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Preface

Dear reader,

| present my thesis titled “Trajectory optimization to minimize the environmental impact of departing
and arriving aircraft”. My research entails implementing a genetic algorithm to reduce the climate and
air quality costs of an aircraft’s climb and descent flight phases. | have chosen this thesis topic because
it combines optimization with sustainability in the aviation industry. Additionally, it required me to use
the knowledge and experience obtained during the bachelor and master courses and projects.

| sincerely hope another student or researcher is inspired to build on this research. A lot is to be
explored before the optimization can be implemented in real life. One could, for instance, include the
cruise phase or aircraft separation in the established optimization program. | encourage others to follow
any of my recommendations such that the high-potential strategy of optimizing aircraft trajectories for
an environmental objective can one day be implemented.

| have grown tremendously during the past six years at the Delft University of Technology. | vividly
remember walking into the first lecture of the Faculty of Aerospace Engineering as an unknowing 17-
year-old. | am glad | have developed myself extensively besides the challenging bachelor’s and mas-
ter’'s programs. The icing on the cake of my extracurricular activities is my full-time board year at the
VSV 'Leonardo da Vinci’. | have had the privilege to connect with and learn from many inspiring people,
and | got an insight into what the aerospace industry offers. Now, full of knowledge and experience, |
look forward to proudly call myself a Delft Aerospace Engineer.

All of this was only possible with the presence and help of others. | want to thank my friends, family
and peers generously. This thesis has challenged me in many ways, and at times, | doubted if | could
finish it all in time. | am glad to be surrounded by people that support and encourage me to keep
striving.

My supervisor Dr. Junzi Sun deserves a massive thank you, as well. | enjoyed our meetings full
of discussions, and Junzi happily answered all my questions. | have learned a lot about programming
and optimization techniques from Junzi. He shared enthusiasm about the topic, which has motivated
me immensely throughout the past ten months. Also, | would like to thank Prof. dr. ir. Jacco Hoekstra
for his feedback and critical questions during the milestone meetings.

Lastly, | want to thank you, the reader: enjoy reading about this exciting topic.

L.H. van Dam
Delft, 4 November 2022
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L.H. van Dam
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Abstract—The aviation industry faces the challenge of reducing
its climate effects. This paper aims to determine whether
optimizing flight trajectories can reduce the environmental impact
of aircraft during the climb and descent phases. It addresses
the research gap in sustainable flight trajectory optimization by
combining state-of-the-art research on optimization techniques
with research on aviation’s climate effects. A genetic algorithm is
created for the climb and descent phases to minimize the impact
of gaseous emissions; the objective function entails the climate
and air quality costs of the emission of carbon dioxide, carbon
monoxide, nitrogen oxides, sulfur oxides, and water vapor. OpenAP
is used to evaluate the emissions of aircraft. The optimization
includes variable mass and speed, wind, departure and arrival
procedures, and airspace constraints. The optimization considers
both the vertical and horizontal flight paths simultaneously. The
model was tested for more than 22,000 flights in June 2018 at
Amsterdam Schiphol Airport. It has been found that an average
reduction in environmental costs of 8.6% and 18.6% is achievable
for departing and arriving flights, respectively. The reduction
depends on the aircraft type, weather conditions, and whether
the aircraft departs or arrives. The open-source optimization
model can be used for further research, for instance, evaluating
the reduction possibilities at different locations. The research
shows that the aviation industry can reduce its environmental
impact considerably by optimizing departing and arriving traffic
trajectories.

I. INTRODUCTION

Researchers expect that the global number of flights will
increase in the coming years [1], while simultaneously, the
aviation climate effects should be reduced [2]. The aviation
industry negatively affects the global climate and the health
of people and wildlife; aviation affects the environment in the
broadest sense [3].

The industry’s environmental impact can be reduced in
several ways. Teoh and Khoo [4] suggest a few: aircraft
itself could be designed more sustainably; a greener form
of propulsion could be used; policies and regulations could be
altered, such as introducing the Emission Trading Scheme [5];
and current aircraft operations can be improved. This paper
explores the latter strategy through rerouting flights.

The topic of sustainability in the aviation industry has been
on the rise in recent years. The research on sustainable flight
trajectory optimization follows the same trend [6]. However,
gaps in the research area still need to be addressed.

One of these gaps is the optimization of climb and descent
operations for environmental impact. Many studies have been
conducted on optimizing flight trajectories in the terminal
maneuvering area (TMA), such as a study by Ma et al. [7].

However, most focus on minimizing the number of conflicts or
delays in the TMA; only a few studies optimize the trajectories
for an environmental objective [6]. Besides, procedures and
regulations of air traffic control (ATC) complicate the opti-
mization of the flight trajectories in the TMA. Efforts have
been made to reduce the impact of aviation during climb and
descent, employing so-called continuous climb and descent
operations (CCO and CDO). These operations should have a
limited impact on the conflicts and sequencing problems in the
TMA [8]. However, these operations do not focus primarily
on minimizing environmental effects. CDOs, for instance, are
focused on maintaining an idle thrust setting [9].

Aircraft emit various gasses that affect the environment.
These include carbon oxides (COy), nitrogen oxides (NOj),
sulfur oxides (SO,), water vapor (H,O), hydrocarbons (HC),
soot particles, and others in smaller quantities [5, 10]. The
sum of these emissions results in positive radiative forcing,
meaning the emissions are warming the atmosphere [11].

The emission location is one factor that affects the amount
and impact of the emitted gasses [12]. The different types have
varying effects throughout a flight [13]. For example, CO has
an effect primarily at low altitudes, whereas contrails form at
cruise altitudes. Contrails have little impact during the climb
and descent phases and, thus, are not further considered in this
paper [14]. Rerouting aircraft does not mitigate the negative
effect of soot particles; using greener fuels can achieve this
[1]. Therefore, the analysis excludes soot particles.

Another climate effect is noise production. Even though it is
considered a threat to human health [15], this study excludes
it. The reason is that the noise modeling for the optimization
is complex and beyond the scope of this research [6].

The focus of the proposed research is the environmental
impact of emissions. Hammad et al. [6] found that the
minimization of gaseous emissions was the objective in 20% of
the studies regarding sustainable flight trajectory optimization.

Climate metrics are employed to evaluate the impact of the
emissions. Climate metrics can be purely physical, for instance,
through the weight of the emitted gasses or obtaining the
global temperature change potential (GTP) [6, 16]. Monetary
metrics can also be used for quantifying emissions. Grobler
et al. [1] determined the environmental cost of aviation by
translating GTP values into a currency. This metric is chosen
because it reflects emissions’ social and environmental effects;
the cost established by the researchers combines health, welfare,
and ecology. It should be noted that considerable uncertainty
is present in quantifying aircraft emissions due to a lack of



knowledge of atmospheric processes [11, 17].

There are several numerical methods to choose from concern-
ing the trajectory optimization problem. The techniques can be
divided into optimal (such as direct methods and dynamic
programming) and non-optimal (such as meta-heuristics).
According to Simorgh et al. [17], the choice for one of the two
categories is equally divided in the climate optimal trajectory
planning studies scrutinized in their review paper. The best
method for the problem at hand depends on the objective,
constraints, and other variables one wishes to include [17].

According to Hammad et al. [6], a direct method and a
genetic algorithm (GA) are frequently used solution techniques
in sustainable trajectory optimization for aircraft. A direct
method often provides a more accurate solution to the problem
at hand than a GA. A direct method’s complexity is a
drawback, leading to time-consuming and computationally
heavy optimization programs. Besides, a GA is considered
a global search technique [18], whereas direct methods have a
chance of getting trapped in the local optimum [17]. Because of
these findings and the popularity of the GA as a meta-heuristic,
this study adopts this solution technique.

Several studies employ a GA: Yamashita et al. [19] create
one in AirTraf 2.0 to optimize for various objectives, and Patrén
and Botez [20] also employ a GA, minimizing the operating
costs. Both papers optimize the cruise phase in lateral and
vertical directions considering the wind. These studies, among
others, are used to establish a GA for this research.

This paper aims to determine whether optimizing flight
trajectories can reduce the environmental impact of aircraft
during the climb and descent phases. An open-source GA is
created to minimize the impact of gaseous emissions. It is
desired that the model includes variable mass and speed, wind,
departure and arrival procedures, and airspace constraints. The
optimization is to consider both the vertical and horizontal
flight paths simultaneously. The research aims to bridge
the sustainable air traffic management gap by reducing the
environmental footprint within the climb and descent phases.

This article has thus far presented an introduction to the
research topic and provided background knowledge. The theory
and methodology applicable to the research are described in

section IL. It is followed by section III, in which the research
case study is explained. Sections IV and V present the case
study results and discussion, respectively. Section VI concludes
the article, and provides recommendations, as well. Finally,
Appendices A, B, C, D, and E provide additional information.

II. METHODOLOGY
A. Genetic Algorithm

The genetic algorithm is based on the natural evolution
process. The iterative process is visualized in Figure 1. At
first, the model generates a random set (generation) of possible
solutions (individuals). It then determines each individual’s
fitness (objective function). The model assigns individuals to
be parents depending on the chosen selection method. The
parents will reproduce and generate children, creating new
solutions. The model randomly alters parts of some solutions
(mutation) to decrease the likelihood of getting trapped in a
local optimum. After that, the model evaluates new individuals’
fitness and repeats the selection, crossover, mutation, and fitness
evaluation process. Whenever the GA meets a stopping criterion,
it terminates. [20, 21]

The individuals should be defined numerically so that the
steps of the GA can be taken. This definition can be done
in several ways: Yamashita et al. [21] utilize control points
and basis splines to formulate solutions; Patréon and Botez
[20] use a three-dimensional grid consisting of waypoints. The
formulation of a solution in this paper is inspired by the latter.
It implements a value-encoded genetic algorithm. An individual
is defined to have a fixed number of connected nodes (7,,04¢)
forming a trajectory. The aircraft’s position in a coordinate
reference system at each node is defined in the horizontal (x
and y) and vertical (z) planes. Besides, the velocity profile
is defined per individual by a single value for the calibrated
airspeed (Vcas) and one for the Mach number (M). Figure 2
visualizes the definition. It displays the origin (node 0), two
arbitrary adjacent nodes (nodes j and j+ 1), and the final node
(node ny0de)-

The fitness of each solution is calculated to evaluate the
solutions quantitatively. As discussed in section I, the climate

Create first
generation

]—l>[ Determine fitness ]—l>[ Select parents }—D{ Crossover }—D{

Mutate ’

Qoo
Yes

!

Determine fitness

Eliminate worst

o

Fig. 1. Flow diagram of the created genetic algorithm. The rectangular blocks represent functions in the model. The

oval blocks represent the stopping criteria.
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Fig. 2. Visualization of the definition of a single solution in

the GA. The position (x, y, and z) is defined at each node.

Additionally, a value for Vo a5 and M is set.

metric chosen for this is the climate and air quality costs
established by Grobler et al. [1]. These costs differ per flight
phase because the emission’s effect depends on the altitude
[12]; below 3,000 ft, the "Landing and take-off" costs are used,

and above that threshold, the "En route" costs are in place.

Table I presents the costs. Grobler et al. [1] found different costs

per region for air quality. This study uses the costs for Europe.

The cost with a 3% discount rate applied by the researchers
is chosen. The individual’s fitness is found by summing the
costs of each emission along its trajectory.

As further described in subsection II-D, the optimization
includes constraints. Individuals are "punished" for violating a
constraint through a penalty function. The penalties are given in
percentages of the individual’s fitness and differ per constraint;
high-priority constraints have more considerable penalties than
low-priority ones. Equation 1 provides the relation between
the pseudo-fitness (f;,) and the fitness (f). In the equation, i
represents the index of the individual. The pseudo-fitness is
found by adding the product of the fitness and the summed
penalty factors (p) to the fitness. Tables III, IV, and V overview
the constraints and the penalties assigned if violated. It is
discussed further in subsection II-D.

foo= (14 0) - £ M

The GA chooses pairs of parents for each iteration based on
the roulette wheel selection method. Yamashita et al. [21]
also use this methodology. Depending on the individual’s
pseudo-fitness, it is assigned a probability; a high-scoring
individual in terms of pseudo-fitness has a higher chance of
being selected for the crossover. The probability is calculated
using Equation 2. The pseudo-fitness of all individuals in
a generation is represented by fp,, and P; represents the
individual’s probability of breeding. The original formula is
for a maximization problem and has been taken from an article

by Blickle and Tiele [22]. The formula is rewritten to apply to
a minimization problem.

o max(fp)_fpi
! max(fp) — min(fp)

A linear crossover has been chosen because it is effective
for value-encoded GAs. Each parent pair (p; and p,) produces
three children (cq, ¢z, and c3). The children’s values of x, y,
and z at all nodes and the values of Vcas and M are found
using the parents’ values at the corresponding nodes according
to Equation 3. These formulae are applied to each value at all
nodes separately.

2)

c1=05-p1+05:-ps
c2=15-p1 =05 -p» 3)
c3=—05-p1+15:-p
Figure 3 visualizes the crossover of a single value; it shows
the x value at node j for the parents (black dots) and the

children (white dots). The children’s values are found using
Equation 3.

C2 P4 Cq p2 C3
ol 0T e
0 1 2 3 4

%]

Fig. 3. Visualization of the linear crossover of a single value
(x;) of an individual’s node. It shows the values of x; of
the parents (p; and p») in black and the children’s (c;, ¢,
and c3) values in white. The latter values are found using
Equation 3.

Mutations occur in the production of new individuals in a
GA. A mutation probability (p,,) is specified and determines
the number of mutated nodes. The states at the first and final
nodes are not mutated such that they adhere to the boundary
constraints defined in subsection II-D. The values at the chosen
nodes are mutated according to a normal distribution. Each
state is assigned a specific value for the standard deviation
(o). These values are tuned for the case study described in
section III. The tuning is described at the end of this subsection.

To determine which individuals enter the next generation,
all parents and children, after the mutation, are evaluated on
their pseudo-fitness. The best n;,4 (number of individuals in

TABLE I. Climate, air quality and total costs of gaseous emission by aviation as found by Grobler et al. [1] for the
landing and take-off (below 3,000 f¢) and en route (above 3,000 f7) phases. The costs with a 3% discount rate are
chosen [1]. The costs are given in monetary values per tonne of emitted gas. The air quality costs are for Europe only.

Landing and Take-Off En Route
Climate Air Quality Total Climate Air Quality Total
CO, 45 N/A 45 45 N/A 45
CcoO N/A 1,100 1,100 N/A 270 270
NO, -590 67,000 66,410 -940 31,000 30,060
H,0 N/A N/A 0 2.8 N/A 2.8
SOy  -2,600 52,000 49,400 -20,000 42,000 22,000



a generation) solutions comprise the next generation, after
which the process is repeated until the maximum number of
generations (250) is reached or when the fitness of the best
solution is stagnated over a number of generations (20).

The settings of the genetic algorithm, such as n,04es Rind,

Pm, and o, greatly affect the workings of the optimization.

The settings presented in Table II are chosen by evaluating the
results of various optimizations.

TABLE II. The values set for the various GA variables.

Variable ‘ Pm Oxy Oz O0OCAS OM Nind  Nnode

Value ‘ 0.1 50 10 1 0.01 100 50

Twenty flights with varying destinations, aircraft types,
and routes have been chosen. Appendix A provides more
information on these flights. These flights have been optimized
seventeen times with varying settings for the GA. In Figure 4,
the resulting mean reduction in cost, when compared to
the actual flight, is plotted against the average number of
constraints violated per flight. A trade-off has been made
between the resulting cost reduction, violation of constraints,
and computation time. Based on this, an appropriate setting
for the parameters is in the lower left corner of Figure 4. The
optimization with the least number of constraint violations and
a relatively good score on fitness has been chosen for the case
study presented in section III. Figure 4 indicates it as an orange
star.

Figure 5 displays the mean cost difference in percentages
between the actual and optimized trajectory against the number
of generations. A spread in the form of 95% confidence is also
provided. It can be seen that between 100 and 150 generations,
the convergence stagnates. The exact number differs per flight
and run. Thus, the maximum number of generations is set to
250.
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Fig. 4. The results of seventeen runs with varying parameter
settings expressed in the number of constraints violated per
flight and the mean reduction in cost. Each dot represents
a run. The orange star represents the run with the chosen
parameter setting. Table II provides the settings. The same
twenty flights are considered for each run. See Appendix
A for more information on the flights.
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Fig. 5. The mean relative cost difference between the
optimized and actual trajectory over the number of
generations. The 95% confidence interval is given as a blue
shade. The chosen parameter settings provided in Table II
are used for the twenty flights of the tuning process. See
Appendix A for more information on the flights.

B. Aircraft Model and Flight Dynamics

This study uses OpenAP for computations concerning aircraft
performance. It constitutes Python packages through which,
for example, it computes the aircraft’s forces and fuel usage.
Also, OpenAP includes aircraft data and provides information
on emissions [23]. OpenAP does not comprise all emitted
gasses described previously, such as hydrocarbons. Thus, the
evaluation of climate and air quality costs is limited to CO;,
CO, NO,, SOy, and H,O.

A point mass model with four degrees of freedom describes
the dynamics of an aircraft in OpenAP [23]. The available
aircraft types in the module are the most used commercial
aircraft. According to Sun and Dedoussi [24, p. 8], OpenAP
can be used "for around 94% of flights in European airspaces".
This is assumed sufficient for this study to demonstrate how a
reduction in aviation’s environmental footprint in the climb and
descent phases can be achieved. The model uses the default
engine available in OpenAP.

Furthermore, several assumptions on flight dynamics are
made. The true airspeed (Vras) is assumed to be parallel to the
ground. For departing aircraft, the velocity profile consists of a
constant acceleration at 0.1 m/s> from the initial velocity until
the aircraft reaches a constant Vcag. The aircraft maintains
this constant velocity until it reaches crossover altitude. It
then switches over to a constant M. This velocity profile
is assumed because it is considered a standard operational
procedure. The model calculates the thrust according to the
climb phase calculations in OpenAP.

Arriving aircraft first maintain a constant M until they reach
crossover altitude. Then the setting is switched to a constant
Vcas. The thrust is calculated using the idle descent setting
in OpenAP. This setting corresponds to the CDO concept [8].

C. SID, STAR, and Restricted Airspace

Aircraft must follow set routes when leaving or approaching
an airport: Standard Instrument Departures (SIDs) and Standard



Arrival Routes (STARs). The route consists of several waypoints
that aircraft should fly over. Besides, ATC may impose
constraints on velocity and altitude at these positions. The SIDs
and STARs ensure that the ATC has an increased overview of
the air traffic surrounding the airport.

In the optimization, trajectories should adhere to these
procedures and constraints to keep them realistic. Aircraft
should fly past the SID or STAR waypoints within a radius of
5 nm. The calibrated airspeed below flight level (FL) 100 cannot
exceed 250 kts. Additionally, the altitude at the initial approach
fix (IAF) — the final waypoint of a STAR — is constrained
between FL70 and FL100. For departing and arriving aircraft,
the trajectory can follow any route from the final waypoint to
the final position. The model excludes ATC interventions, such
as vectoring and holding patterns. The first generation in the
GA consists of n;,4 mutated versions of the to-be-followed
SID or STAR.

Additionally, airspace can be considered a restricted area
(RA) for aircraft. The model includes these areas and penalizes
solutions for passing through restricted airspace. The model
implements restricted airspace in the shape of beams and
cylinders.

D. Constraints

Typically, a trajectory optimization problem includes three

types of constraints: dynamic, boundary, and path constraints.

The constraints imposed on the model are listed in Tables
III, IV, and V and further explained in this subsection. The
penalty factors given in the tables are based on the priority of
each constraint; more considerable penalties are assigned to
constraints with a higher priority.

Dynamic constraints ensure that aircraft remain within the
flight envelope [13]. Dynamic constraints are imposed on
the flight path angle (y), velocity (Vcas, M, and Vj, the
vertical velocity), forces, acceleration, and mass. The values of
the constraints depend on the selected aircraft, and OpenAP

contains this information. Table III overviews the constraints.

Equations 4 and 5 provide a detailed version of the total energy
and force constraints. The thrust is represented by 7', the drag
by D, the mass by m, the gravitational acceleration by g, and
the acceleration by a. These constraints are included to make
sure that the aircraft can generate the necessary power for the
desired climb, descent or acceleration [25].

Tmux_D Vs
S8 450 &)

m Vras
T-m-g-siny—D <0 (5)

The boundary constraints specify the values of variables on
the boundaries — the initial and final values. These are in place
for the position and mass. The initial mass is determined to be
90% of the maximum take-off weight (MTOW) for departing
aircraft and 80% of the maximum landing weight (MLW)
for arriving aircraft. These values are based on empirical
knowledge and applied to all aircraft used in the case study.
Table IV lists the boundary constraints. MTOW and MLW
can be taken from OpenAP and depend on the aircraft type.

TABLE III. Dynamic constraints imposed on the flight path.
The flight type ""D'" describes departure aircraft, whereas
"A" describes arrival aircraft. OpenAP provides the
maximum operating velocity (VMO), maximum operating
Mach number (MMO), and maximum value for V; per
aircraft type.

Variable Flight Type Lower Upper Penalty

Ve as D&A 0 VMO 3%

M D&A 0 MMO 3%

Ag D&A - 90° 17%

Ay D& A - 5° 17%

Vs D&A - Max. 17%
Total Energy D 0 - 10%
Force A - 0 10%

TABLE IV. Boundary constraints imposed on the flight
path. The operational empty weight (OEW), MTOW, and
MLW can be found in OpenAP and are aircraft-dependent.

Variable Flight Type Initial Final Penalty
m D 0.9MTOW >OEW 5%
m A 0.8MLW  >0OEW 5%

The evaluated flight defines the boundary conditions for the
position. Section III discusses this in more detail.

The path constraints are imposed on the aircraft states
between the boundary points [13]. Table V presents the
path constraints. The previously described SIDs, STARs, and
restricted airspace impose constraints on the optimization. Also,
the model constrains the vertical position between the airport’s
altitude and the aircraft’s ceiling altitude. The model also limits
each node’s heading and flight path angle change.

TABLE V. Path constraints imposed on the flight trajectory.
The airport and ceiling altitude can be found in OpenAP.

Variable Flight Type Lower Upper Penalty
z D &A Airport  Ceiling 5%
z at IAF A FL70  FL100 10%
Veas <FL100 D&A 0 250kts 17%
RA D&A - - 25%
SID/STAR D&A - - 25%
E. Wind

The inclusion of wind in the model only directly affects
the aircraft’s ground speed (GS). Equation 6 gives the relation
between the wind (i), ground speed, and true airspeed. The
wind’s velocity and direction are assumed to be constant
throughout a flight.

GS = Vyas +ii (6)

III. Case Stupy

A case study is conducted to test the model’s capabilities.
Through the study, it can be determined whether it can minimize
the environmental impact during the climb and descent phases
through trajectory optimization.



A. Location

A comparison is made between the actual route’s climate and
air quality costs and the optimized trajectory’s costs. The case
study is conducted for a single airport, Amsterdam Schiphol
Airport (EHAM), for June 2018. The search space around the
airport is a square with sides of 500 km with EHAM as the
center. The size is chosen such that most aircraft can complete
an entire descent or climb within the search space.

B. Wind and Airspace Data

Data on the wind in June 2018 at and around EHAM is
taken from the ERAS hourly reanalysis model [26]. The wind
considered in the analysis is from the hour at the start of the
aircraft’s trajectory within the search space. As mentioned in
subsection II-E, the wind is assumed constant for the entire
flight.

The information on the waypoints, SIDs, STARs and
restricted airspace applicable at and around EHAM is available
via the aeronautical information publication (AIP)!. The SIDs
are taken from June 2017 [27], and the STARs from March
2018 [28]. Figure 6 shows the restricted airspace included in the
optimization in red. Appendix B lists the names and locations
of the included restricted airspace. The study does not consider
all restricted airspace indicated by the AIPSection III-B, only
the ones that can affect the trajectories are considered. This is
done because the computation time increases with an increasing
number of objects to check.

C. Flight Data

Real flight trajectory data are required and are obtained via
traffic [29] from The OpenSky Network’s historical database?.
The data for June 8, 2018, is unavailable. Therefore, the model
evaluates 29 days of flights. It only considers flights that depart
or arrive at EHAM. The flights with aircraft that are unavailable
in OpenAP are removed. The data are also filtered for duplicates,
outliers, and missing points. Aircraft that climb, cruise, and
descent within the search space are filtered. Flights with too
few data points (<n,,q.) are not considered. Table VI lists
the number of flights removed from the data per filter. Of the
34,608 flights available at first, the filters eliminated 7,002,
leaving 27,606 (x80%) to be evaluated and optimized.

D. Route Identification
The model could not detect the SID or STAR of 4,946 flights

of the remaining flights (£18%), as presented in Table VI.

Possibly, the aircraft flew a trajectory that deviated, as ordered

by ATC, from the route. These flights have been omitted.

Otherwise, the optimization would be a free-route optimization
between the airport and the search space boundary and can
thus not be fairly compared with the actual flight.

The exclusion leaves 22,660 flights over 29 days for the
model to evaluate. Appendix C provides more information on
the distribution of the trajectories evaluated in the case study.

thttps://eaip.lvnl.nl/2022-09-22- AIRAC/html/index-en-GB.html. Accessed
on September 30, 2022.
2https://opensky-network.org. Accessed on September 29, 2022.

TABLE VI. The number of flights removed from the actual
flight trajectory data per filter. Also, the number of flights
is given of which the SID or STAR could not be identified.

Filter #Flights
Unavailable Aircraft 2,403
Duplicates, Outliers and Missing Values 789
Climb and Descent 3,659
Minimum Data Points 151 +
Subtotal 7,002
Unidentified SID/STAR 4,946 +
Total 11,948

Figure 6 shows the actual and optimized trajectories of
two example flights: EZY92DK-193 arriving at EHAM and
following REKKEN 2A, and; AAL221-1155 departing from
EHAM and following BERGI 3V via waypoint AMGOD. Both
flights were flown on June 1, 2018. The waypoints of the SID
and STAR are shown as green circles with a radius of 5 nm.
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Fig. 6. The optimized and actual trajectories of two flights
(AAL221-1155 and EZY92DK-193, flown on June 1. 2018)
are displayed. The green circles represent the SID or STAR
waypoints. The red areas represent the restricted airspace.

E. Trajectory Analysis and Optimization

For departing aircraft, the trajectory is analyzed from the
first data point located 100 m above the runway to the point
where the aircraft leaves the search space. This is decided to
exclude the different velocity and acceleration profiles aircraft
follow immediately after take-off.

For arriving aircraft, the trajectory is analyzed from the point
where the aircraft enters the search space until the last data
point over 1,500 ft above the runway. From this point on,



aircraft are to follow a fixed glide slope towards the runway;
an optimization is not possible for this section as it would
decrease the safety of operations [30].

For the actual flights, the methodology described in subsec-
tion II-A can be used to determine the cost of emissions. The
model identifies which SID or STAR the aircraft followed. The
initial guess for the GA is the trajectory through the waypoints
defined by the SID or STAR, as explained in subsection II-C.

IV. ResuLts
A. Air Traffic Control Interference

As discussed earlier, ATC may interfere during departure
and arrival; aircraft may have to deviate from the SID or STAR
they were meant to follow. To adhere to the ATC commands,
pilots often level off the aircraft. While this helps limit collision
risks, the level segments require an increase in thrust to keep
a constant vertical position or velocity [9]. The level segments,
in turn, result in aircraft using more fuel, causing an increase
in emissions during climb and descent. These level-offs are
also the reason why CDOs are employed [9].

The level-offs have been found in many flight trajectories
analyzed. Figure 7 illustrates an example of the level segments.
It shows the vertical path of the actual and optimized flight
trajectories (KLM1990-802 on June 1, 2018). It can be seen
that the optimized trajectory excludes level segments.
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Fig. 7. The altitude profile of the actual and optimized
trajectories of flight KLM1990-802 on June 1, 2018,
descending to EHAM. The green line visualizes the actual
flight path, showing various level-offs. The dashed blue
line visualizes the optimized trajectory. The black lines
indicate the moment a trajectory passes the IAF. As given
in subsection II-C, an aircraft should be between FL70
and FL100 when crossing the IAF.

B. Climate and Air Quality Costs by Flight Type

The objective of the optimization is to minimize the flight’s
climate and air quality costs. The value found for the optimized
routes is compared to those of the actual trajectories. The
leftmost distribution of Figure 8 shows the difference as
a percentage of the actual flight’s cost. It also visualizes

the resulting distance, time, and fuel relative differences to
minimize the cost. All distributions have been split to visualize
the difference between departure (left and blue) and arrival
(right and orange) flights.

The model can reduce the climate and air quality costs on
average by 8.6% and 18.6% for departing and arriving flights,
respectively. The resulting mean reduction in the distance for
arrival aircraft is 5.6%. For departing flights, an increase of
0.3% is found. The duration of departing aircraft is increased
by 5.3% and decreased by 7.3% for arriving aircraft; departing
aircraft use 3.3% less fuel, and arriving aircraft 12.9%.

Appendix D provides the distribution plots of the absolute
differences of the four metrics when minimizing the climate
and air quality costs. A distinction between the flight type and
aircraft weight category is made.
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Fig. 8. Distribution plots for minimizing climate and air
quality costs. The difference in percentages of the optimized
trajectories compared to actual trajectories is given. The
difference in other metrics, such as distance, time, and fuel
usage, are also provided in percentages. A split has been

made between departure and arrival flights.

C. Climate and Air Quality Costs by Weight Category

Figure 9 presents the difference in cost between the optimized
and actual flight trajectories split by flight type and aircraft
weight category.

Appendix E provides more information on the weight
categories used. The case study data consists of 17,333 medium-
weight and 5,308 heavy-weight aircraft. Appendix C provides
more information on the distribution of the aircraft weight
categories. Figure 9 does not present the "Light" category
because only 19 flights belonged to it, which is considered
unrepresentative. The A380 is the only aircraft comprising the
category "Super". This aircraft is not present in the case study
data.

For departing flights, the costs for medium-weight aircraft
are reduced on average by 8.0% and 10.3% for heavy-weight
aircraft. For arriving flights, the costs for medium-weight
aircraft are reduced on average by 17.4% and 22.8% for heavy-
weight aircraft.



I Departure
[ Arrival

Cost difference [%]

-60

Medium Heavy

Fig. 9. Distribution plots of the relative difference in climate
and air quality costs between the optimized and actual
trajectories. The distributions are split for aircraft weight
category and flight type.

V. DiscussioN

A. Verification

The model’s outcome has been compared with studies that
evaluate flights with similar conditions. A similar study is that
of Hartjes and Visser [31]. A flight with identical position
boundary conditions was set up with the same aircraft. The
result was in the same order of magnitude as the most fuel-
efficient flight by the researchers; the fuel usage found by
the researchers came to 507.3 kg, whereas the GA came to
590.0 kg. The deviation from the optimal found by Hartjes
and Visser could be due to missing information on the initial
mass assumption and a different aircraft performance model
used.

The case study outcome of the descent’s fuel savings has
also been compared to the findings of studies related to CDOs.
Cao et al. [8] concluded that the average amount of fuel saved
per flight is 147 kg, Dalmau [9] found a 10% reduction, and
Clarke et al. [32] found 64 kg fuel saved. The established
genetic algorithm in this paper achieved an average reduction
in fuel usage of 136 kg, equivalent to 12.9%, for arriving
flights. This reduction is in the same order of magnitude as [8]
and [9]. The former researchers compare their results to other
papers, as well. The 136 kg reduction is within the ballpark
of those results. The large difference in the outcome of Clarke
et al. [32] could be due to a smaller lateral distance in their
research.

B. Effect of Minimization of Climate and Air Quality Costs

At first glance at Figure 8, one can deduce that a reduction
in climate and air quality costs for both departure and arrival
aircraft at EHAM is possible. A clear difference between
the two flight types can be distinguished; the four metrics’
relative difference between the actual and optimized flights is
more considerable for arriving aircraft. For both flight types,
minimizing the costs results in fuel reduction simultaneously.
The fuel reduction is expected because a decrease in climate

and air quality costs is related to fewer emissions related to
fuel usage.

A difference is visible for the distance and time metrics. The
distance covered by the actual and optimized trajectories for
departing aircraft is nearly the same. However, the optimized
departing flight duration is longer because the aircraft fly with
a lower velocity than the actual flights.

For arrival aircraft, the distance and duration of the flight are
both decreased. These findings are in line with research con-
ducted on CDOs [33] and studies concerning the optimization
of arrivals [34].

The difference between departing and arriving aircraft is
assumed to be due to the difference in actual routes. ATC
often applies vectoring to separate arriving aircraft and prevent
conflicts. As the model does not consider these interferences in
the optimization, a more significant reduction in the distance
travelled is expected for arriving flights. Departing aircraft
are naturally more separated; thus, the difference between the
actual and optimized route’s distances is lower than for arriving
aircraft.

C. Effect of Aircraft Weight

Figure 9 indicates a difference between the two aircraft
weight categories. In the left distribution — the medium-weight
aircraft — the possible reduction in climate and air quality costs
is lower than for heavy-weight aircraft. The relative difference
for departure aircraft is nearly similar, whereas the room for
improvement in the arrival of heavy aircraft is notably larger.
The mass of an aircraft affects the fuel flow, which is related
to the cost. This relation is thought to be the reason behind
these differences.

D. Effect of Wind

The case study was run twice for all flights, once with and
once without wind. The results of the optimization considering
wind have been presented previously. If the model does not
consider wind, the reduction is 0.3% smaller for departing
aircraft, whereas the reduction is 0.3% larger for arriving
flights. Only a slight difference is expected; the trajectory is
to follow the identified SID or STAR and thus cannot deviate
much from the defined route.

The reduction may be larger when a tailwind is applied
to the aircraft. The reason is that the ground speed increases
according to Equation 6 and, thus, the duration and total fuel
usage decrease. However, for aircraft experiencing a headwind,
the reverse is true. In the case study, aircraft come in from
all directions and, therefore, some experience headwinds and
others tailwinds, evening out the resulting cost reduction. This
is another reason for the slight difference in the percentage
reduction between including and excluding wind.

E. Constraint Violation

One can deduce from Figure 8 that for some trajectories,
especially for departing aircraft, the costs are higher for the
optimized trajectories; the relative difference is above 0%. The
cost increase can be explained through the application of the



constraints. It was found that actual flights frequently violated
imposed constraints. The actual trajectories often violated
the constraints on the velocity below FL100, the altitude at
IAF, the total energy and force, and the maximum absolute
vertical velocity. The optimization model aims to violate as
few constraints as possible. Therefore, the optimized route may
violate fewer constraints than the actual flight but, in turn,
has to fly a longer route or with another velocity and altitude
profile.

Figure 6 shows an example: the actual trajectories of both
flights only pass some waypoints. As the optimized route passes
all waypoints, a longer route is expected, which could increase
climate and air quality costs. Figure 8 displays this increase to
inform the reader of the model’s outcome.

The violation of constraints of the actual trajectories could
be due to incorrect settings of the constraints, for instance, for
the maximum vertical velocity. Concerning the velocity below
FL100 and the altitude at IAF, the violation could be due to
ATC commands. The ATC may order aircraft to fly faster or a
more direct route when there is space to do so. The model is,
however, not allowed to do this. Lastly, the total energy and
force constraints violations could be related to the assumption

of the mass and engine and OpenAP’s thrust approximation.

The initial mass assumption is considered crude. It affects the
outcome of the total energy and force constraints, and this could
thus be the reason for actual trajectories violating constraints.

Margins for the constraints could be specified to overcome
incorrect assumptions or constraint settings. For example, a
minor penalty could be assigned if the trajectory violates a
constraint but is within the margin. This addition could improve
the workings and reality of the GA.

F. Case Study Location
As stated in subsection III-D, the model did not identify a

SID or STAR in approximately 18% of the evaluated flights.

The inability to identify the route is due to a large amount of
vectoring (and some holding patterns) applied at EHAM. The
model did not evaluate these flights, so it found no estimate
of the possible reduction of climate and air quality costs for
them. The model potentially optimizes a larger portion of the
flights at other airports, where ATC applies less vectoring.
Additionally, the case study excluded 3,659 flights because
they included a climb and a descent phase. The model can only
optimize the climb or the descent, so it does not evaluate these
flights. It would be interesting to determine if reducing the

climate and air quality costs are possible for these trajectories.

G. Operational Procedures

As described in subsection II-B, the specified velocity profile
is an additional assumption. It was assumed to follow the
current operational procedures concerning the velocity. A
different outcome, and possibly a more considerable cost
reduction, can be expected when the velocity is allowed to vary
freely throughout the trajectory. Currently, a constant Vs
and M, and also a constant a for departing aircraft, restricts
the GA to a specific velocity profile for the trajectory.

Even though the aircraft follow the SIDs and STARs, the
model does not consider aircraft separation; the optimization
considers only a single flight. Therefore, the results may show
a more optimistic reduction than possible in an actual situation.
For future work, it is deemed beneficial to consider multiple
aircraft in the model, ensuring that aircraft are separated.

H. Uncertainties

The absence of data on the mass of aircraft gives rise
to uncertainties, as Sun and Dedoussi [24] concluded. This
conclusion applies to this research as well. Additionally, the
assumption of the default engine and the thrust approximation
of OpenAP for idle descent can cause deviations from more
accurate results [23].

The last uncertainty concerning the result is that of the
climate metric used. The costs established by Grobler et al. [1]
are exposed to large uncertainties. According to Simorgh et
al. [17], this is because the knowledge of the processes in the
atmosphere needs to be improved to quantify emitted gasses
accurately. Additionally, the model does not consider several
emissions, for instance, of hydrocarbons.

The effect of the assumptions and uncertainties could be
evaluated using a sensitivity analysis. This could aid in the
improvement of the model.

VI. CoNCLUSION AND RECOMMENDATIONS

This research aims to determine if reducing the climate
effects of aircraft’s climb and descent phases is attainable
through trajectory optimization. A genetic algorithm is em-
ployed to optimize actual flight trajectories in the horizontal
and vertical direction for aircraft climate and air quality costs.
The optimized trajectory should follow the identified SID or
STAR and adhere to additional constraints, such as velocity
and altitude limits.

A case study has been conducted to test the model’s
capabilities and answer the research question. More than
22,000 actual aircraft trajectories arriving at and departing from
Amsterdam Schiphol Airport are evaluated on their climate
and air quality costs. The model optimizes each route and
determines the relative difference between the costs, and other
metrics, of the actual and optimized trajectories. The model
can reduce the climate and air quality costs by 8.6% and 18.6%
on average for departing and arriving flights. It is concluded
that reducing environmental costs does not necessarily result
in shorter flights in terms of time and distance. The fuel usage
is reduced for most trajectories. The costs of heavy-weight
aircraft trajectories can be reduced a few per cent more than
those of medium-weight aircraft. The wind is shown to have a
limited effect on reducing the costs because the identified SID
or STAR constrains its path.

Several elements of the model may affect the possible
reduction of environmental costs. These include the assumed
velocity profile, the inability to evaluate flights that include
both climb and descent, and the violation of constraints by
actual flights. Additionally, uncertainties are present in the mass
approximation, thrust calculation, and applied climate metric.



Based on the results, recommendations for future research
are provided. Firstly, it would be interesting to omit the assumed
velocity profile and let the velocity vary freely throughout the
trajectory. One can improve the accuracy of the results by better
approximating the mass of aircraft, for instance, by considering
the flight length or the operating airline.

It could also be beneficial to perform a sensitivity analysis.
Such an analysis could be done on the mass, the imposed
constraints or the climate metric used.

The model can be more realistic by including ATC com-
mands; the model could optimize for multiple aircraft and
include conflict detection and aircraft separation. Besides,
it would be interesting to evaluate if the optimization can
achieve similar reductions at other airports. Comparing different
regions and periods could aid in a deeper understanding of the
possibility of limiting the environmental effects of aviation.

In future research, one can use the implementation of
restricted airspace to redirect trajectories past areas restricted
for noise purposes, among others.

The case study has demonstrated the possibility of reducing
the anthropogenic effects of the aviation industry on the envi-
ronment through trajectory optimization. An average reduction
of 8.6% and 18.6% for the climate and air quality costs for
departing and arriving flights at Amsterdam Schiphol Airport
is achievable. Others can use the open-source GA to conduct
further research to explore how to improve the reduction or to
evaluate the possibilities at other locations3.
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APPENDIX

A. Distribution of Flights for Tuning

Figure 10 displays the distribution of flights evaluated in the
tuning process described in subsection II-A. The trajectories
are sorted by weight category and flight type. All trajectories
were flown on June 1, 2018.
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Fig. 10. A bar plot of the flights considered in the tuning of the GA. The trajectories are sorted by weight category and

flight type.
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Fig. 11. A bar plot of the flights considered in the case study (after filtering and excluding unidentified SID or STAR
flights). The trajectories are sorted by weight category and flight type.

B. Restricted Airspace

Tables VIII and IX provide the location and dimensions of
the restricted airspace. The former table lists the areas shaped
as boxes. The latter lists the areas shaped as cylinders. Figure 6
shows the restricted airspace as red areas.

C. Distribution of Flights for Case Study

Figure 11 displays the distribution of flights evaluated in
the case study described in section III. The flights of which
the model could not identify a SID or STAR, as described in
subsection III-D, are filtered. Figure 11 excludes these flights.
Also, the flights filtered as described in subsection III-C are
not shown. The trajectories are sorted by weight category and
flight type.

D. Results in Absolute Values

Figure 12 provides the absolute difference between the actual
and optimized climate and air quality costs. Figures 13, 14,
and 15 provide the absolute distance, time, and fuel difference
between the actual and optimized trajectories. These are the
metrics’ resulting differences for minimizing the climate and

air quality costs. The same conclusions can be drawn from
these figures as from the relative distribution plots presented
in section IV.

E. Aircraft Weight Categories

Table VII provides the aircraft weight categories specified
by ICAO for wake turbulence*.

TABLE VII. The aircraft weight categories. The category
"Super" is not included. The minimum and maximum
values are given in kg.

Category  Min. Max.
Light 0 7,000
Medium 7,000 136,000

Heavy 136,000 -

“https://www.skybrary.aero/articles/icao- wake-turbulence-category. Ac-
cessed on October 27, 2022.



TABLE VIIIL The considered restricted airspace location boundaries. These airspace are shaped like boxes. The table
provides the minimum and maximum values for latitude, longitude, and altitude. MSL refers to mean sea level, and

GND refers to ground.

Airspace lat,ax laty,in Llonax lonin Zmin Zmax
EHD41A, B, C | 53°13’00” N 53°05’00” N 4°18’00” E 3°37'00” E MSL  FLO055
EHD41D 53°13’00” N 53°05’00” N 4°10°00” E 3°45’00” E MSL  FL660
EHTRA72 51°54’38” N 51°49’13” N 5°40’44” E 5°17’32” E GND  FL195
EHR3 52°27°00” N 52°21’30” N 6°01’'00” E 5°50’00” E GND  FL365
EHR2A 53°25’21” N 53°15’17” N 6°29'21” E 6°02’44” E GND FL195
EHR9 52°11730” N 52°06’40” N 5°52'50” E 5°44’00” E  GND 59001t

TABLE IX. The considered restricted airspace location boundaries. These airspace are shaped like cylinders. The table
provides the location of the circle centre, its radius, and the minimum and maximum altitude. GND refers to ground.

Airspace ‘ latcentre loncentre r Zmin Imax

EHTRASO | 52°03’35” N 5°52'19” E  6.5nm  3,000ft FLO65

EHTSAITA | 51°31'02” N 5°51’20” E  6.5nm GND FL195

EHTRAS8 | 51°30°45” N 5°01’40” E  2nm GND FL245
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Fig. 12. Distribution plots of the absolute difference in
climate and air quality costs between the optimized and
actual trajectories. The differences are sorted by weight
category and flight type.
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Fig. 13. Distribution plots of the absolute difference in
distance between the optimized and actual trajectories. The
objective was to minimize the environmental costs. The
differences are sorted by weight category and flight type.

Fig. 14. Distribution plots of the absolute difference in
time between the optimized and actual trajectories. The
objective was to minimize the environmental costs. The
differences are sorted by weight category and flight type.
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usage between the optimized and actual trajectories. The
objective was to minimize the environmental costs. The
differences are sorted by weight category and flight type.



Part Il

Preliminary Thesis Report
(Previously graded for AE4020)

14



Abstract

In this document, a research plan and preliminary results are provided for a master thesis. The pro-
posed research aims to minimize the impact of aviation on climate, focusing on the climb and descent
phase of the flight. There are multiple ways to achieve this. In this thesis, it is investigated whether
the environmental footprint can be minimized by finding optimal flight trajectories. The climate impact
in this study is defined as the emissions of aircraft, which will be quantified as a monetary metric. The
optimization does not include the effect of contrails, because of the limited effect at lower altitudes, and
also not the effects of noise, because of its complex nature.

The result of the thesis will be an open-source platform that allows others to optimize the flight trajectory
for their needs. The method for the optimization has been chosen to be a genetic algorithm. A prelim-
inary model has been made which aims to optimize a lateral trajectory for minimal emission costs. It
is implemented in Python, and use is made of several software packages such as OpenAP. The basic
model is nearly finished and will be improved first such that it can correctly find a near-optimal flight
trajectory. It will then be extended to include optimization in the vertical direction, wind effects, vary-
ing velocity and mass, and regulations from ATC. These decisions have been made after a thorough
literature study on sustainable aircraft trajectory optimization, which is described in more detail in this
plan.

An experiment in the form of a case study will be conducted in the research. This will allow for a
comparison between the current flight trajectories and the optimized ones. Through the case study,
it can be determined how and by how much, the environmental footprint can be reduced by route
alterations in the climb and descent phase — achieving the research objective.
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Introduction

There is a need for the aviation industry to become less polluting. It is expected that the number of
flights globally increases in the coming years [1], while simultaneously a reduction of the aviation climate
effects should be achieved [2]. Not only does the aviation industry negatively affect the global climate,
but the health of people and wildlife is also greatly impacted; aviation affects the environment in the
broadest sense [3].

A reduction of the environmental impact of the industry can be achieved in several manners, a few
are suggested by Teoh and Khoo [4]. Firstly, the aircraft itself could be designed more sustainably.
For example, using a greener form of propulsion or increasing efficiency. Secondly, airlines could
use the existing fleet of aircraft more effectively. Also, policies and regulations can be altered, such
as introducing the Emission Trading Scheme [5]. Lastly, the routing of flights could be altered. The
latter strategy will be explored in this project. In other transportation industries, this has been applied
before. For example in road cargo transportation, in which a reduction of 25% could be achieved for
the emission of carbon dioxide [6].

The topic of sustainability in the aviation industry has been on a rise in recent years. The research
on the theory and application of sustainable flight trajectory optimization follows the same trend [7].
However, gaps in the research area remain, and several challenges have to be conquered.

One of these gaps is the optimization of the climb and descent operations for environmental impact.
There are many studies conducted on the optimization of flight trajectories in the terminal maneuvering
area (TMA) such as [8]. However, only in a few of these studies the trajectories are optimized for an en-
vironmental objective; most focus on minimizing the number of conflicts or delays in the TMA. Besides,
the climb and descent phases of flight trajectories are subject to more procedures and regulations of air
traffic control (ATC) than the cruise phase is. This complicates an optimization of the flight trajectories in
the TMA. Efforts have been made to reduce the impact of aviation during climb and descent employing
so-called continuous climb and descent operations (CCO and CDO). These operations should have a
limited impact on the conflicts and sequencing problems in the TMA [9]. However, they focus mostly
on optimizing the vertical and speed profile, and not on environmental effects. It is thought that through
sustainable trajectory optimization in the TMA the environmental effects in the climb and descent phase
can be further reduced.

Regarding the environmental effects related to aviation, such as the emission of CO, and non-CO,
gasses, the available research is limited. For instance, the research on the effects of contrails on
the environment is not far enough to implement a model of the emergence of contrails in trajectory
optimization [10]. Also, there is a large uncertainty present in the quantification of the emissions of
aircraft [11]. This is in part because aircraft emit the gasses in different proportions depending on
position and altitude [12]. These uncertainties and the limited research on several environmental effects
pose another challenge to the research; it is hard to accurately determine the environmental impact of
a flight trajectory.

In this project, the goal is to determine whether the reduction of the environmental impact of aircraft
during the climb and descent phase through an optimization of the flight trajectories can be achieved.
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The main aim of the work is to create a program, that is accessible to others and is easily adjustable. It
should be customizable to optimize flight trajectories for departures and approaches for different aircraft,
locations, and conditions. If this is achieved, a wider public can be informed about the possibilities of
trajectory alterations for lower environmental impact during climb and descent.

This preliminary report presents an extensive literature review, describes how the project will be com-
pleted and demonstrates the initial results of the performed optimization. First, in Chapter 2, the existing
literature regarding the environmental effects of aviation, the methods for trajectory optimization, and
the procedures for arrival and departure is reviewed. The gap in the research is to be identified from
this, leading to the research question. This is discussed in Chapter 3 along with the objectives of the re-
search. In Chapter 4, the research framework is provided and the planning in the form of a Gantt chart
(presented in Appendix A) of the complete project is laid out. The theory applicable to the research and
the methodology of the project are described in Chapter 5 and Chapter 6, respectively. This is followed
by Chapter 7, in which the preliminary results and outcome are presented and discussed. The future
plans for the model and the set-up of the experiment are presented in Chapter 8. The preliminary report
is concluded in Chapter 9.



Literature Review

The proposed research in sustainable aircraft trajectory covers multiple disciplines, namely aviation
environmental impact, trajectory optimization, and arrival and departure procedures for airports. It is
of importance to know what the current state-of-the-art is in these fields. It should be known how and
what methods are commonly used to develop a better understanding of the topic.

The literature was found through an extensive search in which multiple search engines were utilized.
These include, among others, Scopus' and Web of Science?. Additionally, the proceedings from appli-
cable conferences, like the International Conference on Research in Air Traffic Management (ICRAT)?,
have been explored. Several keywords were used in the searches in different combinations and us-
ing synonyms. These include trajectory optimization, sustainable air transport, environmental impact,
emission metric, and aviation climate effects among others.

The available literature on the environmental effects of aviation is presented first. This is followed by
Section 2.2, in which the existing literature in trajectory optimization is discussed. The state-of-the-art
research on arrival and departure procedures are presented in Section 2.3. Lastly, in Section 2.4, a
discussion is written on the literature concerning the proposed research project.

2.1. Environmental Effects of Aviation

It is well known that aviation negatively impacts the environment; Lee et al. [11] estimated that 5% of
the worldwide radiative forcing (RF) by humans is brought about by the aviation industry. These effects
are caused by, among others, the emission of gasses, the formation of contrails, and the production of
noise. To determine a environment-optimal flight trajectory an understanding of those effects is required.
Additionally, a metric to define the effects quantitatively is needed. Several studies explore these topics
and also review articles exist, such as [5], that evaluate the available research. The state-of-the-art is
presented in this section.

2.1.1. Emissions

The first environmental effect of aviation to be discussed is the emission of gasses. Aircraft emit various
gasses which affect the environment. These include carbon dioxide (CO,), carbon monoxide (CO),
nitrogen oxides (NO,), soot particles and other particulate matter, sulfur oxides (SO, ), water vapor
(H,0), hydrocarbons (HC), and others in smaller quantities [5, 13]. Not all of the emissions necessarily
harm the climate. For instance, some forms of NO, can contribute to the cooling of the environment,
according to Lee et al. [11]. However, the researchers state that the sum of all emissions results in
positive RF, thus warming up the atmosphere. RF is a method to quantify the impact of emitted gasses,
which will be discussed more extensively at the end of this section.

"https://www.scopus.com. Accessed throughout the project.
2https://www.webofscience.com. Accessed throughout the project.
Shttps://www.icrat.org. Accessed on Feb. 15, 2022.
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The contribution of non-CO,, gasses to the environment by aviation should not be neglected, as Matthes
et al. [14] also stipulate. Lee et al. [11] state that the contribution of non-CO, gasses to RF is two-thirds
of the total amount. However, this distribution does not always hold. As mentioned by Lund et al. [15],
this is because it depends on what timescale the effects are measured. For example, as stated in the
article, the emission of CO, has a larger contribution in the longer timescales (in the order of decades).
Whereas the contribution of CO, to the warming of the climate is considerably smaller in the short term
[16].

The timescale on which the emissions are calculated is not the only variable that affects the amount of
emitted gasses. The position and altitude at which the gasses are emitted also affect the impact [12].
In Figure 2.1 the impact of the types of environmental effects for each flight phase is visualized. It can
be seen that not all emissions have an effect throughout the complete flight [17].
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Figure 2.1: Emitted species by aircraft per flight phase. The image is taken from [17, p. 5].

Matthes et al. [14] determined that flying at a lower altitude results in a reduction of the total positive
RF, even though the emissions of CO, are slightly increased. Lund et al. [15] concluded that there is
a difference in temperature change at different latitude bands due to aviation emissions. The authors
determined that the difference in global warming potential (GWP) and global temperature change po-
tential (GTP) at the different latitude bands can be factor two. The GWP and GTP are both metrics to
quantify the effect, and will be discussed below. It should be noted that in [12, 14, 15] the formation
of contrails is included. This brings uncertainty to the exact dependency of position and altitude on
emissions. The research on the effect of contrails is discussed in the following subsection.

Uncertainties also arise in calculating the environmental impact of flights due to the limited understand-
ing in climate science according to Simorgh et al. [18]. The authors state that the knowledge on the
processes in the atmosphere are insufficient to accurately quantify emitted gasses. Lee et al. [11] also
touch upon this. They discuss the lack of knowledge on knowing which substance contributes what
amount due to the unknown exact evolution of species. This is related to the (unknown) differences of
emissions among different timescales [11].

Additionally, the absence of data on the mass of aircraft, according to Sun and Dedoussi [19], gives
rise to uncertainties. As they discuss, the performance of an aircraft, and thereby the amount of emitted
gasses, depends on the mass of the aircraft. Information on the mass of the aircraft is often kept to air
operators themselves [19]. It is not mandatory to inform ATC how much the aircraft weights. This all
results in uncertainties in determining the amount of emitted gasses of a flight.

The gaseous emissions do not only affect the atmospheric temperature, the health of humans and
wildlife is also affected. Yim et al. [3] estimate that approximately 16,000 premature deaths occur
annually due to the emitted gasses by aviation. The researchers state that a quarter is caused by
emissions of aircraft during the climb and descent phases. The population in proximity to airports
experiences an increased risk of lung and heart disease [20]. The share of health effects in climb and
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descent phases is even larger in Europe and North America because of the high density of high-volume
airports in these regions [3].

2.1.2. Contrails

The second environmental effect is condensation trails, better known as contrails. Contrails are not
directly emitted by aircraft; the clouds are formed behind an airplane using the emitted gasses when
flying in ice supersaturated regions (ISSR) [21]. The effect of contrails is, as for the emission of gasses,
dependent on the location and altitude of emergence; contrails do not have the same environmental
impact at each position. According to Fuglestvedt et al. [10], 98% of the contribution of contrails to
the total RF is caused by contrails formed at an altitude between 8 and 12 km. This is supported in
the report [5] by European Union Aviation Safety Agency (EASA). Fuglestvedt et al. [10, p. 4666] also
state that "most of this [contribution] is within the latitude band 30° N to 90° N”.

Lee et al. [11] note that it is hard to quantify the impact of contrails. The researchers mention that this
is because it is not always known whether the contrail has a positive or negative effect. It depends on
whether it is day or night and what the life cycle of the contrail is. However, it is estimated in the research
by Lee et al. that they have a net, large positive RF; overall, contrails warm up the atmosphere.

2.1.3. Noise

The last environmental effect discussed in this plan is noise. Noise is considered to be a threat to
the health of humans. Numerous studies have been performed in which the relationship between
health implications and aircraft noise has been determined. According to the World Health Organization
(WHO) [22], environmental noise can not only affect the hearing abilities of people but also more severe
effects can occur due to long-term exposure. One of these is heart disease, as discussed by Sparrow
et al. [23]. The latter study also concludes that the cognitive abilities of children who are subject to
noise from aviation are lower, as well as their performance on standardized examinations. Additionally,
the study discusses the negative effect on the sleep of people as a decrease in the quality of sleep can
have negative effects on their health. These findings are supported by the research of Stansfeld and
Clark [24]. Itis estimated that in Europe 1.2 million people are subject to increased noise levels at night
due to aviation [22].

2.1.4. Quantifying Environmental Effects

The impact of the discussed effects should be quantified to compute an environment-optimal flight
trajectory. This is where climate or emission metrics come into play. Grewe and Dahlmann [25, p. 373]
define climate metrics as "calculation rules, used to translate emissions in terms of kg per year to an
impact parameter on a common scale which is relevant to climate change”. They also emphasize
that the choice of the metric should be made carefully. The reason being that there is a wide variety
of climate metrics to be used. Each covers a different emission scenario over another time scale for
different climate indices.

One of the easiest ways to express the environmental impact is the mass of the emitted gasses. Another
method, described in previous subsections, is RF. It expresses the effect on the environment as change
due to each species in radiation [11]. However, both metrics do not immediately show the effect of each
species on the climate [25]. This can be achieved with GWP. It entails the total change in radiation
values over a certain time interval. GWP can be found by determining the RF over a specified time
interval. GWP100, the GWP for a time horizon of a hundred years, is a metric that is used often in
literature [5]. Closely related to the GWP is the GTP. The GTP translates the RF values to a change
in temperature, directly conveying an effect on the environment [25]. Both GTP and GWP can be
expressed as an absolute value or relative to CO, (a CO, equivalent metric) [18]. Whereas GTP and
GWP indicate the climate effects globally, other metrics focus on regional effects, such as the absolute
regional temperature change potential (ARTP) [15].

These metrics are purely physical. Monetary metrics can also be used for the quantification of emis-
sions. Grobler et al. [1] determined the cost of aviation by translating GTP values to US dollars. The
total cost of aviation emissions by the researchers combines multiple facets, namely health, welfare,
and ecology. The monetary metric of [1] displays both the social and environmental effect of emissions
and/or contrails. Whereas the discussed metrics in the previous paragraph only represent the environ-
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mental effect. The optimization study of Tian et al. [26] uses the green direct operating cost, which
adds an environmental cost component to the direct operating cost (DOC). The environmental cost is
determined using the cost index of each species.

The effect of noise is not considered in the previously discussed metrics. According to the noise guide-
lines of the WHO [22], the widely used metrics to quantify noise pollution are L., (day-evening-night-
weighted sound pressure level) and L, 4. (equivalent continuous sound pressure level at night). How-
ever, the WHO reports that these metrics may not apply to aviation. This is because health implications
caused by aircraft noise are often related to the number of events and not to an average noise level
over a period of time. This is in line with the article by Sparrow et al. [23]. The authors stress the
necessity of finding a more adequate metric for aircraft noise. They also state that the noise metrics
can be monetary, but that this is currently not developed sufficiently to be used.

Each of the discussed metrics suffers from large uncertainties due to limited available knowledge of
several effects on different timescales as discussed in Section 2.1.1. The EASA [5] states, regarding
the monetary metrics, that there is no agreement in the literature on which costs is the best for the
quantification of the environmental impact. This is also true for the physical metrics; a study on which
metric is optimal for the quantification of the emissions has not been conducted to the author’s best
knowledge. However, Matthes et al. [16] studied the robustness of their flight trajectory optimization.
They found that for all the metrics used the impact on the environment of the optimal solution was
indeed reduced. Nonetheless, the different metrics resulted in a different reduction in percentages.

2.1.5. Mitigating Environmental Effects
There are ways to mitigate the effect of the emissions. As mentioned in Chapter 1, altering routes is
one of those strategies. This is in part because the position of emitted gasses affects the impact they
have on the environment [12]. For instance, concerning contrails, the consensus on the reduction of its
formation is to avoid ISSRs [5] or to lower the cruise altitude [18]. Additionally, the velocity profile and
vertical and/or lateral path can be adjusted to achieve the mitigation of other aviation pollutants [18].

The alteration of routes to reduce the amount of emitted gasses is not necessarily shortening the
route or minimizing the use of fuel [27]. As mentioned by Simorgh et al. [18], several studies exist that
demonstrate that to achieve a reduction in contrails and/or emissions a slight increase in fuel usage
and time is required.

Not all emissions can be reduced through finding a climate-optimal flight trajectory. The emission of
soot particles cannot be directly reduced by flying alternative routes; soot’s impact on the climate can
be mitigated through the use of greener fuels [1].

The effect of noise mitigation strategies to overcome the negative effects has been studied by the WHO.
One strategy is to limit the noise produced by aircraft [23]. This is in line with the mitigation of soot.
Other strategies are more relevant to this research, such as the alteration of the ground path of flights
to regions where fewer people are affected. Also, adjustments can be made to the vertical profile of
flights [22]. These so-called CCOs and CDOs are discussed in Section 2.3. It can be hard to implement
these strategies in flight trajectory optimization, because the weather can affect the propagation of noise.
This makes noise levels difficult to model accurately, and therefore, many researchers assume a static
atmosphere in which noise does not propagate [7].

2.2. Methods for Trajectory Optimization

In this section, the methods available for trajectory optimization are discussed. There is a wide vari-
ety of formulations, objective functions, and solution methods used in the literature. Additionally, the
optimization problem requires the definition of constraints and variables.

To the author’s best knowledge, only two survey articles exist that critically review the literature on
sustainable aircraft trajectory optimization. Hammad et al. [7] review the available literature published
between 2000 and 2016, and the article of Simorgh et al. [18] also includes the literature up to and
including 2021. Using these references, and other literature, the most common and applicable options
used in the existing research are presented below.
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2.2.1. Objective Function

To perform optimization, an objective function should be defined to quantify what the optimal solution
is. Hammad et al. [7] discuss that there are many objective functions chosen for sustainable aircraft
trajectory optimization. As is explained by Hammad et al., these can be environmentally focused, such
as the GTP or monetary metrics for emissions, but can also be economic or social. Economic objective
functions can for example be the cost of fuel usage (as in [28]) or the DOC (as in [29]). Social objective
functions focus on the impact on affected people. For example, the sound exposure level is social. It
is part of the objective function in [30].

According to Hammad et al. [7], one-third of the environmental objectives in the reviewed studies in-
clude noise, which can be categorized both as environmental and social. Optimizing aircraft trajectories
for noise is especially done in the vicinity of airports [31]; the departure and arrival phases of flights af-
fect more people than the cruise phase, as the latter is often over non-populated areas. When noise is
implemented in a trajectory optimization, use is often made of the Aviation Environmental Design Tool
[7]. However, it can be difficult to use a noise metric as an objective function. This is because noise
propagation is highly affected by atmospheric conditions, and therefore hard to model [7]. Besides, the
metrics for noise are not adequate for aviation as discussed before [23].

Optimization problems can be solved for a single objective, but also for multiple simultaneously. Accord-
ing to Corlu et al. [6], more and more research in transportation optimization includes multi-objective
functions. The multiple factors of the objective function could be combined into a single objective, or
use could be made of weights for each factor. With the latter method, a Pareto curve could be utilized
to evaluate the choice of weights [6]. The Pareto curve can be created for two or more objectives com-
bined into one objective function. This, however, creates the challenge of determining what the desired
weight distribution is. The combination of multiple objectives is for instance done by Visser and Hartjes
[30]. The researchers find the most optimal route to minimize the weighted combination of noise levels,
emissions, and DOC.

2.2.2. Problem Formulation and Solution Methods

For sustainable trajectory optimization, Rao [32] states that numerical methods are required to find an
optimal solution due to the complexity of the problems. There are several options to choose from con-
cerning the formulation of the trajectory optimization problem. Which method is best for the problem at
hand depends on the objective, constraints, and other variables one wishes to include [18]. Additionally,
it depends on the time available for the implementation of the method [32].

In Figure 2.2, the existent methods for finding an optimal trajectory are sorted in categories [17].
The trajectory optimization can be formulated as an optimal control problem (OCP) or using alternative
formulations. In Figure 2.3, the techniques in the category "alternative formulations” in Figure 2.2 are
given. These techniques are non-optimal; the solutions approach the optimal value. Simorgh et al. [18]
identified that the optimization problem is formulated as an OCP in approximately half of the studies
included in the research. The remaining studies opt for a non-optimal approach.

The solution methods found in the literature for OCP include dynamic programming, indirect methods
(e.g. indirect shooting and gradient-based methods), and direct methods (e.g. direct collocation (DC)
and direct multiple shooting). The direct method is chosen in the majority of the studies formulating the
problem as an OCP [7, 18]. This is because, the indirect methods require more complex expressions
to be solved, and are inefficient when nonlinear constraints are imposed [18]. According to Hammad
et al. [7], DC is the most efficient solution method when formulating the sustainable trajectory problem
as an OCP.

An alternative to solving the problem as an OCP, is employing meta-heuristics. According to Simorgh
et al. [18], meta-heuristics are used in 30% of the studies using non-optimal control. As mentioned in
[6], for meta-heuristics, the most utilized solution methods are genetic algorithms (GA) and simulated
annealing (SA). Other methods exist for solving optimization problems using meta-heuristics, such
as particle swarm optimization [32]. However, these methods are not used in any of the sustainable
trajectory optimization studies included in [7], and thus not further explored.

In the review by Hammad et al. [7], the GA method is used in 23% of all included studies. A GA is
based on the theory of evolution; populations of solutions are created by mutating the individuals and
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Figure 2.2: Tree displaying the solution techniques used for trajectory optimization. The image is taken from [17, p. 11].

letting the best (in GA terminology: fittest) solution survive, eventually finding a near-optimal solution
[32]. For instance, Yamashita et al [28] employ a GA in AirTraf 2.0 and Patrén and Botez [29] do so
as well. The remaining studies in [7] use SA, which is based on the physical theory of internal energy
[32]. SA has been used by Zhou et al. [33] in the optimization in the TMA of the arrival and departure
routes.

As mentioned earlier, the choice of method is related to the components that make up the optimization
problem. There are several differences between the OCP and non-optimal methods which should be
considered before choosing.

As Simorgh et al. [18] discuss, the DC method can be more time-consuming and computationally
heavier. This is because GAs, in general, require fewer calculations than the DC method, as they do not
have to find derivatives of functions [29]. The complexity of the DC method is one of the reasons why
meta-heuristics are opted for in optimizations concerning a large number of flights [18]. The complexity
of the DC method is why meta-heuristic algorithms are generally found to be more intuitive and easier
to implement [18]. However, the DC method is generally more accurate than meta-heuristics are [18].

Another limitation of the OCP methodologies is the chance of getting trapped in a local optimality
[18]. Whereas a GA, as well as SA, is considered to be a global search technique [32]. This is because
the mathematical programming techniques are deterministic, and heuristic approaches are performed
using stochastics [32]. This is the reason why Ma et al. [8] adopted the SA method; the researchers
wanted to steer away from getting stuck in local optimality. In GAs, global optimality is achieved because
the creation and mutation of children are stochastic [17]. Besides, the most optimal solutions are not
the only ones to reproduce, lesser qualified ones also do. As Patrén and Botez [29, p. 538] state "they
bring diversity to the population”. Meta-heuristics are therefore considered to better be able find the
global solution than direct methods [18].
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Figure 2.3: Tree displaying the non-optimal solution techniques ("alternative formulations” in Figure 2.2) used for trajectory
optimization.

2.2.3. Path, Constraints, Variables, and Conditions

For the trajectory optimization problem, it should also be defined what is to be optimized. The complete
flight can be optimized, or it could be optimized for just a phase. Tian et al. [26], for example, optimize
the flight trajectory for the cruise phase only. This is also done by Yamashita et al. [28], Patron and
Botez [29], and Franco et al. [34]. However, according to Hammad et al. [7], more than half of the
studies included in the review find a path for the descent or climb phase. For example, Dalmau [35]
focuses the research on the descent phase. Others study the trajectory across multiple phases, such
as Visser and Hartjes [30].

The path to be optimized can be in one, two, or all three dimensions. The optimization tool TOMATO,
described by Rosenow et al. [36], optimizes a trajectory for the lateral path first, and then optimizes the
vertical path. This results in a three-dimensional trajectory. In this research, the altitude of the aircraft
is allowed to vary freely. Others constrain it to an (optimal) altitude or only allow step changes, as is
done in [29]. The combination of lateral and vertical paths in the optimization problem will enlarge it.
Therefore, its complexity is also increased. Several studies reviewed by Hammad et al. [7] opt for a
three-dimensional trajectory.

Various constraints are included in the studies of flight trajectory optimization. For example, path con-
straints can be implemented, as is done in the study of Franco et al. [34]. Airways are defined in their
optimization algorithm, which limits the solution space. This constrains the problem to a certain geo-
graphical position or region. These constraints can be imposed by ATC or are used to avoid certain
regions. For example, ISSRs can be avoided to limit the environmental impact of contrails [5]. The
alternative is to omit any airspace constraints, assuming free airspace. In the tool AirTraf, described in
[28], this is done.

The research by Visser and Hartjes [30] allows for the inclusion of other forms of regulations imposed
by ATC. The authors implement dynamic constraints on speed and altitude for certain waypoints. In
the optimization of Visser and Hartjes, the aircraft’'s speed is allowed to vary, provided that it does
not neglect the constraints of ATC. In an optimization study, the aircraft's speed can also be set to a
constant value as done by Patrén and Botez [29]. Whether path constraints are implemented depends
on the aim of the research. The decision of a variable or a constant speed, however, depends on
which flight phase is optimized. In cruise flight, the speed can be assumed to be constant. In a climb,
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however, the speed should vary to take off and climb to the desired altitude.

Another factor that can be defined as a constant or a variable is the mass of the aircraft. The
optimization in [29] applies a variable mass. This is to be expected for the studies that determine
optimal trajectories for the cruise phase because a large amount of fuel is used. This impacts the mass
of the aircraft heavily, and thus the (environmental) performance of the flight. However, during descent,
this may be less applicable because there is only a slight change in mass due to fuel consumption. The
descent operations will be discussed in more detail in Section 2.3.

Besides, different assumptions of the conditions of the atmosphere, in particular, that of wind, are
adopted in the literature. Making use of the wind, or at least limiting the amount of headwind, can
reduce the environmental footprint of a flight. This is because a lower thrust setting can be used to
reach the same ground speed compared to flying against the wind [17]. Some studies include wind in
trajectory optimization. For instance, Park and Clarke [37] study the impact of wind on optimal vertical
trajectories. The AirTraf model described by Yamashita et al. [28] and the optimization by Patrén and
Botez [29] include wind as well. Even though the wind has an inevitable effect on the emissions and
noise propagation of flights [38], a static atmosphere is often assumed [7]. Both in studies that exclude
and include wind. In the latter case, data on the wind conditions are taken at a moment in time and
remain fixed for the duration of the flight trajectory [34].

Many different combinations of the previously discussed variables and constraints are possible and
have been studied in the available literature; the aim of the study dictates the choice of the available
options.

2.3. Arrival and Departure Procedures

The procedures for arrival and departure typically employed at most airports are to ensure the maximum
capacity of its facilities [39]. This is to accommodate the increased numbers of air travel. It can be
achieved by tactical interventions from ATC to space and sequence departing and arriving aircraft.

The current procedures typically employed are discussed in Section 2.3.1. In Section 2.3.2, the proce-
dures designed for fuel saving and noise abatement are discussed. The CCO and CDO concepts are
discussed in this section.

2.3.1. Standard Arrival Routes and Standard Instrument Departures

Often, aircraft are to follow set routes when leaving or approaching an airport. These are so-called Stan-
dard Arrival Routes (STARs) and Standard Instrument Departures (SIDs). As Dalmau [35] discusses,
these routes are designed to allow different types of aircraft, ranging in weight and size, to follow one
of the available procedures.

The route consists of several waypoints that should be flown over. Also, constraints on speed and
altitude are imposed at these positions. The SID/STARs ensure that the ATC has an increased overview
of the air traffic surrounding the airport. As the aircraft follow the procedure, ATC may still dictate
alternative routes to the pilots. These interventions include vectoring for example [39]. To adhere to
the ATC commands pilots often level off the aircraft. While this is helpful to limit risks of collision, the
level segments require an increase in thrust to keep a constant vertical position and/or velocity [35].
This in turn results in an increased amount of fuel to be used, causing an increase in emissions during
climb and descent. Besides, the level-off leads to an increase in noise annoyance [39].

2.3.2. Fuel Saving and Noise Abatement Procedures

There are several procedures designed that aim at reducing the usage of fuel and the production of
noise in the TMA. The ICAO [40] has studied noise abatement procedures in a review study and divided
the procedures into three categories: ground management, spatial management, and flight procedures.
The review focuses on reducing noise but is assumed to have similar effects on fuel usage and emis-
sions.

As the International Civil Aviation Organization (ICAO) [40] stated, spatial management procedures
include among others (noise) preferred arrival and departure routes and flight track dispersion. The
flight procedures include among others CDO and NADP according to the study. CDO is the concept



2.3. Arrival and Departure Procedures 26

considered to have a prominent effect on minimizing environmental impact; the implementation of CDO
is said to lead to an approximate fuel saving of 10% [35]. A similar concept exists for the climb phase,
namely the CCO. A reduction of the fuel usage is not the only advantage of CDOs and CCOs, the du-
ration of the flight is also decreased [41]. This is beneficial to the airline operators, also. The principles
and additional (dis)advantages of continuous operations will be further explored in this section to find
opportunities to improve the thesis research.

Continuous Climb Operations

According to ICAO [42], the phase in which the aircraft ascents to the optimal altitude requires the
largest flow of fuel. For jet engined aircraft, the efficiency of the fuel usage increases as it climbs [42].
It is, therefore, beneficial to climb to the optimal altitude as quickly as possible [41]. The path that
should be followed during this climb to ensure a CCO is continuous.

CCO is achieved by lowering the rate of ascent with increasing altitude according to Soler et al. [43].
Dalmau and Prats [41] state that the optimal setting for thrust must be kept throughout the climb to fly
at fuel-optimal velocity. The optimal thrust setting changes during the climb due to a decrease in mass.
However, adjusting the setting would deviate the velocity from its fuel-optimal. Thus, as Dalmau and
Prats [41, p. 6] state "the excess thrust [is used] to slowly climb the aircraft.”. The continuous nature
of the proposed climb operations allows for a reduction in fuel usage, emitted gasses and noise [42].
The reduction in climb rate throughout the phase also eliminates the need for a sudden transition to the
cruise phase [43].

The altitude to which the aircraft should climb and at what rate it climbs optimally depends on the
specifications of the aircraft. As ICAO [42, p. A-1-1] states it depends on "the aircraft type and mass
as well on the meteorological conditions of the day.”. This results in a large variation of optimal flight
paths for aircraft in the climb phase [42]. This poses a challenge for the ATC concerning the separation
of aircraft. If the ATC has to interfere and a CCO is not completed, a reduction in environmental effects
can still be achieved [42]. However, as expected, the effect is of a lesser extent.

Continuous Descent Operations

As mentioned before, the interventions of ATC often require pilots to level off the aircraft at a certain
altitude, adjusting the throttle setting. The CDO concept, as the name suggests, requires the aircraft to
perform a continuous descent [9]. This is achieved by keeping the throttle to the idle setting from the
altitude at which the descent is started until "the interception of the instrumental landing system (ILS)
glide slope” [35, p. 3]. After the interception, the conventional flight path is followed because a CDO
profile is too steep to be considered safe enough [43].

A descent in which a CDO is performed is shown in Figure 2.4 as the blue, continuous line. The
black line illustrates a conventional descent in which the lightning bolts show the moments in which
thrust is used.

As Dalmau [35] discusses in his dissertation, a CDO is not defined by no level-offs in the descent, but
by remaining an idle thrust setting. The vertical profile of a CDO can show level-offs. When the thrust
setting is kept to idle, the level-off will only result in a decelerating effect, according to Dalmau.

It should be noted that the term CDO is sometimes used interchangeably in the literature with con-
tinuous descent approach (CDA) and optimized profile descent (OPD) [9, 39]. However, an OPD is
not the same as a CDO. It is a procedure enabling CDOs, or as Dalmau [35, p. 7] states, ”[it] is a
procedure, normally associated with a published STAR, designed to allow maximum practical use of
CDOs".

The continuous movement in a CDO eliminates the need to adjust the throttle setting, and thus limits
the use of fuel, exhaust emissions, and noise production [9]. The average amount of fuel saved per
flight has been studied in various studies and ranges from 23 to 64 kg [9, 39]. The exact amount of
fuel saved depends among others on the aircraft size and weight and the ATC commands given to an
aircraft [9]. Another benefit of a CDO is that the aircraft can continue the cruise phase at an optimal
altitude in terms of fuel usage for a longer time [35].

As with CCOs, there are several drawbacks to the employment of CDOs. Firstly, a decrease in capacity
and throughput of airspace and/or airport is expected, according to Dalmau [35]. The researcher states
that this is according to the variation in optimal flight paths for different aircraft; the path of a CDO
depends on the type of the aircraft, its state, and the environmental conditions. This results in more



2.4. Conclusions of Literature Review 27

TOD TOD

/;y'[? Current. descent

Figure 2.4: A conventional descent (black line) and a CDO (blue line) flight path are visualized. The lightning bolts represent a
change in thrust setting. The image is taken from [35, p. 2].

uncertainties and a decreased predictability for the ATC [9]. The ATC may need to interfere with the
optimal flight, and as it is hard to maneuver with the thrust settings at idle, the CDO most likely has
to be aborted [35]. But, as Dalmau [35] mentions, a CDO, like a CCO, that is aborted already has
environmental benefits.

Besides, one study by White et al. [44] showed that for a small area underneath the flight path of
an aircraft an increased annoyance of noise can be expected. The CDO, however, does reduce noise
levels in all other areas surrounding the aircraft, according to the study.

Another challenge is the implementation of CDOs; as stated in the ICAO review [40, p. 1]: "proce-
dures must be developed, tested and evaluated for benefits and ATC impacts, approved and accepted
by the airport and the ANSP, and adopted by the airlines and other airport users.”. This should, how-
ever, not hold back the development of more environmentally friendly procedures.

2.4. Conclusions of Literature Review

The three research disciplines in which the literature review is conducted are brought together in this
section. Firstly, the focus of the proposed research will be on the environmental impact of emissions
only. Soot particles are excluded from the analysis because the negative effect can be mitigated
through the use of greener fuels [1]. The formation of contrails is not included, because contrails are
approximately 98% of the time formed at higher altitudes (from 8 to 12 km), thus having little impact in
the climb and descent phase [10]. The reason for the exclusion of noise is that the implementation of
a noise model in the optimization is beyond the scope of this project due to its complex character.

The metric for the environmental effect, which is the objective function of the optimization problem,
has not been decided upon yet. Although, there is a tendency toward the monetary metric of Grobler
et al. [1] because it encompasses not only the climate but also the social and health costs due to
emissions. The choice of the metric is not critical to the proposed research, because a change in the
objective function should not require much time or energy.

Because of the popularity of the GA as a meta-heuristics approach and because of its intuitiveness,
this solution technique is to be adopted. There is enough available literature to develop a sufficient
understanding to complete the project. For example, Gardi et al. [17] present the theory of multi-
objective trajectory optimization along with methods to implement different objectives, variables, and
conditions. The chosen method is explained in more detail in Chapter 5.

The research focuses on the climb and descent phases of the flight. Thus, the vertical and horizontal
flight paths of aircraft are to be optimized because both vary greatly during the phases. It is recognized
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that the amount of emitted gasses in the cruise phase of flights is considerably larger than during climb
and descent phases. However, there remains an opportunity for the reduction of emissions in the latter
phases, which should be explored.

The SIDs and STARs discussed in Section 2.3 are implemented in the research as well. To keep the
study realistic, the procedures are to be followed and constraints should be met. ATC interventions
to prevent conflicts for instance are not included in the model. The flight path is not optimized to
be a CCO/CDO. However, the resulting vertical flight profile and course of the thrust setting of the
optimization should closely represent a CCO/CDO. This is expected because they are procedures that
reduce the environmental impact of the climb and descent of aircraft. If the flight path represents a
CCO/CDO, an additional benefit of the study is that the noise is indirectly limited as well.

The state-of-the-art research on optimization techniques for flight trajectories is combined with the
research on the climate effects of aviation to optimize flights for minimal environmental impact. An
aircraft trajectory optimization will be performed for the climb and descent phases to minimize the
impact of gaseous emissions through a genetic algorithm including a variable mass, variable speed,
wind, and airspace constraints. To the author’s best knowledge, a study with these conditions has not
been conducted previously. The research will bridge the research gap in the field of sustainable air
traffic management on environmental footprint within the climb and descent phases.



Research Question and Obijectives

In this section, the research question is stated first. It can be found in Section 3.1, in which the sub-
questions are included, as well. This is followed by a section on the objectives of the research.

3.1. Research (Sub-)Question(s)

The importance of reducing the anthropogenic climate effects of the aviation industry is recognized
by many. It is necessary to limit the negative consequences on the environment and health of living
beings. It has been identified in the previous chapter, however, that there is limited research conducted
on the reduction of environmental impact of flights in the climb and descent phase through trajectory
optimization. Therefore, the research question that will be answered in the proposed thesis project is:

How can flight trajectories be optimized to minimize the environmental impact of aviation
during the climb and descent phase?

The research question is constituted of three main elements: environmental impact, flight trajectory,
and optimization. These should be further researched to formulate an answer to the research question.
To facilitate this, sub-questions have been formed for each element. These should be answered first,
as the answers to the sub-questions form the answer to the main question. The sub-questions can be
found in the list below.

1. Environmental impact:
(a) What environmental effects of aviation should be considered in the research?
(b) What is an adequate metric to quantify the environmental impact of aviation?
(c) How can the metric be used as an objective function?

2. Flight trajectory:
(a) In which dimension(s) should the flight trajectory be optimized?
(b) How can wind be implemented in the optimization model?
(c) How can variable speed be implemented in the optimization model?
(d) How can variable mass be implemented in the optimization model be achieved?
(e) How can the regulations of ATC be implemented in the optimization model?

3. Optimization:
(a) How should the flight trajectory optimization problem be formulated?
(b) Which solution method should be used for the optimization?
(c) Which aerodynamic model should be used for the flight dynamics of the aircraft?
(d) How can the optimization method and model be verified?
(e) How can the optimization method and model be validated?
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3.2. Research Objectives

The aim of the project reflects the current challenge to limit the environmental impacts induced by hu-
mans, specifically the impacts of aviation. There are different strategies to limit the impact of aviation on
the environment. Trajectory optimization could potentially be adopted in a shorter amount of time than
for instance implementing newly designed, more sustainable aircraft [18]. Additionally, as mentioned
by Hammad et al. [7], the number of studies on the topic has increased in the last years. Thus, the
objective of the thesis project is described in the following sentence.

To investigate the reduction of the environmental impact of aircraft during the climb and
descent phases by means of optimizing the flight trajectory for an environmental, multi-
objective function.

Several other objectives should be accomplished to achieve the main objective of the project. This
includes an appropriate quantification of the environmental impact of aviation during the climb and de-
scent phases. This can be achieved by identifying the critical environmental effects of aviation and
choosing an appropriate metric. Besides, the creation of useful results for different settings and vari-
ables in the model should be realized. Such that the effect of different factors on the reduction of
environmental impact can be determined. This can be achieved by creating an easily customizable
optimization model. Lastly, this model should be available on an open platform that can be accessed
by interested parties. When all objectives are met, the research on sustainable flight trajectory opti-
mization is elevated.



Research Approach

This chapter is devoted to the research framework and planning. In Section 4.1, the steps to be taken
in the project are described and visualized. A schedule for these tasks is also made, a brief explanation
of this is given in Section 4.2. The schedule in the form of a Gantt chart is presented in Appendix A.

4.1. Research Framework

The research project is divided into four phases: the literature study, model development, experiment,
and documentation and wrap-up. Each phase is composed of different tasks which are connected. The
research framework is visualized in Figure 4.1.

The first phase of the project is the literature study. This entails completing the associated courses,
searching for literature, reviewing the studies, and determining the research question and objective.
Also, it is determined which environmental metrics and optimization methods can be used. These
tasks have been completed concurrently, as reviewing literature lead to the search for more applicable
literature, which resulted in several iterations. Also, the courses have been completed concurrently, as
they were a guide to the literature study process.

During the second phase, the models will be developed. Two different methods will be used to optimize
the flight trajectories, thus two models will be created and verified. This has started in the second half of
the literature phase. This way, the gathered knowledge on the problem at hand could be immediately
applied and tested. First, a dummy model has been generated which forms the basis. This model
will be extended after this report is finished to include wind and variable speed. This phase includes
iterations, as the development of models is prone to mistakes, and requires debugging.

The third phase, focusing on the experiment and the results, will start near the end of the development
phase when the models are verified and validated. A case study will be conducted. A sensitivity
analysis may also be executed in this phase. Before the results can be gathered, the case should
be well defined, and data should be gathered and prepared. This phase includes the analysis of the
results, as well.

The fourth phase of the project is its wrap-up and documentation. This phase runs throughout the whole
project and is to be completed in parallel to the other phases. Writing throughout the process ensures
that delays due to documenting are kept to a minimum. The phase includes tasks such as documenting
and reporting, preparing for meetings and presentations, and implementing feedback from others.
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4.2. Project Planning
To achieve the objective and answer the research question in the available time of nine months, a
schedule has been created. It is in the form of a Gantt chart and is presented in Appendix A. The
several phases discussed in the previous section are represented by different colors in the Gantt chart.
The literature phase and the months leading up to this report are not included as these have been
completed. The red lines around dates visualize the deadlines of the project plan, preliminary study,
and thesis. The deadlines of the Control & Simulation department (preliminary report/meeting) have
been included instead of the general milestones (literature study report and mid-term report/meeting).
Three letters can be found in the planning: ‘D’ represents a deliverable, ‘M’ a meeting, and ‘R’ a
report. The week numbers on the top rows indicate the week of the thesis project. The holidays are
indicated as ’Holiday’ in the same row and do not count towards the number of weeks. The literature
study phase has been completed and the model development phase is half completed, as can be seen
in the Gannt chart.

/Phase 1: f Phase 4: \

Li .
iterature Study relevant Define research Documentation
Study .
literature scope

Y

) Determine
Define research ) Determine
) environmental
question - optimization method
objective
J
L Y
fPhase 2: /—V—\ \
Model L €
Develop optimization
Development >
model i
= 0
A
I > Document
. N and report
Verify optimization
1 @@
model |
@@ ( A
& /
Present
d N
Phase 3: A 2 vy
Experiment Perform a
Perform a case study e
sensitivity study
Implement
> feedback
~— @@

Analyze results

\

VAN

f v
Phase 4: Y
Wrap-up
Conclude
Provide
recommendations

. S J L J

Figure 4.1: Research framework of the thesis project.



Theory

The theoretical framework of the problem will be established in this chapter. The studies mentioned in
Chapter 2 can be used for this. Most studies describe the applied methodology in detail. In the papers,
detailed information on possible problem formulations, solution methods, constraints, and variables are
given for multi-objective trajectory optimization.

The aircraft dynamics used in the research are discussed first, in Section 5.1. This is followed by
Section 5.2, in which the theory of genetic algorithms in flight trajectory optimization. The different
methodologies to set up a GA are discussed. It also includes theory on the constraints that can be
included in the model.

5.1. Flight Dynamics

In trajectory optimization, the aircraft dynamic equations are often simplified [18]. The aircraft point-
mass model is used in many cases. It does not describe the motion of flight in full detail but is consid-
ered sufficient for calculations regarding trajectory optimization [35]. The optimization algorithms often
require many computations and can be complex. The simplification of the aircraft dynamics aids in the
reduction of the number of computations [17, 18].

The point-mass model describes the flight dynamics in three axes. The forces are assumed to act
on the center of gravity [35]. Thus, in the model, the rotational dynamics can be eliminated [17]. In
Equations 5.1 through 5.5, the applicable equations are described.

& = Vpas - €os () (5.1)

y = Vras-cos(y) (5.2)

2= "Vrag-sin (’y) (53)
Viras = r=o_ go - sin (%) (5.4)
m=—ff (5.5)

The three positional vectors are z, y, and z (the altitude). V145 represents the true airspeed, ~ is the
flight path angle, T is the thrust, D is the drag, m is the mass of the aircraft, gy is the gravitational
acceleration, and f f is the fuel flow.

If the wind is to be included in the model, the components of the wind speed can simply be added to
Equations 5.1, 5.2, and 5.3 [35].
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5.2. Genetic Algorithm

The genetic algorithm is based on the evolution theory of Darwin, as the name suggests. The solving
algorithm is a repeating process. At first, it generates a random set of possible solutions, referred
to as a generation of individuals. Each individual’s fitness is then evaluated, which can be defined
in different manners and can be seen as the objective function. Depending on the chosen selection
method, a particular selection is made of the individuals who are appointed as parents. The parents
will reproduce and generate children, creating new solutions to the optimality problem. Part of some
solutions are randomly altered, so-called mutation, to decrease the likelihood of getting trapped in
a local optimum. The new individuals are thereafter evaluated on their fitness, and the process of
selection, crossover, mutation, and fitness evaluation is repeated. The iteration is brought to a halt
whenever a stopping criterion is met. [29, 45]

The theory behind the steps taken in the genetic algorithm will be further explained in the following
sections. In Section 5.2.1, the different formulations of individuals, also referred to as solutions, are
presented. The section thereafter discusses the evolution process. In Section 5.2.3, the variables of a
GA are briefly discussed. The final section, Section 5.2.4, presents the implementation of constraints
in the trajectory optimization problem.

5.2.1. Solution Formulation

The solutions — flight trajectories — should be defined numerically so that the steps of the GA can be
taken. This can be done in different ways; Yamashita et al. [45] utilize control points (CP) and B-splines
(basis splines) to formulate solutions. Patrén and Botez [29] use a three-dimensional grid that consists
of waypoints. Other formulations are also possible.

In the 3D grid method by Patrén and Botez [29], waypoints are defined. In Figure 5.1, an example of
a grid is given. As can be seen, the grid surrounds the predefined flight route (dashed, blue line in
Figure 5.1). In the horizontal plane, multiple routes are created on both sides of the predefined route.
In the vertical plane, trajectories are stacked on top of each other and separated by a certain distance.
Along these trajectories, waypoints are defined at determined intervals. The flight can only be altered
to adjacent waypoints. [29]

Original horizontal path

Figure 5.1: A 3D grid method to formulate solutions to the trajectory optimization problem. The dashed, blue line represents
the original path. In the lateral direction, two paths are added in parallel. In the vertical direction, multiple paths are stacked on
top of each other. The image is taken from [29, p. 538].

Yamashita et al. [45] utilize control points, in the vertical and horizontal planes, spread out between
the destination and arrival airport. A solution is defined as a vector that consists of a number of design
variables, ng4,. The design variables are indexed by j and are allowed to vary between the lower and
upper boundaries. The design variables in [45] are the control points. The definitions are provided by
the authors in Equations 5.6, 5.7, and 5.8 [45].
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In Figure 5.2, the CPs in the horizontal plane are displayed as black dots within the dashed rectangles.
Each pair of CPs (three in Figure 5.2) forms a position: the odd CPs represent longitudes and the even
latitudes. The CPs are allowed to vary within the dashed rectangles (the boundaries), of which the
center is located on the great circle route (thin, black line in Figure 5.2) between the airports. The boxes
are spread out evenly. The width and length of the boxes are defined as 10% and 30%, respectively,
of the difference in longitude of the airports. The flight trajectory (thick, black line in Figure 5.2) "is
represented by a B-spline curve (third-order) with the three CPs as locations [...] and then any arbitrary
number of waypoints is generated along the trajectory”, as the authors state [45, p. 3375].

0
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90° W 60° W 30° W 0’ 30°E
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Figure 5.2: The control point methodology to formulate a solution to the trajectory optimization problem. The horizontal plane
of an exemplary route is visualized. The filled dots are the control points, each made up of two values: the longitude and the
latitude. The values can vary within the dashed rectangle around it. These rectangles are spaced equally along the great circle
route, shown as the thin line. The thicker line illustrates the solution, which is a B-spline created between the CPs. This image
is taken from [45, p. 3375].

The CPs in the vertical plane are represented by black dots in Figure 5.3 and define the altitude. The
figure displays the vertical path of the flight trajectory in Figure 5.2. The boundaries of the CPs are
Flight Level (FL) 290 and FL410; the boundaries hold the same value for all the vertical control points
in the study of Yamashita et al. [45]. Like in the horizontal plane, the control points are allowed to vary
between these boundaries. The position in terms of the longitude of each vertical CP is predetermined;
the CPs are spread out evenly between the airports. Again, a B-spline curve determines the flight path.

5.2.2. Evolution

As mentioned before, the GA is started with a first generation. This is followed by a fitness test, the
selection, crossover, and mutation, which are repeated until a stopping criterion is met. All steps of the
algorithm are discussed in this section.

First Generation

The first generation is randomly established. It consists of n,, individuals. In [45], each individual is
composed of the same number of design variables, as defined in Equation 5.6. The values of these
design variables are chosen randomly but are chosen between their own lower and upper boundaries.
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Figure 5.3: The control point methodology to formulate a solution to the trajectory optimization problem. The vertical plane of
an exemplary route is visualized. As in Figure 5.2, the filled dots are the control points. In the vertical plane, each is made up of
one value, the altitude. The values can vary between the dashed lines. The thicker line illustrates the solution, which is a
B-spline created between the CPs. This image is taken from [45, p. 3375].

In [29], the solutions do not necessarily have the same number of waypoints. The first generation
is established randomly and consecutive waypoints should be adjacent to one another.

Fitness

To evaluate the solutions quantatively, the so-called fitness of each is calculated. In trajectory optimiza-
tion, it is better known as the objective function. It can be defined differently, as explained in Chapter 2,
and it depends on the aim of the research. In the study of Yamashita et al. [45], the objective function
is to minimize the flight time. Thus, the fitness of a solution is determined by the time it takes an aircraft
to fly that specific route. Patrén and Botez [29] use the flight cost as the fitness of a solution. In theory,
all metrics discussed in Section 2.1.4 can be used as the objective function.

Selection

Several methodologies exist for the selection of parents among the individuals, as Patréon and Botez
[29] describe. They explain briefly the four methods listed below. Do note that more methods exist as
GAs are widely used in other disciplines, as well.

» Uniform: each individual is equal and all can create children.

» Rank: arank is made based on the fitness, and only the best solutions are entered into the mating
pool.

* Roulette wheel: higher scoring individuals get a larger chance of being chosen as a parent. So-
lutions that have low fitness still have a chance.

» Tournament: individuals are not allowed to crossover when they lose in a battle between each
other.

In [29], the tournament selection method is used. Yamashita et al. [45] utilize the roulette wheel method.
Patrén and Botez [29] discuss also the advantages and disadvantages of the methods. They state
that the roulette wheel method is beneficial as it does not get stuck quickly in local optima. However,
according to them, it is not so fast in finding the optimal solution. The tournament method converges
sooner.

Crossover

From the mating pool, parents are randomly chosen based on the determined probability to form chil-
dren. Each pair of parents will create two children, such that the size of the population remains constant
throughout the generations. The thought behind the selection and crossover steps is the principle of
the strongest survives. This should lead to stronger individuals each generation, and eventually result
in the most optimal solution [29].
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Again, several methods exist to perform this step. Patron and Botez [29, p. 539] take "one-half of one
individual and combining it with a half from another individual”. This was opted for because of the use
of the grid method; choosing another method would result in the violation of the requirement that each
consecutive waypoint is adjacent.

Yamashita et al. [45] opt for the 'Blend crossover operator’, which is explained in more detail in their
paper.

Mutation

As in the natural process of evolution, mutations occur in the production of new individuals in a GA. This
is done to limit the risk of converging to a local optimum instead of the global optimum [45]. The mutation
of the individuals is effective for reducing this risk because when solutions are randomly altered a larger
spectrum of trajectories is explored.

Yamashita et al. [45] use a polynomial mutation operator, which selects the solutions that are to be
mutated based on a certain probability function. The method is described in more detail in their article.

Patron and Botez [29] apply a different method. The researchers replace solutions instead of altering
several values in the solution. The least performing individuals in terms of fitness are replaced with
random solutions, which are created similarly to the first generation. The authors do not mention the
reason for this, but it probably has to do with the choice of the grid method. The route can only be
altered to adjacent waypoints. Changing a single value in the solution violates this. In the study by
Yamashita et al. [45], the choice of values of the control points do not depend on each other, and thus
can be altered randomly.

Iteration

The evolution process (fitness, selection, crossover, and mutation) repeats itself until a stopping crite-
rion is met. The principal 'survival of the fittest’ is applied, and thus it is assumed that the individuals of
each generation are better than the preceding generations. A stopping criterion could be to stop when
a certain number of generations has been made or when the solution has not improved over a number
of consecutive generations. [29, 45]

5.2.3. Settings

Several parameters can be adjusted in the algorithm which can influence the outcome and efficiency
of the optimization model. These include the number of control points or grid size, the size of the popu-
lation, the selection method, the crossover rate, the mutation rate, and the stopping criteria. According
to Patrén and Botez [29, p. 538], a strategy to apply for the size of the population is that it should
"represent a small percentage of all the possible solutions.”. The authors warn the reader with adding
control points, as the number of potential solutions will increase exponentially. A trade-off should be
done during the research between the parameters to optimize the accuracy and computation time [45].

5.2.4. Constraints

Typically, there are three types of constraints imposed within a trajectory optimization problem. These
are dynamic, boundary, and path constraints. The constraints can be categorized into equality and
non-equality constraints.

Dynamic constraints are imposed to ensure that the solutions are feasible in terms of the aircraft’s state
[17]. For example, the velocity should be large enough to prevent stalling but not exceed the maximum
velocity. Also, the path angle should lie between its lower and upper boundary value; it should stay
realistic. The mass of the aircraft and altitude are typically constrained as well.

Boundary constraints specify the values of variables on the boundaries - the initial and final values.
These constraints are typically equality constraints [18]. Simorgh et al. [18, p. 7] provide several
examples: "the geographical location of origin and destination, initial mass, and initial speed are some
equality boundary constraints that are usually considered”.

Path constraints are imposed on the states of the aircraft between the boundary points [17]. For
instance, aircraft should adhere to the regulations of ATC when performing a SID/STAR. At predeter-
mined waypoints, the velocity and altitude are constrained [17].
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In GAs, the constraints can be implemented as penalty functions [46]. If a solution violates any of the
constraints, a penalty score is added to the fitness. This decreases its likelihood of becoming a parent.
The consequence is that the solutions are not only selected based on the objective function but also
on whether they comply with the constraints. Nanakorn and Meesomklin [46] describe a method to
implement penalties effectively. Other methods exist as well.



Methodology

The next step in the research is the creation of the basic optimization. This will encompass the steps of
a GA as described in the previous chapter. The model will not yet include wind, variable mass, variable
speed, and airspace constraints. To develop the basic model, it should be understood how the chosen
software functions.

The software that is used in the basic model is described in Section 6.1. The creation and implemen-
tation of the basic model are set out in Section 6.2. This is followed by Section 6.3, in which the first
steps toward the verification and validation of the trajectory optimization are presented.

6.1. Software

The basic model that is created for trajectory optimization is programmed in Python. For the model,
use is made of multiple open-source packages in Python, namely NumPy [47], Matplotlib [48], OpenAP
[49], and Proj [50].

NumPYy is used because it facilitates fast computations with multidimensional arrays. As is explained
in the following section, almost all computations can be vectorized using NumPy. This allows the GA
to compute faster than when using ordinary Python lists or dictionaries.

Matplotlib is used to visualize the model’s results. It allows the user to more easily look over what is
achieved with the code. The visualizations will be extended with Cartopy [51] in the future. This is
discussed in Section 8.2.4.

OpenAP constitutes packages for Python through which, for example, the thrust settings and fuel usage
can be computed for an aircraft flying a certain route. Also, model data are included in which information
is available among others on emissions [49]. The dynamics of an aircraft are described as a point
mass model with four degrees of freedom [49]. The difference with the flight dynamics presented in
Section 5.1 is the rotational axis for the roll of the aircraft. For the computation of the emitted gasses
using the performance in terms of fuel flow, this should not be problematic.

In other research, for computations concerning aircraft’'s performance, use is sometimes made of
BADA [17]. OpenAP is chosen because it approximates the performance of an aircraft better during
climb phases [49]. Besides, OpenAP is readily available.

Proj is a package that allows for easy transformation between different coordinate reference systems
(CRSs) [50]. It is used in this model to transform from a World Geodetic System (WGS) '84 projection
to coordinates in the Lambert Conformal Conic projection (LCC). The latter is often used in aviation®.
The LCC CRS is easier to use in the computations of this model.

There can be several drawbacks to the usage of the chosen software. The available aircraft types in
OpenAP are limited; data are only available for turbofan engines [49]. However, the available aircraft
types are the most used commercial aircraft. According to Sun and Dedoussi [19, p. 8], OpenAP can

"https://proj.org. Visited on Apr. 14, 2022.
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be used "for around 94% of flights in European airspaces.”. For this project, it should be sufficient to
demonstrate how a reduction in the environmental footprint of commercial aviation can be achieved.

Additionally, there may be a shortage of computing power on the available laptop. If during the
development phase, it is found that this is the case, an alternative computer with more computing
power can be looked for at the Faculty of Aerospace Engineering in Delft.

6.2. Implementation

The implementation of the theory discussed in the previous section is implemented in the model. Neither
the definition of Yamashita et al. [45] nor of Patron and Botez [29] is adopted. The best practices of
the theories are taken, and adjustments are made to the theories to fit this research.

The implementation of each step discussed in Section 5.2 is explained in detail in this section. The
same structure is followed.

6.2.1. Solution Formulation

Each individual is defined by four states at a predetermined number of nodes, n,,,4.. The shape of each
individual is 4 by n,,.q.. The four states are the positional variables (x, y, and z) and the difference in
time between two consecutive nodes (At). The nodes are spread at an equal distance between one
another between the origin and destination of the trajectory. A baseline solution is given in Figure 6.1.
The number of nodes defines the resolution of the solution; the more nodes are used, the larger the
resolution of the trajectory. Due to this definition — each individual having the same array shape —
vectorization of the computations can be used.

Base solution with 5 nodes
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Figure 6.1: The solution formulation is visualized for a trajectory with 5 nodes. The origin of the route is at (0, 0) and the
destination at (500, 0).

The search space should also be formulated before the GA is started. As the research focuses on the
climb and descent phases, one airport is taken as the center. Using a back-of-the-envelope calculation,
a distance of 500km was found to be the horizontal distance covered by an aircraft from the runway to
the initial cruise altitude. If an aircraft were to climb 30,000t at a climb rate of 1000 fpm, it would take
0.5h to climb. Assuming the aircraft flies at a velocity of 900km/h, the horizontal distance covered is
450km. An additional margin of 50km has been assumed. This results in the 500km stated before.

The Proj Python package [50] is used to transform between different CRSs. The information avail-
able for navigational purposes in OpenAP requires the location information in WGS ’84. It is, however,
considered easier to work with - and y-axes. Thus, after the information is extracted, the CRS WGS
'84 is transformed to LCC. This CRS is applicable to the research and should be sufficient in terms of
accuracy for the search space.
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Ideally, a circular, horizontal search space is defined around this airport. However, it is easier to
implement a rectangular search space around the origin and destination in the code. The search space
is not limited to the space between the origin and destination as it is possible that an aircraft has to fly
in opposite direction first. This is for instance the case when an aircraft takes off and the wind blows
from the opposite direction of the destination.

The vertical search space is defined by a rectangle as well. The lowest airport in the world is taken
as the minimum value for the altitude. This is Bar Yehuda Airport, which lies 386m below sea level®.
The upper boundary of the search space is defined by the initial cruise altitude. This value depends on
the aircraft type and can be obtained from OpenAP.

6.2.2. First Generation

The first generation is created randomly. To do so, a baseline is made between the origin and destina-
tion. It is a straight line split into equal-length segments between n,,,4. nodes. To create n,,, random
individuals in the first generation, the nodes are randomly varied. Only the values of the first and fi-
nal nodes remain the same as the baseline. This is because these nodes represent the origin and
destination, respectively.

In the z- and y-direction, each node can take on a value that is between 500km below and 500km
above the baseline value. It is done according to a uniform distribution. An example with 5 individuals
is provided in Figure 6.2. Currently, the values of z and At are kept constant. This way, a simple opti-
mization can be performed and verified. In the expansion of the model, these values will be randomly
altered as well for the first generation. This is discussed in Section 8.1.

Base and 5 random solutions with 5 nodes
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Figure 6.2: The base and 5 randomly generated individuals are visualized for a trajectory with 5 nodes. The origin of the route
is at (0, 0) and the destination at (500, 0).

6.2.3. Fitness Evaluation

When all individuals are defined, the fithess of each should be found. The objective function is defined
as the cost of emissions of the trajectory. The emission costs of [1] are used for this. The monetary
metric can be computed by determining the amount of emitted gasses using the fuel flow. The latter
value can be determined using the OpenAP package. As input, it requires the mass of the aircraft, the
true airspeed, the altitude, and the flight path angle. The latter two are already known, as these partly
define the solutions. The former two have to be calculated using the known states.

2https ://en.wikipedia.org/wiki/List_of_lowest_airports. Accessed on Apr. 11, 2022.
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The true airspeed can be found through Equation 6.1. The horizontal velocity (V},) and vertical velocity
(V,,) are found through Equations 6.2 and 6.3, respectively. They are found by dividing the traveled
distance between two nodes by the covered time. The definition of the traveled distances can be found

in Equation 6.4.
Vs = V2 42 ©1)
VATZ + Ay?
Vi, = VAT Ay (6.2)

At
Az
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The flight path angle is defined as the angle between the horizontal line through the aircraft’s center of
gravity and the velocity vector. Equation 6.5 defines the flight path angle.

~ = arctan <“f’) (6.5)

h

As described in Equation 5.5, the difference between the mass at two consecutive nodes is the amount
of fuel burned. The mass can be calculated in an iterative manner. It is described in Equation 6.6.
Currently, the initial value of the mass is defined as 80% of the maximum take-off weight (MTOW). For
the extension of the model, another value may be used.

The fuel flow of the aircraft at the first node is found using the aircraft's conditions at that moment.
It is assumed that these are constant for the segment between two consecutive nodes. The fuel flow
is then multiplied by the time it takes the aircraft to travel to the next node. This is subtracted from
the mass at the first of two nodes, and the mass at the second node is then found. These steps are
repeated to find the fuel flow and mass at all nodes.

m; =mi—1 — ffie1 (m,Vras, z,7) - At; (6.6)

Once all the states and the fuel flow are determined at all nodes, the ‘'emission flow’ can be calculated.
It is found with the use of OpenAP as well. Again, several inputs are required. These depend upon the
emitted species and include the fuel flow, true airspeed, and altitude. The resulting value is the mass
of emission per second. Thus, to find the total emitted mass of each species, each has to be multiplied
by At. These masses are multiplied by the emission costs determined by Grobler et al. [1]. Ultimately,
the emission cost of each segment is summed. The formula for the total emission cost (C.) can be
found in Equation 6.7. Each C represents a cost, and each m the mass of the specific species.

Mnode

Ce= > (At-(Ccoz-mcoz + Cr20 - mu20 + Cnox - myox + Coo - meo + Cuc - muc)) (6.7)

n=1

These emission costs are different throughout the flight; the cost has another value in climb than in
cruise. This has not yet been accounted for but will be done at a later time to ensure a more accurate
result. Another limitation exists concerning the emission cost. Not all emitted gasses can be found
using OpenAP, such as black carbon. According to Sun and Dedoussi [19, p. 8] this culminates to
"17% of aviation’s societal costs.”.
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6.2.4. Selection

The fitness values are used to evaluate the individuals. It depends upon their score what the probability
is that they are selected to be a parent in the crossover phase. To minimize the environmental impact
of the flight, the fitness should be as low as possible. The selection method that is chosen is the
roulette wheel method. It is also known as the fitness proportionate selection method. As discussed
in Section 5.2, higher-scoring individuals have a larger chance of being chosen as a parent. However,
the lower-scoring solutions also have a slight chance. The probability is found using Equation 6.8. The
array of the fithess values of each individual in a generation is noted as f.

C max(f) -/,
Pi= max(f) — min(f) (6.8)

The original formula is for a maximization problem and has been taken from an article by Blickle and
Tiele [52]. The formula is rewritten to be applicable for a minimization problem. Besides, the probability
selection array is normalized after Equation 6.8 is applied to all nodes.

Using the calculated probability of each individual, the parents are chosen. The number of parents is
equal to the population size, n,,,. As two parents are required to produce two children, n,,, can only
be an even number. Pairs of parents are generated randomly according to the probability distribution.
The parents in a pair cannot be the same individual. Additionally, pairs of parents are required to be
unique in the complete set of pairs. Otherwise, identical offspring are created in the crossover step.

6.2.5. Crossover

Children are made through the crossover of the parent pairs. The four states (z, y, z, and At) of each
parent are split in half. The first child is made up of the first half of the first parent and the second half
of the second parent. The second child is made up of the other halves; it consists of the first half of the
second parent and the second half of the first parent. In this manner, the number of children equals
Npop. 1he process is visualized in Figure 6.3. A parent pair and its offspring are shown in Figure 6.3a
and Figure 6.3b, respectively.

One parent pair Children of one parent pair
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(a) Two individuals selected to reproduce together. (b) The offspring of the parents shown in Figure 6.3a.

Figure 6.3: A parent pair and its offspring are presented. On the left, the parents can be seen. The right figure shows the
offspring. The solutions consist of 5 nodes. The parents are split at node 3, the middle. The origin of the route is at (0, 0) and
the destination at (500, 0).

6.2.6. Mutation

To prevent the algorithm from getting trapped in a local optimum, mutations take place in the states of
the newly created children. In the complete model, each value in an individual is varied according to a
normal distribution. The value of the standard deviation depends on the state. It will be reduced over
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the course of the process according to a mutation rate. This will result in smaller deviations from the
trajectories over time.

Currently, the standard deviation is kept constant. Also, only the values of x and y are allowed
to change. This has been done so that a simple case with constant altitude and velocity can first
be evaluated. The implementation of a variable standard deviation is discussed in Section 8.1. The
mutation process is visualized in Figure 6.4.

Two individuals Two mutated individuls. Standard deviation = 15.0
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(a) Two individuals. (b) The individuals shown in Figure 6.4a after mutation.

Figure 6.4: The process of mutation is visualized. On the left, the individuals can be seen before mutation. The right figure
shows the same individuals after mutation. The solutions consist of 5 nodes. The mutation is according to a normal distribution
with a standard deviation of 15. The origin of the route is at (0, 0) and the destination at (500, 0).

6.2.7. Elimination

The mutated children should be compared to their parents in terms of their fitness. The best n,,,
individuals of the current generation (the parents) and the children will comprise the next generation.
The others are eliminated. If this step is skipped and the children are simply adopted as the next
generation, the best solution may be lost.

To find the fithess of each child, the fitness step (Section 6.2.3) is completed for these individuals. The
fitness of the parents and children is evaluated and sorted. The best half of these individuals — the
ones with the lowest fithess score — make up the next generation.

6.2.8. Iteration

The previously described steps are repeated: a probability distribution is made of the new generation,
pairs of parents are selected, the crossover is completed, children are mutated, and the worst half of
the parents and children are eliminated. The flow of the model is presented in Figure 6.5.

The iteration is continued as long as no stopping criterion is met. Currently, the stopping criterion is a
maximum number of generations. In the extension of the model, a criterion will be added that will stop
the process when the best solution does not improve over a number of generations. This is described
in Section 8.1.

6.2.9. Constraints

As presented in Section 5.2.4, there are three types of constraints. The basic model is equipped with
only one of these types, namely the boundary constraint. The trajectory optimization is forced to comply
with the initial and final values of both x and y. All nodes in between are allowed to vary, except the
first and last. The initial mass of the aircraft is also defined. It is set to 80% of the MTOW. No penalties
are involved with these constraints. For each individual, the boundary conditions are complied with.
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Figure 6.5: Flow diagram of the current genetic algorithm. The rectangular blocks represent functions in the model. The oval
blocks represent the iteration conditions.

In theory, more constraints are imposed on the model. Both z and At are kept constant. These could
be classified as boundary and path constraints as they force the values to remain constant. However,
they are not specified as such.

In the extension of the model, additional constraints will be imposed. Path and dynamic constraints
will also be included. These constraints are discussed in Section 8.1.6.

6.3. Verification and Validation

The verification and validation of the models and the results are of importance for the quality of the
research. The basic model has been developed first. The model should be verifiable using a very
simple case. It is a case that can also be optimized by hand. This is discussed in more detail in
Chapter 7.

The functioning of the steps of the GA has been verified separately. Before the implementation of the
next step, the results were analyzed. It was checked whether the outcome of the function in the code
was in line with the expectation. The intermediate steps have been printed such that calculations could
be checked by hand. Besides, the results were visualized in various figures. This aided the verification
of the units.

Each time the model is expanded, it will be verified again. However, it might not be possible to verify it
with a ‘simple case’ once there are too many variables. This is because the optimization problem will
at some point become too large to calculate by hand.

An additional form of verification of the results is to compare the model's outcome with those from
earlier conducted research. This should include studies for which the developed models can be cus-
tomized. For example, a case study that includes noise pollution would not be applicable.

The future plans concerning verification and validation are further discussed in Section 8.1.7.



Preliminary Results

This chapter presents the results of the basic model. This model is described in the previous chapter.
The results and a brief explanation of them can be found in Section 7.1. A discussion on the outcome
of the basic model is given in Section 7.2.

7.1. Results

The results are presented for a simple route between two points. The altitude and velocity are kept
constant as discussed before. The objective function of the model is the cost of emissions. The best
solution is the one with the shortest route. This is because the unit costs of emissions are constant;
the fuel flow determines the total cost. The fuel flow is calculated using the mass, velocity, flight path
angle, and altitude, as defined in OpenAP. The mass is the only variable of the fuel flow that differs per
trajectory, which is in itself dependent on the fuel flow. The solution with the lowest usage of fuel is thus
the one with the lowest cost of emissions. This is the solution that covers the shortest distance.

The origin of the trajectory is at x = 0km and y = 0km. The destination is 500km to the East, so
x = 500km and y = Okm. The aircraft that is considered in the optimization is the Airbus 320. It is
assumed to fly at a constant speed of 900km/h at a constant altitude of 11km. The vertical speed is
non-existent, thus the flight path angle is 0°.

Optimal solution with 5 nodes. Fithess = $762.806
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Figure 7.1: The optimal solution of the route. The solution consists of 5 nodes. The origin of the route is at (0,0) and the
destination at (500, 0). The fitness of the optimal solution: C. = $762.806.
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The optimal outcome of this problem can easily be determined by hand and is the line from (0,0) to
(500,0). All nodes should be placed along the z-axis. It is visualized in Figure 7.1. The values of y
should converge to 0km. The cost of emission (fitness) in this case is calculated to be $762.806.

The settings that can be adjusted in the model are the number of nodes that define a solution; the
size of the population; the number of generations allowed; and the standard deviation of the normal
distribution in the mutation phase.

The model has been run for several different combinations of these settings. In Figure 7.2, the optimal
and best solution after 1000 generations of an optimization for a trajectory consisting of 5 nodes is
presented. A generation exists of 100 individuals. The standard deviation of the mutation is set to 15.
This number has been chosen through trial and error. The fitness of the best solution is almost equal
to that of the optimal solution. The difference is only $0.025. The route is, however, at its maximum
1.4km away from the optimal route.
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Figure 7.2: The optimal (orange) and best (blue) solutions of the final generation (1000) are presented. The solutions consist
of 5 nodes. A generation consists of 100 individuals. The origin of the route is at (0,0) and the destination at (500, 0). The
standard deviation of the mutation is set to 15.The fitness of the best solution: C. = $762.831

In Figure 7.3, an optimization is run for trajectories with 10 nodes. The same number of individuals and
generations has been used as in Figure 7.2. The value of the standard deviation has been increased
to 30. This was also determined through trial and error. The resulting best solution has a fitness of
C. = $767.806. The difference is larger than with fewer nodes; the difference with the optimal total cost
is $5.000. This difference seems small, but can be deceiving. Looking at Figure 7.3, the flight trajectory
does not follow the z-axis at all.

Increasing the number of nodes leads to outcomes that are further from the optimal solution. In the
optimization visualized in Figure 7.4, the number of nodes is 50. The resulting total cost of emissions
is more than triple the optimal value.
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Optimal and best solution after 1000 generations. Best fitness = $767.806
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Figure 7.3: The optimal (orange) and best (blue) solutions of the final generation (1000) are presented. The solutions consist
of 10 nodes. A generation consists of 100 individuals. The origin of the route is at (0, 0) and the destination at (500, 0). The
standard deviation of the mutation is set to 30. The fitness of the best solution: C. = $767.806.
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Figure 7.4: The optimal (orange) and best (blue) solutions of the final generation (1000) are presented. The solutions consist
of 50 nodes. A generation consists of 100 individuals. The origin of the route is at (0, 0) and the destination at (500, 0). The
standard deviation of the mutation in the 10 optimizations is set to 5. The fitness of the best solution: C. = $2314.289 .

7.2. Discussion and Verification

It was expected that the algorithm would find a trajectory that closely represents the optimal route.
However, the basic model does not perform as desired. This is especially true when the solutions
consist of more nodes. The basic model could not be verified using the simple case. The algorithm
should be improved and properly functioning before the additions discussed in the next chapter can be
implemented. Due to time constraints, it was not possible to improve the algorithm such that it does
meet the expectations. However, several potential solutions to the problem have been identified.
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7.2.1. Additional Constraint

Firstly, an additional constraint regarding the heading changes of the trajectory can be imposed. In
Figure 7.3, it can be seen that the proposed trajectory requires multiple extreme turns. By imposing
a constraint on the number or size of the heading changes, a smoother trajectory is expected. The
outcome is expected to more closely represent the optimal trajectory if these constraints are added.

7.2.2. Mutation Scheme
Secondly, the mutation should be set correctly for the chosen settings. Currently, the mutation is done
according to a normal distribution with a constant standard deviation. As the model converges with an
increasing number of generations, the mutation can be of a smaller scale. Currently, when many itera-
tions have taken place, mutations affect the newly created individuals so much that most parents have
better fitness than their offspring. This causes a lower improvement over the course of the generations.
This is supported by Figure 7.5. In Figure 7.5a, four individuals of the first generation of an optimiza-
tion are shown. Figure 7.5b shows the four best individuals after 10 generations. In the first generation,
the range of the y-values is more than 500km. In the tenth generation, this range has decreased to
approximately 40km. It would be better to apply a different standard deviation in the mutation for the
two situations.

Best four solutions after 0 generations. Best fitness = $1703.559  Best four solutions after 10 generations. Best fitness = $770.032
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(a) The best four individuals of the first generation of an optimization. (b) The best four individuals after the optimization ran for 10 generations.
The fitness of the best solution: C. = $1703.559. The fitness of the best solution: C. = $770.032.

Figure 7.5: The four best individuals of the first and tenth generations are presented. The solutions consist of 5 nodes. A
generation consists of 100 individuals. The origin of the route is at (0, 0) and the destination at (500, 0). The standard deviation
of the mutation is set to 15.

Besides, the mutation can sometimes be too soft in earlier generations. This can be seen in Figure 7.6.
It can be clearly seen that a similar route with many variations of that route are evaluated. The mutations
are not large enough to get out of the local search. This results in an inaccurate result.

The slower convergence with more iterations is one of the reasons why an additional stopping
criterion should also be added. This criterion should be: if the fithess of the best solution has not
improved over a set number of generations, the optimization should be stopped. This is also discussed
in Section 6.2.8 and Section 8.1.

7.2.3. Increased Population Size and Generations

Thirdly, the population size and the maximum number of generations can be enlarged. It has been
observed that this does improve the results. However, this is up to a certain point as discussed in the
previous paragraph; the convergence slows down when more generations are created. Also, it requires
more computational effort, and thus time. Before this option is explored, the additional stopping criterion
should be added.

First setting the population size to a large number and then letting the population size decrease with
increasing generations may be beneficial. It would only require additional computing effort in the first
generations and could prevent the algorithm from getting trapped into local optima. An example of the
algorithm searching in local areas can be found in Figure 7.6; large patches of the search space are
not searched.
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Generation 10. Best fitness = $27153.932
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Figure 7.6: The trajectories of an optimization at generation 10 with 100 individuals. The solutions consist of 50 nodes. The
origin of the route is at (0, 0) and the destination at (500, 0). The standard deviation of the mutation in the 10 optimizations is
set to 15. The fitness of the best solution: C. = $27153.932.

With regard to the population of the generations, an option to improve the algorithm could be to add
random individuals throughout the iterations. This is also done in [29]. This is an alternative to muta-
tions. It holds the same purpose: not getting stuck in local optima. However, it is possible that inserting
random individuals in a generation may not work. The reason is that the random individual is likely to
have lower fitness than the other, already existing individuals. Nonetheless, it can be worth it to explore
this solution.

7.2.4. Multiple Optimizations
The final solution proposed to the problem at hand is to run multiple optimizations with the same settings
and different initial guesses. This could work because the random individuals in the first generation
affect the resulting best solution. This is shown in Figure 7.7. The best solutions of 10 optimizations
with the same settings are presented. There is a clear difference between the outcomes.

An additional optimization can be run with the best solutions found in the performed optimizations.
This optimization is then conducted with high-scoring individuals, which is thought to lead to an even
better solution.

An attempt has been made to try the latter option. An example of the result is given in Figure 7.8. First,
10 optimizations were run with 100 individuals for 100 generations. Of which the results are shown
in Figure 7.7. Then, the best solution for each of the 10 optimizations was taken and used as the
initial guess for final optimization. The final optimization was done with a smaller value for the standard
deviation because the initial guesses are more converged than the random individuals in the other
optimizations. The resulting best solution for the final optimization is presented in Figure 7.8.

Comparing the outcome to Figure 7.2, it can be determined that a better result is found using this
approach while the number of computed generations does not differ much. For the optimization in
Figure 7.2, 1000 generations were computed. For the optimizations in Figure 7.7, each optimization
was run for 100 generations. The final optimization also ran for 100 generations, totaling the number
of generations to 1100. The functionality of this improvement most likely has to do with the fact that
the convergence is largest in the first generations. More generations do not necessarily lead to an
improved result. It is thought that this solution is promising, especially in combination with an extra
stopping criterion and an improved usage of the mutation rates.
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Figure 7.7: The best solutions of 10 optimizations after 100 generations are presented. The solutions consist of 5 nodes. A
generation consists of 100 individuals. The origin of the route is at (0, 0) and the destination at (500, 0). The standard deviation
of the mutation in the 10 optimizations is set to 15.
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Figure 7.8: The optimal and best solution after an optimization with the best solutions of 10 optimizations. The 10 best
solutions are found in Figure 7.7. The best solution is found after 100 generations. The solutions consist of 5 nodes. A

generation consists of 10 individuals. The origin of the route is at (0, 0) and the destination at (500, 0). The standard deviation
of the mutation in the final optimization is set to 0.5. The fitness of the best solution: C. = $762.809.



Future Plans

To answer the main research question as posed in Chapter 3 the subquestions should be answered.
Questions 1a and b, 2a and e, and 3a, b, and c have been answered previously. Six subquestions re-
main unanswered. The goal of the remaining time for this research thesis is to answer these. Ultimately,
formulating an answer to the main research question.

In this chapter, a description of the approach to answer all questions is given. In Section 8.1, the
planned extensions of the optimization model are presented. A description of the proposed case study
and sensitivity analysis is provided in Section 8.2. This section also includes information on the data
that are required to perform these experiments and the results that are desired.

8.1. Model Extensions

When the basic model is performing as desired, the model can be expanded. This section presents a
discussion on what the additions to the basic model are and how they are thought to be implemented.
An overview of the constraints that will be imposed can be found in Section 8.1.6. An approach for the
verification and validation of the model is also given.

8.1.1. Mass Constraint and Assumption

In the basic model, the mass of the aircraft is constrained by its initial value at 80% of the MTOW. In
the final model, this initial value should depend on whether the aircraft is departing from or arriving at
the airport. This affects the assumption that can be made on the initial mass. Also, a final boundary
constraint should be included. It should be checked whether the mass does not fall below the opera-
tional empty weight (OEW). Ideally, it should be larger than the OEW as reserve fuel is required. The
implementation of a variable mass will answer question 2d.

The course of the mass can be calculated using Equation 6.6 as described in Section 6.2.3. This is
an iterative calculation and cannot be achieved through NumPy vectorization. It thus requires more
computational steps. To simplify this, a constant mass flow will be assumed throughout the flight trajec-
tory. Only for the best solution found at the end of the optimization, the accurate values of the mass at
the nodes will be calculated. This simplification is expected to not influence the outcome of the model
and is expected to decrease computation time. However, this should be ensured by verifying it with a
simple case.

8.1.2. Variable Altitude and Velocity
As discussed in Chapter 6, the altitude and velocity of the flight are currently kept at a constant value.
This way, the basic model could be verified easier.

The altitude will be allowed to vary just like the = and y values are. The standard deviation and mutation
rate that are to be used in the mutation step for z will have to be determined.

Velocity is not a state that defines an individual. The combination of the positional values and At
provides the velocity. See Equations 6.2 and 6.3 for the exact relationship. The velocity (both in
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horizontal and vertical direction) in the basic model has a constant value; the value of At is varied such
that the velocity stays the same.

In the complete model, At is allowed to vary completely. Question 2c will be answered with this im-
plementation: in the generation of the first individuals, it will be assigned random values. Thus, the
velocity over each segment will be different. The boundary values of At will have to be determined
such that the aircraft will not stall or exceed its maximum velocity. Also, as is the case for z, a sufficient
value for the standard deviation in the mutation step will have to be found.

8.1.3. Air Traffic Control Regulations

To complete the case study and to keep the model realistic, the regulations of ATC have to be imple-
mented in the model. As described in Section 2.3, aircraft have to follow predetermined routes when
departing from or arriving at an airport. These SID/STARs are to be added to the model.

The information on the waypoints of the routes will be included. When an aircraft is to follow a
route, the trajectory will be forced to fly over the waypoints; path constraints will be employed. At most
waypoints, the aircraft is required to comply with velocity and altitude constraints as well. These are
also considered path constraints.

Additionally, a piece of airspace is sometimes considered a restricted area for aircraft. For instance, if
military activities take place, commercial aircraft are not allowed to fly close by. It could also be that
certain regions should be tried to be avoided. This could for example be following noise abatement
procedures. Densely populated areas can be steered away from to limit noise nuisance. The model
should include an option to include both cases.

The area that is to be avoided can be stored in the model. It should be checked whether a solution
flies through this area. If this is the case, the solution should be assigned a penalty. This will resultin a
worse fitness, and should eventually lead to a near-optimal flight trajectory that complies with the path
constraints. If this implementation functions, question 2e is answered.

8.1.4. Wind

In Section 2.2.3, a discussion on the implementation of wind in flight trajectory optimization of the
literature is presented. As the wind can have a prominent effect on what is an optimal flight path, it
should be included in this model. This was also suggested in question 2a. Multiple sources can be
used to understand how to consider wind in the problem. These include [17, 29, 34, 45].

Currently, the plan is to assume a static atmosphere; the wind conditions will be taken at one point
in time and will remain constant for the remainder of the optimization. This choice is made because
a dynamic atmosphere is thought to become too complex. The static atmosphere is expected to still
approach a realistic situation with a limited number of computations.

8.1.5. Variable Settings

As shown in Figure 6.5, the only stopping criterion currently included is that of a maximum number of
generations. As suggested in the previous chapter, in the extension of the model, a criterion will be
added that will stop the iteration when the best solution does not improve over a number of genera-
tions. After how many 'no improvement’-generations the optimization should stop should be determined
through trial and error. This additional criterion will ensure that the optimization does not take longer
than necessary.

An additional feature of the model should be a varying mutation rate. As described in Section 7.2, the
developed model does not behave as expected. This is assumed to be in part caused by the mutation
phase. Implementing a mutation rate that can decrease throughout the optimization should improve
the performance of the model. Besides, the appropriate values of the mutation per state should be
found.

One of the objectives of the research is to develop a customizable model. It can be beneficial for others
and their purpose to easily adjust the settings and variables of the model. One of the options that should
be adjustable is the airport which is evaluated. This influences the calculations concerning the CRS
transformations and the search space.

Besides, the objective function should be customizable. For this research, the cost of emissions as
established by Grobler et al. [1] is used. However, others may be interested in the mass of the emitted
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species or another metric. Several options for the objective function should be included. Regarding
the emission costs used currently, the costs are available for cruise and the landing and take-off cycle.
These could be linearly interpolated to find the costs at the altitudes between these to more accurately
calculate the cost of emissions.

At this time, the model can already allow different aircraft types in the model. This is, however,
limited to the types available in OpenAP. As mentioned before, these include most commercial aircraft.
The distance between nodes can also be altered. This allows the user to set a resolution on the flight
trajectory. A trade-off is that a higher resolution results in a larger amount of time for the algorithm to
finish.

8.1.6. Overview Constraints
This section provides a brief overview of the constraints that are to be included in the extended model.

Boundary constraints are imposed on all states. As is already implemented, the position of the first and
final nodes are set to the origin and destination locations. For At, the initial value is always set to 0s.
The reason is that it describes the time it took to cover the past segment. The first node has no past
segment, and therefore, its value should equate 0s. The final value is not constrained. An additional
constraint is imposed on the mass of the aircraft; the initial mass is set to a value and the final mass
should be larger than the OEW.

The path constraints are imposed because of the ATC regulations as described in Section 8.1.3. If a
given route is to be followed, the positions are constrained. The velocity, and thus At, can also be
forced to a certain value at the waypoints. Besides, the path should not travel through restricted areas.
Path constraints are imposed on the three positional states. As proposed in Section 7.2.1, a constraint
regarding the heading of the flight path should also be added.

Additionally, dynamic constraints are imposed. These are present to guarantee that the flight path is
achievable in terms of the aircraft's dynamics. As mentioned in Section 8.1.2, the velocity of the aircraft
should not exceed its limit or be below its stall speed. This is also the case for the flight path angle. An
increased flight path angle is caused by the increased vertical component of the velocity. The vertical
speed should remain between certain boundaries as well. The reasoning is twofold: the aircraft should
be able to perform the trajectory and the passengers inside should not experience an uncomfortable
flight. The value of these boundaries should be explored in the literature before the constraints are
implemented.

To ultimately determine the best flight trajectory in which all constraints are complied with, the individuals
who violate any should be penalized. A penalty score should be added to the fitness of the individual.
This will resultin a lower probability of reproduction for individuals that do not comply with the constraints.
The appropriate penalty score should be determined per constraint. This can be done using the found
literature ([46]) on penalties in GAs.

8.1.7. Verification and Validation

The verification of the basic model can be done using the simple case presented in Chapter 7. After
that, the extensions of the model will also have to be verified and validated. This is to ensure that the
results are representative and useful. When the verification and validation proposed in this section are
completed, questions 3d and e are answered.

The verification of the previously discussed elements that will be implemented can be done through
unit tests. After each addition to the model, the intermediate results must be analyzed. This can be
done by running the model with a small n,,,, for a few generations. The results can be printed and/or
visualized and checked. For example, for the restrictions of certain geographical areas, the trajectories
and the restricted area can be visualized. It can then be checked if the model behaves as anticipated.
As mentioned before, the model can be partly verified through a comparison of the model and
previously conducted studies. This is also how Yamashita et al. [45] verify their model. The model can
be set up with similar conditions as other flight trajectory optimization studies. The results of this can be
compared and analyzed. The conditions must be possible with the model. Contrails are for example not
taken into account in this research. Thus, comparing the results with studies that do include contrails
may provide a skewed perspective. For this form of verification, appropriate studies should be found.
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Regarding validation, for the calculation of the emission cost, ideally, the results of a flight test are
compared to those of the model. However, it is not deemed possible to find the exact flow of emis-
sions during a flight. Besides, validating the complete model is considered to be impossible. It would
require aircraft to fly all possible trajectories in the same conditions to determine which of these is
environmentally optimal. This is not realistic.

8.2. Experiments

The research question can be answered by conducting an experiment in the form of a case study. This
case study will test the capabilities of the final model. It will also determine whether it is possible to
minimize the environmental impact during the climb and descent phase through trajectory optimization.
The proposed experiment is described in Section 8.2.1.

Additionally, it has been identified in Chapter 2 that many uncertainties apply to the quantification of
the environmental effects. To study this, a sensitivity analysis is suggested. This is explained in more
detail in Section 8.2.2.

In Section 8.2.3, the information required to execute the experiments is described. Itis stated where
the data are expected to come from and how they may be used to find meaningful results. The latter
will be discussed in Section 8.2.4. The section presents the expected results of the experiments and
how they are to be visualized.

8.2.1. Case Study

During the case study, a comparison will be made between the performance of actual routes and op-
timized ones in terms of the environmental cost. The case study will be conducted for a single airport
during a specified time interval. The airport and period have not been decided upon yet.

In the decision-making process, the complexity of the airport and its airspace have to be considered.
To conduct the experiment in the allotted time, it is beneficial to choose an airport that does not have
many runways and predetermined routes. Additionally, all information required on the airport for the
experiment will have to be available. The necessary information is discussed in Section 8.2.3.

To determine the time interval of the experiment, it is also of utmost importance to possess the
required data. This includes flight and wind information. For the results to represent a realistic image,
no extreme events should take place in the time interval. These include among others storms and a
reduced number of flights due to a pandemic. The period should be representative to show on average
what reduction in environmental effects is achievable.

It should also be chosen what the search space of the case study is. There is a tendency toward a
circle with the selected airport as the center. The radius will have to be determined. Possibly, the same
search space as described in Section 6.2 can be employed. For departing aircraft, the trajectory will be
analyzed from the airport to the point where the aircraft leaves the search space. For arriving aircraft,
the trajectory is analyzed from the point where the aircraft enters the search space until arrival at the
airport. Aircraft that fly within the search space, but do not depart from or arrive at the airport will not
be considered. These aircraft do not climb or descent, but are merely flying in the cruise phase. They
do not fall within the scope of this research.

To compare actual and optimal flight trajectories, the environmental effects of both should be deter-
mined. For the real flights, the flown trajectory should be represented by nodes as in the optimization
model. This way, the same methodology can be used to determine the cost of emissions. To optimize
the real flights, the origin and destination within the search space have to be defined. Between these
points, possibly following the specified SID/STARSs, the trajectory should be optimized. This results in
a near-optimal cost of emissions for the flight. This should be repeated for all flights in the time inter-
val. A sum can be taken over all flights such that the resulting cost of emissions for the near-optimal
routes can then be compared to that of the real flights. From this analysis, the mitigation potential for
environmental effects can be determined.

8.2.2. Sensitivity Analysis

One of the scientific gaps identified by Simorgh et al. [18] in a review on climate trajectory optimization
is a missing study on uncertainties. It would be interesting to find the effect of the uncertainty in the
climate metric on the resulting best solution of the model. A sensitivity analysis can be employed to
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bridge part of the identified gap.

A simulation for a single trajectory with constant conditions and variables, except for a varying emission
cost, should be run many times. The cost of emissions is allowed to vary according to its distribution.
According to Grobler et al. [1], the emission costs are subject to large uncertainties. Data are available
on these uncertainties of the specific species. Itis expected that the near-optimal solution of the model
changes with different costs of emissions. Also, its total cost of emissions will be altered. By running
the optimization a large number of times, a distribution of the total cost of emissions of the trajectory
should be identifiable.

8.2.3. Data
To execute the previously discussed experiments, several forms of data are required. This includes
data on real flight trajectories, aircraft performance, wind, and air traffic regulations.

Real flight trajectory data are required and could be obtained from The OpenSky Network '. This
information will be used to perform the case study and to compare the current situation to the optimized
one. An appropriate choice should be made for the size and inclusion of data in the dataset. This has
been discussed in Section 8.2.1. In conducted research, the use of The OpenSky Network for this
purpose has been shown to work. For instance, Sun and Dedoussi [19] use data from the network to
evaluate aviation emissions in Europe. The authors make use of Python packages pyopensky [53] and
traffic [54]. To aid the process of the experiment, this could be done as well.

Also, data on the performance of aircraft are required. This will be available in OpenAP and includes
information on the fuel usage and emission of gasses. The use of OpenAP has been discussed in
Section 6.1. The data are available for many commercial aircraft types for different conditions like
thrust setting and weight. It may be necessary to filter the real flight data on the available aircraft types
in OpenAP.

Data on wind strength and direction are required as well; an adequate source for the wind data should
be found. This depends on the location and date and time of the real flight trajectory data.

Lastly, information on air traffic regulations, such as airspace structure and the usage of SID/STARs,
should be known for the location chosen. This information is often available from the country’s air
navigation service provider.

8.2.4. Desired Results

A final extension to the basic model is a meaningful visualization of the problem at hand. In this section,
the desired results of the model and the experiments are presented. Visuals can aid in bringing across
the message of the results.

For the model in general, the trajectories should be visualized with an actual map in the background.
Currently, the individuals are simply displayed in an empty figure as nodes with connecting lines. The
package Cartopy [51] can be used to better visualize the trajectories. An airport can be taken as the
center of the graph and the flight trajectories can be displayed on top of the map. The visuals of the
trajectories over the map could also include the restrictions imposed by ATC; the waypoints and the
route to be followed can be shown.

Additionally, it could be beneficial to display the course of aircraft performance parameters. This
could among others be the velocity (horizontal and/or vertical), flight path angle, and the mass of the
aircraft. In these plots, the constraints described in Section 8.1.6 can also be visualized.

For the case study, it would be useful to display one or more real flight trajectories and the optimized
version. This way, the trajectories can easily be compared. This is, however, not possible for all flights
considered in the study. Thus, a boxplot or other statistical graphic can be used to demonstrate the
effect of trajectory optimization on the total cost of emissions. Additionally, other differences can be
presented. These can include, but are not limited to, the fuel usage and time flown.

The results of the sensitivity analysis should also be visually presented. This would be a figure that
displays the distribution of total emission costs found in the analysis. The variation in these costs are

"https://opensky-network.org. Visited on Mar. 18, 2022.
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due to the uncertainties present in the unit emission costs of Grobler et al. [1]. Besides, if a variety of
near-optimal trajectories is found due to the variance in emission costs, this should be visualized. It
could show a few of these different trajectories on top of a map.



Conclusion

Over the last years, an increase in literature on flight trajectory optimization for environmental objectives
has occurred [7]. This is in line with the growing necessity of the aviation industry to become more
sustainable [2]. This report explicated a research proposal and has demonstrated the potential of a
model to answer the research question:

How can flight trajectories be optimized to minimize the environmental impact of aviation
during the climb and descent phase?

To answer this question, several subquestions have also been formulated. Throughout the research,
these should be answered to formulate an answer to the main question. The subquestions are divided
into three categories: environmental impact, flight trajectory, and optimization. The questions can be
found in Chapter 3.

Some of the subquestions have been addressed in this report. These include decisions on the
environmental effect and optimization methodology used in the research. The answers have been
formed through the extensive literature study that is discussed in Chapter 2. The research will focus
on minimizing the environmental costs of emissions. The emission costs of Grobler et al. [1] are used.
These have been chosen because they encompass not only the climate effects of the emissions but
also the societal effects. It comprises the environmental effect in the largest sense.

An optimization model will be employed to determine whether it is possible to minimize the environmen-
tal effect in the climb and descent phases of a flight. Therefore, both the lateral and vertical flight paths
will be considered. A plan is proposed to implement wind, varying speed and mass, and the restrictions
of ATC, such as SIDs and STARs, in the model. The research framework and planning are laid out in
Chapter 4. How the features of the model will be added is discussed in Chapter 8.

The methodology that is used for the optimization model is a genetic algorithm. It has been chosen
because it is intuitive and popular in sustainable flight trajectory optimization [18]. It is based on the
evolution theory of Darwin [29]; the process entails the creation of a set of flight trajectories, evaluation
of their fitness, crossover, and mutation of new trajectories, and an iteration of the last two phases. This
should result in finding a near-optimal trajectory. The theory is further explained in Chapter 5.

A first, basic version of the model has been developed. The trajectory is only allowed to vary in the
lateral direction and is flown at a constant speed. The implementation is described in more detail in
Chapter 6, The basic model is not developed enough to be verified using a simple case. This is because
the genetic algorithm does not converge (quickly) to the near-optimal solution.

In Chapter 7, the preliminary results are presented and suggestions are made for the improvement
of the model. These recommendations include a correct implementation of the mutation phase and
running multiple optimizations in parallel. The improvements have to be made before any features are
added to the model.

When the extended model functions as expected, and is verified and validated, a case study and sensi-
tivity analysis may be conducted. The experiments focus on finding an answer to the research question.
In the proposed case study, the departing and arriving flights at one airport will be compared to the op-
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timized flight trajectories to find out if and by how much the environmental footprint can be reduced.
Realizing an open platform, in which such a trajectory optimization can be accessed by interested
parties, can help accelerate the sustainability of aviation.



(1]
(2]
(3]

[4]

[5]

[6]

[7]

(8]

(9]
[10]

[11]

[12]

[13]

[14]
[15]
[16]

[17]

[18]

References

C. Grobler et al. “Marginal climate and air quality costs of aviation emissions”. In: Environmental
Research Letters 14.11 (Nov. 2019), p. 114031. DOI: 10.1088/1748-9326/ab4942.

T. Ryley, S. Baumeister, and L. Coulter. “Climate change influences on aviation: A literature re-
view”. In: Transport Policy 92 (June 2020), pp. 55-64. DOI: 10.1016/j.tranpol.2020.04.010.

S.H.L.Yim et al. “Global, regional and local health impacts of civil aviation emissions”. In: Environ-
mental Research Letters 10.3 (Feb. 2015), p. 034001. DOI: 10.1088/1748-9326/10/3/034001.

L.E. Teoh and H.L. Khoo. “Green air transport system: An overview of issues, strategies and
challenges”. In: KSCE Journal of Civil Engineering 20.3 (Apr. 2016), pp. 1040-1052. DOI: 10.
1007/s12205-016-1670-3.

EASA. Updated analysis of the non-COZ2 climate impacts of aviation and potential policy mea-
sures pursuant to EU Emissions Trading System Directive Article 30(4). Tech. rep. 1. Sept. 2020,
pp. 6-116. URL: https://www.easa.europa.eu (visited on Feb. 22, 2022).

C.G. Corlu et al. “Optimizing energy consumption in transportation: Literature review, insights,
and research opportunities”. In: Energies 13.5 (Mar. 2020), p. 1115. DOI: 10.3390/en13051115.

A.W.A. Hammad et al. “Mathematical optimization in enhancing the sustainability of aircraft trajec-
tory: A review”. In: International Journal of Sustainable Transportation 14.6 (2020), pp. 413—436.
DOI: 10.1080/15568318.2019.1570403.

J. Ma et al. “Integrated optimization of terminal maneuvering area and airport”. In: Sixth SESAR
Innovation Days (Delft, The Netherlands). Nov. 2016, p. 8. URL: https : //www . sesarju . eu
(visited on Feb. 16, 2022).

Y. Cao et al. “Evaluation of fuel benefits depending on continuous descent approach procedures”.
In: Air Traffic Control Quarterly 22.3 (July 2014), pp. 251-275. DOI: 10.2514/atcq.22.3.251.

J.S. Fuglestvedt et al. “Transport impacts on atmosphere and climate: Metrics”. In: Atmospheric
Environment 44.37 (Dec. 2010), pp. 4648—-4677. DOI: 10.1016/j.atmosenv.2009.04.044.

D.S. Lee et al. “The contribution of global aviation to anthropogenic climate forcing for 2000 to
2018”. In: Atmospheric Environment 244 (Jan. 2021), p. 117834. DOI: 10. 1016/ j . atmosenv .
2020.117834.

F.D.A. Quadros, M. Snellen, and I.C. Dedoussi. “Regional sensitivities of air quality and human
health impacts to aviation emissions”. In: Environmental Research Letters 15.10 (Oct. 2020),
p. 105013. DOI: 10.1088/1748-9326/abb2c5.

G.P. Brasseur et al. “Impact of aviation on climate: FAA's Aviation Climate Change Research
Initiative (ACCRI) Phase II”. In: Bulletin of the American Meteorological Society 97.4 (Apr. 2016),
pp. 561-583. DOI: 10.1175/BAMS-D-13-00089. 1.

S. Matthes et al. “Mitigation of non-CO2 aviation’s climate impact by changing cruise altitudes”.
In: Aerospace 8.2 (Jan. 2021), p. 36. DOI: 10.3390/aerospace8020036.

M.T. Lund et al. “Emission metrics for quantifying regional climate impacts of aviation”. In: Earth
System Dynamics 8.3 (July 2017), pp. 547-563. DOI: 10.5194/esd-8-547-2017.

S. Matthes et al. “Climate-optimized trajectories and robust mitigation potential: Flying ATM4E”.
In: Aerospace 7.11 (Oct. 2020), p. 156. DOI: 10.3390/aerospace7110156.

A. Gardi, R. Sabatini, and S. Ramasamy. “Multi-objective optimisation of aircraft flight trajectories
in the ATM and avionics context”. In: Progress in Aerospace Sciences 83 (May 2016), pp. 1-36.
DOI: 10.1016/j.paerosci.2015.11.006.

A. Simorgh et al. “A comprehensive survey on climate optimal aircraft trajectory planning”. In:
Aerospace 9.3 (Mar. 2022), p. 146. DOI: 10.3390/aerospace9030146.

60


https://doi.org/10.1088/1748-9326/ab4942
https://doi.org/10.1016/j.tranpol.2020.04.010
https://doi.org/10.1088/1748-9326/10/3/034001
https://doi.org/10.1007/s12205-016-1670-3
https://doi.org/10.1007/s12205-016-1670-3
https://www.easa.europa.eu
https://doi.org/10.3390/en13051115
https://doi.org/10.1080/15568318.2019.1570403
https://www.sesarju.eu
https://doi.org/10.2514/atcq.22.3.251
https://doi.org/10.1016/j.atmosenv.2009.04.044
https://doi.org/10.1016/j.atmosenv.2020.117834
https://doi.org/10.1016/j.atmosenv.2020.117834
https://doi.org/10.1088/1748-9326/abb2c5
https://doi.org/10.1175/BAMS-D-13-00089.1
https://doi.org/10.3390/aerospace8020036
https://doi.org/10.5194/esd-8-547-2017
https://doi.org/10.3390/aerospace7110156
https://doi.org/10.1016/j.paerosci.2015.11.006
https://doi.org/10.3390/aerospace9030146

References 61

[19]

[20]

[21]
[22]
[23]
[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

J. Sun and |. Dedoussi. “Evaluation of aviation emissions and environmental costs in Europe
using OpenSky and OpenAP”. In: Engineering Proceedings 13.1 (Dec. 2021), p. 5. DOI: 10.
3390/engproc2021013005.

K.M. Bendtsen et al. “A review of health effects associated with exposure to jet engine emissions
in and around airports”. In: Environmental Health 20.1 (Dec. 2021), p. 10. DOI: 10.1186/s12940~
020-00690-y.

J. Rosenow and H. Fricke. “Individual condensation trails in aircraft trajectory optimization”. In:
Sustainability 11.21 (Nov. 2019), p. 6082. DOI: 10.3390/su11216082.

WHO Regional office for Europe. Environmental noise guidelines for the European Region. 2018.
URL: https://wuw.euro.who.int (visited on Feb. 23, 2022).

V. Sparrow et al. “Aviation noise impacts white paper”. In: 2019 Environmental Report. ICAO.
2019. Chap. 2, pp. 44-61. URL: https://www.icao.int (visited on Feb. 23, 2022).

S. Stansfeld and C. Clark. “Health effects of noise exposure in children”. In: Current Environmen-
tal Health Reports 2.2 (Mar. 2015), pp. 171-178. DOI: 10.1007/s40572-015-0044-1.

V. Grewe and K. Dahlmann. “How ambiguous are climate metrics? And are we prepared to assess
and compare the climate impact of new air traffic technologies?” In: Atmospheric Environment
106 (Apr. 2015), pp. 373-374. DOI: 10.1016/j.atmosenv.2015.02.039.

Y. Tian et al. “Cruise flight performance optimization for minimizing green direct operating cost”.
In: Sustainability 11.14 (July 2019), p. 3899. DOI: 10.3390/su11143899.

M. Zhang and A. Filippone. “Optimum problems in environmental emissions of aircraft arrivals”.
In: Aerospace Science and Technology 123 (Apr. 2022), p. 107502. DOI: 10.1016/j.ast.2022.
107502.

H. Yamashita et al. “Newly developed aircraft routing options for air traffic simulation in the
chemistry—climate model EMAC 2.53: AirTraf 2.0”. In: Geoscientific Model Development 13.10
(Oct. 2020), pp. 4869—4890. DOI: 10.5194/gmd-13-4869-2020.

R.S.F. Patrén and R.M. Botez. “Flight trajectory optimization through genetic algorithms for lat-
eral and vertical integrated navigation”. In: Journal of Aerospace Information Systems 12.8 (Aug.
2015), pp. 533-544. DOI: 10.2514/1.1010348.

H.G. Visser and S. Hartjes. “Economic and environmental optimization of flight trajectories con-
necting a city-pair’. In: Proceedings of the Institution of Mechanical Engineers, Part G: Journal
of Aerospace Engineering 228.6 (May 2014), pp. 980-993. DOI: 10.1177/0954410013485348.

B. Kim et al. Environmental optimization of Aaircraft departures: fuel burn, emissions, and noise.
Tech. rep. Pages: 22565. National Academies of Sciences, Engineering, Medicine, and Airport
Cooperative Research Program, June 2013. DOI: 10.17226/22565.

A.V. Rao. “A survey of numerical methods for optimal control”. In: Advances in the Astronautical
Sciences 135 (Jan. 2010), p. 33.

J. Zhou et al. “Optimization of arrival and departure routes in terminal maneuvering area”. In:
Sixth International Conference on Research in Air Traffic Management (Istanbul, Turkey). May
2014, p. 4. URL: https://www.icrat.org/ (visited on Feb. 15, 2022).

A. Franco, D. Rivas, and A. Valenzuela. “Optimal aircraft path planning in a structured airspace
using ensemble weather forecasts”. In: Eight SESAR Innovation Days (Salzburg, Austria). Dec.
2018. URL: https://www.sesarju.eu (visited on Feb. 15, 2022).

R. Dalmau. “Optimal trajectory management for aircraft descent operations subject to time con-
straints”. PhD thesis. Technical University of Catalonia, May 2019. URL: https://www.tdx.cat
(visited on Apr. 16, 2022).

J. Rosenow et al. “Impact of multi-critica optimized trajectories on European air traffic density,
efficiency and the environment”. In: Twelfth USA/Europe Air Traffic Management Research and
Development Seminar 2017 (Seattle, Washington, USA). June 2017. URL: https://www.atmse
minar.org (visited on Feb. 14, 2022).


https://doi.org/10.3390/engproc2021013005
https://doi.org/10.3390/engproc2021013005
https://doi.org/10.1186/s12940-020-00690-y
https://doi.org/10.1186/s12940-020-00690-y
https://doi.org/10.3390/su11216082
https://www.euro.who.int
https://www.icao.int
https://doi.org/10.1007/s40572-015-0044-1
https://doi.org/10.1016/j.atmosenv.2015.02.039
https://doi.org/10.3390/su11143899
https://doi.org/10.1016/j.ast.2022.107502
https://doi.org/10.1016/j.ast.2022.107502
https://doi.org/10.5194/gmd-13-4869-2020
https://doi.org/10.2514/1.I010348
https://doi.org/10.1177/0954410013485348
https://doi.org/10.17226/22565
https://www.icrat.org/
https://www.sesarju.eu
https://www.tdx.cat
https://www.atmseminar.org
https://www.atmseminar.org

References 62

[37]

[38]

[39]

[40]

[41]

[42]
[43]

[44]

[45]

[46]

[47]
[48]

[49]

[50]
[51]
[52]

[53]

[54]

[55]

S.G. Park and J.P. Clarke. “Vertical trajectory optimization to minimize environmental impact in
the presence of wind”. In: Journal of Aircraft 53.3 (May 2016), pp. 725-737. DOI: 10.2514/1.
C032974.

K. Riley et al. “A systematic review of the impact of commercial aircraft activity on air quality
near airports”. In: City and Environment Interactions 11 (Aug. 2021), p. 100066. DOI: 10.1016/
j.cacint.2021.100066.

J.-P. Clarke et al. “Optimized profile descent arrivals at Los Angeles International Airport”. In:
Journal of Aircraft 50.2 (Mar. 2013), pp. 360-369. DOI: 10.2514/1.C031529.

ICAQ. Noise abatement procedures: review of research, development and implementation projects
- discussion of survey results. 1st ed. 9888. Montreal: ICAO, 2010. ISBN: 978-92-9231-665-5.
URL: https://www.icao.int/ (visited on May 11, 2022).

R. Dalmau and X. Prats. “How much fuel can be saved in a perfect flight?” en. In: Sixth Inter-
national Conference on Research in Air Traffic Management (Istanbul, Turkey). May 2014, p. 8.
URL: https://wuw.icrat.org/ (visited on Feb. 15, 2022)

Continuous Climb Operations (CCO) manual. International Civil Aviation Organization (ICAO).
Montréal, Quebec, Canada, 2013. ISBN: 9789292492557 .

M. Soler et al. “Framework for aircraft trajectory planning toward an efficient Air Traffic Manage-
ment”. In: Journal of Aircraft 49.1 (Jan. 2012), pp. 341-348. DOI: 10.2514/1.C031490.

K. White et al. “Noise annoyance caused by continuous descent approaches compared to regular
descent procedures”. In: Applied Acoustics 125 (Oct. 2017), pp. 194-198. DOI: 10.1016/j .
apacoust.2017.04.008.

H. Yamashita et al. “Air traffic simulation in chemistry-climate model EMAC 2.41: AirTraf 1.0”. In:
Geoscientific Model Development 9.9 (Sept. 2016), pp. 3363—-3392. DOI: 10.5194/gmd-9-3363-
2016.

P. Nanakorn and K. Meesomklin. “An adaptive penalty function in genetic algorithms for structural
design optimization”. In: Computers & Structures 79.29-30 (Nov. 2001), pp. 2527-2539. DOI:
10.1016/80045-7949(01)00137-7.

C.R. Harris et al. “Array programming with NumPy”. In: Nature 585.7825 (Sept. 2020), pp. 357—
362. DOI: 10.1038/s41586-020-2649-2

J. D. Hunter. “Matplotlib: A 2D graphics environment”. In: Computing in Science & Engineering
9.3 (2007), pp. 90-95. DOI: 10.1109/MCSE. 2007 . 55.

J. Sun, J.M. Hoekstra, and J. Ellerbroek. “OpenAP: An open-source aircraft performance model
for air transportation studies and simulations”. In: Aerospace 7.8 (July 2020), p. 104. DOI: 10.
3390/aerospace7080104.

PROJ contributors. PROJ coordinate transformation software library. Open Source Geospatial
Foundation. 2022. DOI: 10.5281/zenodo . 5884394.

Met Office. Cartopy: a cartographic python library with a matplotlib interface. Exeter, Devon, 2015.
URL: http://scitools.org.uk/cartopy.

T. Blickle and L. Thiele. “A comparison of selection schemes used in genetic algorithms”. In:
(1995), p. 67. DOI: 10.1162/evco.1996.4.4.361.

J. Sun et al. “pyModeS: decoding Mode-S surveillance data for open air transportation research”.
In: IEEE Transactions on Intelligent Transportation Systems (2019). DOI: 10.1109/TITS.2019.
2914770.

X. Olive. “traffic, a toolbox for processing and analysing air traffic data”. In: Journal of Open
Source Software 4 (2019), p. 1518. DOI: 10.21105/joss.01518.

Sixth International Conference on Research in Air Traffic Management (Istanbul, Turkey). May
2014.


https://doi.org/10.2514/1.C032974
https://doi.org/10.2514/1.C032974
https://doi.org/10.1016/j.cacint.2021.100066
https://doi.org/10.1016/j.cacint.2021.100066
https://doi.org/10.2514/1.C031529
https://www.icao.int/
https://www.icrat.org/
https://doi.org/10.2514/1.C031490
https://doi.org/10.1016/j.apacoust.2017.04.008
https://doi.org/10.1016/j.apacoust.2017.04.008
https://doi.org/10.5194/gmd-9-3363-2016
https://doi.org/10.5194/gmd-9-3363-2016
https://doi.org/10.1016/S0045-7949(01)00137-7
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.3390/aerospace7080104
https://doi.org/10.3390/aerospace7080104
https://doi.org/10.5281/zenodo.5884394
http://scitools.org.uk/cartopy
https://doi.org/10.1162/evco.1996.4.4.361
https://doi.org/10.1109/TITS.2019.2914770
https://doi.org/10.1109/TITS.2019.2914770
https://doi.org/10.21105/joss.01518

Gantt Chart

The planning of the project can be found in the Gantt chart on the following pages. It is described in
detail in Section 4.2. Note that the literature phase and the months leading up to this report are not
included as these tasks have been completed. A template from Vertex42 ' was used.

"https://www.vertex42.com. Accessed on 16 February 2022.
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