Detecting malware using process tree and process activity data

Krijn Wijnands
Faculty of Technology, Policy and Management
Delft University of Technology,
the Netherlands
Email: k.j.wijnands @student.tudelft.nl

Abstract—In the last few years malware is incurring more damage
and has become more sophisticated. Current security solutions are still
based on signature and know behavior based detection. This renders
them incapable of detecting new malware. In this paper we will present
an anomaly detection method based on the combined data from process
activities and process trees. We assume that processes from the same
application show comparable process activities and different applications
show differences in the process activities. Using a distance measure on
the process characteristics, depth and cluster from process a and process
b, we can show which processes deviate from the known processes. The
detection algorithm tries to minimize the distance for every process in the
datasets. Evaluation showed that the presented algorithm could detect
processes from two of the three malware samples used. The highest TPR
gained was 0.917. For future research we would recommend using a data
collection set-up in which all data is collected on one machine.

Index Terms—malware detection, process tree, process activities,
anomaly detection.

I. INTRODUCTION

ALWARE is a huge problem in today’s IT environment.

And the predictions are these will incur more damage
and become more sophisticated [1], [2]. Headlines as "En-
terprise bank accounts targeted in new malware attack” [3],
“Hackers attack the energy industry with malware designed
for snooping” [4], "Hackers exploit Flash in one of the largest
malware attacks in recent history” [5] are not uncommon and
are all from the first eight months of 2015. According to [6]
the number of new malware samples discovered each year is
rising significantly, from around 80 million samples in 2013
up to 143 in 2014.

With these huge numbers of new malware samples released,
it is difficult for anti-virus vendors to keep up to speed with
their protection against malware. The reason for this is that
most security solutions are still based on a combination of
Signature-based Detection and Sandboxing. In signature-based
detection hashes of known malware files are used to detect
it on a computer. Sandboxing runs the executable with strict
policies on the host, such that the executable has thinks it can
execute all its commands. The behavior of the executable will
be compared to know malicious behavior.

From the above information it can be concluded that current
security solutions are still based on detecting known malicious
behavior. This creates a head start for the malware developers
and the damage is done before the security vendors can update
their list of known malicious behavior.

To solve this problem, a detection method should be used
that does not rely on known behavior and signatures of known
malware. In current scientific literature a lot is written on
detecting malicious behavior on computers or networks. The
main distinction in detection is made between misuse detection
and anomaly detection. Misuse detection is still based upon

known malicious behavior and is not sufficient for detection
0-day malware or exploits [7]-[9]. In the contrary anomaly
detection is more suitable for detecting 0-day malware and
exploits. The anomaly detection model is based on know
normal behavior and has the ability to detect deviations from
this known normal behavior [7]-[10]. However a disadvantage
of anomaly detection is the higher number of false positives
it generates [11] in comparison to misuse detection.

In this paper we will present a novel anomaly detection
method for malware based on combined data from process
activities and process trees.

In the next section related work will be discussed. After
the related work we will introduce the assumption on which
our presented algorithm is based. Section IV we will explain
what data is collected. The following section will provide an
overview on how the data is collected, after which in section
VI the data processing is explained. In section VII will explain
the novel detection algorithm, which shall be evaluated in
following section. This paper will end with the conclusion in
section IX and recommendations for future research in section
X.

II. RELATED WORK

N [12] anomaly detection on Linux is done by using

process related information, which includes the relation-
ships among processes. This information is used to create a
graph showing the relations between: processes and processes,
processes and programs and processes and system calls. Each
node in the tree consists of two parameters namep,o. and
stadgy. To be able to detect malicious behavior the distance
between the stady of the two nodes is calculated. Then the
model is trained using a supervised SVM on randomly selected
75% of the dataset and evaluated on the remaining 25%. This
was repeated nine times, rendering an accuracy between 0.71
and 0.87.

The concept of process trees for malware detection on Linux
machines is also used in [13]. However instead of system calls
the command line options are recorded.

In [14] a anomaly detection is proposed by using process
properties from Windows systems. The process properties used
are: changes to Windows registry, changes to filesystem, in-
fection of running processes, network activity and the starting
and stopping of Windows services.

In this paper we will extend the above presented work
by presenting a concept of anomaly detection for a single
Windows host based on the use of process trees and process
activity characteristics. The information of the process trees
created, will be combined with the activity characteristics of

the processes. This will be done for malware free datasets,
as well datasets containing malware infections. Then we will
construct three comparing methods to compare the constructed
malware datasets against the clean datasets. The outcome
of these comparisons will be used for detection malicious
behavior.

III. ASSUMPTION

The main assumption on which the presented method is
based, is the that processes from the same application show
comparable process activities and different applications show
differences in the process activities. If we compare the process
activities of the processes from different applications against
each other it will generate a higher distance than when
comparing processes from the same application.

IV. DATASET DESCRIPTION

The data used, is collected by an endpoint security applica-
tion which can log low level process information on Windows
machines and contains the following eight type of events that
can be triggered by a process:

o filesystem

o rEgistry

e process create
e process exit

o thread create

« thread exit

« module load

« object callback

All the event types have the following common data: an
unique process id, an unique id assigned by the endpoint
security application, and a timestamp. The rest of the data
contains event specific data. For example the filesystem event
contains information on what kind of filesystem action is per-
formed, e.g. a write or read action. The registry event contains
information on what registry key action was performed and on
which registry key. Of the data collected, about 85 to 90% are
filesystem events, the registry takes another 8 to 10% of the
collected events.

V. DATA COLLECTION

For our research we have collected four clean datasets
containing each a full boot cycle. Two were collected during
a normal working day and have a time span of around 7 hour
and 50 minutes. The other two clean datasets are of a duration
of less than an hour. Collecting of the data was done on a
employee’s workstation.

Due to security limitations the collection of the malware
data had to be done in a virtual machine. We tried to create
an identical environment as possible. For the creation of the
malware datasets three different types of malware were used.
Namely a banking malware (Dridex), a Remote Access Trojan
and a variant of Zeus malware. Each of these malware samples
was run in the VM whilst working behavior was simulated on
the machine. Again due to security limitations, we were not
able to do normal work on the machine for the risk of leaking
personal or company information.

Therefor the collected malware datasets are much shorter,
ranging from 20 to 40 minutes, in comparison to the clean
datasets. This might be of influence on the outcome of the
evaluation.

The malware datasets will be compared against all the clean
datasets. More on the evaluation set-up in section VIII

VI. DATA PREPARATION

The collected data will be aggregated such that each row of
the dataframe corresponds to a unique process id and contains
node and edge information for the process tree. For every
process we will count how often which event type is triggered
and divide this by the total running time of the process in
seconds. This will provide us with events triggered per second
per process for each event type. This was done to eliminate the
fact that processes running for a long time will show high event
counts. To be able to compare the columns within a dataframe
and between dataframes we normalize the data between 0 and
10, see equation 1. In which z is the value to be normalized,
A and B are the minimum respectively maximum value of the
variable to be normalized and a and b provide the range for
the normalization. For our data a would be zero and b would

be ten.
(x—A)x(b—a)
B-4)

To get the maximum and minimum possible values of the
dataset, all collected data was combined together to normalize
each column. The reason for normalizing the data is the fact
that filesystem and registry events, making up about 95% of
the data, occur way more than a process create or thread create
event. By normalizing the data on each process activity column
we can easily identify high and low values.

A row of the aggregated dataframe contains the following
variables: unique process id, filesystem, registry, process cre-
ate, thread create, module load, ob, unique parent process
id, process executable path, parent process executable path.
Where the second till seventh variable, filesystem till ob,
represent the number of times this event is triggered per second
by the corresponding process. For example table I shows the
normalized number of times such an event type is triggered
per second by the unique process 9999.

6]

TABLE I: Example of events per second

thread module ob
create load

unique filesystem registry
process

id

process
create

9999 0.008845 0.00092 2.06e — 05 0.00669 0 0.00469

The process executable path is an tokenized string of the
location of the executable. This information will not be used
in in the proposed detection method, however it provides
valuable information to check if a process belongs to the same
executable.

As stated in section III we expect that processes from the
same application tend to show the same process activity. If
we cluster the processes based on the six activity types these
processes will be in the same cluster. If a process shows
deviating process activities it will be assigned to another

Fig. 1: K-means plot

cluster. A k-means clustering algorithm will be used for
clustering as this is a widely used clustering algorithm in
anomaly and misuse detection [15]. To cluster the data, the
K-means “Hartigan-Wong” algorithm is used on the clean
datasets by minimizing the within-cluster sum of squares, see
equation 2 [16]. In which ¢ = 1,2,...n, with n defining the
number of events, so the number of processes in the dataset.
j is defined as j = 1,2,...,p, in which p is the number of
variables, so in our case six. z(k, j) is the mean of the variable
j of all elements in a cluster k. The k used will be eight as
the within group sum of squares does not decline that much
more when selecting a greater k, see figure 1

n p
Sum(k) =Y > (x(i,§) — =(k, j))* 2)
i=0 j=0
The found cluster centers will be used to assign the pro-
cesses of the malware datasets to their appropriate cluster
by selecting the cluster center with the lowest distance. For
calculating the distance the Euclidean distance will be used,
see equation 3. The distance is calculated between two vectors
z and y with the dimension ¢ [17, pp.509]. In this case
the dimensions are the eight variables mentioned above. A
distance matrix contains the distance of every combination of
processes between both datasets.

37 (@i —)2 3)

The data is now prepared to be tested by our detection
algorithm, which will be discussed in the next section.

VII. DETECTION ALGORITHM

This section will explain the algorithm used to compare the
malware datasets against the clean datasets.
The algorithm can be described as follow: For every mal-
ware dataset these steps will be done:
1) select a clean dataset
2) For every depth present in the malware dataset we select
the nodes in the malware dataset and clean dataset at the
selected depth, starting from depth 0.
3) At every depth a distance matrix will be calculated using
the Euclidean distance, equation 3, on the following
variables:

o filesystem

o registry

e process create
o thread create
o module load
e Ob

o depth

o fit cluster

4) From the calculated distance matrix we select the min-
imum distance present and assign the distance between
the process from the clean dataset and malware dataset to
the process from the malware dataset and set the distance
to NA in the distance matrix.

5) repeat step 4 until all processes from the selected depth
have an distance assigned

6) repeat steps 2 to 5 until all depths are done

7) Repeat steps 1 to 6 until the malware dataset is compared
to all clean datasets.

The outcome of running this algorithm will create for every
malware dataset four new dataframes containing a distance to
a process in the matching clean dataset.

To mark a process as malicious we will use a threshold
value for the distance. If a process has a distance higher than
the threshold value it will be marked malicious. The used
threshold values will be discussed in the next section.

As the usage of a programs can differ every day, comparing
a dataset in which program A is used to a dataset where pro-
gram A is not used, will result in a high distance and therefor
might be marked as malicious. However when comparing to
a dataset in which program A is used, the processes will have
a low distance. However if a malicious process is present, it
will have a high distance to every dataset.

Therefor a process in the malware dataset will only be
marked malicious, if it is above the set threshold in all four
comparison datasets. For example process ¢ in the banking
malware dataset has a distance above the threshold value for
the comparison with all the four clean dataset it will be marked
malicious.

VIII. EVALUTION

To evaluate the present algorithm we will test if the mali-
cious process are marked as malicious by using six different
threshold values. The values used are the mean, 75%, 80%,
85%, 90% and 95% quantile of the distances found in the
compared malware dataframe.

As we know which processes are malicious we can calculate
the True Positive Rate, the False Positive Rate and Accuracy,
see the equations 4, 5 and 6. Where TP is True positive,
malicious processes marked as malicious and FN is False
Negative, malicious processes marked as benign. FP are the
benign processes marked as malicious, and True Negative are
the correctly marked benign processes.

TPR =TP/(TP + FN) 4)

FPR=FP/(FP+TN) (5)

bank — ratl — rat2 — zeusl — zeus2

['F:
o
=

w0 w08 4095
Threshold type

Fig. 2: The FPR, TPR and ACC of the algorithm for all six threshold
types

ACC = (TP +TN)/(TP+TN + FP+FN) (6)

In figure 2 the TPR, FPR and ACC is shown for all the
datasets on every threshold type. The values for TPR range
from O tot 0.917 (on the banking malware), for FPR is between
0.013 and 0.232 and the ACC range from 0.728 up to 0.958.

The threshold type given the best TPR is the 75% quantile,
however together with a rising the TPR the FPR will rise as
well and the ACC will go down.

The presented algorithm was capable of detecting at least
some of malicious processes from the banking and RAT
malware, however it was incapable of detecting any of the
malicious processes from the Zeus malware.

We analyzed the malicious processes from the Zeus malware
to find out why it was not detected. The processes from the
Zeus malware showed low values on the process activities.
This might imply that the Zeus malware was only installed
and started listing for a command from command and control
center, but not receive any. The not receiving of any command
might have to do with the fact that the collection of the
malware datasets was a very short period.

IX. CONCLUSION

In this paper we presented a novel anomaly detection
method for malware based on combined data from process
activities and process trees. We explained what kind of data
was collected and which processing steps are taken. The
evaluation of the detection algorithm showed that it was
capable of detecting malicious processes from two of the three
malware types. However a higher TPR give a higher FPR as
well.

X. RECOMMENDATIONS

The set-up for our data collection was, due to security
limitations, not ideal. For future research we would advise
to perform the same experiment with the data, clean and
malware, collected on the same machine. Hereby eliminating
any inconsistencies in the programs installed and used.

In the conducted research only one k value was tested, in
future research testing the impact of other numbers of k might
render a higher success rate.

The data was normalized between zero and ten. However
other normalization methods, such as Z-score, might render
different results.

In addition during analyzing the data we concluded that
some process perform a set number of actions, however
different running times due to using different machines, will
change the number of events per second. This will create other
characteristics for a process whilst it is performing exact the
same actions. Therefore further research should be conducted
on converting the number of events into a value that can be
comparable.

The number of malware samples tested was low, to get a
better insight in the performance of the presented algorithm it
should be tested on a larger amount of malware samples. The
problem hereby is that generating the data for the malware
samples is quite time consuming.

REFERENCES

[1

—

“Security threat report 2014: Smarter, shadier, stealthier malware,”
Report, Sophos, 2013. [Online]. Available: http://www.sophos.com/en-
us/medialibrary/PDFs/other/sophos-security-threat-report-2014.pdf

[2] “Five predictions for information security and cybercrime in

2014, http://www.theguardian.com/media-network/media-network-

blog/2013/dec/10/predictions-information-security-cybercrime-2014,

Dec. 2013, [Online; accessed 30-June-2014].

“Enterprise bank accounts targeted in new malware attack,”

www.pcworld.com/article/2906056/enterpise-bank-accounts-targeted-in-

new-malware-attack.html, April 2015, [Online; accessed 1-September-

2015].

“Hackers attack the energy industry with malware designed for snoop-

ing,” http://fortune.com/2015/03/31/spies-malware-energy-email, March

2015, [Online; accessed 1-September-2015].

[5] “Hackers exploit flash in one of the largest malware attacks in re-

cent history,” https://bgr.com/2015/08/04/hackers-flash-yahoo-malware-

attack/, August 2015, [Online; accessed 1-September-2015].

“Number of new malware per year,” http://www.av-

test.org/en/statistics/malware/, [Online; accessed 15-january-2015].

J. Song, H. Takakura, Y. Okabe, and K. Nakao, “Toward

a more practical unsupervised anomaly detection system,”

Information ~ Sciences, vol. 231, no. 0, pp. 4 - 14, 2013,

data Mining for Information Security. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0020025511004245

[8] P. Casas, J. Mazel, and P. Owezarski, “Unsupervised
network intrusion detection systems: Detecting the unknown
without knowledge,” Computer =~ Communications, vol. 35,
no. 7, pp. 772 - 783, 2012. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0140366412000266

[9] R. Sommer and V. Paxson, “Outside the closed world: On using machine
learning for network intrusion detection,” in Security and Privacy (SP),
2010 IEEE Symposium on, May 2010, pp. 305-316.

[10] J. M. Harjinder Kaur, Gurpreet Singh, “A review of machine learning
based anomaly detection techniques,” International Journal of Computer
Applications Technology and Research, vol. 2, no. 2, pp. 185 — 187,
2013.

[11] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A
survey,” ACM Comput. Surv., vol. 41, no. 3, pp. 15:1-15:58, Jul. 2009.
[Online]. Available: http://doi.acm.org/10.1145/1541880.1541882

[12] C. Wagner, G. Wagener, R. State, and T. Engel, “Malware analysis with
graph kernels and support vector machines,” in Malicious and Unwanted
Software (MALWARE), 2009 4th International Conference on. IEEE,
2009, pp. 63-68.

[13] G. Wagener, A. Dulaunoy, T. Engel ef al., “Self adaptive high interaction

honeypots driven by game theory,” in Stabilization, Safety, and Security

of Distributed Systems. Springer, 2009, pp. 741-755.

—
w
—

[4

—_

[6

—_

[7

—

[14]

[15]

[16]

(171

K. Rieck, T. Holz, C. Willems, P. Dssel, and P. Laskov, “Learning
and classification of malware behavior,” in Detection of Intrusions and
Malware, and Vulnerability Assessment, ser. Lecture Notes in Computer
Science, D. Zamboni, Ed. Springer Berlin Heidelberg, 2008, vol. 5137,
pp. 108-125.

D.-K. Kang, D. Fuller, and V. Honavar, “Learning classifiers for misuse
and anomaly detection using a bag of system calls representation,” in
Information Assurance Workshop, 2005. IAW ’05. Proceedings from the
Sixth Annual IEEE SMC, June 2005, pp. 118-125.

J. A. Hartigan and M. A. Wong, “Algorithm as 136: A k-means
clustering algorithm,” Journal of the Royal Statistical Society. Series C
(Applied Statistics), vol. 28, no. 1, pp. pp. 100-108, 1979. [Online].
Available: http://www.jstor.org/stable/2346830

T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning. Springer, 2009.

