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Abstract

In the past 8 years, Bitcoin has dominated the cryptocurrency markets and drawn attention from
academia, developers and legislators alike. Bitcoin has been praised for its impact on decentralizing
trust and currencies but also criticized for its volatility and energy-inefficient consensus mecha-
nism. To improve its limitations, in 2016, payment channels and payment channel networks were
introduced in the form of the Lightning Network. Payment channels allow for so-called off-chain
transactions that, in case of dispute, can be published to an existing cryptocurrency blockchain,
like Bitcoin, for arbitration. After its introduction, the concept of payment channels was quickly
adopted by many cryptocurrency users. However, although payment channels remove the need for
many on-chain transactions, some still remain. An on-chain transaction is required for the open-
ing and closing of a channel. This happens during the initial setup between two users but is also
required if one of the users runs out of balance on their side of the channel. The latter is a common
occurrence as transactions are often unidirectional, say between a customer and a merchant. To
limit the amount of closing and opening on-chain transactions required, a user can start or take
part in a rebalancing. A rebalancing is a process with the aim of bringing a channel to a balance
as desired by its owners. The state-of-the-art existing protocol to carry out a rebalancing is called
Revive, which is a distributed protocol using leader election and a linear program to calculate
the optimal rebalancing between its participants. Although effective, the protocol provides little
privacy to its participants. We, therefore, designed a new, privacy-preserving peer-to-peer rebal-
ancing protocol. Alongside it, we also introduce an accompanying participant discovery protocol
that allows users in a network to find other users interested in running a distributed algorithm.
We show that both protocols are secure and that our rebalancing protocol provides more privacy
than Revive, at the cost of a suboptimal result and an increased message and time complexity.
Finally, we compare our rebalancing protocol and Revive using a payment channel network sim-
ulator that simulates transactions taking place during the rebalancing. Using this simulation, we
show that both protocols have a negative effect on the payment channel network as they lock the
to-be-rebalanced channels while they are executing. We, therefore, conclude that an ideal rebal-
ancing protocol should both be privacy-preserving and concurrent, and propose ideas to achieve
this in future research.
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Chapter 1

Introduction

In 2008, a new era of distributed technology was launched with the introduction of blockchain
by a developer going by the pseudonym of Satoshi Nakamoto [32]. Nakamoto created one of the
first practical blockchains in order to introduce the cryptocurrency Bitcoin. Bitcoin has many
features but one important feature in particular is its guarantee of the privacy and security for
its users, while allowing everyone with a Bitcoin wallet to make payments to each other. These
payments happen outside of conventional financial institutions like banks or governments. Since
2008, the adoption of Bitcoin has been steadily growing and inspired the creation of multiple other
cryptocurrencies like Ethereum [3] and Dogecoin [34]. However, as can be seen in Figure 1.1, none
of the alternative cryptocurrencies come close to the adoption of Bitcoin. Given its popular-
ity, Bitcoin and other applications of blockchain technology have become a topic of interest for
governments, developers and researchers alike over the last decade.
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Figure 1.1: Visualization of the dominance of Bitcoin on the cryptoassets market over the period
of January 2019 to August 2021 (CoinMarketCap)

Bitcoin uses a public blockchain as a distributed transaction ledger. Contrary to a normal
ledger – where only the holder of the ledger can approve or deny transactions – a distributed
ledger uses a peer-to-peer network of multiple entities who have to reach a consensus to approve
a transaction before it is added to the ledger. If a consensus is not reached, the transaction is
denied. In this way, no single entity holds all the power of approving or denying transactions. The
presence of a distributed consensus mechanism is one of the necessary features that allows for the
decentralization of a public blockchain. [39]
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The consensus mechanism of Bitcoin uses a Proof-of-Work (PoW), a mechanism requiring any-
one trying to add new transactions to the blockchain to expend a minimum amount of processing
time. A PoW is effective in preventing an attacker from creating many fake entities in an attempt
to influence the outcome of the consensus, as now the attacker has to pay a cost (i.e. processing
time) for every entity it wants to use to influence the consensus [39]. However, on the scale of
Bitcoin, this required extra processing power means that the energy consumption of Bitcoin is
non-negligible. According to Jiang et al. [17], "...the annualized energy consumption of the Bitcoin
industry in China will peak in 2024 at 296.59 TWh ... This exceeds the total energy consumption
level of Italy and Saudi Arabia and ranks 12th among all countries in 2016."

Besides the problem of high energy consumption, Bitcoin also has a low transaction speed when
comparing to other cryptocurrencies. As Bitcoin was the very first widely adopted cryptocurrency,
it did not have the advantage of avoiding the problematic design choices of its predecessors.
Bitcoin’s primary design choices creating the low transaction speed problem consist of the PoW
consensus mechanism and the chosen block size. The block size in Bitcoin determines the maximum
amount that can be stored in a single block and thereby also the maximum number of transactions
that can be stored in a single block. A Bitcoin block has a maximum size of only 1 MB. Together
with the PoW1, this limits Bitcoin transactions to 7 transactions per second [14] which is much
lower than the 6500 transactions per second of Visa [52].

1.1 Payment Channels and Payment Channel Networks
To improve the slow transaction speed and high energy usage of Bitcoin, the concept of off-chain
transactions was proposed. An off-chain transaction is a transaction that happens between two
parties exchanging cryptocurrency without directly involving a blockchain, in contrast to on-
chain transactions which always involve a blockchain. A well-known implementation of off-chain
transactions is the Lightning Network, which was introduced in 2016 by Poon and Dryja [41].
The Lightning Network uses the concept of ’payment channels’, which are blockchain transactions
between two parties that have not yet been published on the blockchain. A transaction between
the two parties is then simply an update of this blockchain transaction, signed by both parties.
Opening a payment channel requires a funding on-chain transaction that removes funds from
the participant’s Bitcoin wallet and locks it in the channel. Closing a payment channel requires
a closing on-chain transaction that unlocks the funds from the channel and deposits it in the
participant’s Bitcoin wallet. The collateral in the channel enables both parties to have a balance
or credit in the channel, which represents the number of coins they can spend or move to the
balance of the other party. See Figure 1.2 for an example of this concept.

In case of dispute, the transaction can be published on the blockchain similar to the closing
transaction. The intuition behind this concept is that if both parties trust each other, there is
no need for a third party (i.e. the blockchain) to verify their transactions and balances, but the
option to do so is always available. This is akin to real-life contracts, of which most are never
enforced by a court as both parties behave honestly.

Payment Channel Networks Extending the idea of payment channels, Poon and Dryja [41]
also proposed the construction of a Payment Channel Network (PCN). In a PCN, a participant A
pays another participant B via a chain of intermediary participants in a multi-hop transaction. To
do this in a way that protects the intermediaries from losing any coins in the process, Poon and
Dryja [41] also introduce Hash Time Locked Contracts (HTLCs). HTLCs guarantee that interme-
diaries and the sender can always recover their coins if a participant in a multi-hop transaction is
malicious. HTLCs are a form of conditional transactions that can become void if proof of payment
is not shown before a certain ‘time’ has passed. In a HTLC, the proof of payment consists of the
preimage of a hash and the ‘time’ is measured in the amount of blocks that have been accepted
by the blockchain since the start of the transaction.

Since the Lightning Network was first introduced, it has grown steadily with currently ≈
12 000 nodes present on the network [24] and spawning numerous alternatives such as the Raiden

1The PoW causes block generation to take around 10 minutes
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Figure 1.2: A diagram of a payment channel. From left to right: Alice and Bob fund the channel
with 5 coins (3 for Alice, 2 for Bob) – Alice transfers 1 coin to Bob – Alice and Bob now have
2 and 3 coins as their balance, respectively. The second step of transferring the coins happens
atomically in reality, i.e. the coin is either transferred or not and cannot be ’stuck in the channel’

network2. However, the Lightning Network does not solve all the problems with the use of Bitcoin3.
Opening a channel, closing a channel and any dispute depends on on-chain transactions which
suffer from the low transaction speed and high energy cost of Bitcoin.

Multiple methods have been proposed to limit the number of times a channel is opened or
closed. Opening and closing of channels usually happen if one or both participants of the channel
run out of balance due to many transactions going in one direction. Closing the channel and then
reopening it with new funding allows for the channel to process transactions again. To remedy
the times a channel has to be reopened and closed because of a lack of funding, Li, Miyazaki, and
Zhou [22] propose a method to predict the right amount of funding a channel should be opened
with. Another set of methods to limit the amount of opening and closing of a channel falls into
the category of rebalancing and are the methods studied in this thesis.

Rebalancing Rebalancing is the process of moving the balance of a user in one channel to
another channel. This improves the flow of transactions through a user’s channels. In this thesis, a
method called on-demand rebalancing is studied that takes advantage of the fact that in a payment
channel network, a participant can pay themselves in a cycle via a chain of intermediaries4. This
has the effect of moving the participant’s balance in one channel to another one of its channels, up
to a limit defined by both channels and the other channels in the cycle. In this way, the number
of times a channel needs to be opened or closed if it runs out of funds can be reduced.

In a simple network, there might only be one such rebalancing cycle but with 12 000 nodes and
many more edges, a network like the Lightning Network needs a protocol to find cycles and set
up a cyclic transaction. One such protocol is called Revive [18], which is a distributed protocol in
which a leader receives all the rebalancing objectives of the protocol’s participants. A rebalancing
objective takes the form of a value and a direction that specifies how the balance of the channel
should be shifted. After receiving the rebalancing objectives, the leader uses a linear program to
calculate the optimal set of cyclic transactions that are possible and distributes these to all the
participants for validation and execution. As Revive produces an optimal set of cyclic transactions
and is a relatively compact protocol, it is theoretically an effective and efficient protocol to carry
out rebalancing with.

2https://raiden.network/
3The Lightning Network can also work with other cryptocurrencies but as Bitcoin is the largest cryptocurrency,

it is expected that most transactions are backed by the Bitcoin blockchain
4See Figure 2.2 for an example of a PCN where cyclic payments are possible
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1.2 Privacy considerations
A major drawback of Revive is its lack of privacy. In a PCN such as the Lightning Network,
privacy can informally be quantified into the following components [54]:

• Sender/Recipient Privacy: An adversary should not be able to determine the sender/recipient
of any payment between non-compromised parties.

• Value Privacy: An adversary should not be able to learn the exact value of any payment.
Moreover, the adversary should learn as little information as possible about the range of
value of any payment.

• Path Privacy: An adversary should not be able to learn the path(s) of any payment, other
than the nodes it has already compromised.

• Channel Balance Privacy: An adversary should not be able to learn the exact balance of a
payment channel at any given time, unless the channel connects to a node it has already
compromised.

One can see that in Revive, if one of the participants is the adversary, the adversary would
learn the sender, receiver, value and paths of all cyclic transactions as those are distributed to
all participants. If the adversary happens to be the leader and knows the relation between the
rebalancing objective and the channel balance of one or more participants, it is also possible for
the adversary to figure out the current channel balance of those participants.

The authors of Revive briefly touch upon the privacy of their protocol, stating that they make
no claims on the leaking of information in an adversarial setting. The authors suggest that if
more privacy is desirable, a payment channel design should be used that allows the leader to only
publish balance changes which limits the amount of information leaked.

We consider the lack of privacy of Revive to be a major issue for the adoption of rebalancing
protocols by users of a PCN. We believe that for major adoption of such a protocol it would need
to be effective in finding rebalancing cycles, be privacy-preserving, provide balance security and
preferably be efficient in time and message complexity. Revive meets three of these four criteria
as it is not privacy-preserving.

1.3 Research question
Based on the fact that Revive is not privacy-preserving, we deduced the following research question:

How to construct a protocol that allows an arbitrary set of users in a payment channel
network to securely rebalance their channels while achieving sender, receiver, value,
channel balance and path privacy?

The objective of this thesis is to design such a protocol and compare it to Revive. Our
contribution considers the problem both theoretically and practically. In our work, we analyse
the privacy and security of our protocol in a malicious setting. We also analyse the performance
of our protocol compared to Revive in multiple scenarios by using a dynamic simulation of the
Lightning Network.

1.4 Contributions
We present in this thesis an on-demand rebalancing protocol that is a more privacy conscious
alternative to Revive. Similar to Revive, our rebalancing protocol takes as an input a set of
participants and their given demands, and finds a best-effort set of cyclic transactions. The main
design goal of our protocol is to share the minimum of information required to find rebalancing
cycles in a distributed setting.

By providing a privacy-friendly alternative to Revive, we hope to contribute to the more
widespread adoption of rebalancing protocols, as they have the potential to positively impact
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transaction routing in a payment channel network. If transaction routing is improved, payment
channel networks become more practical for everyday use which in turn will make them a faster,
cheaper and more environmentally friendly alternative to using Bitcoin directly.

In the construction of our rebalancing protocol we also introduce, for the first time to the best of
our knowledge, a participant discovery protocol that allows nodes in a payment channel network to
join the execution of a distributed algorithm. It outputs a list of anonymous participant identities
that can be used as a starting point for protocols such as Revive or our rebalancing protocol.

To analyse the privacy of the participant discovery protocol, we also introduce and formally
define participation anonymity, which is used to define if an adversary is capable of determining
if a node and its edges are participating in a distributed algorithm.

1.5 Overview
In this thesis, background on related topics – such as the workings of a blockchain, payment
channels and payment channel networks – is provided in Chapter 2. Related work, in particular
about payment channel networks, transaction routing and rebalancing, is discussed in Chapter 3.
The chapter also discusses Revive in more detail, given its direct relation to this thesis.

The discussion about the design of our rebalancing protocol and the participant discovery
algorithm can be found in Chapter 4. Chapter 4 also covers the formal definition of a payment
channel network and the breakdown of the research question into design requirements. At the
end of this chapter, the privacy of both protocols is analysed. The actual implementation of
the rebalancing protocol, the discovery protocol and the evaluation using the simulation of the
Lightning Network are discussed in Chapter 5.

Our thesis concludes with the conclusion and future work in Chapter 6.
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Chapter 2

Background

In this chapter, we introduce the foundations of our work. These consists primarily of blockchain,
payment channels and payment channel networks.

2.1 Blockchain
An ideal blockchain is a distributed data structure that allows multiple users to read from and
write to it while guaranteeing that many users consent to the writing [46].

A blockchain consists of multiple blocks. Each block holds the information that is intended to
be stored in the blockchain while also holding a hash of the previous block in the chain. In this
way, each new block is coupled to all the previous blocks before it, forming a chain. This chain
continues to the first block in the chain, which is often called the Genesis block. An efficient way
to represent this data for each block is by using a Merkle tree to create a single hash representing
the block [23]. See Figure 2.1 for a visualization of a blockchain.

Figure 2.1: A simplified view of a blockchain [2]

As there exists a chain to the first block, it is possible for anyone who obtains a block to validate
that it is indeed a part of the blockchain [23, 46]. This is useful when a blockchain is used as a
distributed ledger for cryptocurrencies, as it allows anyone (say Alice) to validate a cryptocurrency
transaction by checking if all the blocks up until the most recent one sum up to the wallet amount
that the owner (say Bob) claims to have. If Bob speaks the truth, the transaction can commence.

2.1.1 Consensus
On its own, this validation property of a blockchain is only useful if the blocks in the blockchain
itself can be trusted. If anyone would be able to simply add a block to the chain, Bob could add
a block stating that he received a transaction from Eve and that would be considered the truth
according to the validation strategy as discussed above. To prevent any one user from adding a
block to the chain, one could consider allowing only a subset of trusted users (a.k.a. ’owners’ or
’validators’) to add blocks to the chain. This setup is also known as a permissioned blockchain
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since a user needs to have permission from the trusted users to become trusted as well [46]. In a
permissioned blockchain, there might also be restrictions on creating transactions or reading the
blocks in the chain.

In contrast to permissioned blockchains, more well-known are the public blockchains that are
in use for cryptocurrencies such as Bitcoin or Ethereum. Public blockchains cannot rely on a set
of trusted users and therefore require a consensus mechanism such as Proof-of-Work or Proof-
of-Stake, both of which theoretically allow anyone to act as a validator of the blockchain and
add blocks [46]. The goal of the consensus mechanisms in a public blockchain is to make it very
difficult or expensive for an adversary to hold a majority of the validators of the blockchain. If
this happens, the adversary can arbitrarily add any block to the chain they like given that all its
validators approve the addition. This is also called a 51 % attack [46].

Proof-of-Work

A Proof-of-Work consensus mechanism has as its most distinguishing feature a mathematical
challenge that is hard to solve but easy to verify. For example, in Bitcoin, the Proof-of-Work
mechanism is the challenge of finding a preimage of a SHA-256 hash that has a specified number
of zero bits. The preimage must also be a combination of a nonce and the hash of the block
that is to be added [39]. Only the nonce can be varied to produce the required preimage of the
hash. As this is a hard problem (and is kept hard by slowly increasing the number of zero bits
required), it takes about 10 minutes in Bitcoin before a new block is added to the blockchain.
In the unlikely event that two validators (or ’miners’, as they are known in Bitcoin) solve the
challenge simultaneously, two branches of the blockchain will temporarily exist, one with block
A and one with block B, both with equal length. The next block to be added to the blockchain
will then most likely break the tie by either increasing the chain with block A or block B, causing
the validators to discard the shortest branch. This is the reason that users of a blockchain with
such a consensus mechanism are requested to only consider their transaction valid after the block
which holds their transaction has been inherited from by one or more other blocks. This reduces
the likelihood that their block ends up in the shortest branch and gets pruned, which would make
their transaction invalid [39].

Proof-of-Stake

Although the Proof-of-Work mechanism is battle-tested in many blockchains, it has the drawback
that if a user wishes to become a validator, a huge investment in hardware is required to be able
to solve the challenge. Some other important drawbacks are that the powerful hardware required
to do so consumes a lot of energy [17] and that solving the challenge takes a lot of time, slowing
down the speed with which transactions are processed. The other consensus mechanism, Proof-
of-Stake, differs from Proof-of-Work in that it does not depend on solving a challenge. Instead,
Proof-of-Stake allows any user to become a validator simply by staking a predefined number of
coins. The validator can then lose (part of) this stake for a variety of reasons, such as colluding
with other validators or by going offline. As Proof-of-Stake does not depend on solving a difficult
problem, blockchains that implement it use much less energy than ones using a Proof-of-Work and
are predicted to be faster in executing transactions [46].

A newer version of Ethereum, Ethereum 2.0, plans to use the Proof-of-Stake mechanism. Its
authors argue that a 51 % attack is still possible with a Proof-of-Stake – although impractical –
as an adversary would have to control 51 % of the staked ETH to do so. The authors argue that
this would represent such a large amount of the total ETH available that this would most likely
drop the value of ETH, which would be a negative incentive for an adversary willing to control
the Ethereum blockchain. [53]

2.1.2 Smart contracts
The final topic to be discussed here are smart contracts, as they are used in the construction of
payment channels. Smart contracts are a way for the users of a blockchain to execute arbitrary
code on the blockchain. A smart contract is deployed to a blockchain with a transaction that also
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includes the code that defines the contract. Once deployed, the contract itself has a wallet and
can be called by users to execute its functions which may or may not update its wallet. Smart
contracts have access to almost all the information on the blockchain and can act similarly to a user
by executing transactions or even creating other contracts [23]. This is useful as it allows smart
contracts to distinguish between its owner (the user who deployed it) and other users interacting
with it. A downside of the flexibility of smart contracts is that execution can take an arbitrary
time and the execution happens on the hardware of the validator. To reimburse the validator for
the added execution time, all blockchains that support smart contracts require a cost that the
user using a smart contract has to pay to invoke it. The cost is often calculated differently per
operation of the smart contract, e.g. adding may be cheaper than multiplying.

Smart contracts have a multitude of uses but a relevant example of a smart contract is the one
used in the construction of payment channels. This contract defines a multisignature account, i.e.
a wallet that requires more than one user to do transactions with. The deployed contract validates
that every transaction request it receives has been signed by the public keys it was deployed with.
If the transaction validates, the contract creates the requested transaction and publishes it to the
blockchain.

2.2 Payment channels

A payment channel is a protocol that allows its users to carry out transactions of coins outside
of the blockchain, so-called off-chain transactions. These off-chain transactions are still bound to
the blockchain but are not yet published on the blockchain. Intuitively, payment channels work
similarly to a physical contract for which, before signing, both parties need to agree to the terms
of the contract. Nobody needs to enforce the contract as long as both parties act out the contract
truthfully. If one of the parties acts dishonestly, only then does a party need to go to court and
enforce the contract. Similarly, with a payment channel, both parties sign a contract representing
the initial balance of a payment channel. For every transaction that is executed afterwards, both
parties sign a new contract representing the new initial balance. This contract supersedes the older
contract with the old balance. Nothing happens with the contract unless either: 1) the parties
wish to end the channel, in which case it is published to the blockchain to be executed or 2) there
is a dispute about the current balance of the channel, in which case the latest contract signed
by both parties is published on the blockchain. A diagram of a payment channel is provided in
Figure 1.2. [41]

The largest benefit of the use of payment channels is a reduction of time and cost for executing
transactions. If two users establish a payment channel with each other, there is only the cost
and blockchain processing overhead for the initial funding transaction and the closing transaction,
technically allowing an infinite number of transactions between the two users. [41]

In this thesis, the payment channel design that is most referred to is the Lightning Network or
Lightning for short, initially created by Poon and Dryja [41]. The design of Lightning’s channels
is also the basis for the background given in this chapter concerning payment channel networks.
Similarly to what we explained earlier, Lightning’s payment channels allow users to carry out off-
chain transactions after establishing the initial balance of a channel. It is important to note that
in Lightning, if a user does not abide by the contract rules (i.e. claims a different balance than
the real balance of the channel), the design is such that all the funds of the channel are awarded
to the honest user as a penalty. This property serves as an incentive for a user to act honestly
and according to the protocol, and is also called: "An honest user will never lose coins". However,
the mechanism that allows a penalty to be enforced requires a certain dispute time (around 1000
blocks) and during this dispute time (also called a time-lock), the funds of the honest party are
locked up. This allows for denial-of-service attacks where a user acts dishonestly on purpose to
lock the funds of the honest party, although this is expensive for the dishonest party.

Alternative designs of payment channels and payment channel networks can be found in Chap-
ter 3.
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2.3 Payment channel networks
Payment channel networks (PCNs) are networks created out of multiple individual payment chan-
nels. A simple example of such a network is Subfigure 2.2a, where Alice, Bob, Carol and Dave all
have two channels that together form a network. For simplicity, in this thesis, only PCNs that
look similar to Subfigure 2.2b are used where the balance of each user in a channel is denoted by
a number adjacent to the channel edge.

2.3.1 HTLC
The promise of a PCN is that it allows Alice to pay Carol without the need for Alice to set up
a channel to Carol, saving blockchain transaction costs. Such a multi-hop payment or payment
route works as follows: If Alice wishes to pay Carol for a service, she would first need to pay Bob
x coins after which Bob transfers x coins to Carol. If all users act honestly, this process works.
However, if Bob is evil, Bob could take the payment from Alice and never pay Carol. If Alice is
evil, she could never pay Bob and claim to Carol that she has paid Bob, shifting the blame to
Bob. To prevent evil senders and intermediaries from acting dishonestly, in the Lightning Network
multi-hop payments are set up using Hash Timelocked Contracts (HTLCs) [41].

(a) Actual

Alice

Bob Carol

4

2

3

1

2

2

Dave
3

2

(b) Diagram

Figure 2.2: Two different representations of the same PCN

The reason for the existence of HTLCs is that one wishes for the sender and receiver of a
multi-hop transaction to have a guarantee that their coins will not be stolen by intermediaries
without having to trust all of them [41]. It is unreasonable to expect that any user has vetted all
intermediaries of a payment route given that routes change from one transaction to the next and
their length varies. HTLCs work by having the receiver of a transaction generate a preimage s
and a cryptographic hash H(s). A common hashing algorithm used for this purpose is SHA-2561.
The receiver then sends only the hash to the sender of the transaction. After receiving the hash,
the sender (say Alice) then pays the first intermediary I1 the required amount, with the added
condition that the amount can only be claimed if I1 produces the preimage s of the hash within
t blocks added to the blockchain. I1 then pays the next intermediary I2 under almost the same
condition but must change the t to something smaller. If the time-lock is larger than t, I2 could
produce s after t blocks and claim the funds from I1. However, as t blocks have gone by, I1 cannot
claim the funds from Alice which would result in I1 losing coins in this transaction. To counteract
this risk, every intermediary after the sender should have a time-lock with a time smaller than
the previous step in the payment route [41].

This process of conditional payments repeats until the last intermediary In has paid the receiver
(say Carol). Carol then reveals the preimage s to In, finalizing the conditional payment. In can
then show s to In−1 to claim its funds, etc. until I1 claims its funds from Alice which completes
the transaction. In this way, HTLCs allow a form of atomic payments in a PCN.

1See https://helix.stormhub.org/papers/SHA-256.pdf for more information about SHA-256
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2.3.2 Fees
Although HTLCs allow for multi-hop transactions, they do not provide any incentive for inter-
mediaries to participate in such a transaction. The existence of an incentive for intermediaries
is important as intermediaries have to lock part of their balance in a multi-hop transaction as
part of the HTLC, and are required to continuously watch the blockchain to see if their direct
neighbours uphold the channel contract. To provide this incentive, the Lightning Network allows
intermediaries to ask for a base fee and a fee rate, where the latter is also known as a liquidity fee.
The base fee stays the same regardless of the transaction amount and the fee rate changes based
on the transaction amount, recognizing that large transactions lock more coins during multi-hop
transactions. In a multi-hop transaction, fees are paid by the sender and are added to the total
transaction amount of which every intermediary deducts his/her fee along the route.

2.3.3 Routing
Another component of multi-hop payments is routing. Going back to Figure 2.2, if Alice wishes
to pay 2 coins to Carol, she can either go via the route Alice - Bob - Carol or Alice - Dave - Carol.
In the Lightning Network, the sender of the transaction decides the full route from start to finish
(BOLT #4, [25]). This is necessary as the sender also has to pay the transaction fee in advance,
which requires knowing which intermediaries a transaction goes through as each intermediary asks
for different fees. This is also called source routing. The following are important parameters for
Alice to consider when deciding on a route:

• Fees: A route A can have fewer fees in total than a route B. From an economical perspective,
it makes sense for Alice to pick a route with the least fees.

• Timelock duration: As each intermediary can specify its own minimum time-lock duration,
a route A can have a larger or smaller total time-lock duration than a route B. It makes
sense to pick a route with the smallest time-lock such that if something goes wrong, recovery
takes little time.

• Capacity: A route must be able to support the payment. Taking Figure 2.2 as an example,
if Alice would have wished to pay 3 coins instead of 2, only the route of Alice - Dave - Carol
would be suitable as Bob does not have enough balance to pay Carol. When considering
which route to pick, Alice must also take into consideration the available capacities of all
channels between her and the receiver.

In the Lightning Network, a gossiping protocol is used to distribute information about active
nodes, available channels, fees, time-lock durations and maximum channel capacities (BOLT #7
[25]).

The real-time capacity of a channel is not distributed as it is related to the funding of the
channel and its current balance, which is considered private information belonging to the channel
owners. If the real-time capacity of every channel would be publicly known and is updated because
of a transaction, an adversary could subtract the new capacity from the old capacity to figure out
the value of the transaction that has taken place on the channel. To protect against such attacks,
real-time capacities are not published on the Lightning Network’s gossip channels2.

Using all the gossip information, the specific choice for which routing algorithm to be used
is left to client implementations compatible with the Lightning Network. This is because the
Lightning RFC [25] only specifies that a routing algorithm must use source routing and that the
route must be distributed using a protocol similar to onion routing3. The algorithm used by lnd
[26] – the reference Lighting Network client – is a modified version of Dijkstra’s algorithm.

2This still allows an attack known as balance probing where an adversary sends payment requests in decrementing
sizes until the victim accepts the request. The attacker then roughly knows the current capacity of a channel. This
attack is expensive to perform as every payment request locks up coins of the adversary and the adversary has to
perform the attack faster than the frequency with which the channel updates its capacity. If a lot of transactions
take place over the channel, the capacity might change faster than the attacker can deduce it.

3Known from the TOR network and its accompanying browser
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Not knowing the real-time capacity of a channel during the sender’s route planning also intro-
duces the possibility of multi-hop transactions to fail. This failure mode is different than the earlier
discussed failure modes which required dishonest users. Not knowing the real-time capacity of all
the channels in all possible routes means that any route can fail as one channel with insufficient
capacity can cause failure in the whole route. To improve the success rate of transactions, lnd
keeps track of all past transactions to calculate the probability that a route may fail or succeed.
Alternative routing algorithms try to find different ways to deal with the limited knowledge on
channel capacities, and are discussed in Chapter 3.
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Chapter 3

Related Work

Payment channel networks (PCN) are a relatively new development in the field of blockchain
technology. A well-known example of a PCN was introduced by Poon and Dryja [41] in 2016,
named the Lightning Network. As of February 2021, the Lightning Network is the largest example
of a deployed PCN. The Lightning Network has around 12 000 active nodes [24] compared to
around 36 for the Raiden network [42]. As one of the first PCNs, Lightning functioned as a proof-
of-concept that PCNs can become a reality. Since Lightning, academic efforts have increased
to improve the security, privacy, concurrency, availability and routing of PCNs. This chapter
introduces the literature on a selection of topics relevant to this thesis.

3.1 Security and privacy
Proofs and definitions Before the introduction of Lightning, Moreno-Sanchez et al. [38] in-
troduced PrivPay, which is a payment protocol for credit networks. Although not applicable
to decentralized PCNs because of the centralized nature of PrivPay, the work contains a formal
definition of value privacy and receiver privacy in credit networks using security games. Accord-
ing to the authors, informally a credit network has value privacy if the adversary cannot obtain
the value of a transaction between two non-compromised users. The authors informally define
receiver privacy as when the adversary cannot determine the receiver of a transaction from an
uncompromised sender.

In a later work by Malavolta et al. [30], the authors present a formal security and privacy
treatment of balance security, value privacy and sender/receiver anonymity using the Universal
Composability (UC) framework [5]. The authors state that balance security "...guarantees that
any honest intermediate user taking part in a pay operation ... does not lose coins even when all
other users involved in the pay operation are corrupted." Although the authors define value privacy
the same as [38], they phrase sender/receiver anonymity differently than receiver privacy. The
authors informally define sender/receiver anonymity as: Given two simultaneous successful pay
operations with the same sender, receiver and intermediaries, and at least one honest intermediate
user, corrupted intermediate users should not be able to determine the sender or the receiver for
a specific pay operation with a probability better than 1/2. The work of the authors continues
by providing two designs of PCNs called Fulgor and Rayo. Both designs utilize Multi-Hop Hash
Time-locked Contracts (Multi-hop HTLCs) but differ in that Rayo orders transactions in a global
state to provide concurrency at the cost of anonymity while Fulgor preserves anonymity at the
cost of dropping all concurrent transactions.

A multi-hop HTLC is different from a normal HTLC as used in multi-hop transactions. In
normal multi-hop transactions, one hash and one preimage is used along the entire route which,
according to the authors, breaks the sender/reciever anonymity. In a Multi-Hop HTLC trans-
action, for the receiver and all intermediate nodes i, the sender creates a random string xi and
yi = H(⊕nj=ixj), utilizing the previously generated xi. The sender then sends (yn, xn) to the
receiver and (yi+1, yi, xi) to each node i over an anonymous channel. Once this is done, each
node i sets up a standard conditional HTLC payment with the next node i+ 1, using yi+1 as the
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hash condition. Once the conditional payments are set-up all the way to the receiver, the receiver
reveals xn which is the preimage of yn. The intermediary n− 1 can then use xn to construct the
preimage of yn−1 = H(xn−1⊕xn). This process continues until the first intermediary has claimed
its payment from the sender.

Kiayias and Litos [19] present another security treatment for the functionality of the Lightning
Network in the UC framework, proving that honest users cannot lose funds in the Lightning
Network. Their treatment differs from the proof attempts by [9, 30, 37] as the authors of those
works assume a ledger with instant finality, which Kiayias and Litos [19] proof is unrealisable
in practice even with strong network assumptions. The authors note that proving the balance
security property of the Lightning Network "...acts as a guarantee to the almost 900 bitcoins
currently in circulation in the layer-2 protocol".

Balance privacy attack In the work of Herrera-Joancomartí et al. [15], the authors explain
a privacy attack on the Lightning Network utilizing multiple transactions that do not finalize
in order to obtain the exact balance of a channel. The authors vary the transaction amount in
such a way that the balance of a channel can be probed using a limited amount of transactions.
According to tests done by the authors, all the channels of 1432 nodes can be attacked in a minute
with an accuracy of 10 USD, or slower if higher accuracies are desired. The authors note that for
a worst-case scenario (where the initial balance guess is far off from the real balance) with 624
nodes, the costs of the attack are roughly 50 USD. As a mitigation to this attack, the authors
suggest multiple approaches: The first option is that the nodes deny payment requests based on
a (possibly random) heuristic. The second option is to extend Lightning to adopt a differential
privacy technique as used in smart power meters, s.t. only a usable derivative of the real channel
balance is revealed.

Bolt: Blind Off-chain Lightweight Transactions In order to improve the privacy of pay-
ment channels, Green and Miers [13] introduced Bolt in 2017. The authors claim that Bolt im-
proves upon the privacy of Lightning (and other payment channel designs) by using cryptographic
primitives to prevent a malicious user from learning the channel balance of its channel partner.
In Lightning, the balance of a channel is known to both partners. To create a balance-anonymous
unidirectional payment channel between a customer and a merchant, Bolt uses a modified version
of Compact E-cash by Camenisch, Hohenberger, and Lysyanskaya [4]. Compact E-cash provides
a cryptographic construction for allowing a customer to withdraw electronic coins at a bank B,
and later spend these coins without the bank B being able to trace who withdrew these coins (i.e.
spending unlinkability). The compact e-cash scheme by itself works for spending coins but has
the limitation that if the customer wishes to close the channel without spending all the coins, it
would be possible for the merchant to identify the source of all previously spent coins. After mod-
ifying the scheme to allow early closure, the authors extend it to support bidirectional channels
by allowing the customer to exchange its old wallet for a new wallet with the merchant, which
can hold either less or more coins than the old wallet. The authors note, however, that a dispute
about the channel balance requires revealing the final balance of the channel. Finally, the authors
emphasize that the design does not yet allow for creating a network of payment channels in order
to create a PCN.

3.2 Transaction routing
Transaction routing in PCNs is an active subfield of PCN design. In the period between 2016 and
2021, more than 13 works were published that only focused on transaction routing. A common
theme of the transaction routing research is to improve the probability of transaction success, i.e.
how many transactions complete on the first try. In a PCN like Lightning, an equally balanced
channel (i.e. both users have the same amount of coins on each side, say 5-5) can become fully
unbalanced (i.e. 0-10 in our example) when transactions are unidirectional. This prevents any
further transactions from taking place in that direction unless the channel is refunded (which often
involves closing and reopening it) or rebalanced. Research into transaction routing tries to deal
with a network where previously available channels become unavailable because of this. Other
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researchers prefer to focus on transaction privacy instead (i.e. keeping one or more of the following
private: sender, receiver, amount, channel balance, path/direction) or concurrency of transactions
(i.e. multiple transactions going simultaneously over the same channel).

SilentWhispers SilentWhispers is a routing algorithm proposed by Malavolta et al. [31] in 2017
to address privacy concerns with PCNs that allow everybody to "...know who paid what to whom."
The authors note that this conflicts with users who prefer to hide their operations or do not want
to reveal any personal information such as the height of medical bills or salary.

SilentWhispers is a landmark routing algorithm. Such an algorithm uses landmarks in a net-
work, which are nodes that are known to every other node in the network. Using landmarks
requires a directed weighted network, which the authors construct by creating two directed edges
for each payment channel. Each directed edge between users u1 and u2 has a weight that "...indi-
cates the unconsumed credit that a user u2 has extended to u1". Each landmark node carries out
a Breadth-First-Search (BFS) of only forward edges which allow it to find the shortest paths from
the landmark to each node, creating a spanning tree. It then does another BFS considering only
backward edges which allows it to obtain all the shortest paths from each node to the landmark,
creating another spanning tree. During this process, each visited node learns their parent in the
path to and from each landmark. The authors note that using landmarks is efficient as when the
moment comes that a sender needs to find the route to a receiver, the sender and receiver pick a
common landmark L after which a path can be stitched together from the sender to L and from
L to the receiver, given that both the sender and receiver know the shortest path to and from
L. As every route of SilentWhispers contains a landmark, SilentWhispers is also said to be a
landmark-centered algorithm [44]. The authors say that a drawback of using landmarks is the fact
that the routing information needs to be updated regularly as the credit information of the PCN
changes.

To calculate the unconsumed credit over each path without all the visited nodes having to share
it with the landmark (which is a privacy problem), the authors propose to use Secure Multi-Party
Computation (SMPC) such that the landmark node can run multiple min functions combining
all the credit information of a path while only learning the outcome and not the inputs. As this
requires shares to be sent to the landmarks by the nodes on the path, the authors introduce
chained digital signatures to prevent nodes outside the path from influencing the calculation of
the min by the landmark. The authors construct this chain of digital signatures using long term
keys and fresh keys, where the fresh keys are used for the signing of the credit shares that are
sent to the landmark node. This prevents the landmark node from learning which node sent
what share. The authors also introduce a dispute resolution mechanism in case the two parties
involved in a channel disagree about what the value of the unconsumed credit may be. Finally, the
authors prove the security of their scheme in the Universal Composability framework [5] under the
assumption of the existence of a secure secret sharing scheme, an existentially unforgeable digital
signature scheme and only passive corruption of a proper subset of landmarks.

SpeedyMurmurs SpeedyMurmurs is a routing algorithm introduced in 2017 by Roos et al.
[44]. The authors introduce SpeedyMurmurs to solve existing problems with routing on the topics
of privacy, efficiency and scalability. For example, the authors claim that Flare leaks sensitive
information about users, as every user along a transaction path has to share their current balance
with the sender. The authors also studied SilentWhispers and found it promising but lacking
efficiency. The authors give some examples as to why; SilentWhispers updates its spanning trees
only periodically, reacting late to changes in the network. Another example is that SilentWhispers
routes always include the landmark and may therefore be longer than the true shortest path in
the PCN.

SpeedyMurmurs extends VOUTE, which is "...a privacy- preserving embedding-based routing
algorithm for message delivery in route-restricted P2P networks" [44]. VOUTE cannot handle
directed and weighted links, which is why the authors extend it to work in a PCN. The authors note
that PCNs are similar to the type of network VOUTE was designed for as both networks are route-
restricted (i.e. channels are not created to improve routing quality). As it is based on VOUTE,
SpeedyMurmurs uses a greedy embedding-based routing technique called Prefix Embedding. The
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Figure 3.1: Example of differences between routing with SilentWhispers, tree-only routing and
Prefix Embedding where lm is the landmark, s the sender and r the receiver (Roos et al. [44])

authors explain that embedding-based routing relies "...on assigning coordinates to nodes in a
network and having nodes forward packets based on the distances between coordinates known to
that node and a destination coordinate." The authors note that greedy embedding-based routing
is similar to tree-only landmark routing as it assigns coordinates based on the position from a
landmark node in a tree. However, this kind of routing is not limited to the existing tree but
can also take shortcuts between leaves of the tree which allows for more efficient routing than
compared to tree-only landmark routing, as can be seen in Figure 3.1.

SpeedyMurmurs contains three distributed sub-algorithms: setRoutes, setCred and routePay.
setRoutes is a modified version of VOUTE’s coordinate assignment to allow for weighted and
direct links. setCred is an algorithm that reacts to nodes that wish to change the value of their
link and decide if a coordinate change should occur. The authors decided to allow only coordi-
nate changes if a new link is added with non-zero weight or if a non-zero link is removed from
the network. Finally, routePay allows a sender and a receiver to find a route for a multi-path
transaction. It takes into account available funds on each possible route and splits payments
over multiple routes if only a combination of routes has the necessary capacity for routing the
transaction amount.

According to simulations done by the authors, SpeedyMurmurs outperforms SilentWhispers
and a reference Ford-Fulkerson implementation in terms of efficiency and probability of transaction
success. In later work by Eckey et al. [10], SpeedyMurmurs is used as a sub-algorithm for an
algorithm that introduces splitting payments by intermediaries along the multi-hop transaction
path, further increasing the probability of transaction success.

3.3 Distributed cycle finding
Rocha-Thatte Distributed Cycle Detection In 2015, Rocha and Thatte [43] introduced a
distributed algorithm for detecting cycles in directed graphs. The algorithm is synchronous and
intended for use in computing systems. Although cycle detection was already possible using a
depth-first search algorithm, the authors reference another work that shows that it is hard to
parallelise and therefore a new distributed cycle detection algorithm might be necessary.

The algorithm works as follows, under the assumption that each node has a unique numerical
identifier: In the first iteration i of the algorithm, a node u ∈ V sends a message containing only
its own identifier (ID(u)), wrapped in a sequence s of length 1, on its outgoing edges Eou. In all
following iterations, u adds its own identifier to the end of the received sequences and forwards
them all on Eou. If u does not receive any sequences during the iteration, it deactivates. If all
nodes are deactivated, the algorithm terminates.

A received sequence s is not forwarded if the first ID in s is equal to ID(u). In that case, u
has detected a cycle. To prevent multiple nodes from reporting the same cycle, a cycle is only
reported if ID(u) = min(s). The other reason to discard s is if ID(u) ∈ s but not at the beginning
of s. If this happens, another node must have already detected the specific cycle in an earlier
iteration. See Figure 3.2 for an example of the execution of the algorithm.

The authors prove the algorithm’s correctness and theoretically analyse the number of messages
and number of iterations required to run the algorithm in various graphs. If G is a complete
directed graph with cycles, the authors proof that the total number of messages Yt = nnt+1, where
t is the current iteration, n the number of nodes and nt the falling factorial n(n−1) · · · (n− t+1).
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Figure 3.2: Example of an execution of the Rocha-Thatte distributed cycle detection algorithm
(Rocha and Thatte [43])

The authors consider a complete graph the worst-case scenario. If G is a random directed graph
in which each possible directed edge has probability p to exist, then E[Yt] = nnt+1 · pt+1. The
authors also prove that the number of iterations required is equal to the longest path in G. Finally,
the authors provide a way to use their cycle detection algorithm to detect strongly connected
components.

3.4 Rebalancing
Rebalancing is the process of taking an imbalanced payment channel of a node and restoring its
balance without carrying out on-chain transactions (e.g. closing and opening a channel with new
funds). What it means for a channel to be imbalanced or fund skewed is a topic of discussion
among researchers and is explored in this section among solutions to solve this imbalance through
rebalancing. For ease of analysis, one can distinguish two types of rebalancing algorithms: on-
the-fly and on-demand. On-the-fly rebalancing algorithms are algorithms that try to influence the
transaction routing in such a way that the balance of channels improves. They differ from on-
demand rebalancing algorithms because those are specifically invoked if a node wishes to balance
a certain subset of its channels.

FSTR An on-the-fly protocol for rebalancing is FSTR or Fund Skewness Aware Transaction
Routing by Lin, Zhang, and Wu [27]. In their work, the authors define the fund skewness in a
certain direction as Equation 3.1a.

ϕuv = f(u, v)− fa(u, v)
fs(u, v) (3.1a)

ϕvu = −ϕuv (3.1b)

In Equation 3.1a, u and v are two users sharing a channel, f(u, v) represents the coins that
can be transferred from u to v over the channel, and fa(u, v) and fs(u, v) are the average and
sum of {f(u, v), f(v, u)} respectively. The authors then present three methods to calculate a path
skewness metric that is used to determine the skewness of a multi-hop transaction. The routing
method used in FSTR uses a modified BFS and stores found routes in a routing table. Routes
are selected based on the path skewness metric. Simulating the algorithm and comparing it to a
reference Ford-Fulkerson max flow and SpeedyMurmurs [44] implementation, the authors decide
to choose a non-linear path skewness metric for their algorithm. Using this skewness metric, the
authors experimentally show that the probability of transaction success using their algorithm for
transaction routing is larger than compared to using Ford-Fulkerson or SpeedyMurmurs.

A drawback of FSTR is that its route discovery uses a REQ message that contains, among
other things, the full path of the transaction and all the skewness values for the channels the REQ
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message has passed. This REQ message is sent to all the nodes who might potentially have a path
to the receiver. Compared to the current routing algorithm of the reference Lightning client lnd,
which uses source-routing to prevent intermediaries learning the path of the transaction, FSTR
fully reveals the path of the transaction to all potential intermediaries. In addition, an adversary
can use the skewness values in the REQ to derive the channel balance of all the channels the REQ
passed through using Equation 3.1a.

CLoTH Another work that investigates on-the-fly and on-demand rebalancing is presented by
Conoscenti, Vetrò, and Martin [6] and is a continuation of [7] where a simulator called CLoTH
is presented based on the Lightning Network client lnd (the reference Lightning client). In [6],
the authors use CLoTH to investigate the effects of different payment rates, payment amounts,
rebalancing strategies and the removal of hub nodes. The authors find that higher payment rates
do not majorly influence the probability of transaction success although higher payment amounts
have a visible negative effect on the probability. The authors note that higher payment amounts
cause transactions to fail as there is no route available with sufficient capacity. For the rebalancing
investigation, the authors considered both on-the-fly as well as on-demand rebalancing strategies.
For the on-demand strategy, the authors triggered nodes to rebalance as soon as one of its channel
balances is below 20 % of the total channel capacity. If a node is triggered to rebalance, it tries to
transfers its coins from a highly balanced channel in a circular transaction to the lowly balanced
channel that caused it to rebalance. A channel is considered ’highly balanced’ if i), the node has
a balance in that channel that is greater than half of the total channel capacity and if ii), the
node’s balance covers the amount required to bring the lowly balanced channel up to 20 % of the
total channel capacity. Additionally, a suitable cyclic route needs to be found. The authors use
the routing algorithm of lnd to find suitable cyclic transactions.

For the on-the-fly strategy, the authors adjust the fee policies of the nodes such that the "...fee
amount is inversely proportional to channel balance". As CLoTH is build to simulate lnd, the
routing algorithm used ranks its routes on the lowest amount of fees required1. Lowering fees if
a channel is imbalanced can therefore result in the routing algorithm including a channel more
often. The authors argue that this might change the flow of transactions in such a way as to
rebalance the channel. After simulating both strategies, the authors conclude that the on-demand
strategy is ineffective as many attempts at circular payments fail due to a lack of capacity in
the network and because a node does not always have a sufficiently highly balanced channel to
correct the lowly balanced channel with. The on-the-fly strategy is more effective and reduces
the probability of transaction failure by one fourth. However, the authors do not yet know if this
on-the-fly strategy can reduce the probability even further or if this is the maximum achievable
with such a strategy.

Imbalance measure and proactive channel rebalancing In a work by Pickhardt and
Nowostawski [40], an on-demand rebalancing algorithm is presented based on using the Gini co-
efficient as a definition of imbalance of a node. The authors define the channel balance coefficient
as in Equation 3.2.

ζ(u,v) = b(eu)
c(e) (3.2)

In Equation 3.2, u and v are two nodes sharing an edge e, eu represents edge e of node u,
b(eu) is the balance of u in edge e and c(e) is the capacity of edge e. The authors also define
the capacity as the sum of the balances, i.e. c(e) = b(eu) + b(ev). Because of this, it also holds
that ζ(u,v) + ζ(v,u) = 1. Based on this, the authors state that a node u is balanced if all its local
channel balance coefficients {ζ(u,v1), . . . , ζ(u,vd)} have the same value. The authors consider a node
unbalanced when the local channel balance coefficients are unequal. The authors formalize this
definition by defining the Gini coefficient in Equation 3.3. Note here that U = n(u), i.e. the
neighbours of node u.

1Among other factors, see Subsection 2.3.3.
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Gu =

∑
i∈U

∑
j∈U
|ζi − ζj |

2
∑
i∈U

∑
j∈U

ζj
(3.3)

If Gu = 0, it means the node u is balanced while if Gu = 1, the node u is balanced in the most
unequal way. Finally, for their algorithm the authors also define the node balance coefficient as
Equation 3.4.

νu =

∑
e∈U

b(eu)∑
e∈U

c(e) (3.4)

The rebalancing algorithm as defined by the authors runs on every node and starts as soon
as Gu rises above a certain threshold. A node u then uses ν and ζ to select a set of candidate
channels C for which {(u, vi)|ζ(u,vi) − νu > 0} and selects a random channel e from C. u then
finds a circular transaction to itself with as outgoing edge e and as incoming edge an edge from
the set of {(u, vi)|ζ(u,vi) − νu < 0}. The participants of this circular transaction only participate
if this also improves their Gini coefficient G.

The authors state that the amount of the transaction should be a = c(e) · (ζ(u,v) − νu) as
this has the effect of decreasing the value of ζ(u,v) to νu. If a is not possible due to a capacity
bottleneck, u settles for any amount smaller than a. The algorithm is repeated as long as Gu is
above the threshold and transaction paths are available.

To find circular transaction paths, the authors implemented four different strategies. The first
two strategies test all cycles in the neighbourhood of lengths smaller than four or five. The second-
to-last strategy foaf tries to find cycles inside the friend-of-a-friend network and the last strategy
mpp does the same although with a 20th of the amount that foaf does, as it is supposed to spread
out the rebalancing over multiple iterations of the algorithm. Running static simulations on a
snapshot of the Lightning Network, the authors show that all strategies are successful at reducing
the network imbalance (i.e. the average Gini coefficient of all nodes Ḡ) although cycles of length
5 and foaf are most efficient in doing so. The authors do not provide a dynamic simulation to
show the interaction with their algorithm and transactions taking place at the same time.

Other works related to rebalancing Engelshoven [11] presents a work containing two al-
gorithms that, in conjunction with the SpeedyMurmurs [44] routing algorithm, allow a node to
determine the fees of each channel to stimulate the usage or avoidance of using the channel in a
multi-hop transaction. This has the net effect of rebalancing channels on the fly. Mercan, Erdin,
and Akkaya [35] also introduce an on-the-fly rebalancing and routing algorithm but specifically
focus on IoT devices and introduce the concept of smart gateway selection. This concept has
IoT devices use multiple gateways to transact on a PCN, resulting in a more balanced network.
Subramanian, Eswaraiah, and Vishwanathan [48] present an on-demand rebalancing algorithm for
acyclic payment networks.

3.5 An introduction to Revive
Revive is an on-demand rebalancing algorithm presented by Khalil and Gervais [18] in 2017. As
Revive is referred to often in this thesis, this section serves as an introduction to the work.

The intention of the authors with Revive was to introduce an on-demand rebalancing algorithm
that requires no transaction fees and is PCN agnostic. They believe it is important to have a
rebalancing algorithm without fees as the alternative strategy, which consists of lowering fees to
have normal transactions rebalance a node’s channel, can be considered a sacrificial strategy and
reduces the incentive of users to take part in a PCN.

System model For the functioning of Revive, the authors require a blockchain supporting
smart contracts, a PCN with payment functionality and an underlying, secure communication
model between participants such as TLS over TCP. The authors note that the topology of the
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PCN influences the success of their algorithm. This is because Revive finds rebalancing cycles,
which do not exist in all networks (see Figure 3.3 for an example). The authors also note that
some edges used in cycles can overlap if the channels visited multiple times have sufficient capacity,
as might possibly be the case with edge B-D in Subfigure 3.3b.

(a) An example network with a tree
structure. Since no cycles exist
in the graph, no viable rebalancing
transactions can be found.

(b) An example network containing
cycles. Rebalancing payments can
take paths such as: (A, B, D, E, A)
and (C, E, B, D, E, A, C).

Figure 3.3: Two networks with different topologies, influencing the available rebalancing transac-
tions. (Images and captions from Khalil and Gervais [18])

Threat model The authors state that Revive is designed to prevent any honest participant
from losing any funds (i.e. provide balance conservation) despite the presence of an irrational
adversary that is willing to lose all of their committed funds. This adversary can "...cause parties
under its control to sign and authorize any set of messages using their identities, or front-run
any user input, but may not violate the integrity of the keys honest protocol participants use. In
addition, we assume an adversary can cause denial of service attacks that abort the protocol at
any given point". [18]

3.5.1 Algorithm
The rebalancing algorithm starts with a leader election from a fixed set of participants. The leader
does not have to be a participant as the leader only serves as a shared platform for synchronisation
and computation. At the start of the algorithm, the leader is chosen as the participant with the
smallest public identifier ID(p). For every other execution of Revive after the first, the participant
with the next smallest ID is chosen until there are no new participants, at which point the first
leader is elected again. If we assume that the public identifier cannot be changed after the set of
participants has been fixed, the adversary is unable to always be selected as the leader, as this
strategy makes every participant a leader an equal amount of times. The authors note that the
other parts of Revive do not depend on the exact mechanism of the leader election and it can
therefore be changed to suit the use-case of the participants, e.g. the participants might have a
specific node that they all trust who is always elected as the leader.

After the initial leader election phase, the algorithm continues as in Figure 3.4. At first, the
leader waits until enough participants have signalled that they wish to rebalance. The authors
argue that this is useful for scalability as this allows one to set a threshold for how many partici-
pants are required to continue the rest of the algorithm. Once this threshold is passed, the leader
sends a rebalancing initiation request to all participants. The participants which wish to partake
then send a confirmation to the leader, who compiles a list of all participants Pt. After compiling
Pt, the leader sends Pt to all p ∈ Pt such that each p knows who is partaking in this iteration of
the algorithm. Additionally, the leader requests all p ∈ Pt to freeze transactions on channels they
wish to rebalance.

The authors expect participants who wish to freeze their channels to do so in cooperation
with the other channel owner, i.e. one of their neighbours. Participants also have to cooperate
on defining a suitable rebalancing objective or rebalancing demand, which the authors write as
∆u,v. ∆u,v represents the balance that node u wishes to gain in its channel with v. In contrast,
δu,v represents the balance that node u is going to gain in its channel with v as a result of the
rebalancing algorithm. Once both channel owners decide on a ∆, it holds that ∆u,v = −∆v,u.
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Figure 3.4: Protocol sequence diagram of Revive (after leader election). (Khalil and Gervais [18])

Linear Program

The next step of the algorithm involves the participants sending back their ∆u,v to the leader.
Each ∆ represents both a value and a direction in which the coins should flow through a channel.
This allows the leader to create a directed graph of the sub-network of participants, replacing each
channel with a directed edge with weight and direction representing ∆. In this directed graph,
a linear program solver2 then tries to find a set of transactions that solve the specified Linear
Program:

Linear Program: Maximize:
∑
u,v δu,v Subject to:

(1) ∀u, v : ∆u,v > 0 ∧∆v,u < 0 ⇐⇒ 0 ≤ δu,v ≤ min(∆u,v,−∆v,u)
(2) ∀u :

∑
v δv,u =

∑
v δu,v

The Linear Program tries to maximise the number of coins moved between channels under
the constraint that the amount of coins going through a channel has to be equal or less than
min(∆u,v,−∆v,u) and larger or equal to zero (1), and the total balance of each node stays the
same s.t. no node can lose or gain coins as a result of the rebalancing (2).

The authors remark that if δu,v is defined, δv,u is not. This is because if both were defined, it
would break the semantics of the linear program. The authors also assume that all participants
are honest about their ∆ being smaller than the total funding of the channel. As a final remark,
the authors warn that linear programs can produce non-integer solutions. This is a problem as
when the lowest unit of a global ledger is in the range of 0–9, a fractional result might not be
something that the ledger may be able to represent. The authors argue that this can be solved by
rounding down each fractional result to an integer, as the US dollar price of the lowest currency
unit of Bitcoin (1 Satoshi = 10−8 BTC) and Ethereum (1 Wei = 10−18 ETH) is very small.

Finalizing the algorithm

At this point, the linear program has produced a transaction set. The transaction set, a list of
participating members and a commitment by the leader is then sent to all p ∈ Pt for verification
and signing. The commitment takes the form of a Merkle-tree [36] that covers all transactions in
the transaction set as well as a hash of the public addresses for all p ∈ Pt. Each participant p
then verifies the commitment and transaction set, signs the commitment and sends it back to the
leader. Once the leader obtains all signatures, it multicasts these to all p ∈ Pt. At that point, the

2Many Linear Program solvers exist. See for example lp_solve.
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authors state that all channels can be unfrozen because the signed transaction set is considered
binding. Using the fully signed commitment of the transaction set as proof, each node can then
claim the coins of incoming transactions.

In a later analysis of their algorithm, the authors argue that the linear program produces more
optimal results if run by one leader for the entire network. However, a global leader requires exten-
sive coordination by the entire network and so this scenario is probably unrealistic. Instead, the
authors propose that a PCN should run many local, sub-optimal instances of Revive to hopefully
produce a local optimum close to the global optimum.

3.5.2 Performance evaluation
Although the authors provide a proof-of-concept implementation and scaling issues are discussed,
no experimental evaluation is done on a PCN in order to study the effect of Revive on the
probability of transaction success in a PCN. This makes it difficult to evaluate if it is worthwhile
to scale Revive to a point of it being used by the majority of the PCN to rebalance channels or
whether at that point it would be better for the probability of transaction success if users do not
use on-demand rebalancing and simply close and open channels with new funding once a channel
runs out of funding.

3.5.3 Balance conservation
An important property for any on-demand rebalancing protocol is that it provides balance con-
servation. Balance conservation is the property that the total balance of participant u owned
in all its channels Eu is the same before and after the, potentially unsuccessful, execution of the
protocol. More informally, guaranteeing balance conservation ensures that a participant can never
lose its coins or gain any coins by taking part in the execution of the protocol.

In Revive, the authors guarantee balance conservation by making each participant verify and
sign the transaction set that the leader has generated. If the transactions in the transaction set
do not result in a net sum of zero for the participant that is verifying it, the participant can
refuse to sign and commit to the transaction set. Then, only when the participants receive a
transaction set signed by all participants, they can be assured that all other participants have
committed to the rebalancing. If a participant commits but does not execute the transactions
it committed to, the authors provide a smart contract dispute settlement mechanism in order to
guarantee that honest participants always receive what the dishonest participant committed to,
preserving balance conservation or resulting in a loss in coins for the dishonest participant and a
gain in coins for the honest participant.

This dispute settlement mechanism also allows for an alternate problem where a participant
who committed never receives the fully signed transaction set because the adversary controls all
the other participants and the leader. The adversary can then claim all outgoing coins of the
victim while the victim cannot claim any of the incoming coins, breaking the balance conservation
property. In that case, the victim can issue an on-chain availability challenge for the fully signed
commitment set using the smart contract. If the signed transaction set is not provided within a
certain amount of time, all rebalancing transactions will become invalid. The authors note that for
this to work, transactions can only be finalized after a certain deadline t. After t, no availability
challenge can be started. As the solution involves an on-chain transaction, the authors state
that this has the effect of introducing a monetary cost for the victim when protecting its coins.
According to the authors, the total cost in the worst-case scenario where all honest participants
have to issue an availability challenge increases proportionally to the number of participants.

3.5.4 Objective satisfiability
The authors state that there exists a risk that if the leader is the adversary and also a participant,
it can generate a transaction set using a modified linear program that favours its own channels
or interests. As a solution, the authors suggest using a modified version of Revive in which each
participant p ∈ Pt solves the linear program as a form of multi-party computation, instead of only
the leader. This would require all information regarding rebalancing objectives to not only be sent
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to the leader but also to all Pt, along with a random seed. The authors note that this solution
comes at the cost of privacy and efficiency but might be a worthwhile trade-off in some use cases.

3.5.5 Privacy
A major part of the design of Revive is that the leader needs to know the latest state of each
payment channel in order to calculate the transaction set. The authors acknowledge that this is
a privacy leaking component of Revive and that a proper privacy analysis has not been done. We
provide such a privacy analysis in Subsection 4.2.1 after defining the relevant security and privacy
definitions in Section 4.1.5.
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Chapter 4

Design

In this chapter, our payment channel network (PCN) model is formally defined after which we
introduce our notation and security and privacy definitions. We then discuss the problems with
Revive and formulate design requirements for our on-demand rebalancing protocol based on these
problems. In the later sections of this chapter, we first present the design of the participant
discovery protocol and then the design of the rebalancing protocol. Finally, in the last part of this
chapter we analyse the security and privacy of our designs.

4.1 Formal definitions
Let a PCN be defined as an undirected multigraph1 G = (V,E) with a finite set of nodes. Each
node represents a user of the PCN. Each payment channel is represented by an undirected edge
eu,v between two nodes u and v such that E ⊂ V ×V . For each edge with associated nodes u and v,
we define a balance function b(eu,v, v) that returns the balance of v in channel eu,v and a capacity
function c(eu,v) = b(eu,v, u) + b(eu,v, v). We denote with N(u) the set of all the neighbouring
nodes of u where a neighbour i is defined as a node with which u shares an edge eu,i. We define
Eu as the set of edges involving node u. Furthermore, we define a path p as a sequence of edges
e1 . . . en where ei = (v1

i , v
2
i ) and v1

i+1 = v2
i for 1 ≤ i ≤ n− 1 (similar to [44]). See Subfigure 4.1a

for a visualisation of G.

4.1.1 Functionality
In general, we assume the functionality of our PCN model to be similar to existing payment
networks such as Lightning or Raiden. We assume there exists an interface provided by our PCN
model that consists of three functions: pay, paycond and payexec. We define pay as pay(s, r,
x) where s is the sender, r the receiver and x the amount to be transferred over the edge es,r.
We extend pay to conditional payments by defining paycond(s, r, x, ϕsetup) and payexec(r, s, x,
ϕexec). In paycond and payexec, ϕsetup represents the necessary information to setup a conditional
transaction and ϕexec represents the information required to fulfil the condition of the transaction
and execute it. If HTLC transactions are used, ϕsetup would include a cryptographically hashed
preimage and the time-lock for the transaction. ϕexec would then represent the preimage that
is to be revealed to the payee. For a sender s to do a conditional payment to a receiver r, it
must execute paycond to create a conditional transaction y on the condition that it may only be
executed if r presents ϕexec. If r then wishes to fulfil the condition, it must call payexec with the
correct ϕexec to complete the transaction.

We also define functions paycondP(s, r, x, p, ϕsetup), payexecP(r, s, x, p, ϕexec) and paycondComp(s,
r, x, p) that represent conditional payments over a path p with i intermediaries between s and r.
paycondP consists of the repeated execution of paycond, e.g.

{paycond(s, i1, x, ϕsetup), paycond(i1, i2, x, ϕsetup), . . . , paycond(in, r, x, ϕsetup)} ,

1Meaning that there might be more than one edge between two nodes
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If it happens that a paycond fails because of a lack of funds in the channel, any subsequent
paycond will not be called. It is also important to note that although ϕsetup does not appear
to change from one paycond to the other, in practice small variations might exist between each
ϕsetup. This is the case with HTLC payments where the time-lock gets smaller from one conditional
payment to the next. Finally, we assume intermediaries ask no fees for facilitating transactions.
Even though fees are an essential part of the functioning of normal multi-hop transactions, we
consider nodes that participate in our rebalancing protocol to require no fees for transactions that
are done as part of our protocol. This is because in our protocol, a node only needs to facilitate
transactions if one of its channels gets rebalanced, thereby always providing an incentive for the
node to facilitate the transaction.

payexecP functions similarly to paycondP, but with payexec instead of paycond. Finally, paycondComp
is defined as a function that generates a ϕsetup and ϕexec and invokes paycondP and payexecP to do a
complete conditional transaction over a path p between s and r. The functionality of paycondComp
is similar to the experience of a user that leaves the handling of the conditional payments to a
client interacting with the PCN and only specifies the path2 p, amount x and receiver r (the user
itself being s).

4.1.2 Rebalancing
We denote the demand or rebalancing objective of an edge eu,v as ~∆u,v. Note that contrary to eu,v,
~∆u,v is directional meaning that it defines both the amount of balance shift and which direction
the channel balance should be shifted. We say that ~∆u,v represents a balance shift of amount ∆
from u to v. We define an interface of a negotiation protocol negotiateObjective(eu,v) that is
run by the two nodes u and v of an edge eu,v when a ~∆ is required and returns either a ~∆ if it
succeeds or ⊥ if it fails. If the negotiation protocol does not fail, it holds that ~∆u,v 6= ~∆v,u and
~∆ ≥ 0.

We define a rebalancing graph as a directed weighted multigraph R = (V,Q) where Q represents
a set of q rebalancing edges. R is a sub-graph of G where all undirected edges in E with a zero
or ⊥ value for ~∆ are removed. All e ∈ E with a non-zero ~∆ are replaced with a single directed
edge q with a direction and weight w(q) taken from ~∆. See Subfigure 4.1b for a visualisation of R.
We define Quo as all outgoing edges qu,i for node u, Qui as all incoming edges qi,u for node u and
Qu = Quo ∪Qui . We also define an opposite function Opp({e|q}1, u) that takes as input an edge e
or q and a node u which is one of the owners of the edge, and returns the other owner of the edge.

We define a rebalancing cycle as a cycle of q rebalancing edges in R. We define the incoming
edge of a cycle c in a node u as qu,ci and the outgoing edge as qu,co .

4.1.3 Pseudocode utilities
In this section, we define the special notation we use in our pseudocode to denote certain data
types and structures.

First, we define a primitive ⊥ which represents a null character often found in many program-
ming languages. We also define a boolean which is a variable that can either take the values true
or false.

We also define a dictionary or map as a set Di consisting of (k, v) key-value pairs where K
represents the set of keys and V the set of values. The i refers to a specific dictionary or map.
For example, Dtr,q refers to a map mapping Tr → Q. We define a function geti : K → V ∪ {⊥}
where i denotes a specific set D and ⊥/∈ V. The functionality of geti is defined as

geti(k) =

v (k, v) ∈ Di

⊥ else
. (4.1)

We define two other functions puti : K × V →⊥ and removei : K →⊥. Calling puti(k, v)
causes Di ← Di ∪ {(k, v)} to take place. Calling removei(k) causes Di ← Di − {(k, v)} to take

2Client implementations for PCNs such as Lightning typically also provide the path, see Subsection 2.3.3
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(a) An example of a payment channel net-
work with undirected edges representing pay-
ment channels. The number on the right of an
edge as seen from the perspective of the node
represents the balance of a node in that edge,
e.g. Bob and Dave share an edge in which Bob
has a balance of 16 and Dave a balance of 8.
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(b) An example of the rebalancing graph
as based on 3a). In this example,
negotiateObjective is implemented such
that it produces a ~∆ that causes the channel
to become equally balanced, e.g. if Alice and
Dave have a balance of 15–5 in their channel,
Alice needs to transfer 5 coins to Dave such
that the channel has a balance of 10–10. The
channel between Alice and Bob disappears as
their channel is already equally balanced.

Figure 4.1: An example of a PCN as an undirected graph G and a rebalancing graph R.

place. We also define a shorthand k ∈ Di which is equivalent to k ∈ {k′ | (k′, v′) ∈ Di}. The
functionality provided by these functions is a limited version of the functionality provided by a
dict in Python or a HashMap in Java.

We denote a sequence or list of values a ∈ V as Li = [a0, a1, . . . , an−1]. A sequence has an
order that equals the order of value addition to the sequence. Contrary to a set J , duplicates are
allowed in a sequence.

We denote with |Li| the size of the sequence Li and with Li[j, k] a specific range [j, k) of values
[aj , aj+1, . . . , ak−1] in Li. If we write Li[j], we mean to indicate the jth value of the sequence Li.
We denote with Li ← Li ∗ a the addition or concatenation of a to Li. We write subtraction or
removal of a from Li as Li ← Li − a, where we clarify that this removes all instances of a in Li.
We also define a function indexOfi : V → Z+ ∪{⊥} for Li. Calling indexOfi(v) returns the index
j of the first value that matches Li[j] = v starting from index 0 until |Li|.

We denote a predicate as Pr : Vk → {true, false} where Vk represents k inputs. It is required
that k ≥ 0. A predicate is a predefined statement such as Pr(v)← a ∧ v which can be evaluated
to produce a boolean.

Finally, we define check-action notation for the repeated invocation of predicates that is
common throughout the pseudocode of the transaction generation protocol. The check-action
notation defines an ordered sequence of predicate-action pairs and is written as: ’check-action:
Pr i → actioni, Prj → actionj , . . .’ It should be read as ’If Pr i is true, carry out actioni, else if
Prj is true, carry out actionj , etc.’.

4.1.4 General assumptions
During the design and simulation, we assume a static G. This means that no nodes and channels
are removed or added to G during the running of the simulations. Little research has yet been
done into simulating the dynamic nature of nodes joining a PCN and creating channels [11] and
we consider this outside the scope of this thesis.

As we take our PCN G to have functionality pay, paycond and payexec, we acknowledge that
for its secure operation we also have to assume the existence of a global ledger GLedger and the
existence of cryptographic primitives (such as digital signatures and key generation) that are
necessary for the functionality to be implemented.
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We assume an asynchronous network model where a node has one communication channel per
edge it owns. We assume no global ordering of messages but require that messages are received
from a channel in the order that they were send by the sender. We also assume there are no lost
and corrupted messages between honest users.

4.1.5 Security and privacy
PCNs and the algorithms running on them have certain security and privacy properties that are
often referred to in literature discussing the topic [30, 31, 54]. In this section, we define these
security and privacy properties and provide a threat model and the assumptions with which we
evaluate them.

Threat model

We consider a malicious rational computationally bounded adversary that is a participant of G.
The adversary can shape G at will by creating or corrupting k nodes in G and by establishing
new channels from corrupted nodes to other nodes. The set of corrupted nodes is fixed from the
moment the protocol starts. If a node is corrupted by the adversary, the adversary gains access
to its state, message history and receives all new messages intended for them. Once a node is
corrupted, the adversary can create arbitrary messages that originate from the corrupted node.
We call a node that has not been corrupted by the adversary a non-corrupted or honest node.

Assumptions

We assume that the implementations of pay, paycond and payexec leak no information to anyone
outside of the sender s and receiver r.

We also assume that paycondComp provides balance security for all honest intermediaries i in a
path p between s and r. We argue that this is a valid assumption as this is the same functionality
as provided by Lightning HTLC multi-path transactions, which are proven to guarantee balance
security [19]. This assumption also implies that the underlying implementation of paycond and
payexec contain safeguards that allow for the assurance of balance security. In the case of Lightning,
this would imply that executing payexec reveals ϕexec = preimage to both channel owners and
that conditional transactions expire in sequence such that the an intermediary always has time to
claim its coins. See Subsection 2.3.1 for a full explanation of how multi-hop transactions work in
Lightning.

We also assume that all the communication channels of the nodes are made confidential by
using a secure communication scheme such as TLS. This reflects current PCN implementations
such as Lightning (BOLT #8, [25]).

Definitions

The following section provides the formal definitions of the security and privacy properties dis-
cussed in this thesis. Many of these properties we define have already been defined in related work
[30, 31, 44, 54] (either formally or informally) but we reformulate them here in the context of our
assumed functionality of the PCN and its methods.

Please note that after each definition, we cite the works that helped shape it.

Definition 1 (Balance security). For a paycondComp(s, r, x, p) where s is the sender, r the
receiver, x the amount to be paid and the path p holds i intermediaries, a paycondComp operation
provides balance security if there exists a negligible probability that the adversary can make any
honest intermediary lose its coins that are staked as part of the paycondComp operation. [30]

Definition 2 (Balance conservation). For an honest participant i partaking in the execution ν of a
rebalancing algorithm Λre with only honest participants, we say that Λre guarantees balance conservation
to i if Equation 4.2 holds, where Qibefore are the rebalancing edges of i before the execution ν and
Qiafter the rebalancing edges of i after the execution ν.
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∑
q∈Qi

before

w(q) =
∑

q∈Qi
after

w(q) (4.2)

Definition 3 (Participation anonymity). For a set of honest nodes Vh ⊆ V partaking in the
execution ν of a distributed algorithm Λd, we say that a node i ∈ Vh has participation anonymity
if i has node participation anonymity and all its edges Ei have edge participation anonymity.

Definition 4 (Node participation anonymity). For an honest node i partaking in the execution
ν of a distributed algorithm Λd with anonymous identity Ai and identity ID(i), we say that i
has node participation anonymity if the adversary can determine with negligible probability if i is
partaking in execution ν of Λd.

Definition 5 (Edge participation anonymity). For an edge eu,v between two honest nodes u and
v where both nodes are partaking in the execution ν of a distributed algorithm Λd, we say that eu,v
has edge participation anonymity if the adversary can determine with negligible probability if eu,v
is part of execution ν of Λd.

Definition 6 (Channel balance privacy). For a channel eu,v in G with balance functions b(eu,v, u)
and b(eu,v, v), and u and v being honest nodes, we say that channel eu,v has channel balance privacy
if there exists a negligible probability that the adversary can determine b(eu,v, u) or b(eu,v, v). [54]

Definition 7 (Path privacy). For a paycondComp(s, r, x, p) where s is an honest sender, r a
receiver, x the amount to be payed and path p holding n intermediaries of which at least one
is honest, a paycondComp operation provides path privacy if the adversary can determine (parts
of) the path p outside of the nodes it already corrupted with a probability less than or equal to
1/
∣∣∣⋂i∈Cp

Pi

∣∣∣, where Cp is the set of corrupted nodes which lay in the path p and Pi represents all
possible paths going through node i. [54]

Definition 8 (Value privacy). For a paycondComp(s, r, x, p) where s is an honest sender, r an
honest receiver, x the amount to be payed and p being a path consisting of only honest interme-
diaries, a paycondComp operation provides value privacy if there exists a negligible probability that
the adversary can determine x. [31, 44, 54]

Definition 9 (Sender/receiver privacy). For a paycondComp(s, r, x, p) where s is an honest
sender, r an honest receiver, x the amount to be payed and the path p holds n intermediaries
of which at least one is honest, a paycondComp operation provides sender/receiver privacy if the
adversary can determine the sender/receiver of paycondComp with a probability less than 1/|V −C|
where C is the set of corrupted nodes. [31, 44, 54]

Definition 10 (Relationship anonymity). For two simultaneous paycondComp(s, r, x, p) oper-
ations between sender/receiver pairs (s1, r1) and (s2, r2) with the same amount x and the same
path p holding n intermediaries of which at least one is honest, we say a paycondComp operation
provides relationship anonymity if an adversary can determine if s1 pays r1 or s2 pays r2 with a
probability less than half. [30, 49]

4.2 Problems of Revive
The major goals of on-demand rebalancing protocols are to allow its participants to rebalance
their channels effectively, efficiently and securely. If these were the only goals, a protocol such as
Revive [18] can possibly be a good fit for the problem. However, we argue that besides effectivity,
efficiency and security, an on-demand rebalancing protocol should also protect the privacy of its
users. This is in line with research into making PCNs more privacy-preserving (see [13, 15, 30])
and is stated to be a goal of choices made in the construction of the Lightning Network (BOLT
#4, [25]). We believe that it is, therefore, strange to use an on-demand rebalancing protocol that
does not provide appropriate privacy guarantees to its users on a PCN that is built to do so.

In this section, to improve upon Revive, we analyse the privacy properties and guarantees of
Revive. We furthermore highlight the properties Revive does not achieve. In addition, we argue
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that if it is to be implemented in an actual PCN, its dependency on a fixed set of participants
needs to be reconsidered to support a varying set of participants, which would require a participant
discovery protocol. We provide an overview of how Revive works in Section 3.5.

4.2.1 Privacy
Revive is designed in such a way that it can achieve balance conservation (Definition 2) despite
relying on a single non-trusted leader. This requires that participants validate the transaction set
generated by the leader. If the transaction set passes validation, it is signed by the participants,
which acts as a commitment to the rebalancing transaction. The participants execute their trans-
actions after receiving a transaction set signed by all participants. In our PCN model, this last
step is equivalent to a pay(s, r, x) operation where s, r, and x are taken from the transaction set.

Although this scheme achieves balance conservation, it also exposes many details about a
participant u and its channels Qu to the leader and other participants even though u might
not want to share this information. The authors acknowledge that this is a problem with their
protocol. If the adversary is one of the participants, it can derive the following information from
the transaction set sent around by the leader for validation: i) transaction sender, ii) transaction
receiver and iii) transaction amount.

As the adversary knows the sender and receiver of every transaction, this prevents the protocol
from obtaining sender/receiver privacy (Definition 9) and relationship anonymity (Definition 10).
As the adversary always knows the transaction amount, there is no value privacy (Definition 8).
Because the transaction set only contains pay operations, it must be that there are no intermedi-
aries between the sender and receiver. This breaks path privacy (Definition 7) as it is known to
the adversary that the sender pays the receiver through a path {s, r}.

If the adversary is the leader or if all participants calculate the linear program in order to
guarantee a fair solution (as suggested by the authors but with a decrease in privacy), the adversary
would also have access to all the rebalancing demands ~∆ of every participating channel e. If we
then assume that the adversary knows the negotiateObjective protocol of each pair of channel
owners, the adversary can use the workings of the protocol and the channel’s ~∆ to derive the
original channel balance of e, breaking channel balance privacy (Definition 6). The assumption
that the negotiateObjective protocol is known to the adversary is in line with our expectation
of negotiation protocols to be relatively simple, such as one that produces equal balances.

A possible improvement on the leader-focused design of Revive is to augment it with a Secure
Multi-Party Computation (SMPC) linear program solver as described in [50]. With an SMPC
linear program solver, each participant could participate in the SMPC protocol to obtain the final
transaction set with the leader only coordinating the computation but being unable to see the
actual inputs to the program. However, this would not solve the privacy problem concerning the
distribution of the generated transaction set for validation and signing.

4.2.2 Leader election and finding participants
Revive requires a fixed set of participants in its leader election in order to ensure that all par-
ticipants are chosen as often as any other participant to become the leader. We consider this
requirement to be unrealistic as in a PCN, channels may close or open, nodes may disappear, etc.
This would prevent the execution of Revive. However, the authors suggest that the leader election
phase of the protocol can be changed to incorporate different scenarios than they envisioned. For
example, if we assume a set of participants that varies every execution and use the same leader
election as specified by the authors, the participant p with the smallest public identity ID(p) will
always be chosen. However, if then the adversary manages to obtain or create a node with the
smallest ID(p), they will always be elected as the leader in any executions of Revive they partic-
ipate in. As the leader can influence the outcome of the obtained rebalancing solution or deny
participation to certain users, it is important to avoid malicious influence on the leader election.
In their work, the authors provide no solution for this problem.

Switching from a fixed set of participants to a varying one also raises the question how such a
set is found each execution of the protocol, implicitly adding the requirement for another protocol
that carries out such a task. Such a protocol was not included in the authors work for Revive.
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4.3 Requirements
To improve upon Revive and answer our research question, we can deconstruct a design of a
suitable alternative into a set of requirements that such a design should follow. These requirements
guide the design process and allow for later evaluation of the protocol after its design. The
requirements are divided into MUST HAVES and SHOULD HAVES as follows:

1. Must haves:

(a) Transaction set: The protocol must find a non-trivial (i.e. non-zero) transaction set
among its participants that meets some rebalancing demands

(b) Balance security and conservation: The protocol must have a negligible probability
that an honest participant can lose coins in a channel without its consent

(c) Privacy The protocol must have the following privacy properties:
i. Sender/receiver privacy
ii. Relationship anonymity
iii. Value privacy
iv. Path privacy
v. Channel balance privacy

(d) Participation: Nodes must be able to discover other nodes willing to participate in
the protocol

2. Should haves:

(a) Optimality: The protocol should find the optimal transaction set among its partici-
pants that meets as many rebalancing demands as possible

(b) Concurrency: The protocol should allow participants to continue accepting transac-
tions on channels participating in the protocol

4.3.1 Motivation
Requirement 1a embodies the minimum functionality of the new rebalancing protocol. The proto-
col is an on-demand protocol and when invoked, similarly to Revive, it produces a set of transac-
tions that can be executed to rebalance channels among this set of participants. It is, therefore, a
must-have that our protocol produces a similar result to Revive while explicitly not specifying how
this transaction set must be generated or how it must be executed, given that these aspects are
not required to be constrained and provide design freedom and potential privacy improvements
over Revive.

Requirement 1b embodies the balance security and conservation property of the protocol.
We consider this an essential part of any protocol running on a PCN that deals with multi-
path transactions, as the Lightning Network itself already guarantees balance security with their
current implementation [19] and as it is also a property that is covered in many works concerning
the secure construction of multi-path transactions [28, 30, 51].

Requirement 1c embodies almost all privacy aspects as defined in Subsection 4.1.5. Many of
these privacy properties have been a requirement in the design of transaction routing protocols
[13, 31] and are mentioned as motivation for the Lightning RFC to adopt an onion-like source
routing protocol (BOLT #4, [25]). The inclusion of these privacy aspects into our design is the
differentiating factor between Revive and our rebalancing protocol and is, therefore, the reason we
include them as a must-have. We are also interested to see what impact including more privacy
has on the ability of the design to meet the rebalancing demands and as a result, the probability
of transaction success.

Requirement 1d embodies the need for a protocol that can assemble a set of participants for an
execution of another distributed protocol. In Revive, the authors assume this set of participants is
fixed but in Subsection 4.2.2 we argue that this is not a realistic requirement. We, therefore, find
it important to include such a participant discovery protocol in our design as a must-have, as it is
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necessary for a complete protocol design as well as for implementing Revive in a fair comparison
with our design.

Requirement 2a embodies one of the distinguishing features of Revive which is its optimality
of the generated transaction set. As Revive uses a linear program solver with a linear program, it
is essentially solving an optimization problem [21]. Assuming that the problem is well defined and
constrained, the outcome of the solver is the optimal solution to the problem. This means that in
the case of Revive, a more optimal transaction set for rebalancing does not exist. We, therefore,
include Requirement 2a as we strive to design a protocol that comes close to the optimality of the
generated transaction set as produced by Revive.

Finally, Requirement 2b embodies a concurrency improvement over Revive. In Revive, partic-
ipants are requested to freeze the channels that are involved in the protocol and in our model, this
happens before initiating the negotiateObjective protocol. Once frozen, the channels only get
unfrozen after the transaction set has been generated and signed by all participants. While frozen,
no other transactions can take place over these channels. The channels can therefore not be uti-
lized for the duration of the protocol to facilitate transaction routing. As the goal of rebalancing
is to improve the network’s balance and thereby improve transaction routing and the probability
of transaction success, we deem it important that the execution of our rebalancing protocol does
not negatively impact the potential routes available for transaction routing.

4.4 Overview
As a privacy-friendly alternative to Revive, we present a peer-to-peer on-demand rebalancing
protocol. Our rebalancing protocol allows each participant to assume an anonymous identity before
finding suitable rebalancing cycles from and to itself during multiple rounds. Once rebalancing
cycles are detected, their start and end edges are only known to the participant that detected
the cycle, also known as a cycle owner. Our rebalancing protocol then allows each participant to
settle their transactions locally with their neighbours while providing a guarantee that the total
balance of each participant stays the same.

We designed our rebalancing protocol as a peer-to-peer algorithm as this would force us to
think about the minimum of information required to produce rebalancing transactions. The design
is inspired by the distributed cycle detection algorithm of Rocha and Thatte [43], modified to suit
our needs. To solve the privacy problem with the distribution of a generated transaction set
as happens in Revive, we determined that a localized transaction settling mechanism would be
required so that participants are only involved in the validation and execution of transactions that
include them in their path.

In the following sections, an overview is provided of our participant discovery protocol and
our rebalancing protocol, the latter hereafter called the transaction generation protocol in order
to more accurately describe its purpose. Example invocations of both protocols can be found in
Figure 4.2 (participant discovery) and Figure 4.4 (transaction generation).

4.4.1 Participant discovery
The participant discovery protocol takes as its input a node u in G that wants to find other nodes
who wish to join in the execution of a distributed algorithm Λd with settings S. It outputs a set of
participating edges Ep and a set of participants P , the latter of which is represented by anonymous
identities Au. An anonymous identity Au is a random string of a fixed predetermined length and
generated by a node u to be used as its identity in the execution of Λd. Using anonymous identities
allows for participation anonymity during the execution of Λd.

In essence, the discovery algorithm creates a subgraph Gp of G with only the participants as
vertexes and the participating edges as the graph’s edges.

The participant discovery consists of three phases, the WAIT/INVITE, ACCEPT and FINAL
phase. Every node starts in the WAIT/INVITE phase until it receives an INVITE from a neigh-
bouring node. An INVITE contains the settings S for the execution of Λd as well as a hop count
hc variable that limits how far the INVITE can travel throughout G and an Imax variable that
limits how many INVITEs may be sent by a node. The first invites are sent by the initiator, which
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is the node that started the discovery protocol. If an INVITE is received by a node, it can decide
to accept or deny it. Accepting an INVITE implies that the node agrees with the settings S for
Λd and wishes to participate with edge ei in its execution. Here, edge ei is the edge over which
the INVITE is received. A node might therefore ACCEPT some invites but DENY others if it
does not want to participate with certain edges in the execution of Λd. If it accepts, it forwards
the INVITE on all its edges it wishes to partake with during the execution of Λd and moves on
to the ACCEPT phase.

When a node moves into the ACCEPT phase, it creates a set Pl which is a local view on P and
initially only contains the anonymous identity of the node itself. If the node receives an ACCEPT
message containing a similar set Pm, it adds the received Pm to its own Pl. Once a node received
a reply (ACCEPT or DENY) to all its invites, it sends an ACCEPT containing Pl to the node
that invited it initially and moves on to the FINISH phase. Once the initiator received a reply to
all its invites, it also adds all the received Pm to its own Pl. Pl then becomes P and the initiator
sends P using a FINISH message to all neighbours3 who accepted the invites. Once this is done,
the initiator starts the execution of Λd. If a node receives a FINISH message, it also forwards it
to all neighbours who accepted its invites and starts the execution of Λd. Once all nodes in the
FINISH phase received the FINISH message, we consider the discovery protocol terminated and
Λd to be running on every participant.

4.4.2 Transaction generation
In the previous section, the participant discovery protocol ended by providing every participant
with a set of participants P , a set of participating edges Ep and executing Λd on each participating
node. In this section, we assume Λd to be the transaction generation protocol, which takes as its
inputs a set of participants P and a set of participating edges Ep, and allows the participants to
rebalance their channels in multiple rounds according to their rebalancing objectives.

Before the start of the first round, all participants sort P in a predefined way such that every
participant obtains the same list of participants in the same order. The first participant in that
list is then chosen as the leader for the first round, the second participant is the leader of the
second round, etc. until round ρ|P |, after which the protocol terminates. ρ is a setting of the
transaction generation protocol and defines the percentage of participants that should become a
leader.

At the start of the first round, all participants run negotiateObjective with their participat-
ing neighbours to obtain a ~∆u,v for each participating edge. In essence, this creates a rebalancing
graph R from Gp with the same vertexes but with directed edges qu,v instead of the original
undirected eu,v. The ~∆u,v is updated at the end of each round as rebalancing transactions are
executed.

Each participant in a round goes through four phases4: WAIT/REQUEST, SUCCESS, COM-
MIT and EXEC.

REQUEST phase

The leader starts by sending a REQUEST on its outgoing edges. A REQUEST contains a set of
randomly generated strings Tr, which are known as cycle detection tags. Each participant holds a
set Ts which is the set of all cycle detection tags that the participant has seen.

The first time a participant u receives a REQUEST, it generates a unique cycle detection tag
tqr for each qo ∈ Quo and adds the Tr of the REQUEST to Ts such that Ts ← Ts∪Tr. It then sends
a REQUEST over each qo, containing T qo

r = Ts + tqo
r and moves to the SUCCESS phase.

SUCCESS phase

If the same participant u later receives an additional REQUEST containing a tqo
r ∈ Tr it recognizes,

they generate a cycle tag tqi
c for the edge qi they received the Tr on. Once generated, u sends a

3The actual protocol sends this along a tree to decrease the message complexity
4As the protocol is peer-to-peer, participants may be in different phases compared to each other. The protocol

is designed to handle this gracefully.
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SUCCESS message on qi containing the cycle tag tqi
c and ~∆m = w(qi). Here, ~∆m represents the

minimum demand of a rebalancing cycle c, i.e. the demand of the edge qu,v in a cycle c with the
lowest ~∆u,v.

If participant u receives an additional REQUEST with no tqo
r ∈ Tr it recognizes, it sends an

UPDATE on every outgoing edge qo which contains T qo
r = Tr − Ts. Only after the UPDATE will

the participant add Tr to Ts as done for the first REQUEST. The UPDATE mechanism prevents
deadlocks from occurring during the cycle detection part of the protocol.

Once a participant u receives a SUCCESS5 on all qo ∈ Quo , it merges all (tc, ~∆m) pairs it
received into two lists Tuc and T¬uc , representing the cycles that u owns and the cycles u does not
own. Receiving all pairs for the cycles that u owns allows u to know the final ~∆m for each owned
cycle, which is used later in the COMMIT phase. It can happen that u receives multiple (tc, ~∆m)
pairs with the same tc on different qo’s, which means that there are multiple cycles owned by u
which share the same incoming edge qi. In that case, u must choose the (tc, ~∆m) pair with the
largest ~∆m and discard the others.

Then, for each qi ∈ Qui , u runs a subroutine called splitEqually(w(qi), T¬uc ) which modifies
the pairs in T¬uc such that

∑
(tc,~∆m)∈T¬u

c

~∆m ≤ w(qi). This step is important to guarantee that all
possible cycles going over qi cannot exceed the w(qi) of the channel, as the channel owners do not
want to rebalance more than agreed during the negotiateObjective execution. Once modified,
T¬uc is sent in a SUCCESS message over qi and u moves on to the COMMIT phase.

COMMIT phase

Once the leader has received and processed all SUCCESS messages like other participants, the
leader also knows the final ~∆m for each owned cycle. This allows the leader to set up a conditional
transaction using paycond that is guaranteed to succeed if the protocol has been followed honestly.
This is because each edge that the owned cycles of the leader go through has reserved a part of
w(q) specifically for each of the owned cycles of the leader. To commit to each conditional cyclic
transaction, the leader l generates a ϕsetup for each tc it owns and stores them. For each outgoing
edge qo ∈ Qlo, the leader then finds the cycles c that it owns and share the same qo. The leader
then creates a list T lcqo

, containing (tc, ~∆m, ϕsetup) triples where all cycles share the same qo. T lcqo

is constructed from T lc and the stored ϕsetup.
Once a T lcqo

is constructed for each qo, the leader sends a COMMIT message containg T lcqo

over each qo and sets up a conditional transaction using paycond on qo for each tc ∈ T lcqo
. Once

the leader received COMMITS on all qi ∈ Qli, it moves on to the EXEC phase.
A participant u that receives a COMMIT message does nothing until it has received COMMIT

messages on all incoming edges qi ∈ Qui that are not part of a cycle it owns, i.e. all qi 6= qci where
c are the cycles that u owns. Once all COMMIT messages are received, the participant acts
similar to the leader, processing all its owned cycles to generate a Tucqo

. However, for each received
COMMIT message, it adds the received Tcqo

to Tucqo
such that Tucqo

← Tcqo
∪ Tucqo

. It then acts
similar again to the leader, sending a COMMIT message on each qo and sets up conditional
transactions. Contrary to the leader however, u waits until it has received COMMITs on all
incoming edges qci for all cycles c that it owns before moving to the EXEC phase.

EXEC phase

A participant u that enters the EXEC phase immediately executes all conditional transactions on
the cycles that they own using payexec. This is possible as the participant has either waited until it
received all COMMITs from its own cycles or it is the leader (who always only receives COMMITs
from its own cycles). Once a conditional transaction on an edge qi ∈ Qui is executed, u sends
an EXEC message over edge qi which holds the ϕexec that belongs to the conditional transaction
and the tag tc that indicates the cycle for which the transaction is executed. If u receives an
EXEC message, u can use ϕexec to execute the corresponding incoming transaction belonging to
tc. This process mimics the HTLC mechanism found in the Lightning Network. Once the leader
has executed a transaction for all cycles that it owns, it immediately broadcasts (peer-to-peer) a

5A FAIL is also possible, excluding the edge qo from any further interaction this round.
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NEXT_ROUND message to each participant and continues to the next round. If a participant u
receives a NEXT_ROUND message and has executed a transaction for all cycles that it owns or
go through it, it also moves to the next round.

4.5 Participant discovery protocol
As stated in Subsection 4.4.1, the participant discovery protocol takes as its input a node u in
G which has the intent of finding other nodes who wish to join in the execution of a distributed
algorithm Λd with settings S. It outputs a set of participants P and a set of participating edges
Ep. Each participant u obtains a copy of P and a local version of Eup containing only edges that
belong to it. More formally, P,Ep = partDisc(u, S,Λd) and P ≡ {Au|u ∈ participants of Λd},
where Au is an anonymous identity.

An anonymous identity is a randomly generated string generated by u. We call it ’anonymous’
as u does not reveal to anyone the relation between its real identity and Au. In every execution of
the protocol, each node generates a fresh Au for usage during the protocol. We argue in Section 4.8
why using anonymous identities helps in providing participation anonymity (Definition 3).

Table 4.1: Definition of messages as used in the participant discovery protocol

Type Format Contents

∗ (all messages) ∗(ν) ν is the execution id of the algorithm
INVITE INV (ν, hc, Imax, S) hc is an integer representing the hop

count, i.e. how far the INVITE may
travel. Imax is an integer represent-
ing the maximum number of invites
a node u may send. S represents a
generic datastructure such as a JSON
that holds the proposed settings for the
execution of the distributed algorithm
Λd

ACCEPT ACC (ν, {Au, Av, . . .}, isChild) {Au, Av, . . .} is a list of participants of
the distributed algorithm Λd and is-
Child is a boolean that indicates if the
receiver should adopt the sender as its
child in the tree T

DENY DENY (ν) –
FINISH FIN (ν, {Au, Av, . . .}) Similar contents to ACCEPT but with-

out isChild

The messages used in the discovery protocol are defined in Table 4.1. To allow for concurrent
execution in the same graph G, all messages contain an execution id ν to allow multiple instances
of the discovery protocol to determine which execution a message belongs to. If a node receives a
message m from a different execution than its own, it replies with a DENY message to the sender.

4.5.1 Parameters
The results and performance of the discovery protocol can be tuned using two parameters, Imax
and hc. The parameters influence the quantity and distance of travel of an INVITE, respectively.
This allows the initiator to put an upper bound on the size of P . The size of P is important as,
in the case for which Λd is the transaction generation protocol, a larger size means that there is a
bigger chance of rebalancing cycles being present. However, a large size of P might also mean that
cycles are longer, which makes the transaction generation algorithm run slower. For a general Λd,
a larger P also causes more opportunities for failures to occur and longer runtimes.
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We argue that a straightforward mechanism – such as allowing only a maximum number
of participants – to limit the size of P is not practical as this would require the initiator to
choose a subset from the nodes that are willing to participate. As will become clear later, in our
current protocol the initiator has no simple way of connecting the anonymous identities Au of
participants to their real identities. This in turn prevents the initiator from knowing the topology
of the subgraph Gp that is created by combining P and Ep. If the initiator randomly removes
a potential participant from P , there is a risk that Gp contains more than one component if the
removed participant has an edge that acted as a bridge between two components. As an alternative
that does not require participant removal, we, therefore, choose to define parameters hc and Imax.
These allow the initiator to set an upper bound on the size of P .

From these parameters, hc is an integer representing the hop count. For every node an INVITE
message passes through, the hc is decreased by one. Once the hc reaches zero, a node is prohibited
from forwarding the INVITE message. This is inspired by the Time-To-Live (TTL) mechanism
as found in the IP packet header [16]. In the IP standard, the TTL is used as a means to prevent
packets from endlessly being forwarded in accidental routing cycles. In the participant discovery
protocol, we use it to limit the spread of an INVITE to a maximum number of hops away from
the initiator. The parameter Imax is an integer representing the maximum number of invites a
node may send. We can then use Equation 4.3 to calculate the upper bound on the size of P as
this equals the number of INVITEs send when they are all accepted and received by unique nodes.
This results in an upper bound on P of O(Imax

hc).

hc∑
i=1

Imax
i = Imax − Imax

hc+1

1− Imax
= O(Imax

hc) (4.3)

4.5.2 Functions
The participant discovery protocol consists of a start, a handleResponses function and four
message handlers for INVITE, ACCEPT, DENY and FINISH messages. This section discusses
how the protocol operates and our considerations during its detailed design. A compact view of
the pseudocode of the algorithm is provided in Appendix A. A visualization of an execution of
the algorithm is provided in Figure 4.2.

Algorithm 1 Pseudocode for the participant discovery protocol for a node u (start)
1: awake, started, processedResponses, invitesSend ← false
2: ν,Au, ep, Sd, alg← null
3: P,Ec, Ea, Im ← ∅
4:
5: procedure start(hc, Imax, S,Λd)
6: awake ← true
7: started ← true
8: invitesSend ← true
9: ν ← randomly generated number
10: Au ← randomly generated number
11: P ← P ∪A
12: for all e ∈ Eu do
13: send (invite;ν,hc, Imax, S,Λd) on edge e

Initialisation and start

Algorithm 1 specifies the initialization of the protocol’s variables and the start function. The
start function is invoked by the protocol’s initiator. The initiator generates an execution id ν
and its own anonymous identity Au, after which it sends an INVITE on all its edges Eu. The
invocation of this function corresponds to step 4.2b in Figure 4.2.
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Table 4.2: Definition of edges for Figure 4.2

Alice Bob Alice and Bob are connected over an
undirected edge, i.e. eAlice,Bob

Alice Bob Alice sends a message to Bob over an
edge eAlice,Bob

Table 4.3: Definition of colours for Figure 4.2

Alice Alice Alice Alice

Initiator WAIT / INVITE phase ACCEPT phase FINISH phase

Table 4.4: Definition of messages for Figure 4.2. Note that these messages are based on their
formal definition as provided in Table 4.1 although for conciseness, ν, Imax and formal notation
are ignored

Message Type Contents

INV (hc = x) INVITE Hop count hc indicating that the INVITE message may only visit
x hops

ACC (A,B, . . .) ACCEPT List of random strings representing participants such as A and B
ACC p(A,B, . . .) ACCEPT Same as ACC but also indicating that the receiver should adopt

the sender as its child in the tree T
DENY DENY –

FIN (A,B, . . .) FINISH Same as ACC
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Figure 4.2: An invocation of the participant discovery protocol by Peter on an example PCN Ge.
Table 4.2, Table 4.3 and Table 4.4 define the edges, colours and messages found in this example
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Algorithm 2 Pseudocode for the participant discovery protocol for a node u (invite)
14: upon receipt of (invite;id,hc, Imax, S,Λd) on edge j do
15: if not willing to participate with j then
16: send (deny;id) on edge j and return
17: if ν 6= null ∧ ν 6= id then . Ignore other executions of this algorithm
18: send (deny;id) on edge j and return
19: if ν = null then . Node gets claimed by the starting node
20: awake ← true
21: ν ← id
22: Sd ← S
23: alg ← Λd
24: A← randomly generated number
25: P ← P ∪A
26: ep ← j

27:
28: if ¬invitesSend ∧ hc − 1 > 0 ∧ |Eu| > 1 then
29: invitesSend ← true
30: ep ← j
31:
32: for all e ∈ Eu : e 6= ep ∧ e has not been denied do
33: send (invite; ν, hc − 1, Imax, S,Λd) on edge e
34: Im ← Im ∪ e
35:
36: if |Im| > Imax then
37: break
38:
39: return
40:
41: Ea ← Ea ∪ j
42: send (accept; ν, P, ep = j) on edge j and return
43:
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INVITE message handler

Algorithm 2 specifies how a node u should handle an INVITE message. It can be seen in action
in step 4.2c and 4.2d in Figure 4.2.

Lines 14-18 allow u to deny participating for any reason and protect it from partaking in any
other execution if it already has a ν. If u has not yet been claimed by an execution, i.e. if its ν
is null, it enters the protected block at Line 19. The process of being claimed for an execution
involves u assuming the received id as its own ν, storing the received settings S and algorithm Λd
and also generating its own Au. u also stores the edge on which the message has been sent (j) in
the variable ep to know where to send its ACCEPT message during the ACCEPT phase.

u is only allowed to forward INVITEs if: i) it has not already done so before, ii) the hop count
is larger than zero and iii) it has more than one edge. If u is allowed to forward INVITEs, u enters
Line 28. In case this is not the first INVITE u receives but it is the first to meet the necessary
conditions for forwarding, u has to update its parent edge ep. Updating the parent edge makes
sure that u has not already sent an ACCEPT message as a reply to the INVITE, which would
prevent the propagation of the potential participants u receives as a reply to its own invites.

u then sends an INVITE on all its edges Eu which are not its parent edge ep and are not
already ’denied’ by u itself. The first condition is important as the original INVITE came through
ep and the next expected message sent over ep is an ACCEPT that will be sent later in the
handleResponses handler. The second condition ensures that if u already decided not to partici-
pate with e, u is not allowed to send an INVITE over e. After the sending of each invite, u keeps
track of whom it invited in Im and makes sure it does not go over Imax.

Finally, if none of the other protected blocks are entered, u reaches Line 41. This happens if u
already forwarded INVITEs or if it gets a valid INVITE with a hop count of zero or if it has only
one edge. In all those cases, u can immediately ACCEPT and add j to its list of accepted edges Ea.
The boolean isChild in the ACCEPT message (Table 4.1) is conditionally true or false depending
on the predicate ep = j. This ensures that if u is replying with ACCEPT on ep, it always lets its
(then) parent know that it should be adopted as its child. It can happen that if u first receives an
INVITE with hc ≤ 1 and then an INVITE from another node with hc > 1, u eventually sends6
an ACCEPT to both nodes with isChild = true. This later causes both receivers of the ACCEPT
message to think u is its child meaning that u, as we will see later on, will receive the FINISH
message twice. This does not pose a problem as u will terminate the discovery protocol before
processing the second FINISH message.

ACCEPT and DENY message handler

Algorithm 3 specifies how a node u should handle an ACCEPT and a DENY message. The deny
handler can be seen in action in step 4.2c and 4.2d in Figure 4.2 while the accept handler is only
active in step 4.2d and 4.2e.

Similar to the invite message handler, both ACCEPT and DENY have protections against
their incorrect invocation in Lines 45 and 59. A small addition to the guards prevents u from
processing any ACCEPT or DENY from edges it has not sent an INVITE to.

In the accept handler and after passing the guards, u reaches Lines 49-51. In these lines, u
updates its own local version of P with the one received in the ACCEPT message. u also adds
j to its set of accepted edges Ea and removes j from the edges it invited Im, given it now has a
proper response to its INVITE. u then checks if the ACCEPT message has the isChild boolean
set and if so, adds j to its set of children Ec. Once all done, u invokes handleResponses to check
if it has received enough ACCEPTs and DENYs to continue to the FINISH phase.

The deny handler does less than the accept handler, only removing j from the edges it invited
Im and also invokes handleResponses for the same reason as the accept handler.

Subroutine handleResponses

Algorithm 4 specifies the subroutine handleResponses that is called in both the accept and deny
message handlers. It can be seen in action in step 4.2e in Figure 4.2.

6Once in invite and once in handleResponses
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Algorithm 3 Pseudocode for the participant discovery protocol for a node u (accept and deny)
44: upon receipt of (accept;id, R, isChild) on edge j do
45: if ¬awake then return
46: else if ν 6= id ∨ j /∈ Im then
47: send (deny;id) on edge j and return
48:
49: P ← P ∪R
50: Ea ← Ea ∪ j
51: Im ← Im − j
52:
53: if isChild then
54: Ec ← Ec ∪ j
55:
56: handleResponses()
57:
58: upon receipt of (deny;id) on edge j do
59: if ¬awake ∨ j /∈ Im then return
60: Im ← Im − j
61: handleResponses()
62:

Algorithm 4 Pseudocode for the participant discovery protocol for a node u (handleResponses)
63: procedure handleResponses
64: if |Im| = 0 ∧ ¬processedResponses then
65: processedResponses ← true
66:
67: if started then
68: if Ea 6= ∅ then
69: for all e ∈ Ec do
70: send (finish;ν, P ) on edge e
71: execute alg(ν,Au, P, Ea, Sd)
72: terminate
73: else
74: Ea ← Ea ∪ ep
75: send (accept;ν, P, true) on edge ep

The body of handleResponses is only executed once if u received a response to all its INVITEs,
in which case Im is zero. Once u entered the protected block at Line 64, it is presented with two
paths which it enters depending on u being the initiator (Line 67).

In case u is not the initiator (Line 73), it sends an ACCEPT containing its local P and
isChild = true on ep and moves to the FINISH phase. This step is important because the closer
each node is to the initiator, the more complete their copy of P is because of the merging that
happens in the accept message handler. This is similar to the divide-and-conquer design paradigm
where sub-problems become closer in similarity to the original problem as the amount of divides
decreases. The sending of the ACCEPT message containing u’s local copy of P to its parent
allows its parent to obtain a more complete copy of P than u has. This repeats all the way to
the initiator who obtains a complete copy of P . This is visualized in step 4.2e in Figure 4.2 where
Alice has knowledge of the whole set of participants {A,B,C,G} while Claire only knows {C}.
The next step of the protocol, concerning the propagation of the FINISH message, is designed to
spread the complete copy of P through G such that all participants know the complete copy.

The other path is invoked if u is the initiator and has accepted edges Ea. u then sends its
own complete copy of P in a FINISH message to all its children in Ec and executes Λd with ν,
Au, P , S and Ea. Once the execution of Λd is complete, u terminates. Only sending messages to
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e ∈ Ec allows the FINISH messages to follow a tree-like path through G which results in a lower
message complexity than simply broadcasting the FINISH messages. This has the drawback that
a FINISH message might take longer to arrive than compared to when all nodes broadcast the
FINISH message to all e ∈ Ea. The choice for this mechanism is therefore one between message
and time complexity.

FINISH message handler

Algorithm 5 Pseudocode for the participant discovery protocol for a node u (finish)
76: upon receipt of (finish;id, R) on edge j do
77: if ¬awake then return
78: else if ν 6= id then
79: send (deny;id) on edge j and return
80:
81: P ← R
82: for all e ∈ Ec do . Propagate participant list along tree
83: send (finish;ν, P ) on edge e
84: execute alg(ν,Au, P, Ea, Sd)
85: terminate
86:

Algorithm 5 specifies how a node u should handle a FINISH message. The finish handler
can be seen in action in step 4.2f and 4.2g in Figure 4.2.

The finish message handler has the same guards as the accept handler to protect against
its incorrect execution. It is only executed if a participant u who is not the initiator receives a
FINISH message. Once the message is received, u overwrites its own copy of P with the received
set of participants R (Line 81). It then acts similar to the initiator in handleResponses and sends
a FINISH message containing P to all e ∈ Ec after which it executes Λd with ν, Au, P , S and Ea.
Once Λd has finished executing, u terminates.

4.6 Transaction generation protocol
In the final part of the participant discovery protocol, the protocol executes its given distributed
algorithm Λd with settings S and inputs ν, Au, P and Ep. The functionality of this protocol is
described in Section 4.5. In this section, we set Λd to be equivalent to the transaction genera-
tion protocol, such that after the execution of the participant discovery protocol the transaction
generation protocol is executed.

As stated in Subsection 4.4.2, the transaction generation protocol takes as main inputs the set
of participants P and participating edges Ep. Other important inputs it gets from the discovery
protocol are the execution id ν, its settings S and the anonymous identity of a node Au. Both
Ep and Au are unique to each participant and are a result of the local computation by u of the
discovery protocol.

The protocol is a peer-to-peer protocol (similar to the participant discovery protocol) and is
round based. It does not output anything, in contrast with what one might think reading its name.
Instead, each round the protocol finds and executes rebalancing cycles C given a rebalancing graph
R that is created from each ~∆u,v of the participants. The largest challenge in the generation of the
cycles for the generation protocol is that for all cycles Cqu,v that include a directed rebalancing
edge qu,v,

∑
(tc,~∆m)∈Cqu,v

~∆m ≤ w(qu,v). Less formally, we require that the sum of cycles that
include a rebalancing edge qu,v may not exceed the rebalancing objective w(qu,v) of that edge.

4.6.1 Protocol specific definitions
The messages that are communicated during the execution of the protocol are defined in Table 4.5.
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Table 4.5: Definition of messages as used in the transaction generation protocol

Type Format Contents

∗ (all messages) ∗(ν,Al) ν is the execution id and Al is the
anonymous identity of the round leader
as generated during the participant dis-
covery

REQUEST R(ν,Al, {tu1
r , t

v2
r , . . .}) List of tr, e.g. tu1

r is the first tr the
participant u generated and tv2

r is the
second tr the participant v generated

UPDATE U(ν,Al, {tu1
r , t

v2
r , . . .}) Same contents as REQUEST

SUCCESS S(ν,Al, {(tc, ~∆m)u1 ,

(tc, ~∆m)v2 , . . .})
List of (tc, ~∆m) pairs, e.g. (tc, ~∆m)u1 is
a pair representing the first cycle owned
by participant u that has tag tu1

c and
minimum demand ~∆u1

m

FAIL F (ν,Al, wfailure) wfailure is an integer uniquely represent-
ing a reason for the failure

COMMIT C(ν,Al, {(tc, ~∆EX, ϕsetup)u1 ,

(tc, ~∆EX, ϕsetup)v2 , . . .})
List of (tc, ~∆EX, ϕsetup) triples, e.g.
(tc, ~∆EX, ϕsetup)u1 is a triple represent-
ing the first cycle owned by participant
u that has tag tu1

c , a demand to be exe-
cuted ~∆u1

EX and conditional transaction
setup information ϕu1

setup

EXEC E(ν,Al, tc, ϕexec) Cycle tag tc and conditional trans-
action execution information ϕexec.
tc and ϕexec must correspond to a
(tc, ~∆EX, ϕsetup) triple as seen in a
COMMIT message

NEXT_ROUND NR(ν,Al) –

In the transaction generation protocol, we switch between representing a rebalancing cycle as
c or as (tc, ~∆m), where tc is a cycle tag identifying the cycle and ~∆m represents the minimum
demand of c, i.e. the demand of the edge qu,v in a cycle c with the lowest ~∆u,v.

4.6.2 Parameters

As stated in the functional discussion of the protocol and its evaluation, the cycles found in
each round are not necessarily the optimal solution to the rebalancing problem when compared
to Revive. Cycle discovery is dependent on the direction of an edge q in R and the order in
which messages arrive during a round. An example is given in Figure 4.3 where, if there are two
components with one directed bridge between them, the location of the leader can exclude or
include a whole component during a round. We, therefore, designed our protocol to carry out
multiple rounds of rebalancing in order to approach an optimal solution.

The number of rounds the protocol runs for each invocation is determined by maxRounds which
is stored in S. maxRounds can be set directly or can be defined as maxRounds = |P | · ρ, where
ρ represents the percentage of P that is allowed to become a leader. The reasoning behind the
second option is that we expect that the number of rounds required for a small |P | to approach
the optimal solution increases linearly with |P |. We argue that it, therefore, makes sense to
always scale the number of rounds to the number of participants. We will evaluate both options
in Chapter 5.
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Alice Bob

(a)

Alice Bob

(b)

Figure 4.3: Example of a rebalancing graph with two components connected with a bridge between
Alice and Bob. In a), if Alice is the leader, only her component will take part in the rebalancing
because a REQUEST is only send on an outgoing edge. In b), if Bob is the leader, both components
will take part in the rebalancing as Bob has an outgoing edge to Alice. To make sure every node
gets the chance to rebalance, the protocol runs multiple rounds with different leaders.

4.6.3 Functions
The transaction generation protocol is more complex than the participant discovery protocol
and consists of wakeUp, startRound, nextRound, checkForCycles, checkForCyclesAndNewTags,
replyToRequests, commitLeader, commit, splitEqually, checkIfExecutionSafe functions and
message handlers for the REQUEST, UPDATE, SUCCESS, FAIL, COMMIT, EXEC and
NEXT_ROUND messages. This section will discuss how the protocol operates and the consider-
ations during its detailed design. A compact view of the pseudocode of the algorithm is provided
in Appendix B. A visualization of an execution of the algorithm is provided in Figure 4.4.
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Table 4.6: Definition of edges for Figure 4.4

Alice Bob Alice has a directed edge to Bob, i.e.
qAlice,Bob

Alice Bob Alice sends a message to Bob in the di-
rection of the edge qAlice,Bob

Alice Bob Bob sends a message to Alice in the op-
posite direction of the edge qAlice,Bob

Table 4.7: Definition of colours for Figure 4.4

Alice Alice Alice Alice Alice

Leader WAIT / REQUEST phase SUCCESS phase COMMIT phase EXEC phase

Table 4.8: Definition of messages for Figure 4.4. Note that these messages are based on their
formal definition as provided in Table 4.5 although for conciseness, ν, Al and formal notation are
ignored

Message Type Contents

R(B1, A2, . . .) REQUEST List of tr, e.g. B1 is the first tr Bob generated and A2 is the
second tr Alice generated

U(B1, A2, . . .) UPDATE Same contents as request
S(B1 = 3, . . .) SUCCESS List of (tc, ~∆m) pairs, e.g. B1 = 3 is a (tc, ~∆m) pair with tc = B1

being the first cycle owned by participant B and ~∆m = 2 stating
that the minimum demand of this cycle is 2

C(B1 = 3, . . .) COMMIT List of (tc, ~∆EX) pairs. B1 = 3 is a (tc, ~∆EX) pair with tc = B1
being the first cycle owned by participant B and ~∆EX = 2 stating
that the demand to be executed on this cycle is 2. We omit the
conditional transaction setup information ϕsetup from the formal
definition of COMMIT for brevity.

E(B1 = 3) EXEC Formally only contains a cycle tag tc and conditional transaction
execution information ϕexec. However, for brevity we include the
~∆EX of the cycle the cycle tag tc belongs to and ignore ϕexec.
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Initialization

Algorithm 6 Pseudocode for the implementation of the transaction generation protocol for a
node u (wakeUp)
1: procedure wakeUp
2: if awake then return
3:
4: awake ← true
5: LP ← sort P using fixed sorting algorithm
6: Al ← LP [ir]
7:
8: for all e ∈ Ea do
9: Lock edge e
10: q ← negotiateObjective(e)
11: if w(q) < 0 then
12: Qout ← Qout ∪ {q}
13: else
14: Qin ← Qin ∪ {q}
15:
16: if Al = Au then
17: startRound()

Algorithm 6 specifies what happens during the initial execution of the protocol after it is
invoked by the discovery protocol. The wakeUp procedure showcases how we select the leader for
each round and how we obtain rebalancing edges q ∈ Q.

In Line 5, the set of participants P is sorted by the node u to obtain a sorted list of participants
LP . Any sorting algorithm can be used here as long as all nodes use the same sorting algorithm
and the algorithm has the stable property, i.e. sorting the same set k times always produces the
same ordered list. Sorting P allows each node to derive the current leader from the current round,
as once LP is known to every node, each leader corresponds to an index in LP (Line 6).

The next step is for the node to carry out negotiateObjective on its accepted edges Ea. We
lock the edge before this step (Line 9) which prevents any normal7 transactions from taking place
on edge e. This is required as the outcome of negotiateObjective may vary depending on the
current balance of the edge e. If the adversary decides to forego locking an edge, there is a chance
that during a later stage of the protocol paycond will fail due to a lack of coins in the channel
to support the transaction. The edges Ea are only unlocked at the end of the last round of the
protocol during the final invocation of nextRound. Invoking negotiateObjective has the result
of producing two sets of rebalancing edges Qout and Qin for use during later procedures of the
protocol.

Finally, in Line 16, the node checks if it is the leader of the first round in which case it starts
the first round.

Starting a round

Algorithm 7 specifies what happens during the start of each round. startRound is only invoked
by the leader of the round. It can be seen in action in step 4.4b in Figure 4.4.

Starting a round as the leader involves sending a REQUEST message on each q ∈ Qout that
contains a cycle detection tag tr unique to each edge q (Line 25). Because a tr is uniquely
associated with an edge q, if it is received again on an edge qe, the node knows which edge q it
initially send it on using Dtr,q. This makes it possible to define a starting and ending edge of a
cycle to the node u.

The startRound procedure contains one exception in Line 19 that skips sending the REQUEST
messages. This case is required if the leader node has no outgoing edges, in which case it cannot

7i.e. every transaction not invoked by this protocol
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Algorithm 7 Pseudocode for the implementation of the transaction generation protocol for a
node u (startRound)
18: procedure startRound
19: if |Qout| = 0 then
20: nextRound()
21: return
22:
23: roundState ← REQ
24: for q ∈ Qout do
25: tr ← randomly generated identifier
26: Dtr,q.put(tr, q)
27: nsendRequests ← nsendRequests + 1
28:
29: send (request;ν,Al, {tr}) on edge q

send a REQUEST message. The simple solution for this problem is to trigger the leader to
continue to the next round in which a new leader is elected that hopefully does have outgoing
edges.

Cycle detection

Algorithm 8 Pseudocode for the implementation of the transaction generation protocol for a
node u (checkForCycles)
30: procedure checkForCycles(m = (request;Tr) on edge j)
31: I ← {tr|(tr, q) ∈ Dtr,q} ∩ Tr
32: if |I| > 0 then
33: tmtch

r ← randomly picked tr out of I
34: LrREQUEST ← LrREQUEST −m
35: tc ← randomly generated identifier
36: ~∆m ← w(j)
37: Du

tc .put
(
tc,
[
j,Dtr,q.get(tmtch

r ), ~∆m, false
])

38:
39: send (success;ν,Al, {(tc, ~∆m)}) on edge j
40: return true
41:
42: return false

Once a REQUEST is received by a node, it gets processed in a similar manner to how the leader
started a round in Algorithm 7. We therefore do not discuss the REQUEST message handler in
this chapter but provide it in Algorithm 19 in Appendix B. It can be seen in action in step 4.4c,
4.4d and 4.4e in Figure 4.4. However, we do wish to discuss the checkForCycles procedure used
by the REQUEST and UPDATE message handler as it shows the workings of the cycle detection
done in the protocol. We provide its pseudocode in Algorithm 8.

checkForCycles must be invoked with a REQUEST message containing a set Tr which con-
tains one or more cycle detection tags tr. It then calculates the intersection between Tr and the
node’s own tags stored in Dtr,q. If the intersection contains at least one tag, a cycle has been
detected to and from this node. If a cycle is detected, the node enters the block at Line 32 and
generates a cycle tag tc which identifies the detected cycle (Line 35). The node u then stores
information about the cycle in its map of owned cycles Du

tc . This information includes:

• qu,ce : The edge where the cycle ends, defined as the edge q on which the REQUEST or
UPDATE message arrived (j) containing the detected tr.
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• qu,cs : The edge where the cycle starts, initially defined as the edge q that is associated with
the tr using Dtr,q. Can change later during replyToRequests.

• ~∆m: The minimum demand of the cycle, initially defined as w(qu,ce ). Unless qu,ce has the
lowest weight of the cycle and there are no overlapping cycles, ~∆m is lowered later on during
replyToRequests.

• completed: A boolean indicating if the cycle is complete, initially set to false. We define
a cycle as complete if the node who owns the cycle (i.e. has the tc in Du

tc) has received a
SUCCESS message containing tc. completed is modified in replyToRequests and checked
during commit.

Once these actions are completed, the node sends a SUCCESS message on qu,ce = j to inform
it about the cycle. This SUCCESS message only contains the cycle tag tc and its corresponding
~∆m.

An example where checkForCycles detects a cycle is in step 4.4d and 4.4e in Figure 4.4. In
step 4.4d, Alice sends a REQUEST to Bob containing the cycle detection tag B1, among others.
As B1 is in the Dtr,q of Bob, Bob detects a cycle and replies with a SUCCESS to Alice in step
4.4e. This SUCCESS contains the cycle tag B1 and the rebalancing objective w(qu,ce ) which is 20
in this example.

Deadlock resolution

Algorithm 9 Pseudocode for the implementation of the transaction generation protocol for a
node u (handle UPDATE)
43: upon receipt of m = (update;id,Ai, Tr) on edge j do
44: check-action: Prν(id) - disallow, ¬awake - disallow
45: check-action: Prr,future(Ai) - defer, Prr,early(Ai) - disallow
46:
47: if roundState 6= REQ∨ already send SUCCESS on j this round then
48: return
49:
50: if ¬checkForCyclesAndNewTags(m) then return
51:
52: procedure checkForCyclesAndNewTags(m = (request;Tr) on edge j)
53: if checkForCycles(m) then return false
54:
55: T new

r ← Tr − T recv
r

56: if |T new
r | > 0 then

57: T recv
r ← T recv

r ∪ Tr
58:
59: for all q ∈ Qout that did not reply with SUCCESS or FAIL this round do
60: send (update;ν,Al, T new

r ) on edge q
61:
62: return true

Algorithm 9 specifies the actions a node u takes on the receipt of an UPDATE message and
specifies checkForCyclesAndNewTags. Besides being invoked in the UPDATE message handler,
checkForCyclesAndNewTags is also called during the invocation of the REQUEST message han-
dler. It can be seen in action in step 4.4e and 4.4f in Figure 4.4.

UPDATE messages are used in the protocol to resolve deadlocks. Such a deadlock can be
observed in Figure 4.4 where in step 4.4e, Gustaf receives a REQUEST message containing no tag
it recognizes. This is because in step 4.4e, when Gustaf sent a REQUEST to Alice containing –
among others – its own cycle detection tag G1, Alice already send a REQUEST to Peter containing
different tags which were previously received from Claire. Peter then directly forwards the tags
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from Alice to Gustaf which results in Gustaf receiving a REQUEST containing no detection tags
it recognizes. This causes a cycle in our wait-for graph consisting of Gustaf → Alice → Peter →
Gustaf as they are all waiting to receive a SUCCESS or FAIL on their REQUEST. Such a reply
is only given when: i) a node has received a SUCCESS or FAIL on their request (Algorithm 10)
or ii) a cycle is detected (Algorithm 8). As i) is a circular definition, a mechanism is needed to
trigger ii). We achieve this by making a node propagate tags that are received after sending a
REQUEST. This is done using an UPDATE message. In Figure 4.4 in step 4.4e, Alice sends an
UPDATE message to Peter to follow up on the REQUEST message she has already send Peter.
Alice was triggered to send an UPDATE message as she received a REQUEST from Gustaf with
new tags after already sending a REQUEST to Peter. Peter forwards the UPDATE message to
Gustaf in step 4.4f. Once Gustaf receives the UPDATE message containing G1, it can resolve the
deadlock because it detected a cycle, fulfilling condition ii).

In Algorithm 9 Lines 55-57, the Tr in the REQUEST message is filtered such that only tags
unknown to node u are left in T new

r . If such tags are left, u sends them in an UPDATE message
on all edges which have not yet replied with a SUCCESS or FAIL. If a SUCCESS message is in
transit to u but u has not yet received it, it might happen that u sends an UPDATE message to
a node that has already replied. We therefore include Line 47 that besides checking if the node is
in a correct state, also ignores an UPDATE if the node already replied with a SUCCESS.

Handling SUCCESS and FAIL

Algorithm 10 Pseudocode for the implementation of the transaction generation protocol for a
node u (replyToRequests)
63: procedure replyToRequests
64: if nsendRequests 6= 0 ∨ roundState 6= REQ then return
65:
66: roundState ← SUC
67: for all (m = (success;id,Ai, Tc) on edge j) ∈ LrSUCCESS do
68: for all (tc, ~∆m) ∈ Tc do
69: if tc ∈ Du

tc then . Case: tc is a cycle owned by u
70: Ltc ← Du

tc .get(tc)
71:
72: if ¬Ltc [3] ∨ ~∆m > Ltc [2] then
73: Du

tc .put
(
tc,
[
Ltc [0], j, ~∆m, true

])
74: else if tc /∈ D¬utc ∨ ~∆m > D¬utc .get(tc)[0] then . Case: tc is a cycle not owned by u
75: D¬utc .put

(
tc,
[
~∆m, j,⊥

])
76:
77: if Al = Au then . Node started round
78: commitLeader()
79: else . Forward tc not owned by u
80: LD¬u

tc
←
[
[tc, ~∆m, q

u,c
o , qu,ci ] | (tc, [~∆m, q

u,c
o , qu,ci ]) ∈ D¬utc

]
81: for all (m = (request;id,Ai, Tr) on edge j) ∈ LrREQUEST do
82: N ← splitEqually(w(j),

[
~∆m | [tc, ~∆m, q

u,c
o , qu,ci ] ∈ LD¬u

tc

]
)

83: T¬uc ← ∅
84: for i ∈ [0, |N |) do
85: T¬uc ← T¬uc ∪

{
(LD¬u

tc
[i][0], N [i])

}
86:
87: send (success;ν,Al, T¬uc ) on edge j

Similarly to the limited discussion of the REQUEST handler, we choose to also skip the
discussion of the SUCCESS and FAIL handler as those are small procedures. Nevertheless, we do
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provide their pseudocode in Algorithm 20 in Appendix B. In this section, we focus our attention
on the replyToRequests procedure defined in Algorithm 10, which is used by both the SUCCESS
and the FAIL handler. It can be seen in action in step 4.4h, 4.4i, 4.4j and 4.4k in Figure 4.4.

replyToRequests is a procedure that is only intended to run once a node received a reply
to all its REQUESTs, whether those are SUCCESS or FAIL replies. To enforce this, a check is
done in Line 64. The goal of replyToRequests is to produce a SUCCESS message containing a
compiled set T¬uc of cycle tags that u does not own or, if u is the leader, invoke commitLeader. To
create T¬uc , u iterates over all received SUCCESS messages in Line 67 and over all the (tc, ~∆m)
pairs contained within. The node then checks if it owns the tc by comparing it with the tc stored
in Du

tc . If this is the case, it updates the information in Du
tc about tc if either (Line 72): i) the

cycle is not yet complete or ii) the ~∆m is larger than the ~∆m stored in Du
tc for tc.

As stated before, we consider a cycle c complete if its owner receives a SUCCESS message
with the corresponding tc. A cycle can only be completed once, so condition i) is also true only
once per tc. However, more than one SUCCESS message with the same tc might be received
indicating that there are multiple completed cycles Ctc with the same ending edge qu,ce and tc,
all identified by their different starting edges qu,cs . Such a situation is visualised in Figure 4.5.
In such a case, condition ii) forces the node u to pick the starting edge with the largest ~∆m as
this cycle best meets the rebalancing objectives. The greedy approach, where u uses all potential
cycles, can cause problems when two or more cycles use the same edge q (i.e. overlap on q) and
~∆c1
m + ~∆c2

m > w(q). As u has no knowledge of the topology of R past its neighbours8, u does not
know which q overlap. u must therefore apply caution and only pick one cycle out of Ctc , which
is our approach.

Alice Bob

40

2

1000

(a) Starting graph

Alice Bob

R(A1)

R(A2)

(b) T = 1

Alice Bob

S(A2=40)

S(A2=2)

(c) T = 4

Figure 4.5: A situation in the transaction generation protocol where Alice receives the same tag
on two different outgoing edges and must pick the edge with the largest ~∆m

A similar approach is taken with cycles not owned by node u in Line 74, although node u does
not have to keep track of their completeness given it is not the owner of the cycles. Similarly to
the information stored in Du

tc , u stores the ~∆m, outgoing edge qu,co and incoming edge qu,ci of the
non-owned cycles in D¬utc . During the replyToRequests invocation, qu,ci is not yet known and
will possibly be set later during the COMMIT message handler.

In the final half of replyToRequests, node u takes one of two paths depending on if it is the
leader. In case u is the leader (Line 77), it can skip sending SUCCESS messages as the leader
owns all cycles it is a part of and has, therefore, no need to inform requesting nodes about cycles
it does not own. We show this property to be true by proving Theorem 1.
Theorem 1. If the round leader l is part of a cycle c, c is always owned by l s.t. tc ∈ Dl

tc

In order to prove Theorem 1, we first need to prove Lemma 1.
Lemma 1. All REQUEST messages send during a round contain a tr ∈ Tr that is generated by
the leader l s.t. |Tr ∩Dl

tr,q| ≥ 1
Proof. We proof Lemma 1 by using a proof by contradiction where we assume that there exists a
REQUEST message containing Tur send by a node u 6= l where |Tur ∩Dl

tr,q| = 0 and |Tur | = k.
8u might have some knowledge of the topology of R past its neighbours, but this is not always the case. See

Section 4.8 for a detailed discussion.
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According to the forwarding rules defined in the REQUEST message handler, each node that
receives a REQUEST and that has not forwarded one already during the round, has to add a
unique tr to the received Tr for each q ∈ Qout it has to forward the message on. The only
node who does not need to receive a REQUEST message to send REQUEST messages on Qout
is the leader l, as this is not done in the REQUEST message handler but during the execution of
startRound.

If we then assume that there exists a REQUEST sent by a node u 6= l with |Tur ∩Dl
tr,q| = 0

and |Tur | = k, then there must be a node v that send a REQUEST message to u with |T vr | = k−1.
This is because u 6= l implies that u must first receive a REQUEST message from v before being
able to send one. It must also be the case that |T vr | = k − 1 because u added a unique tr to T vr
before forwarding it as Tur , making T vr one smaller than Tur .

It must then also be that v 6= l, as T vr ⊂ Tur and |Tur ∩Dl
tr,q| = 0. These two statements require

v 6= l as when v = l, v would have added a tr ∈ T vr to Dl
tr,q which would result in |Tur ∩Dl

tr,q| > 0.
We can then use the same reasoning as for u, where if v 6= l, it must have received a REQUEST
message from another node j with a Tr one smaller than what v send. This processes continues
until a node i receives from a node z a T zr where |T zr | = 1.

Node z 6= l as if this was the case, similar to v, it would have added a tr ∈ T zr to Dl
tr,q which

would result in |Tur ∩Dl
tr,q| > 0. However, if z 6= l, z must have received a REQUEST message

from a node y where |T yr | = 0. This is a contradiction as the forwarding rules defined in the
REQUEST message handler require each node to add its own unique tr to Tr which implies that
|T yr | must be larger than 0.

It must therefore be true that z = l as the leader l is the only participant capable of sending
a REQUEST where |Tr| = 1 without needing to have received a REQUEST message itself. This
implies that the leader l must be the first node to send a REQUEST each round and as this
REQUEST contains a tr ∈ T lr which is also in Dl

tr,q, it follows that every other REQUEST in the
round has |Tr ∩Dl

tr,q| ≥ 1.

We then prove Theorem 1 using Lemma 1.

Proof. We proof Theorem 1 by using a proof by contradiction where we assume that if l is part of a
cycle c, tc /∈ Dl

tc i.e. c is not owned by l. If tc /∈ Dl
tc , this implies that the leader’s checkForCycles

has not generated tc and added it to Dl
tc . This only happens when it finds no intersections between

a Tr from a received REQUEST and Dl
tr,q. However, according to Lemma 1, all Tr received must

contain a tr for which it holds that tr ∈ Dl
tr,q. This is a contradiction, so it must therefore hold

that if the round leader l is part of a cycle c, it must be the owner of the cycle s.t. tc ∈ Dl
tc .

If u is not the leader, u compiles a set T¬uc of (tc, ~∆m, q
u,c
o , qu,ci ) of cycles it does not own

for each edge q it has received a REQUEST on. u uses the information it just stored in D¬utc to
do this. Before creating the (tc, ~∆m) pairs, u first runs a list of ~∆m of all the tags through the
splitEqually procedure for each q ∈ Qin that it received a REQUEST from (Line 82). Once this
is done, u sends the T¬uc in a SUCCESS message on q (Line 87).

The need for the splitEqually step stems from the fact that u has no knowledge which of the
tc will be in Tcq , which is the set containing (tc, ~∆EX, ϕsetup) tuples which is received in a COMMIT
message over q in the next phase of the protocol. Node u only knows that Tcq ⊆ T¬uc . u also
has the requirement that a transaction over q for each of the tuples in Tcq

must succeed9, as no
one except their channel partner knows w(q) which prevents other participants from limiting their
~∆EX to prevent

∑
~∆EX∈Tcq

> w(q). We therefore make it the responsibility of each participant
that all transactions can simultaneously execute on their incoming edges. This in turn requires u
to reserve parts of w(q) such that, in the worst case where Tcq = T¬uc , all (tc, ~∆EX, ϕsetup) ∈ Tcq

can successfully execute on w(q). More formally, u must ensure that
∑

~∆EX∈Tcq
≤ w(q) even

though it has no direct control over ~∆EX as they are set by the cycle owner. As u can only
change the ~∆m in T¬uc , u must therefore ensure that

∑
~∆m∈T¬u

c
≤ w(q) which in turn ensures that∑

~∆EX∈Tcq
≤ w(q). This is done using the splitEqually procedure.

9In a normal execution of the protocol
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The splitEqually procedure takes as its inputs an integer representing the rebalancing ob-
jective t and a list of demands Ld, and outputs a list of demands that each represent a ’fair’ split
of t. We provide a sample implementation of it in Algorithm 22 in Appendix B. When called by
u in replyToRequests, t = w(q) and Ld = [~∆m : (tc, ~∆m, q

u,c
o , qu,ci ) ∈ T¬uc ]. By saying ’fair’, we

mean that each demand ~∆ ∈ Ld should get an equal share of t, or more if all the other demands
are already satisfied (this to avoid not utilizing all of t). See Figure 4.6 for a visualization of this
concept. More formally, splitEqually solves a non-linear optimization problem:

Objective: Minimize:
∑
γi∈Γ (−γi) + 1

2 (max(Γ)−min(Γ))
Subject to:
(1) ∀i ∈ [0, |Ld|) : γi ≤ ~∆i

(2)
∑
γi∈Γ γi ≤ t

In this problem, ~∆i represents the ith ~∆ ∈ Ld and Γ a set of variables γ where |Γ| = |Ld|.
This problem has a resemblance to the bin packing problem10 but with t items of size 1, a fixed
number of bins |Ld| and each bin having a fixed capacity ~∆. We constrain the problem with two
conditions. Condition (1) prevents each bin from being filled above its capacity ~∆i. We argue that
this condition is necessary as there is no reason for a cycle to use more than its already known
bottleneck ~∆i. Condition (2) ensures that sum of the bin’s contents can never exceed t, which in
u’s case is equivalent to

∑
~∆m∈T¬u

c
≤ w(q).

The first term of the minimization problem maximises
∑
γi∈Γ γi. The second term is less

intuitive, as it steers the optimal solution to prefer solutions with equally balanced channels that
are otherwise equivalent when only looking at the first minimization term. The second term uses
the distance between the maximum and minimum variable in Γ to penalize solutions that have
a large discrepancy between the two. One can think of two potential optimal solutions when
ignoring the second term. In the first, there are two bins of equal capacity and in the second, one
bin is empty and one is fully filled. With the second term added, only the first solution is optimal.

We consider the second term to be an important addition as this increases the probability that
q will receive a rebalancing transaction. To see why, it is important to remember that u does not
know which of the tc ∈ T¬uc appear in Tcq

. If t is spread over more bins compared to putting it
all in one bin, there is a higher chance that if a tc appears in Tcq , it will be for a bin that is at
least partially filled. If only the first term is present, u has a larger chance of getting a tc for an
empty bin. Another benefit of the second term is that it prevents favouring cycles with a large
~∆m. It is not a good idea to favour edges with a large ~∆m because it is unknown to u how many
edges are included in tc. Compare a cycle c1 with a ~∆m of only 5 but passing through a 100 edges
to a cycle c2 with a ~∆m of a 100 but passing through only 5 edges. Arguments exist for both
options, which we consider a topic for future work. The second term in the optimization problems
ascertains that u does not favour any specific option.

Committing cycles

Algorithm 11 specifies the general procedure for committing a node u’s owned cycles to the
rebalancing graph R. commit is called as a subroutine in commitLeader and the COMMIT message
handler, both of which will be discussed in a later part of this section. The idea behind the commit
procedure is that it operates on a map Dqo

, that maps Qout → Tcqo
, i.e. the outgoing edges of u

to a set of (tc, ~∆EX, ϕsetup) pairs. The commit procedure only concerns itself with the committing
of owned cycles as this is done both by the leader and every other participant. There is no need
for the leader to commit non-owned cycles as there are no cycles that involve the leader where
the leader is not the owner. We show this property to be true in Theorem 1. The committing
of non-owned cycles is therefore only a part of the COMMIT message handler and not a part of
commit.

To commit its own cycles, a node u iterates over Du
tc . In the previous section we have shown

that during the replyToRequests invocation, Du
tc has been updated to reflect the information

contained in incoming SUCCESS messages. For each cycle contained in Du
tc , u first checks if it

10See [20] for an explanation of the problem
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Figure 4.6: A visualization of the optimization problem splitEqually tries to solve. On the left
are four buckets with capacities 1, 2, 4 and 6, representing the ~∆ ∈ Ld. On the right is a tank
with 12 units of water, representing the rebalancing objective t. The goal is to fill up the buckets
as much as possible while also keeping the level of non-filled buckets equal.

is completed (Line 90) and if not complete, discards the cycle. We defined what it means for a
cycle to be complete earlier on during the discussion of the protocol. The reason for adding such
a property to our protocol is that it resolves an important case in which two or more nodes think
they own the same cycle. An example of such a case is presented in Figure 4.7. Experimental
testing has shown that such situations are frequent and cause about 85 % of detected cycles to
be discarded. We, therefore, consider it an interesting research direction for future work to find a
way to resolve the problem in a different way than discarding the cycles, as this has the potential
to increase the efficiency of our protocol.

If an owned cycle is complete and has a demand higher than zero (Line 93), node u creates
a conditional transaction on qu,cs by generating ϕsetup and ϕexec, and invoking paycond on qu,cs ,
where qu,cs is the starting edge of the cycle. For later reference, u then stores ϕexec with the tc in
Dtc,ϕexec map and stores (tc, ~∆m, ϕsetup) in Dqo

for sending on qu,cs . The act of storing ~∆m in Dqo

transforms it into the ~∆EX that is part of the COMMIT message.
The final part of commit concerns the sending of the (tc, ~∆m, ϕsetup) pairs on each edge q that

u received a SUCCESS from (Line 104). As Dqo
is a map of Qout → Tcqo

, u simply has to retrieve
the correct Tcqo

out of Dqo before sending it. Note that the sending part of commit is structured
such that a COMMIT is always send on q, irregardless of Tcqo

= ∅. This is a necessary step as this
allows the node receiving COMMITs to know if all nodes have answered its SUCCESS messages.

commitLeader Algorithm 11 specifies the procedure commitLeader that is called during the
invocation of replyToRequests. commitLeader is a simple procedure as the leader only has to
commit its own cycles (see Theorem 1 as to why) and therefore only calls commit. However, we
also include a conditional statement that allows the leader to skip waiting for EXEC replies on its
COMMITs in the case the leader does not own any cycles (Line 114). If the leader does not own
any cycles s.t. Du

tc = 0, only COMMIT messages with an ∅ are sent which results in the leader
also receiving only messages with an ∅. This waiting is inefficient and skipping the last phase of
the protocol allows the leader to start sending NEXT_ROUND messages immediately, potentially
improving the runtime of the protocol in certain cases.
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Algorithm 11 Pseudocode for the implementation of the transaction generation protocol for a
node u (commit)
88: procedure commit(Dqo)
89: for all (tc,

[
qu,ce , qu,cs , ~∆m, completed

]
) ∈ Du

tc do
90: if ¬completed then
91: continue
92:
93: if ~∆m > 0 then
94: ϕsetup, ϕexec ← generated by a subroutine
95: Dtc,ϕexec .put(tc, ϕexec)
96: paycond(u, Opp(qu,cs , u), ~∆m, ϕsetup)
97:
98: F ← Dqo .get(qu,cs ) . Update or create an entry for qu,cs
99: if F =⊥ then
100: F ← ∅
101: F ← F ∪

{
(tc, ~∆m, ϕsetup)

}
102: Dqo .put(qu,cs , F )
103:
104: for all q ∈ {j | (m = (success; id, Ai, Tc) on edge j) ∈ LrSUCCESS} do
105: F ← Dqo

.get(q)
106: if F 6=⊥ then
107: send (commit;ν,Al, F ) on edge q
108: else
109: send (commit;ν,Al, ∅) on edge q

COMMIT message handler Algorithm 11 also specifies the COMMIT message handler. It
can be seen in action in step 4.4m, 4.4n, 4.4o and 4.4p in Figure 4.4. Although at first sight a
relatively large procedure, the COMMIT message handler can be logically split into three parts:
actions to take when receiving a COMMIT from a non-owned cycle, actions to take when receiving
a COMMIT from an owned cycle and actions to take when all COMMITs have been received. We
discuss these parts in the following paragraphs.

If a received commit is not owned by u (Line 124), u stores it in LrCOMMIT. Once u has received
an equal number of COMMITs and REQUESTs, u acts similar to commit, creating conditional
transactions for cycles and storing these in Dqo

. However, the difference between commit and
Lines 132-140 is that u now does this for all the non-owned cycles it received in the COMMIT
messages. In order to know where to continue the cycle (which must be one of u’s outgoing edges),
u uses the qu,co it stored in D¬utc . Once done with the non-owned cycles, u must call commit such
that also its owned cycles will be committed and the COMMIT messages sent.

If u receives a COMMITmessage for a cycle c it owns (Line 143), this implies that the COMMIT
message it send itself on the cycle’s start edge qu,cs has made it all the way around the cycle to its
end edge qu,ce . As u is both the sender and receiver of the conditional transaction of the cycle c,
u can securely execute the conditional payment on qu,ce once it receives a COMMIT message and
conditional payment on qu,ce . u cannot immediately execute conditional transactions of non-owned
cycles, as this may only happen during the EXEC phase. If u executes the conditional payment
of a non-owned cycle immediately when receiving a COMMIT message, it runs the risks of losing
its funds which would break the balance security property (Definition 1) and with it Requirement
1b.

Finally, if u has received as many COMMITs as |LrREQUEST| + |Du
tc | (Line 151), it can move

its state to the EXEC state and invoke checkExecutionSafe. checkExecutionSafe is a small
utility procedure of which we provide the implementation in Algorithm 24 in Appendix B. It
checks if u has executed all non-owned cycles and if so, set execSafe to true. Setting execSafe to
true indicates that u is fully done with executing its cycles which in turn influences the result of
PrnextRound. If PrnextRound evaluates to true, u is allowed to move to the next round. PrnextRound
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Algorithm 12 Pseudocode for the implementation of the transaction generation protocol for a
node u (commitLeader and COMMIT message handler)
110: procedure commitLeader
111: Dqo

← ∅ . Map of qo →
{

(tc, ~∆EX, ϕsetup)
}

112: commit(Dqo
)

113:
114: if |Du

tc | = 0 then
115: nextRound()
116:
117: upon receipt of m = (commit;id,Ai, Tcsetup) on edge j do
118: check-action: Prν(id) → disallow, ¬awake → disallow
119: check-action: Prr,diff(Ai) → disallow
120:
121: if roundState 6= SUC then return
122:
123: roundState← COM
124: if j /∈ {qu,ce | (tc,

[
qu,ce , qu,cs , ~∆m, completed

]
) ∈ Du

tc} then
125: LrCOMMIT ← LrCOMMIT ∗m
126:
127: if |LrCOMMIT| = |LrREQUEST| then
128: Dqo

← ∅ . Map of q →
{

(tc, ~∆EX, ϕsetup)
}

129: for all T icsetup
∈ {Tcsetup | (m = (commit; id, Ai, Tcsetup) on edge j) ∈ LrCOMMIT} do

130: for all (tc, ~∆EX, ϕsetup) ∈ T icsetup
do

131: [~∆, qu,co , qu,ci ]← D¬utc .get(tc)
132: D¬utc .put(tc, [~∆EX, q

u,c
o , j]) . Store the incoming edge of the cycle

133:
134: paycond(u, Opp(qu,co , u), ~∆EX, ϕsetup)
135:
136: F ← Dqo

.get(qu,co ) . Update or create an entry for qo
137: if F =⊥ then
138: F ← ∅
139: F ← F ∪

{
(tc, ~∆EX, ϕsetup)

}
140: Dqo

.put(qu,co , F )
141:
142: commit(Dqo)
143: else
144: LrCycleCOMMIT ← LrCycleCOMMIT ∗m
145:
146: for all (tc, ~∆EX, ϕsetup) ∈ Tcsetup do
147: ϕexec ← Dtc,ϕexec .get(tc)
148: payexec(u, Opp(j, u), ~∆EX, ϕexec)
149: send (exec;ν,Al, tc, ϕexec) on edge j
150:
151: if |LrCOMMIT|+ |LrCycleCOMMIT| = |LrREQUEST|+ |Du

tc | then
152: roundState← EXEC
153: checkIfExecutionSafe()
154:
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Figure 4.7: An example invocation of the transaction generation protocol showing the importance
of the complete property. In step (c), as both Peter and Bob receive an UPDATE, they both
think they own the cycle Bob - Peter - Bob so they both respond with a SUCCESS in step (d).
However, because both Bob and Peter do not receive a SUCCESS message with their own cycle
tag (B1 for Bob and P1 for Peter), the cycle is not complete and is discarded.

is also evaluated by checkExecutionSafe.

Executing conditional transactions

Algorithm 13 specifies the EXEC message handler, which is the last procedure we discuss in this
chapter. Appendix B specifies all the procedures of the transaction generation protocol, including
the ones only mentioned in this chapter. The EXEC message handler can be seen in action in
step 4.4p, 4.4q, 4.4r and 4.4s in Figure 4.4.

A relatively small message handler, the EXEC message handler can only process EXEC mes-
sages once the state of u is EXEC and the tc contained in the EXEC message matches one of
the non-owned cycles u knows about (Line 159). u can then execute the conditional transaction
on qu,ci in a similar manner as to how it did for its own cycles in the COMMIT message han-
dler. Once u has executed the transaction and send the EXEC message on qu,ci , u again runs
checkIfExecutionSafe. This moves u to the next round if PrnextRound evaluates to true.

4.7 Protocol termination
For both the participant discovery protocol and the transaction generation protocol, we guarantee
their termination using two timeouts that are kept by each node u. These timeouts ensure that
in any case where u expects a message m, u can always terminate even if it does not receive the
expected message m. We define expecting a message in Definition 11.

Definition 11 (Expected message). A node u expects a message m if the receipt of m is required
to advance it towards the next state S of the protocol.

The first timeout we define is a global timeout Omi

glob, which is started when u expects a specific
message mi and triggers forced termination of u if it expires. It resets once u receives mi. u holds
a timeout Omi

glob for every message mi it expects to receive and never reuses the same timeout.
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Algorithm 13 Pseudocode for the implementation of the transaction generation protocol for a
node u (EXEC message handler)
155: upon receipt of m = (exec;id,Ai, tc, ϕexec) on edge j do
156: check-action: Prν(id) → disallow, ¬awake → return
157: check-action: Prr,diff(Ai) → return , roundState = COM → defer
158:
159: if roundState = EXEC ∧ tc ∈ D¬utc then
160: [~∆, qu,co , qu,ci ]← D¬utc .get(tc)
161: payexec(u, Opp(qu,ci , u), ~∆, ϕexec)
162: D¬utc .remove(tc)
163:
164: send (exec;ν,Al, tc, ϕexec) on edge qu,ci
165: checkIfExecutionSafe()
166:

The second timeout is a channel-specific timeout Oechan, of which there exists one for every
channel e that is potentially participating11 in the protocols. Oechan is started if a specific message
mi is expected to be received on e and is reset on the receipt of mi on e. If Oechan expires, node
u can consider the channel e to be unresponsive and take appropriate action. Appropriate action
may include removing it from the list of nodes that it expects a response from, removing it from
either Qout or Qin or terminating the protocol. If u deems a channel e to be unresponsive, the
channel can never again be used during that particular execution of the protocol.

Having introduced the two timeouts, we will now discuss the need for including them. We
intend for Oechan to be the main timeout that will be used often. It is common in the execution of
distributed protocols to have some unresponsive neighbours, so a neighbour not replying over a
channel is a common cause that should be handled gracefully. Oechan on its own does not guarantee
termination as it only covers the case where u sends a message mi on e and expects one or more
messages {mi,mi+1, . . .} as a reply on e. If it is unknown on which edge e u should expect a
message such as a REQUEST, another timeout is required. We, therefore, include Omi

glob to act
as a fallback to the Oechan timeouts in the cases where u expects mi but cannot associate it to an
edge e. In that case, at some point in time, Omi

glob will expire which forces u to terminate. Using
these two timeouts we can guarantee termination in any case where u expects a message, which
is the case after the execution of any message handler in both our protocols, after start in the
participant discovery protocol and after startRound and nextRound in the transaction generation
protocol.

4.8 Security and privacy analysis
In this section, we discuss the security and privacy of our protocols. In Table 4.9 we provide an
overview of the analysis that is provided in the following sections.

4.8.1 Balance security
One of the most important properties of multi-hop transactions in a PCN is balance security,
which we define in Definition 1. Informally, balance security is the guarantee that an honest
intermediary can lose its coins in a multi-hop transaction. As balance security only concerns multi-
hop transactions, we limit our discussion in this section to the protocols where it is relevant, which
is only our transaction generation protocol. In this section, we show that the transaction generation
protocol guarantees balance security in the presence of an adversary as defined in Section 4.1.5
under the assumptions of Section 4.1.5. The most important assumption in Section 4.1.5 relating

11’Potentially’ refers to the fact that it is not yet determined in the participation discovery protocol if a channel
will participate. If a channel is found not to be participating, its timeout can be removed.
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Table 4.9: Security and privacy properties achieved with our protocols

Applicable to . . . protocol Property Achieved?

Participation discovery Participation anonymity Depends on graph topology

Transaction generation

Balance security Yes
Balance conservation Yes
Channel balance privacy Depends on graph topology
Path privacy Yes
Value privacy Yes
Sender/receiver privacy Depends on graph topology
Relationship anonymity No

to this section is that the paycondComp(s, r, x, p) function provides balance security, which we use
during our proof to show that the transaction generation protocol guarantees balance security. ‘

Theorem 2. If an honest participant u is part of the execution ν of the transaction generation
protocol, it has balance security as defined in Definition 1.

Proof. We show that u has balance security during the execution ν of the transaction generation
protocol using a direct proof. Our proof is build on showing that the paycond and payexec invoca-
tions during the execution of the protocol are equivalent to a single paycondComp. We assume that
paycondComp provides balance security.

In the protocol as defined in Subsection 4.6.3, we only consider the locations where paycond
and payexec are invoked when they involve non-owned cycles. This is because if u owns a cycle, u
acts as both the sender and receiver of a multi-hop transaction. As balance security only concerns
intermediaries of multi-hop transactions, we are not interested in the cases when paycond and
payexec are used by u for its owned cycles.

There are two locations where paycond and payexec are invoked for non-owned cycles. paycond
is invoked in the COMMIT message handler in Line 134 in Algorithm 12 and payexec is invoked
in the EXEC message handler in Line 161 in Algorithm 13.

In Algorithm 12, paycond is invoked to create a conditional transaction βu,v for a non-owned
cycle c on the outgoing cycle edge qu,co from u to the node v = Opp(qu,co , u) with the value ~∆EX
and transaction information ϕsetup. u invokes paycond in response to a COMMIT message from
a node k = Opp(qu,ci , u) on the cycle’s incoming edge qu,ci . This message must contain a non-
owned cycle tag tc and transaction information ϕsetup. In addition to the COMMIT message,
u must also receive a conditional transaction βk,u from k on qu,ci with value ~∆EX and based on
the information provided in ϕsetup. Once u has finished executing paycond, there exists a path
of conditional transactions pf = k → u → v. This procedure is equivalent to the invocation of
paycondP(k, v, ~∆EX, pf , ϕsetup) because we defined paycondP to be equivalent to a series of paycond
invocations over a path p with the same value x and ϕsetup.

u invokes payexec in Algorithm 13 when it receives an EXEC message from v on qu,co . This
EXEC message must contain a non-owned cycle tag tc that matches the tc it created βu,v for
and must also contain ϕexec. In addition to the EXEC message, outside of the protocol, v ex-
ecutes βu,v. When u invokes payexec, u executes transaction βk,u. This again creates a path
pr = v → u → k that is the inverse of pf , which makes the execution procedure equivalent to
payexecP(v, k, ~∆EX, pr, ϕexec).

The combined process of creating conditional transactions and executing them is therefore
equivalent to the invocation of paycondComp(k, v, ~∆EX, pf ), as we defined paycondComp to be equiv-
alent to a paycondP and payexecP with the same parameters. As we assumed that paycondComp
provides balance security and as u is an intermediary in pf , it must therefore hold that u has
balance security during the execution of the transaction generation protocol.
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4.8.2 Balance conservation
Another important property that we try to achieve with our design is balance conservation, which
we define in Definition 2. Informally, balance conservation means that a participant has the same
total balance before and after the execution of the rebalancing algorithm. Balance conservation is
a necessary property that is a unique design requirement for on-demand rebalancing algorithms.
The authors of Revive [18], for example, have written the property as a constraint in their linear
program, such that all solutions produced by the program have balance conservation. The on-
demand rebalancing algorithm from Pickhardt and Nowostawski [40] works by having nodes find
cycles to themselves using varying strategies. The authors allow a node to only execute a circular
multi-hop transaction if such a cycle is found, thereby guaranteeing balance conservation.

Although balance conservation is also required in on-the-fly rebalancing algorithms, its impor-
tance in their design is less as they do not involve cyclic multi-hop transactions. Instead, on-the-fly
algorithms such as [6, 11, 27] only influence the transaction path of an existing transaction such
that the transaction rebalances one or more channels along the way. Because there are no cyclic
multi-hop transactions involved in on-the-fly rebalancing algorithms, only the balance conserva-
tion of intermediaries is a necessary requirement. However, this is already achieved by the balance
security property we discussed in the previous section.

We will show in this section that the transaction generation protocol achieves balance conser-
vation for its participants in the presence of an adversary as defined in Section 4.1.5. We do not
discuss the participant discovery protocol as it does not involve any changes in channel balances.
We first proof Lemma 2 in order to later use it to prove Theorem 3.

Lemma 2. If a node u is the owner of a cycle c = {u, i1, i2, . . . , in, u} and u sends an outgoing
conditional transaction βu,cs = paycond(u, i1, ~∆EX, ϕsetup) on qu,cs , receives an incoming conditional
transaction βu,ce = paycond(in, u, ~∆EX, ϕsetup) on qu,ce and executes βu,ce using ϕexec, we can say
that this is equivalent to paycondComp(u, u, ~∆EX, {u, i1, i2, . . . , in, u}) using the same ϕsetup and
ϕexec.

Proof. We use Theorem 2 to show that Lemma 2 is true. In Theorem 2 we have shown that
the process of setting up and executing conditional transactions along the path pf = {k, u, v}
is equal to the invocation of paycondComp(k, v, ~∆EX, pf ). If we rewrite pf to puf = {u, i1, u}, we
have a similar path but now with i1 as the intermediary and u as both the start and end of
the path, creating a cycle. We can then extend puf by adding more intermediaries such that
puf = c = {u, i1, i2, . . . , in, u}, which is equivalent to paycondComp(u, u, ~∆EX, p

u
f ).

Theorem 3. If an honest participant u is part of the execution ν of the transaction generation
protocol, it has balance conservation as defined in Definition 2.

Proof. We show Theorem 3 to be true using a direct proof. Our proof is built on showing that at
any moment during the protocol, u can take an action that preserves balance conservation. There
are two situations in which u might break the balance conservation property. The first situation
occurs in the case of owned cycles and the second situation occurs in the case of non-owned cycles.

For every cycle c u owns, u has the option to generate ϕu,csetup, ϕu,cexec and create an outgoing
conditional transaction βu,cs = paycond(u, k, ~∆u,c

EX, ϕ
u,c
setup) where k = Opp(qu,cs , u). u can then send

βu,cs alongside a COMMIT message on the cycle’s starting edge qu,cs and wait for an incoming
conditional transaction βu,ce = paycond(v, u, ~∆u,c

EX, ϕ
u,c
setup) to arrive on the cycle’s ending edge qu,ce ,

where v = Opp(qu,ce , u). If u decides to send βu,cs on qu,cs , it commits to a demand change on
qu,cs if βu,cs executes. This does not break the balance conservation property as βu,cs can only be
executed using ϕu,cexec, which is only known to u because u generated it. Barring u accidentally
revealing ϕu,cexec due to activities outside the protocol itself and given that u is honest and follows
the protocol, u only reveals ϕu,cexec to v if it receives βu,ce .

If βu,ce arrives and u reveals ϕu,cexec to v in order to execute βu,ce , it holds that
∑
q∈Qu

before
w(q) <∑

q∈Qu
after

w(q) as u has definitively received coins on qu,ce but the transaction βu,cs on qu,cs has not
yet executed. Therefore u has not finalized sending coins on qu,cs . If the adversary is present in the
cycle c, it might not reveal ϕu,cexec to its predecessor in the cycle c, thereby ensuring that βu,cs never
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executes. This causes u to have received coins without spending any, which breaks the balance
conservation property. However, we do not consider this a problem because the combination of the
balance security property and Lemma 2 requires that the coins must have come from the adversary.
If such a situation arises, we consider the coins gained by u a penalty to the adversary for acting
dishonestly. If the adversary is not present in c or chooses to follow the protocol, βu,cs eventually
executes and u spend as many coins as it received, resulting in

∑
q∈Qu

before
w(q) =

∑
q∈Qu

after
w(q).

If u does not own a cycle c and it holds that u ∈ c, u receives a conditional transaction β¬u,ci

on q¬u,ci . According to the protocol, u is expected to forward this conditional transaction on q¬u,co .
Receiving β¬u,ci does not break u’s balance conservation as u can only execute β¬u,ci using a ϕexec
it does not hold. As u is honest and the protocol does not provide other ways for u to obtain
ϕexec, u’s only possibility to obtain ϕexec is to create a β¬u,co using the same amount and ϕsetup as
β¬u,ci . u then sends β¬u,co on q¬u,co . We have proven in Theorem 2 that if u is an intermediary, the
process of receiving conditional transactions and forwarding them for non-owned cycles provides
balance security. This therefore means that

∑
q∈Qu

before
w(q) ≤

∑
q∈Qu

after
w(q) as u cannot lose

any coins during this operation. However, u can also not gain coins as u first spends coins during
β¬u,co , before it can gain coins by executing β¬u,ci . Together with the balance security property
it must therefore hold that

∑
q∈Qu

before
w(q) =

∑
q∈Qu

after
w(q) and that the process of forwarding

and executing conditional transactions for non-owned cycles provides balance conservation.
As in both situations where u owns or does not own a cycle, balance conservation is provided,

we can conclude that an honest u always has balance conservation as defined in Definition 2 during
the execution ν of the transaction generation protocol, except for u possibly gaining coins when
u owns a cycle that contains an adversary actively withholding ϕu,cexec.

4.8.3 Denial of Service
The final security aspect we discuss in the relation to our protocols is a Denial of Service (DoS)
attack by an adversary who has corrupted k participants. We consider both our protocols to be
susceptible to a DoS attack with varying impacts depending on the stage of the protocols in which
the adversary starts the attack.

In a DoS attack on the transaction generation protocol before the COMMIT stage and in a
DoS attack on the participant discovery protocol, we assume that the adversary chooses to pick k
participants to corrupt such that all paths between honest participants pass through a corrupted
participant. If the adversary then stops forwarding the messages it receives on all its corrupted
participants, all honest nodes are isolated and cannot receive any messages. If this situation holds
indefinitely, each honest participant u has to wait until all timeouts Oechan for all e ∈ Eu expire
or wait until all Omi

glob for all expected messages mi expire. In both cases, u terminates. Another
result occurs if we assume that the adversary knows the length of the timeouts O and that the
goal of the adversary is not to cause the honest participants to terminate but instead to inflate
the protocol’s time complexity. In that case, the adversary can release the suppressed messages
just before the timeouts expire, which causes the honest participants to reset their timeout and
continue the protocol. Instead of the time complexity of the protocol being determined by the
message delay function dm and the number of messagesM , the time complexity is then determined
by a linear combination of Oechan and Omi

glob multiplied by M .
The impact of a DoS attack on the transaction generation protocol in and after the COMMIT

stage is slightly different than discussed earlier. If a node u is in the COMMIT stage, it means
that it has possibly created conditional multi-hop transactions for owned cycles and/or it is part
of a multi-hop transaction for non-owned cycles. If now the adversary starts the DoS attack and
continues it indefinitely, u has to wait for the same timeouts as discussed earlier. However, because
u also has ongoing multi-hop transactions, it has to wait before they expire before it can retrieve
the coins it staked as part of the conditional transaction. This introduces an additional element
on top of the earlier stated time complexity.

4.8.4 Participation anonymity
We discuss participation anonymity as the first privacy property of our protocols as some of the
properties discussed in the next sections can be reduced to participation anonymity. Participation
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anonymity is a property that might hold for each individual node and is defined in Definition 3. In
the definition, we state that an adversary can only break the participation anonymity of an honest
participant node i if it can break i’s node participation anonymity (Definition 4) and the edge
participation anonymity (Definition 5) of all edges connected to i, e ∈ Ei. If the adversary fails
to break the participation anonymity for all nodes i ∈ V , it cannot construct the full rebalancing
graph R based on G outside the set of corrupted nodes and their edges. We assume that the
adversary knows the full topology of G as in Lighting, the topology of G is known to all nodes
and spread using a gossiping protocol [41].

As an example of participation anonymity, let us take Subfigure 4.8a to represent G. Subfig-
ure 4.8b then represents a graph R based on G with node participation anonymity for all honest
i ∈ V and edge participation anonymity for Eh, which we define as all edges between honest nodes.
Because of the assumption of participation anonymity, the adversary – represented by Claire –
does not know the participation status of Faril, Dora, Peter or Harry. Claire also does not know
whether there are participating edges between Bob, Alice, Gustaf or any of the other nodes. For
convenience, we define the subgraph of vertices and edges that are known by the adversary to be
participating as (Vp, Ep).

Claire

Bob

Alice

Gustaf

Peter

FarilDora

Harry

(a)

Claire

Bob

Alice

Gustaf

Peter

40

20

8

300

Faril

Harry

Dora

(b)

Figure 4.8: a) represents the PCN before the participation discovery protocol is started. b)
represents the graph after the transaction generation protocol has started and woken up. Red
nodes represent the adversary and grey edges and nodes represent the edges and nodes that the
adversary does not know of concerning their participation, assuming participation anonymity.

Based on our analysis of Subfigure 4.8b, it is also clear that the participation anonymity is
heavily dependent on the topology of G and the number of corrupted nodes |C|. If G is a star
topology with Claire at the centre and all nodes have only one edge connecting them to Claire,
Claire would immediately know which edges and nodes are participating. We, therefore, look at
two more interesting cases in the shape of a graph with a single cycle and a graph with multiple
cycles, shown in Figure 4.9.

Single cycle graph In Subfigure 4.9a, G is a single cycle graph and Eve is the adversary. If
we assume that Eve starts the protocol, she has to send an INVITE to Bob and Peter containing
(among other information) the hop count hc, that she sets herself. Upon receiving the INVITE
message, Bob and Peter either forward the INVITE if hc − 1 > 0 or else, reply with an ACCEPT
containing their own anonymous identity A or reply with a DENY. If Peter or Bob reply with an
ACCEPT, Eve has broken their node participation anonymity. As Peter and Bob also send their
ACCEPT over eEve,Peter and eEve,Bob, Eve knows these edges are participating which breaks their
edge participation anonymity and resulting in Peter and Bob losing their participation anonymity.

We can also show that Eve can partially or fully break the participation anonymity of Claire,
Gustaf and Alice. If Eve wants to break their participation anonymity, she has to increase her hc
such that the INVITE is forwarded past Bob and Peter. After sending the INVITE, at some later
point in time, Eve receives a list of participants Pp from Peter and Pb from Bob.

If then Claire and Gustaf deny, it must be that |Pp| = 1 and |Pb| = 1, which reduces the case
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Figure 4.9: Two graphs G with different amounts of cycles. Eve represents the adversary.

to the case where hc = 1. If Claire and/or Gustaf accept, it still is simple to deduce based on
Pp and Pb which of them accepted and as the INVITE message can take only one path, Eve can
determine if the edges ePeter,Claire and/or eBob,Gustaf are participating. If Alice also accepts one
of her edges and |Pp| = 3 and |Pb| = 2, Eve knows that eClaire,Alice must be participating. If
|Pp| = 2 and |Pb| = 3, Eve knows that eGustaf,Alice must be participating. If Alice accepts both
of her edges then depending on message arrival, Pp and Pb form a (Pp, Pb) combination from the
following set: {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}. This tells Eve that both Alice’s edges are
participating. This therefore shows that using only the received Pp and Pb, Eve is able to break
the participation anonymity of all nodes in Subfigure 4.9a.

Multiple cycle graph For a more complex graph, such as Subfigure 4.9b, it quickly becomes
difficult for Eve to use the received sets of participants to find participating edges and nodes. In
Subfigure 4.9b, all the honest nodes form a subgraph of G that is a complete graph. We first
look at the probability of Eve breaking the node participation anonymity. When Eve receives
Pb and Pp and |Pb| + |Pp| ≥ 7, Eve knows that all nodes have accepted at least one edge. This
breaks their node participation anonymity. If |Pb| + |Pp| < 7, Eve knows one or more nodes are
not participating and has to guess from the set of {Claire,Alice,Gustaf}. If we consider edge
participation anonymity we can quickly see this is more difficult than guessing nodes, as there are
a total of 12 edges in Subfigure 4.9b. If one edge between two honest nodes does not participate,
say eClaire,Gustaf, this is not necessarily reflected in Pb or Pp as almost all nodes can still reach the
other nodes over the participating edges.

If the adversary wishes to increase its chances, it should strive to increase the degree of its
corrupted nodes by opening additional channels, preferably to nodes with a high degree. This
allows the corrupted nodes to receive more sets of participants which allows the adversary to rule
out certain paths the INVITE message may have taken. Another strategy involves the adversary
corrupting additional nodes, which is more effective than increasing the degree of already corrupted
nodes. Corrupting nodes allows the adversary to compare the sets of participants received by all
the corrupted nodes, which provides more insight for the adversary compared to Eve receiving a
complete set of participants. Both strategies can be run in parallel for maximum effect.

We have already seen that going from Subfigure 4.9a to Subfigure 4.9b increased the difficulty
of breaking the participation anonymity of the honest nodes. If the honest participants wish to
increase the difficulty even further, they should strive to create a topology of G with a large number
of cycles and edges between honest nodes. If we denote the set of corrupted nodes to be C, the
set of neighbours of the corrupted nodes N(C), the set of edges between C and their neighbours
ECorr and GCorr = (N(C)+C,ECorr), then the graph of all nodes and edges outside the corrupted
nodes and their neighbours can be denoted as G′ = G−GCorr. If G′ = (V ′, E′), then we can state
that if V ′ � N(C) + C and E′ � ECorr, the probability decreases that the adversary can break
the participation anonymity. As it is likely that honest nodes have no insight on which nodes
are corrupted it is, therefore, beneficial to increase the number of participants and participating
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edges to increase the probability that V ′ � N(C) + C and E′ � ECorr. For a network such as
Lightning, which exhibits a heavy reliance on a limited number of highly connected ‘hub’ nodes
[33, 45], we advise that at least multiple of such nodes are involved in the protocol to reduce the
likelihood that all of them are corrupt.

Nevertheless, we must conclude that our protocol does not provide participation anonymity in
all situations according to Definition 3, as there is a non-negligible probability that Eve can break
the node participation anonymity or the edge participation anonymity. However, we emphasise
that this is heavily dependent on the capabilities of the adversary. If the adversary has only
corrupted one or two nodes with a low degree in a graph with hundreds of participants and edges,
we consider it unlikely that the adversary is capable of breaking the participation anonymity of
nodes that are far away from the adversary. This specifically applies in case the PCN is the
Lightning Network, which at the moment of writing has ≈ 12 000 nodes present on the network
[24]. We consider a full analysis of participation anonymity to be outside the scope of this thesis
and an interesting topic for future work.

4.8.5 Channel balance privacy
In Definition 6, we define a channel eu,v to have channel balance privacy if there exists a neg-
ligible probability that the adversary can determine the balances b(eu,v, u) or b(eu,v, v). In
our transaction generation protocol, the channel balances b(eu,v, u) and b(eu,v, v) are only ac-
cessed during the negotiateObjective procedure that is invoked in the wakeUp procedure. The
negotiateObjective procedure outputs a weighted edge q with a weight w(q) = ~∆ that is the
rebalancing objective. In our design, we do not define the relationship that negotiateObjective
creates between the channel balances b(eu,v) and ~∆. This relationship can be different for any pair
of nodes. In this discussion, however, we assume all node pairs to use a linear relationship that
is known to the adversary. We do this as we expect many negotiation schemes to be relatively
simple such as one that produces equal balances (b(eu,v, u) = b(eu,v, v)) and assuming a linear
relationship known to the adversary provides a weak assumption on the privacy provided by the
negotiateObjective procedure.

As we consider the adversary to be able to deduce the channel balance from ~∆, it has now
become the question if our protocol prevents the adversary from mapping obtained ~∆s to specific
rebalancing edges q. In our protocol, if the adversary has corrupted a node u, there is only a
possibility for nodes outside N(u) to have channels that have channel balance privacy. This is
because in Definition 6, channel balance privacy only applies to channels owned by two honest
nodes. We, therefore, only look at cases where the adversary wishes to find out the channel balance
of an edge between two honest nodes.
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S(C1 = 8) message can only have
taken the path {qAlice,Claire}
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have taken

Figure 4.10: Example showing how the graph topology between two honest nodes affects the
ability of the adversary to determine the path that a S(C1 = 8) message has taken. The purple
edge is the edge that the adversary wishes to obtain the w(q) from.

If the adversary aims to map an obtained ~∆ pair to an edge q, it must first determine the
boundaries of the problem. For this discussion, we start with a problem defined in Subfigure 4.10a
such that the adversary, also known as Eve, knows that the SUCCESS message with Tc = {C1, 8}
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must have originated from either Alice or Claire. We then later extend this case to show what
happens if the graph topology becomes more complex.

The probability for the adversary to successfully map a received (tc, ~∆m) pair to an edge q
between two honest nodes depends on the set of possible paths between the two honest nodes, which
we define as Ph. This is because every honest node i that sends a SUCCESS message to j on qj,i
changes the received ~∆m using the splitEqually procedure to ensure that the

∑
(tc,~∆m)∈Tc

~∆m ≤
w(qj,i). If there is only one ph ∈ Ph, which is the case in Subfigure 4.10a, and n represents the
~∆m received by u in a SUCCESS message, we can define the information the adversary knows
about w(q) for q ∈ ph as follows:

1. n < w(qu,i)→ ∃q ∈ ph; w(q) = n

2. n = w(qu,i)→ ∀q ∈ ph; w(q) ≥ w(qu,i)

In Subfigure 4.10a, we show the case of ph = {qAlice,Claire}. We assume in our example that
the adversary knows the topology of the graph R such that there is no participation anonymity for
any honest nodes. In the figure, Eve receives a SUCCESS message from Alice with Tc = {(C1, 8)}
and wants to know w(qAlice,Claire). To achieve this, Eve compares 8 to w(qEve,Alice) as she knows
w(qEve,Alice) because Eve is one of the owners of the channel eEve,Alice. If case 1) occurs, i.e.
8 < w(qEve,Alice), Eve knows that it must then be that 8 = w(qAlice,Claire) because |ph| = 1,
allowing Eve to break the channel balance privacy of channel eAlice,Claire. If case 2) occurs, i.e.
8 = w(qEve,Alice), Eve knows that it must be that w(qAlice,Claire) ≥ 8. Things change if we set ph
to be of arbitrary size g. In that case, if Eve receives Tc = {(C1, 8)} and gets case 1), Eve can no
longer say with certainty which q ∈ ph the 8 belongs to and only knows it must be one of q ∈ ph.
Nothing changes for case 2) as with ph = g it still holds that all q ∈ ph must have a w(q) ≥ 8.

In Subfigure 4.10b, we cannot make the assumption that there is only one ph ∈ Ph and we
also have a cycle pcycle = {qBob,Peter, qPeter,Claire, qClaire,Bob}. This invalidates case 1) because if
∃ph ∈ Ph for which it holds that |ph∩pcycle| 6= 0, it must mean that there is an edge q ∈ ph∩pcycle on
which both paths have to share the rebalancing objective w(q). If then Eve receives a Tc = (C1, n)
that travelled along ph, it can happen that ∀q ∈ ph;n < w(q) as some of the w(q) has already
been used by a (tc, ~∆) travelling around pcycle. In our example, this can happen if the S(C1, 8)
message travels on the path py = {qPeter,Claire, qBob,Peter, qAlice,Bob, qEve,Alice} for which it holds
that py ∩ pcycle = {qBob,Peter, qPeter,Claire}. We therefore have to change our earlier information
definition to the following, where the adversary can only infer that:

n ≤ w(qu,i)→ ∃ph ∈ Ph,∀q ∈ ph; w(q) ≥ n (4.4)

We can then define the probability that the adversary can determine w(q) using n as follows:

Pr[Adversary obtains w(q) using n] = 1
|Ph|

· 1
2z − n (4.5)

In Equation 4.5, z equals the bit size of w(q). In Lightning, 64-bit unsigned integers are used
to define the channel balances ([25], BOLT #2). An implicit assumption done in Equation 4.5 is
that all the rebalancing objectives in the graph are normally distributed, which implies that all
channel balances in a PCN are normally distributed and this is not the case according to [49].
We, therefore, expect for the probability to be higher than implied in Equation 4.5 depending on
the distribution of the channel balances.

Finally, in Subfigure 4.10c, Eve has access to more information than she did in Subfigure 4.10b.
Using her extra edges, she can invalidate some of the possible paths in Ph, increasing her chances
of guessing w(q). For Eve, a good strategy is therefore being highly connected such that she
can reduce the number of potential paths as much as possible, in a similar way as we discussed
concerning participation anonymity.

Nevertheless, the probability of Eve determining the channel balance is not negligible and
therefore, according to Definition 6, our protocol does not provide channel balance privacy. If
we assume participation anonymity for all honest nodes, Eve has to construct Ph based on G
instead of R. This increases the number of options for Eve to guess, even if G and R are equal in
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topology as then Eve would still have to guess the direction of the edges in R. However, increasing
the number of options still results in a non-negligible probability that Eve can break the channel
balance privacy.

Eve

Bob

Claire

Peter

Gustaf

Alice

Figure 4.11: In this rebalancing graph there exist only five possible cycles with Eve as an inter-
mediary

4.8.6 Path privacy

In Definition 7, we define paycondComp(s, r, x, p) to have path privacy if the probability for the
adversary to determine p is less than or equal to 1/

∣∣∣⋂i∈Cp
Pi

∣∣∣ and only if the sender is honest.
Here, Cp is the set of corrupted nodes in p and Pi represents all possible paths going through
node i. Less formally we say that the adversary can only break path privacy if it knows more
about the path than what it can already infer from the topology of the graph and its corrupted
nodes. If we take a look at Figure 4.11 for example, Eve can infer from the graph topology that
there are only five possible transaction paths with her as an intermediary as all transactions in the
transaction generation protocol are cyclic. Using our definition, this means that our protocol only
provides path privacy if the probability that Eve guesses the path correctly is less than or equal
to 1/5. If we add an extra directed edge from Bob to Claire, more cycles are possible decreasing
the probability for Eve to guess the path correctly.

Seeing how path privacy is dependent on graph topology allows us to define a relationship
between it and participation anonymity. If we assume participation anonymity, it means that
the adversary has limited knowledge of the rebalancing graph R outside of the neighbours of its
corrupted nodes. This would mean that, in Figure 4.11, Eve does not know the topology of R
between Peter and Bob and it has to construct Pi based on G instead of R. This increases the
number of options for Eve to guess, even if G and R are equal in topology as Eve would still have
to guess the direction of the edges in R. However, as we have seen, our protocol does not always
achieve participation anonymity.

Therefore, besides the additional privacy possibly provided by participation anonymity, we also
provide path privacy with our design by having none of the parties12 involved in a transaction
know the full path. The cycle owner, who is the sender s and receiver r in our protocol, only
knows on which edge a cycle transaction with tag tc departs on and on which edge it arrives.
Every intermediary u along the way only knows whom it received the transaction with tag tc from
and to which neighbour it needs to go. This limits the exposure of the path of the transaction to
the bare minimum required for the successful execution of the transaction. Even if the adversary
corrupts some of the intermediaries, it would gain little information about the transaction path.
We, therefore, conclude that we achieve path privacy according to Definition 7 with and without
participation anonymity.

12i.e. sender, receiver and intermediaries
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4.8.7 Value privacy
In Definition 8, we define paycondComp(s, r, x, p) to have value privacy if the adversary can deter-
mine x with negligible probability. Here, s is an honest sender, r an honest receiver, x the amount
to be payed and p a path consisting of only honest intermediaries.

We can define a strategy for the adversary to increase its chances of breaking the value privacy
if we assume that the adversary knows s, r and p. Knowing s, r and p, the adversary can do a
paycondComp through a path p′ ⊆ p with amount x′. If the transaction fails, the adversary then
knows that x < x′. The adversary can then try again and again, each time lowering x′ until the
transaction succeeds, which gives it an upper bound for x.

If we assume path privacy, then in our transaction generation protocol there is no way for the
adversary to break the value privacy as knowledge about x in the form of ~∆EX and ~∆m is only
transferred along p, which implies that the adversary can only obtain information about ~∆EX and
~∆m if it is part of the path p. As the adversary is not honest, this can never happen as according
to our definition, value privacy only applies if p contains only honest intermediaries.
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Figure 4.12: Example showing the ability of the adversary to determine the cycle owner under
different circumstances. Red represents the adversary, yellow represents the cycle owner and the
grey cloud represents the nodes unknown to the adversary.

4.8.8 Sender/receiver privacy
In Definition 9, we define paycondComp(s, r, x, p) to have sender/receiver privacy if the probability
for the adversary to determine s/r is larger than 1/|V −C| where C is the set of corrupted nodes.
Contrary to the definition of value privacy, in sender/receiver privacy, the path p must hold at
least one honest intermediary. To achieve sender/receiver privacy, paycondComp must first achieve
path privacy as otherwise the adversary can directly infer s and r from p.

In our transaction generation protocol, the question of finding the sender/receiver from a
paycondComp transaction is equivalent to finding the cycle owner u, given that all paycondComp
operations done are cyclic and started by the cycle owner, which causes s = r = u. As we have
seen in Table 4.5, none of the message types sent during the protocol contain contents that directly
tell the adversary that u is the cycle owner. However, the presence of cycle tags tc received by
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the adversary that the adversary has never seen before can reveal the cycle owner. This problem
is similar to the one we discussed for the channel balance privacy but now instead of determining
w(q) of an edge q between two honest nodes, the adversary tries to determine the creator of a
SUCCESS message with a tag tc.

In Subfigure 4.12a, the adversary can determine that Alice is the cycle owner as it receives a
SUCCESS message at Gustaf with cycle tag A1 that it has not seen at Eve, which implies that
Alice must have created it as only cycle owners create cycle tags. In Subfigure 4.12b, the adversary
cannot be sure that Alice created it as it is also possible that Bob created it and Alice forwarded
it. In this case, the adversary has a 50 % chance that Alice is the cycle owner.

If we define the set of honest nodes between Gustaf and Eve as V ∗, then
Pr[u ∈ V ∗ is the cycle owner] = 1/|V ∗|, which we illustrate in Subfigure 4.12c. Similar to our
discussion about the channel balance privacy, it benefits the adversary to be highly connected as
this decreases V ∗ which increases its probability of finding the cycle owner given a cycle tag tc.
Nevertheless, we normally expect 1/|V ∗| > 1/|V −C| which, when strictly adhering to Definition 9,
means we do not achieve sender/receiver privacy with our protocol. If we assume participation
anonymity for all honest nodes, the adversary only knows G and not R. This possibly increases
|V ∗| as the adversary must now consider all nodes between the two nodes and not only the ones
that are participating.

4.8.9 Relationship anonymity
In Definition 10, we define a paycondComp operation to have relationship anonymity if, for two
simultaneous paycondComp(s, r, x, p) operations between sender/receiver pairs (s1, r1) and (s2, r2)
with the same amount x and the same path p holding i intermediaries of which at least one is
honest, an adversary can determine if s1 pays r1 or s2 pays r2 with a probability less than 1/2.

According to [29, 30], paycondComp operations in Lightning do not provide relationship anonymity.
This is because Lightning sets the conditional transaction setup information ϕsetup to be equal
to H(α) for every paycond operation that is part of paycondComp. For the execution information
ϕexec, Lightning does the same but then with ϕexec = α. The authors show that this allows the
adversary to easily distinguish the two paycondComp operations because each paycond and payexec
operation can be tagged to one of the two paycondComp as all the paycond and payexec that are
part of a paycondComp operation share the same ϕsetup and ϕexec.

Even if we assume that the underlying PCN provides a paycondComp function that provides rela-
tionship anonymity, we can show that our protocol breaks it too. This is because each paycondComp
is associated with a cycle tag tc that is known to all nodes in p. Similarly to [29, 30] where the
authors show that reusing the same ϕsetup and ϕexec for a paycondComp operation breaks relation-
ship anonymity, the adversary can use the tc to distinguish the two simultaneous paycondComp
operations. We can therefore conclude that with our current design no relationship anonymity is
provided.

For future work, we consider an alteration on the design that uses the Anonymous Multi-Hop
Locks for transaction setup and execution, as introduced in [29, 30]. The authors show that
their scheme provides relationship anonymity. However, for the scheme to function, the authors
require anonymous channels between every participant and also require the sender to know the
full transaction path p. To satisfy both conditions, alterations to the design are required and
more trust needs to be put into the cycle owners (who act as sender/receivers), who currently
are not trusted. Initial ideas for such a design would involve the cycle owner providing a public
key alongside the first SUCCESS message, which would be used by intermediate nodes to encrypt
their own public keys that, when received by the cycle owner, allow the cycle owner to construct
a path and encode it using an onion-like scheme. This would remove the need for tc tags during
the COMMIT and EXEC phase which, alongside using Anonymous Multi-Hop Locks, allows the
protocol to provide relationship anonymity.
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Chapter 5

Evaluation

In this chapter, we evaluate our protocols and compare our transaction generation protocol to
Revive [18]. Our evaluation consists of a message and time complexity analysis of our protocols and
a performance evaluation. In the performance evaluation, we compare our transaction generation
protocol to Revive and run simulations on both our protocols to see how their parameters affect
their results.

5.1 Message complexity
In this section, we analyse the message complexity of both our protocols. We use M to denote
the set of messages sent during one execution of a protocol.

5.1.1 Participant discovery
To analyse the message complexity of the participation discovery protocol, we use the fact that
our discovery protocol communicates outside and inside of a tree T for which it holds that T ⊆ G.
T is constructed based on two rules: 1) the sender v of the first INVITE received by a node u is
stored by u as its parent or 2) if u receives an INVITE from v and it has not forwarded INVITE’s
itself, it sets v as its parent. u informs v of its parental status by setting the isChild boolean to
true in the ACCEPT message u sends to v. This creates a problem if hc = 1, as in that case u
must immediately reply to the INVITE with an ACCEPT(isChild=true) as it might be a leaf in
T who do not receive any further messages beside a FINISH message. If, at a later point, u then
receives another INVITE from j with hc > 1, u forwards the INVITE and eventually sends an
ACCEPT(isChild=true) to j. If u does not update its parent because of 2), u would send another
ACCEPT to v, which is unexpected to v. However, because of 2), v and j both think u is their
child which technically makes T a cyclic graph. Although easily resolved by u informing v of the
change in ancestry, we chose not to include such a mechanism as the only consequence of the
double ancestry is that u receives one extra FINISH message from v. In the following discussion,
we ignore this extra message as it has no consequence on the final message complexity of the
participant discovery protocol.

We denote the edges inside the tree as ET and the edges outside the tree as E¬T . An edge
eT ∈ ET achieves the maximum number of messages if an INVITE message is first sent over eT
from a parent to one of their children, after which the child responds with an ACCEPT and in
reply, the parent sends a FINISH message, totalling three messages. An edge e¬T ∈ E¬T sees the
maximum number of messages if both vertices send an INVITE to each other and then reply with
an ACCEPT or DENY, totalling four messages.

We consider the worst case message complexity to occur when all nodes v ∈ V wish to par-
ticipate with all their edges. If T is the tree from the protocol’s initiator1 to all other nodes in
V , it must be that hc > h(T ) and the max number of invites Im >= dmax, where hc is the hop
count, h() is a function that returns the height of T and dmax is the largest degree ∀v ∈ V . If both

1The node who started the protocol
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conditions are achieved, all nodes v ∈ V receive an INVITE and forward it to all other nodes on
all their edges with the exception of their parent. This allows us to define the message complexity
as in Equation 5.1, knowing that if all nodes in V participate and T is a tree, ET = |V | − 1 and
E¬T = E − ET .

|M | = 4|E¬T |+ 3|ET | (5.1a)
= 4(|E| − (|V | − 1)) + 3(|V | − 1) (5.1b)
= 4|E| − |V |+ 1 (5.1c)
= O(|E|) (5.1d)

We can remove |V | in Equation 5.1d as in a connected graph, |E| ≥ |V |+ 1.

5.1.2 Transaction generation
We analyse the message complexity per round for one execution of the transaction generation
protocol. This can be done because the number of rounds is well-defined by the protocol’s param-
eters. The transaction generation protocol operates on a rebalancing graph R = (V,Q), which is
a graph where all vertices and edges are participating in the protocol and all edges are directed
based on the rebalancing objective. It holds that R ⊆ G.

For our worst-case scenario, we consider an R where every directed edge q ∈ Q has a |w(q)| � 0,
such that after one round of rebalancing, ∀q ∈ Q;w(q) > 0. This is to ensure that all directed
edges always participate in the rebalancing as the protocol has special exclusions for edges where
w(q) = 0. Our scenario also requires that all nodes u ∈ V have at least one incoming and one
outgoing edge, i.e. ∀v ∈ V ; |Qui | > 0 ∧ |Quo | > 0. This ensures that all nodes receive a REQUEST
each round, which causes them to send more messages than when a node has only outgoing edges.
If a node has only outgoing edges, it does nothing2 until receiving a NEXT_ROUND message.
If a node has only incoming edges and receives a REQUEST, it replies with a FAIL message as
it knows it cannot be part of a cycle. Our final assumption to construct the worst-case scenario
involves the direction of edges in Q. We assume that a direction is obtained that maximises the
number of cycles in R, as this affects the number of UPDATE and EXEC messages sent during
the protocol.

Theoretical derivation

Using the assumptions of the previous section, we can derive the number of REQUEST, SUCCESS
and COMMIT messages during the protocol. As every node has an incoming edge on which it
receives a REQUEST and an outgoing edge on which it can forward it, it holds that every q ∈ Q
sees one REQUEST message each round, totalling NREQUEST = |Q| messages.

A node u always sends a SUCCESS in response to a REQUEST as, under our assumptions, u
always has an outgoing edge. The SUCCESS is either because u detected one of its owned cycle
detection tags tr in the received REQUEST or if it has received a SUCCESS on all its outgoing
edges as a reply to all its forwarded REQUESTs. Similar to the REQUESTs, this means that
every q ∈ Q must see one SUCCESS message each round, totalling NSUCCESS = |Q| messages.
The consequence of every edge seeing a SUCCESS message each round is that they all also see a
COMMIT message, as the protocol requires that a SUCCESS is always replied to with a COMMIT.
This means that NCOMMIT = |Q| as well. It is also relatively easy to define NNEXT_ROUND as
this mechanism of the protocol works similar to an α-synchronizer (See [1]) meaning that it has
O(|Q|) message complexity. Although a node does not send NEXT_ROUND messages to the
node it received the first NEXT_ROUND from, NNEXT_ROUND ≤ 2|Q| is a close approximation.

The number of UPDATE messages is more difficult to define than the previous message types,
as UPDATEs are designed to be sent and forwarded repeatedly to allow nodes to detect cycles
if a deadlock occurs. The number of UPDATE messages can vary wildly for each round of the
protocol based on the message order and which node is chosen as the leader. An upper bound

2If the node is not the leader
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for the total number of UPDATE messages sent during one round is NUPDATE ≤ |Q| · (|Q| − 1),
which represents each edge seeing an update message for each other edge in R. We can lower the
bound slightly as the leader never sends an UPDATE message because of Theorem 1. However,
excluding the outgoing edges of the leader does not have an influence on the eventual total message
complexity.

The final messages that we need to discuss are EXEC messages, which a node sends once for
every committed cycle it is a part of. As discussed in Subsection 4.6.2, the number of committed
cycles found is dependent on the direction of the edges q in R and the order in which messages
arrive. If we define C to be the set of committed cycles and if we assume that every node is part
of every committed cycle, NEXEC ≤ |V | · |C|. As the latter assumption does not always hold, we
consider this to be an upper bound on the number of EXEC messages. As we have now obtained
exactly or bounded message counts for all message types, we can define the message complexity
of the transaction generation protocol as in Equation 5.2.

|Mr| = NREQUEST +NSUCCESS +NCOMMIT +NUPDATE +NEXEC +NNEXT_ROUND (5.2a)
= |Q|+ |Q|+ |Q|+ |Q| · (|Q| − 1) + |V | · |C|+ 2|Q| (5.2b)
= O(|Q|2 + |V | · |C|) (5.2c)

From Equation 5.2, we can deduce that the largest contributing factors to the message com-
plexity of a single round are the UPDATE and EXEC messages. If a future design iteration of
the protocol shows a need to reduce its message complexity, then the mechanisms behind the
UPDATE and EXEC messages should be the first points of consideration. We also outline it as
a topic for future work to find a relationship between C and Q, which might allow for an exact
definition of NEXEC.

As Equation 5.2 is only applicable to a single round, we can modify the message complexity
such that it is applicable to one whole execution of the transaction generation protocol. The
message complexity then becomes O

(
maxRounds · (|Q|2 + |V | · |C|)

)
or, if we relate maxRounds

to |V | through ρ such that maxRounds = |V | · ρ, the message complexity becomes
O
(
ρ · (|V | · |Q|2 + |V |2 · |C|)

)
.

In practice, we expect the number of messages to decrease for every round that the protocol
advances. This is because if in every round some rebalancing objectives ~∆ are met, it is logical to
expect that in later rounds there are more edges q with a zero ~∆ which causes q to be excluded
from the participation of that round. This has the effect of splitting R into several components
as the protocol progresses.

Experimental evaluation

To illustrate the dependency of certain message types on message delays and the order of message
arrival, we ran 1000 simulations of the transaction generation protocol with different seeds and
participants on GLightning as defined in Subsection 5.3.2 and present the result in Table 5.1. We
restricted the protocol to one round, but by changing the seed we changed both the leader of the
round and the message delays, which also changes the ordering of messages. Table 5.1 shows that
the number of UPDATE and NEXT_ROUND messages vary significantly between simulations
while the REQUEST, SUCCESS, COMMIT and EXEC messages vary much less. This confirms
our expectation that the number of UPDATE messages influences the total number of messages
more than other message types. The results also show that many more NEXT_ROUND messages
are sent than EXEC messages. This might indicate that |V | · |C| < 2|Q| but this requires a
mathematical equation for the theoretical number of EXEC messages to confirm.

5.2 Time complexity
In our analysis of the time complexity of our protocols, we assume that the computation done
by each node during the execution of one of our protocols is negligible. We consider this a valid
assumption as our designs feature loops and data accesses that are at most O(|Q|). A much more
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Table 5.1: Statistics on the number of messages for one round of the transaction generation pro-
tocol with a varying number of participants in GLightning as defined in Subsection 5.3.2. Statistics
were obtained using 1000 simulations with varying seeds.

Type Maximum Minimum Mean Standard deviation

REQUEST 94 1 12.84 17.00
UPDATE 233 1 25.30 38.99
SUCCESS 57 1 7.51 10.13
COMMIT 57 1 7.51 10.13
EXEC 50 2 9.08 9.64
NEXT_ROUND 182 5 60.97 50.08

influential factor in the time complexity of our protocols is the number of messages sent during
each execution. Each message send arrives with a random communication delay. If we make
the assumption that all messages are sequentially ordered in time, an upper bound for the time
complexity of both protocols is O(|M |), where M is the set of messages during one execution of
the protocol. Based on our discussion of the message complexity, this would imply that the time
complexity of the protocol is always the same as the message complexity. However, as shown in
this section, the parallelism achieved by our protocols allows the time complexity to be lower than
this upper bound.

5.2.1 Participant discovery
In our discussion about the message complexity of the participant discovery protocol, we showed
how we can model the sending of messages in our discovery protocol with a tree T . We use the
same construction and assumptions as in our discussion about the protocol’s time complexity.
These assumptions are: all nodes v ∈ V wish to participate with all their edges, hc > h(T ) and
Im >= dmax. A new assumption we make is that each message is equally delayed by one unit of
time. For our worst-case scenario, one unit of time is equivalent to the maximum communication
delay. We use a variable t to count how many units of time have passed.

At the start of the participation discovery protocol when t = 0, the initiator sends an INVITE
to all its neighbours. At t = 1, the INVITEs arrive at the neighbours who then forward the INVITE
to all their neighbours. The neighbours then receive it at t = 2, and this process repeats until
all nodes have received an INVITE. As we know from our earlier discussion, such communication
can be modelled as a tree T with the initiator as the root and the outermost nodes as the leaves.
For each unit of time that passes, each level of the tree sends an INVITE to all their neighbours
along ET and E¬T . The last invite is therefore received at t = h(T ) + 1 by a neighbour of the leaf
u at the lowest level of the tree. The neighbour, together with all the other neighbours of u that
received an INVITE, replies with an ACCEPT which u receives at t = h(T ) + 2. This ACCEPT
then propagates back along T to the initiator who receives the final ACCEPT at t = 2h(T ) + 2.
As the last step of the protocol, the initiator sends a FINISH message along T which is received
by u at t = 3h(T ) + 2, marking the termination of the complete protocol. The time complexity
of the participation discovery protocol is, therefore, O(h(T )). Note that the worst-case scenario
only occurs when the initiator is chosen such that h(T ) is maximised.

5.2.2 Transaction generation
We analyse the time complexity of the transaction generation protocol by considering one round
and analysing the maximum time taken for each step in that round. We use the same assumptions
as in our discussion about the message complexity: ∀q ∈ Q; |w(q)| � 0 and ∀v ∈ V ; |Qui | >
0 ∧ |Quo | > 0. We add the assumption that each message is equally delayed with one unit of time
which, similarly as with the participant discovery, can be thought of as reflecting the maximum
communication delay. We also use t with various subscripts to keep track of units passed.
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Similarly, as with the discussion about the time complexity of the participant discovery, we
can use a tree TR which contains every node in R, to analyse how the messages spread throughout
R. Each node, apart from the leader, receives their first REQUEST message on one incoming
edge. This forms a tree with the round leader l as the root, who sends a REQUEST message at
tREQ = 0. At tREQ = h(TR)+1, the REQUESTs sent by the nodes at the lowest level of TR arrive
at the nodes opposite of their outgoing edges.

Once the first REQUEST message arrives at a node u and until it receives a SUCCESS on all
outgoing channels, u is allowed to send UPDATE messages on all its outgoing edges if it learns of
any new cycle detection tags tr. In our discussion of the message complexity, we were only able
to define an upper bound of NUPDATE ≤ |Q| · (|Q|− 1) for the number of UPDATE messages each
round. Barring an exact definition for the number of messages and the UPDATE mechanism, we
also assume an upper bound of tUPD ≤ NUPDATE for when the last UPDATE message is received
by a node.

Using TR, we can also denote the time taken for the last SUCCESS message to arrive at the
leader l. This SUCCESS message must be sent after the last UPDATE message as receiving the
last SUCCESS message indicates all deadlocks are resolved, which is the goal of sending UPDATE
messages. If we then assume that the last UPDATE message is received by a node at the lowest
level of TR, it takes tSUC = h(TR) for l to receive the last SUCCESS message after the last
UPDATE message has been received by a node.

For the last commit message to arrive we can take a similar approach as with the REQUEST
messages, as they also follow the edges in TR. From this we can deduce that tCOM = tREQ =
h(TR) + 1. The time for the last EXEC message to arrive after the last COMMIT message was
sent depends on the length LC of the longest committed cycle in R. If we assume a worst-case
scenario where the owner v of this longest cycle is on the lowest level of TR, then when v receives
the last COMMIT message it can start sending the EXEC message for this longest cycle. The
time for that EXEC message to propagate is equal to the number of edges in this cycle i.e. LC .
The time for the last EXEC message to arrive is therefore tEXEC = LC .

Finally, the NEXT_ROUND messages follow a similar route as the REQUEST and COMMIT
messages from the route leader to the other nodes in R along TR. This means that the last
NEXT_ROUND message also arrives after tNR = tREQ = h(TR) + 1.

tmax,round = tREQ + tUPD + tSUC + tCOM + tEXEC + tNR (5.3a)
= h(TR) + 1 +NUPDATE + h(TR) + h(TR) + 1 + LC + h(TR) + 1 (5.3b)
= 4h(TR) +NUPDATE + LC + 3 (5.3c)
= O(h(TR) +NUPDATE + LC) (5.3d)

Combining our findings, we obtain a time complexity as presented in Equation 5.3. In this
time complexity, we expect NUPDATE to be much larger than h(TR) or LC , given that multiple
UPDATE messages can be sent over the same edges in one round. In future work, a more detailed
analysis of the time complexities involved in the UPDATE phase might allow one to achieve a
theoretical upper bound for the UPDATE phase time complexity.

5.3 Performance analysis
In this section, we experimentally evaluate the performance of our protocols by running multiple
simulations using our proof-of-concept. We first discuss the construction of our proof-of-concept
and the topologies of the graphs we run our simulations on, after which we evaluate both our
protocols using the proof-of-concept and the graph topologies.

5.3.1 Proof-of-concept
For the experimental evaluation of our protocols, we implemented a proof-of-concept in Kotlin3
for which we provide the code on Github4. The proof-of-concept holds implementations for the

3https://kotlinlang.org/
4https://github.com/roemba/thesis-rebalancing
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participant discovery protocol, the transaction generation protocol and Revive. As almost all these
protocols operate on a PCN, we included in the proof-of-concept a PCN simulator that is capable
of message passing between nodes and the payment functionality as described in Subsection 4.1.1.

The simulator can run on any graph G and is a discrete event simulator, which is a kind of
simulator where, compared to a continuous simulator, next-event time progression occurs [12].
This property means that its internal clock jumps to the time of the next event, which it then
executes. In our simulation, an event can be the arrival of a message or the start of a protocol.
Jumping to the time of the next event has the benefit of speeding up the simulation, as the
simulator does not have to idle for the time between two events. In this way, we can add a delay
to message arrival events. These delays will appear in the clock of the simulator, but do not
require the computer to simulate the delay.

When a node u sends a message m to v on channel eu,v, we schedule the arrival of message m
at v to happen at ts = max(ts, te,us ) + delay(1, 200). Here, te,us represents the last time a message
from u arrived at v on edge eu,v and delay is a function that returns a random millisecond delay
from an exponential distribution with a minimum of 1 ms and a 1 % chance of a delay of 200 ms.
Using te,us allows us to simulate channel congestion and guarantee message ordering over e in each
direction. Using random latencies has the effect of scrambling the processing order of messages
that each node receives during a run. In reality, latencies can vary significantly because of several
factors such as the geographic distance between two nodes. However, in our simulation, we chose
to exclude these factors as we are only interested in comparing our protocols runtime to Revive
and not evaluating its runtime exactly.

As the simulator and some of the protocols require randomness, we seed all the random sources
from a common seed that changes for each run. This allows us to average out the effect of random
factors, such as the ordering of messages and leader selection, on the results of our protocols.

The implementation of our transaction generation protocol and Revive requires that each node
knows which other nodes are participating in the protocol. It is for this reason that we designed the
participant discovery protocol. In our implementation, both our transaction generation protocol
and Revive use our participant discovery protocol. The latter is needed because the authors of
Revive do not provide an implementation for such a protocol and assume the participants are
already known. Another benefit of this approach is that it allows for a fair comparison of both
transaction generation protocols. Both protocols also use the same negotiateObjective interface
as we and the authors of Revive share the same requirement that the owners of a channel have a
way of determining their rebalancing objective if requested.

5.3.2 Graph topologies
As we expect the results of our protocols to be influenced by the topology of a graph G, we
prepared three different graphs for the simulator to run on. Each graph has its own topology
and unique channel balances, which we obtain in a variety of different ways. Note that the exact
value of the channel balances is not important for our experiments as we are not interested in the
absolute number of rebalancing demands met or the absolute transaction success ratio but instead
are interested in the differences between those numbers for varying parameters and scenarios.

The first graph we simulate, GDesign, is the example used in the Design chapter in Figure 4.4.
We include this graph as it contains many cycles and multiple edges between the same pair of
nodes, and we expect readers of the Design chapter to be familiar with its layout. The rebalancing
graph RDesign, based on GDesign, uses the same rebalancing demands as defined in Subfigure 4.4a.

The second graph GComplete is a complete graph K8. In a complete graph, many cycles are
possible depending on the rebalancing objectives of each edge. We generated the channel balances
once from a uniform distribution between [0, 100).

Our final graph GLightning consists of the processed topology of the Lightning network as
scraped by explorer.acinq.co on the 5th of May 2021. The topology is provided as two JSON
files of which one contains nodes and the other contains edges. The ‘processed’ refers to the fact
that we removed all edges that could not be matched to any pair of nodes and that, after doing a
component analysis, we kept the largest component consisting of 8991 nodes. As a result, the final
GLightning consists of 8991 nodes and 38 524 edges from the original scraped data that contained
9044 nodes and 38 697 edges. As in Lightning the channel balances are not publicly announced
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and therefore not publicly available, we randomly generate the balances based on an exponential
distribution to mimic the phenomenon that most channels in Lightning are of low capacity with
few being of high capacity [10, 11].

5.3.3 Participant discovery
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Figure 5.1: The effect of different hop counts hc and maximum number of invites per node Im
on the number of participants |P | obtained by the participation discovery protocol. Results are
from ten simulations on GLightning with different seeds. The solid lines represent the mean of the
simulations and the confidence bounds represent one standard deviation from the mean.

For the evaluation of our participant discovery protocol, we ran ten simulations with different
seeds with varying hc and Im on GLightning to study the number of participants |P | achieved. We
present the results in Figure 5.1. In all simulations, the same starting node was chosen to initiate
one instance of our discovery protocol using the provided settings. This is necessary to ensure that
the parameter under study is the only independent variable affecting |P |. If we were to change
the starting node in every simulation, the degree of the starting node would also influence |P |,
making the starting node an additional independent variable.

Looking at the obtained results in Subfigure 5.1a analysing the influence of the hop count hc,
we can clearly see that |P | increases as hc becomes larger. We can also see a steep increase in
|P | between the range of 5 ≤ hc < 15 which levels off when hc ≥ 15. We suspect that when
hc > 5, the INVITE messages reach one or multiple hub nodes with many connections. Clearly
after hc ≥ 15, no new hub nodes are reached as the curve levels off and |P | stabilizes.

Subfigure 5.1b shows a different trend concerning the maximum number of invites per node
Im. As expected, we obtain a higher |P | when Im becomes larger. |P | clearly increases almost
linearly with Im while flattening off for higher hc when Im > 10. We can also see that the larger
Im becomes, the larger the standard deviation. This phenomenon is more present when Im is
combined with a larger hc such as 4 or 5, but we do not have a clear explanation as to why this is
the case. Subfigure 5.1b also confirms that hc has a larger effect on |P | than Im, which is in line
with our analysis done in Subsection 4.5.1 where we obtained that |P | = O(Ihc

m ).

5.3.4 Transaction generation
In this section, we evaluate our transaction generation protocol by experimenting with different
values for ρ and comparing how it behaves compared to Revive in a static simulation and dynamic
simulation.

With the exception of the dynamic simulation, we try to minimize the impact of the partici-
pation discovery protocol on the results of our comparisons. Based on our experiments with the
participant discovery, we chose a hc = 3 and an Im = 5 for the ρ evaluation and a hc = 3 and an
Im = 10 for the static simulation. According to Figure 5.1, all these values produce a |P | with
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only small deviations for varying seeds. This has the effect of minimizing the influence of |P | on
the obtained results of the transaction generation protocol and Revive.

Varying ρ

The only parameter of the transaction generation protocol is ρ, which we introduced in Subsec-
tion 4.6.2 to calculate the maxRound of the protocol based on |P | using the formula maxRound =
|P | · ρ. Our goal with providing the formula is to define the number of rounds the transaction
generation protocol should execute to obtain its best result possible. In this section, we investigate
the relationship between ρ and maxRound to see how different ρ affect the result of the protocol
for different |P |.
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Figure 5.2: The effect of different ρ on the number of demands met and the number of messages
sent by the transaction generation protocol. Results are from ten simulations on GLightning with
different seeds. The simulations were run with hc = 3 and varying Im to obtain three different
|P |. The solid lines represent the mean of the simulations and the confidence bounds represent
one standard deviation from the mean.

For this evaluation, we use GLightning where we keep the channel balances the same for varying
seeds. This limits the influence of varying seeds to changing the message ordering and which nodes
act as a leader. We ran ten simulations for each Im ∈ {5, 7, 9} while keeping hc = 3. We vary Im
because we have no direct control over |P |, but can only influence it using Im and hc. We chose
Im to vary |P | and not hc as changing Im allows for more granular control over |P |.

We measured the ‘success’ of the transaction generation protocol by comparing the demands
before executing the protocol and after. The difference is the number of demands met by the
protocol. We present the results of our simulations in Figure 5.2.

Looking at Subfigure 5.2a, it is clear that for all |P | we tested, a ρ ≥ 40 % does not increase the
number of demands met. This is logical considering that the more rounds the protocol executes,
the higher the probability that it finds rebalancing cycles. After x rounds, no more rebalancing
cycles are possible as some edges have w(q) = 0, which negates the benefits of executing additional
rounds. We can clearly see this effect in Subfigure 5.2a. More interesting is that the start of this
‘levelling off’ appears at different ρ for different |P |. For Im = 5, this point appears when ρ = 20 %
while for Im ∈ {7, 9}, this point appears when ρ = 40 %5. This might indicate that the relationship
between the optimal maxRound and |P | is not linear but something closely resembling it, such as
a slightly quadratic relationship.

When we combine Subfigure 5.2a with Subfigure 5.2b, a clear trade-off appears. Besides the
expected increase in messages for higher |P |, it is clear that a larger ρ requires more messages
to be sent. This intuitively makes sense as more rounds take place for larger ρ and each round
requires additional messages. Another interesting aspect that appears comparing Subfigure 5.2a to
Subfigure 5.2b involves the curve change in Subfigure 5.2b. In Subfigure 5.2b, the curve starts off

5For Im = 7 this is hard to see on the graph because of the difference in scale for each Im
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non-linearly until the curve in Subfigure 5.2a levels. After the levelling, the curve in Subfigure 5.2b
continues linearly. We believe this happens because rounds with rebalancing cycles present (the
non-linear part of Subfigure 5.2a) behave differently than rounds without rebalancing cycles (the
linear part of Subfigure 5.2a). If a round has rebalancing cycles, EXEC messages are sent for each
cycle found. Once the number of rebalancing cycles starts to diminish, fewer EXEC messages
are sent and edges where w(q) = 0 are excluded from participating in the round. This has the
effect of reducing the number of deadlocks that can appear which in turn reduces the number of
UPDATE messages. Once the protocol reaches a steady state with no new rebalancing cycles, the
same number of messages is sent each round. From that point onwards, the number of messages
sent during the protocol increases linearly for each extra round. This matches the results seen in
Figure 5.2 but also our derived message complexity for each round, O(|Q|2 + |V | · |C|). As |C|
changes, the number of messages for each round changes too. Once |C| is constant and zero, the
same number of messages are sent each round.

Based on the results of both figures, we recommend that one should use ρ = 20 % for small
|P |, as this produces the best result for the minimum number of messages.

Static comparison

In this section, we evaluate the performance of our transaction generation protocol in a head-to-
head comparison with Revive in a static setting with no transactions taking place. We evaluate
both protocols on GDesign, GComplete and GLightning. Both protocols run on the same set of partic-
ipants and the same generated channel balances. Based on the results from previous experiments,
we chose to use hc = 3, Im = 10 and ρ = 20 % as the settings of the transaction generation
protocol. We again ran ten simulations with varying seeds which shuffles the message ordering
and the choice of leader. We present the results of these simulations in Figure 5.3.

Looking at Figure 5.3, it is clear that our transaction generation protocol performs worse than
Revive in the metrics of the experiment. For the same graph and number of participants, our
protocol meets fewer demands, sends more messages and takes longer to execute than Revive.
In designing the protocol, we heavily focused on privacy but not as much on performance. This
focus on privacy is clearly visible in Figure 5.3. Nevertheless, in terms of the number of demands
met, our protocol is always relatively close to Revive even though our protocol is very different
in construction. It is also interesting to see that for small rebalancing graphs, the difference in
messages and time between Revive and our protocol is small. This is positive as we expect a
practical implementation of our protocol to be run on smaller |P |, as this lowers the risks of
pre-emptive terminations due to failures in either the nodes or the communication layer.

Dynamic comparison

The final evaluation in this chapter is a dynamic simulation of both our transaction generation
protocol and Revive. The dynamic simulation differs from the static simulation in that we are not
interested in the number of demands met, the messages send or the time taken, but we are only
interested in the ability of both protocols on the ability of the PCN to carry out transactions and
the effect on the ‘imbalance’ of the PCN. For this reason, the dynamic simulation is only run on
GLightning where we simulate transactions taking place. We then trigger one of the two protocols
to run if a node reaches a certain ‘imbalance’.

We define the ability of the PCN G to carry out transactions as the transaction success ratio,
which is the ratio of the total number of completed multi-hop transactions divided by the total
number of multi-hop transactions. More accurately, as we do not retry failed transactions, this
ratio represents the number of transactions that completed on the first try divided by the total
number of multi-hop transactions. We do not retry transactions as this would make the success
ratio dependent on the number of allowed retries, which is not a parameter we wish to study.

In a PCN, transactions do not complete and fail if there is 1) no path from sender to receiver
or 2) one or more channels along the path do not have enough balance to cover the transaction
amount. With our transaction generation protocol and Revive we introduce another failure rea-
son, 3) if the channel is locked by (an instance of) a protocol. If a channel is locked, committed
transactions using the channel can still execute but any new transactions are denied. If a rebal-
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Figure 5.3: Comparison of our transaction generation protocol and Revive in a static simulation.
The simulation was ran 10 times with hc = 3, Im = 10, ρ = 0.5 and different seeds on GDesign,
GComplete and GLightning. The bars represent the mean of the simulations and the error bars
represent one standard deviation from the mean. The results of the simulations on GLightning are
scaled by powers of 10 to fit on the graph.

ancing protocol balances channels to reduce the cases where 2) happens, it must take care not to
lock the involved channels for too long otherwise 3) becomes the primary reason for transaction
failure. We included Requirement 2b to highlight this concurrency aspect of rebalancing protocol
design, although concurrency is not a design feature of both our transaction generation protocol
and Revive.

We define the imbalance of a node in the same way as [40], who use Equation 5.4 to calculate
the Gini coefficient of one node u.

Gu =

∑
i∈N(u)

∑
j∈N(u)

|ζu,i − ζu,j |

2
∑

i∈N(u)

∑
j∈N(u)

ζu,j
(5.4)

In Equation 5.4, ζu,v = b(eu,v,u)
c(eu,v) , where b(eu,v, u) is the channel balance of u in eu,v and c(eu,v)

the capacity of channel eu,v. If Gu = 0, all the channels of u are equally balanced while if Gu = 1,
all channels of u are as unequal as possible. The authors of [40] then define the imbalance of the
whole G to be equal to the mean of all Gu for u ∈ V . Note that this imbalance metric measures
the equality of balances, while equality might not be the objective of the owners of a channel. To
use Gu as a trigger point for a node u to initiate one of the two rebalancing protocols, we must
also constrain the implementation of negotiateObjective(eu,v) to return a rebalancing demand
that, if met, equalizes eu,v such that b(eu,v, u) = b(eu,v, v).
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The final part of the simulation concerns simulating the transactions in G. To achieve this, we
start by randomly picking a sender and receiver of a transaction from an exponential distributions
with scale λ = 1 and of which the output is scaled such that there is a 1 % chance that the node with
the highest index is picked. Inspired by [47], this causes some senders and receivers to send and
receive more transactions than other nodes. We then randomly generate a transaction amount
from another exponential distribution with λ = 15, which mimics the presence of many small
transaction amounts and some large transaction amounts. We then scale the drawn transaction
amounts such that we receive a transaction success ratio of around 0.7 at the start of the simulation.
Getting the transaction amount exactly representative of a real PCN is not important as we are
only interested in the relative improvement of the transaction success ratio compared to a no
rebalancing scenario. We obtain the path of the transaction using a non-distributed shortest-path
algorithm. We chose to use shortest-path to limit the complexity of the simulation although in a
future, more extensive analysis, the protocols should be compared with different routing algorithms
for the transactions. Many purpose-made routing algorithms for PCNs such as SpeedyMurmurs
[44] are made to tolerate imbalance in PCNs up to a certain point. We expect that using such
routing algorithms can reduce the number of times a rebalancing protocol has to run, which in
turn reduces the amount of locking required.

With this simulation setup, we executed the simulation 10 times for each protocol and with
varying seeds. For the participant discovery used by both protocols, we set hc = 3 and Im = 5
which keeps |P | below 53 = 125. For the transaction generation protocol, we chose ρ = 20 %
as Subfigure 5.2a showed that, for small |P |, this produces the best result attainable with the
minimum amount of messages. Each simulation consists of 5000 transactions which are started
every 500 ms. We trigger a node u to start rebalancing when Gu is larger than or equal to the
Gini coefficient trigger point φ s.t. Gu ≥ φ. We use φ = 0.2 for our simulation and the results of
this experiment can be found in Figure 5.4.

Looking at the results in Subfigure 5.4a, it is interesting to see that both our transaction
generation protocol and Revive achieve a lower success ratio compared to a scenario where no
rebalancing takes place. When comparing the protocol’s effects on the average network imbalance
1/|V |

∑
u∈V Gu, Revive performs better than our protocol in keeping the network imbalance stable.

It is interesting to see that Revive performs only marginally better than our protocol, which causes
us to believe that there is another underlying factor at play besides the benefit Revive has over
our protocol in runtime and optimality of the solution.

We believe that the primary influential factor is the locking of channels done by both protocols,
and that it is both a factor in causing the low success ratio and making both protocols perform
similarly. A requirement of the design of both protocols is that they need to lock the involved
channels in order to execute the rebalancing. However, we believe that while these channels are
locked, many potential transactions have to be aborted because the channels are not available
for transaction routing. We can confirm this by looking at Subfigure 5.4b, which shows that the
majority of aborted transactions during the simulations with rebalancing are caused by channels
being locked.

Aborting transactions decreases the success ratio and also prevents these potential transactions
from increasing the network imbalance. At the same time, the rebalancing protocols execute, which
also decreases the network imbalance. The net effect is that both the success ratio and network
imbalance decrease. This shows that non-concurrent rebalancing protocols have a ‘fake’ and a
‘real’ impact on the network imbalance, where the ‘fake’ impact is caused by the protocols locking
channels during their execution and the ‘real’ impact is the rebalancing done by the protocols.
An extreme example of ‘fake’ rebalancing is when a rebalancing protocol runs on the whole of G,
which causes all channels to be locked, lowering the network imbalance but at the cost of aborting
all transactions.

Other simulations To investigate the influence of our parameters on the dynamic simulation
results, we also ran simulations with different hc, Im and φ. We present some of these simulations
in Appendix C. From our design, we know that hc and Im influence |P | and therefore the number
of channels involved that are locked. In contrast, φ influences the frequency of the locking action
as a high φ causes channels to be involved in more executions of rebalancing protocols when
compared to a low φ. Our experiments show that φ has the most interesting impact on the results

78



0.0

0.2

0.4

0.6

0.8

1.0
Su

cc
es

s r
at

io

0 500 1000 1500 2000 2500
Time (s)

0.088

0.090

0.092

0.094

Av
er

ag
e 

ne
tw

or
k 

im
ba

la
nc

e

Our protocol
Revive
No rebalancing

(a) The success ratio and average network imbalance during the simulation. The solid lines represent
the mean of the simulations and the confidence bounds represent one standard deviation from the
mean.

0

2000

4000
Ou

r p
ro

to
co

l

0

2000

4000

Re
vi

ve

0 500 1000 1500 2000 2500
Time (s)

0

2000

4000

No
 re

ba
la

nc
in

g

Nu
m

be
r o

f a
bo

rte
d 

tra
ns

ac
tio

ns

Aborted because locked
Aborted because no funds

(b) Number of aborted transactions during the simulation averaged over 10 simulations. Confidence
bounds are not shown as the maximum standard deviation σmax ≈ 50.
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and different seeds on GLightning.
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of both protocols, as a high φ allows the average network imbalance to steadily increase with a
marginally higher success ratio while a low φ steadily decreases the imbalance at the cost of a
low success ratio. This suggests that the moment for a node to trigger a rebalancing is what
determines if the network imbalance decreases or increases over time until reaching a steady-state.

As mentioned before, in future work we consider implementing a different transaction routing
algorithm than shortest-path as such algorithms deal better with unavailable channels. This can
be combined with running longer simulations and differing frequencies of transactions.
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Chapter 6

Future Work and Conclusion

Payment channels and payment channel networks are promising technological developments that
have the potential to minimise the impact of slow consensus mechanisms of cryptocurrency
blockchains while preserving many of their security properties. This is achieved by reducing the
number of transactions that need to be performed on the blockchain. Most payment transactions
happen off-chain in a payment channel network, apart from dispute cases. Beyond disputes, the
current design of payment channel networks also requires users to link their cryptocurrency wallets
to their payment channels through opening and closing on-chain transactions. Such transactions
have to take place not only when a user wishes to establish a new channel with another user, but
also when the user runs out of funds in a channel. Running out of funds is a common occurrence
in payment channel networks and is the reason why much research concerning payment channel
networks has focused on creating transaction routing algorithms that take this aspect of payment
channels into account. The main focus of this work was to investigate and design a new privacy-
preserving rebalancing protocol, which is an alternative to the opening and closing of channels.
Our main motivation lies in our analysis of the current state-of-the-art solution Revive [18], which
did not provide any privacy for its users. From our observations, we formulated the following
research question:

How to construct a protocol that allows an arbitrary set of users in a payment channel
network to securely rebalance their channels while achieving sender, receiver, value,
channel balance and path privacy?

In this chapter, we look back at our designs and evaluation, and discuss how well we achieve
our research question and objectives. We also discuss potential focus areas for future research
after which we conclude this thesis.

6.1 Designs and findings
Based on the research question, we created a list of must-have and should-have requirements for our
designs. Requirement 1d specified that our designs should include a privacy-preserving participant
discovery protocol that allows participants to discover each other in order to execute protocols such
as Revive or our transaction generation protocol. We therefore designed a participant discovery
protocol that is based on a peer-to-peer architecture and produces a result where every participant
obtains a list of anonymous identities of other participants.

In the theoretical performance evaluation of the participant discovery protocol, we showed
that it is relatively efficient concerning time and message complexity. We confirmed its message
complexity by running multiple simulations of the protocol on a snapshot of the Lightning Network.
In the privacy analysis of the protocol, we found that the protocol provides participation anonymity
depending on whether the subgraph G′ of participating edges and nodes is very different from the
topology of the overall PCN G. The more different G and G′ are, the harder it is for the adversary
to break the participation anonymity. This is related to the number of corrupted nodes because
as these increase, participation anonymity becomes easier to break for the adversary.
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Besides designing a participant discovery protocol, we also designed a transaction generation
protocol to carry out the rebalancing, similar to Revive. We designed the protocol to cover many
of the must-have requirements, such as generating a non-trivial transaction set (Requirement 1a),
providing balance security (Requirement 1b) and providing privacy (Requirement 1c). A secondary
goal is to have a design that works concurrently (Requirement 2b) and provides performance that
is close or equal to the performance of Revive (Requirement 2a). Throughout the design process,
we chose to focus on a non-concurrent protocol to limit the complexity of the design, thereby
preventing the design from meeting Requirement 2b.

In the security and privacy analysis of the transaction generation protocol, we showed that our
protocol is secure in a malicious setting and that it can guarantee most of the privacy properties set
in our requirements. The ones that cannot be guaranteed are reducible to participation anonymity.
We showed that achieving participation anonymity depends on the graph topology. Relationship
anonymity is the only privacy property that cannot be achieved under any condition due to the
design of the COMMIT and EXEC phase of the protocol. To summarize, our analysis showed that
our design meets Requirement 1b in a malicious setting and the privacy properties of Requirement
1c if restrictions are put on the malicious setting.

In the theoretical performance analysis of the transaction generation protocol, we showed that
the upper bound on the message complexity of the protocol mostly depends on the number of edges
|Q| in the rebalancing graph R. We also showed that the upper bound on the time complexity of
the protocol is most dependent on the number of UPDATE messages sent during the execution of
the protocol. We were only able to achieve an upper bound on the complexity as we were unable,
during the complexity analysis, to obtain an exact time and message complexity for the UPDATE
phase of the transaction generation protocol.

In the practical performance analysis, we analysed the impact of the protocol’s parameters on
the number of rebalancing demands that were met by the execution of our transaction generation
protocol. We showed that if a single execution has more than 20 % · |P |1 rounds, a state of
diminishing returns is reached where the number of demands met marginally increases for a
linear increase in the number of messages sent. We also showed that, in a one-to-one comparison
with Revive, our transaction generation protocol performs slightly worse in meeting rebalancing
demands and much worse in the number of messages sent and runtime. We therefore have not
strictly achieved Requirement 2a but do come close to the intended goal. We consider an actual
optimal rebalancing solution to be unobtainable in all scenarios because of the peer-to-peer design
of our transaction generation protocol.

Finally, we showed that in a dynamic simulation where the protocol is run simultaneously with
transactions, our transaction generation protocol performs similarly to Revive. We argue that
this mainly depends on the non-concurrent nature of both protocols, as locking channels lowers
the success ratio of transactions more than a situation without any rebalancing. We, therefore,
consider that, besides the reduced performance, the non-concurrent nature of our protocol is
its biggest drawback. For a future design iteration, we consider Requirement 2b a must-have
requirement and not a should-have.

6.2 Future work
In this section, we highlight potential ideas for future research based on the insights we obtained
during the work for this thesis. The ideas are organised around improving the privacy, performance
and evaluation of our and other rebalancing protocols.

6.2.1 Improving privacy
The main goal of our research was to create a privacy-preserving alternative to existing rebalancing
solutions such as Revive. In Section 4.8 we showed that our protocol guarantees some, but not all
of the privacy properties we aimed for. In future work, our design could be improved to increase
the number of privacy properties it can guarantee. A first step in such an endeavour would be to
carry out a full analysis of participation anonymity and see if a method can be found to guarantee

1|P| is the number of participants of the protocol
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it in a malicious setting without depending on the complexity of the graph topology. If such a
method is found, its impact might be substantial given that it could be used for other distributed
algorithms outside of rebalancing protocols and on other types of networks outside of PCNs.

A more focused improvement to the privacy properties would be to redesign the COMMIT
and EXEC phase of the transaction generation protocol in combination with a different multi-hop
transaction mechanism such that our protocol provides relationship anonymity. We sketched a
potential architecture for such a mechanism in Section 4.8.

Finally, we recognize that our chosen method is not the only approach which can provide
privacy to users of a rebalancing protocol. Alternative solutions such as using Secure Multi-Party
Computation to carry out the linear program, as used in Revive, might provide a more private and
highly performing solution to on-demand rebalancing. However, we see the complexity of such a
solution as the biggest challenge in realizing it.

6.2.2 Improving performance
During the design of our transaction generation protocol, we touched upon a fundamental problem
of designing a privacy-preserving peer-to-peer protocol for cycle detection. In our protocol, we try
to prevent other nodes from knowing the path and owner of a cycle as this reveals information
about the transactions that are executed during the EXEC phase, such as the senders/receivers
and the path they take. Keeping these cycle properties private creates a problem when two nodes
detect the same cycle, as by design there is no easy way for them to determine that there is
another node trying to claim the same cycle. This problem exists because we based our cycle
detection algorithm on an existing solution of [43]. In [43], if the same cycle is detected by two
or more nodes, the conflict is resolved by having all nodes concede to the node with the lowest
id. This is only possible if all the conflicting nodes know each other’s identity, in contrast to our
solution. It would therefore be interesting to investigate if there exists a way for nodes to resolve
such a conflict without revealing the identities of either node. This has the potential to increase
performance, as our current conflict resolution removes the multi-claimed cycle altogether which
reduces the number of demands met each round.

During the evaluation, it also became clear how much impact the blocking nature of on-demand
rebalancing protocols have on the transaction success ratio of a PCN. Our protocol and Revive
are unable to improve the transaction success ratio due to the locking of channels during their
execution. We, therefore, see it as an interesting potential research question if our protocol or
Revive can be made concurrent or, if not possible, to design a new protocol that is both privacy-
preserving and concurrent.

A more straightforward improvement to performance can also be made by redesigning the
UPDATE and EXEC mechanisms of the transaction generation protocol as they currently have
the largest impact on its message and time complexity.

6.2.3 Improving the evaluation
The evaluation of our protocols and Revive can be improved in many different ways. To increase
the validity of our results, it would be beneficial to port both our protocol and Revive from Kotlin
to the C programming language such that it can be run on the CLoTH simulator [7], which is a
discrete event simulator specifically made to simulate the Lightning Network. Although we stand
by the validity of our static evaluations of both protocols, the dynamic simulation of a PCN is much
more complex due to the limited research and information that is available surrounding aspects
such as the frequency, size and path of transactions. We, therefore, believe that the validity of the
results of the dynamic simulation could be improved when using a tested and reviewed simulator
for PCNs.

Another aspect that would improve the dynamic simulation is the implementation of different
routing algorithms. CLoTH implements the reference Lightning client’s routing algorithm, which
is a modified Dijkstra’s shortest path algorithm. One could also consider implementing routing
algorithms such as SpeedyMurmurs [44] as those claim to achieve a higher transaction success
ratio than Dijkstra’s shortest path or the reference Lightning client implementation. One of the
main goals of rebalancing is to improve the transaction success ratio of the PCN and as this is also
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dependent on the routing algorithm, it would be interesting to see how the different combinations
of routing algorithms and rebalancing protocols affect each other.

Besides comparing different routing algorithms to different on-demand rebalancing protocols,
one could also consider other rebalancing trigger mechanisms besides the Gini coefficient network
imbalance mechanism from [40]. One could consider triggering rebalancing after a certain deviation
from the initial channel balance or a trigger based on historical data showing that the channel can
only process less than x percent of the transactions it processed before. We consider it also possible
that non-concurrent on-demand rebalancing, due to its high impact on transaction success, should
be seen more as a manual cost-saving tool than an automatically triggered mechanism. This would
mean that a rebalancing only runs when a user is unable to carry out a certain transaction on one
of its channels and does not wish to close the channel and pay a fee to open a new one.

Finally, one can consider naively modifying parts of Revive to achieve one or more privacy
properties. This would allow for a performance comparison between two rebalancing protocols
that are closer in privacy-preserving behaviour, in contrast to our current comparison. A relatively
simple option that increases Revive’s privacy is to apply differential privacy [8] to the rebalancing
demands received by the leader. Depending on how the privacy budget of the differential privacy
mechanism is set, partial channel balance privacy can be achieved at the cost of performance. We
expect that Revive’s performance becomes more in line with our transaction generation protocol
with such a privacy-preserving modification.

6.3 Conclusion
We present in this thesis an on-demand, privacy-preserving rebalancing protocol. In our work
we focus on comparing our work to a non privacy-preserving on-demand rebalancing protocol
called Revive [18]. We also present the first, to the best of our knowledge, participation discovery
protocol that allows nodes in a graph to find other interested nodes to execute a distributed
algorithm in a payment channel network.

Our rebalancing protocol design is inspired by the Rocha-Thatte distributed cycle detection
algorithm [43]. We showed that it provides balance security, balance conservation, path privacy
and value privacy in the presence of an adversary with the capability to corrupt nodes in the PCN.
Furthermore, we showed that our protocols can provide participation anonymity, channel balance
privacy and sender/receiver privacy if the adversary is limited in the number of corrupted nodes
and if there are a large number of cycles and edges between honest nodes.

We implemented both designs and showed that the rebalancing obtained by our rebalancing
protocol approaches the optimal solution of Revive, at the cost of an increased message and time
complexity. We also showed that, although our rebalancing protocol is theoretically worse than
Revive in terms of demands met, message and time complexity, both our protocol and Revive
perform similarly in a dynamic PCN simulation where transactions take place simultaneously.
We argue that this is most likely the result of the non-concurrent nature of both algorithms as
they lock channels during their execution. This has a larger impact on the number of aborted
transactions than a lack of balance in the channel.

Finally, we outlined directions for future research in this chapter. In our opinion, the largest
two improvements to be made that would benefit our protocols would be to make their privacy
guarantees more robust with regard to graph topology and to make the rebalancing protocol
concurrent. We expect that a concurrent on-demand rebalancing protocol might be able to increase
the transaction success ratio instead of decreasing it. A higher success ratio would provide a
motivation for PCN users to start using rebalancing protocols which, in the end, reduces the
frequency of on-chain transactions for closing and opening channels.
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Nomenclature

Λd Implementation of a distributed algorithm, page 30

GLedger Global ledger functionality, page 25

ν Execution id of the execution of an algorithm, page 33

φ Gini coefficient trigger point after which to start a rebalancing protocol, page 78

ρ Percentage of participants that should become a leader, page 31

ϕexec Information required to execute a conditional transaction, page 23

ϕsetup Information required to setup a conditional transaction, page 23

~∆m The minimum demand of a cycle, page 31
~∆EX The demand to be executed on a cycle, page 31
~∆u,v The demand or rebalancing objective of an edge eu,v, page 24

Au Anonymous identity of node u, page 30

b(eu,v, v) Balance function, returns the balance of a undirected edge, page 23

c Rebalancing cycle, page 24

c(e) Capacity function, returns the capacity of a undirected edge, page 23

E Set of all eu,v edges in G, page 23

Ep Set of edges participating in the execution of Λd, page 30

Eu Set of all edges e involving u in G, page 23

eu,v Undirected edge between two nodes u and v, represents a payment channel, page 23

G Undirected multigraph, represents a PCN, page 23

hc Hop count, page 30

Imax Maximum number of INVITEs a node may send, page 30

N(u) Set of all neighbours of u, page 23

P Set of participants for the execution of Λd, page 30

p Path in G, page 23

Q Set of all qu,v edges in R, page 24

Qui Set of all incoming edges qi,u of node u, page 24

qu,ci Incoming edge of a cycle c in a node u, page 24
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Quo Set of all outgoing edges qu,i of node u, page 24

qu,co Outgoing edge of a cycle c in a node u, page 24

Qu Set of all edges q of node u, page 24

qu,v Directed weighted edge between two nodes u and v, represents a ~∆u,v, page 24

R Directed weighted multigraph, also called a rebalancing graph, page 24

r Receiver of a transaction, page 23

S Settings for the execution of Λd, page 30

s Sender of a transaction, page 23

Tc Set of cycle tags tc, page 31

Tuc Set of cycle tags tc owned by participant u, page 31

T¬uc Set of cycle tags tc not owned by participant u, page 31

Tr Set of cycle detection tags tr, page 31

tr Cycle detection tag, page 31

V Set of nodes in G, page 23

w(q) Weight function, returns weight of edge q, page 24

x Transaction amount, page 23
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Algorithm 14 Pseudocode for the implementation of the participant discovery protocol for a
node u (part 1/2)
1: awake, started, processedResponses, invitesSend ← false
2: ν,Au, ep, Sd, alg← null
3: P,Ec, Ea, Im ← ∅
4:
5: procedure start(hc, Imax, S,Λd)
6: awake ← true
7: started ← true
8: invitesSend ← true
9: ν ← randomly generated identifier
10: Au ← randomly generated identifier
11: P ← P ∪A
12: for all e ∈ Eu do
13: send (invite;ν,hc, Imax, S,Λd) on edge e
14:
15: upon receipt of (invite;id,hc, Imax, S,Λd) on edge j do
16: if not willing to participate with j then
17: send (deny;id) on edge j and return
18: if ν 6= null ∧ ν 6= id then . Ignore other executions of this algorithm
19: send (deny;id) on edge j and return
20: if ν = null then . Node gets claimed by the starting node
21: awake ← true
22: ν ← id
23: Sd ← S
24: alg ← Λd
25: A← randomly generated identifier
26: P ← P ∪A
27: ep ← j

28:
29: if ¬invitesSend ∧ hc − 1 > 0 ∧ |Eu| > 1 then
30: invitesSend ← true
31: ep ← j
32:
33: for all e ∈ Eu : e 6= ep ∧ e has not been denied do
34: send (invite; ν, hc − 1, Imax, S,Λd) on edge e
35: Im ← Im ∪ e
36:
37: if |Im| > Imax then
38: break
39:
40: return
41:
42: Ea ← Ea ∪ j
43: send (accept; ν, P, ep = j) on edge j and return
44:
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Algorithm 15 Pseudocode for the implementation of the participant discovery protocol for a
node u (part 2/2)
45: upon receipt of (accept;id, R, isChild) on edge j do
46: if ¬awake then return
47: else if ν 6= id ∨ j /∈ Im then
48: send (deny;id) on edge j and return
49:
50: P ← P ∪R
51: Ea ← Ea ∪ j
52: Im ← Im − j
53:
54: if isChild then
55: Ec ← Ec ∪ j
56:
57: handleResponses()
58:
59: upon receipt of (deny;id) on edge j do
60: if ¬awake ∨ j /∈ Im then return
61: Im ← Im − j
62: handleResponses()
63:
64: procedure handleResponses
65: if |Im| = 0 ∧ ¬processedResponses then
66: processedResponses ← true
67:
68: if started then
69: if Ea 6= ∅ then
70: for all e ∈ Ec do
71: send (finish;ν, P ) on edge e
72: execute alg(ν,Au, P, Ea, Sd)
73: terminate
74: else
75: Ea ← Ea ∪ ep
76: send (accept;ν, P, true) on edge ep
77:
78: upon receipt of (finish;id, R) on edge j do
79: if ¬awake then return
80: else if ν 6= id then
81: send (deny;id) on edge j and return
82:
83: P ← R
84: for all e ∈ Ec do . Propagate participant list along tree
85: send (finish;ν, P ) on edge e
86: execute alg(ν,Au, P, Ea, Sd)
87: terminate
88:
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Appendix B

Pseudocode of the transaction
generation protocol

Algorithm 16 Pseudocode for the implementation of the transaction generation protocol for a
node u (part 1/9)
1: . Variables that are received from the participant discovery protocol
2: ν ← Execution ID
3: Au ← Anonymous ID of u
4: P ← Set of participants of the protocol
5: Ea ← Set of participating edges of u
6: S ← Settings of the protocol
7:
8: . Variables that are reset during every invocation of the protocol
9: awake ← false
10: ir ← 0 . Round index
11: Al ← ε . Anonymous id of the round leader
12: LP ← [] . Sorted list of participants
13: Qout ← Set of edges that have outgoing demand
14: Qin ← Set of edges that have incoming demand
15:
16: . Variables that are reset for every round of the protocol
17: roundState←WAIT . Can be one of: WAIT, REQ, SUC, COM, EXEC
18: nsendRequests ← 0
19: forwardedNextRoundMes, execSafe ← false
20: Dtr,q ← ∅ . Map of tr → q

21: Du
tc ← ∅ . Map of tc →

[
qu,ce , qu,cs , ~∆m, completed

]
, where completed is a boolean

22: D¬utc ← ∅ . Map of tr →
[
~∆, qu,co , qu,ci

]
23: Dtc,ϕexec ← ∅ . Map of tc → ϕexec
24: LrREQUEST, LrCOMMIT, LrCycleCOMMIT, LrSUCCESS ← []
25: T recv.

r ← ∅
26:
27: . Predicates
28: Prν(id)← ν = ε ∨ ν 6= id
29: Prr,early(Ai)← LP .indexOf(Ai) < ir
30: Prr,future(Ai)← LP .indexOf(Ai) > ir
31: Prr,diff(Ai)← Ai 6= Al
32: PrnextRound()← roundState = WAIT ∨ (execSafe ∧ (forwardedNextRoundMes ∨Al = Au))
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Algorithm 17 Pseudocode for the implementation of the transaction generation protocol for a
node u (part 2/9)
33: procedure wakeUp
34: if awake then return
35:
36: awake ← true
37: LP ← sort P using fixed sorting algorithm
38: Al ← LP [ir]
39:
40: for all e ∈ Ea do
41: Lock edge e
42: q ← negotiateObjective(e)
43: if w(q) < 0 then
44: Qout ← Qout ∪ {q}
45: else
46: Qin ← Qin ∪ {q}
47:
48: if Al = Au then
49: startRound()
50:
51: procedure startRound
52: if |Qout| = 0 then
53: nextRound()
54: return
55:
56: roundState ← REQ
57: for q ∈ Qout do
58: tr ← randomly generated identifier
59: Dtr,q.put(tr, q)
60: nsendRequests ← nsendRequests + 1
61:
62: send (request;ν,Al, {tr}) on edge q
63:
64: procedure nextRound
65: if Al = Au then
66: for all e ∈ Ea do
67: send (next_round;ν,Al) on edge e
68:
69: ir ← ir + 1
70: Al ← LP [ir]
71: if ir ≥ S[’maxRound’] then
72: Unlock participating edges e ∈ Ea
73: terminate
74:
75: Reset round variables
76: if Al = Au then
77: startRound()
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Algorithm 18 Pseudocode for the implementation of the transaction generation protocol for a
node u (part 3/9)
78: procedure checkForCycles(m = (request;Tr) on edge j)
79: I ← {tr|(tr, q) ∈ Dtr,q} ∩ Tr
80: if |I| > 0 then
81: tmtch

r ← randomly picked tr out of I
82: LrREQUEST ← LrREQUEST −m
83: tc ← randomly generated identifier
84: ~∆m ← w(j)
85: Du

tc .put
(
tc,
[
j,Dtr,q.get(tmtch

r ), ~∆m, false
])

86:
87: send (success;ν,Al, {(tc, ~∆m)}) on edge j
88: return true
89:
90: return false
91:
92: procedure checkForCyclesAndNewTags(m = (request;Tr) on edge j)
93: if checkForCycles(m) then return false
94:
95: T new

r ← Tr − T recv
r

96: if |T new
r | > 0 then

97: T recv
r ← T recv

r ∪ Tr
98:
99: for all q ∈ Qout that did not reply with SUCCESS or FAIL this round do
100: send (update;ν,Al, T new

r ) on edge q
101:
102: return true
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Algorithm 19 Pseudocode for the implementation of the transaction generation protocol for a
node u (part 4/9)
103: upon receipt of m = (request;id,Ai, Tr) on edge j do
104: check-action: Not finished with participant discovery → defer, Prν(id) → disallow
105: check-action: Prr,future(Ai) → defer, Prr,early(Ai) → disallow
106:
107: if |Qout| = 0 then
108: send (fail;ν,Al, 0) on edge j return . 0 = no possibility for a SUCCESS
109:
110: if roundState = WAIT then
111: roundState = REQ
112: T recv

r ← T recv
r ∪ Tr

113:
114: for all q ∈ Qout do
115: tr ← randomly generated identifier
116: Dtr,q.put(tr, q)
117: nsendRequests ← nsendRequests + 1
118:
119: send (request;ν,Al, T recv

r ∪ {tr}) on edge q
120: else if roundState = REQ then
121: if ¬checkForCyclesAndNewTags(m) then return
122: else
123: send (fail;ν,Al, 0) on edge j and return
124:
125: LrREQUEST ← LrREQUEST ∗m
126:
127:
128: upon receipt of m = (update;id,Ai, Tr) on edge j do
129: check-action: Prν(id) - disallow, ¬awake - disallow
130: check-action: Prr,future(Ai) - defer, Prr,early(Ai) - disallow
131:
132: if roundState 6= REQ∨ already send SUCCESS on j this round then
133: return
134:
135: if ¬checkForCyclesAndNewTags(m) then return
136:
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Algorithm 20 Pseudocode for the implementation of the transaction generation protocol for a
node u (part 5/9)
137: upon receipt of m = (success;id,Ai, Tc) on edge j do
138: check-action: Prν(id) → disallow, ¬awake → disallow
139: check-action: Prr,diff(Ai) → disallow
140:
141: if roundState = REQ then
142: LrSUCCESS ← LrSUCCESS ∗m
143: nsendRequests ← nsendRequests − 1
144: replyToRequests()
145:
146:
147: upon receipt of m = (fail;id,Ai, wfailure) on edge j do
148: if roundState = REQ ∧wfailure = 0 then
149: nsendRequests ← nsendRequests − 1
150: replyToRequests()
151:
152:
153: procedure replyToRequests
154: if nsendRequests 6= 0 ∨ roundState 6= REQ then return
155:
156: roundState ← SUC
157: for all (m = (success;id,Ai, Tc) on edge j) ∈ LrSUCCESS do
158: for all (tc, ~∆m) ∈ Tc do
159: if tc ∈ Du

tc then
160: Ltc ← Du

tc .get(tc)
161:
162: if ¬Ltc [3] ∨ ~∆m > Ltc [2] then
163: Du

tc .put
(
tc,
[
Ltc [0], j, ~∆m, true

])
164: else if tc /∈ D¬utc ∨ ~∆m > D¬utc .get(tc)[0] then
165: D¬utc .put

(
tc,
[
~∆m, j, ε

])
166:
167: if Al = Au then . Node started round
168: commitLeader()
169: else
170: LD¬u

tc
←
[
[tc, ~∆m, q

u,c
o , qu,ci ] | (tc, [~∆m, q

u,c
o , qu,ci ]) ∈ D¬utc

]
171: for all (m = (request;id,Ai, Tr) on edge j) ∈ LrREQUEST do
172: N ← splitEqually(w(j),

[
~∆m | [tc, ~∆m, q

u,c
o , qu,ci ] ∈ LD¬u

tc

]
)

173: T¬uc ← ∅
174: for i ∈ [0, |N |) do
175: T¬uc ← T¬uc ∪

{
(LD¬u

tc
[i][0], N [i])

}
176:
177: send (success;ν,Al, T¬uc ) on edge j
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Algorithm 21 Pseudocode for the implementation of the transaction generation protocol for a
node u (part 6/9)
178: procedure commitLeader
179: Dqo

← ∅ . Map of qo →
{

(tc, ~∆EX, ϕsetup)
}

180: commit(Dqo
)

181:
182: if |Du

tc | = 0 then
183: nextRound()
184:
185: procedure commit(Dqo)
186: for all (tc,

[
qu,ce , qu,cs , ~∆m, completed

]
) ∈ Du

tc do
187: if ¬completed then
188: continue
189:
190: if ~∆m > 0 then
191: ϕsetup, ϕexec ← generated by a subroutine
192: Dtc,ϕexec .put(tc, ϕexec)
193: paycond(u, Opp(qu,cs , u), ~∆m, ϕsetup)
194:
195: F ← Dqo

.get(qu,cs ) . Update or create an entry for qu,cs
196: if F = ε then
197: F ← ∅
198: F ← F ∪

{
(tc, ~∆m, ϕsetup)

}
199: Dqo

.put(qu,cs , F )
200:
201: for all q ∈ {j | (m = (success; id, Ai, Tc) on edge j) ∈ LrSUCCESS} do
202: F ← Dqo

.get(q)
203: if F 6= ε then
204: send (commit;ν,Al, F ) on edge q
205: else
206: send (commit;ν,Al, ∅) on edge q
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Algorithm 22 Pseudocode for the implementation of the transaction generation protocol for a
node u (part 7/9)
207: procedure splitEqually(t, Ld) . t is the max amount to be divided, Ld is a list of

demands
208: if t ≥

∑
Ld then

209: R← Ld
210: else
211: R← [0]|Ld|

212: E ← Ld
213: c, r ← t

|E|
214: while c > 0 do
215: for i ∈ [0, |E|) do
216: g ← min(c, E[i])
217: R[i]← R[i] + g
218: E[i]← E[i]− g
219: t← t− g
220: c, r ← t

|E|

221:
222: while r > 0 do . Divide the remainder among the buckets
223: for i ∈ [0, |E|) do
224: g ← min(1, E[i])
225: r ← r − g
226: R[i]← R[i] + g
227: E[i]← E[i]− g
228: if r = 0 then break
229: return R
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Algorithm 23 Pseudocode for the implementation of the transaction generation protocol for a
node u (part 8/9)
230: upon receipt of m = (commit;id,Ai, Tcsetup) on edge j do
231: check-action: Prν(id) → disallow, ¬awake → disallow
232: check-action: Prr,diff(Ai) → disallow
233:
234: if roundState 6= SUC then return
235:
236: roundState← COM
237: if j /∈ {qu,ce | (tc,

[
qu,ce , qu,cs , ~∆m, completed

]
) ∈ Du

tc} then
238: LrCOMMIT ← LrCOMMIT ∗m
239:
240: if |LrCOMMIT| = |LrREQUEST| then
241: Dqo

← ∅ . Map of q →
{

(tc, ~∆EX, ϕsetup)
}

242: for all T icsetup
∈ {Tcsetup | (m = (commit; id, Ai, Tcsetup) on edge j) ∈ LrCOMMIT} do

243: for all (tc, ~∆EX, ϕsetup) ∈ T icsetup
do

244: [~∆, qu,co , qu,ci ]← D¬utc .get(tc)
245: D¬utc .put(tc, [~∆EX, q

u,c
o , j]) . Store the incoming edge of the cycle

246:
247: paycond(u, Opp(qu,co , u), ~∆EX, ϕsetup)
248:
249: F ← Dqo

.get(qu,co ) . Update or create an entry for qo
250: if F = ε then
251: F ← ∅
252: F ← F ∪

{
(tc, ~∆EX, ϕsetup)

}
253: Dqo

.put(qu,co , F )
254:
255: commit(Dqo)
256: else
257: LrCycleCOMMIT ← LrCycleCOMMIT ∗m
258:
259: for all (tc, ~∆EX, ϕsetup) ∈ Tcsetup do
260: ϕexec ← Dtc,ϕexec .get(tc)
261: payexec(u, Opp(j, u), ~∆EX, ϕexec)
262: send (exec;ν,Al, tc, ϕexec) on edge j
263:
264: if |LrCOMMIT|+ |LrCycleCOMMIT| = |LrREQUEST|+ |Du

tc | then
265: roundState← EXEC
266: checkIfExecutionSafe()
267:
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Algorithm 24 Pseudocode for the implementation of the transaction generation protocol for a
node u (part 9/9)
268: procedure checkIfExecutionSafe
269: if |D¬utc | = 0 then
270: execSafe← true
271: if PrnextRound() then
272: nextRound()
273:
274: upon receipt of m = (exec;id,Ai, tc, ϕexec) on edge j do
275: check-action: Prν(id) → disallow, ¬awake → return
276: check-action: Prr,diff(Ai) → return , roundState = COM → defer
277:
278: if roundState = EXEC ∧ tc ∈ D¬utc then
279: [~∆, qu,co , qu,ci ]← D¬utc .get(tc)
280: payexec(u, Opp(qu,ci , u), ~∆, ϕexec)
281: D¬utc .remove(tc)
282:
283: send (exec;ν,Al, tc, ϕexec) on edge qu,ci
284: checkIfExecutionSafe()
285:
286: upon receipt of m = (next_round;id,Ai) on edge j do
287: check-action: Not finished with participant discovery - defer, Prν(id) - disallow
288: check-action: Prr,early(Ai) - return , Prr,future(Ai) - defer
289:
290: if ¬forwardedNextRoundMes then
291: forwardedNextRoundMes← true
292: for all e ∈ Ea do
293: send (next_round;ν,Al) on edge e
294:
295: if PrnextRound() then
296: nextRound()
297:
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Appendix C

Additional dynamic simulations

In this appendix, we provide additional simulation results for the dynamic simulation as described
in Section 5.3.4. The additional simulations consist of five scenarios where the Gini coefficient
trigger point φ ∈ {0.1, 0.2, 0.225, 0.25, 0.3}.
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Figure C.1: Comparison of our transaction generation protocol, Revive and no rebalancing in a
dynamic simulation of a PCN. The simulation was ran 10 times with hc = 3, Im = 3, ρ = 20 %,
φ = 0.1 and different seeds on GLightning. The solid lines represent the mean of the simulations
and the confidence bounds represent one standard deviation from the mean.
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Figure C.2: Comparison of our transaction generation protocol, Revive and no rebalancing in a
dynamic simulation of a PCN. The simulation was ran 10 times with hc = 3, Im = 3, ρ = 20 %,
φ = 0.2 and different seeds on GLightning.
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Figure C.3: Comparison of our transaction generation protocol, Revive and no rebalancing in a
dynamic simulation of a PCN. The simulation was ran 10 times with hc = 3, Im = 3, ρ = 20 %,
φ = 0.225 and different seeds on GLightning.
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Figure C.4: Comparison of our transaction generation protocol, Revive and no rebalancing in a
dynamic simulation of a PCN. The simulation was ran 10 times with hc = 3, Im = 3, ρ = 20 %,
φ = 0.25 and different seeds on GLightning.

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
io

0 500 1000 1500 2000 2500
Time (s)

0.088

0.090

0.092

0.094

Av
er

ag
e 

ne
tw

or
k 

im
ba

la
nc

e

Our protocol
Revive
No rebalancing

Figure C.5: Comparison of our transaction generation protocol, Revive and no rebalancing in a
dynamic simulation of a PCN. The simulation was ran 10 times with hc = 3, Im = 3, ρ = 20 %,
φ = 0.3 and different seeds on GLightning.
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