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Preface

Since my bachelors, I had an interest for network science. I expressed this research interest to the
professor of my complex networks (MDACN) course here in TU Delft, who is now my supervisor for
this thesis.

She proposed a problem statement to study the fraction of infections in each community. Upon
conducting a review of exisiting literature, I found there were similar problems related to influence
maximization, community diversity, etc, but none of them had the same problem statement.

Thus, this thesis titled - ”Fairness Aware Influence”, introduces single spreader fairness aware in-
fluence(FAI) as a novel concept, where in addition to a given seed node’s prevalence, we study the
variation of fraction of infections in all available communities.

The main objective is to study the relationship of FAI with network properties of the node such as
degree, community size, etc. Existing centrality metrics are not designed for FAI, so two classes of
new metrics are proposed which incorporate different network and community properties. These new
metrics outperform the existing ones at λc given they consider a sufficiently large neighborhood of the
seed node in question. The dynamics of FAI changes at higher infection levels, and we find that the
performance of the proposed metrics are not stable at these infection levels.

Dr.Johan Dubbeldam, along with my supervisor Dr.Wang, has consented to be a member of the
thesis committee. Dr.Wang has my gratitude for her guidance without which this thesis would not
have come to fruition. I would like to acknowledge the encouragement and help I received from my
supervisor’s PhD students - Shilun, Li, Omar and Alberto, and my peers Mathieu and Yuhui. Last, but
not the least, I would like to thank my friends and family for their constant support throughout my thesis.

Varnika Srivastava
Delft, November 2023
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Summary

This thesis introduces the concept of Fairness Aware Influence (FAI), which is dependent on prevalence
and fairness. Prevalence of a given seed node is the number of infected nodes. Fairness can be defined
differently based on the application or problem statement. In this case, the fairness is defined as the
variation in the fraction of infections in all the communities. This variation is measured using standard
deviation (SD). A lower SD corresponds to better fairness. FAI for a given seed node is defined as the
ratio of prevalence to fairness, where a higher FAI score corresponds to higher prevalence and lower
SD.

The primary objective of this thesis is to study how network properties such as degree and commu-
nity size, relate with FAI. Network properties are measured using centrality metrics, which are catego-
rized into two types. The first type, referred to as ”simple” or classic centrality metrics, do not account for
community information. The second type, known as community-aware centrality metrics, incorporate
community information but were not originally designed for FAI. These serve as baselines for ranking
nodes in terms of FAI. Thus, two new classes of metrics are designed specifically for FAI in the attempt
to perform better than the baselines.

Six real world networks are employed to evaluate the metrics. Local centrality and Community-
Hub-Bridge are found to be good baselines in their respective categories, and the newly proposed
metrics surpass the existing ones at the epidemic threshold λc. Additionally, a discussion is presented
to compare and analyze these metrics, considering their performance under varying infection rates
using an SIR infection spreading model.
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1
Introduction

A complex network usually comprises various topological communities wherein a group of nodes tends
to form more relations (links) with each other than nodes from other groups [18]. In complex networks
that have community structure, information can spread to different extents in the communities given
a set of seed nodes. This is undesirable in a scenario where information should be spread as fairly
as possible to the different communities. For example, fairness is important in a social context where
certain smaller (minority) communities tend to receive information much differently compared to other
communities, as shown by Tsang et al. [25].

This thesis aims to study the fairness and prevalence of information spread in complex networks with
strong community structure. Typically, information spread is modeled using various epidemic models
such as SIR, SIS, etc, and the influence of a seed node is measured in terms of its prevalence i.e.;
the number of nodes in the network infected in the stable state of the information spread. However,
prevalence fails to consider the proportion of nodes infected in the various communities. Thus, a new
method is needed to measure how the infection varies in the different communities. This leads to
measuring the ”fairness” of a seed node. Fairness can thus be generally defined as the variation in the
fraction of nodes infected among all the various communities present in the network.

The purpose of this research is to understand if the different communities can be fairly (equally)
infected in addition to maximizing prevalence given a single seed node. In other words, we see if nodes
can achieve high influence while being fairness-aware. This problem is termed as single-spreader
Fairness Aware Influence(FAI).

Our central research question is - ”Does the FAI depend on network properties of the node?”. We
study network properties to discern the factors influencing the FAI of a node. Such network properties
can be used to rank nodes, as an estimation of the ranking of nodes based on FAI. While previous
research has ranked nodes to identify nodes with the highest influence using established network cen-
trality metrics such as degree centrality and closeness centrality, the concept of fairness in community
infection is relatively new, and there are no known metrics in the literature designed to estimate FAI.

Classic centrality measures, while useful, do not account for community information, which is es-
sential in measuring fairness. Although various community-aware metrics exist in literature that incor-
porate some community features [6, 7, 8, 9, 17, 26, 27], these are primarily designed for estimating
prevalence, not fairness. Therefore, the main contribution of this research is the development of new
community-aware metrics specifically tailored to estimate ranking of nodes in terms of FAI.

To this effect, two new classes of metrics are proposed. One is based on the average of community
size of the neighboring nodes and itself. The other is based on estimating the FAI rank of a node by
combining individual metrics designed to indicate either prevalence or fairness. The differentiation of
nodes in relation to prevalence is achieved through the use of Local Centrality, while the assessment
of fairness of a node is achieved using standard deviation of the fraction of nodes of each community
present in its neighborhood. The metrics are evaluated using recognition rate to compare performance
at ranking the top nodes, and kendall’s rank correlation to compare the overall performance across all
nodes in the network. We find that the metric based on community size exceeds all others in terms of
recognition rate, and has one of the highest rank correlation values.
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The performance of these metrics are expected to change for different levels of infection. As the
rate of transmission of infection increases, the prevalence and therefore, FAI are expected to change,
potentially affecting how well these metrics estimate FAI rank of the nodes. Thus, we propose a second
research question - ”How does the performance of the metrics change with increasing rate of transmis-
sion of infection?”.

The thesis is structured as follows. The existing literature is reviewed in chapter 2. The definitions
of fairness and fairness aware influence are described in chapter 3. The methods and data used along
with the implementation of the experiments are detailed in chapter 4. The results are presented and
discussed in chapter 5. The conclusion and future work are discussed in chapter 6.



2
Related Work

Fairness is a central theme in this research. Based on the literature study conducted, we can define
fairness differently depending on the problem statement. For example, Ali et al. [1] define fairness
of influence spread based on different ”groups” that are infected. The groups in a given network can
be characterized by different social constructs such as gender, race, etc implying that nodes are of a
certain ”type”. It also considers the time-critical aspect of information spread in a network. Thus, this
thesis differs in two respects: there is no time-critical aspect of information diffusion involved and the
groups are defined by communities and not various types of nodes.

Literature also delves into a term similar to fairness called diversity. Like fairness, diversity is also
defined differently - either based on community [16] or based on the type of node [24].

Li et al. [16] propose the problem of community-diversified influence maximization (CDIM), which
considers, in addition to prevalence, the number of communities to which the influence spreads. The
CDIM problem deals with a given number of seed nodes and tries to maximize the CDIM objective
with various algorithms. The FAI problem distinguishes itself from the CDIM problem by considering
infection percentages in all communities, regardless of its activation by a given seed node. The CDIM
problem only counts the number of activated communities.

Tang et al. [24] take the approach of diversifying seeds to reach an audience with more diverse
backgrounds. The diversity stems from nodes belonging to various categories. Since it focuses on
diversity and Influence maximization, this paper proposes a generalized objective function as a linear
combination of prevalence and diversity. Using this general formula, a set of diversity measures can be
constructed in combination with existing heuristics degree centrality and page rank to give diversified
degree centrality and diversified page rank. Maximizing this objective then helps identify the most
diverse set of seeds.

Considering the literature presented earlier, it can be concluded that this thesis presents a unique
definition of fairness. It is not an optimization problem and instead focuses on network properties of a
given seed node, including community information, to estimate Fairness Aware Influence.

Network properties of a node can be measured using centrality metrics. Bucur [3] uses classic
centrality metrics of a node to predict its prevalence when this node is the single seed node of the
spreading process. Centrality metrics (CMs) such as degree, betweenness, etc are plotted against
prevalence, revealing a positive correlation for some graphs. However Bucur emphasizes that a single
metric is often insufficient to predict prevalence, and a combination of them performs better, even
across diverse graphs. In this study, we adopt a similar approach to examine the correlation between
FAI and CMs. Our newly proposed metrics are designed to capture different node properties such as
community size, number of neighbors, etc. However, we take a different perspective; we use each
centrality metric to estimate the node’s rank in terms of its FAI instead of predicting FAI.

In addition to the CMs, there are community-aware centrality metrics (CACM) that consider commu-
nity information. These are designed to capture community information that the classic CMs overlook.
Rajeh et al. [21] compare seven CACMs in terms of their effectiveness in identifying prevalent nodes
in various types of graphs, each with different degrees of community strength. In this study, we build
upon this research by exploring these CACMs and evaluating their performance in ranking nodes in
terms of FAI, comparing their efficacy to traditional CMs and the newly proposed metrics.

3



3
Fairness Aware Influence

The problem statement of this research is to rank the nodes in a given network in terms of prevalence
and fairness. It is essential to differentiate nodes with high influence (prevalence) and high fairness.
Fairness Aware Influence (FAI) thus is a combination of two components - prevalence and fairness.
These are defined as follows.

The prevalence p of a seed node is the number of infected nodes in the steady state of the infection
spreading process. However, prevalence does not consider the distribution of fraction of infections
among the communities in the network. To measure this, a second component called fairness is de-
fined.

Typically, fairness of infection (or information) spread can have multiple definitions depending on
the context. In this case, fairness of infection spread is defined as the variation in fraction of infections
among all the communities present in the given network. There are multiple ways to capture variation,
such as range, standard deviation (SD) etc. Since the aim is to study infection in all communities,
the range is not appropriate as it does not give us an idea of the distribution of infection other than
the communities with maximum and minimum fraction of infection. Thus, intuitively, the difference of
infections in communities can be captured appropriately through SD. The SD computes the deviation
of the infection in a given community from the mean. A lower SD suggests higher fairness.

The mathematical formulation of fairness f is as follows. Let C be the set of all communities in the
given network. |C| is the total number of communities in the network. Let the fraction of infected nodes
per community c be pc, the fraction of infected nodes in the network or prevalence be p. The average
fractions of infections per community is µc.

f =

√
ΣcϵC(pc − µc)2

|C|
(3.1)

In addition to high prevalence, it is desirable to select a seed node with high fairness or a low f .
Thus, one of the ways to define the term FAI (F ) is :

F =
p

f
(3.2)

FAI is large when the p is large and f is small (or fairness is high).

4
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Method

This section describes the methods used to conduct the experiments. The spreading process i.e.; the
Susceptible-Infected-Recovered (SIR) model is introduced in 4.1, along with the calculation of epidemic
threshold. The networks(data) used for the experiments are described in 4.2. The FAI is calculated for
every node in the networks using the description in equation 3.2 based on the steady state of the SIR
process on the given network.

Various centrality metrics that capture the network properties of a node to estimate the ranking of
FAI are described in sections 4.3 and 4.4. These existing metrics are broadly categorized into two
classes - ones that do not contain any community information and the ones that do.

Since these existing metrics are not designed specifically for FAI, two classes of new metrics are
proposed. The design of the new metrics is described and motivated in 4.5. The methods used to
evaluate the effectiveness of these metrics to rank nodes in terms of FAI are described in section 4.6.
Finally, the experiment setup is described in 4.7.

4.1. SIR model and Epidemic Threshold
The SIRmodel is an infection diffusionmodel where nodes in the network can have three possible states
- susceptible(S), infected(I), and recovered or removed(R). To start the infection-spreading process, a
single node is chosen to be initially infected. This node is the seed node. Any node that comes into
contact with an infected node becomes susceptible(S) to infection. Each infected node infects each of
its susceptible neighbors independently with an infection rate β. Each infected node may recover(R)
from the infection at a recovery rate γ. Both infection and recovery processes are independent Poisson
processes. The infection-spreading process continues till there are no more infected nodes in the
network. This state is called the steady state. The ratio of infection rate to recovery rate is called the
effective transmission rate(λ).

λ =
β

γ

There exists a certain value of the effective transmission rate beyond which the infection reaches
epidemic proportions. This value of λ is called the epidemic threshold (λc). For λ < λc, the infection
dies out rapidly [4]. Bucur [3] calculates epidemic threshold as the value of λ at which the variability
measure ∆ is maximized. ρ is the random variable of the outbreak size i.e.; the number of recovered
nodes in the steady state of the infection spreading process for a given seed node, and operator < . >
represents the mean. The variability measure is computed as follows:

∆ =

√
< ρ2 > − < ρ >2

< ρ >
(4.1)

We compute the FAI of the nodes at different transmission rates - λc, 2λc and 3λc. The motivation
for studying FAI at λc is based on the coefficient of variation of FAI and is discussed further in 5.1.

5



4.2. Data 6

(a) US Powergrid (b) Facebook Politician Pages, λc = 0.02

Figure 4.1: Delta - Effective transmission rate graphs to determine λc. The λ corresponding to the highest ∆ value is the
effective transmission rate λc.

4.2. Data
We consider Lancichinetti-Fortunato-Radicchi(LFR) benchmark graphs[14] and six real-world networks.
The description of the network and other parameters and properties are elaborated in 4.2.1 and 4.2.2
respectively. For disconnected graphs the largest connected component was selected.

4.2.1. LFR graph
The LFR model generates networks with the degree of nodes and the community sizes following the
power law distribution and with inherent community structure. One method to measure this community
structure is to use modularity Q which is a measure of how well the graph is divided into communities.
LFR graphs tend to have high modularity. The communities are made readily available by the LFR
graph generation algorithm.

We select the following controllable parameters - number of nodes, average degree, minimum and
maximum number of nodes in a community (minC and maxC respectively), mixing parameter, and the
power law exponent of the distributions of the node degree and size of the communities (τ1 and τ2
respectively). The mixing parameter µ of a node is the ratio of links to nodes outside its community to
the total number of links of the node.

We consider number of nodes to be 1000 and average degree to be 4. The original paper [14]
states that values of 2 <= τ1 <= 3 and 1 <= τ2 <= 2 are typically seen in most real-world networks.
We therefore take τ1 = 3 and τ2 = 2. A set of values {0.1, 0.2, 0.3} are considered for µ. µ can take
values between 0 and 1, but for µ > 0.3, the modularity of the graph becomes low. The minimum
and maximum size of the community typically need to be specified in order for the graph generation
algorithm to converge. It is difficult to choose suitable values for some of these parameters since there
is no standard specified in related literature, and also, the values differ for different real-world networks.
We consider the set of values {50, 100, 150, 200} forminC and {400, 450, 500} formaxC. This graph can
have self loops which should be removed before computing the graph properties such as modularity,
mixing parameter, etc.

4.2.2. Real-world networks
To further test the metrics, six real world networks were chosen. These are Facebook Ego [15] com-
bined network, Yeast Collins[20], Yeast Proteins [22], Facebook Politician Pages[22], LastFM Asia [15]
and US Powergrid[13].

The communities were identified based on inherent network structure, using Louvain method of
community detection [2]. The resolution parameter was set to 1e− 100 to favor larger sizes of commu-
nities. Without this specification, the number of communities tends to increase significantly for some
graphs and this is not desirable. The six graphs were selected because each shows strong to moderate
community structure as indicated by the high modularity values Q in Table 4.1. The mixing parameter
µ was also computed.

The basic graph properties along with the respective epidemic thresholds are summarized in Table
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Network |N| |E| <k> |c| µ Q λc

FacebookEgo 4039 88234 43.69 12 0.02 0.73 0.01

Yeast-Collins* 1004 8319 16.57 71 0.11 0.72 0.02

Yeast-proteins* 1458 1948 2.73 256 0.19 0.68 0.17

Facebook Politician Pages 5908 41706 14.12 210 0.13 0.82 0.02

Last-FM Asia 7624 27806 7.29 526 0.18 0.73 0.04

US Powergrid 4941 6594 2.66 1222 0.29 0.63 0.35

Table 4.1: Properties of six real-world networks
|N | is the number of nodes, |E| is the number of edges, < k > is the average degree, |c| is the number of communities, µ is

the mixing parameter, Q is the modularity, and λc is the epidemic threshold.
∗ means that the largest connected component is used since the graph is disconnected

4.1. The epidemic threshold was calculated as described in chapter 4.1. The degree distribution of the
networks are presented in A.1, and the community size distribution in A.2.

4.3. Centrality metrics
We consider the following centrality metrics in network science - degree centrality, betweenness cen-
trality, closeness centrality, eigenvector centrality, and local centrality.

Degree centrality of a node is the fraction of nodes in the graph it is connected to. Betweenness
centrality of a node is defined as the fraction of the number of shortest paths between all node pairs
that pass through it. Closeness Centrality of a node is the reciprocal of the average of the length of the
shortest path to all other nodes in the network. It describes its efficiency of spreading information to
other nodes [19]. Eigenvector centrality of a node is the corresponding element in the eigenvector as-
sociated with the largest eigenvalue of the adjacency matrix of the network. It captures the importance
of a node based on its degree and the importance of other nodes it is connected to [23].

The computational complexity of betweenness and closeness centralities is high [19]. To overcome
these performance issues, Chen [5] proposes a semi-local metric called local centrality (CL). Chen
shows that CL predicts prevalence in the SIR infection spreading process better than betweenness
and degree centralities while being less computationally expensive than closeness and betweenness
centralities. The formal definition of CL is as follows.

CL(i) =
∑

vϵΓ(i)

Q(v)

where Q(v) =
∑

wϵΓ(v) N(w). The immediate neighbors of node i are Γ(i) and N(w) is the number of
nearest and next-nearest neighbours of node w.

4.4. Community-aware centrality metrics
While the community structure is inherent to many real-world networks [18], the centrality metrics de-
scribed before do not consider this information. In principle, information about community structure
could be useful for the fairness aspect of FAI.

Therefore, we consider seven community-aware centrality metrics (CACMs) that already exist in
literature - Community based mediator [26], Community-Hub-Bridge[6], Comm Centrality [9], Partici-
pation Co-efficient [8], Modularity Vitality [17], Community K-shell[7], and Community based centrality
[27]. As discussed later in the results, at λc, Community-Hub-Bridge stands out as particularly effective
for FAI among these CACMs (figure A.5) in terms of performance. Thus, the focus is on Community-
Hub-Bridge and the remainder of the community-aware centrality metrics are described in A.3.

Community-Hub-Bridge is designed to identify nodes which are hubs within their own community
but also bridges to other communities[6]. In simple terms, hubs are nodes with high degree, while
bridges are nodes that connect two or more poorly-connected components (communities) of the net-
work. Furthermore, it introduces two key parameters: ρintra and ρinter. The ρintra is the fraction of its
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links to nodes within its own community to the total number of links. Similarly, ρinter is the fraction of
the links to nodes outside its own community. These parameters are essential in assessing the role
of nodes within and between communities. A node’s influence within its own community depends on
ρintra and on the size of its own community nci . Its influence outside its community depends on ρinter
and the number of external communities it is connected to (βNNC). Thus Community-Hub-Bridge(χ)
of a node i is defined as :

χ(i) = nci × ρintra + βNNC × ρinter

4.5. New Metrics
Although existing CACMs incorporate community-related information, such as community size and
link distribution within and outside community which could prove useful for measuring fairness. Conse-
quently, while some of them are expected to outperform traditional metrics, they may not be the optimal
choice for assessing FAI. Hence we propose two new classes of metrics designed specifically for FAI.
Each class is designed using different approaches, each explained in 4.5.1 and 4.5.2.

The underlying assumption for these newmetrics is that FAI can be explained using information from
the local neighborhood of a seed node. This approach is motivated by the observation that at λ = λc,
the infection rate is small and is mostly localized to the 2-hop neighborhood of the node (figures B.4,
B.3). We consider two variants of the local neighborhood: one with direct neighbors (1-hop) and the
other with neighbors and next nearest neighbors (2-hop). The seed node is also considered. As a
result, each metric has two variants - M1 and M2.
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Figure 4.2: FAI of node v/s its own Community size
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4.5.1. Class I
An interesting observation is made on the relationship between community size (nc) and FAI(figure 4.2).
In each real-world network, on average, the trend is that the FAI of a node is larger if its community size
is larger. While it is expected for fairness to depend on the community size, the surprising aspect is that
the correlation between nc and FAI is higher than the correlation between FAI and any other centrality
metric as seen in figure 5.2. Thus, we can conclude that the size of the community that the seed node
belongs to has a significant impact on its FAI.

In figure 4.2 we see that nodes with the same community size can have varying FAI. This is specially
noticeable for nodes in large communities, where there is a large variation in FAI. This indicates that
community size of the seed node alone cannot not accurately estimate FAI. The fairness of a node
depends on the community size of the other nodes that it can possibly infect. This is evident from the
formula of fairness 3.1 where we consider the fraction of number of infected nodes to community size i.e
pc =

ic
nc
. Thus, in addition to its own community size, we consider community size of its neighbors. The

new metric can therefore be described as the average of community size of all its neighbors, including
itself.

Let L1(i) be the set of nodes in the 1-hop neighborhood and L2(i) be the set of nodes in the 2-hop
neighborhood, including the seed node i in both cases. Let ncm be the community size of nodem. Thus,
the respective community size-based metrics M1

cs and M2
cs of a given seed node i can be defined as

follows:

M1
cs(i) =

∑
mϵL1

ncm

N

|L1|
(4.2)

M2
cs(i) =

∑
mϵL2

ncm

N

|L2|
(4.3)

To select a node with high FAI at λc, the node itself should belong to a large community and its
link distribution should be such that many of its links go to nodes with larger communities. A larger
community tends to facilitate connections to more neighbors and is likely to improve prevalence. The
fraction of infections in large communities tends to be small, in part due to the small number of infections
at λc, which is likely to increase fairness.

4.5.2. Class II
By definition, FAI is consists of two components - prevalence and fairness. A different approach to
designing a metric to estimate the FAI rank of the nodes would be to combine independent metrics that
may indicate either the prevalence or fairness of a seed node.

For the prevalence of a seed node, we consider its local centrality. Chen [5] shows that CL of a
seed node is strongly correlated with its prevalence in SIR infection spreading model for many graphs,
outperforming degree and betweenness centralities. This observation holds true for the six real world
networks considered (Figure 4.3).

To estimate the fairness component, we use the following intuition. As stated earlier, we assume
that at λc the infection spread is usually restricted to nodes in one-hop or two-hop neighborhood of the
seed node. We use another simplifying assumption - infection from a given seed node can spread to
all the neighboring nodes. While this is improbable, this can help differentiate nodes in terms of FAI by
considering all the possible communities the infection is likely to spread to. In other words, we assume
that all the nodes in the neighborhood of the seed node get infected, and then compute the fairness
using the fairness formula 3.1.

We then combine local centrality and fairness in the same fashion as the FAI formula (FAI = p/f).
Let L1(i) be the set of nodes in the 1-hop neighborhood and L2(i) be the set of nodes in the 2-hop

neighborhood, including the seed node i in both cases. Let f1 and f2 be the fairness when all nodes
in the L1 and L2 neighborhood are infected respectively. Thus, the new metrics M1

pf and M2
pf may be

defined as follows:

M1
pf (i) =

CL(i)

fX1

(4.4)

M2
pf (i) =

CL(i)

fX2

(4.5)
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Figure 4.3: Prevalence of node v/s its Local Centrality at λc. Each graph shows a strong correlation between Prevalence and
Local Centrality.
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4.6. Evaluation Methods
We generate two sets of ranks - one by ranking nodes based on FAI, and the other by ranking nodes
based on a given metric. We employ each of the existing and newly proposed metrics for ranking
nodes. To assess and compare the rankings produced by different centrality metrics, we utilize two
methods: recognition rate and Kendall’s rank correlation. Recognition rate facilitates the comparison of
the top-ranked percentage of nodes ’k’ between FAI and a given metric, while Kendall’s rank correlation
between FAI and a given metric offers an overall comparison of all the nodes. The value of these
evaluation methods indicates how well a metric can rank nodes in terms of their FAI. The following
sections describe these evaluation methods.

4.6.1. Recognition rate
It is defined as the number of nodes in common between the top ’k’ percent of nodes of two given rank
lists. Let r1 and r2 be the set of highest ranked nodes, each set of size int[k ∗n]. Then recognition rate
of top f fraction of nodes R(k) is defined as :

R(k) =
r1 ∩ r2
|r1|

(4.6)

4.6.2. Kendall's Tau (B) - rank correlation
Kendall Tau B rank correlation(τ ) [12] is used to measure dependence of the correlation between the
objective rank generated on the basis of FAI (F), and the rank generated by a metric M. Since there may
be ties in the ranking, especially with ranking based on the community size, Kendall’s Tau-B variant is
used to accommodate ties. Pearson’s correlation is not used since the centrality metrics are not linearly
correlated with FAI.

Thus, τ may be defined as:

τ(F,M) =
nc − nd√

(n0 − n1)(n0 − n2)
(4.7)

where
n0 = n(n− 1)/2

n1 =
∑
i

ti(ti − 1)/2

n2 =
∑
j

uj(uj − 1)/2

nc and nd are the number of concordant and discordant pairs respectively. ti and uj are the number
of tied values in the i-th group of ties for the first quantity (F) and the j-th group of ties for the second
quantity (M) respectively.

4.7. Experiment Setup
The experiments are implemented in python programming language. The graph properties and classic
centralities are computed using the networkx [10] package. The SIR simulations are generated using
EON fastSIR [11] module. A high level overview of the steps to compute the FAI and the recognition
rate and correlation values for each node in the six networks are as follows.

First, some basic pre-processing steps are required. Some graphs contained self loops which were
removed. For disconnected graphs, such as Yeast Collins and Yeast Proteins, the largest connected
components were used. For the real world networks, louvain method [2] of community detection was
used to extract communities for the networks.

Second, the epidemic threshold λc is computed for each graph. The recovery rate is set to 1 (γ = 1).
The effective transmission rate λ is then equal to β. For a given value of λ, 100 SIR simulations were run
for each seed node. For graphs with large number of nodes (|N | > 2000), 1000 nodes were randomly
sampled to be the seed node. The average number of nodes that were infected at any given time during
the epidemic spreading process were recorded. The variability measure ∆ was computed for each λ.
The value of λ corresponding to the largest ∆ value is λc. Using the Facebook Politician Pages and
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the US Powergrid graphs as examples, the values of the variation ∆ and infection rate values λ are
shown in figure 4.1.

Third, for each of the graphs, 100 runs of SIR simulations were performed for each node at the epi-
demic threshold. For each run, the fairness and prevalence were recorded at the end of the infection
spreading process. The average of fairness and prevalence was computed over the 100 runs. It is
important to average them over multiple runs since infection simulations are stochastic (some random-
ness is involved) and may result in very different fairness and prevalence values in each run. Then the
FAI for each node was computed using this averaged prevalence and fairness for each node.

Fourth, the centrality Metrics, community aware metrics,M1
cs,M1

cs,M1
pf andM2

pf are computed for
each node in the network. The nodes are ranked based on these metrics. The nodes are also ranked
based on the FAI for each of the three values for transmission rate. The higher the FAI of the seed
node, the better the rank. For a given transmission rate, the FAI rank is compared to rank based on
each metric using rank correlation and recognition rate. These results are presented and discussed in
chapter 5.



5
Results and Discussion

5.1. Results
We present the findings of our research that relate to our two research questions. To reiterate, the two
questions are - does FAI of a node depend on its network properties and how the performance of the
metrics that capture such properties changes with increasing effective transmission rate. Before we
dive into these results, we present an argument of why we study FAI at values around the epidemic
threshold λc.

For each of the six networks, we compute the average µF and standard deviation σF of FAI across
all nodes at λc, 2λc and 3λc. We find that the coefficient of variation or CV (σF

µF
%) of FAI increases

as λ decreases. Among the considered values of λ, CV is maximum at λc for all the six real-world
networks. This is summarized in table 5.1. Ranking nodes is more effective when the variation of FAI
among the nodes is high. Thus we study the values of FAI around the epidemic threshold for values of
λ = λc, 2λc, 3λc.

We compare the performance of the newly proposed metrics with the existing ones. This perfor-
mance is measured in terms of the recognition rate and kendall’s rank correlation. Since many metrics
are involved, we pick two best performing metrics at λc as the baseline, one from each of the two
categories of existing metrics - simple centrality metrics and community-aware centrality metrics. The
performance of the metrics belonging to each type is presented in 5.1.1 and 5.1.2 respectively. The
reason for observed correlation between FAI and baseline metrics is presented in 5.2.2.

We present the correlation values between FAI and the baseline metrics (CL, χ), community size
(nc) and the newly proposed metrics in Table 5.2 and recognition rate plots at λc, 2λc and 3λc in Figures
5.1, A.6, and A.7 respectively. nc shows the highest correlation and one of the best recognition rates
among all the metrics at λc, indicating it is an important property to consider to rank nodes in terms of
FAI. However, this correlation decreases with increasing effective transmission rate.

Among the newly proposed metrics M1
cs , M2

cs, M1
pf and M2

pf , M1
cs performs the best across all

six networks at λc. It also outperforms the baseline metrics. Its correlation with FAI decreases with
increasing effective transmission rate.

These results also enable discussion of how the performance of the community size, baselines, and
new metrics changes at higher levels of infection rate in 5.2. This helps to answer the second research
question.

5.1.1. Performance of Simple Centrality Metrics
We consider the performance of degree, betweenness, closeness (CC), eigenvector centrality (CE)
and local centrality CL in terms of recognition rate plots (figure A.4) and correlation values (Table A.1).
It can be seen that degree centrality and betweenness centrality perform poorly for all graphs. τ(F,CC)
and τ(F,CE) are the highest correlation values in Facebook Ego and LastFM networks respectively.
For the remaining graphs, τ(F,CL) is the highest correlation. Recognition rate of CC is the best for
Facebook Ego, followed by CL. For the remaining graphs, CE performs well for approximately top
X=40% of the nodes, but for X > 40% it is outperformed by CL. Since CL performs better than CE in
multiple scenarios, it is taken as the baseline centrality metric.

13
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Network λ µF σF
σF

µF
%

FacebookEgo λc 0.00575 0.00250 43.41

2λc 0.00653 0.00270 41.33

3λc 0.00810 0.00307 37.93

Yeast-Collins* λc 0.00451 0.00455 100.98

2λc 0.00521 0.00500 96.00

3λc 0.00569 0.00503 88.49

Yeast-proteins* λc 0.00127 0.00099 77.74

2λc 0.00198 0.00122 61.50

3λc 0.00415 0.00193 46.59

Facebook Politician Pages λc 0.00394 0.00339 85.89

2λc 0.00578 0.00429 74.31

3λc 0.00933 0.00519 55.66

Last-FM Asia λc 0.00680 0.00862 126.64

2λc 0.00787 0.00575 73.08

3λc 0.01153 0.00529 45.84

US Powergrid λc 0.00050 0.00028 54.58

2λc 0.00082 0.00043 52.01

3λc 0.00152 0.00071 46.55

Table 5.1: Statistical measures of FAI at λc, 2λc and 3λc for the six real world networks. The Coefficient of variation is
maximum at λc for all the networks, and has been highlighted in bold.

∗ means that the largest connected component is used since the graph is disconnected

5.1.2. Performance of Community-Aware Centrality Metrics
Weconsider the performance of seven existing community-aware centrality metrics. These are community-
hub-bridge, participation co-efficient, community-based centrality, comm centrality, modularity vitality,
community k-shell and community based mediator. The correlation between FAI and community-hub-
bridge (χ) is the highest among all other metrics as seen in Table A.2. In the case of the Facebook
Ego network, χ’s performance aligns closely with that of Community-based Centrality. However, in the
other network instances, χ distinctly outperforms other metrics in terms of recognition rate A.5. As a
result, χ is taken as the baseline community-aware centrality metric.

5.2. Discussion
We observe that community size nc has the highest correlation with FAI and high recognition rate,
among any other metric. The value of metric χ also depends partly on nc. Thus it is important to an-
alyze the impact of community size on FAI and explain how it varies with different infection levels in
5.2.1. We discuss the comparative performance of baselines (CL and χ) at different infection levels
and summarize the reasons for performance variations in 5.2.2 to address the second research ques-
tion. We then explore the correlation and recognition rate results for the newly proposed metrics in
5.2.3, while highlighting the best-performing metric and its performance across different networks and
infection levels. We also provide a concise summary of the major findings and their implications for FAI
ranking and highlight the key takeaways from the discussion in 5.2.4.
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Figure 5.1: Recognition Rate Plot at λc
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Network λ CL χ nc(↓) M1
cs(↓) M2

cs M1
pf M2

pf

FacebookEgo λc 0.41 0.43 0.87* 0.86 0.33 0.60 0.42

2λc 0.51 0.48 0.70* 0.69 0.22 0.39 0.49

3λc 0.46 0.40 0.58* 0.57 0.18 0.31 0.44

Yeast-Collins* λc 0.59 0.68 0.93* 0.87 0.55 0.77 0.66

2λc 0.62 0.67 0.87* 0.86 0.58 0.79 0.68

3λc 0.62 0.65 0.80 0.83* 0.60 0.78 0.69

Yeast-proteins* λc 0.41 0.71 0.86* 0.82 0.62 0.30 0.40

2λc 0.55 0.60 0.65 0.68* 0.64 0.25 0.51

3λc 0.58 0.52 0.55 0.60 0.61* 0.23 0.50

Facebook Politician λc 0.40 0.59 0.91* 0.86 0.56 0.70 0.53

Pages 2λc 0.53 0.61 0.71 0.71 0.54 0.73* 0.63

3λc 0.59 0.61 0.62 0.63 0.51 0.72* 0.66

Last-FM Asia λc 0.29 0.61 0.79* 0.68 0.49 0.68 0.58

2λc 0.42 0.60 0.65 0.61 0.52 0.67* 0.63

3λc 0.44 0.59 0.62 0.58 0.51 0.67* 0.64

US Powergrid λc 0.45 0.68 0.77* 0.76 0.65 0.75 0.63

2λc 0.51 0.50 0.51 0.55 0.61 0.69* 0.66

3λc 0.42 0.34 0.34 0.38 0.46 0.50* 0.50*

Table 5.2: Correlation values of FAI at λc, 2λc and 3λc for the six real world networks.The highest (marked with *) and
second-highest correlation values for each row has been highlighted in bold. Metrics that show a decreasing trend with

increasing λ are marked with (↓).

5.2.1. Performance of Community size
At λc the number of infections are limited as seen in figures B.3 and B.4. This indicates that infections
are mostly confined to nodes within a two-hop range. In some simulations, the seed node recovers
before infecting others. In context of small communities, the fraction of infection will be large compared
to other bigger communities, leading to poor fairness. Thus at a community level, the fairness tends to
be lesser for nodes of very small communities. Nodes in smaller communities also tend to have fewer
connections to other nodes, which implies prevalence is likely to be smaller for such nodes. Therefore
a high correlation and recognition rate is seen for community size at λc.

At higher effective transmission rates such as 2λc and 3λc this correlation is seen to decrease. As the
infection rate increases, infection tends to spread to nodes in distant neighborhoods B.5. Considering
only the size of the community the seed node belongs to as a metric does not suffice.

5.2.2. Performance of Baseline Metrics
Analysis of the correlation table and recognition rate plots(figure 5.1), reveals that, at λc, χ outperforms
CL. This suggests that incorporating community information improves estimation of ranks based on
FAI. However at higher λ values (from 3λc onwards) , CL surpasses χ in terms of correlation.

Two potential reasons for this shift can be hypothesized. First, higher λ values lead to increased
prevalence, which in turn increases the correlation with CL. CL considers the information of the nodes
in the 3-hop and 4-hop neighborhood. With a higher infection rate, more nodes become infected and
the infection tends to spread further away the node. This leads to a stronger correlation with CL.

The second reason is related to the correlation with community size, which decreases at higher
level of λ. χ relies on community size of the seed node, and considers the count of the communities
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reachable in one hop. This limited scope affects its ability to rank nodes by FAI. It is possible that
χ’s performance can be improved by considering additional number of hops based on the effective
transmission rate, but it falls outside the scope of this project.

5.2.3. Performance of New Metrics
The performance of the new metrics are described in two parts - the correlation table and recognition
rate.

Correlation
At λc, nc is seen to have the highest correlation, followed byM1

cs outperforming the rest. This is because
at λc, in most simulation runs, the seed node recovers before it can infect other nodes or infects few
other nodes in its 1-hop neighborhood. This can be observed in the examples shown in figures B.1 and
B.3. It rarely infects a large number of nodes. This is also why the 1-hop network metrics outperform
their respective 2-hop counterparts. If the infection rate were to increase, the correlation between FAI
and M1 metrics should reduce while increasing for M2. This trend is observed at higher levels of
effective transmission rate in table 5.2.

The performance of the 2-hop metrics is optimal when infection predominantly occurs within the
2-hop neighborhood. However, at λc, using the 2-hop neighborhood information results in less reli-
able estimates, given that many seed nodes (especially with smaller degree) tend to not infect their
two-hop neighbors. The performance of 2-hop metrics diminishes at higher infection rates, as infec-
tion spreads to the 3-hop neighborhood and beyond. Nevertheless, the specific correlation trends vary
across networks, as the spread of infection depends on factors beyond the effective transmission rate.
For example, in Facebook Ego and US Powergrid, M2

pf is minimum at λc, increases at 2λc and de-
creases again at 3λc, while in Yeast Collins and Facebook Political Pages, the correlation continues to
increase.

Between the two classes of metrics, it is clear that M1
cs shows better performance than M1

pf at λc.
The choice between M1

pf and M1
cs becomes more complex at higher infection rates, as their perfor-

mance varies among different graphs. This is attributed, in part, to the stochastic nature of the infection
spreading process. At higher infection rates, more nodes become susceptible to infection, and it is diffi-
cult to estimate which of these nodes become infected. It is not necessary that all nodes in a lower hop
neighborhood will be infected before nodes in higher hop neighborhood. In such cases, considering
larger neighborhoods is insufficient, and an alternative approach for metric design is recommended.
Thus, the presented metrics are stable only at the epidemic threshold.

Recognition Rate Plots
From the recognition rate plots at λc (figure 5.1) it is observed that M1

cs (red plot) is one of the best
metrics at identifying top 20% of the nodes with highest FAI. In some graphs, it is outperformed by nc,
but the performance is still comparable. M1

pf performs slightly worse than the top 2 metrics except in
Facebook Ego, where it is significantly worse for top 20% to top 45% of the nodes.

At 2λc, M1
pf outperforms the rest in Yeast Proteins and US Powergrid, and performs comparably

withM1
cs and nc in almost all the remaining networks. However, for Facebook Ego, it overtakesM1

cs and
nc only after top 40% of the nodes. At 3λc, M1

pf is the best metric for all networks except in Facebook
Ego.

It is important to highlight that the Facebook Ego network exhibits somewhat peculiar behavior com-
pared to the other networks. We see that correlation ofM2

cs is low compared to other graphs, closeness
centrality performing better than CL, etc. This variation may be attributed to the extremely low mixing
parameter (µ=0.02), very high average degree (< k >=43.69) or the small number of communities, but
it is difficult to pinpoint the exact reasons.

5.2.4. Overall Summary
To summarize the discussion, M1

cs demonstrates good performance in terms of both correlation and
recognition rate at λc across all networks. This suggests that, for small levels of infection, a good per-
formance at ranking nodes in terms of FAI can be achieved by considering local community information
of the seed node. Consequently, we can infer a dependency of network properties on FAI.

The FAI of a node changes with higher levels of infection, potentially affecting the performance
of the metrics used to rank the node. While the newly proposed metrics perform well at λc, their
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performance diminishes at higher levels of λ. Estimating fairness becomes challenging as it becomes
difficult to predict which nodes in specific communities may be infected. Thus, this addresses our
second research question, elucidating the performance variation of metrics with infection rate.

We also conclude that FAI of a node is dependent on various factors such as properties of the
node and the network topology. The observed variations in performance across different networks
are anticipated, considering their diverse global network properties, such as average degree and the
number of communities. However, definitively pinpointing the specific factors influencing performance
and their precise impact poses a challenging task.



6
Conclusion

In summary, our contributions include introducing novel fairness-aware-influence (FAI) metrics to iden-
tify nodes with high prevalence and high fairness. At low levels of infection it is sufficient to consider
information from the local neighborhood of the seed node to rank it in terms of FAI. We demonstrate
that incorporating relevant community information, specially the size of the community to which the
seed node belongs, enhances metric performance in ranking nodes. The newly proposed metric M1

cs

exceeds the performance of all other existing centrality- and community aware metrics at the epidemic
threshold. Its performance correlation diminishes with higher transmission rates, suggesting the need
to consider larger neighborhoods in such cases. However, there is another problem at high transmis-
sion rates - a large number of nodes are susceptible to infection, but it is difficult to estimate which nodes
will get infected. As future work, we recommend exploring new metrics that offer stable performance
across a range of transmission rates.

Our current work explores the FAI of each individual node. As an extension, it would be interesting to
study multi-spreader FAI problem at the epidemic threshold, where a fraction of nodes are considered
as seed nodes and each set of seed nodes must be ranked in terms of FAI. Perhaps the same metrics
proposed by us can be calculated for each seed node and then aggregated in some manner to rank a
set of seed nodes.

One limitation is our inability to explain the differing performance of the Facebook Ego graph com-
pared to other graphs. This variation may be due to the extremely low mixing parameter (µ=0.02) or
high average degree (< k >=43.69). We suggest conducting an analysis of a wide range of global
network features to explain these differences among graphs.
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A
Appendix

A.1. Network Information
This section presents the degree distribution and community size distribution of the six real world net-
works. The degree distribution is plotted in a logarithmic scale, typically to see if these networks are
scale-free networks or not. Scale-free networks show a degree distribution that follows a power law.
Thus, the plot should be close to a straight line. It is difficult to conclude that the six real world networks
are scale-free.

The community distribution plots show that these networks have a heterogeneous distribution of
community size. There are many small communities and few large communities. Facebook Ego and
LastFM Asia have one of the largest communities among all other networks, of size approximately
1000.

22
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(a) Facebook Ego (b) Yeast Collins

(c) Yeast Proteins (d) Facebook Politician Pages

(e) LastFM Asia (f) US Powergrid

Figure A.1: Degree Distribution for the real world networks
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(a) Facebook Ego (b) Yeast Collins

(c) Yeast Proteins (d) Facebook Politician Pages

(e) LastFM Asia (f) US Powergrid

Figure A.2: F-SD v/s Prevalence for real world networks
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A.2. Relationship between Fairness and Prevalence
It is interesting to see the relationship between fairness and prevalence at λc. There are some nodes
which have low prevalence and poor fairness. A general trend is seen where SD of variation of seed
nodes increases with increase in prevalence.
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Figure A.3: F-SD v/s Prevalence for real world networks at λc
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A.3. Relation between existing Centrality metrics and FAI
The existing community aware centrality metrics are briefly decribed as follows.

A.3.1. Community-based centrality
Community-based Centrality(C1) [27] weights the intra-community and inter-community links with the
respective size of the community.Let kij be the number of links from node i to community j, then
Community-based Centrality is defined as:

C1(i) =
∑
jϵc

kij ×
ncj

N

A.3.2. Comm Centrality
Comm Centrality(C2) [9] uses information only at the community level. Let µci be the fraction of links
outside the community of ci to the total number of links of all the nodes in the community ci. It is defined
as follows:

C2(i) = (1 + µci)×

(
kintrai

maxj(kintrajϵci
)
×R

)
+ (1− µci)×

(
kinteri

maxj(kintrejϵci
)
×R

)

where

µci =

∑
jϵci

kinterj

nci

and R is an integer chosen such that both intra and inter values are in the same range.

A.3.3. Participation Co-efficient
The Participation Co-efficient(C3) is designed to differentiate nodes based on their role in the network
[8]. The PC of a given node i is defined as follows.

C3(i) = 1−
C∑

q=1

(
ki,cq
ktoti

)2

The value is close to 1 if the edges of the node are uniformly distributed among all the communities,
and 0 if all its edges are within its own community.

A.3.4. Community-based mediator
Community-based mediator (C4) considers the entropy of the inter- and intra-community links of a given
node. An assumption is made that the inter-community links from a node to different communities are
considered separately though not clearly shown in the equation (11) in the original paper[26]. Let ρi
denote the ratio of the links of i to nodes within its own community ci to the total number of links of i.
Let ρij be the ratio of links from node i to community j to the total number of links of i. Note that j is any
community in the network which is not the community of i. Thus the overall entropy Hi of the various
links of a node i belonging to community ci is given as

Hi = [−ρintrai log(ρintrai )] + [−
∑

jϵc\ci

ρinterij log(ρinterij )]

Then, Community-based mediator of node i is calculated as follows:

C4(i) = Hi ×
ktoti∑N
i=1 k

tot
i

The paper [26] claim that nodes selected by C4 are key nodes to spread information in the network
quickly and outperforms C1 A.3.1.
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A.3.5. K-shell community
K-shell with community or C5 [7] partitions the network into two - one with node and its own community
and the other with the node and the remaining network. The original K-shell does not distinguish
between strong and weak ties.

C5(i) = δ × αintra(i) + (1− δ)× αinter(i)

A.3.6. Modularity Vitality
Rather than considering inter-and intra-community links, Modularity vitality (C6) [17] studies the contri-
bution of the node to the structure of the network using modularity. As mentioned earlier, modularity
is a common metric to measure the goodness of community structure in a network. It may used to
differentiate between hub and bridge nodes.

C6(i) = Q(G)−Q(G− i)

Network λ CD CB CL CC CE

FacebookEgo λc 0.23 0.17 0.41 0.55 0.27

Yeast-Collins* λc 0.40 0.12 0.59 0.45 0.50

Yeast-proteins* λc 0.06 0.06 0.41 0.38 0.41

Facebook Politician λc 0.20 0.02 0.40 0.31 0.39

Pages

Last-FM Asia λc 0.07 -0.04 0.29 0.26 0.34

US Powergrid λc 0.23 0.13 0.45 0.20 0.40

Table A.1: Correlation values of FAI with classic centrality metrics (degree CD , betweenness CB , closeness CC , eigenvector
CE ) and local centrality CL at λc for the six real world networks. CL is seen to have the highest correlation values for all

networks except LastFM Asia and Facebook Ego, and is chosen as the baseline for metrics without community information.

Network λ χ C1 C2 C3 C4 C5 C6

FacebookEgo λc 0.43 0.42 -0.12 -0.14 -0.07 0.25 -0.34

Yeast-Collins* λc 0.68 0.64 0.32 0.02 0.16 0.40 -0.12

Yeast-proteins* λc 0.71 0.52 -0.53 -0.00 0.04 0.07 -0.22

Facebook Politician λc 0.59 0.52 -0.40 -0.13 -0.03 0.23 -0.05

Pages

Last-FM Asia λc 0.61 0.45 -0.60 -0.28 -0.15 0.09 -0.01

US Powergrid λc 0.68 0.56 -0.35 -0.06 0.10 0.18 0.00

Table A.2: Correlation values of FAI with Community Aware Metrics at λc for the six real world networks. χ is seen to have the
highest correlation values for all networks. Thus, it is chosen as one of the baseline metrics.
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Figure A.4: Recognition rate plots for classic centrality Metrics and CL at λc
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Figure A.5: Recognition Rate Plots for Community Metrics at λc. Community-Hub-Bridge (χ) outperforms the others for each
of the networks.
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A.4. FAI at higher levels of infection
This section contains the recognition rate plots for the baselines and newly proposed metrics at 2λc

and 3λc.
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Figure A.6: Recognition Rate Plot for the baselines and newly proposed metrics at 2λc
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Figure A.7: Recognition Rate Plot for the baselines and newly proposed metrics at 3λc



B
SIR Simulations

To understand infection spread given a seed node, two examples of SIR simulations are presented in
figuresB.1 and B.2. Two nodes with drastically different degrees from the Yeast Protein network are
chosen. Node 1121 has a degree of 5 while node 224 has the highest degree of 56 in Yeast Proteins.
It can be seen from the simulations that, on average, the number of infections is slightly more for node
224 due to the large number of neighbors. Another observation is that infections at λc are mostly limited
to one-hop neighborhood for both nodes. For nodes with larger degree, it is possible for the infection
to spread to 2-hop neighbors as seen in B.4. This forms the basis on which the new metrics designed
consider the 2-hop ego networks of a given seed node to rank it in terms of FAI.
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Figure B.1: A 2-hop ego network of node 1121 of the Yeast Protein network. Nodes with the same color as 1121 belong to the
same community. The others belong to different communities.
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Figure B.2: A 2-hop ego network of node 224 of the Yeast Protein network. This node has the maximum degree in this
network (56). Nodes with the color purple belong to the same community as 224 . The others belong to different communities.
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Figure B.3: 10 SIR simulations with 1121 as the seed node, at the end of the infection spreading process at λ = λc.
Nodes in black are nodes that have recovered. Nodes in green were not infected.
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Figure B.4: 10 SIR simulations with 224 as the seed node, at the end of the infection spreading process. λ = λc. Nodes in
black are nodes that have recovered. Nodes in green were not infected. Seven out of ten times, the infection spreads to only

one-hop neighbors.
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(a) Simulation at 2λc

(b) Simulation at 3λc

Figure B.5: SIR simulations with 224 as the seed node (in purple), at the end of the infection spreading process. The 4-hop
neighborhood of 224 is considered. 10 simulations are run for each effective transmission rates - 2λc and 3λc. The run with the
highest outbreak size among the 10 runs is shown in this figure. At 2λc, the infection can spread beyond 2-hop neighborhood,

but the number of infections in such neighborhoods is relatively small. At 3λc, infection can spread beyond 2-hop
neighborhood of the seed node with large number of recovered nodes.
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