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a b s t r a c t

A novel mathematical framework is derived for the addition of nodes to univariate and
interpolatory quadrature rules. The framework is based on the geometrical interpretation
of the Vandermonde matrix describing the relation between the nodes and the weights
and can be used to determine all nodes that can be added to an interpolatory quadrature
rule with positive weights such that the positive weights are preserved. In the case
of addition of a single node, the derived inequalities that describe the regions where
nodes can be added are explicit. Besides addition of nodes these inequalities also yield
an algorithmic description of the replacement and removal of nodes. It is shown that it
is not always possible to add a single node while preserving positive weights. On the
other hand, addition of multiple nodes and preservation of positive weights is always
possible, although the minimum number of nodes that need to be added can be as large
as the number of nodes of the quadrature rule. In case of addition of multiple nodes
the inequalities describing the regions where nodes can be added become implicit. It
is shown that the well-known Patterson extension of quadrature rules is a special case
that forms the boundary of these regions and various examples of the applicability of
the framework are discussed. By exploiting the framework, two new sets of quadrature
rules are proposed. Their performance is compared with the well-known Gaussian and
Clenshaw–Curtis quadrature rules, demonstrating the advantages of our proposed nested
quadrature rules with positive weights and fine granularity.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

This article is concerned with the addition of nodes to univariate and interpolatory quadrature rules with positive
eights. If such a quadrature rule is given, the goal is to determine all sequences of nodes such that, upon adding
ll nodes from such a sequence to the rule, an interpolatory quadrature rule with positive weights is again obtained.
he motivation of this problem is twofold. Firstly, approximations of integrals computed using interpolatory quadrature
ules with positive weights converge for any absolute continuous function [1–3]. Secondly, nested quadrature rules allow
or straightforward refinements of the quadrature rule approximation, which is especially relevant if the integrand is
omputationally expensive.
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Possibly the best-known interpolatory quadrature rule is the Gaussian quadrature rule [4], which exists for virtually
ny probability distribution with finite moments. It has positive weights and maximal polynomial degree. However, the
odes are not nested. The Gauss–Kronrod quadrature rule is an extension of a Gaussian quadrature rule, such that two
ested rules with positive weights are obtained [5,6]. The Gauss–Kronrod–Patterson quadrature rule [7,8] further extends
his idea by repeatedly applying the same algorithm, such that a sequence of nested rules is obtained. However, it does
ot exist for any distribution [9,10]. Even though many other extensions have been proposed over the years [11–13],
n general it is difficult to obtain a series of nested quadrature rules with positive weights. Moreover often the smallest
ossible granularity between two consecutive nested quadrature rules can only be found by exhaustive search [14].
Another large group of well-known quadrature rules is formed by the Clenshaw–Curtis quadrature rules [15], or simply

hose quadrature rules that are based on Chebyshev approximations (the Clenshaw–Curtis rule is formed by the Chebyshev
xtrema). Besides having excellent interpolation properties [16], it is well-known that these quadrature rules have positive
eights if the distribution under consideration is uniform (explicit expressions are known [17]). Moreover for non-uniform
istributions, the condition number of the quadrature rule converges to unity [3]. However, the vanilla Clenshaw–Curtis
odes are only nested for exponentially growing numbers of nodes [18].
Both the Gaussian and Clenshaw–Curtis quadrature rules have explicitly predefined nodes based on the roots of

rthogonal polynomials. This results in accurate quadrature rules, but the construction of an accurate nested quadrature
ule with fine granularity based on these rules remains notoriously difficult.

In this article the goal is to propose a geometrical framework for the addition of nodes to an interpolatory quadrature
ule with positive weights and use this framework to determine all interpolatory quadrature rules with positive weights
hat extend a rule based on predefined nodes. It will be demonstrated rigorously that the boundary of the set that contains
ll nodes that can be added is equivalent to the Patterson extension of quadrature rules, such that a special case of the
ramework is an extension of the aforementioned Gaussian quadrature rule families.

The approach taken is based on the geometrical interpretation of the linear system describing the nodes and the
eights [19–21], which yields a necessary and sufficient condition for a quadrature rule to have positive weights. The

ramework embeds previous results on the removal of nodes from quadrature rules [19,22,23] and describes, besides a
eometrical description of all nodes that can be added to a quadrature rule, algorithms that can be used to construct and
odify interpolatory quadrature rules with positive weights.
The addition and replacement of a single node can be determined analytically, whereas numerical methods are required

o determine the bounds on the sets describing multiple nodes. The focus of this article is mainly on the geometrical and
athematical aspects and not on the numerical aspects of the proposed algorithms. However, to illustrate the potential
f the framework, two straightforward examples of quadrature rules with positive weights that can be constructed by
xploiting the proposed techniques are discussed.
In Section 2 the nomenclature used in this article is discussed, including the motivation behind enforcing positive

eights. In Section 3 the problem of adding a single node to a quadrature rule is considered, which can be solved
nalytically. It is not always possible to add a node to a quadrature rule such that the resulting rule has positive weights.
herefore the theory is extended to adding multiple nodes in Section 4, where the results developed for adding a single
ode will be used extensively. It is always possible to add multiple nodes to a quadrature rule, provided that any
umber of nodes may be added to the rule. To demonstrate the advantages of nested quadrature rules with positive
eights, two quadrature rules that are derived in this work are compared with the well-known Gaussian and Clenshaw–
urtis quadrature rule. The details and results of this numerical experiment are discussed in Section 5. Conclusions and
uggestions for future work are discussed in Section 6.

. Preliminaries

The quadrature rule nomenclature relevant for this article is discussed in Section 2.1. The relevance of positive weights
nd the relation between positive weights and accuracy of a quadrature rule are briefly reviewed in Section 2.2. The
athematical notion of adding nodes to a quadrature rule can be interpreted as a non-trivial extension of the removal of
odes [19,22,23], which is briefly discussed in Section 2.3. Finally, the problem setting of this article and the main results
btained from this work are summarized mathematically in Section 2.4.

.1. Nomenclature

A quadrature rule is a well-known approach to approximate a weighted integral in the interval Ω = [a, b] ⊂ R with
−∞ ≤ a < b ≤ ∞. The weighting function is a positive density function ρ:Ω → [0,∞). The main interest is to
approximate the integral over a given continuous function u:Ω → R, i.e. to approximate the following operator:

Iu =
∫

Ω

u(x) ρ(x) dx =
∫ b

a
u(x) ρ(x) dx.

A quadrature rule approximates this integral by means of a weighted average, consisting of nodes and weights, which
we denote by X = {x , . . . , x } ⊂ Ω and W = {w , . . . , w } ⊂ R respectively. The quadrature rule is the following
N 0 N N 0 N
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operator AN :

ANu :=
N∑

k=0

u(xk)wk ≈ Iu.

It is common to measure the consistency of this construction by means of polynomial degree. The polynomial degree
f a quadrature rule is defined as the maximum polynomial degree the quadrature rule integrates exactly, or equivalently:
quadrature rule of degree K has the property

ANϕ = Iϕ, for all ϕ ∈ P(K ), (2.1)

here P(K ) denotes the space of all univariate polynomials of degree K or less. This definition is only meaningful if ρ has
inite moments, so that is assumed to be the case throughout this article.

A quadrature rule is called interpolatory if the dimension of P(K ) is larger than or equal to the number of nodes, or
n other words, if K ≥ N . Such quadrature rules can be formed by integrating the polynomial interpolant of u using the
odes XN . As the title of this article suggests, these quadrature rules are the main focus of this work: throughout this
rticle the interest is mainly in rules with K = N (though quadrature rules with K > N , such as the Gaussian quadrature

rules, will also be considered).
The operators AN and I and the space P(K ) are linear, so if K = N , (2.1) defines a linear system that can be used to

determine the weights, given the nodes and the moments of the distribution. Throughout this article a monomial basis
of P(K ) is considered. In this case, the matrix of the linear system is the well-known Vandermonde matrix, denoted as
follows:⎛⎜⎝x00 · · · x0N

...
. . .

...

xN0 · · · xNN

⎞⎟⎠
  

V (XN )

⎛⎜⎝w0
...

wN

⎞⎟⎠ =
⎛⎜⎝µ0

...

µN

⎞⎟⎠ , (2.2)

ith µk the raw moments of ρ:

µk =

∫
Ω

xk ρ(x) dx.

hroughout this article it is assumed that µk is known exactly for all k. The notation V (XN ) is used for the matrix of this
linear system. It is well-known that

det V (XN ) =
∏

0≤i<j≤N

(xj − xi), (2.3)

such that, given the nodes, (2.2) defines a unique solution of the weights provided that all nodes are distinct.

2.2. Accuracy of quadrature rules

In this article the focus is on constructing interpolatory quadrature rules with non-negative weights (which we will
call with a little abuse of nomenclature a positive quadrature rule). An approximation of an integral by means of such a
quadrature rule converges if the integrand is sufficiently smooth [1], which can among others be demonstrated by applying
the Lebesgue inequality [3], provided that Ω is bounded. To this end, let u be given and let ϕN be the best approximation
polynomial [24] of degree N of u, i.e. ϕN = argminϕ∈P(N) ∥ϕ − u∥∞. Then

|ANu− Iu| ≤ (∥AN∥∞ + ∥I∥∞)∥u− ϕN∥∞

= (∥AN∥∞ + µ0)∥u− ϕN∥∞.

Here, it holds that

∥AN∥∞ = sup
∥u∥∞=1

|ANu| =
N∑

k=0

|wk| =

N∑
k=0

wk = µ0,

here it is used that |wk| = wk. Hence the following inequality is obtained:

|ANu− Iu| ≤ 2µ0 inf
ϕ∈P(N)
∥u− ϕ∥∞. (2.4)

his shows many similarities with the classical Lebesgue inequality [16,24] and demonstrates that if u can be approxi-
ated well using a polynomial, it can be integrated using a quadrature rule with positive weights. Similar results exist

or unbounded Ω [3,25].
Two well-known interpolatory quadrature rules with positive weights are the Clenshaw–Curtis and Gaussian quadra-

ure rules.
3
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The Clenshaw–Curtis quadrature rule [15] has nodes XN that are defined as follows for Ω = [−1, 1]:

xk = cos
(

k
N

π

)
, for k = 0, . . . ,N. (2.5)

he Clenshaw–Curtis quadrature rule has positive weights if the uniform distribution is considered and for any other
istribution with bounded support the sum of the absolute weights becomes arbitrary close to µ0 for large N [3]. The
uadrature rule is nested for specific levels: it holds that XNL ⊂ XNL+1 with NL = 2L (for L = 1, 2, . . . ).
The nodes of the Gaussian quadrature rule [4] are defined as the roots of the orthogonal polynomials with respect to

the distribution ρ under consideration, e.g. Legendre polynomials for the uniform distribution, Jacobi polynomials for the
Beta distribution, etc. The uniquely defined rules always have positive weights and with N + 1 nodes the rule has degree
2N + 1, however the rules are not nested.

The Gauss–Kronrod and Gauss–Patterson quadrature rules are extensions of Gaussian quadrature rules such that upon
adding M nodes (with M = N + 2 for the Gauss–Kronrod rule) to a rule of N + 1 nodes, a (not necessarily positive) rule
of degree N + 2M is obtained [5,8]. The Patterson extension is also applicable to non-Gaussian quadrature rules, though
possibly complex-valued nodes can be obtained. The idea is to solve the following problem for xN+1, . . . , xN+M , given
quadrature rule nodes XN :∫

Ω

xj
[

N+M∏
k=0

(x− xk)

]
ρ(x) dx = 0, for j = 0, . . . ,M − 1. (2.6)

Then the obtained rule has degree N+2M [3, Theorem 5.1.3], is defined uniquely, and possibly has complex-valued nodes.
By construction, a Gaussian quadrature rule is obtained if M = N+1 (the weights of the nodes in XN become zero). These
rules are reobtained as a special case in the framework discussed in this work.

2.3. Removal of nodes

The primary focus of this article is on the addition of nodes, but the obtained mathematical expressions can be
interpreted as reversing the removal of nodes from an existing quadrature rule. Using Carathéodory’s theorem, it can be
shown that for each positive interpolatory quadrature rule XN , WN there exist two nodes xk0 and xk1 such that XN \ {xk0}
and XN \ {xk1} both form the nodes of interpolatory quadrature rules with positive weights [19,22,23,26]. The details are
discussed in the constructive proof of the following theorem.

Theorem 1 (Carathéodory’s Theorem). Let v0, . . . , vN be N + 1 vectors spanning an N-dimensional space V . Let v ∈ V be
such that v =

∑N
k=0 akvk with all ak ≥ 0. Then there exist non-negative bk and a k0 ∈ {0, . . . ,N} such that

v =
N∑

k=0
k̸=k0

bkvk.

Proof. The vectors v0, . . . , vN are linearly dependent, since these are N + 1 vectors spanning an N-dimensional space.
Hence there exists a vector c = (c0, . . . , cN )T ̸= 0 such that

N∑
k=0

ckvk = 0.

Hence for any α ∈ R, we have that

v =
N∑

k=0

(ak − αck)vk.

In particular, consider the following α and k0:

α = min
(
ak
ck
| ck > 0

)
=:

ak0
ck0

.

ith these choices it holds that ak − αck ≥ 0 for all k and ak0 − αck0 = 0, concluding the proof as follows:

v =
N∑

k=0
k̸=k0

(ak − αck)vk. □
4
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The theorem can be used straightforwardly to remove nodes from a quadrature rule. To this end, let the positive
nterpolatory quadrature rule XN and WN be given. The goal is to construct an interpolatory quadrature rule using N
nodes from XN (which consists of N + 1 nodes). Therefore, let v0, . . . , vN be the columns of the Vandermonde matrix
of degree N − 1, i.e. vk = (x0k, . . . , x

N−1
k )

T
. Then vk are N + 1 vectors spanning an N-dimensional space. The proof of

arathéodory’s theorem yields that there exist a vector c, scalar α, and index k0 such that

µj =

N∑
k=0
k̸=k0

xjk(wk − αck), for all j = 0, . . . ,N − 1.

oreover, we have that wk0 − αck0 = 0, so by using XN−1 = {xk ∈ XN | k ̸= k0} and WN−1 = {wk − αck | k ̸= k0} a
ositive interpolatory quadrature rule is obtained. Notice that the vector c is computable, since it is a null vector of the
andermonde matrix of degree N − 1 (which is an N × (N + 1)-matrix).
This approach can be used to compute nested quadrature rules, but limits the accuracy of those quadrature rules to the

nitial rule of which nodes are removed. It is of less use if this rule is inadequately accurate or if no such rule is available.
possible approach to alleviate this is to use random samples as initial quadrature rule [27], though such samples do not
ccurately integrate higher order moments. The necessity of an existing quadrature rule is one of the main motivations
o consider the addition of nodes, since that does not require the computation of an initial quadrature rule of sufficient
ccuracy.

.4. Problem setting and main results

The problem studied in this article is how to add nodes to a positive interpolatory quadrature rule such that it remains
ositive and interpolatory. To formulate this mathematically, let a positive interpolatory quadrature rule XN , WN be given.
hen the goal is to determine, for given M , all nodes such that the set XN+M contains the nodes of a positive interpolatory
uadrature rule and such that the rules are nested, i.e. XN ⊂ XN+M . To keep the nomenclature concise, we will refer to
his problem as adding M nodes to a positive interpolatory quadrature rule, where by ‘‘adding’’ we always mean addition
uch that the resulting quadrature rule has positive weights. Moreover the number of nodes added to a quadrature rule
hould be minimal, so we are also interested in the minimal value of M (with M > 0) such that a positive interpolatory
uadrature rule with nodal set XN+M exists.
If a positive quadrature rule is given that is not interpolatory, i.e. a quadrature rule such that ANϕ = Iϕ for all ϕ ∈ P(K )

with K < N , a positive interpolatory quadrature rule can be deduced from this rule by repeatedly applying Theorem 1.
Therefore we assume in this article without loss of generality that all quadrature rules are interpolatory.

The approach is to formulate, for given M , a necessary and sufficient condition for all M nodes that can be added. This
condition can be used firstly to determine whether such nodes exist for a specific M and secondly to determine the nodes
themselves. Moreover the derived theory allows for specific adjustments of quadrature rules. These adjustments consist
of replacing and removing nodes from the quadrature rule, in such a way that the degree of the rule is not affected.

The analysis is split into two sections. The addition of a single node (M = 1) can be solved analytically and is discussed
in Section 3. The addition of multiple nodes (M > 1) can only be done analytically for special cases. Based on the theory
for M = 1, this problem is analyzed in Section 4.

3. Addition of one node

Let XN , WN be a positive interpolatory quadrature rule. The goal is to determine all xN+1 such that XN+1 = XN ∪ {xN+1}
forms the nodal set of a positive interpolatory quadrature rule, i.e. there exists a set of non-negative weights WN+1 such
that

N+1∑
k=0

xjkw
(N+1)
k = µj, for j = 0, . . . ,N + 1.

Here, w(N+1)
k are the weights in the set WN+1 and µj is assumed to be known. Notice that in general WN and WN+1 will

completely differ, so we use the following notation for any N:

WN = {w
(N)
0 , . . . , w

(N)
N }.

Moreover, with a little abuse of notation we will use w
(N)
k = 0 for all k > N .

In Section 3.1 we derive a necessary and sufficient condition for such an xN+1 to exist, which depends on the current
nodes, weights, and moment µN+1. As such, the developed theory provides practical adjustments of a quadrature rule.
These constitute addition and replacement of a node, without reducing the degree of the interpolatory quadrature rule. The
details are discussed in Section 3.2 and will be very useful in the remainder of this article. In Section 3.3 the Patterson
extension is discussed in light of the derived adjustments and some basic applications of the derived procedures are
discussed, including the construction of a (partially) nested quadrature rule with positive weights.
5
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w
T

3.1. Positive weight criterion

The key notion is that if the node xN+1 is given, a vector c = (c0, . . . , cN+1)T can be constructed such that w
(N+1)
k =

w
(N)
k + ck (for k = 0, . . . ,N + 1). This is the vector used in Section 2.3 to remove nodes from a rule. If this vector is such

that ck ≥ −w
(N)
k , then w

(N+1)
k ≥ 0, which is the primary goal. In this section, these properties are translated to conditions

on xN+1 that describe in which cases a node can be added to a quadrature rule.
The interpolatory quadrature rule XN , WN has degree N , so after adding xN+1 the following should hold to ensure that

the new rule is interpolatory:

µj =

N∑
k=0

xjkw
(N)
k =

N+1∑
k=0

xjkw
(N+1)
k , for j = 0, . . . ,N.

From this, it follows for j = 0, . . . ,N that (using w
(N)
N+1 = 0):

0 =
N+1∑
k=0

xjkw
(N+1)
k −

N+1∑
k=0

xjkw
(N)
k =

(
N+1∑
k=0

xjkw
(N)
k +

N+1∑
k=0

xjkck

)
−

N+1∑
k=0

xjkw
(N)
k =

N+1∑
k=0

xjkck. (3.1)

The goal is to construct XN+1 and WN+1 such that they form a quadrature rule of degree N + 1. Hence with µN+1 =∫
Ω
xN+1 ρ(x) dx given, it should hold that

N+1∑
k=0

xN+1k w
(N+1)
k = µN+1,

which can be expressed in terms of the vector c as

εN+1 := µN+1 −

N∑
k=0

xN+1k w
(N)
k =

N+1∑
k=0

xN+1k ck. (3.2)

The value of εN+1 can be interpreted as the approximation error of the quadrature rule with nodes XN and weights WN
with respect to µN+1. Combining (3.1) and (3.2) yields the following system of linear equations for the vector c:⎛⎜⎜⎜⎝

x00 · · · x0N x0N+1
...

. . .
...

...

xN0 · · · xNN xNN+1
xN+10 · · · xN+1N xN+1N+1

⎞⎟⎟⎟⎠
⎛⎜⎜⎝

c0
...

cN
cN+1

⎞⎟⎟⎠ =
⎛⎜⎜⎝

0
...

0
εN+1

⎞⎟⎟⎠ ,

or more compactly:

V (XN+1) c = ε,

with ε = (0, . . . , 0, εN+1)T. The vector ε has a large number of zeros so it is convenient to apply Cramer’s rule to this
linear system, which yields

ck =
det Vk(XN+1)
det V (XN+1)

, (3.3)

here Vk(XN+1) is equal to V (XN+1) with the kth column replaced by ε, where the indexing of columns is started with 0.
his expression can be simplified by noticing that

det Vk(XN+1) = (−1)(N+2)+(k+1)εN+1 det V (XN+1 \ {xk}) = (−1)N+k+1εN+1 det V (XN+1 \ {xk}),

with V (XN+1 \ {xk}) the (N + 1)× (N + 1) Vandermonde matrix constructed with the nodal set XN+1 \ {xk}. By using (2.3),
the following is obtained for k = 0, . . . ,N + 1:

ck =
det Vk(XN+1)
det V (XN+1)

= (−1)N+k+1εN+1
det V (XN+1 \ {xk})

det V (XN+1)

= (−1)N+k+1εN+1

⎛⎜⎝ ∏
0≤i<j≤N+1

i,j̸=k

(xj − xi)

⎞⎟⎠/
⎛⎜⎝ ∏

0≤i<j≤N+1

(xj − xi)

⎞⎟⎠
= εN+1

/⎛⎜⎝N+1∏
j=0

(xk − xj)

⎞⎟⎠ .

(3.4)
j̸=k

6
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The denominator of this expression can be written as ℓ′N (xk), where ℓN (x) =
∏N

j=0(x− xj) is the nodal polynomial. To keep
the dependence on xN+1 clear, this notation is used sparingly in this article.

The goal is to have positive weights, i.e. w(N+1)
k = w

(N)
k + ck ≥ 0, which can be used to prove the following theorem.

Theorem 2. Let XN , WN form an interpolatory quadrature rule. Then XN+1 = XN ∪ {xN+1} forms the nodal set of a positive
interpolatory quadrature rule if and only if

−εN+1

/⎛⎜⎝N+1∏
j=0
j̸=k

(xk − xj)

⎞⎟⎠ ≤ w
(N)
k , for k = 0, . . . ,N + 1. (3.5)

Proof. If XN+1 forms the nodal set of a positive interpolatory quadrature rule, then

0 ≤ w
(N+1)
k = w

(N)
k + ck = w

(N)
k + εN+1

/⎛⎜⎝N+1∏
j=0
j̸=k

(xk − xj)

⎞⎟⎠ .

Subtracting w
(N)
k from both sides of the inequality yields (3.5). Vice versa, if (3.5) holds, it follows that

w
(N+1)
k = w

(N)
k + ck = w

(N)
k + εN+1

/⎛⎜⎝N+1∏
j=0
j̸=k

(xk − xj)

⎞⎟⎠
  

=−w
(N)
k

= 0. □

If εN+1 = 0, i.e. ANxN+1 = µN+1, then the theorem yields that the new rule has positive weights if and only if the
current rule has positive weights. This is not surprising: any node xN+1 can be added to such a rule with w

(N+1)
N+1 = 0 (and

with w
(N+1)
k = w

(N)
k for k = 0, . . . ,N).

From a computational point of view (3.5) might not be a numerically stable way of computing the bounds that describe
all nodes that can be added. In the context of quadrature rules, numerical instabilities are usually alleviated by changing
the basis of the Vandermonde matrix, but this is not applicable in this case since the determinant is up to a scaling factor
independent from the basis used to construct the Vandermonde matrix (and this factor cancels out in (3.3)). Nonetheless,
(3.5) can be evaluated in a numerical stable way using the well-known barycentric formulation of the interpolating
polynomial. The interested reader is referred to [28].

3.2. Quadrature rule adjustments

Theorem 2 describes a necessary and sufficient condition for a quadrature rule to have positive weights if both xN+1
and εN+1 are known. A main novelty of this work is to employ a geometrical interpretation of (3.5), from which several
possible adjustments of quadrature rules can be derived. The most straightforward one is that all nodes xN+1 can be
determined that yield a positive interpolatory quadrature rule upon adding one of them to an existing quadrature rule.
Moreover the formula also yields procedures to replace nodes in a quadrature rule, keeping the weights positive. The
latter adjustment will be useful in Section 4, where it can be used to determine all possible M nodes that can be added
to a rule.

In Section 3.2.1 we further consider (3.5) and discuss the geometrical relation between the new node xN+1 and
the quadrature error εN+1. In Sections 3.2.2 and 3.2.3 we discuss the addition and replacement of nodes in a positive
interpolatory quadrature rule such that positivity of the weights is preserved. These operations follow directly from the
geometrical interpretation of Theorem 2 derived in Section 3.2.1. The removal of a node, as outlined in Section 2.3, can
also be formulated as a consequence of Theorem 2, which is not done here since the removal of nodes has been considered
extensively in previous work [19,22,23,26].

3.2.1. Geometry of nodal addition
The inequalities from (3.5) are N+2 linear inequalities in xN+1 and εN+1. This can be seen by rewriting (3.4) as follows:

ck
N+1∏
j=0
j̸=k

(xk − xj) = εN+1, for k = 0, . . . ,N + 1. (3.6)

If two values of xN+1, ck (for k = 0, . . . ,N + 1), or εN+1 are known, all other values can be determined from these
expressions, which enforces that the obtained quadrature rule is again interpolatory. To incorporate positive weights, we
7
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p
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Fig. 1. The quadrature rule error εN+1 versus the new node xN+1 using the quadrature rule XN = {−1,−1/6, 1} and ρ ≡ 1/2. The solid lines depict
airs (xN+1, εN+1) such that one weight becomes zero, after addition of xN+1 to the quadrature rule using εN+1 as quadrature error. Left: regions
here individual weights are positive; the axes are labeled similar as the large rightmost figure. For example, if (xN+1, εN+1) is picked in the gray
egion of Fig. 1(b), adding xN+1 to the quadrature rule yields a rule with w

(3)
1 ≥ 0 (assuming εN+1 defines the raw moment correctly). Right: region

here all weights are positive, which is the intersection of the left figures. Hence if (xN+1, εN+1) is picked in the gray region of Fig. 1(e), adding
N+1 to the quadrature rule yields a rule with positive weights.

se that for k = 0, . . . ,N it holds that

εN+1 = ck
N+1∏
j=0
j̸=k

(xk − xj) = (xk − xN+1) ck
N∏
j=0
j̸=k

(xk − xj)

  
Independent from xN+1

.

By combining this with (3.5) and requiring w
(N)
k + ck ≥ 0 inequalities of the following form are obtained:

εN+1 ≤ −w
(N)
k (xk − xN+1)

N∏
j=0
j̸=k

(xk − xj) if
N+1∏
j=0
j̸=k

(xk − xj) ≤ 0,

εN+1 ≥ −w
(N)
k (xk − xN+1)

N∏
j=0
j̸=k

(xk − xj) if
N+1∏
j=0
j̸=k

(xk − xj) ≥ 0.

(3.7)

These are linear inequalities describing the relation between xN+1 and εN+1 such that w
(N+1)
k ≥ 0 for k = 0, . . . ,N . For

k = N + 1 it holds that w
(N)
k = 0, so by using that ck = w

(N+1)
k , (3.6) translates to:

εN+1 ≤ 0 if
N∏
j=0

(xN+1 − xj) ≤ 0,

εN+1 ≥ 0 if
N∏
j=0

(xN+1 − xj) ≥ 0.

(3.8)

Even though the rightmost inequalities are non-linear, their sign solely depends on the location of xN+1 with respect to
the other nodes. Hence the exact value of the product is not of importance.

Example 1. The inequalities from (3.8) are visualized as functions from xN+1 to εN+1 in Fig. 1 for the quadrature rule
with XN and WN as follows:

XN =

{
−1,−

1
6
, 1
}

,WN =

{
1
10

,
24
35

,
3
14

}
.

This is an (obviously positive) interpolatory quadrature rule with Ω = [−1, 1] and ρ ≡ 1/2. The solid lines in the figures
depict all (xN+1, εN+1) pairs such that one weight becomes equal to zero (i.e. where equality is attained in inequality
(3.7) or (3.8)). The region where individual weights are positive is shaded in Figs. 1(a), 1(b), 1(c), and 1(d). Fig. 1(e) is
the intersection of these figures and therefore depicts regions where all weights are positive. Any (xN+1, εN+1) pair in the
shaded region describes a positive interpolatory quadrature rule that contains the original three nodes.
8
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The left subfigures demonstrate some key properties of the derived inequalities. The inequalities are linear and switch
ign at the node, which is the rightmost condition of (3.7). The characteristics of the last inequality (Fig. 1(d)) solely
epend on the location of xN+1 with respect to the other nodes. A combination of all inequalities (Fig. 1(e)) has varying
haracteristics between different nodes, but it is always a system of linear inequalities. The line εN+1 = 0 is contained
in all shaded regions, because any node with weight equal to zero can be added to the rule if the next moment µN+1 is
already correctly integrated by the quadrature rule.

The relation between xN+1 and εN+1 from (3.8) can be interpreted in two ways. Firstly, if a new node xN+1 is given, an
upper bound and a lower bound on εN+1 can be determined such that upon adding xN+1 to the quadrature rule, a positive
interpolatory quadrature rule is obtained. Geometrically these are the bounds of the shaded area with the x = xN+1 line.
This interval is never empty (as εN+1 = 0 is always in the shaded region). Secondly, if εN+1 is given, a (possibly empty)
set can be determined such that a positive interpolatory quadrature rule is obtained upon adding a node from such a set.
Geometrically this is equivalent to determining the bounds of the shaded area with the y = εN+1 line.

The second interpretation can be used to add nodes to a quadrature rule, i.e. εN+1 is known and the goal is to determine
xN+1 (this is discussed in Section 3.2.2). The first interpretation can be used to replace nodes within a quadrature rule:
xN+1 is added to the nodal set and an existing node can be removed by setting its weight to zero (this is discussed in
Section 3.2.3).

3.2.2. Addition of a node
A direct consequence of (3.7) is that all nodes that can be added to a quadrature rule can be defined by means of

intervals, obtained via a linear inequality. The results are discussed in the following lemmas. The first focuses on keeping
the existing weights of the quadrature rule positive, the second focuses on ensuring that the additional weight (i.e. of the
added node) is positive.

Lemma 3. Let XN , WN form the nodes and the weights of a positive interpolatory quadrature rule, let εN+1 from (3.2) be
given, and let index k of node xk be given. Let x[k]N+1 be as follows:

x[k]N+1 =
(
εN+1 + w

(N)
k xkℓ′N (xk)

)/(
w

(N)
k ℓ′N (xk)

)
.

Then w
(N+1)
k ≥ 0 if and only if xN+1 ∈ Ik with

Ik = R \ [xk, x
[k]
N+1) if xk < x[k]N+1, and Ik = R \ (x[k]N+1, xk] otherwise.

Or in other words, if and only if xN+1 is not between xk and x[k]N+1.

Proof. Adding a node is determining an xN+1 that solves (3.7) if εN+1 is known. Hence, to keep the kth weight positive,
this is equivalent to computing the solution x[k]N+1 of the following problem:

εN+1 = −w
(N)
k (xk − x[k]N+1)

N∏
j=0
j̸=k

(xk − xj)

  
ℓ′N (xk)

, (3.9)

ere we used ℓ′N to make the notation more compact. Hence if w
(N)
k ̸= 0:

x[k]N+1 =
εN+1 + w

(N)
k xkℓ′N (xk)

w
(N)
k ℓ′N (xk)

.

The node x[k]N+1 is such that, if added to the quadrature rule, an interpolatory quadrature rule is obtained with w
(N+1)
k = 0

(the other weights may be negative). Assume xk < x[k]N+1, without loss of generality. Then any node xN+1 with xN+1 ≥ x[k]N+1
or xN+1 < xk solves (3.7) for a single k. This is equivalent to stating that xN+1 ∈ Ik = R \ [xk, x

[k]
N+1). □

The proof of this lemma can also be stated geometrically, using one of Figs. 1(a), 1(b), or 1(c). If εN+1 is known, those
xN+1 that are such that (xN+1, εN+1) is not part of a gray region form the interval as stated in the lemma. Here, x[k]N+1 is
the intersection of the line passing through xk and the constant line εN+1. All intervals Ik are bounded, so there always
exists a node xN+1 ∈ (I0 ∩ · · · ∩ IN ), or in other words, there always exists a node that keeps the existing N + 1 weights
of a quadrature rule positive upon addition.

Obviously, the goal is also to ensure that the weight of the added node is positive, which can be described by means
of a series of intervals. The details of this are discussed in the following lemma.

Lemma 4. Let XN , WN form the nodes and the weights of a positive interpolatory quadrature rule, let εN+1 from (3.2) be
given. Without loss of generality, assume that x0 < x1 < · · · < xN . Then w

(N+1)
N+1 ≥ 0 upon addition of xN+1 to the quadrature

rule if and only if one of the following holds for all k = 0, . . . ,N:
9
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t
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q

F

P

I

Fig. 2. Addition of a new node to and replacement of an existing node within the quadrature rule XN = {−1,−1/6, 1} and ρ ≡ 1/2. Left: all nodes
hat can be added to a quadrature rule form intervals, in this case the interval [0, 7/9] and the interval (−∞,−5/3] (of which the latter is not
epicted). Right: the closed sets Ωk depict all possible replacements within a quadrature rule. If the goal is to construct a positive interpolatory
uadrature rule, the node xk can only be replaced by nodes from the set Ωk .

• xN+1 ∈ [xk−1, xk] if the signs of ℓ′N (xk) and εN+1 are equal (e.g. both are negative);
• xN+1 ∈ [xk, xk+1] if the signs of ℓ′N (xk) and εN+1 differ.

or k = N, use xk+1 = ∞ and for k = 0, use xk−1 = −∞ (with a little abuse of notation).

roof. Recall the derivation of (3.8), i.e. the relation between xN+1, w
(N+1)
N+1 , and εN+1:

−w
(N+1)
N+1

N∏
j=0

(xN+1 − xj) = εN+1.

t holds that w
(N+1)
N+1 > 0 if

∏N
j=0(xN+1 − xj) and εN+1 have different sign. The first term flips sign only at xN+1 = xk (for

any k = 0, . . . ,N), hence if, for given k,
N∏
j=0
j̸=k

(xk − xj) > 0,

it is necessary that xk−1 < xN+1 < xk to ensure that
∏N

j=0(xN+1 − xj) is negative and xk < xN+1 < xk+1 to ensure that∏N
j=0(xN+1 − xj) is positive. A similar result holds if

N∏
j=0
j̸=k

(xk − xj) < 0.

Combining this with the sign of εN+1 results in the statement of the lemma. □

Geometrically, Lemma 4 describes the intervals of Fig. 1(d). Notice that Lemma 4 can also straightforwardly be applied
to cases where w

(N)
k = 0 (for any k = 0, . . . ,N), i.e. if the quadrature rule has weights equal to zero.

Using Lemmas 3 and 4 the set I can be computed such that any xN+1 ∈ I can be added to a quadrature rule XN and
WN such that positive weights are obtained (and adding any xN+1 /∈ I yields a rule with at least one negative weight). The
procedure is to firstly compute all intervals I0, . . . , IN from Lemma 3 and construct I = I0 ∪ · · · ∪ IN . Secondly, Lemma 4
is used to remove intervals of the form [xk−1, xk] from I .

The exact details of this procedure are outlined in Algorithm 1. No advanced interval arithmetic is necessary to
implement this algorithm, only a procedure that implements the removal of an interval from a series of intervals is needed.

Example 2. Reconsider the quadrature rule from Example 1. Then the bounds of the intervals containing nodes that can
be added, i.e. the solutions of (3.9), are depicted in Fig. 2(a) as open circles. Here, µN+1 = 0, so from a straightforward
computation it follows that εN+1 = −1/9. A constant ρ is considered here. In this case, the values of x[k]N+1 are (from left
to right) −5/3, 0, and 7/9, of which the first is not visible in the figure. Adding any of these nodes yields a quadrature
rule with positive weights, but we emphasize that this is generally not the case for other quadrature rules. Hence adding
any node from the set I = (−∞,−5/3] ∪ [0, 7/9] yields a positive interpolatory quadrature rule. Restricting xN+1 to the
set Ω further reduces the number of possible intervals.
10
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N

Algorithm 1 Addition of a node

Input: Positive, interpolatory quadrature rule XN ,WN , raw moment µN+1 (or, equivalently, εN+1)
Output: Set I ⊂ R such that XN ∪ {x} forms the nodal set of a positive, interpolatory quadrature rule if and only if x ∈ I

1: I ← R
2: εN+1 ← µN+1 −

∑N
k=0 x

N+1
k w

(N)
k

3: Sort XN ,WN such that x0 < x1 < · · · < xN
4: for k = 0, . . . ,N + 1 do
5: ℓ′N (xk)←

∏N
j̸=k(xk − xj)

6: if w
(N)
k > 0 then

7: x[k]N+1 ←
(
εN+1 + w

(N)
k xkℓ′N (xk)

)/(
w

(N)
k ℓ′N (xk)

)
8: if x[k]N+1 > xk then
9: I ← I \ [xk, x

[k]
N+1)

10: else
11: I ← I \ (x[k]N+1, xk]
12: end if
13: end if

14: if (ℓ′N (xk) < 0 and εN+1 < 0) or (ℓ′N (xk) > 0 and εN+1 > 0) then
15: if k > 0 and wk > 0 then
16: I ← I \ [xk−1, xk]
17: else
18: I ← I \ (−∞, xk]
19: end if
20: else
21: if k < N and wk > 0 then
22: I ← I \ [xk, xk+1]
23: else
24: I ← I \ [xk,∞)
25: end if
26: end if
27: end for
28: Return I

Notice that I = ∅ if εN+1 ̸= 0 and w
(N)
k = 0. This can be derived mathematically, but it also follows from the mere fact

that all weights change (see (3.9)) upon addition of a node to a quadrature rule, so w
(N+1)
k = w

(N)
k = 0 is not possible. If

εN+1 = 0, no node can be added to enforce that w
(N)
k = 0. However, any node with weight equal to zero can be added,

hence the formula yields x[k]N+1 = xk with w
(N+1)
N+1 = 0. Technically, the quadrature rule now has a node equal to xk with

weight equal to zero. Nonetheless, this results in a singular Vandermonde matrix (which contradicts the theory developed
so far), so we do not further study this specific case.

If Ω = R and the number of nodes is odd, it is always possible to add a single node to a quadrature rule: in this case
the result from Lemma 4 either states that xN+1 ∈ (−∞, x0] or xN+1 ∈ [xN ,∞), but never both. Geometrically this means
that the leftmost and rightmost shaded regions grow to infinity and minus infinity respectively (or vice versa). Similarly,
if Ω = R and the number of nodes is even, it is always possible to add a single node if εN+1 ≥ 0.

However, in any other case (i.e. that of a bounded Ω or even number of nodes with εN+1 < 0) adding a single node
to a quadrature rule is not always possible, as shown in the following example.

Example 3. Adding a single node to the following interpolatory quadrature rule is not possible when requiring positive
weights:

XN =

{
−1,−

1
6
,
1
11

, 1
}

,WN =

{
29
180

,
144
595

,
1331
3060

,
17
105

}
.

ote that this example can be obtained straightforwardly by adding the node 1/11 to the quadrature rule from Example 1
and redetermining the weights likewise.
11
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t

3.2.3. Replacement of a node
Replacing a node is equivalent to adding a node, with the difference that the goal is to determine this node such that

he weight of an existing node in the obtained quadrature rule becomes zero, i.e. w(N+1)
k = 0 for a k ≤ N . This is equivalent

to determining a specific (xN+1, εN+1) pair that yields w
(N+1)
k = 0, which was used to determine all possible additions in

Section 3.2.2. The main difference with addition is that the next moment µN+1 is not used, as the number of nodes and
the degree of the rule do not change. This makes εN+1 a free variable.

The relation between εN+1 and xN+1 is already derived, so by reconsidering (3.9) with the goal to determine both xN+1
and all ε

[k]
N+1 (indexed by [k] with k = 0, . . . ,N) that make w

(N+1)
k = 0 the following expressions are obtained:

ε
[k]
N+1 = −w

(N)
k (xk − xN+1)

N∏
j=0
j̸=k

(xk − xj), for k = 0, . . . ,N. (3.10)

We will interpret this expression as a function of xN+1, denoted by ε
[k]
N+1:Ω → R. By using εN+1 = ε

[k]
N+1(xN+1), a positive

interpolatory quadrature rule with w
(N+1)
k = 0 is obtained upon adding xN+1 to the rule.

It follows that for every xN+1 ∈ Ω there is an xk ∈ XN such that the quadrature rule with nodes (XN ∪ {xN+1}) \ {xk} is
positive and interpolatory. The details are discussed in the following lemma.

Lemma 5. Let XN , WN form the nodes and the weights of a positive interpolatory quadrature rule and let xN+1 ∈ Ω be given.
Then there exists an xk such that (XN ∪ {xN+1}) \ {xk} forms the nodal set of a positive and interpolatory quadrature rule.

Proof. Let ε
[k]
N+1 be defined by (3.10). Consider ε− and ε+, defined as follows:

ε− = max
k

(
ε
[k]
N+1 | ε

[k]
N+1 < 0

)
,

ε+ = min
k

(
ε
[k]
N+1 | ε

[k]
N+1 > 0

)
.

Hence ε− < 0 < ε+. Using Lemma 3, it follows that using either ε− or ε+ to add xN+1 results in a quadrature rule with
w

(N+1)
k ≥ 0 for k = 0, . . . ,N . Moreover, by definition of ε− and ε+ these rules have one (or more) weight equal to 0. From

Lemma 4 it follows that either the rule constructed using ε− or the rule constructed using ε+ has w
(N+1)
N+1 ≥ 0 (and the

other has w
(N+1)
N+1 ≤ 0).

Concluding, either ε− or ε+ can be used to construct a positive interpolatory quadrature rule with at least one weight
equal to zero. Nodes with weights equal to zero can be removed without affecting the quadrature rules. This is equivalent
to having added a node xN+1 and having removed one, say xk, which is the statement of the lemma. □

The proof of the lemma is constructive, and therefore describes a straightforward method to replace nodes in a
quadrature rule. Given xN+1 ∈ Ω , the procedure is to compute ε+ and ε−, figure out whether εN+1 = ε+ or εN+1 = ε−
yields w

(N+1)
N+1 ≥ 0 by using Lemma 4, and finally compute the quadrature rule after replacement. These steps are outlined

in detail in Algorithm 2. Geometrically, the approach computes the two lines closest to the εN+1 = 0 line, i.e. the boundary
of the gray region, and determines which of these lines correspond to obtaining a quadrature rule with only positive
weights (see Fig. 2(b)).

Consequently, the domain of a quadrature rule, depicted by Ω ⊂ R, can be decomposed in subsets Ω0, . . . , ΩN that
indicate which node can be replaced. If xN+1 ∈ Ωk, (XN ∪ {xN+1}) \ {xk} forms the nodal set of a positive interpolatory
quadrature rule. Combining the results of Lemmas 4 and 5, these sets can be denoted in the following way:

xN+1 ∈ Ωk ⇐⇒

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ε
[k]
N+1 = min

j

(
ε
[j]
N+1 | ε

[j]
N+1(xN+1) ≥ 0

)
if

N+1∏
j̸=k

(xk − xj) ≤ 0,

ε
[k]
N+1 = max

j

(
ε
[j]
N+1 | ε

[j]
N+1(xN+1) ≤ 0

)
if

N+1∏
j̸=k

(xk − xj) ≥ 0.

The sets Ωk have been depicted in Fig. 2(b). Notice that the boundaries of these sets correspond to positions where
two lines intersect, or in other words, those xN+1 ∈ Ωk that result in two weights equal to zero, if used for replacement.
One of these weights is, by construction, w(N+1)

k . If the other weight is w
(N+1)
l , we also have xN+1 ∈ Ωl. This geometrical

observation can be made explicit, which can be used to actually compute Ωk: these xN+1 have ε
[k]
N+1(xN+1) = ε

[l]
N+1(xN+1),

or equivalently:

−w
(N)
k (xk − xN+1)

N∏
j=0
j̸=k

(xk − xj) = −w
(N)
l (xl − xN+1)

N∏
j=0
j̸=l

(xl − xj).

Hence we have proved the following lemma.
12
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Algorithm 2 Replacement of a new node

Input: Positive, interpolatory quadrature rule XN ,WN , new node x ̸∈ XN

Output: Positive, interpolatory quadrature rule X̂N , ŴN , with x ∈ X̂N and #(X̂N ∩ XN ) = N

1: ε+ ←∞

2: ε− ←−∞

3: k+, k− ←−1
4: for k = 0, . . . ,N do
5: ε

[k]
N+1 ←−w

(N)
k (xk − xN+1)

∏N
j̸=k(xk − xj)

6: ℓ′N+1 = (x− xj)
∏N

j̸=k(xk − xj)

7: if ℓ′N+1 ≤ 0 and ε+ > ε
[k]
N+1 > 0 then

8: k+ ← k
9: ε+ ← ε

[k]
N+1

10: end if
11: if ℓ′N+1 ≥ 0 and ε− < ε

[k]
N+1 < 0 then

12: k− ← k
13: ε− ← ε

[k]
N+1

14: end if
15: end for

16: if
∏N

j=0(x− xj) > 0 then

17: ck ← ε+

/(
(x− xj)

∏N
j̸=k(xk − xj)

)
(for k = 0, . . . ,N)

18: c ← ε+

/∏N
j=0(x− xj)

19: k0 ← k+
20: else
21: ck ← ε−

/(
(x− xj)

∏N
j̸=k(xk − xj)

)
(for k = 0, . . . ,N)

22: c ← ε−

/∏N
j=0(x− xj)

23: k0 ← k−
24: end if

25: X̂N ← {x0, . . . , xk0−1, x, xk0+1, . . . , xN}
26: ŴN ← {w

(N)
0 + c0, . . . , w

(N)
k0−1
+ ck0−1, c, w

(N)
k0+1
+ ck0+1, . . . , w

(N)
N + cN}

27: Return X̂N , ŴN

Lemma 6. Let k be given and let ∂Ωk denote the boundary of Ωk. Then, for any xN+1 ∈ ∂Ωk, we have that

−w
(N)
k (xk − xN+1)

N∏
j=0
j̸=k

(xk − xj) = −w
(N)
l (xl − xN+1)

N∏
j=0
j̸=l

(xl − xj),

for an l ∈ 0, . . . ,N.

The result is a procedure to compute the boundaries of a specific Ωk. Firstly, for l = 0, . . . ,N , compute x(k,l) such that

− w
(N)
k (xk − x(k,l))

N∏
j=0
j̸=k

(xk − xj) = −w
(N)
l (xl − x(k,l))

N∏
j=0
j̸=l

(xl − xj). (3.11)

Those x(k,l) that yield a positive interpolatory quadrature rule upon replacement (e.g. computed using Algorithm 2), form
the boundary of the interval Ωk. If xl < x(k,l), it follows that [xl, x(k,l)) /∈ Ωk, since a replacement with xN+1 ∈ [xl, x(k,l)]
results in a negative w

(N+1)
l (similar for xl > x(k,l)). The procedure to determine Ωk explicitly is outlined in Algorithm

3. Here, the indexing is slightly changed to be able to reuse parts of Algorithm 1, since we still need to ensure that the
weight of the added node (which replaces x ) is positive.
k

13
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Algorithm 3 Replacement of a given node

Input: Positive, interpolatory quadrature rule XN ,WN , node xl ∈ XN
Output: Space Ωl, such that (XN ∪ {x}) \ {xl} forms the nodal set of a positive, interpolatory quadrature rule if and only

if x ∈ Ωl

1: Ωl ← R
2: ℓ′N (xl)←

∏N
j̸=l(xl − xj)

3: for k = 0, . . . , l− 1, l+ 1, . . . ,N do
4: ℓ′N (xk)←

∏N
j̸=k(xk − xj)

5: x(k,l) ←
(
w

(N)
k xkℓ′N (xk)− w

(N)
l xlℓ′N (xl)

)/(
wkℓ

′

N (xk)− wlℓ
′

N (xl)
)

6: if xk < x(k,l) then
7: Ωl ← Ωl \ [xk, x(k,l))
8: else
9: Ωl ← Ωl \ (x(k,l), xk]

10: end if

11: εN+1 ←−wl(xl − x(k,l))ℓ′N (xl)
12: Follow steps 14–26 of Algorithm 1 with I = Ωl
13: end for

Eq. (3.11) does not necessarily have a solution for any l. Geometrically this is the case if the lines through xk and xl are
arallel. In such a case, one should use x(k,l) ←∞ or x(k,l) ←−∞ in Algorithm 3, depending on the sign of the nominator

when computing x(k,l) (usually, this happens automatically when using floating point arithmetic).
The values of xN+1 that solve (3.11) form a special case. Since xN+1 ∈ Ωk∩Ωl, the quadrature rule (XN ∪{xN+1})\{xk, xl}

is positive, interpolatory, and has degree N , even though it consists only of N nodes. The latter result is remarkable: two
nodes are removed and one is added, but the degree of the quadrature rule is not affected. Such rules have a non-trivial
high degree and are therefore more accurate than interpolatory quadrature rules without this property.

Example 4. An example of an interpolatory quadrature rule with non-trivial high degree is XN = {−1, 1/3}, obtained by
adding 1/3 to the quadrature rule of Example 1 (and removing all nodes with zero weight). All nodes that can be added
to obtain such a rule are the intersection of two lines in Fig. 2(b).

More generally, all nodes xk that can be added to a rule can be found by determining the bounds of the shaded region
and observing which node belongs to the obtained bound. Consequently, the fact that Ω =

⋃N
k=0 Ωk follows visually from

Fig. 2(b). Hence the relation between ε
[k]
N+1 and xN+1, as described by (3.10), are the solid lines in Fig. 2(b).

The node x(k,l) only depends on the nodes xj with j ̸= k and j ̸= l, i.e. its value is independent from xk and xl. This is
not evident, as (3.11) depends on these nodes. However, it can be demonstrated by using that the rule is interpolatory,
which yields:

w
(N)
k =

∫
Ω

Lk(x) ρ(x) dx =
1

ℓ′N (xk)

∫
Ω

ℓN (x)
x− xk

ρ(x) dx, with Lk(x) =
N∏
j=0
j̸=k

x− xj
xk − xj

.

Here, Lk(x) is the kth Lagrange basis polynomial. Replacing this expression in (3.11) and using that ℓ′N (xk) =
∏

j̸=k(xk− xj)
yield an equality that can be simplified to the following:

x(k,l) =
(∫

Ω

x ℓ(k,l)(x) ρ(x) dx
)/(∫

Ω

ℓ(k,l)(x) ρ(x) dx
)

, with ℓ(k,l)(x) =
N∏
j=0
j̸=k,l

(x− xj).

This expression is in fact a Patterson extension (consider (2.6) with j = 0). The tight relation between the Patterson
extension and the framework discussed in this article is further discussed in Section 3.3.1.

3.3. Constructing quadrature rules

In the previous section the theoretical foundation for extending a positive interpolatory quadrature rule with a single
node is derived. In this section, firstly it is discussed how addition relates naturally to the Patterson extension [8,29] of
(non-Gaussian) quadrature rules. Secondly, due to the simplicity of addition and replacement of a node, quadrature rules
based on these procedures can be derived numerically fast and accurately, and an example is discussed.
14
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As discussed previously, there does not always exist a single node that can be added such that positive weights are
btained, so it is non-trivial to construct a sequence of positive interpolatory quadrature rules by consecutively adding
single node to the rule. There are various possibilities to alleviate this, e.g. by allowing negative weights, relaxing the
trict requirement that all nodes of the quadrature rule have to be preserved, or by adding multiple nodes instead of one.
n this article, the second and third options are further considered. For this purpose, a quadrature rule is presented based
n the replacement of nodes. The rule has positive weights and is interpolatory, but is strictly speaking not fully nested.
he details are considered in Section 3.3.2. The addition of multiple nodes is further discussed in Section 4.

.3.1. Patterson extension
Remarkably, both the addition and replacement of a node can yield a Patterson extension of a quadrature rule. In both

ases, the focus is on the nodes that yield a zero weight upon addition to the quadrature rule.
In Section 3.2.2 it was noticed that any weight from a quadrature rule can be made equal to zero by exploiting the

elation between εN+1 and xN+1. In Example 2 the quadrature rule XN = {−1,−1/6, 1} was considered, where the nodes
−5/3, 0, and 7/9 are such that upon adding one of these to the rule, a rule of only three nodes with non-zero weights of
degree three is obtained. Notice that these nodes are Patterson extensions of quadrature rules (as discussed in Section 2.2),
as they can be interpreted as adding one node (M = 1) to a quadrature rule of two nodes (N = 1), obtaining a rule of
degree three (N + 2M = 3). This also holds in general: for given k, adding one node x[k]N+1 from (3.9) (so M = 1) to the
interpolatory quadrature rule XN \ {xk} (with degree N − 1) yields a quadrature rule with N + 1 nodes and degree N + 1
(which equals (N − 1)+ 2M).

In Section 3.2.3 the notation x(k,l) was introduced to denote nodes that, upon adding them to the rule, yield a (possibly
negative) interpolatory quadrature rule with w

(N+1)
k = w

(N+1)
l = 0. These nodes also form a Patterson extension. To

see this, notice that the replacement is adding a single node to the quadrature rule XN−2 = XN \ {xk, xl}. The Patterson
extension of a single node of this quadrature rule is a quadrature rule consisting of N nodes of degree (N − 2)+ 2M = N
(adding one node means M = 1). By construction, this rule has the nodes XN−2 ∪ {x(k,l)}.

Example 5. Reconsider for example the quadrature rule with the nodes XN = {−1,−1/6, 1} and ρ ≡ 1/2. Then it is
straightforward to determine using (3.11) that x(0,1) = −1/3, x(0,2) = 2, and x(1,2) = 1/3. Hence these are three Patterson
extensions of the quadrature rule nodes {1}, {−1/6}, and {−1}. Indeed, the quadrature rules with the nodes {−1/3, 1},
{−1/6, 2}, or {−1, 1/3} have degree equal to 2.

Notice that x(k,l) is not a Patterson extension of the quadrature rule that has been used to determine it, i.e. XN , WN in
(3.11). However, its definition allows for a straightforward way to determine this extension. First, add (randomly) two
nodes to the quadrature rule XN , WN , obtaining a possibly negative interpolatory quadrature rule XN+2, WN+2. Then the
node x(N+1,N+2) is the Patterson extension of the quadrature rule with nodes XN , because upon adding this node to XN+2,
the weights of the randomly added nodes become zero. As the Patterson extension is unique, this construction is well-
defined. Naturally, this is not the preferred approach to construct a Patterson extension, but it embeds such extensions
into the framework discussed here.

The Patterson extension is also obtained as a special case if multiple nodes are added to a quadrature rule. This will
be discussed in Section 4.3.

3.3.2. Partially nested, positive, and interpolatory quadrature rule
The addition and replacement of a single node are straightforward procedures described as the solutions of linear

inequalities. However, there does not always exist a single node that can be added such that all weights remain positive.
In this section, this is alleviated by relaxing the requirement that XN ⊂ XN+M .

To this end, let XN and X̂N+1 be the nodes of two positive interpolatory quadrature rules, possibly with XN ̸⊂ X̂N+1.
The nodes X̂N+1 can for example form a Gaussian quadrature rule. The idea is to iteratively replace nodes in X̂N+1 with
nodes from XN , i.e. removing xk ∈ X̂N+1 and adding xk ∈ XN . Ideally, all nodes xk ∈ XN can be added to xk ∈ X̂N+1, which
would yield a rule that reuses all nodes in XN .

In other words, if XN = {x0, . . . , xN} and X̂N+1 = {x̂0, . . . , x̂N+1}, for each node xk ∈ XN \ X̂N+1 the set Ωj is identified
(see Section 3.2.3) such that (X̂N+1 ∪ {xk}) \ {x̂j} is the nodal set of a positive and interpolatory quadrature rule. If there
is an xk such that x̂j ̸∈ XN , we set X̂N+1 ← (X̂N+1 ∪ {xk}) \ {x̂j} and keep repeating this procedure until no such xk exists
anymore. If there are multiple xk that could possibly be used to trigger a replacement in X̂N+1, the smallest one is selected
in the example presented in this article.

The nodes from XN that cannot be added to X̂N+1 are reconsidered in consecutive iterations and added again if possible.
It is difficult to theoretically quantify the number of nodes from XN that can be ‘‘added’’ this way to X̂N+1, though it is
straightforward to see that there exists at least a single xk ∈ XN that can be reused.

To demonstrate this procedure numerically, let X1 and W1 form a Gaussian quadrature rule of two nodes. If the uniform
distribution is considered, evaluating all quadrature rules up to N = 19 requires in total 22 unique evaluations of u, which
is two more than optimally possible considering the limitations of the framework as discussed in this work. The obtained
sequence is depicted in Fig. 3(a) (the two additional evaluations of u can be found at N = 15 and N = 18). This result
seems to be somewhat independent from the distribution, since applying the same approach to construct a sequence of
15
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Fig. 3. Partially nested, positive, and interpolatory quadrature rules constructed using sequences of Gaussian quadrature rules. The Nth quadrature
ule is constructed by iteratively replacing all nodes of a Gaussian quadrature rule of N nodes by the plotted quadrature rule of N − 1 nodes. The
rocedure is initiated using the Gaussian quadrature rule consisting of two nodes. The colors indicate the weights of the nodes.

uadrature rules with respect to a Beta(10, 10) distribution requires in total 23 function evaluations, which is three more
han optimally possible (the obtained rules are depicted in Fig. 3(b)).

The main advantage of this approach compared to the previously discussed Patterson extension is that it always has
ositive weights. Moreover the expressions to compute the nodes contained in the quadrature rule are straightforward.
owever, the approach has the same disadvantage as the removal of nodes (see Section 2.3), since it requires a sequence
f existing quadrature rules.

. Addition of multiple nodes

In the previous section a counterexample of a positive interpolatory quadrature rule is discussed that cannot be
xtended by adding a single node. In this section we will therefore study the addition of multiple nodes to a quadrature
ule. The problem setting is that of Section 2.4: given a positive interpolatory quadrature rule XN , WN , determine M
s small as possible and nodes XN+M with XN ⊂ XN+M such that XN+M forms the nodal set of a positive interpolatory

quadrature rule.
The first step is to extend the derivation of Section 3.1 for the addition of multiple nodes. The derivation is again based

on Cramer’s rule. With the theory that is derived in upcoming Section 4.1 it is not obvious how nodes can be added to the
quadrature rule, but it provides geometrical insight in the location of such nodes with respect to the existing nodes. Again
we can derive some non-trivial adjustments one can apply to a quadrature rule. These are discussed in Section 4.2. Similar
to the case of a single node, there is a tight relation with the Patterson extension. In this case, the Patterson extension
for general M is recovered. This is discussed in Section 4.3, including some examples of nested quadrature rules obtained
with the theory derived in this section.

4.1. Positive weight criterion

The idea is similar to the derivation of the addition of single node. Let XN be the initial nodal set and let M be given.
The goal is to determine XN+M with XN ⊂ XN+M such that it forms the nodal set of a positive interpolatory quadrature
rule.

Let w
(N)
k for k = 0, . . . ,N be the weights of WN and likewise let w

(N+M)
k be the (unknown) weights of WN+M . Then

there exists a vector c = (c0, . . . , cN , cN+1, . . . , cN+M )T such that w
(N+M)
k = w

(N)
k + ck. The goal is to construct c such that

the obtained rule is interpolatory and positive.
With a similar reasoning as before it is straightforward to observe that the following should hold for such a vector to

ensure that the obtained quadrature rule is interpolatory:

N+M∑
k=0

xjkck = 0, for j = 0, . . . ,N,

and
N+M∑

xjkck = εj, for j = N + 1, . . . ,N +M,
k=0

16
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where εj is as previously introduced, i.e. εj := µj −
∑N

k=0 x
j
kw

(N)
k . This can be written in the form of a linear system as

follows:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

x00 · · · x0N x0N+1 · · · x0N+M
...

. . .
...

...
. . .

...

xN0 · · · xNN xNN+1 · · · xNN+M
xN+10 · · · xN+1N xN+1N+1 · · · xN+1N+M

...
. . .

...
...

. . .
...

xN+M0 · · · xN+MN xN+MN+1 · · · xN+MN+M

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

c0
...

cN
cN+1

...

cN+M

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0
...

0
εN+1

...

εN+M

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Applying Cramer’s rule to this system requires more bookkeeping, as the right hand side contains multiple non-zero
entries. Let ε = (0, . . . , 0, εN+1, . . . , εN+M )T, then Cramer’s rule prescribes

ck =
det Vk(XN+M )
det V (XN+M )

,

here Vk(XN+M ) is equal to V (XN+M ) with the kth column (indexed from 0) replaced by ε. The numerator can be further
xpanded as follows:

det Vk(XN+M ) =
N+M∑
j=N+1

(−1)(j+1)+(k+1)εj det V(j,k)(XN+M ) =
N+M∑
j=N+1

(−1)j+kεj det V(j,k)(XN+M ),

where V(j,k)(XN+M ) is the (j, k)-minor of V (XN+M ) (i.e. the matrix without its jth row and kth column, where both indices
start at 0). Hence for ck the following expression is obtained:

ck =
N+M∑
j=N+1

(−1)j+kεj
det V(j,k)(XN+M )
det V (XN+M )

=

N+M∑
j=N+1

(−1)N+M−jεj
det V(j,k)(XN+M )

det V(N+M,k)(XN+M )

/⎛⎜⎝N+M∏
j=0
j̸=k

(xk − xj)

⎞⎟⎠ .

The same derivation is commonly used to derive the determinant of a Vandermonde matrix [30,31], and it is well-known
that the ratio of determinants obtained in this expression is an elementary symmetric polynomial. The kth elementary
symmetric polynomial is generally defined as the sum of all monomial permutations of length k, that is as follows:

ek(x0, . . . , xN ) =
∑

0≤i1<···<ik≤N

xi1 · · · xik .

The elementary symmetric polynomials are only defined for k ≤ N + 1 and by convention e0 ≡ 1. Concluding, the
following expression is obtained for ck:

ck =

⎛⎜⎝ N+M∑
j=N+1

(−1)N+M−jεjeN+M−j(XN+M \ {xk})

⎞⎟⎠/
⎛⎜⎝N+M∏

j=0
j̸=k

(xk − xj)

⎞⎟⎠ , for k = 0, . . . ,N +M.

Here, ek is the kth elementary symmetric polynomial as defined above. With a little abuse of notation, we used:

eN+M−j(XN+M \ {xk}) := eN+M−j(x0, . . . , xk−1, 0, xk+1, . . . , xN+M )
= eN+M−j(x0, . . . , xk−1, xk+1, . . . , xN+M ).

We are now in a position to formulate a theorem in similar form as Theorem 2, but then for multiple nodes. The proof is
omitted, since it is equivalent to that of Theorem 2, but then with the equalities derived in this section.

Theorem 7. Let XN , WN form an interpolatory quadrature rule. Then XN+M = XN ∪ {xN+1, . . . , xN+M} forms the nodal set of
a positive interpolatory quadrature rule if and only if

−

⎛⎜⎝ N+M∑
j=N+1

(−1)N+M−jεjeN+M−j(XN+M \ {xk})

⎞⎟⎠/
⎛⎜⎝N+M∏

j=0
j̸=k

(xk − xj)

⎞⎟⎠ ≤ w
(N)
k , for k = 0, . . . ,N +M.

For M = 1, we have that the summation only incorporates j = N+1, hence eN+M−j(XN+M \{xk}) = e0(XN+M \{xk}) = 1,
recovering Theorem 2. So Theorem 7 is indeed a strict generalization of Theorem 2.
17
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4.2. Quadrature rule adjustments

Theorem 7 presents a necessary and sufficient condition for a quadrature rule extended with M nodes to have positive
eights. Contrary to the addition of a single node, it cannot be used directly to determine possible nodes that can be
dded to the quadrature rule. This can be seen by rewriting it in a similar form as (3.7), i.e. for k = 0, . . . ,N +M:

w
(N)
k

N+M∏
j=0
j̸=k

(xk − xj) ≥ −
N+M∑
j=N+1

(−1)N+M−jεjeN+M−j(XN+M \ {xk}) if
N+M∏
j=0
j̸=k

(xk − xj) ≥ 0,

w
(N)
k

N+M∏
j=0
j̸=k

(xk − xj) ≤ −
N+M∑
j=N+1

(−1)N+M−jεjeN+M−j(XN+M \ {xk}) if
N+M∏
j=0
j̸=k

(xk − xj) ≤ 0.

(4.1)

Notice that, if xN+1, . . . , xN+M are unknowns, an M-variate system of N + M + 1 polynomial inequalities is obtained. In
general these systems are very difficult to solve, so we do not directly pursue a solution of the system above. Nonetheless,
the system still provides a geometrical interpretation about where solutions reside, similar to the case of single node
addition (though less intuitive). This is discussed in Section 4.2.1. Based on these geometrical insights, procedures to
replace nodes and to add nodes, which extend those explained previously, can be derived. These procedures are discussed
in Sections 4.2.2 and 4.2.3 respectively.

4.2.1. Geometry of nodal addition
The type of the inequalities (4.1) (i.e. ‘‘greater than’’ versus ‘‘less than’’) does not change between two nodes and if this

type is fixed, the system consists of polynomial inequalities. Hence the region where M nodes can be added is described
by a continuous boundary, bounded by the polynomial inequalities of (4.1), consisting of lines, surfaces, or ‘‘hypersurfaces’’
through the nodes.

If one of the right hand sides of (4.1) changes sign, there is an addition of M nodes such that the inequality forms an
equality for a specific k. In such cases, there is an addition such that one of the nodes obtains a weight equal to zero. This
is equivalent to the case discussed in Section 3.2.3, where a single node is added in order to set the weights of another
node equal to zero.

It is difficult to visualize the addition of M nodes in a similar way as we visualized the addition of one node, as there
are M nodes xN+1, . . . , xN+M and M quadrature rule errors εN+1, . . . , εN+M . Plotting the errors with respect to the nodes
(as in Fig. 2) is therefore not viable, as this is a plot from RM to RM .

On the other hand, if the distribution ρ(x) is fixed beforehand, the values of εN+1, . . . , εN+M are known and contour
plots of the regions encompassing all M nodes that can be added can be made (provided that M is small enough).

Example 6. Let ρ ≡ 1/2 with Ω = [−1, 1] and reconsider the quadrature rule from Example 1. In Fig. 4 lines are
depicted where the inequalities from (4.1) are equalities. The shaded area depicts regions where all inequalities are valid,
i.e. any coordinate (xN+1, xN+2) in the shaded region can be added to the respective quadrature rule in order to obtain
a positive interpolatory rule. The figure is obviously symmetric around xN+1 = xN+2, as the order of addition (i.e. first
adding xN+1 and then xN+2 or vice versa) yields equivalent quadrature rules. Selecting a coordinate (xN+1, xN+2) on one of
the boundaries results in one weight equal to zero. Adding the coordinates on the corners, depicted by the open circles
(i.e. ‘‘the boundary of the boundary’’), results in two weights equal to zero.

The dashed lines indicate where the inequalities (4.1) with k = N + 1 and k = N + 2 change sign. If this happens, one
of the new nodes xN+1 or xN+2 has weight equal to zero. This line forms everywhere a boundary of the shaded area: the
node with weight equal to zero can be replaced by any other node, while still resulting in an interpolatory quadrature
rule with positive weights. This situation is equivalent to adding a single node xN+1 to the quadrature rule, but gaining
two degrees, as discussed in Section 3.2.2.

The addition and replacement of multiple nodes follow readily from this example. Notice that if any coordinate
(xN+1, . . . , xN+M ) is known, the replacement for M = 1 can be used to reach any other coordinate (xN+1, . . . , xN+M )
in the same region (shaded in Fig. 4). Hence if all corners of those regions are determined (depicted as open circles in
Fig. 4), the full region can be explored straightforwardly using Algorithm 3. As these corner cases form a replacement
of nodes, we start by discussing replacement of M nodes. Moreover, it will be shown that these corners are a Patterson
extension. Based on the algorithm to determine all these corners, addition of M nodes follows straightforwardly.

4.2.2. Replacement of multiple nodes
Let XN , WN be an interpolatory quadrature rule and let indices k1, . . . , kM be given such that 0 ≤ ki ≤ N and ki ̸= kj for

i ̸= j. In this section the goal is to determine the interpolatory quadrature rule XN+M , WN+M such that w
(N+M)
ki

= 0 for all ki.
Notice that this is equivalent to replacing the nodes xk1 , . . . , xkM in the quadrature rule XN by the nodes xN+1, . . . , xN+M .
The nodes with this property are the intersections of the polynomials of (4.1) and they are depicted as open circles in

Fig. 4. Moreover, they describe the boundary of the set of nodes that can be added to the quadrature rule.
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Fig. 4. Two examples of addition of two nodes to a quadrature rule. In both cases, ρ ≡ 1/2. Choosing the two nodes in a shaded area yields positive
weights. Choosing the two nodes on the open circles yields two weights equal to zero and positive weights. Dashed lines correspond to a zero
weight for xN+1 or xN+2 , i.e. adding xN+1 exactly at the dashed line yields a quadrature rule of N + 2 nodes with degree N + 2, making the addition
of xN+2 trivial.

The desired nodes xN+1, . . . , xN+M can be determined by calculating the Patterson extension of the interpolatory
quadrature rule with the nodes XN \ {xk1 , . . . , xkM }, for which efficient techniques exist [5,11,29]. Such techniques require
that M must be known a priori and they do not provide a simple geometrical interpretation. Therefore we proceed
by embedding the Patterson extension in the framework discussed here. This yields an alternative, new algorithm to
determine these nodes, which is mainly of theoretical and geometrical interest, since it requires the computation of large
numbers of roots of polynomials.

We start by solving a slightly easier problem. Assume εN+1 = · · · = εN+M−1 = 0 and εN+M ̸= 0. Notice that, if εN+M is
neglected, any addition of M − 1 nodes yields a valid quadrature rule (as these nodes have zero weight). Geometrically,
a fully shaded figure (if drawn as Fig. 4) is obtained. This can be exploited to determine the desired nodes, as only the
value of εN+M imposes a condition on the nodes xN+1, . . . , xN+M .

The nodes that yield w
(N+M)
k1

= · · · = w
(N+M)
kM

= 0 can be found by applying Theorem 7 with cki = −w
(N)
ki

for all i or by
consecutively applying Theorem 2. In both cases, the following is obtained:

εN+M = −w
(N)
ki

⎛⎜⎝ N∏
j=0
j̸=ki

(xki − xj)

⎞⎟⎠
⎛⎜⎝ N+M∏

j=N+1

(xki − xj)

⎞⎟⎠ , for i = 1, . . . ,M. (4.2)

In principle this system of polynomial equalities is difficult to solve, but it has a certain structure that can be exploited.
To see this, let ℓ̂M (x) be the nodal polynomial of the nodes xN+1, . . . , xN+M :

ℓ̂M (x) =
N+M∏
j=N+1

(x− xj),

which translates the system above to

εN+M = −w
(N)
ki

⎛⎜⎝ N∏
j=0
j̸=ki

(xki − xj)

⎞⎟⎠ ℓ̂M (xki ), for i = 1, . . . ,M. (4.3)

If the nodal polynomial ℓ̂M is known, its roots equal xN+1, . . . , xN+M . The nodal polynomial has degree M and it is known
that its leading order coefficient equals 1. Therefore it is useful to introduce the polynomial qM (x) := ℓ̂M (x)− xM , which
has degree M − 1. Then (4.3) can be rewritten as follows:

qM (xki ) = ℓ̂M (xki )− xMki = − εN+M

/⎛⎜⎝w
(N)
ki

N∏
j=0
j̸=ki

(xki − xj)

⎞⎟⎠− xMki , for i = 1, . . . ,M. (4.4)

These are M values of a polynomial of degree M − 1, which is a well-known interpolation problem and can be solved
with various well-known methods (such as barycentric interpolation [28]). If qM is determined, the roots of the polynomial
ℓ̂ (x) = q (x)+xM are the nodes x , . . . , x . By construction these nodes are such that w

(N+M)
= 0 for i = 1, . . . ,M .
M M N+1 N+M ki

19



L.M.M. van den Bos and B. Sanderse Journal of Computational and Applied Mathematics 391 (2021) 113430
Algorithm 4 Determining XN+M with zero weights

Input: Interpolatory quadrature rule XN , WN , indices k1, . . . , kM .
Output: Interpolatory quadrature rule XN+M , WN+M such that w

(N+M)
ki

= 0 for all i.

1: m← 1
2: for k = k1, . . . , kM do
3: Determine ℓ̂m such that ℓ̂m(x) = xm + qm(x) (see (4.4)) and

εN+m = −wl ℓ̂m(x)
N+m∏
j=0
j̸=l

(xl − xj) for both l = k and l = N + 1, . . . ,N +m− 1

4: Let r1, . . . , rm be the roots of ℓ̂m, i.e. ℓ̂m(rk) = 0
5: XN+m ← XN ∪ {r1, . . . , rm} and determine WN+m
6: m← m+ 1
7: end for
8: Return XN+M , WN+M

Even though assuming εN+1 = · · · = εN+M−1 = 0 is not realistic in practical cases, this procedure can readily be
extended to the general case. For this we reuse the replacement step from Section 3.2.3. If εN+1 ̸= 0, then a single node
is added to the quadrature rule such that w

(N+1)
k1

= 0. This is equivalent to applying Algorithm 2 with xN+1 = x(k,l),
as discussed in Section 3.2.3. Then the obtained quadrature rule XN+1 \ {xk1} has εN+1 = 0. By applying the procedure
discussed above to these N + 1 nodes, the nodes xN+2 and xN+3 can be determined such that w

(N+2)
k2

= 0 and w
(N+2)
N+1 = 0,

i.e. we enforce that the weight of xk2 is zero and the weight of the previously added node becomes zero. The obtained
rule has N + 3 nodes, where two nodes have weight equal to zero. This is again a replacement, but here two nodes get
weight equal to zero, which is a generalization of the replacement discussed in Section 3.2.3. Those nodes are removed
to reobtain a quadrature rule of N + 1 nodes and this process is repeated iteratively until XN+M is obtained. The obtained
rule can be interpreted as a replacement of M nodes, and yields the open circles from Fig. 4. It is an iterative description: a
replacement of M nodes is determined using a replacement of M−1 nodes. Geometrically, we iterate over the dimension
of the figure and iteratively determine a set of nodes that can be used as a replacement.

The obtained nodes form by definition a Patterson extension of the nodal set XN \ {xk1 , . . . , xkM }, since it holds that
(XN \{xk1 , . . . , xkM })∪{xN+1, . . . , xN+M} has degree N+M . The existence of such a Patterson extension is directly coupled to
the existence of M nodes that can possibly be added to XN in the hope of obtaining an interpolatory quadrature rule with
positive weights: if M nodes can be added to the quadrature rule, the Patterson extension has positive weights, since it
forms the boundary of the set that describes all additions. Moreover, if all Patterson extensions of all sets XN\{xk1 , . . . , xkM }
for any sequences (k1, . . . , kM ) have negative weights or are not real-valued, no addition of M nodes exists.

Hence we have proved the following lemma.

Lemma 8. Let XN , WN form a positive interpolatory quadrature rule, let ρ be the density function (or let a sequence of moments
be given) , and let M be given. Then the following statements are equivalent:

1. There exists a Patterson extension of M nodes of the quadrature rule XN , WM with solely non-negative weights;
2. There exist M nodes xN+1, . . . , xN+M such that XN ∪ {xN+1, . . . , xN+M} forms the nodal set of a positive interpolatory

quadrature rule.

As stated before, any algorithm that computes Patterson extensions can be used to verify whether M nodes exist that
can be added to the rule. If a Patterson extension with non-negative weights is found, say xN+1, . . . , xN+M , Algorithm 3
can be used to explore all possible additions to the quadrature rule.

The algorithm based on the geometrical interpretation used in this article is outlined in Algorithm 4. By iterating over
all possible sorted sequences (k1, . . . , kM ), this procedure can be used straightforwardly to verify whether there exist M
nodes that can be added to a given quadrature rule (though this is a costly procedure).

There are two special cases that are (for sake of simplicity) not incorporated in Algorithm 4. Firstly, if w
(N+m)
k = 0 at

the start of an iteration, the polynomial ℓ̂M (x) is not well-defined. This can be incorporated by selecting any non-zero
w

(N+m)
ki

at the start of the iteration. If no such w
(N+m)
ki

exists, then all these weights are zero, which is the primary goal of
the algorithm. Secondly, if rk ∈ XN or εN+m = 0, a quadrature rule is obtained that has higher degree than its number of
nodes. This can be incorporated by combining all double nodes in XN and likewise adding the respective weights and by
skipping any iteration that has ε = 0.
N+m
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Fig. 5. The addition of 2 nodes to the interpolatory quadrature rule with the nodes XN = {−1,−1/6, 1}. Left: intervals depicting which node to
elect if the goal is to add one or two nodes to the quadrature rule. Hence selecting any node between the two squares and adding it yields a
uadrature rule to which again a node can be added. The interval of adding a single node is the same as depicted in Fig. 2(a). Right: The quadrature
ule obtained by adding the rightmost highlighted node of the left figure (i.e. ‘‘the rightmost square’’). Hence there is only a single node (denoted
y the open circle) that can be added to the rule.

.2.3. Addition of multiple nodes
By combining the quadrature rule replacement of Section 3.2.3 (for M = 1) and the replacement of the previous section

for M > 1), we obtained a naive algorithm to firstly determine M as small as possible such that there exists a positive
nterpolatory quadrature rule XN+M (Algorithm 4) and secondly to explore all such M nodes (Algorithm 3, yielding the
haded areas of Fig. 4).
Determining the number of nodes M that can be added to an interpolatory quadrature rule can straightforwardly be

one by solving (4.2) for each sequence of k1, . . . , kM with k1 < · · · < kM . This gives all locations where M nodes have
ero weight. If at any of these locations all nodes have non-negative weight, then M nodes can be added to the rule.
therwise, M is increased and the process is repeated.
Often the value of M is unknown a priori. Besides determining the M nodes that can be added, the goal is also to

etermine M as small as possible (this is also how we formulated the problem originally in Section 2.4). Algorithm 4 can
e used to determine M , as results from previous iterations can be reused. To see this, suppose a quadrature rule is given
nd by applying Algorithm 4 it is known that no addition of at most M−1 nodes exist. Then during these calculations, all
equences of nodes have been determined that make M−1 weights zero. By initializing Algorithm 4 with these sequences,
nly the last iteration of the loop is necessary, which significantly reduces the computational expense.
It is required to repeatedly determine large numbers of polynomial roots in this algorithm. This is nearly impossible

o do symbolically, except for some special cases (e.g. M ≤ 3 or symmetric quadrature rules). Moreover determining the
oots numerically can result in quick aggregation of numerical errors. We use variable precision arithmetic, i.e. determine
he roots with a large number of significant digits.

For large N this is a costly algorithm, as the number of sorted sequences of length M equals

#(k1, . . . , kM ) =
(
N + 1+M

M

)
,

hich grows fast for large N . Therefore using this algorithm to compute all removals is slower than using existing
echniques to compute the Patterson extension, albeit that it is able to reuse all additions of M − 1 nodes to compute all
dditions of M nodes.
If all sets of M nodes have been determined that can be added to the quadrature rule, the techniques from Section 3.2.3

an be used to fully explore all nodes that can be added to the rule. This requires solving linear equalities, which can be
one fast and accurately.
The possibility of adding M nodes to the quadrature rule does not guarantee the possibility of adding M + 1 nodes to

he quadrature rule, which is shown in the following example.

xample 7. We revisit the quadrature rule example from Example 1, i.e.

XN =

{
−1,−

1
6
, 1
}

,WN =

{
1
10

,
24
35

,
3
14

}
.

In Fig. 5(a) regions are depicted where a single node can be added (similar to Fig. 2(a)) and regions where, upon adding a
node from that region, another node can be added (this is the projection of Fig. 4(a)). The addition of the rightmost node
with the latter property is depicted in Fig. 5(b), demonstrating that there is a single node that can be added and that this
is indeed a limiting case.
21



L.M.M. van den Bos and B. Sanderse Journal of Computational and Applied Mathematics 391 (2021) 113430

T

Notice that the intervals where a single node and where two nodes can be added are independent from each other.

here exist pairs of nodes xN+1, xN+2 firstly such that bothWN+1 andWN+2 are all positive (in the right interval surrounded
by squares), secondly such that WN+1 is positive, but WN+2 is not (the right interval surrounded by circles, outside the
interval surrounded by squares), thirdly such that WN+1 is not positive, but WN+2 is (the left interval surrounded by
squares), and finally such that both WN+1 and WN+2 are always negative (outside all intervals).

4.3. Constructing quadrature rules

Similar to the case of addition of a single node, the Patterson extension is obtained for specific choices of nodes that
are added to the rule. In fact, the nodes determined with Algorithm 4 are a Patterson extension of a quadrature rule with
a smaller number of nodes. As the Gaussian quadrature rule is a special case of the Patterson extension, this rule also
follows from the framework discussed in this article. This is discussed in more detail in Section 4.3.1.

By repeatedly applying Algorithm 4, a sequence of nested quadrature rules can be determined. These rules and their
properties are considered in Section 4.3.2.

4.3.1. Patterson extension
The boundary of the set that describes all possible additions is spanned by the Patterson extension (the open circles in

Figs. 2(a) and 4(a)). These nodes have the property that, upon adding them to the quadrature rule, a rule of degree N+M
is obtained with M weights equal to zero. This is equivalent to the Patterson extension of the quadrature rule without
those M nodes with zero weight. For M = 1, this was demonstrated in Section 3.3.1.

For general M , the Patterson extension can be deduced mathematically as follows. Let XN , WN be a quadrature rule
and, as before, let xN+1, . . . , xN+M be such that the following nodes form a quadrature rule of degree N +M:

(XN ∪ {xN+1, . . . , xN+M}) \ {xk1 , . . . , xkM }. (4.5)

Furthermore, let XN−M be the nodes of an interpolatory quadrature rule of degree N −M be as follows:

XN−M = XN \ {xk1 , . . . , xkM }.

Upon adding {xN+1, . . . , xN+M} to XN−M , the nodes from (4.5) are obtained, that have degree N +M . Hence M nodes are
added to an interpolatory rule of degree N − M and the obtained degree is N + M , which is by definition a Patterson
extension. Notice that the obtained quadrature rule is interpolatory, but not necessarily positive.

The Gaussian quadrature rule can be deduced as a special case from Algorithm 4. To see this, suppose M = N + 1,
which is the number of nodes of the rule under consideration. In that case, there is only a single sequence of k1, . . . , kM ,
defined as follows up to a permutation:

kj = j− 1 for j = 1, . . . ,N + 1.

By applying Algorithm 4, the nodes from (4.5) are obtained with M = N + 1, which are:

(XN ∪ {xN+1, . . . , x2N+1}) \ {x0, . . . , xN} = {xN+1, . . . , x2N+1}.

Hence the N + 1 nodes xN+1, . . . , x2N+1 form a quadrature rule of degree 2N + 1, which is by definition the Gaussian
quadrature rule. In other words, when adding a Gaussian quadrature rule to an existing quadrature rule and setting all
existing weights to zero, a valid addition is obtained.

Example 8. To demonstrate where Patterson extensions occur in our work, reconsider the interpolatory quadrature rule
with the nodes XN = {−1,−1/6, 1}. In Section 3.3.1 three different Patterson extensions related to this quadrature rule
were discussed: {−1/3, 1}, {−1/6, 2}, or {−1, 1/3}. All these rules are Patterson extensions (of smaller quadrature rules)
withM = 1. To obtain a Patterson extension withM = 2 and subsequently a Gaussian quadrature rule, consider Algorithm
4 using {k1, k2, k3} = {0, 1, 2}. The algorithm proceeds as follows:

1. In the first iteration, it follows that ℓ̂1(x) = x+ 5/3 and therefore the following quadrature rule is obtained:

XN+1 =

{
−1,−

1
6
, 1,−

5
3

}
,WN+1 =

{
0,

16
21

,
11
56

,
1
24

}
.

Notice that the node xN+1 = −5/3 was obtained in Section 3.2.2, where we discussed that after adding this node
one obtains w

(3)
0 = 0.

2. In the second iteration, it follows that ℓ̂2(x) = x2 + 2/5x − 1/5. Here, the Patterson extension with M = 2 of the
quadrature rule with ‘‘nodes’’ {1} is obtained. Hence the following rule is obtained (notice that the node −5/3 is
removed):

XN+2 =

{
−1,−

1
6
, 1,

1
5

(
−1−

√
6
)

,
1
5

(
−1+

√
6
)}

,WN+2 =

{
0, 0,

1
9
,
1
36

(
16+

√
6
)

,
1
36

(
16−

√
6
)}

.
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Fig. 6. Nested, positive, and interpolatory quadrature rules, initialized with XN = {−1,−1/6, 1} (left) or XN = {0, 5/12, 1} (right). Given the Nth
uadrature rule, the next rule is obtained by firstly computing the minimal number of nodes that can be added and by secondly randomly adding
uch a minimal number of nodes to the rule. The colors indicate the weights of the nodes.

3. In the third iteration, it follows that ℓ̂3(x) = x3−3/5x, whose roots are the Gaussian quadrature rule or, equivalently,
the Patterson extension with M = 3 of the empty quadrature rule:

XN+3 =

{
−1,−

1
6
, 1,−

1
5

√
15, 0,

1
5

√
15
}

,WN+3 =

{
0, 0, 0,

5
18

,
4
9
,
5
18

}
.

In this specific example it is possible to determine all nodes symbolically, but for larger values of M this is generally not
ossible.

Considering the nodes in a different order results in different intermediate Patterson extensions, but obviously the
aussian quadrature rule is the rule that is finally obtained. These steps also demonstrate the possibility to store
ntermediate results: only the nodes of step 2 are necessary to deduce the nodes of step 3.

Specialized algorithms exist for specific distributions and specific values of N and M to construct Gaussian, Gauss–
Kronrod, and Gauss–Patterson quadrature rules [4,5], but it remains a challenging topic to determine the Patterson
extension for general non-Gaussian quadrature rules. The algorithm presented in this article is not an alternative for
these existing algorithms, but embeds the Patterson extension in the discussed framework and can be used to determine
all M nodes that can be added to a quadrature rule. If an efficient procedure to determine large numbers of Patterson
extensions is available, it can be readily used to determine whether an extension for a specific M exists. By consecutively
replacing the new nodes (see Section 3.2.3) all M nodes that can be added can be found.

4.3.2. Nested, positive, and interpolatory quadrature rule
Algorithm 4 provides a straightforward procedure to determine the minimal value of M and the positive interpolatory

quadrature rule nodes XN+M such that XN ⊂ XN+M . The replacement procedure for M = 1 of Section 3.2.3 can be used to
determine all possible nodes, given M . This is the original goal of the article as outlined in Section 2.4 and examples of
such quadrature rules are depicted in Fig. 6. Here, each quadrature rule is iteratively extended with a minimal number of
nodes, and the nodes that are added are selected randomly from the set containing all M nodes that can be added. There
are two main differences with the quadrature rules obtained in Section 3.3.2, where an existing rule was used as basis
for a larger quadrature rule: the rules obtained in this section are fully nested, but do add more than one node between
two consecutive rules.

Both figures demonstrate that M varies significantly and does not increase monotonically. This is in line with the
conclusions drawn in Section 4.2.3, as shown in Fig. 5. Moreover for almost all N , the value of M is significantly larger in
case the Beta distribution is considered, which is related to the ‘‘bad’’ initial set of nodes for this distribution. A different
initialization would lead to different values of M .

5. Numerical integration with positive quadrature rules

This article is concerned with the construction of quadrature rules with positive weights and two new quadrature
rules have been introduced: one based on the consecutive replacement of single nodes (possibly resulting in a sequence
of rules that is not nested) and one by randomly adding nodes ensuring positive weights. We briefly assess the numerical
performance of these quadrature rules by means of the Genz test functions (see Table 1). The Genz test functions [32] are
functions defined on Ω = [0, 1] constructed specifically to test integration routines. Each function has a specific family
attribute that is considered to be challenging for integration routines, that can be enlarged by a shape parameter a and
translated by a translation parameter b. We restrict ourselves to the uniform distribution, as in this case the exact value
of the integral of the Genz functions is known analytically.
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Table 1
The test functions from Genz [32], which depend on the
shape and translation parameters a and b.
Integrand family Attribute

u1(x) = cos (2πb+ ax) Oscillatory
u2(x) =

(
a−2 + (x− b)2

)−1 Product Peak
u3(x) = (1+ ax)−2 Corner Peak
u4(x) = exp

(
−a2(x− b)2

)
Gaussian

u5(x) = exp (−a|x− b|) C0 function

u6(x) =

{
0 if x > b
exp (ax) otherwise

Discontinuous

We consider the performance of the following four quadrature rules:

1. A quadrature rule that is determined by consecutively adding and replacing nodes originating from a Gaussian
quadrature rule (see Fig. 3(a)). This rule was discussed in Section 3.3 and is a partially nested, positive, and
interpolatory quadrature rule. The rule is initialized with the quadrature rule nodes XN = {0, 5/12, 1} (i.e. the
nodes from the example as discussed before, translated to [0, 1]).

2. A quadrature rule that is determined by consecutively randomly adding M nodes to the rule such that the obtained
rule is positive. Here M is minimal, i.e. the smallest number of nodes is added for each N (see Fig. 6(a)). This rule
was discussed in Section 4.3 and is a nested, positive, and interpolatory quadrature rule. The rule is initialized in
the same way as the quadrature rule of the previous point, i.e. using XN = {0, 5/12, 1}.

3. The Clenshaw–Curtis quadrature rule [15], where the nodes XN are defined explicitly by (2.5). It is well known that
these nodes have positive weights if the distribution under consideration is uniform, which is the case. This positive
and interpolatory quadrature rule is nested for specific levels, i.e. XNL ⊂ XNL+1 with NL = 2L (l = 1, 2, . . . ).

4. The Gaussian quadrature rule [4], where the nodes and weights are defined as the quadrature rule with N+1 nodes
of degree 2N + 1. This quadrature rule is not nested, so refining the quadrature rule results in a significant number
of new function evaluations.

The error measure eN is the absolute integration error, i.e.

eN (u) = |Iu− ANu|,

where u = ug with g = 1, . . . , 6, i.e. u is one of the Genz test functions. To obtain meaningful results we select the
parameters a and b randomly in the unit interval and repeat the experiment 100 times. The errors reported here are
averaged over the 100 experiments and are therefore denoted by eN .

It is instructive to compare the error with the upper bound that follows from the Lebesgue inequality (2.4):

eN (u) ≤ 2 inf
ϕ∈P(N)
∥u− ϕ∥∞, (5.1)

here we use that µ0 = 1 in our test cases. This error is determined using the algorithm of Remez [24, Chapter 3],
ith the implementation from chebfun [33]. Convergence results for the uniform distribution ρ ≡ 1 in Ω = [0, 1] are
athered in Fig. 7.
Notice that regardless of the function under consideration all quadrature rule errors remain far under the dashed line,

hat represents the right-hand side of (5.1). This shows that the bound from this inequality is far from sharp.
The first four Genz functions can be approximated well using polynomials, as they are analytic and have rapidly

onverging Chebyshev coefficients. The best approximation converges exponentially in these cases, which is also the case
or the four quadrature rules under consideration. The quadrature rules determined using the framework of this article
erform slightly worse than the Clenshaw–Curtis and the Gaussian quadrature rule. This is related to the fact that these
ules exploit the structure of the underlying distribution to a large extent (e.g. symmetry and higher-order moments),
hereas the rules in this work only optimize for the positivity of the weights. The Gaussian quadrature rule converges
ith the highest rate, which is related to its high polynomial degree (a rule of N+1 nodes has degree 2N+1). However, the
aussian rule is not nested, so to refine the estimate of the integral for increasing number of nodes the number of function
valuations increases significantly. If a computationally expensive function is considered, using a nested quadrature rule
ith fine granularity (such as the proposed rules) significantly reduces the cost of refining the quadrature rule estimate.
The fifth Genz test function is not differentiable and can therefore not be approximated well using a polynomial.

his can be observed from the best approximation polynomial, that converges with order 1 (so we would expect that
eN ∼ 1/N). In this case the difference between the Gaussian rule and the other rules is significantly smaller, demonstrating
that the high polynomial degree of Gaussian rules is less relevant if the integrand is not smooth.

The sixth Genz test function cannot be approximated accurately using a polynomial when considering the∞-norm, as
it is discontinuous. Hence the best approximation error remains constant. However, the approximation of the quadrature
rules still converges with order 1/2. In this case, there is a clear difference between the integration error (that is an
averaged error) and the best approximation error (that is a uniform error).
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Fig. 7. Convergence of the Genz test functions using various quadrature rule techniques. The absolute error of the best approximation polynomial
(i.e. infϕ∈ΦN ∥u− ϕ∥∞) is dashed.

6. Conclusion

In this article, a novel mathematical framework is presented for the construction of nested, positive, and interpolatory
quadrature rules by using a geometrical interpretation. Given an existing quadrature rule, necessary and sufficient
conditions have been derived for M new nodes to form an interpolatory quadrature rule with positive weights. The
conditions have been formulated as inequalities, which are explicit if M = 1 and implicit if M > 1.

The addition of a single node can be treated as a special case, which can be solved analytically. The analytical expression
can be used to add nodes to and replace nodes within a quadrature rule. The addition of multiple nodes can be determined
numerically and a naive algorithm is presented for this purpose. Based on the quadrature rules obtained by this algorithm,
the set that encompasses all additions of M nodes can be explored by iteratively replacing nodes.

The well-known Patterson extension of quadrature rules forms a special case of the framework, as it is obtained by
constructing the quadrature rules with M weights equal to zero. As such, our proposed framework and its geometrical
interpretation are well embedded in existing theory on the addition of nodes to quadrature rules. The framework
25
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provides various possibilities to construct or adapt quadrature rules and two examples have been discussed: one based
on consecutively adding and replacing one node and one based on consecutively adding multiple nodes.

Numerical integration using the two quadrature rules introduced in this work shows the key advantages of nested
uadrature rules with positive weights: estimates computed using the quadrature rules are stable and nesting allows
or computationally cheap refinements of the estimates. Existing quadrature rules, such as the Gaussian and the
lenshaw–Curtis quadrature rule, are not nested with the fine granularity as the rules in this work.
There are various options to further extend the framework set out in this article. The algorithm to determine whether

ultiple nodes exist that can be added to the quadrature rule depends on determining many polynomial roots and iterates
ver all possible sequences of nodes that can become zero. For a large number of nodes this is computationally very costly
nd therefore warrants the need to derive an efficient algorithm to determine these nodes. Moreover the framework set
ut in this article does not use the relations that exists between consecutive moments of a distribution [34], which can
ossibly be used to further extend the framework set out in this text.
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