprising that several
unstructured mesh flow models have emerged based on either triangular ana-
logues of the C grid (Casulli and Walters, 2000) or the finite element equivalent,
the Raviert-Thomas element (Walters and Casulli, 1998; Miglio et al., 1999).

3.2 Unstructured Triangular Meshes

3.2.1 Variable resolution

In order to achieve accurate results in particular regions of interest, in this case
the coastal region, it is necessary to employ a grid with a small mesh size. How-
ever, using a very fine grid in regions whose detailed structure is of less interest
is a highly inefficient use of computational resources. To be able to resolve the
coast accurately while modelling the sea at acceptable cost, it is therefore nec-
essary to vary the grid resolution in space. In addition, since coastal flows are
strongly influenced by the shape of the coastline, it is important that flow arti-
facts introduced by the presence of grid corners on the coast be avoided. While
some grid variation is possible using curvilinear structured grids, to achieve
highly variable resolution in complex geometries, it is necessary to employ un-
structured meshes.

In previous work similar to this, a requirement was made that the grid used
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be orthogonal (Casulli and Walters, 2000). That is, the line joining two adjacent
column centres must be orthogonal to the column face between them. On a
triangular grid, this can be achieved by using the circumcentres as the centres
of the triangles. However, unless all of the angles in a triangle are acute, its cir-
cumcentre will lie outside the triangle. Generating triangular grids in complex
geometries which contain no obtuse angles is a formidable challenge. We there-
fore choose not to impose an orthogonality requirement. This choice allows the
use of a much wider range of grids but has implications for the treatment of
the pressure gradient term. More generally, the variability of mesh size and cell
angles on an unstructured C grid has implications for the complexity, stability
and accuracy of differential operators and mechanisms for overcoming these
challenges are a theme of several parts of this thesis.

3.2.2 Element Shape

The generation of unstructured grids based on simplices is a well developed
field. A simplex is an n-dimensional polytope (generalised polygon) with ex-
actly n + 1 vertices. This is in large part due to the long history of unstructured
finite element codes. In the shallow water case, the geometry of the problem
presents particular challenges to the use of 3 dimensional simplices (tetrahe-
dra) in staggered grid finite volume calculations. Since the horizontal cell di-
mensions may be orders of magnitude larger than the vertical dimension, the
cell face normal vectors of a tetrahedron will be approximately vertical making
accurate resolution of horizontal velocities difficult. By instead using prisms
as cells we can ensure vertical cell faces thereby obtaining horizontal normal
vectors and hence accurate horizontal velocity resolution. Figure 3.2 illustrates
this distinction. Some other authors have derived schemes similar to that pre-
sented here but which are also applicable to unstructured meshes composed of
a mix of triangular and quadrilateral prisms (Casulli and Walters, 2000; Zhang
and Baptista, 2005). This approach has not been followed here for two reasons.
First, the overwhelming majority of mesh generators available generate trian-
gular meshes. Second, the trajectory tracking algorithm developed in chapter 6
is best suited to triangular meshes. The pressure gradient and Coriolis discreti-
sations presented in chapters 5 and 7 respectively are readily generalisable to
the quadrilateral case.

3.2.3 Layers in the vertical

In a shallow water simulation, the vertical dimension differs from the horizon-
tal dimension in important ways. In the previous section the aspect ratio of the
flow domain was used to justify the use of prismatic rather than tetrahedral
elements. The use of prismatic elements also facilitates the use of a structured
mesh in the vertical direction. This results in vertical mixing and pressure gra-
dient operators which are simpler, more efficient and more accurate than would
be the case were the mesh unstructured in the vertical.
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- I S I
Figure 3.2: Elevation and perspective views of prismatic and tetrahedral ele-
ments showing face centres and a representative selection of face normal vec-

tors. It is evident in the case of the tetrahedron that the horizontal components
of those vectors are small.

This approach also simplifies the task of mesh generation. First a two di-
mensional grid is generated for the domain. This mesh defines a set of water
columns stretching from the free surface down to the bed. Each water column
is then divided into a series of cells. This is currently implemented as a z-
level scheme, although other vertical discretisations are in principle possible
(Pietrzak et al., 2002). Figure 3.3 shows a slice through part of a mesh demon-
strating the vertical structure.

Figure 3.3 also shows the representation of the bed and free surface. Move-
ment in the free surface may cause the number of z-layers in a water column
to change resulting in the addition or subtraction of cells at the free surface. At
the bed, the exact bathymetry at the water column centre is used to specify the
bed elevation for the column. This almost always results in a partial cell at the
bottom of the water column. This partial cell representation reduces the extent
to which a variable bathymetry is represented as a staircase thereby reducing
the likelihood of significant spurious currents occurring due to the errors in the
representation of the bathymetry.

An important benefit of this mesh structure is that the momentum evalu-
ation points are aligned vertically. This reduces the evaluation of the vertical
viscosity to a one dimensional problem at each water column face. In addition,
it means that the pressure gradient term is the same for each momentum point
on a water column face. These factors facilitate the creation of an algorithm
for the discrete momentum and continuity equations which has advantageous
scaling properties. We will return to this matter in section 4.5.
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Figure 3.3: Slice through a domain showing the regular grid structure in the
vertical and the partial cells at the bed and free surface.

3.2.4 Mesh quality

The accuracy and even stability of many numerical schemes is known to de-
grade on meshes and grids on which, for example, the resolution of the mesh
changes rapidly in space. On an unstructured triangular mesh, the concept of
grid quality is the extent to which the mesh deviates from a mesh composed
entirely of equilateral triangles. There are a number of related metrics which
apply to mesh quality. In particular, the aspect ratio of a triangle or the min-
imum angle in a triangle are measures of the mesh quality. Causes of mesh
quality loss fall into two categories. The first is that meshing algorithms are
imperfect and may not result in an optimal mesh. The second is that exter-
nally imposed constraints limit the capacity of any meshing algorithm. The
key external constraints are the boundary shape and the mesh resolution. Gen-
erally speaking, the better resolved a domain, the greater the extent to which
the meshing algorithm can produce high quality meshes. An illustration of this
is the successively refined circular meshes presented in section 5.6.1.

3.3 Mesh notation

To facilitate discussion of the discretised problem, we adopt the following con-
ventions based loosely on those found in Casulli and Walters (2000). Let G be
an unstructured mesh and (V, E) its graph. We adopt the convention that ¢ will
always indicate an index in V while j will always indicate an index in E. For ex-
ample x; refers to the position of the ith column centre while x; refers to the po-
sition of the jth column face. Let .S; be the set of the indices of the column faces
adjacent to column i. Then define the function j such that j(i,1),1 < [ < |5
is the index of the /th column face adjacent to column . Similarly, we define
i(4,1),1 € {1, 2} to be the column(s) adjacent to face j. Figure 3.4 illustrates this
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Figure 3.4: Mesh fragment showing indexing conventions for water columns
and column faces.

naming scheme. Finally, we will reserve the index & to refer to the layer of a
given cell and define L and a function k in an analogous manner to S and the
function j. The layer of a horizontal face above level k is k + 3 and the layer
below is naturally k — 3. Observe that this numbering is physically consistent
inthat (k+1) -1 =k+ 3.

In addition to the index numbers for water columns and column sides, some
notation will be used to consistently refer to the data associated with those ob-
jects. These are displayed in table 3.1. The notation n and N require a little
explanation. IN; is the fixed normal vector associated with column side j. n; ;
on the other hand is the normal vector at side j which points outwards relative
to the adjacent column cell 4. This is most often used in the case of the quantity
(n-N); ; which has value 1 if N; is outward pointing and —1 if it is inward
pointing relative to column 4. Note, then, that

(m-N)ij1).5 = —(0-N)i2),5 (3.1)

In the case of horizontal cell faces, we remove some notational clutter by spec-
ifying, without loss of generality, that all normal vectors point upwards. That
is, we require:

Vie VVk € LiN; .1 = (0,0,1)
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A; water column cross section area.
A; column side area.
Ak cell face area.
L, set of layer indices of a water column or column side.
n; . % cell or column face outward normal vector.
Ny cell or column face normal vector.
p set of column side indices of water column ¢.
Use cell face normal velocity component.
U depth averaged column face normal velocity component.
U, velocity vector.
U, depth averaged velocity vector.
X[ k] position.
0; XiGj1) = Xi(2) |-
Az i X kil — Xepo 1|
s free surface elevation.
B bed elevation.
Aj length of polygon edge.

Table 3.1: Notation for data associated with water columns and column sides.
An asterisk is a wildcard for a member of {i,j} while square brackets ([]) in-
dicate an optional argument. For temporally variable data, time step will be
indicated with a superscript.
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Chapter 4

Discretisation of the
equations

In Casulli and Walters (2000), the authors developed an unstructured general-
isation of the C grid discretisation which employs a clever mix of explicit and
implicit Eulerian discretisations with a semi-Lagrangian advection scheme to
produce an algorithm which is both efficient and stable at large Courant num-
bers. We will adopt their approach as a point of departure and develop im-
proved discretisations of the pressure gradient, advection and Coriolis terms.

Other variants on the Casulli and Walters (2000) scheme are possible. Zhang
and Baptista (2005) supplement the normal velocity components at the vertical
cell faces with tangential components, a variable placement scheme dubbed a
C-D grid by its original proponents on structured grids (Adcroft et al., 1999).
We will also show that a fully explicit time stepping scheme may be applied
to the Casulli and Walters (2000) structure. The relative merits of all of these
schemes will be investigated.

4.1 Courant numbers

The discretisation choices made here are largely driven by stability require-
ments of the form first identified by Courant, Friedrichs and Lewy in 1928
(Courant et al., 1928) which are a stability requirement for explicit time step-
ping schemes. These stability requirements can be stated in terms of dimen-
sionless numbers, called Courant numbers, which describe the rate at which
flow disturbances pass through the mesh in comparison with the length of a
time step.

The fastest propagating solutions to the shallow water equations are long
waves which, as observed in section 2.5 have the velocity U + /gh. Since
coastal and ocean flows typically have flow speeds U of at most a few metres
per second while /gh varies from a tens of metres per second near the coast

19
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to hundreds of metres per second in the deap ocean, it is reasonable to neglect
the flow speed from the wave speed calculation. The wave Courant number is
therefore given by:

At
Az

where At is the time step and Az is the grid spacing. The relevant definition
of grid spacing on an unstructured C grid depends on the pressure gradient
discretisation adopted. The definition relevant to Delfin will therefore be given
in section 5.1.

The stability of explicit advection operators is, in turn, dependant on the
rate at which water flows through the mesh. This may be described by the flow
Courant number:

Cw :=+/gh (4.1)

At

where U is the local flow speed.

4.2 The continuity equation

Conservation of fluid volume may be ensured by adopting a finite volume dis-
cretisation of the depth integrated momentum equation (2.12):

o
Aia + Z (n-N)iJ Z Aj,kuj,k =0 (4.3)

JES; kELj

Since coastal and ocean flows typically have very low Froude numbers, the sta-
bility of the scheme will therefore depend in large part on the stability of long
wave solutions. In particular, it would be advantageous if the stability of long
wave solutions were independent of the wave Courant number. This is par-
ticularly true on an unstructured mesh since the stability of a Courant limited
scheme, as will be demonstrated in section 5.6.2, is dependent on the maximum
Courant number in the mesh (see Wesseling, 2001, chaper 8 for derivations of
the Courant limitations of various schemes). With the variable mesh resolution
which is an intrinsic feature of unstructured meshes, it is exceptionally likely
that in a given mesh there will be cells in which the wave Courant number,
VghAt/Az, takes a value much greater than that which is characteristic of the
mesh as a whole. We therefore choose semi-implicit §-scheme as the temporal
discretisation of the free surface equation. Adopting vector notation to replace
the sums over the vertical, we have:

APt = A — 0AE Y ((neN); ;A7 - UTH)
JES:

—(1—0)At Z (n-N); ;A7 - UT)

JES:

(4.4)
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Where:
AjkGi) Uj k(3. 1)
A= : ; U; = : (4.5)
Ajk(iIL 1) Uj kG L)

4.3 The momentum equation

Equation (2.5) is solved for the velocity component normal to each cell face.
The terms of the momentum equation have different characteristics which de-
mand different approaches. In particular, the advection and Coriolis operators
are both important and troublesome and will be treated in chapters 6 and 7 re-
spectively. For the structure of the solver, it is sufficient at this stage to note that
these terms will be dealt with explicitly (at least relative to the pressure term).
This choice of explicit and implicit terms results in the advantagious matrix
structure described in section 4.4. At this stage, let F' be an explicit finite differ-
ence operator representing the Coriolis and advection terms. Were horizontal
viscosity terms to be included in the equations to be solved, they would also be
handled explicity as a part of F.

The discretisation of the pressure gradient term is also non-trivial and will
be considered in chapter 5. At this stage we simply define a set of linear op-
erators H; : {n;li € G} — R such that H; approximates V7|; - N;. For the
time evolution of the pressure gradient, we adopt the same ¢ method chosen
for equation (4.4) and for the same reason: to ensure that the propagation of
long waves is not subject to a Courant restriction.

The remaining term in equation (2.5) is the vertical viscosity term. On each
water column side, the vertical viscosity problem is one-dimensional. It may
therefore be discretised using a straightforward central differencing scheme.
The viscosity term is a second order operator whose stability is therefore gov-
erned by the quantity v?At/(Az?) and the typical layer separation, Az, may
be very small in comparison with the other length scales of the problem. We
therefore adopt a fully implicit backwards Euler temporal discretisation. We
accordingly arrive at a discrete momentum equation:

ultt =F(u)}, — gALOH + (1 - 0)HY)
1 1 1 1
At Uiker ~ Uik v N (4.6)
Az dkty Azj”k ks Az;fkf 1

1 1
> +3 3

Using a vector notation similar to that employed in equation (4.4), we arrive at
the following formulation:

nyn+1l _ pn n+1 n
MU = BY — GgAtH 1 AZY 4.7)
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Where:
N -
AZjk(i,1) n
n 70’]‘ 1—1
T a5y o
_n n n n o n
M" — Ajotl Azt Wjopr T 05y 1 Ajo—1

n
o Az} k(1L )
BlLil+s g™

L 9, Ljl+3
1 n e At .
with Oa1 = VikGo+l Az;k(j’l)i% and:
Az (P — (1 - 0)gAtH?) A
Bj = : , Zi= :
Az ()0, — (1= O)gALH?) AZ kG

This equation lacks expressions for the wind drag and bed friction boundary
conditions. The wind drag term, as it does not depend on the fluid velocity, can
be added to the first element of the vector B}. It may be written:

%CaAtIIuZIIuZ "N 4.8)

The bed friction is a function if the flow velocity and must be added to the final
diagonal element of M. Its value is:

CoAt|ug o, (4.9)

4.4 Matrix structure and the free surface equation

A particular advantage of the choice of explicit and implicit terms made in Ca-
sulli and Walters (2000) and adopted here becomes apparent if we consider the
structure of the matrix for the implicit part of the system. Choose a numbering,
m, of the velocity unknowns so that m(j, k+1) = m(j, k) +1 then the matrix has
the form shown in figure 4.1. The upper left quarter of the matrix is block diago-
nal and is made up purely of the tridiagonal mass matrices M. These matrices
can be inverted using fast direct methods in O (M) operations where M is the
total number of velocity unknowns. Doing so amounts to solving equation (4.7)
for U}’H and allows the U™*! terms to be eliminated from equation (4.4). This
results in a linear implicit system for the free surface elevation:

APt = A = 0At Y ((neN); AT - (M]) ™! (B — gAtH T AZ;))
JES:
—(1-0)At Z (n-N); ;A7 - UY)

JES:
(4.10)
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Figure 4.1: The matrix structure of the discrete system. The form of the up-
per left hand submatrix allows the velocity variables to be eliminated from the
equation efficiently.

This equation has the form of a discrete wave equation in 1. The # method
temporal discretisation of the free surface terms therefore leads to a system in
which, for § > 0.5 the stability of linear long wave solutions is not limited by
the wave Courant number (Wesseling, 2001).

The block diagonal structure of the velocity submatrix results directly from
the explicit treatment of the advection and Coriolis terms. Any implicit treat-
ment would remove this feature and hence the efficient solution algorithm pre-
sented here.

4.5 Scaling behaviour

Equation (4.10) has only N = |V| unknowns: one free surface height for each
water column. In contrast, M, the number of velocity unknowns, is equal to
the sum over all the column sides of the number of layers at each column side:

M =YLl (4.11)
JEE

The number of column sides in a mesh is proportional to the number of wa-
ter columns (in a triangular mesh, |E| ~ 3/2|V|). If L is the average number
of column layers then M oc LN. The largest implicit system in the algorithm
presented here is equation (4.10) with N unknowns. Were all the terms of the
equations to be discretised implicitly then then the resulting implicit system
would have M + N o LN unknowns. Since the evaluation of explicit terms
scales linearly with the number of unknowns while the solution of implicit sys-
tems scales faster than linearly (Trefethen and Bau, 1997), for sufficiently large
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problems, the computational work will be dominated by the solution of the
linear system. In other words, for sufficiently large problems, the algorithm
allows a three dimensional problem to be solved for close to the cost of a two
dimensional problem.

4.6 An explicit time stepping scheme

The time stepping scheme detailed above is minimally implicit in the sense that
only the fastest modes are solved for implicitly. However, it is still necessary to
solve equation (4.10) at each time step and the time taken to do so will increase
superlinearly. It is therefore worthwhile considering whether it might not, in
fact, be faster to employ an explicit scheme and accept the associated time step
limitations.

A well known scheme which may be easily applied to the discretisation
here is the scheme presented in Hansen (1956) but reproduced in many sources
such as Wesseling (2001). The Hansen scheme is a variant of the even more
well known and venerable leapfrog scheme. While in the the leapfrog scheme
the velocity and surface elevation are evaluated at the same points in time, the
Hansen scheme is distinguished by the evaluation of velocity at half time steps
while the free surface elevation remains evaluated at the whole time steps. This
algorithm removes the need to store the previous value of the system state. This
also effectively removes one initial condition from the scheme which in turn
removes a spurious mode to which the leapfrog scheme is subject.

Starting from equation (4.3) and using the velocity at the half time step, we
arrive at: )

At = A — A0y ((n-N)mA? -U}”E) (4.12)
JES:

where the vectors A; and U; have the meanings given above in equation (4.5).
This provides the values for ! which are required to evaluate u"*+3/2 using
equation (4.6) with 6 = 1 and the time steps staggered:

WEE =Fu)' 4 gALH !

Jik
nJr% n+% nJr% n+%
n e I N S N S N S 1 (4.13)
n+1 Jk+3 n+1 Jk+3 n+1
Az Azj7k+% Azj7k_%

Observe that the vertical viscosity is still dealt with implicitly. The arguments
about the special structure of the implicit viscosity matrix still apply in this
situation so the stability and time step benefits of using an implicit formulation
may be enjoyed without excessive cost. Once again we may write a vector
formulation of the equation at one column side:

MU = BT gArHTT AZ (4.14)
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all the terms given have the same meanings as in equation (4.6) except for B
which becomes:

n+1 "+%
Azj F(u)j_’k(jyl)

B = : (4.15)
A F W)L,

In fact, the evaluation of the momentum is exactly the same as in equation (4.6)

with 0 = 1, a fact that makes the implementation of the Hansen scheme almost

trivial. Note also that since "' and therefore Az"*! are known from equation

(4.12), the right hand side of equation 4.14 can indeed be evaluated explicitly to

solve for u"+3/2,

Since initial conditions for © may be expected to be provided at the same
point in time as initial conditions for 7, it is necessary to calculate the values
u'/2. This may be done by simply applying equation 4.14 with a time step of
At/2 and all velocities and evaluating surface elevations on the right hand side
att =0.

4.7 A C-D grid discretisation

The Coriolis term presents a particular challenge to the C grid discretisation.
The C grid usually ensures that the quantities required for a calculation are
available at the point at which that calculation occurs. So, for example, the free
surface gradient is required at the velocity points which are between the surface
elevation points facilitating a central difference discretisation. However, the
evaluation of the Coriolis acceleration in the evolution of a velocity component
u requires the evaluation of the face tangent velocity component v, a quantity
which is not immediately available. Various interpolation schemes are possible
and will be explored in chapter 7 but an alternative possibility was suggested
for the structured C grid in Adcroftet al. (1999) and adapted for an unstructured
discretisation very similar to that presented here in Zhang and Baptista (2005).
The basic idea is that the momentum equation (2.5) can be used to solve for the
velocity component tangent to the cell face as well as the normal component
solved for in equation (4.7) or (4.14).

We will write v; ;, for the velocity component tangential to cell face 7, j. If
we define C and [ in an analogous manner to B and H then the momentum
equation for the tangential velocity component becomes:

MV = CF — OgAtIH AZ; (4.16)

It is worth noting that the friction matrix M; is rotationally invariant in the
horizontal plane so the same matrix may be used for the calculation of U; and
V;. It should also be noted that V" *! is not used in the calculation of n"**.
The right hand side of equation (4.16) may therefore be calculated explicitly.
This also means that V is not coupled to the surface height in the same way
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as U. This has the consequence that the full discrete system does not preserve
the skew symmetric nature of the original partial differential equation. The
importance of this form of symmetry presevation is discussed in chapter 7.

4.8 Discretisation of the linearised equations

Just as equations (2.13) and (2.15) are a simplification of the shallow water equa-
tions, the discrete linearised equations are simplifications of equations (4.10)
and (4.7). The free surface equation becomes:

At =Amp

—OAL Y dj(n-N); jA; - (M) (f(u)] — Atg (0H™ ' + (1 —0)H™))
JES:

—(1=0)At Y (n-N); jA;ul!
JES:
(4.17)

Observe that the water column face areas, A;, and water depths at the faces, d;,
are independent of time.
Similarly, the momentum equation becomes:

wptt = (M) (f ()} — 0AtgVH T — (1 — 0)AtgHT') (4.18)
In each case, M}" is d; + AtCqy|u’}||* and f(u) is a linear operator which applies
the Coriolis term to u}. In fact, equations (4.17) and (4.18) are simply equations
(4.10) and (4.7) subject to the constraints that there be only one layer, that ad-
vection is disregarded and that the water depth is held constant in time. The
Hansen and C-D grid schemes may be applied mutatis mutandi to the linearised
problem.

4.9 A conventional semi-implicit scheme

For the purpose of conducting stability analyses, it can be convenient to ex-
press the whole system of equations in a semidiscrete form and then to solve
the resulting system of ordinary differential equations in time. Due to the com-
plexity of stability analysis and the increased computational cost of this method
as opposed to those described earlier in this chapter, our consideration of this
mechanism will be limited to the two dimensional linear version of the equa-
tions. The semidiscrete form of equations (2.13) and (2.14) may be written as a

single matrix equation:
d |u F P||u
b= [e ol ) s

where u is the vector of all face normal depth averaged velocity components
and 7 is the vector of all free surface elevations. In this equation, C C is the
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discrete divergence operator, that is the right hand side of the linear two di-
mensional form of (2.12):
8771' - 1

5% = A D (nN); jA;d;;) (4.20)
' jes;

F contains the contributions due to the Coriolis term and P contains the dis-

crete pressure gradient term. This vector ODE can be integrated in time using

a 0 scheme applied directly to the whole equation. If we write Q for the system
matrix:

F P

@=lc o

and v for a system state vector in u and 7 then we have:

(4.21)

(I - 0ALQ)V™! = (14 (1 — ) AtQ)v" (4.22)
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Chapter 5

The pressure gradient term

On an orthogonal staggered mesh, the pressure gradient can be discretised in a
straightforward manner with a central difference scheme:

Ni(5,2) — Mi@,1
J

In the non-orthogonal case, the interval joining two adjacent column centres
is not parallel to the normal of the face between those water columns. We may
therefore choose use more information, and hence a larger stencil, to calculate
the projection of the discretised pressure gradient onto the column face normal.
We adopt here the path integral method introduced for curvilinear structured
grids in van Beek et al. (1995) and generalised to unstructured meshes in Wen-
neker et al. (2002). The essence of this approach is that the positions of nearby
column centres are used to construct a basis for R? and the gradient of the pres-
sure field is evaluated with respect to that basis by applying a central difference
approximation on the surface elevations at those column centres. The gradient
vector so constructed is then projected onto the water column face normal.

For some arbitrary e; € E we will construct {t; 1,t; 2}, a unit (although not
necessarily orthogonal) basis for R%. We choose:

Xi(4,2) — Xi(4,1
ti1 :(n'N)i(j,l)J‘ G )& (4,1)
j

so that:
Vit~ i(5,2) ; Mi(5,1)
J
For numerical reasons, it is important that |t;; - t; 2| < 1. That is, the basis
vectors should be far from collinear. This can be achieved by using the four wa-
ter column centres {«, 3,7, ¢} indicated in figure 5.1 to interpolate the surface

29
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Figure 5.1: The stencil of the path integral discretisation for the pressure gradi-
ent term

elevations at € and . We then choose:

Xe — X¢
tj72 T
[[xe — x|

Xoq +Xg — Xy — X5

e x5 —xy — x4

The corresponding component of the pressure gradient vector is then given by:

+ — —
Vi typn et 03 =
%o + x5 — %y — x5
After some rearrangement, this yields an expression for the water column face
normal component of the pressure:

t7,17" (0N, 1) 5 L2
Hj= <[t’9f ] Nj) ' l a5 =y =15 (52)
3,2 [%Xa+xs—xy =l

By construction of t; 1, in the special case where t; ; = N, H; reduces to (5.1). It
should be noted that, for each j, H; is a linear operator on {n; } with coefficients
constant in time. It is therefore only necessary to calculate these coefficients
once for each water column face.

5.1 Definition of the wave Courant number

For the low Froude number regimes which are typical for coastal and ocean
flows, the stability of an explicit time stepping scheme is dependent on the
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wave Courant number: At

Az

Clearly h varies in space in any model which incorporates variable bathymetry
or a moving free surface. However on an irregular mesh, Az is also a func-
tion of position. To determine precisely what Az means in this context, we
return to the original analysis presented in Courant et al. (1928) and recall that
the Courant number is the ratio of the distance travelled in one time step by a
characteristic solution to the differential equation to the width of the domain
of influence of the discrete equation. In the case of long wave propagation, the
surface elevations are coupled by the pressure gradient operator so the width
of the domain of influence is that of the stencil of the discrete pressure gradient
operator. The pressure gradient operator is associated with a water column side
so it makes sense to define Az and hence Cw at those points. By the construc-
tion of H, there are in effect two finite difference operations each over a separate
interval in x. Since the essence of the CFL condition is to establish whether the
domain of influence is broad enough compared with the propagation speed of
the characteristics, it is appropriate to determine Az by taking the minimum of
the candidate values:

Cw :=+/gh (5.3)

A.I'j = min {Awl(j,l)z(]Q)) A.ra(s, Awaw, A.rﬁ(s, Awgw} (54:)

where Azq, = ||xq — x| However unless the mesh is of particularly poor qual-
ity, equation (5.4) reduces to dz; = Ax;(;1i(j,2), @ more convenient quantity to
evaluate.

On the assumption that i does not vary significantly over the stencil of H,

we may define:
At
Cwj = \/gth—m (5.5)
J

When determining stability questions, it is the maximum wave Courant num-
ber which is applicable:
CWax = meaé({ij} (5.6)
J

However the Courant number also serves as an indication of the relation be-
tween the spatial and the temporal resolution. In this context, the mean wave
Courant number (Cwyean, derived in the obvious way) is a more meaningful
measure.

5.2 Solution algorithm

An advantage of pressure gradient discretisation on orthogonal meshes is that
equation (5.1) represents a symmetric operator and the resulting free surface
matrix is symmetric positive definite (Casulli and Walters, 2000). This enables
the use of the conjugent gradient method which is efficient and guaranteed to
converge. The path integral formulation does not share this property and the
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resulting matrix must therefore be solved using a more general technique such
as GMRES or BiCGStab. It should be noted, however, that on a high quality
mesh, that is one in which the cells are close to regular in shape, the path inte-
gral formulation is dominated by t; ; so that the resulting matrix may be con-
sidered a perturbed symmetric matrix. This makes the generalised conjugate
gradient method of Concus and Golub (1976) applicable, and this algorithm
has been successfully applied in Delfin for large problems (see chapters 8 and
9). The additional cost of the matrix solution compared with the conjugate gra-
dient method is not excessive although further improvements in the solvers
used have the potential to significantly reduce execution times. Similarly, no
significant convergence problems have been encountered.

5.3 The gradient in the tangential direction

For calculations using the C-D grid discretisation presented in section 4.7 it is
also necessary to derive an expression for /;, the column side tangential pres-
sure gradient component in (4.16). In the orthogonal case, (5.1) provides no
information concerning the tangential component of the pressure gradient so
Zhang and Baptista (2005) resort to interpolating the surface heights at the cor-
ners of the water columns. The path integral formulation adopted here, how-
ever, yields a direct expression for the full pressure gradient vector so that an
expression for the tangential component follows immediately:

iy -1 (n-N); 1 7‘771'(1‘,2)—'771’@,1)
Ij = ([t%l} Tj) | l _”<(x]+77)ﬁj—77w—77§j (5.7)

3.2 % +x5—%~—xs]

where T is the horizontal column face tangent vector. It should be noted that
(5.7) is not required for the solution of the surface elevation field so that (4.16)
is, in fact, explicit in 7.

5.4 Boundary conditions

Near boundaries, the stencil of the discrete pressure gradient operator crosses
the boundary of the domain with the result that one or more of the column
centres used in (5.2) is absent. Wenneker (2002) advocates replacing the miss-
ing column centres with the adjacent centre. This approach may result in local
basis vectors {t; 1,t;2} which are less orthogonal than in the interior case. In
some cases, such as that presented in figure 5.2, the basis vectors even become
collinear and the algorithm breaks down.

If instead we replace any missing elevation points with points on the bound-
ary, we remove the breakdown circumstances and further provide a structure
in which different forms of boundary condition can be incorporated through
the same structure. Assume without loss of generality that column centre « is
absent. Then, as shown in figure 5.3, we choose x4 to be the nearest point to
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Figure 5.2: A boundary case in which replacing absent column centres with the
adjacent column centre causes the pressure gradient algorithm to break down.

Figure 5.3: Where a boundary falls in the stencil of the pressure gradient oper-
ator, the nearest point on the boundary is used as the surface elevation point.

the remaining centre, i(j, 1) on the boundary side. The value of the water level
at this side then depends on the boundary conditions in force. For example, if
the boundary is closed then the approximation 75 = 7;(;,1) is appropriate while
a boundary condition which prescribes the surface elevation at the boundary
will directly specify the value at x4.

A boundary-like issue which affects the pressure gradient term occurs when
a water column face dries. The water column face at the centre of the stencil is
no issue since this face will be excluded from the calculation when it dries.
However when one of the other four faces is dry then a particular issue arises.
Assume without loss of generality that the edge between column a and i(j,1)
is dry. The actual value 7, cannot be used. Not only does this correspond
to the theoretically objectionable concept of conveying information over a dry
boundary, in practice the 7, will frequently correspond to the elevation of a dry



“thesis” — 2006/11/3 — 12:22 — page 34 — #47

34 The pressure gradient term

shoreline which is higher than the elevation 7;(; ;). If this is the case then us-
ing 7, will result in a spurious current in the offshore direction. The spurious
pressure gradient which causes this current may be avoided by the simple ex-
pedient of assuming, for the purpose of the pressure gradient calculation, that

N = 1i(5,1)-

5.5 Stability considerations

5.5.1 Checkerboard modes

One of the reasons for choosing a staggered variable placement scheme is that
the checkerboard instability associated with central difference operators is
avoided. If we revisit briefly the causes of this instability then some insight
into the operation of the present discrete gradient operator may be gleaned.
Recall that in 1 dimension, the central difference pressure gradient operator on
a uniform collocated grid is:

@ Tit1l — XTi—1

oz |, - 2Ax (58)

The checkerboard wiggles associated with this operator result from the fact that
this is a second order difference equation. On a poor quality mesh, a similar
phenomenon may be exhibited by the scheme presented here. In the special
case of a regular mesh of equilateral triangles the difference equation is first
order. However, as the mesh quality decreases, the weights associated with
the higher order terms of the difference equation increase. Figure 5.4 shows an
extreme case in which the surface elevation points closest to the relevant water
column face are excluded completely from the evaluation of the pressure gradi-
ent. In practice, it is unlikely that this situation will occur on a generated mesh,
however on a poor quality mesh there are likely to be instances where the coef-
ficients of the adjacent surface elevation points become sufficiently small so that
partial decoupling from these values occurs. The occurrence of checkerboard
modes on poor quality meshes will be investigated further in section 5.6.2.

5.5.2 A linear algebra approach to stability

Further analysis of the stability implications of the choice of pressure gradient
operator may be observed if we examine the properties of the semidiscrete sys-
tem matrix for the two dimensional linear shallow water equations presented
in section 4.9. In the absence of Coriolis, (4.19) becomes:

it 13 = ¢ ol 3] 6

To show that a scheme is both stable and non-dissipative, it is sufficient to show
that this matrix has only imaginary eigenvalues. This in turn may be proven by
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Figure 5.4: On this extremely poor quality mesh fragment the adjacent surface
elevation points are completely absent from the pressure gradient stencil.

showing that the matrix, which we shall refer to as A, is skew symmetric or is
skew-symmetric under multiplication with some diagonal scaling matrix D.

5.5.3 A stability proof for the orthogonal mesh case

On an orthogonal mesh, with discrete pressure gradient operator given by
equation (5.1), the scheme has a property which Espelid et al. (2000) termed
‘sign skew symmetry’. That is, for any 1, j, either a;; = aj; = 0 or a;5a; < 0.
To see this, note that if j is an edge of triangle ¢ then a;; = +d;\;/A; and
aj; = Fg/d;. On the other hand, if edge j is not an edge of triangle i then
a;; = aj; = 0. It is now straightforward to construct the diagonal scaling ma-

trix D. If we write:
_|Dp O
D= [ 0 Dc] (5.10)

such that the blocks of D are the same size as those of A then for Dp, d;; =
0;d;A; and for D¢, di; = gA;. With this choice of D, DA is skew symmetric and
hence the eigenvalues of A are purely imaginary. Espelid et al. (2000) adopt an
alternative approach in which the matrix A is made skew-symmetric through
the use of a similarity transform D' AD. This approach produces an equivalent
result to that given here and the two diagonal matrices are related by D = DTD.

Having shown that the orthogonal mesh scheme is scaled skew-symmetric,
we can also gain some insight into the energy conservation properties of this
scheme.It is worth recalling at this point that the water depth d is assumed to
be constant in time. Further, assume that the boundaries of the domain are
closed and that no forcing is applied and let v be any real state vector in « and
7. Because DA is a real skew symmetric matrix we know that sym(DA) = 0,
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where sym(DA) = 1/2(DA + (DA)T) is the symmetric part of DA. Therefore

41 vIDI) = (v]sym(DA)v) = 0. 511)

Indeed this can be seen as conservation of energy, as

VIDIV) =33 Aign? + ) SAzdN; (5.12)
eV jer
=S g+ 30 Y LAagdn i (5.13)
1% i€V jES;

Where once again V is the set of water column indices and FE is the set of column
faces. Axf; is the orthogonal distance of the centre of water column i from face
i. This can be seen as analogous to the proof of conservation of energy in the
continuous equations:

% (1gn* + Ldu-u) = gn% + du - ?3_1: (5.14)
= —gnV -du+ gdu-Vn (5.15)
= —V - 7ndu (5.16)
=0 (5.17)

The final step in this proof requires the application Gauss’s theorem to the right
hand side of equation (5.16). Since the boundaries of the domain were assumed
to be closed, the normal velocity in the resulting loop integral is uniformly zero
yielding the result given.

5.5.4 Stability in the non-orthogonal case

On a non-orthogonal mesh, with pressure gradient operator given by equation
(5.2), the system matrix is not sign skew symmetric. It is true thatif i is a triangle
and j is one of its edges, a;;a;; < 0. However, if j is an edge in the mesh and
i is a non-adjacent triangle which participates in the pressure stencil of j, then
aj; # 0 and a;; = 0. This indicates that no scaling transformation is available
which will make the system matrix skew symmetric in this case. Further, note
that for any positive definite diagonal scaling matrix H, if we calculate the rate
of change of v in the H-norm we have:

3 WIB) = () -+ v A 515)
= (v|sym(HA)|v) (5.19)

Now, since HA cannot be skew symmetric there must exist state vectors v for
which (v|sym(HA)|v) is nonzero. If, as we have shown, there is no L? equiva-
lent norm which is preserved by A, then we could still show stability by finding



“thesis” — 2006/11/3 — 12:22 — page 37 — #50

5.5 Stability considerations 37

Figure 5.5: Irregular discretisation of a square used in the eigenvalue calcula-
tions. There are 133 triangles and 185 interior faces.

H such that (v|sym(HA)|v) < 0 for all v. This is precisely the requirement that
sym(HA) be negative semidefinite. However, once again the lack of sign skew
symmetry in A combined with its zero diagonal pose a difficulty. It is easy to
show that a necessary requirement for negative semidefiniteness of a symmetric
matrix is that the element of largest modulus lies on the main diagonal. How-
ever, the main diagonal of A, and hence of sym(HA) is known to be zero while
the absence of sign skew-symmetry in A proves that sym(HA) has non-zero en-
tries in non-diagonal positions. This proves that sym(HA) does not have purely
negative eigenvalues. Since sym(HA) is symmetric, it has real eigenvalues so
we have in fact proven the existence of positive, real eigenvalues.

The result of this analysis is that this centroid based scheme, and indeed any
similar scheme in which the pressure stencil is expanded to cover more surface
elevation points, is neither conservative nor uniformly dissipative in any L?
norm. This therefore leaves open the possibility that the scheme will exhibit
growing modes which will manifest for suitable initial conditions and suitably
long time integrations.

5.5.5 Eigenvalues

As an illustrative example of the symmetry characteristics of this method, the
system matrix for each scheme was calculated on the small but irregular mesh
shown in figure 5.5. A uniform unit depth was specified and g was set to 9.8.
The domain side length is 2 units.

Figure 5.6 shows the eigenvalues of the semidiscrete matrix for both the or-
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Figure 5.6: Eigenvalues of the discrete systems for the circumcentre based
scheme (left) and the centroid based scheme (right). Note that the axis limits
in both the real (horizontal) and imaginary (vertical) directions differ. In partic-
ular, the eigenvalues of the circumcentre scheme are zero to machine precision.

thogonal circumcentre based and the non-orthogonal centroid based schemes.
It is apparent that the eigenvalues of the orthogonal scheme are, up to rounding
error, purely imaginary as was predicted by the derivations above. Similarly,
the growing modes, the possibility of whose existence in the non-orthogonal
case was predicted above are evident in the eigenvalues of that scheme with a
small positive real part.

5.6 Numerical tests

5.6.1 Truncation error

As an initial test of the convergence behaviour of the path integral pressure gra-
dient formulation adopted here, we examine the gradient of a smooth function
in a circular domain. In polar coordinates, the function chosen was:

r
n(r,0) = cos (Eﬂ') (5.20)
so that:
ong 7w .7
o = RS0 (RTF) (5.21)

where R, the radius of the domain. The domain was then discretised with
successively finer meshes examples of which are presented in figure 5.7. For the
purpose of comparison, the same tests were conducted on a hexagonal domain
discretised with equilateral triangles. To eliminate errors due to the boundary
conditions, only water columns with centres lying within R/2 of the origin were
included in the calculation.
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Figure 5.7: Successively refined triangulations of a circle. From the left, the
values of Az /R are 0.184, 0.085 and 0.037.

The length scale relevant to the discrete pressure operator is the distance
between adjacent water column centres. A useful measure of mesh refinement
is therefore the mean water column separation:

djer X6 — X6l

Az =
14

(5.22)

Az/R is therefore the number of surface elevation points per wavelength. The
error in the pressure gradient can be quantified by the area weighted average
of the error at each column face:

S sen A || Valy, - NG ) = [, 1) |

= (5.23)
Z jEE Aj

where A; = (Ajiia) + Ajgi2)) is the surface area of the columns adjacent to

column face j.

Figure 5.8 shows the scaling of the error in the pressure gradient. The least
squares fit to the curve indicates that the error scales as Az!-%® on the regular
meshes but Az!%3 on the irregular meshes. Recall that for a regular mesh, the
path integral formulation reduces to equation (5.1) which is a one dimensional
central difference scheme. Such schemes are expected to be second order accu-
rate and this is reflected in the result observed. On an irregular mesh, the pres-
sure gradient discretisation is not completely centred in space. Non-centred
difference schemes are typically first order in space, however the additional
truncation error vanishes as the mesh approaches regularity. The successively
refined meshes shown in figure 5.7 exhibit regions of quasi-regular mesh joined
by less regular elements. As the mesh is refined, the proportion of the elements
which make up the quasi-regular patches increases and hence the mesh quality
improves. The O (1.53) convergence observed may therefore be attributable to
the increase in mesh quality as the mesh is refined.
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Figure 5.8: Scaling of the error in the pressure gradient operator. The least
squares fit to the data indicates that the operator is O (Az!*3) on the irregular
mesh and O (Az'9®) on the regular mesh.

5.6.2 Wave calculations

We now move on to test the long wave solutions of the pressure gradient op-
erator by simulating a standing wave in a long, shallow basin. The basin used
is 100km long and 10km wide with a mean surface elevation of 10.197m. This
last value was chosen to produce a long wave celerity (1/gh) of 10m/s. Wind
drag and bed friction and viscosity are disregarded. In the absence of viscous
terms, the vertical structure of the flow is uniform so we chose to conduct the
simulation in only one layer. To establish an essentially linear wave, a sinu-
soidal initial surface displacement was imposed with an amplitude of 5mm
and a wavelength of 200km. In every case the simulation was run for 200 000s
which is 10 periods of the longest mode of the basin.

Two different meshes were generated. In each case, the nominal side length
provided to the mesh generator was 1km however in one case the mesh is of
high quality with 78% of triangles having an aspect ratio of less than 1.5 and
93% less than 2. The other mesh is of lower quality with only 49% having an
aspect ratio of less than 1.5 and 84% less than 2. Furthermore it is obvious from
a visual inspection of figure 5.9 that the high quality mesh is much closer to a
regular mesh in large regions of the domain than is the low quality mesh.

Several comparisons may be made using this test case. In the first instance,
the same simulation was run using each mesh. The time step was set to 25s
resulting in a mean wave Courant number, CWycan, of 0.56 and a maximum
wave Courant number, Cwyp,ayx, of 0.88 on the low quality mesh and a Cwyean
of 0.50 and Cwpax of 0.87 on the high quality mesh. That is to say, on each
mesh the wave Courant number is less than one everywhere in each mesh. The



“thesis” — 2006/11/3 — 12:22 — page 41 — #54

5.6 Numerical tests 41

TAVVAVATANaYs

CHRRARRE R RN S OIS,

mu» <q,vmv",mmu ,y,- ORI
LRSI ORI,
RS 2PRH

A A YAV AT A A AT AT TAT A NS
KR R RIS REIIRERY
, SRR mﬂ'«ﬁ‘ﬁv‘“ 03 e

St
v

pv DO
u%mwv ‘g ,iAwmer‘ (R
KR

nm qua
IRSSAOCONA
XX

X
';'ﬂu\vmm"u" s
AT

H
dW‘v AV VA,
RRARPRRER

Figure 5.9: Two meshes of a rectangular basin. The upper mesh is of poor
quality with many small angles while the lower mesh is of much higher quality.

0 scheme was used in time with § = 0.5 to eliminate any damping effect of the
time integration scheme. By 70 000s (3.5 periods of the oscillation) spurious
surface elevations were visible in the low quality mesh at mesh triangle scale
and by the end of the simulation these had grown to amplitudes of up to 2m.
The alternating high-low elevations characteristic of a checkerboard instability
were exhibited at several locations. No spurious elevations were exhibited by
the simulation on the high quality mesh. This phenomenon appears to be con-
sistent with the expected behaviour on poor quality meshes detailed in section
5.5.1. The calculation on the poor quality mesh was rerun with ¢ = 0.55 and the
spurious modes were absent indicating that this instability is weak and may
easily be controlled with a very mildly dissipative scheme.

The response of the schemes to increasing time step was investigated for
both the ¢ and Hansen schemes. Once again 6 was set to 0.5 and successively
increasing time steps were employed. The Hansen scheme, being explicit, is
subject to the CFL criterion (Courant et al., 1928) and, indeed, was stable and
non-dissipative with a time step of 255 (Cwean = 0.50, Cwmax = 0.88) but with
a time step of 30s (CWmean = 0.60, CWiax = 1.06) the scheme was immediately
and catastrophically unstable. The 6 scheme is unconditionally stable for linear
problems and was tested for mean wave Courant numbers up to 10. No loss
of amplitude was observable for any Courant number however a slight loss of
phase velocity was observable as the time step increased. Figure 5.10 illustrates
this phase lag. Notable features of this graph are that even at a wave Courant
number of 10 the phase lag less than 4 parts per thousand and that the Hansen
scheme exhibits the same phase lag as the 0 scheme for the time step for which
the former scheme is stable.

5.6.3 Long term wave calculations

To further test the circumstances in which the checkerboard modes observed
previously are exhibited, we look to a larger scale wave test case which is run
over a longer period. The domain chosen was 420km by 100km and a uniform
depth of 5m was specified. The simulation was started from rest with an initial
surface elevation field:

n(x,y) = 0.05 cos(rz/L) (5.24)
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Figure 5.10: The phase speed error in the oscillating basin for various Courant
numbers.

Figure 5.11: The mesh used for the standing wave test case. The channel length
is 420km and the nominal triangle edge length is 10km
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where L = 420km is the length of the domain. This configuration corresponds
to a standing wave of wavelength 2L and period 60000s. The Crank-Nicholson
time discretisation (that is, § = 0.5) was applied with a time step of 1000 sec-
onds. A triangular mesh with a typical edge length of 10km was generated
using an algorithm by Legrand et al. (2000).

Since this experiment is concerned with the stability of the scheme, the
metric which is used to evaluate the performance of the orthogonal and non-
orthogonal schemes is the energy norm (v|D|v) introduced in section 7.3. The
results are shown in figure 5.12. It is apparent from the figure that the centroid
scheme does not conserve this norm and eventually becomes unstable. In fact,
spurious surface elevations are visible at 170 days simulation time and take the
form shown in figure 5.13. In the case of the circumcentre scheme, however, no
change in the energy norm is observed in the graph and, in fact, no the energy
norm was found to be conserved to all 6 significant figures output. However,
once again, when 6 was increased to 0.55, the instability was not observed al-
though the energy in the system slowly dissipated. From this we may conclude
that the non-orthogonal centroid based discretisation proposed here is subject
to instabilities related to the structure of the stencil but that these instabilities
are weak and appear to be suppressed by the presence of even a small amount
of dissipation in the scheme.
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Figure 5.12: Energy norm against time for the standing wave test case. The
solid line gives the result for the centroid scheme while the broken line is the
result for the circumcentre scheme.
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Figure 5.13: Surface elevation for the non-orthogonal centroid-based scheme
after 207 days. Growing instabilities are visible at the Western end of the chan-
nel.
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Chapter 6

A semi-Lagrangian advection
scheme

6.1 Introduction

In chapter 4, an semi-implicit scheme was adopted for the discretisation of the
pressure gradient term on the basis that an explicit scheme would make the sta-
bility of long wave solutions dependent on the maximum wave Courant num-
ber, Cwmax. A similar problem presents itself for the discretisation of the advec-
tion term. The flow characteristics which determine the stability of the advec-
tion operator are typically much slower than the long waves which are determi-
native for the pressure gradient operator. However, the flow Courant number
|u|/ Az is still dependent on the mesh size. An explicit Eulerian scheme would
therefore exhibit a time step dependence on the smallest cells in the mesh. On
the other hand an implicit scheme would create an implicit coupling between
the velocity vectors on different water column faces. This in turn would destroy
the special structure of the system matrix presented in section 4.4 resulting in a
much larger implicit system to be solved at each time step.

As an alternative, Casulli and Walters (2000) propose the use of a semi-
Lagrangian advection scheme. Such a scheme is explicit but may be shown
to be stable at any flow Courant number. While such stability at high flow
Courant numbers may not hold for general non-linear problems, the key crite-
ria of being able to exceed the Courant limit in particular regions is met.

The concept behind a semi-Lagrangian scheme is that the material deriva-
tive of the velocity may be discretised by tracing the trajectory of a fluid parcel
back through one time step to calculate where the fluid that will arrive at a
given velocity node at the end of a time step has come from.

This discretisation may be written as follows:

Du(x) _u""'(x)—u"(x*)
Dt At D

47
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Figure 6.1: Under a semi-Lagrangian formulation, the advected velocity is in-
terpolated at a point x* found by following the flow backwards through the
time interval At.

where x* is position of the end of a trajectory tracked back through the time
interval At from x. Figure 6.1 illustrates this process. A semi-Lagrangian dis-
cretisation is therefore a two step process: first the trajectory ending at the point
of interest must be traced backwards in space. The value of the velocity at that
point must then be interpolated from the discretised velocity field solved for
at the preceding time step. The focus of the new work presented here is on
a method for constructing the trajectories necessary for the first of these steps
rather than on the interpolation of the advected velocity. The importance of the
quality of trajectory tracking has been recognised elsewhere as significant in the
results of semi-Lagrangian advection algorithms Oliveira and Baptista (1998).
In the notation of equation (4.6) and neglecting the Coriolis term, the semi-
Lagrangian advection scheme produces the following formulation:

F(u)?k =u"(x") - Nj (6.2)

6.2 Trajectories

The trajectories of a velocity field are obtained by solving the ordinary differ-
ential equation:

dx

G- u(x) (6.3)
Since a flow model does not generally result in an analytic solution at every
point in space, but rather produces a discretised velocity field, it is necessary
to reconstruct some velocity field which may then be integrated to discover the
trajectories of the flow.

It is an obvious requirement that the continuous velocity field used to cal-
culate the trajectories be consistent with the discretised velocity field produced
by the flow model. Since the flow model is intended to model physical be-
haviour it is desirable that the trajectories produced should exhibit physically
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realistic behaviour. In particular, we shall require that the trajectories produced
not cross each other or a closed boundary (the no crossing condition).

6.3 Integration techniques

The conventional way to integrate the velocity field would be using a numerical
ODE solver (see, for example, Oliveira and Baptista (1998)). However, due to
the errors inherent in numerical integration techniques, it is difficult or impos-
sible to guarantee the no crossing condition. At a minimum, very small time
steps are required when calculating trajectories near closed boundaries. In-
stead, we generalise the approach first developed in Dunsbergen (1994) to our
unstructured mesh. The basis for this approach is the construction of a contin-
uous velocity field which is then integrated analytically to produce an analytic
expression for the trajectory starting at a given point. Since the integration is
analytic, no errors (up to machine precision) are introduced by the integration
process.

The analytic integration approach imposes another constraint on the contin-
uous velocity field: it must be analytically integrable at a reasonable computa-
tional cost. The obvious candidate is a cell-wise linear field. Assume x lies in
cell i then:

u(x) =A;x+b; (6.4)

Where A, is a constant matrix and b; is a constant vector. The integration prob-
lem reduces in this case to the solution of a three dimensional system of lin-
ear ordinary differential equations. Dunsbergen (1994) constructed his scheme
in the transformed space in which his curvilinear rectangular mesh became
strictly rectangular. In combination with the simplifying approximation that
within each cell the u component of the velocity does not vary in y and v does
not vary with x this allows for the decomposition of the resulting system into
three linear scalar ordinary differential equations. The cost is that the velocity
field used is distorted by the change of coordinates and made less accurate by
the simplifying approximations. This necessitated the development in Duns-
bergen (1994) of a complex velocity correction scheme.

On a triangular mesh, there is no continuous coordinate transformation
which produces face normals which are mutually orthogonal. The refuge of de-
coupled velocity fields is therefore unavailable to us, at least in the horizontal
directions. This results in a somewhat more complex set of differential equa-
tions and, in particular, requires the use of numerical techniques to solve for
cell face crossings. However, the velocity field used need not be distorted by a
change of coordinates.

To determine the unknown matrix and vector in equation (6.4), we first im-
pose the constraints given by the discretised flow field. For each face j of cell ¢,
if n; is the normal to that face and u; is the normal velocity component then:

(Ain + bz) c1y = Uy (65)
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This is a single linear scalar constraint which therefore costs one degree of free-
dom per face. A linear vector field in three dimensions has 12 degrees of free-
dom so this constraint does not fully determine the velocity field. Similarly, if
we examine the problem restricted to two dimensions, this constraint fixes 3
of the 6 available degrees of freedom. In both two and three dimensions this
leaves equation (6.4) underdetermined. It will therefore be necessary to find
further constraints in order to uniquely specify a velocity field.

6.4 Crossing Trajectories

In addition to failing to produce a
well posed velocity field problem,
the constraints so far imposed fail
to guarantee that trajectories will not
meet. In other words, the existence &
and uniqueness of solutions to (6.3)
is not guaranteed at cell boundaries.

A two dimensional example which
illustrates this problem may be con- %
structed by considering the case
where the flux through an interior
face is zero. If the flux through the
other faces is not zero then solutions
exist for which the normal velocity
component to the zero flux face is not
uniformly zero. This raises the pos-
sibility of the mirror image case pre-
sented in figure 6.2 in which trajec-
tories meet. Not only does this pose
severe conservation problems for a
semi-Lagrangian scheme, it makes the tracking of trajectories generally impos-
sible since they may be followed into dead end situations. However, by spec-
ifying the normal component of velocity at every point on the cell face, this
difficulty may be avoided. Clearly this requirement will also ensure that the
inviolability of closed boundaries is preserved.

The most obvious manner in which this new constraint may be applied is
by requiring that the face normal velocity component be everywhere equal to
the average flux through the face (the flux constraint):

Figure 6.2: Sketch of trajectories in two
mirror image cells illustrating the pos-
sibility of crossing trajectories. The flux
through the diagonal cell face is 0.

(’)ui o 81)1- -
5. =0 5 =0 (6.6)
awi o awl o
5 =0 - 0 6.7)

where u;, v; and w; are the components of u;. In addition, if t; is the horizontal
tangent vector to side face j of cell i then the imposition of constant normal
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velocity along the line x, + kt; amounts to a further constraint on each cell
side. In the two dimensional case this last constraint defines the remaining 3
degrees of freedom while in the three dimensional case, these 3 and the 4 above
in addition to the 5 imposed by (6.5) provide the twelve required constraints.
In addition, constraints (6.6) and (6.7) make the matrix A; block diagonal. This
reduces the integration problem to a two dimensional linear first order ODE
and a one dimensional linear first order ODE.

6.5 The continuity equation

Given that the discretised flow field is mass conservative, it is known that the
normal flux integrated over the surface of one three dimensional cell is zero.
In the two dimensional case, this is true if the flow is steady. It will be shown
that the velocity field constructed above satisfies the continuity equation in the
weak sense everywhere. We start with a simple proof concerning the situation
within each cell.

Proposition 6.1 If a linear velocity field satisfies the continuity equation integrated
over some region of non-zero volume then the velocity field satisfies the continuity equa-
tion at every point.

Proof: Let u = Ax + b be a velocity field such that on some region V' with

vol(V) > 0:
//Fvu-ndAzo 6.8)

Vx € R V- u = trace(A) (6.9)

Observe that:

which is constant. Then by Gauss’ theorem:

[ woin [ 5 o
- / / /V trace(A)dV
V)

trace(A)

= vol

Hence from (6.8) and (6.9) we conclude that Vx €¢ R3,V-u =0 O

This result applies in the two dimensional case with the obvious modifica-
tions. Having proved that the continuity equation is satisfied at every point
interior to a cell, we now wish to prove continuity everywhere. However, the
velocity field we have constructed is not smooth (or even continuous) at cell
boundaries so its divergence is undefined at those points. The strongest result
we can therefore hope to prove is that continuity is satisfied when integrated
over any region (possibly about such a point).
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Figure 6.3: Decomposition of a loop integral so that each sub-loop intersects
only one cell.

Proposition 6.2 The integral over any non-trivial region of the divergence of a veloc-
ity field defined as specified in sections 6.3 and 6.4 is 0. In two dimensions the velocity
field is also assumed to be steady.

Proof: Let u(x) be a two dimensional velocity field satisfying the conditions
above and let V' be some region with vol(V') > 0.

If V lies wholly within one cell, then u is linear throughout V' and the re-
sult follows from proposition 6.1. If V intersects more than one cell then we
decompose V into a number of sub-regions V; ...V, such that each sub-region
intersects only one cell. Figure 6.3 illustrates this form of decomposition. Under
Gauss’ theorem we must show that

//Fvu~ndl“:0 (6.10)

We know from the previous case that this statement holds if we replace V with
Viforanyiin 1...n. Since the V; are a decomposition of V, this is equivalent to
requiring that the integral of the flux through the boundary shared between V;
and Vj is the same when evaluated on either side of that boundary. Since these
boundaries follow the cell boundaries, this follows immediately from the flux
constraint. O

6.6 Closure of streamlines

A further physically significant property of trajectories in steady two dimen-
sional flow is that (except in unimportant degenerate cases) they form stream-
lines of the flow and describe closed loops. The usual proof of this result (see,
for example, Batchelor (1967, pp75-77)) assumes that the velocity field is contin-
uous and differentiable, however the results above will allow us to generalise
it to this case.

Proposition 6.3 The streamlines of a steady two dimensional velocity field defined as
specified in sections 6.3 and 6.4 are closed.
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Proof: To prove that the streamlines are closed, it is sufficient to demonstrate
the existence of a stream function. The streamlines are then the contours of that
function and are therefore closed. If u := (u,v) is the velocity field then the
stream function is the scalar potential of the field F := (—v,u). That is, the
stream function is defined (up to a constant) by:

U(x) — ¥y :/XF~dr (6.11)
0

Clearly W is only well defined if this integral is path independent. This in turn
is equivalent to requiring that:

74 F.dr=0 (6.12)
C

for any loop C. However, by construction of F:

%F-dr:%u-nds (6.13)
c c

The right hand side of this equation is simply the two dimensional version of
(6.10) so this result follows from proposition 6.2. O

6.7 Increased Accuracy

The assumption that the normal velocity component is constant over each cell
face is first order in space. In the two dimensional case, we may improve this by
specifying that the normal velocity may vary linearly along each cell side. The
appropriate gradient for this variation may be obtained using finite differences
on nearby velocity points. This constraint incurs the same cost in degrees of
freedom as specifying a constant normal velocity along each face however the
resulting velocity field is now exact for linear velocity fields rather than only for
constant fields. As with the pressure gradient operator, the accuracy of which
was demonstrated in section 5.6.1, this process is exactly centred in space and
therefore second order accurate on meshes composed entirely of equilateral tri-
angles. Consequently, the field generated will be second order accurate in the
special case of a regular triangular mesh but the accuracy will decrease on lower
quality meshes.

For three dimensional models based on tetrahedral discretisations, this ap-
proach can be directly generalised. In this case, the tangent space to each face
is two-dimensional so the total flux and two flux gradients on each of the four
triangular faces together fix the twelve degrees of freedom of the general linear
three-dimensional velocity field. Solving equation (6.3), then, primarily con-
sists of solving a three dimensional eigenproblem.

In a mesh made up of layers of triangular prisms, each cell has 5 faces so
the linear system obtained by directly generalising the two dimensional case
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will be overdetermined. It is therefore necessary to reduce the number of con-
straints applied to the velocity. In a shallow water model, the vertical velocity is
typically much less important than the horizontal velocities. With this in mind,
we may choose to forgo higher accuracy in the representation of this velocity.
In other words, we continue to impose constraint (6.7). This results in the ex-
pression:

w; =az+b (6.14)

and hence:
2i(t) = —b/a+ (2(0) + b/a) e (6.15)

Now, just as the mesh itself consists of layers of prisms, we may construct a
two-dimensional field in the plane through the centre of each layer and then
interpolate linearly between those layers. The horizontal velocity at a point
between layers o and 3 is then given by:

Z— Zqa Z— 28

Uy (1) = (AaXzy +ba) +

28 — Za Za — 23

(Apxzy +bp) (6.16)

This is not a linear expression in x, however when (6.15) is substituted into
(6.16) then the resulting ODE for position is linear, albeit with variable coeffi-
cients. The form of the equation is:

U,y (1) = (Axyy + b) (c+ ) (6.17)

If {e1, e2 } are the generalised eigenvectors of A and {\{, A2} are the correspond-
ing eigenvalues, and Z(t) = e + cdt then a fundamental matrix for (6.17) is:

X(t) = {elez(t)’\l |62€Z(t))‘2} (6.18)

The scheme currently implemented in Delfin is a somewhat simplified version
of this approach in which the face normal velocities are allowed to vary in the
horizontal but not the vertical dimension.

6.8 Results

The streamline closure property proven in the preceding sections may be demon-
strated by tracking streamlines in a simple rotating flow:

The flow domain was 30m in diameter and a typical mesh side length of 1m
was specified. 21 equally spaced trajectories at radiuses from 5m to 25m were
tracked for a full revolution (607s) using the two dimensional second order
scheme described in section 6.7. Since the prescribed velocity field is linear, the
scheme was exact up to machine precision with the relative error (connection
error divided by trajectory length) being between 4 x 10~% and 6 x 1078 in each
case. Figure 6.4 illustrates one of the streamlines generated.
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Figure 6.4: Tracking of a closed streamline in a rotating flow. The error in the
connection of the loop is on the order of machine precision and is not visible at
this scale.

6.9 Numerical issues

As everywhere in computational mathematics, the algorithm presented here
is affected by the finite precision of floating point arithmetic and the limited
convergence rates of iterative algorithms. In this case, the problematic areas are
uncertainty about which cell a point lies in and uncertainty in the sign of the
normal velocity when the flux through a face is small.

6.9.1 Finding the cell face

Solving the ODE at the heart of the trajectory tracking algorithm produces an
expression for the position of a tracked point as a function of time. However,
in cases where the flow Courant number is greater than one the trajectory will
be tracked through more than one cell. Since the flow field, and hence the an-
alytic solution for the trajectory, changes at each cell boundary, it is necessary
to determine the point at which the trajectory leaves the cell in question. Deter-
mining where an expression in transcendental functions first crosses a face (i.e.
a plane) is difficult and complex. We therefore resort to numerical methods for
determining the point of intersection. In the first instance, Newton’s method is
used to find the cell exit point. Where Newton’s method breaks down, bisec-
tion is used as a failsafe fall back. In either case, it is not possible to determine
the exact point of crossing. Instead, the algorithm exits when a point lying on
the curve is within some € > 0 of the line.

The uncertainty in the crossing point means that the starting point of the
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Figure 6.5: Difficulties associated with crossing a cell face. The trajectory
through the right hand cell ends inside the grey tolerance are of the left hand
cell. The first crossing of the broken cell face must be ignored for the trajectory
to be successfully tracked.

trajectory in the next cell may not actually lie in that cell so it also necessary
to apply the same tolerance when testing whether the point lies in the cell. In
addition, where the starting point for a cell lies outside that cell, it is necessary
to exclude the first crossing of that face from consideration. Figure 6.5 demon-
strates this situation.

6.9.2 Sign uncertainty in the normal velocity

Another effect of limited precision arithmetic is that the value of the velocity
field is only known to a finite precision. That is to say if x lies on the interface
of two cells then there may be a small variation in the face normal velocity de-
pending on which cell is used to calculate that velocity. Where the face normal
velocity is very small in magnitude, this may result in the trajectory tracking
algorithm breaking down. Where this occurs, the behaviour currently imple-
mented is that the tracking of trajectories is abandoned and the interpolation of
velocity occurs at the point of the breakdown. This typically occurs in a fraction
of a percent or less of cases so the accuracy cost is minimal.

6.9.3 The airborne trajectory problem

The representation of the surface presented in figure 3.3 produces cell side faces
which are partially or fully exposed. However, the velocities through these
faces are not, in general, zero. This raises the possibility that a trajectory may
be followed through such a face and out of the flow domain thereby causing a
breakdown in the algorithm. These “airborne” trajectories are a consequence
of the discontinuous representation of the free surface and are obviously spu-
rious. This difficulty is overcome by mapping the water column on one side of
the column side onto the other. However, we have just constructed a trajectory
integration mechanism with the feature that the cell face normal velocity com-
ponent at any point is the same when evaluated on either side of the face. If the
trajectory is moved vertically every time it crosses a face, then the possibility
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1]

Figure 6.6: The non-conforming basis function used in the interpolation of ve-

locity.

arises that the velocity calculated on the two sides of the face may differ in sign
resulting once again in the breakdown of the algorithm. This subsequent diffi-
culty may be minimised by adjusting only the top layers on each side. To avoid
a badly conditioned problem in the case where the top layer on the lower side
of a water column face is very thin, the adjustment applies down to the level of
the second from top cell on the low side of each interface. In the tiny minority
of cases in which this is still insufficient to prevent the no crossing condition be-
ing violated, the trajectory tracking is abandoned and, as in other breakdown
situations, the interpolation happens at that point.

6.10 Interpolation of the velocity

Once the end of the trajectory has been found, the advected velocity u™(x*)
must be interpolated. Since the momentum equation (2.5) is only solved for
horizontal the components of the velocity vector, it is not necessary to interpo-
late the value of the vertical velocity.

The interpolation of the velocity is itself a two stage process. First, the face
tangent velocity at each of the vertical sides of the cell is interpolated. Next,
the velocity at the point is interpolated using linear non-conforming elements
in the horizontal and continuous linear elements in the vertical.

The subject of the interpolation of the cell face tangent velocity is the key
question of chapter 7 so it need not be investigated here. It should simply be
noted that the velocity is interpolated in two dimensions using the four other
sides of the two triangular cells attached to the current face.

Using the full face centre velocity vectors so determined, the velocity at any
position in two dimensional space may be calculated using the basis function
shown in figure 6.6. To evaluate the velocity at a point x in R3, a linear in-
terpolation is carried out between the velocity calculated in the plane of the
cell centres above x and that below x. The scheme so constructed is a linear
upwinded scheme and is therefore first order accurate and diffusive.
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Figure 6.7: The mesh used in the river bend simulations. The slice used for
measurements is indicated by the broken line.

6.11 Flow in a river bend

The flow in a tight river bend is chosen as a test of the advection term. In
a rotating frame of reference, the inertia which the advection term represents
produces an apparent centrifugal force which must be opposed by some other
force if the flow is to be circular. In the case of a frictionless two dimensional
flow field, the apparent centrifugal force is balanced by an increase in surface
elevation towards the outside of the curve resulting in a pressure gradient force
radially inwards. If u(r) is the velocity component tangential to a circular rotat-
ing flow at radius r from the centre of rotation. Then the centripetal acceleration
is:

fo=—u?/r (6.19)
The balance of accelerations for which tests were made was therefore:
g(Vn-r) =u?/r (6.20)

Where r is the radial unit vector.

6.11.1 Two dimensional test

The model geometry is shown in figure 6.7. The nominal mesh side length is
5m. A constant inflow velocity of 0.5m/s is prescribed at the right hand arm of
the U. At the left hand end, a constant surface elevation of 10m is prescribed to
match the initial surface elevation throughout the interior of the domain. The
remaining boundaries are closed. To induce convergence to the steady state so-
lution as rapidly as possible, § was set to 1. A time step of 10s was employed
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Figure 6.8: The surface elevation of the channel bend simulation after the steady
state has been achieved. The maximum surface elevation is 10.0157m and the
minimum is 9.9819m. There are 10 equally spaced contours.

and free slip boundaries were employed at all of the closed boundaries as well
as at the bed. Convergence to the steady state was observed after approxi-
mately 200 time steps (33 minutes of simulation time) but the simulation was
allowed to run for 1200 time steps before measurements were taken.

For comparison purposes, an identical simulation was conducted using a
cut cell model (Kramer and Stelling, 2006) with a conservative advection scheme
based on that presented in (Stelling and Duinmeijer, 2003). The cut cell ap-
proach employs a structured rectangular grid in the interior of the domain with
partial cells at the boundaries to match the shape of the domain. In this simu-
lation, the grid was made up of 5m squares.

Figure 6.8 shows the surface elevation of the Delfin simulation after 1200
time steps. The banking up of water at the outside of the bend is evident as
is a certain amount of head loss over the length of the channel. The head loss
is a consequence of the artificial dissipation inherent in a first order upwind
scheme, which this is. The cross-stream surface gradient, on the other hand,
is the predicted effect of the advection term. Figure 6.9 shows the equivalent
result using the conservative, cut cell technique. Superficially, the results are
similar, however it is noticeable that the head loss, and hence the asymmetry
in the surface elevation contours, is less in the conservative scheme. The dif-
ference between the minimum and the maximum surface elevation in the bend
is around 10% less in the Delfin simulation which is further evidence that more
energy is lost than in the cut cell simulation.

To make a more quantitative statement it is necessary to note that the flow in
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Figure 6.9: The surface elevation of the cut cell channel bend simulation in
steady state. The maximum surface elevation is 10.0114m and the minimum is
9.9719m. There are 10 evenly spaced contours and the colour map is the same
as for the previous image.

such a bend is not totally rotational since there must be some adjustment from
the straight channel to the curve and back again. To minimise the impact of
these effects, measurements were taken in a 10° wide slice around the broken
line shown in 6.7. To exclude any effect of the modified pressure stencil near
the boundaries, results within 10m of the edge of the domain were disregarded.
The velocity and pressure gradient were extracted at each water column face
and the ratio:
u?/r

9(Vn-r)
was calculated. The average value of this quantity over the slice chosen was
1.0015 which indicates that the apparent centrifugal acceleration is around 0.15%
greater than that which is balanced by the pressure gradient. In other words,
this amount of velocity is lost in the scheme.

(6.21)

6.11.2 Three dimensional test

If the vertical structure of the flow is taken into account and bed friction and
vertical viscosity imposed, then the situation becomes more complex. The ve-
locity increases from the bed to the surface, however the acceleration due to
the pressure gradient is constant over the vertical. The result of this is that the
centrifugal acceleration at the surface is greater than the acceleration due to the
pressure gradient while near the bed, the pressure gradient term is the greater.
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The result is the so called secondary flow, a circulation in the radial direction
which is outwards at the surface and inwards near the bed. A realistic calcula-
tion of the secondary flow, of the sort carried out in Booij (2002) would require a
more sophisticated vertical viscosity treatment than the constant value consid-
ered here, nonetheless, this is a useful test of the model’s capability to conduct
qualitatively correct simulations of three dimensional flow.

The simulation described in the previous section was conducted with 10
layers of height 0.1m. In accordance with the z-layer approach currently im-
plemented in Delfin, the top layer varies in height as the free surface moves.
All model parameters remained the same except that a vertical viscosity of
0.02m?/s and a bottom drag coefficient of 0.0025 were imposed. Figure 6.10
shows the velocities in the slice through the domain indicated in figure 6.7. It is
clear that the expected secondary circulation is present. More complex dynam-
ics, such as an additional counter-rotating vortex at the outside of the bend as
described in Booij (2002) would require a more sophisticated viscosity model
and, possibly, a non-hydrostatic pressure term.

Figure 6.10: The cross stream component of the flow in the middle of a tight
bend viewed in the streamwise direction. The velocity field is interpolated on
a regular grid. The absence of some vectors indicates an absence of data and is
a consequence of the unstructured mesh and the thin sample region.



62

“thesis” — 2006/11/3 — 12:22 — page 62 — #75

A semi-Lagrangian advection scheme




“thesis” — 2006/11/3 — 12:22 — page 63 — #76

Chapter 7

The Coriolis term

The distinctive feature of the C grid is that no full velocity vectors are solved for
or stored. Instead, the prognostic velocity variables are the normal component
of the velocity at each cell face. Where the full velocity vector is needed, such
as in the calculation of the Coriolis acceleration, the component of velocity tan-
gential to the cell face must be interpolated at that cell face. Any interpolation
procedure has the potential to introduce accuracy and stability problems. In-
deed Zhang and Baptista (2005) abandoned the C grid in favour of a C-D grid
in which full velocities are solved for on the grounds that the C grid was in-
troducing inaccuracies in the Coriolis term. While the C-D grid introduced by
Adcroft et al. (1999) offers the advantage that velocity component interpolation
becomes unnecessary, it has been shown that it suffers from spurious modes
caused by the imbalance between the number of discrete momentum and con-
tinuity equations generated Le Roux (2001).

In preparing Ham et al. (2005) the authors encountered instabilities in Cori-
olis dominated simulations and eventually followed Zhang and Baptista (2005)
in adopting a C-D grid. However, as stated in that paper, the C-D grid approach
also exhibited noise after several months of simulation time. On the basis of this
observation and the theoretical result by Le Roux (2001) above, we now return
to a deeper analysis of the discretisation of the Coriolis term on unstructured C
grid analogues.

Espelid et al. (2000) established that geometric irregularity may give rise to
instabilities in a structured C-grid. In that paper, the authors were concerned
with the stability of the C-grid in the presence of varying bathymetry. They
studied the linear inertia-gravity wave equations and considered the eigenval-
ues of the propagation matrices of the semi-discrete (in space) partial differ-
ential equations. In the case of hyperbolic problems, these should only have
imaginary eigenvalues. Skew-symmetric matrices or matrices similar to skew
symmetric matrices have this property (see, for example, Strang, 1988). They
established that an energy conserving C-grid discretisation is achieved when
the interpolation weights of the Coriolis term are chosen in such a way that the

63
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semidiscrete system matrix is similar to a skew-symmetric matrix. Perot (2000)
also considered the problem of irregularity in C-grid discretisations. He was
concerned with unstructured C-grid schemes for the two dimensional Navier-
Stokes equations in an inertial (that is, non-rotating) frame of reference for do-
mains of constant depth. He demonstrated that energy conservative discretisa-
tions were possible given appropriate choices of discrete operator.

Le Roux et al. (2005) demonstrated the value of applying linear algebra ap-
proaches, that is, approaches based on the properties of the discretised linear
systemes, to stability problems. By analysing the null spaces of the semi-discrete
system of equations, those authors were able to demonstrate the existence of
a spurious Coriolis mode associated with a C grid discretisation on a regular
grid. In addition, Verstappen and Veldman (Veldman and Rinzema, 1992; Ver-
stappen and Veldman, 1998, 2003) have demonstrated the importance of the
spectral properties of the discrete convection and diffusion operators. Their
analysis, rather than focusing on the null space, centred on unstable solutions
of the equations. Their significant contribution was that the stability of a discre-
tised system may depend on whether the symmetry properties of the original
differential operators are preserved by the discretisation.

The symmetry preserving properties of the convection operator on a trian-
gular C grid were investigated by Wenneker (2002, pp159-166). He showed that
the operator was only symmetry preserving on structured grids. That is, grids
formed of a regular tessellation of congruent triangles. In this chapter we apply
the principle of symmetry analysis to unstructured triangular C grid discreti-
sations of the Coriolis term. We will show that the most straightforward dis-
cretisations are subject to an instability quite distinct from the spurious mode
discovered by Le Roux (2001). We will then derive a symmetry preserving in-
terpolation scheme which does not suffer from this instability.

7.1 Reconstructing the tangent velocities in a cell

The tangent velocity at the centre of a cell face must be interpolated as the linear
sum of the nearby face normal velocity components. We will approach this as a
two stage process: for each cell, the tangential velocity at each adjacent cell face
centre is reconstructed. This results in two values for the tangential velocity
component of each cell face centre. The final interpolated velocity component
is a linear combination of these two values. In this section we will focus on
developing an appropriate interpolation scheme within each cell .

To simplify the analysis, we will examine the two dimensional linearised
shallow water equations introduced in section 2.4. Since the evaluation of the
Coriolis term requires only the reconstruction of the horizontal tangent velocity
components, this two dimensional restriction of the problem retains many of
the important features of the interpolation problem.

The stability of the scheme is an important consideration in developing a
suitable interpolation. If we return to the linear algebra approach to stability
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which was pursued in section 5.5.2 then the semidiscrete linear equations can
be written in the form introduced as equation (4.19):

i o) = [c o] ) &

As before, the submatrix P encodes the discrete pressure term while C contains
the discrete continuity operator. The new addition is F, the submatrix pertain-
ing to the Coriolis operator. Once again we wish to ensure that the Coriolis
term is stable and non-dissipative. We should therefore like to ensure that the
submatrix F is skew-symmetric under some suitable diagonal scaling matrix D.
In particular this means that the velocity interpolation should be chosen such
that F has a zero diagonal.

Linearly interpolating the tangent velocities at the centres of the faces of a
triangle is equivalent to fitting a linear velocity field to that triangle. As we ob-
served in section 6.3, such fields have six degrees of freedom in two dimensions
and, if u(x) is the interpolating velocity field, the basic consistency requirement
that for each side j of triangle i:

u(xj) Ny = Uy (72)

consumes three of these degrees of freedom. It is easy to show that all possibil-
ities for such a consistent reconstruction of the full velocity vector are given by
taking the approximation of the velocity field by a polynomial from the lowest
order Raviart-Thomas space and evaluating it at some point in the triangle. This
approximation of the vector field has the property that along any line the vector
component normal to that line does not change. In any vertex of a triangle the
velocity vector is constructed out of the two adjacent face normal components
only. Along an altitude line (the line between a vertex and its opposite face
that intersects that face orthogonally) the projection of the approximated vector
field in the tangential direction of the face is constant. It follows that there is a
unique consistent tangential velocity reconstruction with no contribution from
the normal velocity of the face itself. That is to say, that there is a family of in-
terpolations which correspond to the points along the altitude to face j which
results in an interpolation of the velocity component in the direction tangent
to face j which is both constant and retains the zero diagonal of the matrix F.
It is therefore obvious that this reconstruction can be evaluated by projecting
the vector field approximation at any point along this altitude line in the face
tangent direction.

One such velocity reconstruction in a triangle is given by Perot (2000, equa-
tion 96). It can be compactly expressed using the position of the circumcentre.
Let Az; ;, be the orthogonal distance of the circumcentre to face j;, where j1, jo
and j3 are the faces of the triangular cell i. Perot’s velocity reconstruction is
given by:

Au = Uj, lj1 Awi,jl n;, + uj, ljzAaci,jQ n;, + uj, ljs A.I}i7j31’1j3, (73)
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Figure 7.1: The mesh labelling used in the discretisation of the Coriolis term.

where [;, is the length of face j;, and A; is the area of the triangle. The fact that
this reconstruction fulfils the consistency condition follows from the following
geometrical identity for arbitrary triangles:

ljl Awi,jl nm»l n;l:jl + le A-ri,jz 1’11',]‘2 anz + ljs Awi,js nm»g n;l:js = AlI (74)
If n; ;, is the outward pointing normal to triangle i on face j; then let t; ;, be
the face tangent vector in anticlockwise direction along the triangle boundary.
Thus the reconstructed tangential velocity is given by
Ujs i js * bijy (7.5)

Vj, =

Az; il
»J27]2
o Ui Mg, st +

Azl
A; ;

A;

It is directly clear that the face normal component u;, does not contribute. Thus
we have calculated the unique consistent reconstruction of the tangential veloc-
ity out of the other two faces only. Alternatively we could first reconstruct the
full vector out of the two other faces for each face individually and then project
in each respective tangential direction. Using expression (7.3) however we only
need one full vector reconstruction per triangle. Moreover the fact that it is ex-
pressed in distances between the circumcentre and the faces will be convenient
in our later analysis.

7.2 Discretising Coriolis

Having developed a consistent velocity reconstruction within one triangle which
will not contribute to the main diagonal, we proceed to discretise the Coriolis
term on the circumcentre mesh. Consider the mesh fragment displayed in fig-
ure 7.1. If we write v, ;, for the tangent velocity to face j; reconstructed in
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triangle a and vy ;, for the reconstruction from triangle b then we may construct
a linear combination of these:

Vjs = Ya,j1Va,jr T Vb,j1 Vb, (7.6)

This is the tangent velocity used to calculate the Coriolis term — fv;, at face j;.

Recall that the Coriolis terms occur only in the matrix F. In section 5.5.3 we
established that the use of an orthogonal mesh and the pressure gradient for-
mulation given in equation (5.1) results in a semidiscrete system which is skew
symmetric under scaling by the diagonal matrix D, the entries of which are de-
rived in section 5.5.3. It was further established in section 5.5.4 that no similar
scaling exists for the scheme for non-orthogonal meshes with the path integral
pressure gradient formulation given by (5.2) or, indeed, with any other scheme
based on an enlarged pressure stencil. Accordingly, to devise a pressure gra-
dient formulation which is stable and non-dissipative, we shall attempt to find
a discretisation which preserves the signed skew symmetry of the orthogonal
mesh based scheme.

Since we have chosen velocity discretisations for v;, which contain no con-
tribution from w;,, the zero diagonal required for scaled skew symmetry has
been maintained. By substituting (7.5) into (7.6), the coefficients of v, ;,, v, j,
and v, ;, can be written as:

Aza,jzl

0 Yagi A Wiy big Ve A iy tig,
AZa, il Ta,j3'j3
Vage Ao Mgy i 0 Vago — Ao i iy
. Ta,jy biy L L . Aza,jyljy L o
Yags — A Migy Cigs  Vags Ao Digy - bigs 0

When multiplied by the Coriolis parameter f, this is a (discontinuous) subma-
trix of F.

Note that the scaling matrix D is fully determined by the requirement that
the system be skew symmetric in an inertial frame of reference. This allows us
to write the following relationships between opposing elements of F

Axgy il Axg il
Azjldjlljﬂa,jl%ni,jz tig = *Azpdmljﬂam%nm “ti
a a
7.7)
JAN, P Axg il
Ay djy Ly Va3 gy - by = — AT gl Yajs =2 Rigy - bijs
a a
(7.8)
Az il Axg il
ijﬂijﬂwh%“@jz b, = _ijzdjzlj/y%jz%nids b s
a a
(7.9)

Noting that n; j, -t; ;, = —n; j, -t; j, and solving for the weights ~, we find that:

A‘raaﬁ

Ya,ji = C—5— (7.10)
’ ijl djl
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Since the linear combination weights, v, must be dimensionless, it is clear that
the free parameter c has the dimension of a depth. Note also that the same c
must apply across 7, +, that is, across all the weights associated with triangle
a. The natural choice for this parameter is therefore d,, the water depth at the
circumcentre of the triangle. This is the one depth which is shared by all the
faces of that triangle.

In the analysis presented here, the Coriolis parameter, f has been taken to
be constant. In fact, it is possible to construct a similar analysis without making
this assumption in which case equation (7.10) becomes:

Axa,ﬁ dafa

Ya,ji = (7.11)
! ijl djl fj1

where f, is the value of the Coriolis parameter in triangle a and f;, is the value
of that parameter at the centre of face j;.

7.3 Physical properties of the reconstruction

That this interpolation preserves the stability energy norm conservation prop-
erties of the orthogonal mesh based scheme derived in section 5.5.3 has been
shown by construction. Of course no such stability proof exists for the path
integral scheme on non-orthogonal meshes. Although the Coriolis term itself
preserves the energy norm (v|D|v), this does not of itself provide insight into
the behaviour of the system as a whole.

As an interesting aside, if the v we have constructed are substituted into
equation (7.6) then the following relationship is apparent:

Al’aj A.Tb i
2L dgVa, g IL dyvp g, - 7.12
A$j1 v 1 + A$j1 bvb’h ( )

djl Vj, =

Since Az;, = Az, ;, + Axyj,, the v, may be interpreted as an interpolation of
the transverse component of the depth-integrated velocity.

7.4 Eigenvalues of the systems

To illustrate the effect of the Coriolis discretisation on the symmetry properties
of the two schemes, the eigenvalue calculation presented in section 5.5.5 was
repeated with the inclusion of a Coriolis force with a value of f equivalent to a
latitude of 90° North. The results of this test are shown in figure 7.2. As would
be expected, adding the energy conserving Coriolis scheme developed for the
centroid case makes no noticeable difference to the eigenvalues. As before, the
orthogonal mesh scheme has purely imaginary eigenvalues to machine preci-
sion and therefore preserves the symmetry properties of the original equation.
The path integral non-orthogonal scheme has eigenvalues with real part but the
magnitude of these are unaffected, to machine precision, by the introduction of
the Coriolis term.
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Figure 7.2: Eigenvalues of the discrete systems for the orthogonal scheme (left)
and the path integral scheme (right). The plots in the first row are calculated
without Coriolis while Coriolis was included in the second row. Note that the
axis limits in both the real (horizontal) and imaginary (vertical) directions differ
between the plots. In particular, the eigenvalues of the circumcentre scheme are
zero to machine precision in each case.
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Figure 7.3: The mesh used for the Kelvin wave test case. The basin radius is
250km and the nominal triangle edge length is 10km

7.5 Kelvin wave test case

As a test case which stresses the balance between the pressure gradient and
the Coriolis terms, we choose to investigate the propagation of a Kelvin wave
in a shallow circular basin. A similar test case presented in Ham et al. (2005)
prompted the current analysis of the Coriolis term.

The basin was given a uniform depth of 5 m and a radius of 250km. A mesh
with a nominal edge length of 10km was generated using the algorithm pre-
sented in Legrand et al. (2000) (see figure 7.3) and the Crank-Nicholson time
discretisation was applied. This simulation was conducted at a specified lati-
tude of 45°, the latitude at which the f-plane approximation used in this scheme
is most accurate.

The initial state chosen was:

n(r,0) = 0.05e" ")/ LD o5 0 (7.13)
ug(r,0) = 0.05+/g/he""m0)/ LD o5 0 (7.14)
ur(r,8) =0 (7.15)

where Lp is the Rossby radius, in this case approximately 68km, and rg is the
basin width. In the limiting case of an infinitely large basin, this is the ex-
pression for a Kelvin wave of amplitude 5cm (Csanady, 1982). The specified
simulation time was 10 years.

7.5.1 Results

Figure 7.4 shows the evolution of the energy norm for each scheme. It is appar-
ent that the path integral scheme exhibits unstable modes very rapidly: within
two weeks of the start of the simulation. It is noteworthy how much faster
these instabilities grow than those observed in the standing wave calculations
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Figure 7.4: Energy norm against time for the Kelvin wave test case for the
first two years of the simulation. The solid line gives the result for the non-
orthogonal path integral scheme while the broken line is the result for the or-
thogonal mesh scheme. The latter scheme was run for 10 years in total and no
change to the energy norm occurred.

presented in section 5.6.3. The orthogonal scheme, however, once again con-
serves the energy norm exactly to the observable precision for the full 10 years
of the simulation. Figure 7.4 is limited to two years to make the result in the
unstable case easier to observe.

The instabilities of the path integral scheme are distinctive and take the form
shown in figure 7.5. Unstable vortices form around regions of increased or de-
pressed surface elevation. These instabilities are clearly qualitatively different
from those observed in the previous test case. The direction of rotation is con-
sistent with geostrophic flow and the phenomenon is consistent with the source
of the instability in the equations. That is, the figure is consistent with a surface
elevation gradient generating spurious velocities via the non-symmetry pre-
serving pressure gradient operator. These velocities flow under the influence
of Coriolis forming vortices around elevations or depressions. This then forms
a feedback loop in which the elevation or depression at the centre of the vor-
tex generates further spuriously elevated velocities which cause the elevation
or depression to grow still further. As noted before, the Coriolis term preserves
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Figure 7.5: Unstable rotating mode generated by the centroid scheme. The max-
imum velocity shown is approximately 0.4m/s

the discrete energy analogue but this does not prevent it inducing system states
in which other instabilities are fed.

The significance of the Coriolis term is most evident in the difference in
timescales over which this test case and the standing wave test case presented
in section 5.6.3 became unstable. Note that the two test problems have simi-
lar length and timescales and the long wave celerity and Courant numbers for
the two problems are also approximately equal. It is therefore apparent that
instability occurs very much more rapidly in the presence of the Coriolis term.
Furthermore, increasing the implicitness parameter, 6, to 0.55 did not have the
stabilising effect which was observed in the standing wave test cases.

7.6 Alternative time stepping schemes

The instabilities demonstrated in this chapter result from the spectral proper-
ties of the semidiscrete system rather than from the time marching algorithm.
When the full shallow water equations are to be solved, the maintenance of the
matrix structure described in section 4.4 demands that the time stepping of the
Coriolis term be fractional (that is, explicit) with respect to the other terms of the
momentum equation but it is not necessary that the 6 scheme be used. Indeed,
for large or three dimensional problems, the  scheme may be inconvenient and
expensive. For this reason Delfin uses an extrapolation scheme in time so that
the operator F'(u) in equation (4.6) becomes:

Flu)y = w)ymy + f (vl + 200" = o) (7.16)
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where u} , is the advected velocity calculated using the semi-Lagrangian scheme
described in chapter 6. If -y is set to 0.5 then this is the Adams-Bashforth scheme
for the Coriolis term.

7.7 Conclusion

It has been demonstrated here that the different symmetry and stability charac-
teristics of the two discrete pressure gradient operators introduced in chapter 5
are observable to a much greater extent in the presence of Coriolis.

Where the surface elevations are located at the circumcentres of the trian-
gles it has been shown that the resulting system matrix may be rescaled to be
symmetric and that the scheme exhibits a form of discretised energy conserva-
tion. A Coriolis discretisation which preserves these symmetry properties has
been derived and the stability of the resulting scheme has been both proven
and demonstrated in a test case. This discretisation uses only the properties of
the circumcentre so it is also applicable to schemes such as Casulli and Walters
(2000) in which cyclic polygons are also permitted in the mesh. This study has
been restricted to finite volume/finite difference schemes but it seems likely
that this form of analysis could also be applied to finite element schemes based
on the lowest order Raviart-Thomas element.

In the path integral scheme considered here, the pressure gradient operator
has a larger stencil than in the circumcentre case. As a result, the semidiscrete
matrix is not sign skew symmetric and hence not equivalent to a scaled skew
symmetric system. In this case, whether or not Coriolis is introduced, there ex-
ist unstable spurious modes which will be excited by suitable system states. It
should be noted that the existence of spurious modes associated with an opera-
tor is no guarantee that they will be observed in any given simulation, however
we have demonstrated here that they are particularly evident in the case of a
long running non-dissipative Coriolis dominated problem. From this we can
conclude that, especially for large scale problems in which Coriolis is impor-
tant and where there is little natural dissipation, the stability properties of the
skew symmetric circumcentre scheme are superior to those of the other mecha-
nism we have studied, and additionally provide desirable energy conservation
properties.
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Chapter 8

The Indian Ocean Tsunami

The Indian Ocean Tsunami of 26 December 2004 was a human tragedy of colos-
sal scale. It has provoked significant scientific interest both due to the desire to
create more effective warning systems and due to the opportunity that such a
large and prominent event presents to improve our understanding both of the
physical processes involved and of the techniques available for studying them.

Tsunamis are usually long surface gravity waves generated by rapid dis-
placement of the sea bed. This tsunami was driven by a massive earthquake
along a stretch of fault stretching from Sumatra through the Nicobar Islands
to the Andaman Islands. There are therefore two distinct processes of inter-
est to science. The first is the earthquake dislocation and resulting sea bed
movements while the second is the formation and propagation of the result-
ing tsunami. The conventional mechanism for determining the surface uplift
due to an earthquake is to invert the seismographic signals received at many
different recording stations (see, for example, Ammon et al., 2005). However,
Vigny et al. (2005) presented a method for determining the earth movement
associated with the Sumatra-Andaman earthquake using the GPS data of the
ASEAN/EU SEAMERGES project.

Two distinct types of observation of the propagation of the tsunami wave
are available. First, the arrival time of the first, and sometimes of subsequent,
waves is known at a number of points around the Bay of Bengal. Second, and
probably more significantly, the Jason-1 oceanography satellite passed over the
Bay of Bengal approximately 2 hours after the earthquake occurred. The sea
surface height data returned by the satellite provides a track of the major direct
and reflected tsunami waves in the Indian Ocean.

The challenge for the modeller is to fill the gap between the sea bed move-
ment generated from the GPS data and the observed arrival times and surface
elevations. Can Delfin reproduce reasonable agreement with the observed data?
Is it sensitive and accurate enough to distinguish between different GPS inver-
sions and even to suggest where errors in the initial fields may lie? We shall see
that to each of these questions the answer is a qualified “yes”.

75
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8.1 The unstructured mesh

The Indian Ocean Tsunami has two features which make an unstructured mesh
particularly appealing. First, the region in which the tsunami is generated is an
Island chain. The shape of the coastlines and the bathymetry around them will
influence the reflections generated and the steering of the waves. It is therefore
important the the islands be well resolved and accurately represented. Second,
the length scale of wave features will be shortest near coasts and in shallow
water and will be larger in deeper water as the tsunami spreads out. It will
therefore be advantageous to concentrate the highest resolution in coastal ar-
eas close to the generation of the tsunami wave and to conserve the available
computing power by reducing the resolution in the deep ocean. All geographic
data expressed in spherical coordinates was converted to metres using a Mer-
cator projection centred at 95° E, 0° N.

8.1.1 Coastlines

In a high quality mesh, the resolution at a coastline is represented will be equal
to the resolution of the mesh immediately adjacent to that coastline. Since a
mesh generator will insert coast points, if at all, directly on the intervals joining
existing coastal points, accuracy in the representation of the coastline represen-
tation is maximised if the coastline is initially sampled at the resolution which
is to apply. In fact, where the representation of the coastline is of particular im-
portance, the coastline can be sampled at very high resolution and minimum
quality requirements passed to the mesh generator to ensure that the adjacent
mesh resolution is suitable.

The coastlines were based on the World Vector Shoreline produced by the
US National Imagery and Mapping agency and published in GEBCO (2003). In
areas of particular interest such as the Andaman and Nicobar Islands, the coast-
line was sampled at 500m resolution falling back to 1km on the Sumatran coast
and parts of Thailand through 10km around Sri Lanka to 20km on Northern
parts of the Indian coast. The seaward boundaries of the domain to the South
and West were sampled at 40km.

8.1.2 Prescribed resolution

The mesh generator was provided with a nominal triangle area at each point in
the domain. While it is possible to arrive at mesh resolution criteria mechan-
ically based on domain features such as long wave speed (that is, depth) and
bathymetry gradients, in this case the areas of interest are known in advance
and do not necessarily correspond to bathymetric features. The nominal side
lengths, and hence triangle areas, of the mesh were therefore prescribed manu-
ally as follows.

A base minimum resolution of 40km was established. North and East of 75°
E, 3° S this increases to 20km and past 78° E, 0° N it is approximately 12km. In
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Figure 8.1: The mesh around Great Nicobar before and after the imposition of
a minimum angle.

addition a high resolution region with a nominal mesh edge length of 5km is es-
tablished in the tsunami generation region between Sumatra and the Andaman
Islands and extending Eastwards to Phuket in Thailand.

8.1.3 Mesh Generation

The mesh was generated using the Resolute mesh generator (Chaffey and Green-
berg, 2003) which builds on the Triangle (Shewchuk, 1996) mesh generator by
employing a node position averaging algorithm to improve mesh quality. Res-
olute employs an iterative approach to improving mesh quality while Triangle
employs a direct node insertion algorithm based on prescribed triangle area
and minimum angle requirements. A limitation of the Triangle minimum angle
algorithm is that, when applied to improve the quality of a low quality mesh, it
tends to result in clumps of very small triangles in areas where the input mesh
is of low quality. To overcome this, no minimum angle was specified for the
first several iterations of refinement and quality improvement. This resulted in
a mesh which was of a high quality in the interior of the domain but with much
poorer elements close to highly resolved coastlines. When a minimum angle
requirement of 30° was applied to the final refinement iteration, the transition
to high resolution along the costs became smoother and the associated elements
were of higher quality. Figure 8.1 illustrates this process.

The full mesh is shown in figure 8.2. It is immediately apparent that the
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Figure 8.2: The mesh used to simulate the Indian Ocean Tsunami
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Figure 8.3: The mesh around Phuket showing triangles with bathymetry above
mean sea level in grey.

unstructured mesh allows very significant concentration of the resolution in
areas of interest while allowing a relatively large computational domain. The
final mesh has 161746 triangular elements.

8.2 Bathymetry

The bathymetry used was drawn from the General Bathymetric Chart of the
Oceans (GEBCO, 2003). This resource is not entirely satisfactory. For exam-
ple, even though the World Vector Shoreline is published alongside the GEBCO
data, it fails to match the zero contour in that bathymetry, often quite signifi-
cantly. As an illustration, figure 8.3 shows the mesh around Phuket. The mesh
boundary is drawn according to the World Vector Shoreline but the elements
shown in grey are exposed according to the GEBCO bathymetry. Some of the
dry elements away from the coast may be attributable to unresolved islands,
however those adjacent to the coast indicate data errors. Actual bathymetry
measurements are known to be sparse over much of the globe and the GEBCO
data set relies extensively on interpolation. The bathymetry used must there-
fore be regarded as an approximation, especially in shallow coastal regions in
which any errors may comprise a significant proportion of the water depth. It
is doubtful whether better bathymetry data is available easily or at all for large
parts of the domain.
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8.3 Boundary and parameter values

One of the objectives of including the large low resolution region in the South
and West of the domain is to ensure the water boundaries are removed from the
area of interest of the simulation. For this reason it was considered appropriate
to treat all boundaries as closed. Wind effects are unlikely to be observable
on the time and length scales of the tsunami so the wind is ignored. Since
the region of interest is in the region of the equator, the Coriolis acceleration
is also uniformly set to 0. Since the only hydrodynamic feature of interest is
the propagation of long waves, the simulation was conducted with a single
layer. The bed roughness length was set uniformly to 5cm. The time step was
set to 30s; this value being chosen to adequately resolve the time scale of the
initial rupture and subsequent wave propagation rather than by any stability
limitation. To avoid artificially damping the tsunami wave, the simulations
were conducted with an implicitness, 6, of 0.5.

8.4 Observations of tsunami propagation

8.4.1 Satellite data

Two oceanographic satellites passed over the propagating tsunami approxi-
mately two hours after the Earthquake. The two satellites - Jason-1 and TOPEX/-
Poseidon follow almost identical orbits and repeat their tracks every 10 days
(Ménard et al., 2003). The satellite data which is relevant to this investigation is
the sea surface anomaly. This data potentially provides a cross section through
the propagating tsunami including both direct and reflected waves. Further-
more, the satellite altimetry primarily reflects the propagation of the tsunami
in deep water thereby reducing the probability that any inconsistencies are at-
tributable to the dubious accuracy of the bathymetry in shallow water.

The processed satellite data was obtained from the Department of Earth Ob-
servation and Space Systems at Delft University of Technology. The data from
the newer and more accurate Jason-1 is substantially complete over the area
of interest whereas the TOPEX/Poseidon data includes substantial gaps in key
regions. In an attempt to remove long term background signals, the data was
compared to that for the previous pass of each satellite 10 days before. In the
case of TOPEX/Poseidon, the comparison data was missing for the Northern
part of the track and the total length over which data from both passes was
available was short and fragmented. The data record for Jason-1 is once again
substantially complete and several features are well correlated indicating that
they do not form part of the tsunami signal. Figure 8.4 shows the track of Jason-
1 over the region of interest while figure 8.5 shows the data from the two passes
and the candidate tsunami signal obtained by subtracting the previous signal
from the current one.
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Figure 8.4: The Bay of Bengal and part of the Indian Ocean showing the path
followed by the satellite Jason-1 and locations at which the arrival time of the
tsunami is known.
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Figure 8.5: Above: processed Jason-1 satellite data from 16 December 2004
(light line) and 26 December 2004 (heavy line). Below: the difference of the
two signals. The double x axes show the movement of the satellite in time and
space relative to the point at which the satellite enters the domain.

8.4.2 Coastal arrival data

The arrival times of one or more tsunami peaks were recorded by tide gauges
at various points around the Indian Ocean. The advantage of this data is that it
is available at a wider geographic range than is the satellite data. However, the
wave height observed at point on the coast is strongly influenced by relatively
small scale bathymetric and coastal features which may be underresolved by
the computational mesh or poorly represented in the bathymetry and coastline
data used. Where the sea adjacent to the measurement point is shallow, inaccu-
racies in the representation of bathymetry may also affect the arrival times. In
addition, underresolved or inaccurate local data raises the probability that local
reflections will be incorrectly modelled so data after the initial incident wave is
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Site name Location Arrlval . Data source
time (min)

Sibolga 1°45' N 98° 46’ E 161 Bakosurtanal
Tuticorin 8°45' N 78° 13’ E 208 NIO India
Vizakhapatnam 17° 42’ N 83° 18’ E 155 NIO India
Colombo 6° 59’ N79°51' E 180 UHSLC
Male 4° 11" N 73°31'E 190 UHSLC
Diego Garcia 7°14' S72° 26’ E 230 UHSLC
Hanimadhoo 6°46' N73°1'E 220 UHSLC
Gan 0°41'S73°9E 198 UHSLC
Port Blair 11°40' N 92° 30’ E 30

Table 8.1: Arrival times of peaks and troughs in minutes after the commence-
ment of the earthquake (0159 GMT). NIO is the Indian National Institute for
Oceanography, Bakosurtanal is the Indonesian National Coordinating Agency
for Surveys and Mapping, UHSLC is University of Hawaii Sea Level Center.
Data compiled by Deepak Vatvani of WL|Delft Hydraulics except for Port Blair
which was published in Neetu et al. (2005).

unlikely to be reproduced by the model. However, despite these caveats, the
coastal observations of arrival time still provide a resource which can be used
to test and validate the model and its initial conditions. Table 8.1 shows the
arrival times of the initial tsunami wave at various points around the Indian
Ocean while figure 8.4 shows the locations of these points. With the exception
of the data at Port Blair, the arrival times were determined from tide gauge data
and are accurate to within 5 or 10 minutes. The arrival time of the initial large
wave is shown in each case. A smaller wave is apparent in the Sibolga tide
gauge at 120 minutes. The Port Blair result is the reconstructed value given in
Neetu et al. (2005).

8.5 Initial conditions

8.5.1 Treatment of initial conditions

The sea surface displacement which initiates the tsunami is a result of the dis-
placement of the sea floor. In this investigation this is modelled by simply
displacing the sea surface instantaneously by the bed uplift predicted by the
GPS model. A more accurate approach might be to displace the bed and allow
the resulting forces to displace the water however those forces are not repre-
sentable in a hydrostatic model. Furthermore, the shallowness of the water is
such that, even if it is assumed that the water is displaced not upwards but
radially outward in all directions, the surface displacement will occur within
a few kilometres of that predicted by simply moving the sea surface with the
bed. Compared with the length scale of the long shallow tsunami waves this
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Figure 8.6: Modelled sea bed displacements caused by the Andaman-Sumatra
earthquake. This model is based on the existing USGS fault geometry. The
contour interval is 0.5m. The broader contour is at Om.

error is unlikely to be significant. The Finel non-hydrostatic model (Labeur and
Pietrzak, 2005) has been used to model the initial stages of tsunami propaga-
tion driven directly by the motion of the sea floor. The results indicate that the
assumptions made in this paragraph are valid.

8.5.2 Calculation of the initial fields

The techniques used to calculate the initial fields are presented in Pietrzak et al.
(2006) and the details are beyond the scope of this work. Two different uplift
fields were received differing in the number of GPS data points used to con-
strain the modelled fault movement and in the geometry of the fault used in
that model. The first data set (figure 8.6) was based on known USGS data while
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Figure 8.7: Modelled sea bed displacements with fault geometry based on af-
tershock data. The contour interval is 0.5m. The broader contour is at Om.

for the second set (figure 8.7) aftershock data from the 2004 earthquake was
used to construct a new fault geometry. A notable feature of both data sets is
the region of no displacement coincident with the Nicobar islands. This gap is
not present in the reconstructed slip fields based on seismic data (Bilham, 2005).
The two sets of data differ in significant ways:

1. The maximum magnitude of the uplift increases from approximately 3.5m
in the first field to around 6m in the second field.

2. The peak of the Northern part of the displacement is further South in field
two than in field one.

3. The secondary peak to the East of the Northern displacement is absent in
the second field.
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4. The Southern peak is located much further West and the second peak to
the East is absent in the second field.

8.5.3 Incorporating the rupture velocity

A feature of the initial surface displacement which does have a significant im-
pact on the propagation of the tsunami waves is the differing times at which
the rupture occurs at different locations along the fault. In the Indian Ocean
Tsunami the region of significant displacement is over 1000km long and the
rupture propagated from South to North at speeds in the range 2.2-3.7km/s
(Kriiger and Ohrnberger, 2005; Vigny et al., 2005). A consequence of this is that
the extreme Northern end of the rupture lags the earthquake by approximately
8 minutes. This has consequences for the arrival times of the Northern portion
of the wave.

This is implemented in the model by applying the surface displacement pro-
gressively. Vigny et al. (2005) lists a set of points giving the position of the rup-
ture front every thirty seconds from the beginning of the earthquake at 0159
GMT. This data can be used to construct a decomposition of the prescribed sur-
face displacement such that the surface can be progressively perturbed at each
time step.

let R = {ry..r17} be the set of points indicating the maximum extent of the
rupture along the fault in 30 second increments. Then for each ¢ < 17 define:

¢i(x) = max (0, min (1, be—r) (rips — i) )) ~> %) (81

Irip1 — rs2 =

For the special case of i = 17 we have the residual weighting:
$r7(x) =1—= Y ;(x) (82)
§<17

This decomposition reduces to a set of one dimensional P basis functions along
the fault line itself. The surface elevation displacement to be applied at time
step i is therefore given by:

Ani(x) = ¢i(x) Angps (%) (8.3)

where Angps(x) is the prescribed surface displacement based on the GPS data.

8.5.4 Simulations run

To determine the sensitivity of the model to the differences in the initial fields
provided and to attempt to evaluate the significance of the features highlighted
in sections 8.5.2 and 8.5.3, several simulations were conducted. Simulations
were undertaken using each of the two initial fields and incorporating the rup-
ture information from the preceding section.
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Based on the results of these initial simulations, the second field was chosen
as the source field for simulations designed to test various features of the initial
conditions. To investigate which observed data constrained which parts of the
initial field, simulations were conducted using only the Northern and only the
Southern parts of the input field. The field was split in the region of minimal
displacement and the inactive part of the displacement was set to 0.

To determine the importance of including consideration of the rupture ve-
locity, an additional simulation was carried out using the field applied instantly
at 0159 GMT.

8.6 Performance comparison with the Hansen scheme

In section 5.6.2 the Hansen scheme was shown to give similar results for long
wave propagation to the 6 scheme. In this series of simulations, the time step is
chosen to resolve flow features rather than on the basis of a maximal allowable
Courant number. This raises the question of whether, for such a problem, the
Hansen scheme might be more efficient. The initial maximum wave Courant
number with a 30s time step was 4.64 while the mean wave Courant number
was just 0.494. To ensure that the maximum wave Courant number stayed be-
low 1, the time step for the explicit simulation was set to 5s. This resulted in
an initial maximum wave Courant number of 0.773. The average time taken to
simulate 30s of simulation time using he Hansen scheme was 29.25s. This com-
pares with 31.01s for the § scheme for the same problem. The Hansen scheme
is therefore not substantially faster for this problem than the 6 scheme so the
robustness of the 6 scheme at larger time steps makes it the better choice.

8.7 Results

Figure 8.8 shows the surface elevations along the satellite track from the initial
simulations using each of the initial data fields. The surface elevation was inter-
polated in time and space to correspond with each of the measurement events
in the satellite data.

Figure 8.9 shows the propagation of the wave fronts for the second field at
four instants in time from shortly after the beginning of the simulation until
shortly before the satellite pass. The initial wave fronts in both the North and
the South are captured to some extent by all of the simulations. The subsequent
waves, corresponding to the region from 2500km to 4000km along the satellite
track are less well represented.

If the Southern wave fronts at around 2000km on the satellite track are con-
sidered then it is immediately apparent that the results from the first initial
field are the least satisfactory. The waves pass the satellite track hundreds of
kilometres to the North of the observed waves and have only around half the
amplitude. It is not clear that the third peak, that between 2500km and 3000km,
is resolved at all.
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Figure 8.8: Surface elevation along the satellite track. The upper plot is from
initial field one while the lower plot results from initial field two. The satellite
signal is included for comparison.

The result of the second simulation in this region is significantly better. The
second of the double peaks at 2000km is captured and both the amplitude and
the position are correct. The second peak, at 2400km, is also captured and there
is some indication that the third peak is also represented. Unfortunately the
first peak is completely absent. In addition the second trough (that at around
2300km) is far too deep and the third trough (at around 2500lm) is completely
absent.

At the Northern end of the track, the differences in the results are less sig-
nificant. In each cases the two peaks are present in the correct location and
with approximately the correct amplitude. However, the second simulation is
missing part of the peak at around 4000km and may be lagging slightly at the
extreme Northern end of the track.

Figure 8.10 shows the results of simulations based on variants of the second
input field. The first two plots make it clear that the most important waves are
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Figure 8.9: The propagation of the tsunami wave simulated using initial field
two. From top to bottom, the images are taken at 750s (12.5min), 1350s
(22.5min), 4800s (80min) and 6000s (100min). The satellite pass occurs shortly
after the last image.
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Site Observed vl v2 v2(S) v2(N) v2(Instant)
Sibolga 161 141 134 134 189 133
Tuticorin 208 - 227 226 234 225
Vizakhapatnam 155 154 166 179 164 160
Colombo 180 185 175 175 180 173
Male 190 222 205 204 212 202
Diego Garcia 230 239 225 225 - 223
Hanimadhoo 220 - 230 228 238 228
Gan 198 217 203 203 214 201
Port Blair 30 31 34 105 34 26

Table 8.2: Tsunami arrival times in minutes after the commencement of the
earthquake (0159 GMT). From the left, the data are the observed arrival time
and the modelled arrival times using the first field, the second field, the North-
ern portion of the second field, the Southern portion of the second field and the
second field assuming that the entire fault ruptured at the same instant. The
blanks indicate that no peak arrived at that point during the simulation.

those caused by the Southern part of the rupture. In particular, the third peak
is much better resolved when only the Southern part of the rupture is used to
drive the simulations. This result also illustrates the fact (which is confirmed
by animations of the simulation) that, of the Southern peaks, only the first is
an incident wave. The subsequent peaks are reflections from Sumatra. It is
important to note, however, that the Northernmost peak is only recovered if
the Northern rupture data is included.

The bottom plot in figure 8.10 shows the effect of including the rupture
propagation data in the simulations. Interestingly, the signal in the South is
affected much more than that in the North.

Table 8.2 shows the arrival times of the first tsunami wave at various ob-
servation points. While recalling the limitations of such comparisons raised in
section 8.4.2, there is some important information which can be recovered from
this data. First, very few of the arrival times are the result of the Northern part
of the initial fields. The most obvious exception is Port Blair, however at this
point all of the model results are close to the observation. The eight minute
difference in the arrival time which results from the inclusion of rupture speed
information in the initial fields illustrates the significance of this data. The re-
sults at Vizakhapatnam are also dominated by the Northern part of the field
but here again the relative differences between the first and the second field are
minor.

In the West of the domain, the arrival times at locations other than Colombo
are generally later than the observed time. This is consistent with the missing
leading peak in the input data. These results are also significantly better for the
second data set than for the first.
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Figure 8.10: Surface elevation along the satellite track. The first two plots are the
result of applying only the Northern and only the Southern parts of the second
initial field respectively. The lower figure shows the results for the second field
if the rupture is assumed to be instantaneous. The satellite signal and the model
result for the full second data set are included for comparison.
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8.8 Discussion

The simulations presented in this chapter are subject to two unknown variables:
the accuracy of the initial conditions and the accuracy of the model. The model
errors which are likely to be manifest in this problem are loss of amplitude due
to excessive dissipation and phase speed errors in waves. The amplitude of the
wave peaks resulting from the second initial field appears to be approximately
correct however the troughs in the model output overshoot significantly. There
are two possible causes of this. Either the model is essentially accurate and the
inaccuracies in the troughs are due to the initial fields or the magnitude of the
initial uplift is excessive in a manner diabolically correlated with the dissipation
of the model. The former seems more likely.

Much more can be said about the propagation speeds exhibited by the model.
For the second initial field, the peaks and troughs match at several points. Most
notably, in the interval between 2000 and 3000 metres. This very strongly sug-
gests that the propagation speeds are correct.

If it is assumed that the propagation speeds and dissipation exhibited by
the model are essentially correct, then this information may be used to examine
accuracy of the initial conditions used. The correlation of the model results
with the Satellite data suggests that Southern part of the initial displacements is
similar in form to that presented in the second data field and that the maximum
in the first field is both too low and too far to the North and East. However, it
seems apparent that there must be further displacement activity to the South
or West of that presented to account for the peak at approximately 1900km on
the Satellite track. The existence of significant displacement to the South of that
present in the fields used here is reported in the fields based on seismic data
presented in Bilham (2005) and Lay et al. (2005) (see especially supplementary
figure S8). The hypothesis that the displacement must extend further is also
supported by the general delay in arrival times at points in the South-West of
the domain.

In the North there are fewer conclusions which may be drawn. The results
at Port Blair and Vizakhapatnam agree with the observed data to within the
accuracy of the tide gauges. The general picture is therefore that the lack of
data makes it difficult to form strong conclusions concerning the relative merits
of the different initial fields for the Northern part of the rupture. In particular,
the differences between the initial fields have a minor impact on the correlation
with the satellite track.

8.9 Conclusion

The coincidence in amplitude and arrival times of the various peaks in the
tsunami wave between the model, especially when driven by the second ini-
tial field, and the observed data suggest that Delfin is sufficiently accurate to
provide useful insights into tsunami propagation.
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It is further possible to draw some conclusions about the relative merits of
the initial fields generated by the GPS based fault model. In particular, it is
possible to conclude that the Southern part of the second initial field is signifi-
cantly more accurate that the corresponding part of the first initial field. Given
the additional information which was used in constructing this field, this is re-
assuring. The arrival time and satellite data misfit in the South of the region
also supports the hypothesis that there is a missing region of bed displace-
ment to the South-West of the fields resolved by GPS. This coincides with the
seismic data. Despite this limitation, even using the first version of the initial
data, which was based on information available before the tsunami, the Delfin
simulations conducted here indicate that the GPS signals do predict the fault
movement sufficiently well that the direction and approximate amplitude of
the tsunami can be predicted. With sufficiently fast reporting mechanisms and
efficient inversion and simulation software, this indicates that GPS data could
be used as part of an operational tsunami warning system.
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Chapter 9

Tides in the North Sea

The simulation of flow and transport processes in the North Sea is an ultimate
goal of the research program of which this projectis a part. In addition, the tidal
processes in the North Sea provide a real world case study which compliments
that of the Indian Ocean Tsunami. While the Tsunami problem is driven by its
initial conditions, the tides of the North Sea are driven by incoming tidal waves
on the Atlantic boundary of the model domain. The Tsunami occurs very near
the equator so the Coriolis acceleration is negligible, while the tides in the North
Sea are primarily Kelvin waves in which Coriolis is significant and essential. A
discussion of Kelvin waves and their role in tidal propagation can be found in
Gill (1982) chapter 10. The tides of the North Sea have different scales to the
tsunami: the domain is much smaller but the time scale is much longer.

Understanding and predicting tidal processes in the North Sea is an impor-
tant task of Rijkswaterstaat, the Dutch Directorate for Public Works and Water
Management. The current generation of models used for this task, Waqua and
Triwaq are of structured curvilinear C grid type. In particular, the Dutch Con-
tinental Shelf Model, the current version of which is referred to as DCSM98, is
used to simulate tidal processes over the whole North Sea (Gebraad and Philip-
part, 1998).

Fully calibrating a continental shelf model requires extensive tuning prefer-
ably using data assimilation techniques which are not yet a part of Delfin. Pro-
duction of a full continental shelf model is therefore beyond the scope of this
project. On the other hand, it is a useful test of the basic formulations presented
here to conduct untuned simulations of the North Sea in the hope of producing
results that are sufficiently correct that results which match or exceed the exist-
ing operational results are feasible with a tuned and extended future version of
the model. To this end, simulations were conducted using the bathymetry and
boundary data available for DCSM98.

95
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Figure 9.1: The mesh used in DCSM98. The mesh resolution is approximately
8km

9.1 The mesh

To provide modelling of processes from the continental shelf scale down to the
coastal flow along the Dutch coast, the current operational system employs a hi-
erarchy of nested models. The continental shelf model is run at approximately
8km resolution while the nested models have successively higher resolutions.
Delfin, on the other hand, can accommodate meshes in which a very large res-
olution at the edge of the continental shelf is smoothly refined in space so that
coastal regions of interest are represented at far higher resolution. Figure 9.1
shows the grid used in the current operational model DCSM8 while figure 9.2
shows the mesh employed in the Delfin simulations presented here. The longest
mesh sides present in the mesh are approximately 20km long and the resolu-
tion increases as a function of distance from the coast so that much of the coastal
zone is resolved with a resolution of approximately 5km and the coastal reso-
lution is approximately 1km. The meshes were once again generated using
a modified version of the Resolute mesh generator (Chaffey and Greenberg,
2003). There is a significant difference in the number of degrees of freedom
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Figure 9.2: The unstructured mesh used in the simulations. The mesh resolu-
tion varies from 20km to 1km.

in the meshes. The unstructured mesh presented here consists of just under
120 000 triangular elements while the DCSM8 mesh notionally consists of just
under 35000 cells, although a significant proportion are inactive.

The justification for choosing this mesh configuration is that the tidal wave
is a Kelvin wave trapped against the coast so the most significant meshing pri-
ority is that the coast and coastal region are well resolved. At this stage the
mesh is non-discriminatory in that all coastal regions are resolved with the
same resolution. There is a case, as a more complete continental shelf model
is constructed, for increased resolution in areas of interest, such as the Dutch
coastal zone. The boundary placement is also less than optimal. The bound-
aries are collocated with those of DCSM98 to facilitate the use of the same
boundary conditions. However, an advantage of modelling the whole conti-
nental shelf is that the boundaries may be placed in deep water where long
wave velocities are low and boundary effects are therefore minimal. In the
case of the DCSM98 mesh, and hence of the unstructured mesh presented here,
the mesh boundary off Ireland remains on the continental shelf and the North-
Western inclined boundary is on the shelf around the Faeroe Islands (which
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are just outside the mesh). Since the cost of expanding the unstructured mesh
in regions of low resolution is minimal, a future improved mesh could extend
significantly further into the North Atlantic.

Despite the limitations of this domain, it is also immediately obvious that
the unstructured mesh enjoys significant advantages over the existing struc-
tured grid. The staircase representation of coastlines which is evident in the
structured grid is absent from the unstructured mesh and many coastal fea-
tures which are absent in the DCSM98 grid are present in the structured mesh.
Indeed, there are several islands which are either much reduced, or absent in
the DCSM98 grid. Finally, important straights are much better resolved in the
unstructured mesh. In particular, the Straits of Dover, which are only 3 grid
cells across at the narrowest point, are around 20 mesh triangles across and this
could easily be increased. Even taking into account the larger number of de-
grees of freedom in the unstructured mesh, it is clearly a better representation
of the model domain.

9.2 Model parameters and boundary settings

The simulation is driven solely by the surface elevation on the Atlantic bound-
aries. The data used was that used in DCSM98 although for simplicity of anal-
ysis, only the diurnal lunar (“M2”) component of the tide was specified. This
component of the tide is one for which observations as well as the DCSM98
results are available. The bathymetry used was that of the existing mesh. This
has the drawback that the bathymetry has already been down-sampled to the
8km resolution. This is particularly an issue in the coastal region where the ad-
ditional coastal features resolved by the model may be recorded as dry or with
bathymetries with a very large relative error. On the other hand, the limitations
of publicly available bathymetry data were discussed in section 8.2. In addition,
the bathymetry used has been heavily tuned to the DCSM8 model including to
correct for the poor resolution of the Straits of Dover (Gebraad and Philippart,
1998). A future closer collaboration with Rijkswaterstaat including access to a
more complete bathymetry and coastline database will remedy this limitation.

Modifications of the bottom friction parameters form the most important
part of the tuning of DCSM98. Since this option is not currently available for
Delfin, a single relatively low roughness length of 1cm was specified for the en-
tire domain. The implicitness parameter ¢ was set to 0.55 and a time step of
10 minutes was chosen. At almost 75 time steps per tidal cycle, the M2 tide
is thus well resolved in time. The simulation was run for 10 days of simula-
tion time. The latitude used in the calculation of the Coriolis parameter was
set to 55° which is a reasonable value for the Southern North Sea although a
variable value would clearly be preferable. The path integral pressure gradient
formulation was employed along with an earlier version of the tangent velocity
interpolation scheme than that discussed in chapter 7. The simulation was, like
the DCSM98 model, conducted with a single layer in the vertical.



“thesis” — 2006/11/3 — 12:22 — page 99 — #112

9.4 Conclusion 99

9.3 Results and discussion

To evaluate the outcome of the simulation conducted, part of the data presented
in Gebraad and Philippart (1998) is used. The observed M2 tide at the points
shown in figure 9.3 is compared with the available results for the two mod-
els. Figure 9.4 shows a visual representation of the tidal phase and amplitude
at each point and for each data source while tables 9.1 and 9.2 give the rela-
tive performance of the models in amplitude and phase respectively. The basic
characteristics of the tidal wave are that it is driven by a periodic surface dis-
placement in the North Atlantic which progresses from South to North along
the domain boundary. Inside the domain, this causes a wave to progress up
the English Channel and back each tidal cycle. More significantly, a Kelvin
wave is generated which passes in an anticlockwise direction down the British
coast and along the Dutch coast towards Denmark. No instabilities of the sort
discussed in chapter 7 were observed, although it must be noted that these sim-
ulations were conducted for a relatively short period of 10 days model time.

The first observation which must be made is that the Delfin results are not
as accurate as those of the DCSM98 model. However, the degree of the inaccu-
racy varies in space. Generally, away from the North Sea coast, both the phase
and amplitude of the Delfin results are close to those of DCSM98. There is a
structural lagging phase error evident in the Delfin results which, at least in
the deeper areas, is a little surprising since the M2 tidal wave should be well
resolved in space and time by the parameters given. As the tidal wave passes
down the East coast of the United Kingdom there is an immediate amplitude
loss which generally increases as the wave progresses.

Despite the general result that the Delfin simulation is less accurate than the
DCSM98 simulation, there are individual points at which Delfin is more accu-
rate than DCSM98. For example, at STATIONK13A Delfin is the better perform-
ing model for both variables. At the stations TEXWGT and DENHDR the Delfin
result is also generally the better one. It is significant that these sites are near
or on the Dutch coast and are therefore in the region in which the model gener-
ally performs relatively poorly. In these cases, and especially that of DENHDR
(Den Helder), the higher resolution around the coast and islands may also play
a part since the Wadden Sea and Wadden Islands are absent in the DCSM98
mesh.

The loss of amplitude and phase occurs largely in the shallowest areas tra-
versed by the tidal wave. This suggests that the effective dissipation in these ar-
eas is excessive. Given the good results for long waves in deep water presented
in chapter 8, this suggests that some combination of tuning the bed friction pa-
rameters and better bathymetry and coastal data might produce substantially
better results.
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9.4 Conclusion

The objective of this simulation was to demonstrate at a proof of concept level
that Delfin is a suitable model for tidal simulations in the North Sea. The re-
sults presented in the previous section indicate that, while the untuned Delfin
results are generally less accurate than the highly tuned DCSM98 results, the
results are sufficiently promising that it is possible to conclude that a properly
tuned Delfin simulation would be likely to produce very good results indeed.
Furthermore, at certain locations there is some evidence that the superior repre-
sentation of coastlines provided by Delfin leads to results which surpass those
achieved with the current generation of structured grid models.
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Station Obsel-rved DCSM98 Delfin
amplitude Error (%) Error (%)

J76-57 24.5 -22.6 -25.5
J76-55 50 -25 -274
J76-54 66.6 -5.3 -14.7
WICK 101.1 7.8 -11.1
ABERDEEN 131.096 2.8 -18.5
NORTHSHIELDS 158.1 -0.6 -18.6
LOWESTOFT 70.361 1.4 24
DOVER 225.323 6.9 -21.3
CHERBOURG 187 0.6 -16.5
DIEPPE 313 -1.5 -14.4
OOSTENDE 179.56 4.6 -14.7
HOEKVANHOLLAND  77.97 4.2 -15.2
IJMUIDEN 67.5 -2.3 -21.2
DEN HELDER 65.082 12.3 -4.2
HELGOLAND 108.6 -10.1 -27.6
FOULAISLAND 54.3 5 -6.5
PORT-MAGEE 117.5 -0.7 0.5
EKOFISK 28 2.4 -6.2
WESTGAT 65.425 9.1 -6.9
S3 92.7 2.2 -6.6
S1 108 2.4 -4.4
S8 55.3 -6.3 9.7
S14 1124 -1 2.7
C3 115.7 -3.5 2.7
C5 111.6 -4.3 -5.5
STMARYS 176.5 0.3 -8.2
MALINHEAD 107.5 7.6 17.5
HANSTHOLM 12.2 59.5 100.0
STATIONK13A 53.225 11.2 0.5
STATIONEUROO 72.937 2.1 214
ROSCOFF 269 -7.9 -12.3
HOLYHEAD 181 35 -5.1
HARLINGEN 82.984 -8.2 -5.4
DELFZIJL 134.715 -3 -33.1
VLISSINGEN 174.212 2.3 -23.1
WEST-TERSCHELLING  79.797 -7 -8.8

Table 9.1: M2 tidal amplitude observed at stations around the North Sea and
the relative error for DCSM98 and Delfin.
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Station Observed DCSM98 Delfin
phase Error Error
J76-57 286 -5.1 2.3
J76-55 318 -0.9 0.2
J76-54 323 -3.8 -14
WICK 322.2 -0.7 7.2
ABERDEEN 25.1 1.2 -0.7
NORTHSHIELDS 89 -0.4 2.4
LOWESTOFT 259.9 -6.2 -24
DOVER 331.9 0.7 -11.6
CHERBOURG 230 1.9 -1.6
DIEPPE 310 0.6 -5.6
OOSTENDE 5.3 2.5 -22.3
HOEKVANHOLLAND 56.4 2.2 -10.9
IJMUIDEN 100.3 1.6 -10.9
DEN HELDER 162.4 -6.3 9.8
HELGOLAND 312 -1.4 -18.7
FOULAISLAND 264 -5 -6.5
PORT-MAGEE 123 -1.3 -1.3
EKOFISK 85 5.2 -10.9
WESTGAT 148.6 0.2 -2
S3 205 -0.6 -1.1
S1 179 2.9 -1.9
S8 283 -0.6 24
S14 163 2.2 2.1
C3 107 -0.4 0.5
C5 116 -1.9 -1.8
STMARYS 130.1 1.2 2.2
MALINHEAD 177.7 -7.8 -14.4
HANSTHOLM 105 -17 -34.7
STATIONKI13A 176.6 4 -1.7
STATIONEUROO 25.7 -0.9 -17
ROSCOFF 142 -5.2 -3.7
HOLYHEAD 291.9 44 -1.1
HARLINGEN 249.6 2.1 -37.1
DELFZIJL 305 -0.5 -38.9
VLISSINGEN 30.5 54 -25.8
WEST-TERSCHELLING 219.1 15.3 -20.9

Table 9.2: M2 tidal phase observed at stations around the North Sea and the
error in degrees for DCSM98 and Delfin.
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Figure 9.3: Approximate locations of the stations at which tidal observations
were available for comparison.
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Figure 9.4: The phase and amplitude of the observed M2 tide (black), DCSM98
(blue) and Delfin (red). The length of the arrows gives the amplitude while the
phase is the angle measured anticlockwise from the x axis.
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Chapter 10

Conclusions

We now return to the dual purposes of this research project as laid out in the
introduction to this thesis. In the first instance, this project is an attempt to
produce an unstructured C grid scheme with improved numerics. The other
important goal was to produce a model, Delfin, which can act as a base both for
further numerical research and as a tool for investigating the physics of coastal
and ocean flows.

10.1 Numerical Developments

Delfin differs from other Casulli and Walters class models in three significant
numerical details. In each of these cases, it is suggested that the Delfin approach
marks an improvement on what has gone before.

The path integral pressure gradient term was adopted from (Wenneker, 2002)
and applied here to this class of models for the first time in chapter 5. It has been
demonstrated here that this is an effective way of removing the mesh orthogo-
nality constraint which applies to other similar models. This in effect reduces
the demands which the model places on grid generation software. this is not
only a practical advantage, it is also philosophically pleasing in that it moves
the model a step closer to answering the question posed rather than specifying
which questions may be posed. However, it is accepted that this modification
does result in a discretised system with less desirable properties. Indeed, in
the presence of significant Coriolis forcing, this limitation may become over-
whelming. It was also shown that, even in the absence of Coriolis, the risk of
the generation of spurious pressure modes remains, although the presence of
any dissipation in the scheme appears to damp this instability.

Throughout this work, the 6 scheme has been used as the primary timestep-
ping scheme. In sompe places this has been compared with the Hansen scheme,
an explicit timestepping method. The key result here is that for the large scale
but short duration tsunami problem addressed in chapter 8, the Hansen scheme
was not significantly faster than the § scheme. Taking into account the well
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know stability limitation of explicit schemes, which was demonstrated for Delfin
in section 5.6.2, it may therefore be concluded that the choice of a semi-implicit
pressure scheme is the preferable one for this sort of unstructured mesh model.

In chapter 6, the problem of tracking trajectories in order to construct a semi-
Lagrangian advection scheme was considered. The solution proposed was to
construct an interpolating velocity field which readily admits analytic integra-
tion in time. By doing so, the difficulties caused by the inherent error in a nu-
meric integration scheme are avoided. in particular, the scheme constructed is
free of trajectories which cross each other or closed boundaries. The numeri-
cal tests of the advection scheme indicate that, as with all first order upwind
schemes, there is a degree of artificial dissipation caused by the scheme. On
the other hand, the results of chapters 8 and 9 appear to indicate that, for long
wave problems at least, the advection scheme does not significantly impair the
solution. Nonetheless, it is not possible on the basis of the work conducted here
to exclude the possibility that this sort of scheme will prove unsuitable for some
problems for which Delfin would otherwise be a good choice of model.

The instability which was observed in the Coriolis term illustrates the diffi-
culties which can occur when one strays outside the relative paradise of sym-
metry and orthogonality offered by a structured grid. The primary new con-
tributions that this work makes are the rigorous derivation of a symmetry pre-
serving and stable discrete Coriolis operator for schemes utilising the orthogo-
nal mesh pressure gradient formulation, and the demonstration that the lack of
symmetry in the path integral pressure gradient operator results in significant
instabilities in the presence of Coriolis.

10.2 Delfin as a tool for ocean science

The two application chapters, chapters 8 and 9 represent the first attempts to
use Delfin to answer questions about ocean and coastal dynamics. In particular,
the results documented in chapter 8 indicate that Delfin was able to reproduce
the important observed features of the Indian Ocean tsunami. Furthermore, the
level of reliability and precision which was achieved enables useful distinctions
to be drawn between the initial fields supplied but also supports the validity of
that initial data. In this way, Delfin both adds weight to the proposition that GPS
data may be an effective alternative to conventional seismic data in recovering
tsunami-generating ocean bed displacements and also provides a constructive
critique of the GPS solutions provided.

The results of the simulations of the North Sea presented in chapter 9 are
much more preliminary than the tsunami results so it is much more difficult to
draw definitive conclusions. Nonetheless, the ability to conduct tidal simula-
tions in coastal seas such as the North Sea is important and it is therefore signif-
icant that Delfin was able to capture the essential characteristics of the M2 tide
without calibration. This holds out the hope for the future that a fully calibrated
simulation of the North Sea out to the edge of the continental shelf will provide
very accurate results. The North Sea simulation also provides the plainest of
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evidence in favour of an unstructured mesh approach. The difference between
the unstructured mesh used in the Delfin simulations and the structured mesh
used in DCSM98 is stark and the superiority of the unstructured mesh in rep-
resenting the complex coastal geometry is clear.

10.3 Recommendations for future work

The possible future directions for this research fall into two broad categories.
First, there are potential improvements which might be made in the schemes
presented here and second, there are additional terms and techniques for which
schemes might be chosen and implemented in order to increase the capabilities
of the model.

The analysis of Coriolis discretisations presented here at the very least raises
serious questions about the viability of the path integral formulation of the
pressure gradient operator. The question of whether a centroid based finite
difference operator is preferable to, for example, a finite element scheme based
on Raviart-Thomas elements remains open.

Asnoted above, it is not clear that a streamline upwinded advection scheme
is always the best choice. It would therefore be useful to investigate the perfor-
mance of Delfin in problems where the advection is of particular importance.
Constructing alternative advection schemes which preserve the block diagonal
momentum matrix is a particularly challenging opportunity.

Where the path integral pressure gradient term is suitable, it produces a
model which is more general than it would otherwise be but at the cost of a lin-
ear system which is, at least in some senses, harder to solve. Although success
has been had with the generalised conjugate gradients method, the question
remains as to whether a more modern scheme and/or an appropriate precon-
ditioner might be more efficient.

As an alternative or as a supplement to a more efficient matrix solver, addi-
tional modelling capability would also be realised by the creation of a parallel
version of the model. That the existing sparse matrix library already has a par-
allel version reduces the amount of non-research programming which would be
necessary to achieve this goal. Parallelisation will particularly aid the running
of the model with a large number of layers in the vertical since the addition of
layers is an almost embarrassingly parallel problem.

A key missing feature of Delfin is scalar transport. This is a prerequisite
for any sort of density current simulation as well as for many forms of turbu-
lence model. Once an effective transport scheme was in place, either a pressure
gradient formulation which takes density into account or the incorporation of
turbulence modelling would be logical next steps.

Along with density currents, non-hydrostatic effects form an important class
of three dimensional phenomena which may occur in a coastal or ocean context.
It may be possible to incorporate non-hydrostatic correction terms, possibly in
the manner proposed in Stelling and Zijlema (2003), and hence to simulate these
phenomena.
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Currently, Delfin incorporates a z-layer vertical discretisation. There is no
inherent reason why a -, isopycnal or hybrid coordinate system should not
be used instead, and the layer update mechanism in Delfin has been designed
to facilitate this. There are clearly problems for which another vertical coordi-
nate system would be more appropriate and the model could be expanded to
accommodate this.

A research project quite distinct from the scheme expansion and improve-
ment activity suggested above would be to development of a data assimilation
capability for Delfin. This capability is particularly important if Delfin is to be
calibrated to produce highly accurate results for regions such as the North Sea.

Finally, and most radically, it would be arrogant and foolhardy in the ex-
treme to suggest that this scheme is necessarily the best one which may be
implemented on a mesh with this or a similar placement of variables. Delfin
has therefore been designed to facilitate the gutting of the numerics partially
or completely while leaving the supporting data management routines, which
comprise most of the lines of code, intact. A future research project which
developed and implemented a very different approach to that presented here
would therefore still stand to benefit from this work.
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Appendix A

Some vector calculus

In this appendix the vector calculus notation used in the main body of the thesis
is introduced. The Eulerian representation of the material derivative is derived
and a proof of the Leibniz integration rule used in section 2.3 is given. It is
assumed that the reader is familiar with single variable calculus and the defini-
tion and basic properties of the partial derivative.

The operators in this appendix are given in terms of the Cartesian coor-
dinate system. It is important, however, to note that the operators remain
unchanged in any orthonormal coordinate system, although the scalar partial
derivatives which are their components will change with the basis.

A.1 Product operators

Throughout this thesis the Euclidean inner product, also known as the dot
product or scalar product is denoted by the symbol -. In Cartesian coordinates
it is written:

a-b=a,b, +a,b,+a,b. (A1)

where the subscripts z, y and z denote the relevant components of the vectors.
The cross, or vector product is written x and is written:

axb=[a,b, —a,b,, a.b, —a,b,, a;b, —a,b,] (A.2)

While the dot product is applicable in any number of dimensions, the cross
product is peculiar to R3. There is, however a somewhat similar operator on R?
which is used from time to time:

axb=a;b, —a,b, (A.3)
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A.2 The Nabla operator

The notation of vector calculus revolves around the differential operator V. In
Cartesian coordinates, this is written as follows:

o 0 0
V=757 A4
[&T Oy 8,2} (A4)
Some of the fields encountered in fluid dynamics are two dimensional. In this
case we write V, to indicate the two dimensional gradient operator whose
decomposition in Cartesian coordinates is:
0 0
vz = 15353
Y |:(9IL' 8y]
Using the V operator we may define the basic forms of vector derivative. If f
is a scalar field over R? then its gradient is defined to be:

(A.5)

_|9f of of
If f is a vector field over R? then its divergence is:
_of, of, Of.
V= oxr Oy 0z (A7)

and its curl is defined to be:

£, Of. of, Of. Of, Of
v [0 Of Of Of Of Of (A8)

A.3 The chain rule

The reader will be familiar with the chain rule in one dimension:

df(g(z)) _dfdg

dzx "~ dg dz (A9)

In higher dimensions there are two complications which arise. The first is that
there may be two or more function arguments (f(a(x), b(z))). Second, a func-
tion argument may depend on one or more independent variables which also
appear in the main function (f(a(z), «)). This latter case also introduces a dif-
ficulty of notation: If the partial derivative of f with respect to x is calculated,
is a allowed to vary or is its value held constant? To resolve this ambiguity, the
following convention is adopted:

of(a(xz),z) . fla(z+ Ax),z+ Azx) — f(a(z),x)
- 9r AlachE() Az (A-10)

ox o Az—0 Ax
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That is to say, an unadorned partial derivative is evaluated by allowing the rel-
evant variable to vary wherever it appears in the expression while a subscript
indicates that the specified function(s) are to be held constant while calculating
the derivative. Note that this notation differs from that used elsewhere in the
thesis where a subscript indicates the point at which a function is to be evalu-
ated.

We will now attempt to differentiate f(a(x),b(x)) with respect to z. Let
f : R? — r be continuous and differentiable in both variables and let a,b : R —
R be continuous and differentiable. Then using the definition of the partial
derivative:

0f (a(x),b(x)) fla(z + Ax), bz + Az)) — f(a(z),b(x))

= lim

Ox Az—0 Az
— lim fla(z + Az),b(x + Azx)) — f(a(z),b(z + Ax)) (A12)
Axz—0 Ax
+ o )b+ A) — fla(e), b))
Ax—0 Ax

Then by applying the one dimensional chain rule to each of the final terms we
find:
Of(alz).b(w)) _ Of da _ Of OV

6x 0adw ' box (A19)
If we choose b(z) = z then it is apparent that:

ox " Oadr Ox "

Finally as an illustration of the power of the chain rule in more dimensions, let
f:R* — R?and a,b : R? — R be continuous and differentiable in all variables.
Then by combining the previous results:

of of
V- falz,y). b(e,y) 2, y) = V- flap + 5o - Va+ 55 - Vb (A.15)

A.4 The material derivative

A function defined over a time varying flow field may be specified with re-
spect either to a fixed, or Eulerian, frame of reference or a flow following, or
Lagrangian frame of reference. If f(x,t) is a function in the Eulerian reference
frame and q(t) = [z(t), y(t), z2(t)] gives the position of a Lagrangian fluid ele-
ment then f(q(t),?) is the same function in the Lagrangian frame of reference.
The velocity of the Lagrangian element is given by:

_0a
n= ot A.l6
Ox Oy az] (A.16)

B {E’E’ ot
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The material derivative, also known as the total derivative or Lagrangian deriva-
tive, is the rate of change of a quantity at a given Lagrangian fluid element.
Using D to designate this derivative, and applying the chain rule for differenti-
ation we find:
Df _0f  0fow 0fdy 0fo:
Dt ot oOxot Oyot 0z0t
of

:E‘i’U'v‘f

(A.17)

A.5 The Leibniz integral rule

The derivation of the depth integrated equations presented in section 2.3 re-
quires the evaluation of a definite integral whose limits very in space. The
Leibniz integral rule provides a mechanism for the evaluation of such integrals.
Here we present a proof of that theorem along similar lines to the proof pre-
sented in Franklin (1955). The rule is stated in the form in which it is used in
equation (2.11).

Let uy, : R* — R? and a,b : R? — R be continuous and differentiable in all
arguments. Then define:

b(z,y)
F :/ Ugy (2, Y, 2)dz (A.18)
a(z,y)
Then by the chain rule:
OF OF
vzyF = vaF|a,b + % -Va + % - Vb (A19)

Since the limits of integration are now fixed:

b
VJ«'yF|a7b = / vmy : U—zydz (AZO)

Furthermore, by the fundamental theorem of calculus:

OF

% - _uwy(‘ra Y, a’) (A21)
OF

Therefore:

b b
Vo / oy (@, 9, 2)dz = / Vay - Unydz — ay (@, 3, 0) + Uy (2,5,0) (A23)

which is the Leibniz integral rule in two dimensional divergence form.
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10.

De klacht van overheid en bedrijfsleven over de afname van het
aantal studenten in exacte vakken is hypocriet, als men te weinig
doet om het rendement van een exacte studie meer in overeen-
stemming te brengen met de inspanning.

De huidige betaalwijze van “pay to read” voor artikelen van
elektronisch verspreide wetenschappelijke tijdschriften heeft
meer nadelen dan voordelen.

Hoe hoog het niveau van de vakgroep waar men afstudeert ook
is, het is altijd een voordeel om ergens anders te promoveren.

De bepaling dat houders van buitenlandse academische graden
slechts in bijzondere gevallen tot promotie aan een Nederlandse
universiteit worden toegelaten is een blijk van onaanvaardbaar
chauvinisme aan de kant van de universiteiten en de overheid.

— WHW Art.7.18, Promotiereglement TU Delft Art.2
Het fundamentele verschil tussen geloof in de wetenschap en

geloof in een religie is dat er voor de eerste geen geloofsaanname
nodig is.

Deze stellingen worden opponeerbaar en verdedigbaar geacht en zijn als
zodanig goedgekeurd door de promotor prof. dr ir G.S. Stelling

PROPOSITIONS
accompanying the thesis

On techniques for modelling coastal and ocean flow with

unstructured meshes
by David Ham

. The ability to focus resolution on objects of interest will make un-

structured meshes the technology of choice for future models of
ocean and coastal flow.

— This thesis and C.Pain et al. Three-dimensional unstructured mesh
ocean modelling, Ocean Modelling 10 (2005) 5-33.

. Unstructured C grid flow models are subject to an instability

caused by the discretisation of the pressure gradient and Cori-
olis terms which may be removed by appropriate symmetry-
preserving discretisations of those terms.

— This thesis and D. Ham et al. The symmetry and stability of un-
structured mesh C-grid shallow water models under the influence of
Coriolis, Ocean Modelling in press.

. The trajectories employed in a semi-Lagrangian advection

scheme have advantageous physical properties if they are gen-
erated by the analytic integration of a divergence free velocity
field.

— This thesis and D. Ham et al. A streamline tracking algorithm for
semi-Lagrangian advection schemes based on the analytic integration
of the velocity field, Journal of Computational and applied mathematics
192 (2006) 168-174.

. Unstructured C grid shallow water simulations constitute an ef-

fective method for testing the efficacy of fixed GPS stations as a
mechanism for deriving the ocean bed displacements which gen-
erate tsunamis.

— This thesis and Pietrzak et al. Insights into the Indian Ocean Tsunami
from GPS, altimeters and tsunami models, submitted to Earth and Plan-
etary Science Letters.

. The goals of science are best served by the release of software

developed in the course of research as free software.
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The complaints voiced by government and business about the
falling numbers of science students are hypocritical if they are
not matched by action to make the returns on studying science
better match the effort involved.

With the advent of electronic distribution of journal articles, the
current pay-to-read business model does more harm than good.

No matter how high the quality of the department from which
one graduates, it is always advantageous to move elsewhere to
undertake a PhD.

The stipulation that holders of foreign degrees may be admitted
as doctoral candidates at Dutch universities only in exceptional
circumstances is an act of unacceptable chauvinism on the part
of the universities and the government.

— WHW Art.7.18, TU Delft Doctorate Regulations Art.2

The fundamental difference between belief in science and belief
in religion is that the former requires nothing to be taken on faith.

These propositions are considered opposable and defendable and as such have
been approved by the supervisor prof. dr ir G.S. Stelling

STELLINGEN
behorende bij het proefschrift

On techniques for modelling coastal and ocean flow with

unstructured meshes

van David Ham

. Het voordeel van hoge resolutie, uitsluitend in het aandachts-

gebied, maakt dat vooral ongestructureerde roosters gekozen
zullen worden voor toekomstige kust- en oceaanstromingsmod-
ellen.

— Dit proefschrift en C.Pain et al. Three-dimensional unstructured
mesh ocean modelling, Ocean Modelling 10 (2005) 5-33.

. De instabiliteit, bij versprongen roosters, van de ruimtelijke dis-

cretisatie van de drukgradiént in combinatie met de Coriolis-
term, kan opgelost worden door op de juiste wijze deze termen
symmetrisch te discretiseren.

— Dit proefschrift en D. Ham et al. The symmetry and stability of un-
structured mesh C-grid shallow water models under the influence of
Coriolis, Ocean Modelling in press.

. De stroomlijnen toegepast in een semi-Lagrangiaans advectie-

schema hebben voordelige fysische eigenschappen als ze zijn
gegenereerd door middel van analytische integratie van een di-
vergentievrij snelheidsveld.

— Dit proefschrift en D. Ham et al. A streamline tracking algorithm for
semi-Lagrangian advection schemes based on the analytic integration
of the velocity field, Journal of Computational and applied mathematics
192 (2006) 168-174.

. Ondiepwatersimulaties van tsunami’s met een ongestructureer
Ond t lat t ! t truct d

C-rooster zijn een effectieve methode om de doeltreffendheid
te testen waarmee vaste GPS installaties de onderliggende
bodemverplaatsingen bepalen.

— Dit proefschrift en Pietrzak et al. Insights into the Indian Ocean
Tsunami from GPS, altimeters and tsunami models, submitted to Earth
and Planetary Science Letters.

. De vooruitgang in de wetenschap is er bij gebaat als software

die ontwikkeld is in het kader van openbaar wetenschappelijk
onderzoek, als vrije software beschikbaar is.



