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PREFACE

This thesis report is written in fulfillment of the requirements for the degree of Master of Science in Aerospace
Engineering at Delft University of Technology. The review provides an in-depth analysis of the engineering
challenges of precision landing on planetary bodies, with a particular focus on Mars and Titan. The research
that has been conducted at NASA’s Jet Propulsion Laboratory (JPL), Department of Robotics Modeling and
Simulation of Planetary Vehicles, focused on precision landing on Saturn’s moon Titan, while Mars played
a significant role in algorithm verification. Precision landing techniques anticipate on forthcoming rocket
industry needs as defined by NASA. Achieving interplanetary pinpoint precision landing with an accuracy in
the order of meters will greatly benefit the aerospace and technology industry, as well as the science commu-
nity. Besides the enormous boost in acquired scientific knowledge, precision landing will provide a crucial
link for human interplanetary travel in the (near) future.

Through the provision of assorted solutions this written file documents the results and conclusions of the
conducted research. I would like to express my sincere gratitude to Dr. ir. E. (Erwin) Mooij at Delft University
of Technology and Dr. ir. M. (Marco) B. Quadrelli at NASA’s Jet Propulsion Laboratory for their guidance,
navigation and collaboration in the process of establishing this thesis. Likewise, I would like to express my
heartfelt appreciation to the ones closest to me.

Rayan Mazouz
November 18, 2019
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ABSTRACT
Autonomously landing a spacecraft on the surface of a planetary body with a degree of precision in the order
of meters is highly challenging. Over the course of time, the landing ellipse, defined as the region with a 99%
likelihood of where a space vehicle will land, has improved steadily but currently still has dimensions in the
order of kilometers. The first and single Martian spacecraft that has performed a guided atmospheric en-
try and utilized precision landing technologies is the Mars Science Laboratory (MSL). The MSL probe and its
focal point, the Curiosity rover, has thus been the most advanced mission yet to have flown to Mars. Nonethe-
less, space missions to the Red Planet have thus-far never landed following fuel optimal paths. Similarly, dis-
persions for landing on Titan with current technologies expand to hundreds of kilometers. The only reference
mission to Titan is the Huygens probe, which has not utilized precision landing technologies nor optimal path
planning. Besides, the goal of the Cassini-Huygens mission was to maximize descent time to augment sci-
entific data retrieval of Titan’s atmosphere. As part of the NASA Space Exploration Technology Directorate, a
parafoil is now proposed for landing on Titan due to its cost effectiveness, ease of deployment, relatively low
mass compared to the prospective payload and capabilities of precise autonomous delivery.

While considering all phases of Entry, Descent & Landing (EDL) and all elements of Guidance, Navigation
& Control (GNC), the central focus of the research was put on the (powered and parafoil) terminal descent
phase. The research core concerns a convex optimization programming approach to guarantee soft-landing.
Throughout the discussion a distinction is made between lossless and successive convexification for optimal
guidance. Both types have been simulated to either compute fuel optimal paths for powered Mars landing
or pull-power optimal paths for parafoil Titan landing. By using the full capability of the spacecraft unprece-
dented precision may be achieved. This will enable engineers and scientists to reach the most alluring places
on celestial bodies, thereby providing humanity a deeper understanding of the Universe.

Distinctive from the guidance system, the navigation entity assumes perfect state knowledge. Nonethe-
less, to cope with the requirements of Terrain Relative Navigation (TRN), a pointing constraint is included
in the guidance scheme. The control segment of the GNC system is closed using a Proportional Integral
Derivative (PID) controller. Nominal simulations pointed out that soft landing is entrenched while adhering
to defined control and state constraints. The simulations have been verified by directly comparing the re-
sults to industry’s current best practise (for Mars landing). All simulations have been carried out using CVX
in Matlab. The obtained results are found to be (near) identical compared to the literature, and hence the de-
signed algorithm has been verified. The active GNC system, for which three sources of errors were induced,
accordingly managed to guide the spacecraft to the designated target. The three included sources of error
were thrust misalignment, thrust magnitude errors and navigational sensing discrepancies.

As part of the research conducted at NASA/JPL/Caltech, the algorithm has been extended to become com-
patible with landing on the Saturn’s moon Titan. Simultaneously, this allowed for a robustness assessment of
the algorithm. A total of three simulation cases were investigated. The first two are based on three degree-of-
freedom point-mass dynamics and are differentiated between (1) plain conditions and (2) wind conditions
with an enforced glide-slope constraint and a pointing constraint. The latter (3) encompasses high-fidelity
6DoF dynamics with conditions similar to (2). Both the 3DoF and 6DoF simulations show promising results
for on-board implementation. The soft-landing is guaranteed while adhering to imposed mission constraints.
The control time history remains within desired limits, as well as the aerodynamic angles. The terminal land-
ing is enforced such that the payload lands in parallel direction to the gravity vector.

The algorithm has been extended for obstacle avoidance compatibility based on multi-glideslope con-
straints. Specifically, when approaching the destination target, roughness of terrain might raise the need for
avoiding path obstacles detrimental to the mission. Two extensive sensitivity analyses have been conducted,
coupled to parafoil and powered descent. Anew the simulations show promising results for incorporating
such guidance system in actual flight. The next steps in future research are the implementation of the 9DoF
high-fidelity model with NASA/JPL DARTS (Dynamics Algorithms for Real-Time Simulation) to test for real-
time hardware design and visualize terminal descent within the software. Actual testing in C++ is also advised
to guarantee fast convergence. Including thrusters and on-board fuel (to a certain allowable mass) is also ad-
vised for Titan terminal descent to increase control authority. To avoid stall and destruction of the parafoil
through mechanical loads, minimum and maximum velocity magnitudes should be imposed, respectively.
These steps, amongst others, will eventually lead to the realization of precision landing on Mars and Titan.
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1
INTRODUCTION

This report, for which this chapter serves an introductory purpose, has been established to outline the mo-
tives and results regarding the thesis research conducted on the matter of autonomously landing a spacecraft
on the surface of a planetary body with a degree of precision in the order of meters. The research focuses on
Mars and Titan (moon of Saturn), however, the discussion may potentially be extended to landing on other
bodies (i.e., planets, moons, planetoids, etc.) in the Solar System and beyond. Guidance, Navigation and
Control (GNC) systems combined with autonomous trajectory optimization techniques are in particular the
areas of interest. Included in the background information delineated in Section 1.1 are an overview of past
missions that have successfully landed on the Martian and Saturn’s moon surface, the scientific objectives for
enabling pinpoint precision landing and the challenges that come along with it. The first section is concluded
with a brief overview of the consequential upcoming Mars 2020 mission and the proposed Titan parafoil mis-
sion, marking the latest developments in the robotic Solar System exploration program of NASA. Based on the
presented background information a problem statement is derived. This statement is presented in Section
1.2 along with the entrenched research question that naturally follows from it. In the final section an overview
of the rest of this thesis is outlined.

1.1. BACKGROUND INFORMATION
Autonomously landing a spacecraft on the surface of a celestial body with a high degree of precision (in the
order of meters) is very challenging. To gain a better understanding of the current advances, a brief histor-
ical overview of space vehicles that have successfully landed on the Martian and Titanian surface is given
in Section 1.1.1. Over the course of time, the landing ellipse, defined as the region with a 99% likelihood of
where a space vehicle will land, has improved steadily but is currently still measured in the order of kilometers
(Blackmore, 2017). The question that may rightfully arise is why increasing the precision is needed if these
past missions have already proven to be successful. This matter is addressed from a scientific perspective
in Section 1.1.2. The challenges that come along with pinpoint landing on a planet, and Mars in particular,
form a key aspect of this conducted research and are highlighted in Section 1.1.3. In the last parts of this
background information overview the discussion is tilted to the Mars 2020 and the Titan parafoil mission, the
latest developments in NASA’s exploration journey to the Red Planet and Saturn’s moon, respectively.

1.1.1. HISTORICAL OVERVIEW

Over the last decades multiple flyby and orbital missions launched towards Mars with the intent of gaining a
better understanding of the neighbor planet. Several spacecraft have even successfully landed on the Martian
surface within a predefined landing ellipse. The five most significant of these missions are Viking, Pathfinder,
Opportunity & Spirit, Phoenix and Curiosity (MSL) (Braun and Manning, 2007). In case of Titan, the only, yet
very significant mission, has been Cassini-Huygens. As interplanetary navigation improved over time, the
landing ellipses tightened steadily. In this section some characteristics of Viking, MSL and Cassini-Huygens
are highlighted, as they are part of NASA’s Large Strategic Science Missions (National Research Council, 2006).
Brief insights are provided into the key Entry, Descent and Landing (EDL) elements of these costliest and
scientifically most capable spacecraft missions.
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Figure 1.1: Landing ellipses of successful landings on Mars. Image credit: NASA/JPL-Caltech/ESA

VIKING

Viking has been the first spacecraft to safely touch down on Mars and has been important in measuring the
planet’s atmospheric properties firstly (Soffen and Snyder, 1976). These properties are driving factors in entry
vehicle design as they indicate how the enormous kinetic energy is dissipated by friction due heating. Due to
the high number of uncertainties, a statistical approach was used to design the GNC system (Holmberg et al.,
1980). During terminal descent the spacecraft used gravity-turn guidance (dual altitude-velocity contour)
with limitations in terms of CPU and memory (Ingoldby, 1978). This system was verified using a relatively
low accuracy of five-hundred Monte Carlo simulations, and consequently a rather large ellipse emerged (≈
280 × 100 km). Nevertheless, Viking became crucial in laying the foundation and till this day serves as the
backbone of planetary (mainly parachute) landing technologies (Braun and Manning, 2007).

MARS SCIENCE LABORATORY

The Mars Science Laboratory (MSL) and its focal point, the Curiosity rover, has been the most advanced Mar-
tian mission yet. The descent maneuver was dubbed "seven minutes of terror", adverting to the time available
to slow down the spacecraft travelling at about 21,000 km/h at the start of the EDL phase to zero at the end
of it. The sequence being fully autonomous, the timing being perfect and a newly adapted powered descent
technology to guarantee safe touchdown of heavier payloads: the sky crane system. The MSL became the first
interplanetary space mission to use precision landing technologies during EDL (Way et al., 2013). The com-
bination of both advanced guidance and navigation made the landing ellipse constraint shrink significantly
(≈ 20×6.4 km) and now serves as a pathway to pinpoint precision landing.

CASSINI-HUYGENS

Cassini-Huygens, a joint venture between the Jet Propulsion Laboratory, the European Space Agency and the
Italian Space Agency, aimed for getting to know the Saturnian system, i.e., Saturn, its rings and its numerous
moons. The robotic spacecraft, one the most ambitions missions ever launched into deep space, consisted
of the orbit Cassini designed by the Americans and the lander Huygens designed by the Europeans. Powerful
on-board cameras and instruments gave the spacecraft the ability to take detailed images of light spectra
and high accuracy measurements of atmospheric properties (Atkinson et al., 2007). This was conceivable
as the instruments were capable of measuring atomic particles, densities, electrical charges, magnetic fields
and mass. After reaching the Saturnian system in July 2004, Cassini started beaming valuable data, providing
scientist a much deeper understanding of the Saturnian area. Huygens was developed to re-enter into the
largest moon of Saturn: Titan. The landing sequence consisted of a parachute descent phase and after a
successful touchdown it became to most distant lander in space travel history.
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1.1.2. NEED FOR PRECISION LANDING
Conclusive from the provided historical overview of the five most successful missions to the Red Planet is the
fact that currently the accuracy for landing on Mars is still measured in the order of kilometers. The necessity
of increasing the precision to the order of meters is addressed in this section from a scientific perspective. This
discussion about the need for precision includes a portray of the benefits in terms of scientific objectives,
the way in which human exploration of the Earth’s neighbor planet is aided and the contributions to the
sustainable exploration of space. Often space missions aid science in the quest for knowledge in a specific
field and hence the respective scientists precept most of the requirements. However, at times the engineering
requested for certain space missions is not possible (yet) due to the level of complexity being too high.

SCIENTIFIC OBJECTIVES

A set of (uniquely) determined engineering constraints related to a mission’s architecture governs the se-
lection of landing sites. Scientists have to abide this framework of acceptable landing sites settled by these
constraints, and from that select the most relevant location. These constraints are often based on engineering
capabilities of the respective vehicle. A space mission is designed in such a way that the delivery vehicle is
capable of safely landing the payload. These proposed landing sites are currently inherently safe because of
the fact that the landing ellipses have dimensions measured in kilometers (Thomson and el Baz, 2014).

Generally speaking, the larger the proposed landing ellipse, the more challenging it becomes to select a
suitable landing region. Examples of such areas are deserts, oceans, or lowlands with little elevation differ-
ence. A drawback of these sites is the fact that they are not the most interesting in terms of science. To obtain
higher quality scientific output, spacecraft would have to be able to land in an inherently unsafe environment
with highly varying elevation, i.e., pinpoint precision landing becomes an absolute necessity. A whole new
world would open up if fields near caves and valleys can be explored. The ability to settle with permanent
outposts on bodies throughout the Solar System becomes within reach and planetary samples can return to
Earth for further investigation, the latter for which the Mars 2020 is preparing. The establishment of such
ideals is only possible if current systems are further advanced to push through the current boundaries.

HUMAN EXPLORATION

It is the fervent wish of mankind to break through the boundaries of science and establish whether life beyond
Earth exits. The next step in the exploration is a human exhibition send to Mars, chosen because it provides
the quickest way to find an answer within the current engineering capabilities (Zubrin, 2014). The Martian
surface is extremely variable and a rendezvous with prior positioned assets is needed. Landing within the
proximity of these assets has two important reasons. These assets contain elements vital for supporting hu-
man life such as power systems, oxygen generators and water supplies. Furthermore, these assets may be near
special human exploration zones and regions of resources used for exiting scientific in-situ observations.

Even though a manned expedition to Mars might be decades away, several test flights must be conducted
to gain confidence in the developed systems. A successful human exploration mission to the Red Planet thus
comes with the quest of finding a way to land 40-80 tonnes on the Martian surface (with a possible elevation)
within the proximity of prior positioned assets (± 10 m). However, as reality strikes, today’s engineers are
battling to land a rover of 1 ton within an accuracy of 10 km. To have realistic plans for landing humans on
Mars, the mass landing capability needs a magnitude increase of order two, while the landing accuracy needs
a magnitude increase of order four. As systems need to get more advanced to land more weight on Mars with
higher precision, solely relying on heritage systems is not a possibility.

SUSTAINABILITY PROSPECT

From a perspective of sustainability, precision landing demonstrated on Earth has shown that rockets, after
payload delivery to space, can land back, refuel and be reused (instead of the conventional ocean dumping)
(Blackmore, 2017). Phenomenal engineering artwork has been applied several times by SpaceX to be able to
land their rockets on predefined locations. One might rightfully wonder why precision landing has been ac-
complished on Earth but seems so complex on Mars and Titan. The short answer would be that the latter two
are GPS denied environments, making planetary landing navigation extremely hard. However, the problem
has deeper roots that need to be addressed in the quest of interplanetary pinpoint landing. The various rea-
sons behind this increased complexity are discussed in the next section. Nonetheless, the precision landing
by SpaceX does serve as a demonstration of key technologies. The ability of the GNC system to tackle disper-
sions of random nature is truly remarkable. Abreast the increase in precision, the technology serves a greater
purpose for the aerospace industry, namely, allowing for a more sustainable practice of spaceflight. This is
especially important in these times where the industry inserts an enormous pressure on the globe.
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1.1.3. PRECISION LANDING CHALLENGES
Autonomously landing spacecraft on a planetary body with high prescribed precision is very challenging.
NASA even refers to the EDL phase of a Mars mission as the seven minutes of terror (Braun and Manning,
2007). Landing precisely on Titan is rather difficult due to wind gusts on the Saturnian moon. However, there
are a lot of (potential) benefits to be derived from planetary pinpoint landing. The report of the U.S. National
Research Council on National Space Technology Roadmap and Priorities even identifies precision landing as
a top priority and critical EDL capability for the near future. This section elaborates on the challenges of pre-
cision landing and the respective research focus aspects. It is important to keep in mind that the challenges
are interrelated to an increase in maximum payload mass, an increase in spacecraft reliability and a decrease
of development costs. Based on the dual combination of the NASA roadmap for EDL technologies (Munk
et al., 2015) and other literature sources, the main challenges have been identified and grouped:

Atmospheric environment:

• The atmosphere of Mars is too thin to cause decent deceleration, but thick enough for tremendous heat
(thermo-mechanical loads) induced by friction at hypersonic speeds (Lissauer and de Pater, 2013).

• Lack of understanding of the aerodynamics, aeroheating environment, winds and density variations
(Sostaric, 2010). Especially for Titan due to the fact that Cassini-Huygens is the only reference mission.

• The atmosphere of Titan is very thick, in fact, Titan has a surface density value higher than four times
the value of Earth. On the other hand, however, the gravity value is much lower (Quadrelli et al., 2019).
This unique combination causes significantly different aerodynamic performances.

Guidance, navigation and control:

• Full autonomy necessary because of time delay between Earth and Mars/Titan. The Deep Space Net-
work (DSN) cannot be utilized for these landing sequences.

• Increased navigation errors because Mars/Titan are GPS denied environments.
• Strain on GNC systems, because of the abrupt reduction of velocity and release of kinetic energy (Mars).
• Strain on the GNC systems due to heavy gusts of wind (Titan).
• No margin for error in the sense that the first attempt must be immediately right.
• End-to-end validation of GNC systems in Martian or Titanian conditions is not possible.

Physical constraints:

• Limited on-board fuel capacity and thus limited hovering capabilities (Mars).
• Limited on-board power and thus limited canopy pull capabilities (Titan).
• Limited aerodynamic control due to the inherent design of the spacecraft (Mars).
• Lower ballistic coefficients allow the spacecraft to decelerate to higher altitudes. While a low ballistic

coefficient is important for high mass vehicles in the thin Martian atmosphere, in terms of design it
quite difficult to achieve lower coefficients (Putnam and Braun, 2016).

Surface hazards:

• Four main surface characteristics are identified as potential landing hazards: slopes, roughness, craters
and illumination. Spacecraft should therefore be able to dodge to inherently safe locations.

While it might seem difficult to tackle these problems and challenges, it is important to keep in mind that
overcoming great challenges produces great benefits. This philosophy also holds for the problem at hand, for
which the following possible benefits are derived:

• Increased mass of delivered payload
• Access to higher elevation surfaces
• Increased landing accuracy
• Increased robustness of EDL systems
• Increased safety and probability of interplanetary mission success
• Increased scientific output
• Reduction in space mission costs
• Increased safety for human spaceflight missions
• Improved reliability of return samples
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1.1.4. MARS 2020
The Mars 2020 mission is one of the latest developments in the exploration journey of NASA to Mars. This
mission is a so-called flagship-class mission and is part of the Large Strategic Science Missions. This means
that the spacecraft is classified as one of the costliest and most capable ever built. This section shortly ad-
dresses the key mission characteristics from a scientific perspective. One of the key scientific objective is
searching for past evidence of life in regions where in ancient times conditions may have been favorable for
microbiological life to have existed. Furthermore, Mars 2020 will prepare for (near) future human space ex-
ploration. Because of the success of the Mars Science Laboratory, the same design has been adopted with
slight modifications (Fosse et al., 2015).

The timed launch date is currently settled for July/August 2020 to ensure a favorable relative position be-
tween Earth and Mars. The mission duration is established at a minimum of one year. Because the mission is
mainly MSL based, additional mission costs and risks are suppressed. Even the design of the rover is inherited
from the Curiosity rover. Of the total of twenty-three cameras mounted on the spacecraft, seven are purely
focusing on the EDL sequence. This gives an indication of the importance NASA gives to the analysis of the
EDL phase. Several workshops have taken place to determine the final landing location of the spacecraft.
From the 54 initially proposed landing sites, three are currently considered:

• Columbia Hills, Gusev Crater (14.5°S, 175.4°E) → near Spirit
• Jezero Crater (18.855 °N, 77.519°E)
• NE Syrtis (18°N, 77°E)

Important for the final choice of the landing location is the fact that all prior determined scientific objectives
can still be met. NASA identified a total of four main scientific goals:

1. Determine if life once existed on Mars.

2. Characterization of Martian climate.

3. Characterization of Martian geology.

4. Preparation for human exploration.

1.1.5. TITAN PRECISION LANDING PARAFOIL
To recapitulate, part of the research focus concerns a parafoil-based precision landing on Titan. The designed
algorithm has been verified by simulating Mars landing scenarios and comparing the results with the exten-
sive available literature. This section provides insight as to why Titan is of such interest. Mars and Titan are of
course different in essence, in the sense that Mars has a rather thin atmosphere for which conveniently rocket
thrusters are utilized in the landing sequence. Yet, the nature of the precision landing guidance problem for
both celestial bodies is rather similar. The adopted method, as will be broadly delineated in Chapter 4, is
convex optimization guidance. This methodology has been well validated and researched for Mars landing.

Questions remain why Titan is of such interest for NASA in particular and the science community in gen-
eral. Its geophysical features are such that Titan’s liquids and gases are quite similar compared to the ones
found on Earth. Furthermore, there is evidence of possible underground oceans. The image from the Cassini
Radar Mapper depicted in Figure 1.2 shows some of the northern lakes and seas of the Saturian moon. In-
teresting is the fact that this image has been constructed based on multiple operational camera resolution
modes: 0.3 —1.5 km, 2 —10 km, and 40 —200 km. A technique described as false coloring has been applied to
make a clear distinction between the features of land (brown/yellow) and hydrocarbon liquids (blue/black).
The proposed landing target area is currently set to be near the Maracaibo Lacus site.

As before-mentioned, the atmosphere of Titan is rather thick, reason being for adapting parafoil landing
techniques. A direct consequence of this, is that the EDL sequence is relatively slow (order of hours) and
thus wind directions and magnitudes can change considerably during descent. An autonomous Precision
Aerial Delivery Systems (PADS) has been chosen to be the payload delivery system. These types of controlled
parachutes have several advantages over the traditional parachute. First and foremost, classical canopies
have (almost) no control authority. Systems like PADS however have actuators that allow for remote in-flight
control capabilities. Nonetheless, these systems have not yet been deployed in space exploration and thus
extensive research is required. Earlier research carried out at JPL focused on the EDL sequence till termi-
nal descent. This research is a continuation hereof, with a main focus on the optimization of the terminal
descent. During the landing process control is obtained by deflections: symmetric deflections control longi-
tudinal dynamics while asymmetric deflections control lateral dynamics. The complication of wind profile
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Figure 1.2: Cassini Radar Mapper: North polar lakes and seas on Titan (Hartwig et al., 2016)

magnitudes at high altitudes still holds for terminal descent and thus its incorporation has been an integral
part of the analysis. The final landing is generally performed upwind to minimize the touchdown velocity
of the payload and reduce roll-over risk. All the modelled wind profiles are based on data obtained from
the Cassini-Huygens mission. It is important to mention however that this data is limited and many aspects
remain to be unknown. The guidance algorithm should therefore be robust to deal with dispersions.

1.2. PROBLEM STATEMENT
Several key challenges have been presented that come along with precision landing on Titan and Mars. This
research will only focus on a selection of these challenges. Former interplanetary guidance algorithms have
not fully utilized the spacecraft’s divergence capabilities, which resulted in a limited landing accuracy. Ac-
cordingly, the main research purpose is to develop a large divergence algorithm for terminal descent that is
able to guide the spacecraft to a defined landing location, thereby following optimal paths to achieve a land-
ing precision in the order of meters. The main problem regarding the guidance and navigation systems for
precision landing is the fact that limited robustness, uncertainties of navigation sensors, variations in atmo-
spheric properties, wind variations and modelling inaccuracies cause landing accuracy to be rather limited.
As will become clear in the chapters ahead, current GNC algorithms do not fully utilize the divergence capa-
bility of a space vehicle, which also results in a limited landing accuracy. The research therefore focused on
the following aspects:

1. Improved guidance algorithms to increase robustness.

2. Incorporate optimal paths in the design to allow for large divert guidance.

3. Enforce constraints to ensure soft-landing.

4. Insurance of spacecraft autonomy in compliance with real-time EDL flight.

Based on the discussed challenges, the defined problem statement and the established focus aspects of this
research, the entrenched research question is stated:
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What order of magnitude precision for landing on planetary bodies can be achieved by using advanced
guidance, navigation & control systems in combination with state-of-the-art autonomous trajectory
optimization algorithms?

Differentiating this question into partial questions breaks down the complexity of the problem and gives rise
to a clear research overview. For easy tracking each question has been given a unique RQ-x identification:

• RQ-1: Is a convex optimized real-time generated guidance algorithm capable of precisely guiding the
spacecraft to predetermined landing ground?

• RQ-2: What cost function, state constraints and control constraints are needed based on the mission
scenarios?

• RQ-3: Is a convex optimized real-time generated guidance algorithm capable of retaining to the state
and control constraints throughout the entire sequence?

• RQ-4: How does the incorporation of a three-degree-of- freedom fuel/power optimal trajectory differ
from a six-degree-of-freedom trajectory?

• RQ-5: Is the algorithm capable of generating optimal divergence paths in real-time in case the nominal
trajectory turns out to be non-feasible?

• RQ-6: Are the landing accuracy and the fuel/power consumption mutually related?

• RQ-7: How does the algorithm performance differ between a thin atmosphere (Mars) and thick atmo-
sphere (Titan) landing sequence?

• RQ-8: Is a landing accuracy on the order of meters theoretically feasible?

• RQ-9: What affect do uncertainties in the state variables have on the algorithm, i.e., how robust is the
algorithm?

1.3. REPORT OVERVIEW
In the final segment of this chapter the structure of the remainder of research report is established. Chapter 2
defines the current state-of-the-art systems based on a comprehensive literature review. The third chapter fo-
cuses on the relevant flight dynamics, providing a total overview of relevant reference frames, state variables,
frame transformations and general equations of motion. This includes a delineation of parafoil dynamics for
landing on Titan. Chapter 4 forms the core chapter of this study and focuses on relevant Guidance, Naviga-
tion and Control (GNC) elements. This chapter starts with a general discussion on strategies for designing
GNC systems. The guidance system, forming the core focus of the research, is charged with the task to bring
forth steering commands by taking an estimated reference of the prevailing and final state into account. The
input state data is provided by the navigation system using the interface information gathered by yet again
(theoretical) models and sensors. Throughout the research, however, perfect state knowledge has been as-
sumed due to international regulations on the export of defense technologies. Despite the fact that this re-
search does not specifically focus on the control aspect of the GNC system, it remains an important theme
for closed-loop analysis and theoretical utilization of the propulsion system and parafoil pull for guidance
purposes. The main aspects are hence highlighted in the final section of the fourth chapter. In Chapter 5
the formal proofs with regard to the convex optimization and guidance method are conferred. This chapter
also outlines the difference between applying the golden search method and the successive convexification
method for guidance time optimization. The sixth chapter provides a framework for the design of the simu-
lator, which is coupled to the verification of the algorithm. Chapter 7 confers the results of both the nominal
Mars and Titan simulations, as well as the assessment of algorithm robustness and sensitivity. In the final
chapter conclusive commentaries and recommendations are charted.
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2
HERITAGE

This chapter outlines the heritage systems of landing on planetary bodies, with a particular focus on guided
precision landing. The most important systems with regard to pinpoint landing are the EDL systems. Tech-
nologies related to these systems may be classified into four main categories: aeroassist and atmospheric
entry, descent and targeting, landing and, finally, technologies related to the vehicle systems. All these ele-
ments are outlined in Section 2.1 to gain an understanding of the (working mechanism of the) current state
of the art and the challenges ahead in terms of autonomous guidance for precision landing. Section 2.2 starts
with a of a more broad discussion of the fundamentals of landing dispersions. The discussion ends with sev-
eral future considerations that increase the precision of landing but are not (directly) related to either the
GNC system or the autonomy of the spacecraft. These topics are outlined for enhancing future research.

Being the first Martian and interplanetary mission to have ever performed a guided entry, the Mars Sci-
ence Laboratory (MSL) mission forms an integral part of this research. Building on this legacy, the Mars 2020
mission will have a near identical design and additionally be more robust. Accordingly, these two missions
have been taken as baseline references (i.e., mission and vehicle) for the Mars landing simulation sequences,
as has been outlined in Section 2.3. In the same section the heritage research of the Titan precision landing
parafoil is outlined, namely, the Precision Aerial Delivery System (PADS). The mission and system require-
ments for this research are derived and outlined in Section 2.4, marking the conclusion of this chapter.

2.1. ENTRY, DESCENT, AND LANDING TECHNOLOGIES
The EDL system is essential in safely bringing a vehicle from planetary approach conditions to the surface
of a Solar System body (or in atmospheric transit phase). For better understanding and insight purposes,
this section serves a road map for current heritage technology capabilities and anticipates on the needed de-
velopment based on NASA Technology Roadmaps. The discussion with regard to this matter is initiated in
Section 2.1.1. The breakdown structure shown in Fig. 2.1 depicts the EDL fundamentals and is used for gov-
erning the discussion. The breakdown is divided into three levels with the entire segment of the EDL systems
on the first (highest) level. The present top priority, highest level goal, of the EDL systems advancement is the
enabling of landing heavier payloads travelling at faster velocities safely with high precision. The central ele-
ments, further discussed in Sections 2.1.2 -2.1.3, include aeroassist and entry, descent and targeting, landing
and vehicle system technologies, respectively.

2.1.1. HERITAGE AND ADVANCEMENT

Advances in space technology are most of the time driven by mission requirements and are often only adapted
if the systems have a high Technology Readiness Level (TRL). But even if only heritage systems are used, the
performance is not known to a very accurate extend. This can be attributed to the fact that Titan-like and
Mars-like EDL flight condition cannot be completely replicated (yet) or bring forth far beyond reasonable
expenses. On top of that, fact of the matter is that the various EDL elements are highly interdependent and
altogether determine the behaviour of the system (Adler et al., 2010). As it is not possible to test the EDL
end-to-end sequence before launch, qualification strongly depends on computer simulations. It is therefore
crucial to collect as much as possible existing EDL flight data and analyze the performance characteristics

9
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Figure 2.1: Entry, Descent, and Landing Systems Technology Breakdown Structure (Adler et al., 2010). Blue boxes framework: additional
technologies needed for autonomous guided precision landing.

and limits of the systems. That by itself might impose a problem as flight data is at times too scarce for accu-
rate predictions. Conducting sensitivity analyses often aid in better understanding of system behavior.

2.1.2. AEROASSIST AND ATMOSPHERIC ENTRY

The EDL sequence starts with the Aeroassist and Atmospheric Entry (AAE) phase in which the spacecraft is
decelerated from hyperbolic arrival orbit as a result of drag in the aerobraking maneuver. Thermal protections
systems safeguard the carrying payload from the extreme hypersonic entry environment and decelerators
ensure the rapid reduction of entrance velocity. Within the AAE framework, the approach navigation plays an
important role in landing ellipse size reduction. Furthermore, upon entry, robust guidance software is crucial
for steering the spacecraft to the right destination. At last, navigation processes might get interrupted during
hypersonic entry causing errors in process known as blackout phase.

APPROACH NAVIGATION

In terms of precision landing, the approach navigation plays an important role. For unguided ballistic entry,
increasing the landing accuracy is mainly attributed to an improvement in the approach navigation (Rapp,
2016). Even though this research focuses on guided powered descent, the approach navigation is very useful
in the fact that it can improve initial entry conditions such that the landing ellipse is significantly reduced in
size (Putnam and Braun, 2016). The current state of the art is able to produce an accuracy ellipse of 30 km ×
3 km, without the consideration of planetary body induced uncertainties (such as strong winds).

ENTRY GUIDANCE

A classical way of classifying guidance methods is distinguishing between predicting capabilities and nomi-
nal trajectories (Wingrove, 1963). The former predicts future trajectories with a fast (inner) loop and does not
make use of stored trajectories. Taking initial, reference and final state into account, the main task of the guid-
ance system is to generate steering commands for the space vehicle. The necessity of obtaining inputs from
the surroundings is provided for by the navigation system and its sensors. The design of such guidance sys-
tems must be such that dispersions in the state of the spacecraft and conditions of the atmosphere are dealt
with accordingly. An example of an accurate and adaptive guidance algorithm for space vehicles, particu-
larly those with a low lift-to-drag ratio, is the numerical predictor-corrector method (Lu, 2008). This method
proved to be successful in the hypersonic guidance of the MSL and hence established a solid base for future
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Figure 2.2: Optimal large divert algorithms for enabling planetary pinpoint precision landing: G-FOLD (Açıkmeşe and Ploen, 2007).

missions. However, as rightfully stated by Wang et al. (2017), guidance systems need more advancement to
become increasingly autonomous, robust and reliable .

HYPERSONIC RADIO BLACKOUT PHASE

The hypersonic phase is highly non-linear in nature and the extreme conditions cause a so-called radio black-
out phase, making in-situ measurements difficult. A coat of ionized particles generated by the shock travelling
in front of the flow causes an interruption in the Inertial Measurement Unit (IMU) navigation process (Mora-
bito, 2002). This inflicts navigational errors on the spacecraft, causing a reduction in the accuracy of the
landing. A proposed solution to this phenomenon is a tightly coupled integrated re-entry navigation system
using both IMU and an initially proposed Ground Positioning System (GPS) (Mooij and Chu, 2002). However,
one should keep in mind that as of yet both Mars and Titan are GPS-denied environments.

2.1.3. DESCENT AND TARGETING
During the entry phase, large errors in both position and velocity accumulate as a consequence of atmo-
spheric ambiguities and the narrow control authorization (Açıkmeşe et al., 2012). The lander corrects for
those errors real-time during the descent phase. Targeting ensues during the last portion of the descent in
which terrain-relative landing decisions are made. The MSL radar-based terrain sensing system embodies
the state of the art of terminal descent technology. Included in this are propulsion systems, relative sensing
and autonomous targeting for touchdown preparation. The three latter, being part of the GNC system, are
not fully developed yet and serve as a pathway for enabling future precision landing (Munk et al., 2015).

LARGE DIVERT GUIDANCE

The current state-of-the-art powered descent guidance algorithms used in space mission include gravity turn
guidance and Apollo era based polynomial guidance. Even the guided entry implemented in MSL was built on
algorithms extracted from the Apollo era, allowing minimum diversions only (Wong et al., 2006). These algo-
rithms do not fully utilize the divergence capability of a space vehicle, resulting in a limited landing accuracy.
While empirical relations show that these algorithms are efficient in terms of fuel consumption, the mini-
mization of propellant use is not explicitly taken into account. Besides, this optimal fuel usage is only true if
the covered lateral divert distances are an approximate of twenty percent of the altitude at which divergence
began. For that reason these heritage systems cannot classified among large divert guidance technology. Fig.
2.2 depicts the disparity between Apollo divert algorithms and more advanced optimal large divert systems.

The next main leap in Martian exploration thus lies in implementation of these systems. While the moon
of Saturn is different in nature, this is also relevant for landing on Titan. The objective large divert guidance
systems have is finding optimal divert paths robustly while falling towards the surface. A useful mathematical
technique for such optimal computations is convex optimization guidance. While the objective of minimiz-
ing landing error using fuel optimally is inherently nonconvex, it has been proven that an optimum output of
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Table 2.1: G-FOLD v s Apollo class algorithms (Açıkmeşe et al., 2012)

the relaxation of the problem also holds for the initial nonconvex problem (Açıkmeşe and Ploen, 2007). The
Jet Propulsion Laboratory developed an algorithm, known as Guidance for Fuel Optimal Large Diverts (G-
FOLD), for this so-called lossless convexification of nonconvex optimization. The fundamental differences
between the more robust G-FOLD and Apollo heritage algorithms are summarized in Table 2.1. To conclude:
the main objective of large divert guidance systems is to provide guidance algorithms that on-board are able
to solve divergence maneuvers while respecting the limitations of the spacecraft in terms of fuel or power
capacity. These form the core topics of the research and are extensively discussed in Chapter 4.

NAVIGATION AND TERRAIN-RELATIVE SENSING

Knowing the position and velocity state of the spacecraft in real time during the descent and targeting phase
is a critical component of the closed GNC loop, and even more so in case of pinpoint landing. Conven-
tional techniques include determining vertical velocity and altitude using radar and horizontal velocity using
Doppler radar (Braun and Manning, 2007). To allow safe precision landing near scientific interesting areas,
high-frequency measurements are required while minimizing size, mass and power consumption of the nav-
igation sensors. The importance of this lays in the fact that an improved navigation (sensor) performance
increases the reliability, autonomy and accuracy of the GNC scheme (Jiang et al., 2014). The primary chal-
lenge in adapting new sensor technology is the detailed physics models needed for full characterization of
behavior and spacecraft interaction.

AUTONOMOUS TARGETING

The ability of the vehicle to make on-board decisions to dodge to a desired target point based on sensor input
data is defined as autonomous targeting. Traditional landing approaches are solely based on inertial sensing
and had no such systems (Johnson and Montgomery, 2008). The overall objective of autonomous targeting
technologies is to enable precise landing at hazardous locations by acquiring knowledge of the area surround-
ing the target. Common hazards include steep terrains, rough surfaces, craters and areas of no illumination.
The latter is mainly ascribed to missions requiring solar power for inducing energy. Furthermore, sites of high
elevation are at present defined as hazardous zones. Decreasing inertial errors may be achieved by using a
Terrain Absolute Navigation (TAN) system, which enables localization though on-board maps generated by
priori sensing data (e.g. satellites). The most common way of bringing this about is through a catalogue
based on Digital Elevation Models (DEM). A camera and a crater detection algorithm are used to retrieve in-
formation about the position of the vehicle with respect to the inertial frame. The navigation filter uses this
data to update the preceding state retrieved from the IMU. As altitude decreases, TAN becomes less and less
efficient in improving the errors induced on the IMU measurements. The switch is then made to computing
spacecraft position and orientation based on measurements intervals, known as Terrain Relative Navigation
(TRN). This system requires two consecutive images of the planetary surface which can also be Laser Imaging
Detection And Ranging (LIDAR) or radar images. Analogously, the TRN system requires priori reference data
in the form of a DEM. The purpose of the TAN and TRN systems is to aid the inertial navigation system by
providing estimates of global position, local position and velocities. A prove of concept of the TRN system
has been demonstrated on Earth, and this technology shall also be used on the Mars 2020 mission. As shown
in Fig. 2.3, adding the TRN system to the navigation scheme enables larger diverts and backshell separation
at higher altitudes (Brugarolas et al., 2016). As suggested by Blackmore (2017), a combination of Earth proven
precision guidance and TRN can enable precision landing on Mars, and likewise on Titan.
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Figure 2.3: Terrain Relative Navigation system enables larger diverts. Image source: NASA/JPL.

2.2. PRECISION LANDING
As was outlined in the background information section in Chapter 1, various successful landings have oc-
curred on Titan and Mars over the last decades. Until MSL, all of these missions mainly used Viking heritage
elements and had a ballistic entry with no guidance. This approach has proven to be successful but not
sufficient for precision landing. The landing ellipse, the conventional way of presenting planetary landing
accuracy, is described in an inertial system. Enabling pinpoint landing does not require re-invention of the
wheel but rather some key elements need to be revolutionized. Central in achieving this is the ability to react
to trajectory variations caused by uncertainties in the environments, defined as dispersions. Various error
sources that contribute to these dispersions, shown in Fig. 2.4, are discussed briefly in Section 2.2.1.

2.2.1. LANDING DISPERSIONS
The inclination of the approach trajectory, entry sense (prograde, retrograde or polar) and location of the
landing site are geometric characteristics influencing the landing ellipse dimensions. Other factors that have
influence hereupon, illustrated in Fig. 2.4 in terms of relative size based on a 99% likelihood and a 3σ two-
dimensional normal distribution, have been been identified by Knocke et al. (2004):

• robustness of real-time guidance algorithms
• navigation uncertainties
• variations in atmospheric properties
• aerodynamic modelling inaccuracies

By tackling the first problem, a spacecraft will be able to react better to the latter ones and hence reduce
the landing ellipse size. This research focuses on the sole effect of improved guidance for planetary landing
through autonomous trajectory optimization algorithms, of which the discussion is continued in Chapter 4.

2.2.2. FUTURE CONSIDERATIONS
This section highlights the EDL systems and technologies that have significant effect on the landing accuracy
but are beyond the scope of this study. To aid future research, a compact list of proposed advances is com-
posed. For a detailed description the reader is referred to Munk et al. (2015). Notice that only some of the
future considerations are highlighted and thus the list is not complete.

DECELERATION SYSTEMS

Due to the inherently thin nature of the Martian atmosphere, parachutes have to be rather large and are
currently reaching their limit in the amount of mass that can be delivered (Mastropietro et al., 2015). The
parachute deceleration system has been used since the 1970s Viking Program. However, future missions
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Figure 2.4: Contributions to landing ellipse dispersions (Knocke et al., 2004).

will thus require high-performance innovative landing techniques. An important aspect to consider is that of
rigid hypersonic decelerators. By generating lift, the peak heat rate and deceleration are significantly reduced.
Also, the abilities in terms of cross-range are improved and landing accuracy is increased (Skolnik et al., 2017).

PROPULSION SYSTEMS

The utilization of a propulsive system reduces the velocity in the higher atmosphere at a lower expense com-
pared to previously discussed aerodynamic deceleration systems. The class of propulsion systems used for
ensuring contact with the surface are of a different nature because of the distinctive operational conditions.
State of the art descent thrusters initiate in the supersonic regime, making use of perfect gas jets. This so-
called supersonic retropropulsion has been reinvigorated by NASA after decades of stagnation in innovation.
Nonetheless, maturation of these systems requires development of sensors and algorithms for the effective
control and stabilization of the spacecraft. The most challenging advancement however, is the scaling of
systems to larger engines for enabling precision landing of human-class vehicles (Edquist et al., 2014).

ATMOSPHERIC CHARACTERIZATION

For all aerodynamic flight phases of planetary landing, from aerocapture/aerobraking to entry and descent,
models of the atmosphere are important. Precision landing requires guidance spacecraft to navigate through
this strongly varying environment. While advancing guidance and navigation systems will certainly aid in
increasing the landing accuracy, the requirement for better models is absolutely necessary. Furthermore,
hypersonic aerodynamic uncertainties only accrue with an increase in mass and velocity (Bose et al., 2013).
This fact is also true for MSL, of which the flow field structure analysis is especially complicated for the vortex
flow (Wei et al., 2015). Characteristic for hypersonic flow is the bow shock wave being detaching from the
body and laying very close to the heat shield. The future mission to Titan, Dragonfly, should aid in further
characterizing the atmospheric properties of the Saturnian moon.

SAMPLE RETURN MISSIONS

A powerful type of exploration of the Red Plant are the proposed long term objective Mars sample return
mission. This endeavour is important to settle the right preparations for human exploration missions, making
analysis of collected rock and dust samples possible on Earth. The major space agencies, amongst them NASA
and ESA, have proposed missions with an entry mass of approximately 2000 kg requiring precision landing
for placement of the Mars Ascent Vehicle (Buonocore, 2011). Due to the thick nature of Titan’s atmosphere a
sample return is currently not realistic.
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2.3. REFERENCE MISSIONS
This section outlines the reference missions regarding the planetary landing simulations of the conducted
research. For the Mars landing cases, delineated in Section 2.3.1, the dual combination of the Mars Science
Laboratory (MSL) and Mars 2020 are considered. These two missions have a similar baseline design, with
a slight modification in spacecraft mass and some of the on-board instruments. In the second and final
segment of this section the Precision Aerial Delivery System heritage for landing on Titan is outlined.

2.3.1. MARS LANDING - MSL AND MARS 2020
The first and single Martian spacecraft that has performed both a lifting and guided atmospheric entry, and
utilized precision landing techniques is the Mars Science Laboratory 1. Travelling at 5.845 km/s, the space-
craft entered the Martian atmosphere at an entry flight path angle of -15.474 deg, 125 km above MOLA refer-
ence ground. A sequence of complex autonomous operations decreased the landing ellipse from hundred(s)
of kilometers for the unguided successors to a relatively small target landing ellipse of 7 × 20 km. The top-
level requirement for MSL was to land the 899 kg payload within this selected target, at an altitude of 1 km
above MOLA reference (Way et al., 2007). The strict landing requirement is attributed to the nature of the Gale
crater, of whom the region and dimensions enforced the constraints. Eventually, MSL landed just 2.385 km
away from the 4.5965° South and 137.4019° East landing site within the crater. NASA has chosen to build on
the legacy of Curiosity as a design baseline for Mars 2020 (Fosse et al., 2015). For that reason scaling method-
ologies shall be applied to the MSL design, the approach of which has been conferred in Appendix A.

EXO-ATMOSPHERIC FLIGHT

The GNC system for the EDL sequence is activated at TZERO (t = 0s), one minute after separation from the
cruise stage. Way et al. (2013) continue by describing how the reaction control systems warm-up for orbital
de-spin at a constant rate of 2 rpm and re-orient to the aimed attitude for entry. By means of cruise balance
masses, an off-set in the CoM is provided to generate a Lift-to-Drag Ratio (L/D) of 0.24 at Mach 24. This
attitude is preserved through a large portion of EI and served two purposes. As specified by Prakash et al.
(2008), the landing ellipse error is reduced and the altitude at which the parachute is deployed is increased.

While a higher L/D does increase the flight time and downrange, a too high L/D may lead to the space-
craft entering a skipping flight. Avoiding this is achieved through banking, a process in which the lift vector
is tilted out of the vertical plane. This by itself imposes the problem of an increased lateral motion, (at times)
unwillingly increasing the cross range of the spacecraft. Other phenomena that affect the footprint dimen-
sions are heating constraints, acceleration, dynamic pressure and the Coriolis effect. Accounting for these
path constraints, a robust on-board near real time method for generating footprints for entry vehicles has
been developed by Saraf et al. (2004).

ENTRY INTERFACE

The official start mark of the EDL sequence is the EI, which begins after necessary key preparations proce-
dures have been followed. At this instance in time, the vehicle is located 631.979 km downrange and 7.869 km
cross range of the landing mark. As (Way et al., 2013) rightfully points out, an immense segment of the kinetic
energy (99.6%) is dissipated through atmospheric friction, putting a lot of strain on the vehicle. In fact, peaks
in both heating and deceleration occur during the guidance phase, making it an important portion of the EI.
The MSL entry guidance algorithm is divided by Blau (2014) into three main phases:

• pre-bank phase
• range control phase
• heading alignment phase

After sensors detect that acceleration has exceeded 0.5g, the pre-bank phase and the controller commands
for banking attitude commence. An acceleration trigger limit is set for the range control. During this phase
the bank angle is commanded in such a way that the predicted downrange error is minimized at parachute
deployment (Mendeck and Craig, 2011). The error in cross-range is preserved through possible necessary
bank reversals by means of what (Prakash et al., 2008) describes as a manageable dead-band limit. This band
of input values is also referred to as a neutral zone and occurs within the domain of control systems when the
output is zero. They serve a purpose of preventing oscillations and reoccurring activation-deactivation series

1While Viking did enter through a combined ballistic-lifting configuration, a precision guidance scheme was not included into the GNC
system (Euler et al., 1977).
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referred to as hunting (Johnson, 2013). At a relative velocity of 900 m/s the heading alignment is initiated for
the minimization of the residual of the cross-range error. The phase ends with preparations for parachute
deployment by adjusting the vehicle back to a zero angle of attack profile through balance masses.

At a velocity of approximately Mach 2 and a maximum flight path angle of 5°, parachute deployment is
triggered (Pollard et al., 2007). The latter is because the off-axis loads on entry spacecraft has to be limited.
Meanwhile, the spacecraft has gone through a “straighten up and fly right” (SURF) operation and the azimuth
has been aligned to allow for better radar measurements. Without further explanation why, the parachute
trade-off lead to a single 21.5 m baseline design. For the interested reader, Sengupta et al. (2007) provides
a detailed overview of MSL parachute decelerator subsystem. The prime functionality of the decelerator is
to decrease the downrange velocity from 450 m/s at parachute deployment to roughly 100 m/s at backshell
separation. While this reduction in velocity is benevolent, miscues accumulate in the parachute phase as a
consequence of winds and atmospheric unpredictabilities. These errors are ought to be reduced by the GNC
system for the powered descent phase to allow for precision landing. Preparations for this phase include
jettisoning of the backshell, data acquisition of the Martian surface using TDSs, initiation of the powered
descent retropropulsion thrusters and PDG system and, finally, jettisoning the parachute.

POWERED DESCENT

The main focus of the research, the powered descent phase as depicted in Fig. 2.5, commences at an ap-
proximate altitude range of 1.4 to 1.8 km and a (near vertical) velocity of 100 m/s. The two objectives of the
powered descent phase for MSL are bringing the spacecraft to the necessary conditions for initiation of the
Sky Crane sequence and divert the spacecraft away from the zone at which the backshell and parachute have
been jettisoned (because of potential dangers, e.g., tangling the rover). The end conditions are an altitude of
23 m, a vertical velocity of 0.75 m/s and a 0 m/s horizontal velocity. Prakash et al. (2008) break the powered
descent guidance (PDG) logic down into four segments:

• powered approach
• constant velocity profile
• constant deceleration profile
• down throttling

During powered approach, the vertical velocity of the spacecraft is smoothly brought to 20 m/s while the ver-
tical velocity is nulled simultaneously. Subsequently, to accommodate for any errors in altitude, the vehicle is
driven into a constant velocity profile at an altitude of 142 m. In case it turns out that the surface lays closer
than initially computed, the velocity profile is discarded. During the constant deceleration phase, the space-
craft is further decreased in vertical velocity to the conditional 0.75 m/s. This occurs at a throttling rate of
90% and eventually ends at an altitude of 21 m above ground. At this moment in time half of the total fuel

Figure 2.5: Mars Science Laboratory powered descent phase (Martin et al., 2014).
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reserves (≈ 400 kg) have been depleted. Finally, the throttle down segment (in the order of 20-25%) is initi-
ated to bring the thrust-to-weight-ratio to one. However, as Dawson et al. (2007) point out, the Mars Landing
Engines (MLEs) operate highly inefficient at this setting. Thus four of the eight MLEs are brought to the near
shutdown condition of 1% and the remaining four are settled at a 50% throttling setting. The switch to four
MLEs introduces disturbances for whom a period of 2.5 seconds is allocated to allow for stabilization. The
main engines of the precise propulsion throttling systems are required to produce of maximum thrust level
of 25000 N (Guernsey and Weiss, 2013). As stated by Blackmore (2017) and Parissenti et al. (2011), throttling
engines are compulsory for Mars (soft) precision landing. For that reason the specifications of the perform-
ance requirements for the MSL engines are presented in Table 2.2. In this research the assumption is made
that the Mars 2020 class vehicle shall use the same number and type of engines.

Table 2.2: Required v s demonstrated performance of the Mars Science Laboratory mono-propellant hydrazine 400 - 3000 N and ≈ 200 s
specific impulse (Isp ) throttling terminal descent engines (Dawson et al., 2007).

Parameter Requirement Demonstrated
Thrust 400 - 2998 N 31 - 3603 N
Specific impulse 191 - 217 sec 204 - 223 sec
Starts 5 7
Burn time >220 sec 350 sec
Throughput 155 kg 278 kg
Valve response - 90% <80 msec 50 msec

LANDING

Even though the employed Sky Crane design is the most advanced system included in the EDL architecture
of MSL, its significance on the landing precision is relatively inferior. The discussion on this matter is for
that reason kept short. The interested reader is referred to Budney et al. (2010) for a broad analysis on Sky
Crane technologies and to Peacocke et al. (2011), for an overview of other terminal landing options. One a
side note it is denoted that for human class Mars missions, i.e., order(s) of mass higher, the Sky Crane is not a
feasible option. To conclude this section of Martian landing sequences, the starting and final state conditions
are conferred in Table 2.3. These conditions, in which position, velocity and mass are included, formed the
baseline for the landing simulation sequences and determined the design of the nominal trajectories.

Table 2.3: Mars landing initial and terminal state conditions in accordance with Açıkmeşe and Ploen (2007) and Açıkmeşe et al. (2013).

Starting state conditions Final state conditions
Position vector r0 = [2, 0, 1.5]T km r f = [0, 0, 0]T km
Velocity vector v0 = [100, 0, -75]T m/s v f = [0, 0, 0]T m/s
Spacecraft mass m0 = 1905 kg m f > 1505 kg
On-board fuel mfuel0 = 400 kg mfuel f > 0 kg

2.3.2. TITAN LANDING - PRECISION AERIAL DELIVERY SYSTEM

From the perspective of studying prebiotic chemistry, Saturn’s moon Titan is presumably one of the richest
environments in the Solar System. (Quadrelli et al., 2019) states that studying the science of matter within
Titan’s atmosphere and beneath its surface is one of the most important planetary science objective. Exam-
ining the organic compounds on Titan requires spacecraft to land near regions of fluids and sediments, to
be encountered near seas and lakes. Within current technological capabilities landing dispersions extend
hundreds of kilometers wide, which preclude landing on large liquid areas with the exception of the before-
mentioned lakes at the northern high latitudes. Due to the seasons of Titan, space landing missions to these
northern lakes are prevented prior the late 2030s. This entails that access to dynamic environments con-
ducive to chemical evolution relies heavily on drift due wind. For these epitomized reasons, precision land-
ing capabilities in an anticipated technology for exploring the habitat of Titan. In this section the mission
scenario for the nominal Titan landing simulations is outlined. Starting with Fig. 2.6, which depicts landing
sequence of the precision delivery system from entry to landing. Notice that due to tremendous density, this
nominal landing sequence takes approximately 2.5 hours, much longer compared to the seven minutes for a
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Figure 2.6: Precision Aerial Delivery System (PADS) landing sequence on Titan (Quadrelli et al., 2019).

Mars landing. The benefit of this extended EDL sequence is the fact that less strain is put on the GNC systems
in terms of computational speed, as time is less of a driving factor within the autonomy framework.

The research focus with regard to Titan targets the development of a spacecraft with minimum landing
error while simultaneously adhering to the sustainable development of space technologies. Likewise to the
Martian case, the main focus is the advancement of parafoil guidance and control performance. The greatest
source of landing error for a Titan mission is attributed to high altitude winds, and their respective uncertain-
ties due to lack of exploration. For missions requiring low landing accuracy, a high altitude (about 150 km)
deployed parachute would suffice. For low delivery error however, an unguided drogue parachute is proposed
for the initial phase, followed by a deployed guided parafoil at an altitude of 40 km (Fig. 2.6). This altitude has
been chosen cause it has been proven that camera descent technologies can view the surface for estimated
positioning purposes, reducing the landing error by over 100 km (Quadrelli et al., 2019). This implies that for
adequate state knowledge, terrain relative navigation technologies are of particular need for a Titan mission.
Current TRN technology readiness level (TRL) is at six, however, the expectation is that post the landing of
the Mars 2020 mission the TRL shall be at nine. To cope with the requirements of TRN (in terms of spacecraft
orientation), a pointing constraints within the guidance framework (further elaborated on in Chapter 4). Fi-
nally it is denoted that prior research at JPL for the Titan EDL sequence focused on the high altitudes regions,
for which optimal path planning results have been obtained. The cases charted in this research focus on the
terminal descent phase, particularly at and altitude range ξz of 150 - 200 m. The cross range magnitudes (ξx

and ξy ) at this altitude vary between -10 and 10 m, depending on wind magnitudes. The downrange velocity
εz approximately varies between -7 and -10 m/s, while the cross range values (εx and εy ) range between 0
and 10 m/s. For the nominal trajectories, the position vector ξ and velocity vector ε are randomly generated
within these ranges. The total spacecraft mass (parafoil and payload) equal 201.4 kg. Notice that the total
spacecraft mass at the start and end of the landing sequence remains unchanged as for a parafoil there is no
mass depletion. The relevant parameters for the Titan landing simulations are summarized in Table 2.4.

Table 2.4: Titan landing initial and terminal state conditions in accordance with Quadrelli et al. (2019).

Starting state conditions Final state conditions
Position vector r0 = [ξx , ξy , ξz ] T km r f = [0, 0, 0]T km
Velocity vector v0 = [εx , εy , εz ]T m/s v f = [0, 0, 0]T m/s
Spacecraft mass m0 = 201.4 kg m f = 201.4 kg
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2.4. SPACE SYSTEMS ENGINEERING
Vaughan et al. (2018) defines systems engineering as “an interdisciplinary approach governing the total tech-
nical effort to transform requirements into a system solution”. The paper, which is partly based on earlier
work produced by Gill and Vaughan (2008), describes how systems engineering is essential for technical ex-
cellence and successful aerospace operations. The conclusions of the report where summarized into three
pointers: “pay attention to details” (G. M. Low), “leave no stone unturned” (W. Braun), and “be aggressive-not
passive” (L. B. James). These design philosophies are highly conducive for guaranteeing favorable processes
and eventually an outstanding design. Systems engineering forms an integral part of both this research, as
well as the ensuing final thesis dissertation. In this section on space systems engineering, the high level sys-
tem requirements are outlined. These requirements establish the design boundaries and provide insight into
the technical problem to be solved.

2.4.1. SYSTEM REQUIREMENTS
A system requirement is a requirement stated in engineering terms, thereby either describing capability
needs, system characteristics or constraints (Gill, 2016). This section outlines the top-level system require-
ments imposed by the mission requirements on the GNC system for autonomous precision landing. The
general top-level system requirements that hold for the GNC system as a whole have been given a GNCR-xx
identifier. For the individual contributors (i.e., guidance, navigation and control), the identifiers are defined
as GR-xx, NR-xx and CR-xx, respectively. The outlined requirements are based on heritage elements and
on needed advances of technology priory discussed in this chapter. Nota bene: these requirements do not
differentiate yet between powered and parafoil descent.

• GNCR-01: The GNC system shall be able to operate autonomously.

• GNCR-02: The GNC system shall be on-board real-time implementable.

• GNCR-03: The GNC system shall keep the spacecraft (aerodynamically) stable during EDL.

• GNCR-04: The GNC system shall utilize the same thrusters as were used for MSL.

• GNCR-05: The GNC system shall be numerically stable.

• GNCR-06: The GNC system to be designed shall take TRL restrictions into consideration.

• GNCR-07: The GNC system shall comply to the maximum on-board fuel/power capacity.

• GNCR-08: The GNC system shall guarantee safe touchdown at specified ground.

• GNCR-09: The closed GNC-loop shall be end-to-end verified.

• GR-01: The guidance system shall be able to optimally divert from nominal paths.

• GR-02: The guidance system shall be able to redirect the spacecraft if the optimum path is not feasible.

• GR-03: The guidance system shall include an advanced optimization scheme.

• GR-04: The guidance system shall account for translational and rotational dynamics.

• GR-05: The guidance system shall cope with arising dispersion accordingly.

• GR-07: The guidance system shall be verifiable.

• NR-01: The navigation system shall assume perfect state knowledge.

• CR-01: The control system shall close the loop robustly.

• CR-02: The control system shall be able to cope with the dynamics.

• CR-03: The control system shall pose minimum time delay on the GNC system.

Based on the the above requirements, the remainder of the chapters of this report are branched. The next
chapter outlines the relevant flight dynamics within the Martian and Titian environment. The main GNC ele-
ments are outlined in Chapter 4, while the subsequent chapter focuses on the convex optimization guidance
methodology. In the finals chapter the results, conclusions and recommendations are delineated.
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3
FLIGHT DYNAMICS

The science of flight dynamics encompasses the orientation, motion and control of flight vehicles is three di-
mensional space subjected to forces and moments. For spacecraft conducting a precision landing sequence,
these forces and moments are of three types: aerodynamic, gravitational and propulsive. To give measure to
the position and orientation of the vehicle, various reference frames are used. These reference frames, more
extensively discussed in Section 3.1, are defined as a system of coordinates or a set of axes used to orientate
the craft (Mulder et al., 2013). As rightfully stated in Wakker (2015), it is not possible to have a discussion on
motion without defining a frame of reference to which the motion is described. Initially, one needs one frame
of reference: the inertial reference frame. This suffices due to the fact that Newton’s laws of motion are prin-
cipally valid within this frame. However, at times it is more logical to define a flight vector in one reference
frame rather than another for better understanding of the dynamics or it is easier to derive the Equations of
Motion (EoM) in a particular frame. In either of these two cases the need for the use of multiple reference
frames arises. After defining the necessary frames, the discussion is continued by defining the state variables
in Section 3.2 and discussing the transformation between frames in Section 3.3. Methods for conversion be-
tween states are delineated in the subsequent section, after which the relevant EoMs are derived. This chapter
concludes by outlining the EoMs of a parafoil subject to aerodynamics.

3.1. REFERENCE FRAMES
In classical mechanics, and (re-entry) flight dynamics explicitly, a reference frame is a system of graduated
lines attached to a central body. Likewise referred to as a frame of reference, this system serves to describe the
position (and other state physical quantities) of specific points relative to the body over time (Hosch et al.,
2006). When describing reference frames, Mooij (1994) makes a distinction between two types of bodies,
namely, those that are planet centered and those belonging to the vehicle centered class. In this section,
all reference frames needed to express the various relevant scalars and vectors, and derive the necessary
equations of motion for planetary precision landing, are categorized in accordance with (Mooij, 1994). The
discussion starts with the two planet centered reference frames after which the vehicle centered frames will
be discussed. For the latter, the origin of the frames coincides with the Centre of Mass (CoM) of the vehicle.
Finally it is noted that all considered frames are Cartesian and right handed and it assumed that the vehicle
has one (in longitudinal direction) or more planes of geometrical symmetry.

PLANET CENTERED INERTIAL REFERENCE FRAME - INDEX I
The planet centered inertial reference frame, denoted with index I , is a right-handed orthogonal frame that is
also referred to as the Newtonian reference frame in Wakker (2015). This follows from the fact that within this
frame a particle either remains at rest or else in a uniform rectilinear motion if no resultant force acts upon
it, which is in accordance with Newton’s first law of motion 1. As depicted in Fig. 3.1, the origin of the inertial
planet centered reference frame coincides with the CoM of the central body about which the (space)craft
is moving. Furthermore, the Martian equatorial plane concurs with the OX I YI -plane, while the ZI -axis is
directed north. The direction of the X I -axis is settled at the zero-longitude meridian at zero time and the
right-handed system is completed by the YI -axis

1Nota bene: in fact this frame is pseudo-inertial because of the motion of Mars around the Sun and Titan around Saturn.
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Figure 3.1: Rotating reference frame R and vertical reference frame V with respect to the inertial frame I , defined by the geocentric
latitude δ and longitude τ (Mooij, 1994).

PLANET CENTERED ROTATING REFERENCE FRAME - INDEX R
Like the inertial reference frame, the rotating frame is fixed to the central body with the ZR -axis pointing
north. As a matter of fact, the two frames coincide at zero time and every full rotation following after that.
At zero longitude the XR -axis intersects the equator and the right-handed system is withal completed by the
YR -axis. In Fig. 3.1 the configuration of the rotating frame R with respect to the inertial frame I is shown, with
ωcb being the rotational rate along the spin-axis of the planetary body 2.

VERTICAL REFERENCE FRAME - INDEX V
Along the radial component of the gravitational acceleration, the ZV -axis points towards the CoM of the
planetary body and perpendicular to this lies the XV -axis in a meridian plane pointing towards the northern
hemisphere (Fig. 3.1). The YV -axis completes the reference frame and forms the XV YV local horizontal plane.
It is important to mention that this description of the vertical frame is only true for a perfect sphere. Since a
planet is elliptical in shape, small errors are introduced to the definition.

BODY REFERENCE FRAME - INDEX B
Fixed to the vehicle, the XB and ZB axes of this frame lie in the plane of symmetry being positive backward
and upward, respectively. Notice that is conform the definition used for re-entry vehicle motion analysis,
in which the rear of the vehicle enters the atmosphere first (to ensure thermal protection). Again the right-
handed system is completed by the YB -axis. The orientation of the body frame with respect to the inertial
frame is portrayed in Fig. 3.2. The roll rate p, pitch rate q and yaw rate r define the rotation vectorω.

PROPULSION REFERENCE FRAME - INDEX P
The propulsion frame is used for analysis of the powered flight portion of the re-entry sequence. Because the
XP -axis is col-linear with the (resulting) thrust force, it plays a central role in the propulsion frame. The axis is
positive in the direction of the thrust and the orientation of the propulsion frame relative to the body frame,
as depicted in Fig. 3.3, is defined by the azimuth and elevation of the thrust.

2 This rotational rate is in fact not constant because gravitational influences from other Solar System bodies cause the spin-axis to wobble
(i.e. polar motion)
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Figure 3.2: The body frame B , with the origin’s location in the CoM of the vehicle, relative to the inertial frame I . The vehicle has angular
rateω = (p, q , r )T → being the roll, pitch and yaw rate, respectively (Mooij, 1994).

Figure 3.3: The propulsion frame P with respect to the body frame B . Indicated elevation εT and azimuth ψT angles of the thrust force
are positive (Mooij, 1994).

TRAJECTORY REFERENCE FRAME - INDEX T
Within the trajectory reference frame a distinction is made between the groundspeed and the airspeed. Along
the velocity vector, the XTG -axis is defined relative to the planet centered frame (groundspeed) while the XT A-
axis is defined relative to the atmosphere (airspeed). Both frames have the Z -axis point downwards in the
vertical frame and the Y -axis completing the right-handed reference frame. Fig. 3.4 illustrates the relation
between the TG-frame and the T A-frame relative to the vertical frame.

AERODYNAMIC REFERENCE FRAME - INDEX A
Alike the trajectory reference frame, a distinction is made between the groundspeed and the airspeed within
the aerodynamic frame. Along the velocity vector, the X AG -axis is defined relative to the planet centered frame
while the X A A-axis is defined relative to the atmosphere. The X AG - and the X A A-axis are collinear with the
XTG - and XT A-axis, respectively. Furthermore, the Z -axes of both frames are collinear with the aerodynamic
lift force (groundspeed v s airspeed based) but opposite in direction, and the Y -axes finalizes the system.
The aerodynamics attitude angles, angle of attack α, slideslip angle β and bank angle σ, relate the body B ,
aerodynamic A and trajectory T frame. Fig. 3.5 shows that in the event that the vehicle is not banking, the
aerodynamic and trajectory reference frames coincide.
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Figure 3.4: The groundspeed based trajectory frame TG and airspeed based trajectory frame T A with respect to the vertical frame V
defined by the flight-path angle and heading of the respective speed vector (Mooij, 1994).

Figure 3.5: The (positive) aerodynamic angles α, β and σ defining the relation between the body frame B , the aerodynamic frame A and
trajectory frame T (Mooij, 1994).

WIND REFERENCE FRAME - INDEX W
Being collinear with the wind-velocity vector, the XW -axis is positive in northern direction for a northern
wind. The ZW -axis points positively downwards for a local horizontal plane wind, and with the YW -axis the
frame is concluded. In case the winds are of a non-horizontal nature (Fig. 3.6), the W -frame is obtained by
performing two rotations over the wind angles starting from the V -frame.

GUIDANCE REFERENCE FRAME - INDEX G
The origin of the adapted guidance frame lies at the nominal landing site with the ZG -axis pointing upwards.
The XG -axis and the YG -axis point in northern and eastern direction, respectively. By assuming the reference
frame to be fixed to the target on the planet, as depicted in Fig. 3.7. The guidance frame is only used during
the terminal guided portion of EDL and thus the rotation of the planetary body is not included in this defined
model (Furfaro et al., 2015). By assuming the frame to have an east-north orientation, the frame becomes
inertial in nature (Szmuk and Açıkmeşe, 2018).
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Figure 3.6: The orientation of the wind frame W relative to the vertical frame V defined by the flight-path angle and heading of the wind
vector (Mooij, 1994).

Figure 3.7: Guidance reference frame G to the designated landing site for planetary precision landing (Açıkmeşe and Ploen, 2007).

3.2. STATE VARIABLES DEFINITIONS
To determine the mathematical state of a dynamic system, a set of variables is used defined as state variables.
This set of variables encloses all imperative and linearly independent elements of the system at zero time
along with the forcing functions such that the behavior over time can be determined (Nise, 2011). The vari-
ables needed to define the motion of a spacecraft are divided into two subcategories: position and velocity
discussed in Section 3.2.1 and attitude and angular rates discussed in Section 3.2.2.

3.2.1. POSITION AND VELOCITY
Amongst others, position state variables are often expressed in Cartesian or spherical components. Cartesian
coordinates ease quantity interpretation of factors as range and altitude relative to spherical coordinates. The
terminal descent guidance problem is formulated in an inertial Up-East-North reference frame of which the
landing location forms the center, while the spacecraft assumes a body-frame orientation. The governing
guidance equations will be outlined in the next chapter. This section outlines the position and velocity vari-
ables in an inertial frame. Due to the relative low altitude at which powered descent takes place an Cartesian
presentation of state is mainly adapted in this thesis. Furthermore, the wind data are provided in Cartesian
coordinates. Common EDL applications present the landing location in terms of a longitude-latitude foot-
print. This is less relevant for precision landing because of small longitude-latitude difference, however, it it
useful to include this representation in the analysis. While a framework for both coordinate systems is pro-
vided in this section, it is important to state that Cartesian frames are utilized for the computations. The
main reasons for this choice are the generally easier differentiation of the governing equations, the inherent
singularity free nature and the independence of origin for the Cartesian frame.
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Figure 3.8: Axes X I , YI and ZI of the Earth-fixed inertial frame. The ZI is directed to the north, the X I passes through the equator at the
vernal equinox. Completing the right-handed frame, YI passes through the equatorial plane. (Mulder et al., 2013).

CARTESIAN

Within the planet centered inertial and rotating reference frames discussed earlier, the position and velocity
states are expressed in Cartesian components:

Cartesian


x, y, z Position
ẋ, ẏ , ż Velocity

SPHERICAL

The spherical state variables for position and velocity will in this thesis only be defined relative to the planet
centered inertial frame. These elements, physically represented in Fig. 3.9. include:

Position


r distance from CoM central body to CoM vehicle
τ longitude (-180° ≤ τ < +180°)
δ latitude (-90° ≤ δ ≤ 90°)

Velocity


VG groundspeed
γG flight-path angle (-90° ≤ γG ≤ 90°)
χG heading (-180° ≤ χG < 180°)

The modulus of the velocity vector, analogous to the groundspeed VG , makes an angle γG (flight-path angle)
with the local horizontal plane. Important to notice is that this angle is negative for entry conditions. The
heading angle χG defines the projection of the velocity vector V with respect to the local north. The airspeed
VA is related to the groundspeed through the wind speed VW such that

VA =VG +VW (3.1)

In Section 3.4 the conversions between states is presented, including a short discussion on the airspeed based
velocity. A more detailed derivation regarding the relevant parameters is provided in Section 3.7.
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Figure 3.9: The six spherical flight parameters for position (R,τ,δ) and velocity (VG ,γG ,χG ]). All angles are depicted in their respective
positive direction (Mooij, 1994).

3.2.2. ATTITUDE AND ANGULAR RATES
From a mathematical perspective, the attitude of a vehicle is defined as the orientation of a body-fixed frame
relative to an external frame. Mathematical attitude dynamics models are used to analyze spacecraft motion
characteristics and design GNC systems. Furthermore, these models are used for the verification of designed
systems. For the description of spacecraft motion, rigid body dynamics forms the basis and provides first-
order analyses (Chu, 2017). For precision landing simulations the assumption of rigid body dynamics is ad-
equate due to the reason that non-rigid effects (e.g. moving on-board liquids or mechanical devices) have
minimal effect (Queen et al., 2008).

In this research three types of orientation definitions are considered: Euler angles, aerodynamic angles
and quaternions. The angular rates, i.e., the roll rate p, pitch rate q and the yaw rate r , form the rotation vector
ω, define the velocity of a body relative to the inertial frame and are expressed along the axes of the body as
was shown in Fig. 3.2. Generally, quaternions shall be utilized in the thesis research for parameterization
because of their singular free nature, mainly due to the minimal nature of Euler angles. A discussion on
Euler and aerodynamic angles has been included, because these representation forms aid in visualization of
motion, a matter that the quaternion representation (often) lacks.

CLASSICAL ATTITUDE ANGLES

The classical attitude angles, i.e., the roll angle φ, the pitch angle θ and the yaw angle ψ, are a class of Euler
angles 3. These angles, depicted in Fig. 3.10, are characterized by means of an Euler transformation, starting
from the inertial frame. The order in which the transformation is carried out is of crucial importance, reason
being for discussing this more extensively in Section 3.3. The possibility also exits to define the vehicle’s
attitude relative to the local horizontal plane but for applications to re-entry problems the presentation with
respect to the inertial space suffices.

AERODYNAMIC ANGLES

The angle of attack α, the slideslip angle β and the bank angle σ are part of the class of aerodynamic angles
that also form a set of Euler angles. When used in the equations of motion these angles are defined relative to
the groundspeed. For a graphical representation of the (positive) aerodynamic angles the reader is referred
back to Fig. 3.5.

QUATERNIONS

The four Euler parameters, also known as quaternions, define the orientation of a vehicle relative to the iner-
tial planet centered frame:

q = (
q0, q1, q2, q3

)T =
(

q0

q1:3

)
(3.2)

3 “The Euler angles are three angles introduced by Leonhard Euler to describe the orientation of a rigid body with respect to a fixed
coordinate system” - Source: https://en.wikipedia.org/wiki/Euler_angles - Last accessed on March 29, 2018

https://en.wikipedia.org/wiki/Euler_angles
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Figure 3.10: Euler angles: roll angle φ, the pitch angle θ and the yaw angle ψ about the X I -, YI - and ZI -axis, respectively (Mooij, 2017).

Each quaternion is a four-dimensional hyper-complex number (one real and three imaginary numbers) and
the four parameters are mutually interdependent in accordance with the relation provided in Eq. (3.3). The
main advantage of this set of four coordinates is the fact that singularities are ruled out. Because a physical
interpretation is difficult for quaternions, a graphical representation is left out.

q2
0 +q2

1 +q2
2 +q2

3 = 1 (3.3)

Unfortunately, there is no unique definition to quaternions which leads to different conventions. Therefore
the model utilized by Razgus et al. (2017) and by the Jet Propulsion Laboratory (2003) shall be taken as a
baseline. Because the representation will be used for attitude description only, normalized unit quaternions
suffice. The product of two quaternions then follows from:

[q⊗] =
[

q4I3 − [q1:3×] q1:3

−qT
1:3 q4

]
(3.4)

[q¯] =
[

q4I3 + [q1:3×] q1:3

−qT
1:3 q4

]
(3.5)

For which the following holds:

q1 ⊗q2 = q1 ¯q2 (3.6)

3.3. TRANSFORMATION OF FRAMES
Axis transformations commonly consist of both translational and rotational motion, leading to a six Degree-
of-Freedom (6DoF) analysis. This refers to the freedom of a rigid body (e.g., spacecraft) to move in three-
dimensional space. The translation movements include surge, sway and heave in the perpendicular axes
(longitudinal, lateral and normal), expressed by vector T. The rotations about the three axes are termed roll,
pitch and yaw and defined by transformation matrix CB ,A (for a rotation from the A to frame B). Expressing a
vector vA defined in axis system A relative to another axis system B yields:

vB = T+CB ,AvA (3.7)

Transformations between the right-handed frames of reference discussed in the preceding section are con-
ventionally executed by means of unit axis-rotations, a Directional cosine Matrix (DCM) or unit quaternions.
This section focuses on the mathematical description of these transformation operations, delineated in Sec-
tion 3.3.1. The relevant transformations for precision landing are outlined in Section 3.3.2.

3.3.1. TRANSFORMATION OPERATIONS
Notice that any transformation matrices in this research are generally denoted by C. Only quaternion trans-
formation have a different convention. For visualization of the respective frames, the reader is referred back
to the previous section.
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UNIT AXIS-ROTATIONS

The unit-axis transformation are positive Euler angle rotations in accordance with the right-hand rule, a com-
mon mnemonic used in physics for grasping insight regarding orientation convention in R3 Euclidean space.
The transformation is a sequence of rotations of a reference frame around its own X-, Y-, or Z-axis by means
of an arbitrary angle α. For the conversion, rotation matrices are utilized described by Eqs. (3.8) - (3.10).

C1(α) =
1 0 0

0 cosα sinα
0 −sinα cosα

 (3.8)

C2(α) =
cosα 0 −sinα

0 1 0
sinα cosα

 (3.9)

C3(α) =
 cosα sinα 0
−sinα cosα 0

0 0 1

 (3.10)

Notice that the subscripts 1, 2 and 3 indicate the X- Y- and Z-axis, respectively. The total transformation may
be described as a consolidation of the orthonormal unit rotation matrices C1, C2 and C3. The product of these
matrices is also of an orthonormal nature and the inverse is the transpose.

Consider two frames of reference denoted as A and B , whose inter-rotation can be decomposed in se-
quential unit axis transformations. The transformation shown in Eq. (3.11), made up of three successful
rotations about the negative X-axis and Z-axis and the positive Y-axis, results in matrix CB ,A .

CB ,A = C2(α2)C3(−α3)C1(−α1) (3.11)

The matrix CB ,A practically means that the transformation is defined from frame A to frame B . The inverse of
this matrix is obtained by interchanging the order of rotation and changing the sign of the angles:

CA,B = C−1
B ,A = CT

B ,A = C1(α1)C3(α3)C2(−α2) (3.12)

The Euler angle representation form is a minimum one, in the sense that a minimum number of parameters
are involved. Singularities might arise in the process of inversion, which is necessary for derivation of the
kinematic equations of motion. These singularities occur when the determinant of a matrix equals zero, a
phenomenon known as gimbal lock. While physically this would occur at an angle of ± 90° (vertical maneu-
vers), it not completely unlikely that such a situation might arise and therefore it will not be ruled out.

DIRECTION COSINE MATRIX

The cosine of the angles formed between unit vectors of two reference frames form the entries of the DCM
(also referred to as rotation matrix or coordinate transformation matrix), which describes the relative attitude.
Anew consider two reference frames denoted by A and B , both having a right-handed set of three orthogonal
unit vectors [a1, a2, a3] and [b1, b2, b3]. The DCM for the transformation from A to B may be written as:

CA,B =
b1

b2

b3

 · (a1 a2 a3
)

(3.13)

Due to the orthogonal nature of each of the unit vectors of A and B , the DCM is an orthonormal matrix with:

CCT = I = CT C or C−1 = CT with detC = 1 (3.14)

The inverse of the DCM matrix from A to B is therefore obtained in a same way as for the Euler angles:

CA,B = C−1
B ,A = CT

B ,A (3.15)

The nine parameter representation model of the DCM uses a total six numbers of parameters more relative
to the minimum of parameters (three), making parametrization burdensome in terms of computation. Main
advantage however, is the fact that no singularities are introduced (Choukroun, 2014). On a final note, one
can obtain the attitude angles about the X- Y- and Z-axis from the DCM through Eq. (3.16), in which atan2
stands for the four-quadrant inverse tangent.

θ = −arcsin(C13)

ϕ= atan2(C23,C33)

ψ= atan2(C12,C11)

(3.16)
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UNIT QUATERNIONS

Unit quaternions are quaternions represented in their normalized form obtained through:

||q|| = q

|q| (3.17)

If qB ,A denotes the attitude quaternion from frame A to frame B the operation may be decomposed by using
the inertial frame as an intermediary, as has been done in Eq. (3.18). Vector projections onto either frames
then follows from Eq. (3.19).

qB ,A = qB ,I ⊗qI ,A (3.18)

vB = qB ,A ⊗vA ⊗qA,B (3.19)

A favored parametrization for spacecraft attitude are the unit quaternions due to their minimal nature (three)
and the fact that they are free from singularities (Lee and Mesbahi, 2017) (Joshi et al., 1995). Disadvantage
however, is the difficult physical interpretation. Through substitution of the defined quaternions, DCM ele-
ments can be expressed in terms of these quaternions:

CA,B = C(q) =
 1−2(q2

2 +q2
3 ) 2(q1q2 +q0q3) 2(q1q3 −q0q2)

2(q1q2 −q0q3) 1−2(q2
1 +q2

3 ) 2(q2q3 +q0q1)
2(q1q3 +q0q2) 2(q2q3 −q0q1) 1−2(q2

1 +q2
2 )

 (3.20)

3.3.2. TRANSFORMATIONS FOR ENTRY AND DESCENT APPLICATIONS

Frame transformation relevant for deriving the equations of translational and rotational re-entry and descent
motions are presented in this section. Consider two successive rotations from A" to A represented by:

A" → A′ CA′,A" A′ → A CA,A′ (3.21)

A" → A CA,A" = CA,A′CA′,A" (3.22)

In Table 3.1, the angle and rotational rate transformations between reference frames for planetary re-entry
applications are presented. The relevant quaternion transformation matrix corresponds to the switch from
the body frame to the inertial frame, for which the relation is provided by Mooij and Chu (2002):

CI ,B =
q2

0 +q2
1 −q2

2 −q2
3 2(q1q2 −q0q3) 2(q1q3 +q0q2)

2(q1q2 +q0q3) q2
0 −q2

1 +q2
2 −q2

3 2(q2q3 −q0q1)
2(q1q3 −q0q2) 2(q2q3 +q0q1) q2

0 −q2
1 −q2

2 +q2
3

 (3.23)

3.4. STATE CONVERSIONS
For reasons defined earlier in this chapter, the main representation forms to be used in the computations
for the thesis research shall be the Cartesian form for position and velocity, and quaternions for attitude and
angular rates. However, as retrieved data is at not always provided in the preferred form and at times it is
desired to interpret data visually, conversions between the various states might come in handy.

In this section the mathematical procedure of transforming between various state variables is outlined.
Primarily, the transformation from spherical to Cartesian transformation in Section 3.4.1. The section is con-
cluded by describing the Euler reciprocus to quaternion state transformation. Notice that only final forms are
presented, for full derivations the reader is referred to Mooij (1994).

3.4.1. SPHERICAL RECIPROCUS TO CARTESIAN

Relating position elements of spherical and Cartesian is relatively simple compared to the more complex
velocity relations. For both cases however, derivations are left aside and only final results are presented.
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Table 3.1: Transformation between reference frames for planetary re-entry applications

Frames Transformation Variables
Symbol Unit Description

R → I CI ,R = C3(−ωcb t )
ωcb

t
rad/s
s

rotational rate of the central body
time from epoch

V → R CR,V = C3(−τ)C2(π2 +δ)
τ

δ

rad
rad

planet centered longitude
planet centered latitude

W → V CV ,W = C3(−χw )C2(−γw )
χw

γw

rad
rad

heading for wind vector
flight-path angle for wind vector

T → V CV ,W = C3(−χ)C2(−γ)
χA , χG

γA , γG

rad
rad

heading for air- or groundspeed
flight-path angle for air- or groundspeed

V → G CV ,G = C2(π)
- - -

A → T CT,A = C1(σ)
σA , σG rad bank-angle based on air- or groundspeed

B → A CA,B = C3(β)C2(−α)
αA , αG

βA , βG

rad
rad

angle-of attack w.r.t. air- or groundspeed
angle of slideslip w.r.t. air- or groundspeed

B → P CP,B = C2(εT )C3(ψT )
εT

ψT

rad
rad

elevation angle thrust force
azimuth angle thrust force

V → B CV ,B = C3(−ψ) C2(−θ) C1(−φ)
φ

θ

ψ

rad
rad
rad

attitude angle about the X-axis
attitude angle about the Y-axis
attitude angle about the Z-axis

POSITION ELEMENTS

The prominent equations relating the spherical with respect to the Cartesian position within the R-frame are:

r =
√

x2
R + y2

R + z2
R

τ= arctan

(
yR

xR

)

δ= arcsin

 zR√
x2

R + y2
R + z2

R


(3.24)

The inverse is also true, namely:

xR = r cosδcosτ

yR = r cosδsinτ

zR = r sinδ

(3.25)

VELOCITY ELEMENTS

The Cartesian velocity elements are related to spherical velocity components through the following identified
relations:

vx =VG cosγG cosχG

vy =VG cosγG si nχG

vy =−VG sinγG

(3.26)

These equations represent the Cartesian velocity components in the vertical frame. The components in the
planet centered rotating frame are easily found by applying the transformation as specified in Table 3.1. From
the Cartesian velocity components, neglecting the presence of wind, the groundspeed is derived:

VG =
√

u2 + v2 +w2 (3.27)
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The two relevant spherical velocity elements are then found by:

χG = arctan

(
vy

vx

)
, γG = arcsin

 vz√
v2

x + v2
y

 (3.28)

The governing wind equations will be based on Cartesian components in the research to maintain a logic
overlap with the previously defined external forces. In the final section of this chapter matters concerning
wind are outlined. This section is completed by providing the computational scheme for obtaining airspeed
based velocity components:

1. Obtain the available wind parameters → Section 3.7.

2. Apply a transformation to these parameters if they are not provided in Cartesian components

3. Compute the airspeed based velocity VA

4. Compute the airspeed based angle of attack αA and sideslip angle βA

5. In case the aerodynamic coefficients are not defined w.r.t. a point coinciding with the CoM of the vehi-
cle, a linear velocity is added to account for the rotation

6. Compute the airspeed based aerodynamic force coefficients CD and CL

7. Compute the airspeed based aerodynamic forces

8. Apply a transformation to obtain the groundspeed based aerodynamic force using the airspeed based
flight-path angle γA and heading χA

9. Evaluate the equations of motion

10. Update the state vector

The groundspeed is defined as the sum of the airspeed and the atmospheric velocity relative to the ground:

VVV B ,G =VVV B ,A +VVV A,G (3.29)

The wind velocity vector is expressed in the rotating frame as:

VVV W,R = (
uW vW wW

)T
(3.30)

Combining the expression of Eq. (3.29) and (3.30) yields the decomposition of the groundspeed such that:

VVV B ,R =VVV B ,W +VVV W,R (3.31)

Indicating the velocity relative to the atmosphere with subscript A and rewriting the above equation produces
the following set of equations:

VVV B ,W =VVV B ,R −VVV W,R = (
uA v A w A

)T → VA =
√

u2
A + v2

A +w2
A (3.32)

The airspeed based angle of attack and sideslip angle follow from the body-frame velocity components:

αA = arctan

(
w A

uA

)
(3.33)

βA = arctan

 v A√
u2

A +w2
A

 (3.34)

By means of these angles the respective force and moment coefficients are derived. The subsequent steps
for obtaining the forces and moments in the right frame have been described above. The remainder of the
required steps for wind inclusion are described in Section 3.7.
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3.4.2. EULER RECIPROCUS TO QUATERNION
The interrelation between classical Euler angles and the four Euler parameters (quaternions) are provided in
this section. Again, final transformation forms are presented without the inclusion of derivations.

EULER ANGLES TO QUATERNION

The sequence of the rotation plays an important role in the transformation from Euler angles to quaternions.
Beneath the 3-2-1 transformation is considered, while for any other sequence the order is swapped.

q =


cos(ψ/2)

0
0

sin(ψ/2)




cos(θ/2)
0

sin(θ/2)
0




cos(φ/2)
sin(φ/2)

0
0



=


cos(φ/2)cos(θ/2)cos(ψ/2)+ sin(φ/2)sin(θ/2)sin(ψ/2)
sin(φ/2)cos(θ/2)cos(ψ/2)−cos(φ/2)sin(θ/2)sin(ψ/2)
cos(φ/2)sin(θ/2)cos(ψ/2)+ sin(φ/2)cos(θ/2)sin(ψ/2)
cos(φ/2)cos(θ/2)sin(ψ/2)− sin(φ/2)sin(θ/2)cos(ψ/2)


(3.35)

EULER ANGLES TO QUATERNION

Finally, the Euler angles may be obtained from the quaternions through the following relation:φθ
ψ

=
atan2

(
2q0q1 +q2q3),1−2(q2

1 +q2
2 )

)
asin

(
2(q0q2 −q1q3)

)
atan2

(
2q0q3 +q1q2),1−2(q2

2 +q2
3 )

)
 (3.36)

3.5. EQUATIONS OF MOTION
Relative to the speed of light spacecraft travel at low velocities and relative to massive stars and black holes
spacecraft are negligible in weight. For that reason both special and general relativity are not considered in
the derivation of the EoM of spacecraft entering a planetary atmosphere. The relevant equations presented in
this chapter are based on classical Newtonian mechanics. To account for a 6 DoF environment, the section is
subdivided into EoM for translational motion in Section 3.5.2 and EoM for rotational motion in Section 3.5.4.
The former describes the motion of the CoM (position and velocity) while the latter describes the motion
around the CoM (angular rates). For either cases a non-elastic vehicle and a variable mass m are assumed.
Integrators will be used for the propagation of the equations. In that same section simulation methods are
described for analysis of the motion.

3.5.1. EXTERNAL FORCES
A spacecraft entering and landing on a planetary body encounters external forces during the sequence. Based
on their nature, these forces are categorized as follows:

• Aerodynamics
• Gravity
• Propulsion (thrust)

AERODYNAMIC FORCES

The aerodynamic forces are defined in the airspeed-based aerodynamic A A-frame and consists of drag D ,
side S and lift L. These forces depend on the respective force coefficients CD , CS and CL , the vehicle reference
surface Sr e f and the dynamic pressure q̄ :

FA,A A =−
D

S
L

=−
CD q̄Sr e f

CS q̄Sr e f

CL q̄Sr e f

 (3.37)

The dynamic pressure is a quantity that depends on the density of the fluid (Martian atmosphere) and the
airspeed-based velocity component VA , related through Eq. (3.38). The force coefficients depend on the
Mach number M , the angle of attack α and sideslip angle β (all airspeed based).

q̄ = 1

2
ρV 2

A (3.38)
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The Mach number is related to the airspeed velocity and the speed of sound a =
√
γRT through Eq. (3.39). In

this equation γ is the ratio of specific heat, R the gas constant and T the absolute gas temperature.

M = VA

a
= VA√

γRT
(3.39)

In the above equations the presence of wind is ignored. Furthermore, when assuming a rotational symmetric
spacecraft, the side force S will always be zero. Re-entry guidance system conventionally depend on angle
of attack and bank angle control, rendering the slideslip angle useless. However, the inclusion of the wind
effect makes the latter assumption invalid and must thus be accounted for. In Section A.3 the assumptions
regarding the force coefficients have been outlined.

GRAVITATIONAL FORCE

The gravitational force is expressed in the planet centered rotating frame R and depends on the gravitational
acceleration g and the instant mass of the vehicle m:

FG ,R = mg = m

gx

g y

gz

 (3.40)

When landing on very irregular bodies with surfaces that are rather unknown, accurate knowledge is required
of the gravity field. Nonetheless, uniform gravity fields may be assumed for both the Mars and Titan cases
simulated in this thesis due to the relative low altitude at which the sequence starts. For real-time preci-
sion landing applications, efficient cpu-time is a more important factor, which would entail the choice of a
spherical distribution.

PROPULSIVE FORCE

It is most convenient to express the propulsive force, also defined as thrust T , in the propulsion frame. As
such, the thrust vector is collinear with the X -axis of the propulsion frame:

FT,P =
T

0
0

 with T = Isp ṁg0 (3.41)

Assuming a number of i thrusters, the location ri , magnitude Ti , elevation angle εTi and azimuth angle ψTi

of the sum of the i th thrusters determine the total T magnitude and the moments on the spacecraft. For the
orientation of the two respective angles the reader is referred back to Fig. 3.3.

3.5.2. EQUATIONS OF TRANSLATIONAL MOTION
Now that the relevant external forces have been defined, the equations of translational motion can be delin-
eated. The equations as defined in this section are to be used for the propagation of the state of the vehicle.
This integration procedure shall utilize the conventional inertial frame with position and velocity state vari-
ables defined in Cartesian components. Notice that it is required to transform all relevant forces to the inertial
frame before propagating the state. The equations of translational motion read:

VI = drI

d t
(3.42)

aI = FI

m
= dVI

d t
(3.43)

Notice that the acceleration is computed through the application of the second law of Newton. The total
inertial force FI accounts for a variable mass system due propulsion in the form of the thrust force, such that

FI = m
d 2rcm

d t 2 +2ωωω×
∫

m

δr̃rr

δt
dm +

∫
m

δ2r̃rr

δt 2 dm (3.44)

The various elements carry the following meaning:

• Total external forces defined in the inertial frame: FFF I

• Acceleration of the CoM relative to the inertial frame: d 2rcm
d t 2

• Coriolis force due change in mass distribution: FC =−2ωωω×∫
m

δr̃rr
δt dm

• Relative force due change in mass distribution: Fr el =−∫
m

δ2r̃rr
δt 2 dm
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3.5.3. EXTERNAL MOMENTS
A spacecraft entering and landing on a planetary body also encounters external moments during the se-
quence. These moments are likewise categorized based on their nature, which is the similar to that of the
forces: aerodynamics, gravity and propulsion. Because the gravity force works in the CoM of the spacecraft,
no moment is produced about that same center. For the aerodynamic and propulsive forces this is typically
not the case. The resulting moments are both defined in the body frame:

MA,B =
L

M

N

=
 Cl q̄Sr e f br e f

Cm q̄Sr e f br e f

Cn q̄Sr e f br e f

 and MP,B =
MPx

MPy

NPz

 (3.45)

In Section A.3 the assumptions regarding the moment coefficients have been outlined.

3.5.4. EQUATIONS OF ROTATIONAL MOTION
Similar to the translation equations, the equations of rotational motion will be expressed in the inertial frame
I . The governing equation follows from:

Mcm +MC +Mr el = M̃̃M̃M cm =
∫

m
r̃̃r̃r × (

dωωω

d t
× r̃̃r̃r )dm +

∫
m

r̃̃r̃r × [ωωω× (ωωω× r̃̃r̃r )]dm (3.46)

The various elements carry the following meaning:

• Total external moment about CoM of spacecraft: MMM cm

• Coriolis moment due varying mass distributions: MMMC = -2
∫

m r̃̃r̃r × (ωωω× δr̃̃r̃r
δt )dm

• Relative moment due varying mass distributions: MMM r el = -
∫

m r̃̃r̃r × (δ
2r̃̃r̃r
δt 2 )dm

• Pseudo external moment about CoM of spacecraft: M̃̃M̃M cm

• Apparent moment due to angular acceleration relative to I -frame:
∫

m r̃̃r̃r × ( dωωω
d t × r̃̃r̃r )dm

• Apparent moment due to angular velocity relative to I -frame:
∫

m r̃̃r̃r × [ωωω× (ωωω× r̃̃r̃r )]dm

Notice that derivatives with respect to the body frame (local) are denoted as δ..
d t . By introducing the pseudo

external moment vector the EoM mass-varying body obtain the same form as those for a rigid body. This
is known as the solidification principle and allows the derivation of the equations of rotational motion in a
more straightforward (Euler) form:

ω̇̇ω̇ω= I−1(M̃̃M̃M cm −ωωω× Iωωω) (3.47)

For this research the Mars 2020 class vehicle shall be taken as a reference. The inertia tensor I for this vehicle
will be outlined Appendix A, with the assumption of having a double plane of mass symmetry. Describing
the attitude in the quaternion inertial frame representation requires knowledge of the time derivatives of the
attitude in kinematic quaternion form procured from Wie et al. (1989):

q̇(t ) =
(

q̇0

q̇1:3

)
=

[ 1
2 (q0ωωω+q×ωωω)

− 1
2ωωω

T q

]
(3.48)

q̇0

q̇1

q̇2

q̇3

= 1

2


q0 −q3 q2 q1

q3 −q0 −q1 q2

−q2 q1 q0 q3

−q1 −q2 −q3 q0



ω1

ω2

ω3

0

 (3.49)

It is denoted that the moment of inertia is assumed to be constant over time. In reality mass fluctuations
due depletion would yield otherwise. However, assessing this effect does not form the core of this research.
Furthermore, the sum of the pseudo external moments are defined along the body axes. Assuming a double
plane of symmetry for the Mars cases, the equations of rotational motion simplify to:

ṗ = Mx

Ixx
+ Iy y − Izz

Ixx
qr

q̇ = My

Iy y
+ Izz − Ixx

Iy y
pr

ṗ = Mz

Izz
+ Ixx − Iy y

Izz
pq

(3.50)
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3.6. TITAN PARAFOIL DYNAMICS
This section outlines the aerodynamic properties of the parafoil and the associated aerodynamic forces and
moments. Various dynamic models are simulated with different levels of complexity for terminal descent.
The 3DoF point mass simulations is directly linked to the aerodynamic forces. The more complex 6DoF rigid
body dynamics model on top of that considers the moments as well as apparent masses and inertias. The
forces and moments derived in this section are based on the high-fidelity model depicted in Fig. 3.11. In the
remainder of the section the sum of the aerodynamic forces and moments are derived. This section, and with
that this chapter, ends with a discussion on wind dispersions related to Titan’s environment.

3.6.1. AERODYNAMIC FORCES AND MOMENTS
The control authority for a parafoil in related to controlling the aerodynamic forces and moments. In this
research the model was designed such that the symmetric deflection δs controls the longitudinal dynam-
ics, while asymmetric deflection δa controls the lateral dynamics. These two parameters are a function of
the canopy right and left deflection, δr and δl , respectively. These two parameters are normalized and con-
strained to vary between zero and one within the guidance algorithm, such that:

δs = 1

2
(δr +δl ) (3.51)

δa = δr −δl (3.52)

Keeping this in mind, the aerodynamic forces are derived first: lift, drag and side force, respectively:

L =CL
1

2
ρV 2Sr e f (3.53)

D =CD
1

2
ρV 2Sr e f (3.54)

S =CY
1

2
ρV 2Sr e f (3.55)

In the above equations 1
2ρV 2 is defined as the local dynamic pressure and Sr e f the reference area of either

the canopy or the payload. The latter is the case because both the canopy as well as the payload contribute
to the total drag value. On top of that, the total drag is eventually increased by another 30% to account for
the contribution of the parafoil suspension lines. The lift, drag and side force coefficients for the canopy are
computed by means of Eqs. (3.56) - (3.58).

Figure 3.11: Side view of the six-degree-of-freedom JPL parafoil model, the sum of forces and the sum moments (Quadrelli et al., 2019).
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CL =CL0 +CLαα+CLδs
δs (3.56)

CD =CD0 +CDα2α
2 +CDδs

δs (3.57)

CY =CYββ (3.58)

It becomes clear that the coefficients are a function of the before-mentioned symmetric deflection, angle-of-
attack and side-slip angle. The latter two parameters are computed through:

α= wp

up
, β= vp√

u2
p +w2

p

(3.59)

The above velocity components are based on the local air velocity, which is also a function of the wind ve-
locities. The discussion regarding this matter is continued in the final section of this chapter. In Table 3.2
the aerodynamic force coefficients and other relevant parameters are presented. Notice that the total drag
coefficient of the payload has one contribution, such that CD = CDp . The reference surface areas are based on
the most current mission constraints.

Table 3.2: Aerodynamic properties for modeling the aerodynamic forces, based on Quadrelli et al. (2019)

In a similar fashion, the aerodynamic moments are derived: roll, pitch and yaw, respectively:

L =Cl
1

2
ρV 2Sr e f b (3.60)

M =Cm
1

2
ρV 2Sr e f c (3.61)

N =Cn
1

2
ρV 2Sr e f b (3.62)

Please note that the relations between the parafoil design parameters are provided in Table 3.3.

Table 3.3: Parafoil design parameters after Quadrelli et al. (2019).

Design Parameter Equation
Parafoil Wingspan b =p

S · AR
Parafoil Chord c =p

S/AR
Parafoil Height h = 0.14 · c
Line-length-to-span Ratio R/b = 3/4
Anhedral Angle ε= b/2/R
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Table 3.4: Aerodynamic properties for modeling the aerodynamic moments, based on Quadrelli et al. (2019).

The moment coefficients for the canopy are computed as follows

Cl =Clββ+Clδa
δa +Clp

b

2V
p +Clr

b

2V
r (3.63)

Cm =Cm0 +Cmαα+Cmq

c

2V
q (3.64)

Cn =Cnββ+Cnδa
δa +Cnp

b

2V
p +Cnr

b

2V
r (3.65)

In Table 3.4 the aerodynamic moment coefficients and other relevant parameters are presented. The refer-
ence surface areas are based on the most current mission constraints. As part of the six-of-degree-model,
the moment of inertias need to be computed. For the payload a box is assumed with equal dimensions in all
directions, such that the moment of inertias are obtained through

Ixl =
ml

12
(b2

l + c2
l ) (3.66)

Iyl =
ml

12
(a2

l + c2
l ) (3.67)

Izl =
ml

12
(a2

l +b2
l ) (3.68)

In Eqs. (3.66) - (3.68) a, b and c are the payload dimensions with their values established equaling 0.5 in each
direction. The moment of inertias for the parafoil are computed

Ixp = vvolρ+mp

12
(b2 +h2

mean) (3.69)

Iyq = vvolρ+mp

12
(c2 +h2

mean) (3.70)

Izq = vvolρ+mp

12
(c2 +b2) (3.71)

The relevant parafoil parameters are summarized in Table 3.5. Notice that vvol is approximated as 0.09bc2

and hmean as vvol
bc . To project the forces, moments and inertias to the body frame, the rigging angle µ is

utilized for the rotational transformation. For these processes the reader is referred to Quadrelli et al. (2019).
In the respective paper the reader will also find the exact method of how to derive the apparent forces and
moments, of which a brief delineation is also provided in Section 5.2 of this thesis.
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Table 3.5: Canopy dimensions and properties for modeling the inertias, based on Quadrelli et al. (2019). Notice that the current updated
canopy area equals 7.25 m2.

3.7. ENVIRONMENTAL PROPERTIES AND WIND DISPERSIONS
The specific environment in which the autonomous GNC systems needs to operate has a major influence
on the design approach and the final result. The Martian atmosphere is very thin in nature, consisting of
a mixture of 95% CO2, 3% N2, CO and H2. The average surface pressure of 6 mbar equals just 0.6% of the
value found on Earth. All these properties cause the Red Planet to have a very distinct climate. Furthermore,
Mars is known for its wind gusts which tend to increase with a decrease in altitude. To keep conditions as
realistic as possible the choice has been made to model a climate database rather than assume an exponential
atmospheric and homogeneous gravity field. The atmospheric properties of Titan are quite different from
those on Earth and Mars. Main contributor is the fact that density of the surface is almost five times thicker,
while the surface gravity is substantially lower. The exact values are summarized in Table 3.6.

Table 3.6: Atmospheric chemistry of Mars, Venus, and Titan compared to Earth (Krasnopolsky and Lefèvre, 2013).

Perturbations, also defined as dispersions, significantly affect the trajectory of planetary vehicles. The
task of the guidance system is to robustly react to these dispersions and get the vehicle back on precision
track. Achieving this successfully requires a deep understanding of the phenomena affecting the path in
the first place. This asks for a discussion on the influence of wind on the motion of spacecraft travelling
through an atmosphere. The reason being that wind can significantly change the trajectory during parachute
descent as well as powered descent. A detailed analysis on the influence of wind provided by Mooij (1994)
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has been taken as a reference base line. Understanding the difference between the ground velocity and speed
relative to the atmosphere is key in the discussion. A vehicle flying through a wind gust is altered in local flow
conditions tremendously, with the effect only increasing for longer duration bursts. Other wind conditions
include steady-state wind, wind shear and turbulence. These phenomena are not considered specifically but
will be modelled as (random) guidance errors to study the robustness of the system. The reason for choosing
for this method is because the essence lays in the robustness of the GNC system to any arising error. It is
therefore of no need to model every disturbance individually and thus the discussion on wind suffices. The
governing wind equations are based on Cartesian components to maintain a logic overlap with the previously
defined external forces. Consider a wind vector W such that:

W = [wx , wy , wz ]T (3.72)

The heading and flight-path angle due wind follow from

χw = tan−1
(

wy

wx

)
(3.73)

γw = asin−1
(

wz
VW

)
(3.74)

Notice that VW =
√

w2
x +w2

y +w2
z denotes the modulus of the wind. The velocity relative to the airspeed VA is

defined as
VA = VG −W (3.75)

In a spherical coordinate system, the modulus of the airspeed based velocity, heading and flight-path angle
are obtained through

V 2
A =V 2

G +V 2
W −2VGVW (cosγG cosγW cos(χW −χG )+ sinγG sinγW ) (3.76)

χA = tan−1
(

sinχG cosγGVG − sinχW cosγW VW

cosχG cosγGVG −cosχW cosγW VW

)
(3.77)

γA = tan−1
(

sinγGVG − sinγW VW

VA

)
(3.78)

And an actual descent rate of
VD =Vv +wz (3.79)

In which Vv is the airspeed verctor, from which the flight-path angle is derived:

γ=−sin−1(
Vd

V
) (3.80)

Regarding the attitude of the vehicle relative to the airspeed, a transformation is needed of the velocity com-
ponents to the body frame, such that

VBW
B = (uB , vB , wB )T = CB,RVBW

R (3.81)

The components in the body frame need to be transformed to the guidance frame, which is inertial in nature
in the case of terminal descent. This is entrenched through

VIB
I = (uI , v I , w I )T = CI,BVIB

B (3.82)

After obtaining the wind parameters, the airspeed based velocity, angle of attack and sideslip angle are
computed. Given the aerodynamic coefficients, the forces are computed. A transformation is applied to ob-
tain the groundspeed based aerodynamic force by utilizing the airspeed based flight-path angle and heading.
Since the guidance problem is defined in an inertial frame, with the origin coinciding with the landing site.
All forces are defined in the same frame, after which the equations of motion are evaluated. This means that
the forces due wind need to be transformed to the inertial frame, which is entrenched using Table 3.1. After
updating the state vector within the convex optimization framework, these steps are continuously repeated
in a discrete fashion for each temporal node until the sequence is terminated.
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Figure 3.12: Simulated zonal, meridional and vertical wind, magnitudes based on Lorenz et al. (2012).

From the Cassini-Huygens mission it became clear that the thick atmosphere of Titan is also (relatively)
strong winds which have a large effect on the parafoil and hence on the landing sequence. The wind model
utilized in research is based on Lorenz et al. (2012), as that is one of the few sources for Titan wind properties.
In the paper a distinction is made between three wind sources at terminal descent: zonal, meridional and
vertical winds. Before computing the magnitudes of these winds, the wind dynamics is expressed. Starting
with the latter, data from the vertical winds measured by the Huygens probe dictate a zero mean value with
a standard deviation of 0.1 m/s at low altitudes. This model is adapted in the research based on a Gaussian
distribution. The zonal and meridional at the altitude of interest were established at a constant value of 0.3
m/s and 1.0 m/s, respectively. Based here-upon the wind magnitudes for a typical parafoil descent sequence
has been simulated, the result of which is presented in Fig. 3.12.
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4
GUIDANCE, NAVIGATION AND CONTROL

The main objective of the Guidance, Navigation, and Control (GNC) system during the descent phase of a
space mission is to ensure the reduction of the spacecraft’s velocity at the start of the sequence to near zero
at the terminal phase. For interplanetary missions an atmospheric entry is involved which slows down the
spacecraft from hypersonic to supersonic velocities, after which conventionally a parachute mechanism is
deployed. During the atmospheric entry, uncertainties in atmospheric properties introduce navigation dis-
persions with respect to the target and control authority is rather limited. Eventually this leads to the accu-
mulation of errors in both spacecraft position and velocity. The task of the GNC system, together with the
integrated autonomous optimization algorithms, is to correct for these errors in real-time. The robustness of
these systems to a large extend determine the order of precision achievable. While performing the manoeu-
vre, the GNC must ensure the tactical control over landing time and location, while satisfying the constraints
of the trajectory in terms of state and control. The conventional design strategy along with an overview of the
GNC system is outlined in Section 4.1.

The guidance system, forming the core focus of the research, is charged with the task to bring forth steer-
ing commands by taking an estimated reference of the prevailing and final state into account. Deviations
relative to a certain reference are calculated based on (theoretical) models and from this corrective actions
are determined. Section 4.2 elaborates on the autonomous descent guidance system, distinguishing between
3DoF and 6DoF simulation environments. The input state data is provided by the navigation system, using
the interface information gathered by yet again (theoretical) models and sensors. Use of multiple sensors
gives rise to the need for filter algorithms to combine and best estimate the data. The matters on navigation
are regarded as such that perfect state is assumed. The reason for this assumption is elaborated on in Section
4.3. For closed-loop analysis and theoretical utilization of the propulsion and power systems for guidance
purposes, the control aspect of the GNC system is highlighted in the final section of this chapter.

4.1. DESIGN STRATEGY AND SYSTEM OVERVIEW
Comprehending the general design strategy of the GNC system is crucial for understanding what elements
need to be optimized to achieve precision landing. Several matters are to be taken into account when consid-
ering landing on Mars and Titan, which in essence are completely different planetary bodies. Mars has a very
thin atmosphere, while Titan is the only natural satellite in the Solar System with an atmosphere having typi-
cally 50% higher surface pressures relative to Earth-based values. Entry and descent uncertainties for Martian
and Titanian missions are tremendous due to the fact that the governing EDL properties of these planetary
bodies are less explored in comparison to Earth. Likewise, the lack of a robust navigation system such as
the Global Positioning System (GPS) causes dispersion propagation, consequently leading to a rather large
landing ellipse. Conventionally, a nominal design is considered with no sensitivity for any uncertainties and
disturbances or a predictor-corrector scheme is incorporated (Jiang et al., 2014). Within this distinction, the
nominal trajectory design, as further expanded on in Section 4.1.1, is used for first-order analysis and gaining
better understanding of the working principle of the system. An error integrated design is a type of scheme
in which the various disturbance sources are included, on which Section 4.1.2 expands further. Additionally,
the problem of trajectory optimization is solved by the introduction of intelligent algorithms capable of global
optimization. Chapter 5 delineates the mathematical principles of the convex optimization schemes.
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4.1.1. NOMINAL TRAJECTORY DESIGN
For any given mission and space vehicle, an optimal trajectory is calculated to be used as a reference. This
so-called nominal trajectory is free from disturbances, considers the planetary environment to a certain com-
plexity level and considers the vehicle properties to a limited accuracy. This trajectory is computed taking the
following constraints into account:

• Initial conditions

• Steering (minimum and maximum range for guidance)

• Path (mechanical and thermal loads)

• Terminal location

Designing the GNC system is centered around this nominal trajectory and the more the system can react to
uncertainties encountered during EDL, the more robust it is. Nonetheless, one should keep in mind that a
too robust system has a negative influence on the maneuverability, while a system that lacks robustness may
encounter control problems. The design process is for that reason often a trade-off between the two. It is
important to study how the GNC system reacts to uncertainties within the design cycle. For testing the per-
formance in terms of robustness, both 3DoF and 6DoF simulation analyses are applied. Conventionally one
simulates various test scenarios in which models of the dynamics, environment and spacecraft are included.
The elements of the GNC system are schematically depicted in Fig. 4.1. Notice that this overview is a sim-
plified version, a detailed form with the inclusion of numerous sources of error is presented at a later stage.

The blocks presented in the figure are connected by lines that indicate the flow of data. Analogous with
the operations of aircraft, the control of spacecraft entry and descent is branched in three elements: guid-
ance, navigation and control. These elements form the core of this chapter, that by itself forms a core of the
research. Before discussing each element extensively in the sections ahead, a description of the task of each
block of Fig. 4.1 is provided in the subsequent summation.

• Mission manager: contains a nominal reference trajectory which is uploaded to the spacecraft com-
puter pre-flight amongst other on-board models. Based on the estimated state the difference relative
to the stored trajectory is computed, which serves as input for the guidance system.

• Guidance logic: has the task to guide the CoM of the spacecraft in its motion, e.g., by the initiation of
a bank manoeuvre to change lift orientation for guidance. The guidance logic obtains information on
the difference between the commanded and measured state, which is defined as the guidance error.
The output of the guidance logic forms one of the inputs for the control algorithm.

• Control algorithm: this algorithm determines the motion about the CoM after receiving input from
the guidance logical and the state estimator. Likewise, the discrepancy between these input channels
is defined as the control error. Commands for the actuators are determined based on a predefined
concept of control → e.g., PID or LQR control.

Figure 4.1: Schematic overview of the guidance navigation and control (GNC) system (simplified) (Mooij, 2017).
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• Actuators: the actuators convert the control commands into actuation of forces and/or moments by
means of hardware → e.g., control surfaces (lift/drag), retrorockets or a parafoil.

• Flight dynamics and environment: the actual spacecraft in the (Mars/Titan) environment behaving in
accordance with the law of physics (dynamics). The state of the spacecraft is produced → e.g., position,
velocity, angular rate, rate of heat and mechanical load.

• Sensors and state estimators: measure and derive the the state of the system in real-time, respectively.
Common sensors used for re-entry and descent include accelerometers, altimeters, gyroscopes, LIDAR,
pressure sensors, radar and recently TRN.

As summarized by Mooij (2017), the sensors measure the state, the actuators change it, and together they
form the interface with the vehicle. The state estimator, sensors and partial functionality of the mission man-
ager form the navigation system. The two loops, inner and outer, depicted in the figure are defined as the
control and guidance loop, respectively. These loops are generally used to determine the (closed-loop) sta-
bility of the entire GNC system. The main goal of the navigation filters is to provide best-estimates for the
relevant state variables. The relevance of the respective sensors is strongly dependent on the origin of the
motion, i.e., entry or powered descent variables. While this research assumes perfect state knowledge, the
section on spacecraft navigation (Section 4.3) expands more on this matter for justification purposes.

4.1.2. ERROR INTEGRATED DESIGN
At various whereabouts in the nominal system that has been presented in the preceding section, errors might
get introduced. Typical examples of such errors are the ones induced by imperfections in sensors measuring
the state of the spacecraft and deficiencies in the actuators controlling the vehicle. This by all means includes
the absence of GPS outside of Earth missions. State estimators, as part of the feedback navigation system
discussed in Section 4.3, are commonly used to obtain best estimates for these errors. Unfortunately, state
estimators solely are not sufficient for precision landing, especially in the case the system can find no feasible
trajectory to the designated target. In a similar fashion, externally induced disturbances due for example
wind, which may be treated as errors, have a significant effect on the design trajectory. For a Titan landing
sequence, the winds mainly cause tremendous dispersions in the upper atmosphere, as wind speeds are
significant relative to the velocity of the lander. In either case, whether internal or external induced errors
arise, convex optimization has proven to be a successful solution for dispersion management (Blackmore
et al., 2010). The governing principles for this optimization technique are introduced in the preceding section
on guidance and further discussed in Chapter 5.

4.1.3. MISSION OPERATIONS
The mission operations, which for Martian and Titan precision landing should be fully autonomous, assure
the rightful operations of the spacecraft. Earth-Mars and Earth-Titan communication links are carried by ei-
ther electromagnetic waves, radio waves or light. These carriers travel at the speed of light (c ≈ 3 · 108 m/s)
while the distance between the Earth and planetary bodies varies over time. It therefore takes several min-
utes for a carrier signal to reach either Mars or Titan while the spacecraft is performing the EDL sequence,
making control based on the Deep Space Network (DSN) impractical (Yu et al., 2017). The Mars landing se-
quence, dubbed by NASA as the seven minutes of terror, must therefore be performed real-time and fully
autonomously. Despite the fact that landing on Titan takes much longer (nearly 2.5 hours), a similar conclu-
sion is entrenched when tilting the discussion to the Earth-Titan system. While the discussion of autonomy
is continued in the next chapter, it is established that the mission operations prerequisite:

• measuring of state (position and velocity)

• computing deviations with respect to the nominal trajectory

• resolving corrective guidance orders

• transfer guidance orders to the control system

• converting control outputs to actuator operations

Based on the narrative on the previous page, the remainder of the chapter is structured. In the following
section the core of the research is delineated first: the guidance systems and laws. A distinction is made
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between the various phases of EDL, giving top priority to powered descent guidance. Several navigation and
EDL sensor options for determining position, velocity, angular rate and attitude will be discussed in Section
4.3. For closed loop analyses a control system is required and therefore, based on the guidance and navigation
schemes, algorithms and control operations are described in Section 4.4.

4.2. GUIDANCE
Analogous to the design strategy for GNC systems, a classical way of classifying guidance methodologies
is distinguishing between predicting capabilities and nominal trajectories (Wingrove, 1963). The latter is a
stored onboard path reference while the former encompasses methods for predicting possible future paths.
Trajectory-independent guidance methods also exits, of which the numerical predictor-corrector guidance
is a prime example (Yu et al., 2017). Inherently, the predictive guidance methods are capable of overcoming
errors induced through linearization of the governing equations and simplifying assumptions. However, the
(powered) descent guidance problem is defined as finding a fuel or position optimal trajectory given a initial
and desired final state, also known as the soft landing problem in optimal control literature (Açıkmeşe and
Ploen, 2007). This trajectory is bounded by thrust magnitude constraints in case of powered descent and
aerodynamic force (maximum lift and drag) constraints in case of parachute descent. Various approaches
have been taken to find closed-form solutions for the optimal thrust profile in three-dimensional Euclidean
space, all resulting in numerical solutions eventually. These numerical methods are eminently alluring as
conditions related to nonconvex guidance, i.e., adjoint and transversality conditions, and the maximum prin-
ciple, do not need to be enforced. As stated by Açıkmeşe and Ploen (2007), these methods are converted from
an infinite-dimensional optimal control problem to a finite dimensional parameter optimization problem,
to be subsequently solved using robust nonlinear programming. Yet, for real-time onboard applications, ex-
plicit understanding of deterministic convergence characteristics are required, which is generally not the case
for a nonlinear algorithm. For reasons defined in Section 4.1.3, Mars and Titan pinpoint landing require real-
time optimal trajectory computations which makes it essential to exploit algorithm design methodologies
that guarantee convergence to a global optimum. This segment of the chapter exploits a guidance method
with deterministic convergence criteria: the convex optimization framework.

A very powerful tool capable of generating optimal paths in real-time based on a given objective function,
the dynamics, and the control and state constraints, is the convex optimization method, which is adopted
in this research for descent guidance purposes. This section outlines both the 3DoF as well as the 6DoF
non-convex optimization guidance fundamentals, which inherently belong to the class of optimal control
problems. In Section 4.2.1 the minimum fuel nonconvex optimal control problem is outlined. Following up,
in Section 4.2.2, the formulation is extended as a minimum landing error problem, guaranteeing safe touch-
down for all mission scenarios. Section 4.2.3 expands on desired additional constraints based upon mission
operations. A validated proof of concept, by the name Guidance for Fuel Optimal Large Divert (G-FOLD),
is discussed subsequently. Based on the prior established formulations, the problem is firstly extended by
including aerodynamic controls (Section 4.2.5) and subsequently extended to a 6DoF formulation using a
quaternion attitude representation (Section 4.2.6) . Chapter 5 focuses on the mathematical principles of loss-
less and successive convexification that allow these algorithms to be adapted onboard in real time. The same
chapter confers an outline of the golden search algorithm for finding the optimal time-of-flight.

4.2.1. NONCONVEX OPTIMAL CONTROL

During the first two main EDL phases (i.e., entry and parachute descent), commonly spacecraft accumulate
large errors in position and velocity (Açıkmeşe et al., 2012). This can be attributed to the fact that atmospheric
uncertainties emanate and control authority is rather limited (especially during the parachute phase). Con-
ventional algorithms for powered descent have mainly been inherited from Apollo technologies. These al-
gorithms do not directly take mission constraints or fuel optimization into account, leading to incomplete
utilization of vehicle capabilities. This by itself makes precision landing practically impossible and thus a
solution has to be found to this problem. The convex programming approach to powered descent guidance
for Mars landing seems to be the solution to this matter. This research also exploits the adaptability of the
same approach to precision landing on Titan by means of a parafoil. This is further expanded on in Section
4.2.5. The main algorithm is designed such that optimal (state and control) constraints satisfying paths are
generated that are physically feasible. This section outlines the general nonconvex optimal control powered
descent problem for Mars soft landing. The constitutional non-convexity commences in the thrust domain
as it is not possible nor reliable to turn thrusters off once the descent maneuver is initiated.
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Figure 4.2: Net thrust spacecraft geometry for the powered descent problem (Açıkmeşe and Ploen, 2007).

The spacecraft motion is modelled as a point-mass with a (nonzero) lower bound magnitude in the thrust
domain which defines a nonconvex region in the control space. As the descent stage of the sequence occurs
at a relatively low attitude (less than 5 km for both Mars as well as Titan landing), a uniform gravitational
field is assumed. In the original formulation aerodynamic forces are neglected (Section 4.2.5 goes into more
detail regarding this matter). Likewise, the original definition includes translational guidance solely. The
instantaneous direction of thrust e ∈ R3 and the cant angle φ are depicted in Figure 4.2. The translational
dynamics are defined in the surface fixed reference frame that inherently encompasses the planet’s angular
rate of rotation (Açıkmeşe et al., 2012), such that

r̈(t ) = g+ Tc (t )

m(t )
(4.1)

where r ∈R3 is the target relative position vector, g ∈R3 the acceleration due planetary gravity, Tc ∈R3 the net
thrust vector and m the spacecraft mass. In modeling the thrust vector during powered descent it is assumed
that the rocket engines are in a gimbal locked orientation. The rocket mass depletion function is given by

ṁ(t ) =−α‖Tc (t )‖ (4.2)

A total of n identical thrusters are considered, i.e., equal levels of thrust T and specific impulse Isp at each
instance of time. Positive α is defined as the constant fuel consumption rate, such that

Tc = nT cosφe (4.3)

α= 1

Isp g0cosφ
(4.4)

During the entire descent sequence the thrust levels for each rocket engine are bounded

0 < T1 ≤ T (t ) ≤ T2 (4.5)

This implies that given a final time t f , for ∀t ∈ [0, t f ]

ρ1 ≤ ‖Tc‖ ≤ ρ2 (4.6)

Given is that ρ2 > ρ1 > 0 and
ρ1 = nT1cosφ , ρ2 = nT2cosφ (4.7)

Notice that Eq. (4.6) defines the nonconvex control space region. Initial and final boundary conditions are
established such that

m(0) = m0, r(0) = r0, ṙ(0) = ṙ0 (4.8)

r(t f ) = 0, ṙ(t f ) = 0 (4.9)
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where r0 and ṙ0 are the initial position and velocity vectors, respectively. Moreover, m0 the initial mass of the
spacecraft, i.e., the wet mass. In the remainder of the nonconvex formulation it is assumed that the initial
position along the gravity direction is positive. During the descent maneuver it is required that the trajectory
remains above the surface. Defining r(t ) = [r1(t ),r2(t ),r3(t )]T , this sub-surface constraint is enforced as

r1 ≥ 0, ∀t ∈ [0, t f ] (4.10)

Additional state and control constraints might be imposed on the motion depending on mission requirement.
Section 4.2.3 elaborates on the respective supplementary constraints needed for Mars and Titan landing. In
this section the general form of enforcing state constraints is conferred. For this a position and velocity state
vector x ∈R6 is defined such that

x =
[

r
ṙ

]
(4.11)

Defining S j ∈Rni×6, c j ∈R6, a j ∈R and n j ≤ 6, the state constraints have the ensuing general form∥∥S j x(t )− v j
∥∥+ cT

j x(t )+a j ≤ 0, j = 1, ...,ns , ∀t ∈ [0, t f ] (4.12)

Given the above described nonconvex trajectory optimization problem with the given control and state con-
straints, as has been delineated through Eqs. (4.1) - (4.12), the minimum fuel guidance problem for powered
descent landing can be described:

Problem 1: nonconvex minimum fuel guidance problem

Cost Function:

max
t f ,Tc

(t f ) = min
t f ,Tc

∫ t f

0
‖Tc (t )‖dt subject to:

Dynamics:

r̈(t ) = g+ Tc (t )

m(t )

ṁ(t ) =−α‖Tc (t )‖

Control and State Constraints:

0 < ρ1 ≤ ‖Tc‖ ≤ ρ2

r1 ≥ 0∥∥S j x(t )− v j
∥∥+ cT

j x(t )+a j ≤ 0, j = 1, ...,ns

Boundary Conditions:

m(0) = m0, r(0) = r0, ṙ(0) = ṙ0

r(t f ) = 0, ṙ(t f ) = 0

The above established problem contains a non-convexity in the control domain due to the thrust magni-
tude inequality. To make the algorithm compatible for real-time applications while maintaining the optimal
control result, the problem needs to be put through a process known as lossless convexification of the control
magnitude constraint. The mathematical formulation on this matter is continued in Chapter 5. The next
section outlines the extension of the above optimal control problem to achieve minimum landing error.

4.2.2. MINIMUM LANDING ERROR
The previous section defined the nonconvex optimal control problem framework, which finds a thrust pro-
file, taking the lander from an initial state to a designated target position while minimizing the consumption
of fuel. This section outlines the extension of the problem to the position domain. The extension of the con-
vex optimization approach in this portion of the thesis includes an enhancement ensuring the algorithm can
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handle cases in which a feasible trajectory to the destination does not exist. The latter is needed for missions
that do not have the capacity to carry sufficient fuel to ensure the target is reached for all mission scenarios,
hence the backup acts as a fail-safe. The onboard guidance system must ensure a safe landing as close to
the target as possible in case such a situation arises (Blackmore et al., 2010). In essence, the nature of the
minimum landing error problem, i.e., non-convexity, is similar to Problem 1. However, there are some key
differences between the two problems, which are examined in this section. Ahead of examining these differ-
ences, the minimum landing error guidance problem for powered descent is described:

Problem 2: nonconvex minimum landing error guidance problem

Cost Function:
min
t f ,Tc

∥∥r(t f )
∥∥ subject to:

Dynamics:

r̈(t ) = g+ Tc (t )

m(t )

ṁ(t ) =−α‖Tc (t )‖

Control and State Constraints:

0 < ρ1 ≤ ‖Tc‖ ≤ ρ2

r1 ≥ 0∥∥S j x(t )− v j
∥∥+ cT

j x(t )+a j ≤ 0, j = 1, ...,ns

Boundary Conditions:

m(0) = m0, r(0) = r0, ṙ(0) = ṙ0

m(t f ) ≥ mdry, r(t f )T e1 = 0, ṙ(t f ) = 0

The cost function defined in Problem 2 differs from the one in Problem 1 as it minimizes the squared dis-
tance in Euclidean space rather than final mass (i.e., fuel consumption). Notice that minimizing the distance
squared is equivalent to minimizing distance due to the positive norm and monotonic guarantee. Through-
out this thesis, ‖x‖ defines the norm of vector x. For simplicity purposes, without loss of generality, the target
is assumed at zero. Moreover, the surface normal is defined as e1. In accordance with the outline of the mini-
mum landing error problem d ∈R2 is established as the surface landing target. Based on the approach of the
renewed algorithm, some boundary conditions are altered for the minimum fuel guidance problem:

Modified boundary conditions for Problem 1

Boundary Conditions:

m(0) = m0, r(0) = r0, ṙ(0) = ṙ0

m(t f ) ≥ mdry, eT
1 r(t f ) = 0, [e2 e3]T r(t f ) = d, ṙ(t f ) = 0

The key notion of the minimum landing error algorithm is to first perform an optimization that minimizes
the distance between the designated target and the reachable landing location; in other words: first solve
Problem 2. This returns a specific computed range D such that

D = ∥∥r(t f )
∥∥ for {t∗f ,T ∗

c (·)} (4.13)

Utilizing this optimal range, the minimum fuel optimization trajectory is computed as defined in Prob-
lem 1, keeping in mind the modified boundary conditions for the renewed problem definition. Notice that



50 4. GUIDANCE, NAVIGATION AND CONTROL

[e2 e3]T r(t f ) = d now gets defined as
∥∥r(t f )

∥∥≤ D to ensure the algorithm returns the global optimal solution,
satisfying the nonconvex thrust constraints. For real-time onboard guidance, the above described algorithm
requires a relaxation of the problem through lossless convexification, of which the lemma is detailed in the
next chapter. In the next part of the thesis additional state and control constraints are characterized found
on mission needs. Summarizing, the prioritized powered descent guidance algorithm for minimum landing
error is entrenched as:

Prioritized powered-descent guidance algorithm (after Blackmore et al. (2010))

1. Solve the relaxed minimum-landing-error guidance problem (Problem 2) for {t∗f , T∗
c (·)} with

corresponding trajectory r∗c (·). If no solution exists, return infeasible.
2. Solve the relaxed minimum fuel guidance problem to specified range (Problem 1) with
D = ∥∥r(t f )

∥∥ for {t †
f ,T †

c (·)}.

3. Return {t †
f ,T †

c (·)}.

4.2.3. STATE AND CONTROL CONSTRAINTS

The soft landing guidance problem is characterized as a finite horizon optimal control problem. That is, the
optimal performance measures for a finite time t = [0, t f ] within system control. Pointedly, the system con-
trol is the optimal thrust profile accompanied by a certain Euclidean translational motion (r, ṙ) to minimize
either fuel consumption or landing error. The general form for enforcing specific state constraints has been
conferred in Section 4.2.1, Eq. (4.12) specifically. This section explicitly delineates state and control con-
straints for specific mission needs. The complementary state constraints include a bound on the velocity
and glide-slope angle. These constrains are convex in nature and hence fit properly into the framework. The
supplementary control constraint, defined as the thrust point constraint, has both convex and nonconvex
properties, which are examined in this section. This section also reviews how the latter two constrains (glide-
slope angle and thrust pointing) are especially important to cope with the requirements of Terrain Relative
Navigation (TRN) and Hazard Detection & Avoidance (HDA).

VELOCITY CONSTRAINT

A rather straightforward form of state constraint can be imposed on the velocity magnitude, which might be
needed to prevent stall or to keep aerodynamic forces below detrimental values. Consider a certain minimum
and maximum velocity magnitude, Vmin and Vmax, respectively, then

Vmin ≤ ‖ṙ(t )‖ ≤Vmax (4.14)

Imposing a minimum velocity magnitude constraint is especially relevant during parachute or parafoil de-
scent to prevent stall. Imposing the maximum velocity magnitude constraint is mainly motivated from a
structural engineering point of view in order to keep mechanical loads below their ceiling threshold. Addi-
tionally, the upper velocity bound averts reaching supersonic velocities on planetary bodies with an atmo-
sphere (which Mars and Titan both are), as within such conditions control thrusters may become unreliable.

GLIDE-SLOPE CONSTRAINT

The glide-slope constraint enforces that a specific optimal trajectory to the target is not too shallow nor goes
below the surface. Fig. 4.3 depicts the minimum slope angle γg s that imposes a cone shape on the spacecraft.
The glide slope constraint requires the spacecraft to remain within a cone as defined by the minimum slope
angle. Notice that for the case of minimum landing error, the apex of the cone concurs with the landing
target position, a certain distance q from the original target. To cope with the requirement of, e.g., terrain-
relative navigation, the spacecraft orientation in terms of attitude is restrained. By enforcing the cone shape
restricted motion, the lander at higher altitudes for an elongated period, hence surface characteristics can be
observed for a certain extended period of time. The feasible positions of the spacecraft glide-slope constraint
are defined using a set X such that

X = {r ∈R3 :
∥∥S(r− r(t f ))

∥∥−cT (r− r(t f )) ≤ 0} (4.15)



4.2. GUIDANCE 51

Figure 4.3: Descent guidance glide slope constraint requiring the spacecraft to remain within a cone as defined by a minimum slope
angle γg s , ensuring the spacecraft stays safely from the terrain prior to reaching the target (Carson et al., 2011).

For feasibility purposes S and c are defined to designate a cone with a vertex at r(t f ), leading to

S ,
[

0 1 0
0 0 1

]
(4.16)

c ,
e1

tanγg s
γg s > 0 (4.17)

It is again emphasized that X is a convex set within the guidance formulation. The standard definition of
the interior (i.e., a subset of the topological space) of X is conferred for completeness

int X, {x ∈ X : ∃ ε> 0 such that y ∈ X if
∥∥x − y

∥∥< ε} (4.18)

∂X, {x ∈ X : x 6∈ int} (4.19)

Notice that the latter equation denotes the boundary of X. In the chapter on convex optimization the method-
ology for extending this constraint to the use of multiple obstacle avoidance is outlined.

THRUST POINTING CONSTRAINT

Generally, sensors for TRN onboard of spacecraft require rather explicit viewing orientations, which imposes
the pointing constraint on the attitude orientation of the vehicle. Within the powered descent guidance for-
mulation, the vehicle is modelled as point mass having the thrust vector point alongside the desired direction
of force. This framework allows the introduction of the orientation constraint by merely imposing a restric-
tion on the thrust pointing vector. Explicitly implementing attitude dynamics within the formulation would
increase the guidance formulation complexity significantly, a discussion left for Section 4.2.6.

The trust pointing constraint belongs to the class of control constraints, whom in essence are more chal-
lenging as the sets of feasible controls are nonconvex by definition. Given a definite time-of-flight t f , a total
of three control constraints are defined:

1. Convex upper bound on thrust: ‖Tc‖ ≤ ρ2

2. Nonconvex lower bound on thrust: ‖Tc (t )‖ ≥ ρ1 > 0

3. Pointing constraint on thrust: n̂T Tc (t )/‖Tc (t )‖ ≥ cosθ

The first two constrains have already been conferred in Section 4.2.1. Chapter 5 continues on the subject by
defining how the non-convexity of the lower thrust bound can be handled without loss of optimality. The
remainder of this section focuses on the third control constraint regarding the thrust pointing. The direction
vector ‖n̂‖ = 1, and the angle θ describes the angle of deviation with respect to the normal direction such that
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Figure 4.4: Planar view of the thrust bounds (left) and the respective intersection of thrust bounds and thrust pointing constraint for
θ ∈ (π/2,π] (middle) and θ ∈ (0,π/2] (right) (Açıkmeşe et al., 2013).

the constraint is convex if θ ≤π/2 and nonconvex when θ >π/2. As depicted in Fig. 4.4, the maximum allow-
able angle of deviation with respect to n̂-direction is 0 ≤ θ ≤ π for t ∈ [0, t f ]. To deal with the non-convexity
within the thrust pointing constraint, the convexification process in Chapter 5 extends to the pointing realm.
In conclusion of the state and control constraints section it is specified that thrust direction can explicitly be
constrained at the start and end of the descent sequence through

Tc (0) = ‖Tc (0)‖ n̂0 (4.20)

Tc (t f ) = ∥∥Tc (t f )
∥∥ n̂t f (4.21)

where n̂0 and n̂t f denote unit vectors construed in accordance with the desired thrust direction.

4.2.4. FUEL OPTIMAL LARGE DIVERT
The Guidance for Fuel Optimal Large Divert (G-FOLD) is a proof of concept algorithm for the powered de-
scent phase of planetary precision landing. The algorithm is designed such that fuel optimal mission con-
straints satisfying paths are autonomously generated onboard that are physically feasible. The Jet Propulsion
Laboratory (JPL) has extensively analyzed this algorithm during the last decade and concluded positively on
the essence of it. The GNC system overview for G-FOLD is shown in Fig. 4.5, of which the navigation and
control aspects are discussed in Sections 4.3 and 4.4, respectively. The remainder of this section is dedicated

Figure 4.5: G-FOLD guidance, navigation and control scheme depicting the interplay between all components of the flight software.
Notice that TRN and HDA refer to Terrain Relative Navigation and Hazard Detection and Avoidance, respectively (Açıkmeşe et al., 2012).
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to outlining the G-FOLD algorithm and delineating the Autonomous Ascent and Descent Powered-Flight
Testbed (ADAPT). This testbed has been constituted categorically for demonstrating landing technologies
of the next-generation landers. The Masten Space Systems G-FOLD test vehicle by the name Xombie is a
rocket designed for vertical takeoff and landing in suborbital space (Açıkmeşe, 2017). For an interplanetary
mission, the G-FOLD algorithm is initiated after the entry and parachute deployment phases have come to
pass, and the spacecraft has been slowed down and descended to a prescribed velocity and altitude, respec-
tively. Atmospheric uncertainties cause dispersions that cannot be predetermined but are very significant
in essence. The G-FOLD algorithm is able to tackle this problem autonomously and fuel optimally. This
type of optimization solves problems at speeds in the order of micro- to milliseconds, making them a great
asset for implication onboard at real time. The nonconvex G-FOLD optimization problem is characterized as:

Problem 3: nonconvex G-FOLD problem definition

Cost Function:

max
t f ,Tc

m(t f ) ∀t ∈ [0, t f ] subject to:

Dynamics:

ẋ(t ) = Ax(t )+B

(
g+ Tc (t )

m(t )

)
with A =

[
0 I
0 0

]
, B =

[
0
I

]
ṁ(t ) =−α‖Tc (t )‖

x(t ) ∈ X

Control Constraints:

0 < ρ1 ≤ ‖Tc‖ ≤ ρ2

n̂T Tc (t ) ≥ ‖Tc (t )‖cosθ

Boundary Conditions:

m(0) = m0, r(0) = r0, ṙ(0) = ṙ0

m(t f ) ≥ mdry, r(t f ) = 0, ṙ(t f ) = 0

The dynamic equations in the surface fixed reference frame are defined such that the state vector x(t ), mass
vector m(t ) and constraint vector X hold in accordance with

x(t ) = (r(t ), ṙ(t )) :R+ →R6 and m(t ) :R+ →R+ (4.22)

X =
{

(r, ṙ) ∈R6 : tanγg s eT
1 r ≥

√
(eT

2 r)2 + (eT
3 r)2, ‖ṙ‖ ≤Vmax

}
(4.23)

The free-flying closed-loop ADAPT vehicle has demonstrated the ability to onboard calculate divert tra-
jectories in real time during descent. Açıkmeşe (2017) states that the performed test flights manifested divert
capabilities reaching 750 m while starting at a 480 m altitude, as Fig. 4.6 depicts. The maneuver was initiated
in such a way that the vehicle was moving away from and crosswise with regard to the landing location. In
mid-air the aggressive direction reverse was initiated successfully in ∼100 ms, an astonishing accomplish-
ment. The vehicle continued its G-FOLD path planned direction, to eventually land precisely on the des-
ignated area. Furthermore, it is important to denote that the ADAPT/G-FOLD testbed does not take into
account coupled translational and attitude dynamics, i.e., a 6DoF algorithm, as this significantly increases
the complexity. Likewise, aerodynamic controls (drag and lift) have been left out of the algorithm. A review
on how to incorporate these matters is continued in the sections ahead. The designed closed-loop guidance
and control simulator encompassing all the prior specified elements is conferred in Chapter 7.
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Figure 4.6: Masten Xombie vehicle ADAPT trajectories capabilities starting at an altitude of 450 m for three divergence scenarios: 500,
650 and 750 m (Açıkmeşe, 2017).

4.2.5. AERODYNAMIC CONTROLS

The convex programming approach is extended to a descent guidance problem in the presences of aerody-
namic forces, drag to begin with. This also includes the introduction of a new type of nonconvex control
constraint. Due to the control constraints’ non-convex nature and the aerodynamics induced nonlinearities,
the problem complexity for real-time guidance increases significantly. In a later stage of the thesis, Chapter 5
specifically, the lossless convexification is described that eliminates the minimum thrust constraint and suc-
cessive convexification is delineated that addresses the remaining nonconvex elements. Aerodynamic forces
are particularly dominant for entry and parachute descent guidance in the Mars and Titan environments. For
a Titan landing these forces remain eminent during terminal descent due to the fact that a parafoil is guided
based upon aerodynamic controls. Nonetheless, during powered descent guidance on Mars aerodynamic
phenomena may have significant effect as well, even at lower altitudes. This section shall therefore first out-
line the fuel optimal powered landing guidance problem with aerodynamic drag based on Szmuk et al. (2016).
The algorithm is subsequently formulated as a minimum landing error problem utilizing aerodynamic con-
trols. Notice that both frameworks conferred still assume 3DoF dynamics.

FUEL OPTIMAL POWERED DESCENT GUIDANCE WITH AERODYNAMIC CONTROLS

As in the preceding sections, the vehicle is point mass modeled subject to translational dynamics as conferred
Section 4.2.1. Additionally, an aerodynamic force FA(t ) is noted such that

FA(t ) = 1

2
ρSr e f vT v

CD

CS

CL

 (4.24)

where the air density ρ is a function of altitude, CD is the drag coefficient and Sr e f the reference area. As the
powered landing phase occurs at a relatively low altitude within the EDL sequence, density might be assumed
constant. Now consider a constant ambient air pressure Pamb and rocket nozzle exit area Anozzle leading to
an adjustment in the mass depletion function (Eq. (4.2)) to account for back pressure compensation

ṁbp = Pamb Anozzle

Isp g0
(4.25)

ṁ(t ) =−α‖Tc (t )‖−ṁbp (4.26)
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The translational dynamics model encompasses a double integrator driven by a term of acceleration

ṙ(t ) = v(t ) (4.27)

v̇(t ) = a(t ) (4.28)

a(t ) = 1

m(t )
[T(t )+FA(t )]+g (4.29)

Within the continuous time domain formulation, the objective of the algorithm is to maximize final mass
while adhering to the constraints and conditions. The additional control constraints included in this prob-
lem formulation ensure that throttling rate values maintain within a threshold minimum Ṫmi n and maximum
Ṫmax . Notice that the acceleration term includes a convex quadratic term which needs to be mathematically
detached using a linearization scheme. The nonconvex problem formulation with aerodynamic drag reads:

Problem 4: nonconvex minimum fuel guidance problem with aerodynamic drag

Cost Function:

max
t f ,Tc

m(t f ) ∀t ∈ [0, t f ] subject to:

Dynamics:

ṁ(t ) =−α‖Tc (t )‖−ṁbp

ṙ(t ) = v(t )

v̇(t ) = a(t )

a(t ) = 1

m(t )
[T(t )+FA(t )]+g

State Constraints:

mdry ≤ m(t )

‖r(t )‖cosγg s ≤ n̂T r(t )

Control Constraints:

0 < ρ1 ≤ ‖Tc‖ ≤ ρ2

n̂T Tc (t ) ≥ ‖Tc (t )‖cosθ

Ṫmin ≤ d

d t
‖T(t )‖ ≤ Ṫmax

Boundary Conditions:

m(0) = m0, r(0) = r0, ṙ(0) = ṙ0 T(0) = T0n̂0

m(t f ) ≥ mdry, r(t f ) = 0, ṙ(t f ) = 0 T(t f ) = ∥∥T(t f )
∥∥ n̂ f

MINIMUM CONTROL EFFORT - PARAFOIL GUIDANCE

The latter problem of the previous part is formulated as minimum power consumption problem for terminal
parafoil descent guidance. This is established by enforcing a cost function that minimizes the control effort.
This control effort is constrained to have normalized values between 0 and 1, in accordance with canopy pull
regulations. Notice that the total problem described in this section also includes thrust, which will naturally
equal zero in case there is no flow of mass. For a parafoil the mass is assumed to be constant (without the
consideration of apparent mass). The algorithm is designed such that is can be applied to both cases, based
on imposed mission parameters and constraints. The formulation, (Problem 5), conferred in this section thus
encompasses full generality, in the sense all possible relevant forces are stated. The pointing constraint re-
mains to be a part of the formulation to cope with the requirements of TRN, but will independent of thrust in
case of a parafoil landing. The aerodynamic angles, angle-of-attack α and side-slip angle β are constrained
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such that they have a threshold minimum and maximum value. The boundary conditions of the sequence are
constrained such that the soft-landing is enforced through zero position error (with respect to the target in
the guidance frame) and zero touchdown velocity at termination in three-dimensional Euclidean space. The
vehicle is point mass modeled subject to translational dynamics as conferred Section 4.2.1. A significant dif-
ference with respect to the prior formulation (Problem 4) is that the solution is the fact that the aerodynamics
forces are now considered to be control authorities. This implies that the drag coefficient given in Eq. (4.24)
is no longer treated as a constant but rather as a function of angle-of-attack αa and symmetric deflection δs .
Similarly, the lift force coefficient is considered to be a function of αa and δs . In the next section the mo-
ment, angular rate and quaternion dynamics are formulated, after which the 6DoF simulation environment
problem definition is conferred.

Problem 5: nonconvex minimum control effort guidance problem

Cost Function:
min
t f ,Tc

‖u(t )‖ subject to:

Dynamics:

ṙ(t ) = v(t )

v̇(t ) = a(t )

a(t ) = 1

m(t )
[T(t )+FA]+g

State Constraints:

mdry ≤ m(t )

‖r(t )‖cosγg s ≤ n̂T r(t )

Control Constraints:

0 < ρ1 ≤ ‖Tc‖ ≤ ρ2

n̂T Fc (t ) ≥ ‖Fc (t )‖cosθ

0 < u(t ) ≤ 1

αmin <α(t ) ≤αmax

βmin <β(t ) ≤βmax

Boundary Conditions:

m(0) = m0, r(0) = r0, ṙ(0) = ṙ0 F(0) = F0n̂0

m(t f ) ≥ mdry, r(t f ) = 0, ṙ(t f ) = 0 F(t f ) = ∥∥F(t f )
∥∥ n̂ f

4.2.6. QUATERNION ATTITUDE REPRESENTATION

For the powered descent simulator a 6DoF guidance simulator has been developed in this thesis. While the
computation time does increase for higher order of degree analyses, the requirement seems inevitable for
reaching a precision in the order of meters (Blackmore, 2017). Several available guidance methodologies
have been investigated for this pre-landing phase. One of such is the influential E-Guidance method and
the modified Apollo guidance version described by Gerth and Mooij (2014). These guidance methodologies
treat the problem at hand as a two-point boundary value problem. The paper describes how the method is
not satisfyingly robust and thus advises to increase its robustness for increased precision. The methodol-
ogy construed in this section is numerical in nature and based on the 6 DoF convexification for free final time
deduced from Szmuk and Açıkmeşe (2018). Because of the convexification, the difficulty of the problem is de-
creased significantly while results remain intact. Furthermore, the system is implantable in real-time which is
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a high-level mission requirement. To guarantee the latter, the Interior Point Method (IPM) is used as a solver.
In this part of the research the focus lays on the describing the methodology. Guidance for autonomously
landing spacecraft comes along with three challenges for which the following solutions are provided:

1. Non-linear nature of the problem → lossless convexification.

2. Discretization scheme determines the solution’s validity → linear time-variant matrices system ensure
solution convergence in accordance with the non-linear system.

3. Reference trajectory generation for initialization is difficult → algorithm is capable of initialization for
inconsistent trajectories.

The translational dynamics is defined in the surface fixed reference frame as defined in Section 3.1. Modelling
of the thrust vector during vector during powered descent will be such that it is assumed that the rocket
engines are in a gimbal locked orientation. The mass depletion function for the rocket is given by λm =
1/Isp g0 leading to the following dynamics:

ṁ =−λm ‖TB (t )‖ (4.30)

Expressing the translational equations of motion in the inertial guidance frame leads to:

ṙrr G (t ) = VG (t ) (4.31)

V̇VV G (t ) = 1

m(t )
FG (t )+gG (4.32)

Notice that FG accounts for all relevant forces. Orienting the body frame relative to the inertial guidance frame
occurs through quaternion parametrization of the direction cosine matrix defined in Eq. (3.20). Because the
definition of the transpose of a matrix being equal to the negative of the matrix is needed, the skew-symmetric
matrices are defined for some ξξξ ∈R3 such that:

[ξξξ×] =
 0 −ξz ξy

ξz 0 −ξx

−ξy ξx 0

 Ω(ξξξ) =


0 −ξx −ξy −ξz

ξx 0 ξz −ξy

ξy −ξz 0 ξx

ξz −ξy −ξx 0

 (4.33)

While the attitude dynamics is in accordance with Eq. (3.47) and the angular velocity of the body frame
relative to the guidance frame is denoted as ωωωB ,G (t ) ∈ R3 , the kinematic equation and attitude dynamics in
quaternion form are defined as:

q̇̇q̇qB ,G (t ) = 1

2
Ω

(
ωωωB ,G (t )

)
qB ,G (t ) (4.34)

JJJ Bω̇ωωB (t )MB (t )−ωωωB (t )× JJJ BωωωB (t ) (4.35)

In the above equation JJJ B defines the normalized inertia tensor of the spacecraft. The earlier defined gimbal
lock orientation assures that the CoM does not move and thus the engines maintain constant in distance with
respect to it. The position of the engines relative to the CoM rT,B ∈ R3 is defined in the body frame and leads
to the propulsive moment expression:

M(t ) = rT,B ×TB (t ) (4.36)

Knowing this, the state and control constraints can be defined. The first convex constraints yields that the
mass of the vehicle shall remain above the dry mass to make sure fuel depletion does not occur:

mdry ≤ m(t ) (4.37)

The trajectory is restricted to have a downward facing glide cone such that the angle γg s ∈ [0°,90°). Defined
as convex constraints, the following relations are obtained:

e1 · rG (t ) ≥ tanγg s
∥∥H T

23rG (t )
∥∥

2 (4.38)

H23 = [e2 e3] (4.39)

The orientation of the tilt angle of the vehicle relative to guidance frame is denoted as η(t) expressed in formal
format as:

cosη(t ) = e1 ·CG ,B (t )e1 = 1−2(q2
2 (t )+q2

3 (t )) (4.40)
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To avoid excessive tilt maneuvers during the powered descent sequence, a convex constraint is imposed in
R4 quaternion space:

cosηmax ≤ 1−2(q2
2 (t )+q2

3 (t )) (4.41)

The final convex constraint makes sure the angular rate of the vehicle is limited to a certain threshold value
such that:

‖ωωωB (t )‖2 ≤ωmax (4.42)

Problem 6: general 6DoF nonconvex terminal guidance problem

Cost Function:
max
t f ,Tc

m(t f ) or min
t f ,Tc

‖u(t )‖ subject to:

Dynamics:

ṙ(t ) = v(t )

v̇(t ) = 1

m(t )
C I /B (t )TB (t )+gI

ṁ(t ) =−αṁ

q̇̇q̇qB/I (t ) = ‖TB (t )‖ 1

2
Ω(ωωωB (t ))qqqB/I (t )

JJJ Bω̇ωωB (t ) = [rT,B×]TB (t )− [ωωωB (t )×]JJJ BωωωB (t )

State Constraints:

mdry ≤ m(t )

‖r(t )‖cosγg s ≤ n̂T r(t )

cos(θmax ≤ 1−2(q2
2 (t )+q2

3 (t ))

‖ωωωB (t )‖2 ≤ωmax

Control Constraints:

0 < ρ1 ≤ ‖Tc‖ ≤ ρ2

n̂T Fc (t ) ≥ ‖Fc (t )‖cosθ

0 < u(t ) ≤ 1

αmin <α(t ) ≤αmax

βmin <β(t ) ≤βmax

Boundary conditions:

As defined in Table 4.1.

Table 4.1: Initial and final conditions of the convexification 6 DoF guidance system

Initial condition Final condition
Mass mwet ≤ mdry

Position rG ,0 0
Velocity VG ,0 VG , f

Angular rate ωωωB ,0 0
Attitude free qB ,G , f

The boundary conditions imposed on the constraints are free to define in the sense that various combi-
nations are possible. For the Mars landing simulations this research adopted the model by Szmuk and Açık-
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meşe (2018) because both the initial and final conditions are in perfect accordance with the mission scenario
of MSL, as specified in Section 2.3. The initial conditions and final conditions are summarized in Table 4.1.
The problem description for the Mars (max

t f ,Tc
m(t f ) and Titan (min

t f ,Tc
‖u(t )‖) 6DoF landing is conferred below.

Notice that depending on the planetary body, the cost is function is defined. The propulsive forces are absent
on Titan, which indirectly implies that the mass remains constant over time. On the other hand, lift forces are
neglected for the Mars landing sequence. The quaternion and attitude dynamics holds for both sequences.
Problem 6 encompasses the nonconvex algorithm description in its full generality.

4.3. NAVIGATION
Accurate estimation of the state of the spacecraft through a navigation scheme forms a fundamental aspect of
planetary landing and is therefore indispensable during the EDL sequence. This is especially true for plane-
tary precision landing which requires near precise knowledge of state variables. During approach, navigation
systems can maintain reliance on Earth-based activity through the Deep Space Network because there is suf-
ficient time for the uplink of commands through relay telemetry. However, due to light-time delays discussed
in Section 4.1.3, this dependency is not an option anymore. The entire operation in which the spacecraft
needs to actively guide itself, from atmospheric entry to final landing must thus be fully autonomous (Yu
et al., 2017). This section discusses common EDL sensors and their applications and outlines the reasons for
assuming perfect state knowledge.

4.3.1. NAVIGATION SENSORS
The type of navigation sensors commonly applied for estimating state variables during planetary precision
landing are discussed in this section. Computing the trajectories discussed in the guidance section in real-
time requires external information from the surrounding environment. The two commonly used sensors for
the before-mentioned application are the inertial measurement unit (IMU) and the ground position system
(GPS). The combined working effect of convex optimization guidance and GPS navigation was proven by
SpaceX to be sufficient for achieving precision landing on Earth of the reusable first stage rockets. However, as
declared in Blackmore (2017), any planetary body other than the Earth is a GPS denied environment. Yu et al.
(2015) points out that traditional navigation methodologies are not sufficient to fulfill the need of precision
landing. Besides the IMU and GPS sensors, several other sensor techniques and instruments exists that aid
in navigation. Examples are LIDAR (Light Detection and Ranging) optical sensors for remote sensing and
more sophisticated technologies like Terrain Relative Navigation (TRN). The latter, being an integral part of
the Mars 2020 mission, has moderately been considered in this research. The guidance system takes into
consideration the pointing requirements to allow for sensor measurements. This section highlights several
navigation sensors and defines the reasons for assuming perfect state knowledge.

INERTIAL MEASUREMENT UNIT

Initially developed for rockets, the inertial measurement unit is a pragmatic device for navigation in gen-
eral. To measure ambient gravity induced acceleration, accelerometers are used and for angular velocity
measurements gyroscopes are incorporated. Furthermore, the IMU itself needs estimations of both position
and velocity from an alternative source to start state propagation. Increased error in this initial estimation
leads to decreased accuracy of propagation. From a theoretical perspective, measurements through IMUs
are perfectly self-sufficient in the sense that no additional information about the surroundings is needed.
However, a total of at least nine error sources makes theory different from practical applications. In fact,
measuring state with infinite precision is practically impossible. While modelling all error sources is favor-
able for manufactures, end users prefer more practical models to ease performance analysis. Commonly,
navigation design commences with the inclusion of three errors into the model: scale factors s, bias b and
misalignments m. Bias, misalignments and scale factors tend to have random walks, while the IMU system is
switched on. These random walks are expressed as a white noise normally distributed differential equation
and they are time dependent in nature. Randomly generating these errors, for example with a normal distri-
bution, is therefore not an appropriate representation of reality. Furthermore, navigation data of prior (NASA)
missions is not available in the public domain due to the International Traffic in Arms Regulations. Due to
these reasons this research assumed perfect state knowledge for both the nominal and error-integrated simu-
lations. Consequently, without the proper determination of state, the vehicle would loose orientation relative
to the nominal trajectory. For actual flight applications the navigation is thus a crucial entity.



60 4. GUIDANCE, NAVIGATION AND CONTROL

TERMINAL DESCENT SENSOR

Besides employing the classical IMU for state estimation, MSL required an order of magnitude improvement
in terms of sensing: the Terminal Descent Sensor (TDS). The need for developing this system followed mainly
from the sophisticated sky-crane landing system. The working concept is rather straight forward and an
accuracy in the order of 10−1 m/s in terms of velocity is typically achieved. For the range values are obtained
within a maximum error spectrum of 2%. To be able to guide and control the spacecraft in the Martian
atmosphere knowledge of three dimensional velocity and altitude are required. Similar to the IMU sensors
delineated in the preceding part, TDS sensors typical include sources of time-dependent errors such as biases
and scale factors. Likewise, navigation data of prior missions is not available. This yet leads to the forced
assumption of perfect state knowledge. Nonetheless, there are various different methodologies for testing
the robustness of the guidance system, as conferred in chapters ahead.

4.4. CONTROL
It was brought forth several times that the control system is an indispensable part of the closed GNC loop
was therefore included in the research. Likewise to the guidance system, the control system must be able
to act fully autonomously while persisting the control constraints. As identified by Lee and Mesbahi (2017),
planning the motion of a spacecraft bearing both translational and rotational motion in mind is quite a chal-
lenge. While quite sophisticated algorithms exits to tackle this problem, such as coupled dual quaternion
model predictive control (Lee and Mesbahi, 2017), this research merely focuses on closing the GNC loop. It
is important to denote hereby that the control authority to be defined does take into account that the control
is executed at an order of magnitude higher frequency with respect to the guidance system to account for
rotational dynamics too. To understand the governing principles of control theory, Section 4.4.1 starts with
outlining the general state space formulation often utilized for control applications. Based on the proposed
guidance schemes for terminal descent, the relevant PID control design strategy is outlined.

4.4.1. STATE SPACE FORMULATION
The state space representation arranges the dynamics of a system in a set of coupled first-order differential
equations in the time domain. It is a widely used method for characterizing both single- and multi-variable
systems because of the constitutional synergy insight it provides (Whalley, 1991). The representation format
allows for efficient information structuring, prediction of responses and stability analyses. The paper also
describes how state space formulations maximize accuracy of computational arithmetic and increases pro-
gramming efficiency significantly. Modern control theory has adapted this format for problem definition and
because of its inherent powerful structure it has become the most convenient way to represent equations of
motion. While alternate state space forms do exits, this research sticks to the definition by Rowell (2002), such
that the general formulation of the EoM in matrix form is notated as:

ẋ = Ax+Bu (4.43)

In this so-called dynamics equation, x is defined as the state vector including all relevant state variables while
u is the control input vector. These vectors have dimensions of n× 1 and m ×1, respectively. The state coef-
ficient matrix A is of size n × x and control coefficient matrix B of a n ×m size. To complete the state space
representation, an output equation is needed:

y = Cx+Du (4.44)

In this equation y, with size k × 1, is defined as the output vector. From that it follows that transmission
matrices C and D (typically D = 0) have dimensions k×n and k×m, respectively. Depending on the nature of
the problem and the available control authorities, state and control variables can be defined. The dynamics
of a system points out a set of minimum state variables to fully characterize the response of that system
for a given input set. Often, the state of any system is determined for physical applications and is directly
correlated with the independent energy storage in that system (Nise, 2011). This may be formulated in an
explicit mathematical description:

Prediction of the state of the system and its output for all t > t0 requires a definition of the minimum set
of variables xi (t ) for i = 1, ..., n, and intelligence regarding the variables at an initial designated time t0.

The order of the system is hence determined by the dimension of n, whose magnitude depend on the cohort
state variables. It is important to denote that the above derivation is restricted to systems that are linear and
time-invariant. The block diagram representation of the total state space model is presented in Fig. 4.7.
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Figure 4.7: State space dynamics in block diagram format (Nise, 2011).

4.4.2. CONTROL DESIGN STRATEGIES
Within the given range in which the physical variables are allowed to vary, it is the task of the control system
to provide stability and robust performance. The use of feedback control systems has several advantages.
Amongst them, the reduction of phenomena such as noise and disturbance and the increased improvement
of tracing command signals (Dahleh et al., 2011). Furthermore, the effects of uncertainties in the dynamics
are significantly decreased. Any mathematical model utilized to captivate a motion problem is practically
never perfect. Therefore, to maintain closed-loop stability, utilizing a sufficiently robust controller is imper-
ative. The start of this part of the control section focuses on feedback control, after which two often utilized
control design strategies are outlined: the PID and LQR control methods.

FEEDBACK CONTROL

To aid the discussion on feedback control, a graphic overview is depicted Fig. 4.8. In this schematized situ-
ation the plant represents the system to be controlled which, for the specific application at hand, is the EDL
spacecraft. It can be fairly stated that controller is driven by errors and through these inaccuracies inputs are
granted to the system. To formulate the control laws, the defined state space format proofs to be convenient.

Through the feedback loop the system becomes a closed loop with the following control law:

u =−Kx (4.45)

Combining Eq. (4.43) with the time liberated feedback gain K in Eq. (4.45) yields the following equation:

ẋ = (A−BK)x (4.46)

Assessment of the eigenvalues and complementary eigenmotion may be obtained through the characteristic
equation of Eq. (4.46):

det |A−BK−λI| = 0 (4.47)

Variation of this gain matrix allows for altering the eigenvalues of the system. It is important to denote how-
ever that controllability does not depend only on the gain. To be controllable the following mathematical
controllability condition, that depends on matrices A and B must hold (Kuo, 1987):

Figure 4.8: Arbitrary plant in a closed-loop feedback control system (Mooij, 2017).
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For a given state vector x(t ) to be controllable at time t = t0, there must exist a control input u(t ) that
is piece-wise continuous in nature and drives the system state to a final state t = t f within a finite time,
such that t f > t0. The system is completely state controllable if this conditions hold for every state x(t0).

A mathematical observability condition assesses whether the stability of the system is observable (Kuo, 1987):

For a given state vector x(t ) to be observable there must exist a time t f > t0 that is of finite nature and
given any control input u(t ) the knowledge of:

i) the control input u(t ) for t0 ≤ t < t f ,
ii) the four state space matrices A, B, C and D,
iii) the state output y for t0 ≤ t < t f ,

are adequate to determine x(t0). The system is completely observable if this conditions hold for every state
of the system during a finite time t f .

To inspect the controllability and observability of a system, it is both necessary and sufficient that:[
B AB A2B · · · An−1B

]
(4.48)[

CT AT CT (AT )2CT · · · (AT )n−1CT ]
(4.49)

have the same dimensions as the vector of state and thus have rank n. Influencing of particular eigenmotions
is only possible if these are part, as stated in Mooij (2017), of the controllable and observable state space. In a
similar fashion as the state feedback control, the control law for output feedback may be obtained:

u =−Ky =−K(Cx+Du) (4.50)

The assumption that D = 0 is widely used, decreasing the difficulty of the application of the control law.
Combing this assumption with Eq. (4.43) and the above equation yields:

ẋ = (A−BKC)x (4.51)

Analogously, the characteristic equation for this equation follows from:

det |A−BKC−λI| = 0 (4.52)

Through the astute selection of the gain the eigenmotion of the closed-loop system can be managed. In Ogata
(2010) proposed methods for behaviour analyses include placement of poles or using Bode plots. A more

Figure 4.9: Analysis of the steady-state and transient response (Ogata, 2010).
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convenient and idiosyncratic methodology of control system analyses is by specifying the characteristics of
the transient-response to unit-step inputs as depicted in Fig. 4.9. This method is symbolized by its easy
implementation and rapid specification of peculiar symptoms:

1. Delay time td → time it takes the response to reach 50% of the final value.
2. Rise time tr → time it takes the response to rise from 10% to 90% for overdamped systems or 0% to

100% for underdamped systems, both of second order.
3. Peak time tp → time it takes the response to extend to the overshoot peak.
4. Maximum percent overshoot Mp → unity measured maximum peak overshoot of the response indica-

tive of the systems relative stability.
5. Settling time ts → time it takes the response to extend and withhold within a specified absolute per-

centage range, typically 2% or 5%.

PROPORTIONAL INTEGRAL DERIVATIVE CONTROL

A well-known and the most utilized feedback control tool is the Proportional Integral Derivative (PID) con-
troller. The working principle of this controller is to first calculate an error between the measured and desired
value and subsequently adjust the control input u as such that the miscue is minimized. In case either the
system at hand or the flight environment are not known to an accurate extend, the PID controller provides a
good starting point. Disadvantages are that optimal control and stability are not guaranteed. The combined
complete PID control law u(t ) is written as a function of the error signal e(t ) and the respective PID gains:

u(t ) = Kp e(t )+Ki

∫ t

0
e(τ)dτ+Kd

de(t )

d t
(4.53)

To understand the underlying working principle of the single-input single-output system the various gain
contributions are outlined:

1. Proportional gain Kp → in essence an amplifier in direct proportion to the error signal. Choosing the
gain too high leads to instability while a low gain value slows down the response.

2. Integral gain Ki → change of the output u(t ) in proportion to accumulated past errors. Commonly ef-
fective in reduction of steady-state residual errors but easily gives rise to overshoot. The latter problem
might be tackled by introducing a limit integrator that is only triggered for certain bandwidths of error.

3. Derivative gain Kd → proportional to the error change rate often used for overshoot magnitude reduc-
tion. The change rate and the transient response of the controller is however slowed down.

Based on the various properties, gain tuning is often necessary to find an optimal combination of the gains.
The influence of the three control gains on the response are captivated in Table 4.2. This table provides
a good starting points for control tuning. For more sophisticated analyses for gain tuning are given in for
example Kuo (1987), D’Souza (1988) and Ogata (2010). The built-in function of Matlab - Simulink allows for
automatic optimal control that meets specified design requirements. The control system toolbox provides the
advantages that optima are even found for plants that traditional methodologies are not able to handle quite
as well. The system is even capable of generating response plots similar to the one depicted in Fig. 4.9, earlier
discussed Bode plots and allows easier transfer of analyses in the time or frequency domain. Ultimately, this
allows for verification of design parameters as delay, rise and settling time, overshoot and margins of gains.
This marks the conclusion of the guidance, navigation and control chapter. The next chapter outlines the
mathematical principles of the convex optimization method.

Table 4.2: Operational conditions and critical requirements of the PID control system (Mooij, 2017).
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5
CONVEX OPTIMIZATION

In this chapter the mathematical principles of the convex optimization are conferred, distinguishing between
lossless and successive optimization guidance. The start of the chapter marks the general formulation of the
convex optimization problem. Subsequently, the necessary linearization process is charted, along with a sta-
bility assessment for control purposes. The original planetary landing lemmas are formulated for the Mars
powered descent guidance problem and are conferred in Sections 5.2 and 5.3, respectively. Coupled to these
two methodologies is the problem of solving for optimal time-of-flight. In the section on lossless convex-
ification the golden search algorithm is outlined, a powerful method for solving the matter of optimal fight
time. The successive counterpart is another powerful approach which solves for time within the optimization
framework, making t a convex optimization variable. Besides the original formulation, this chapter outlines
the expansion of the algorithm for the application of convex optimization to precision landing on Titan. This
entails an aerodynamic parafoil descent guidance problem in which the control authority is obtained through
the pull of the canopy. For details regarding the parafoil dynamics the reader is referred back to Section 3.6.
The current chapter is concluded with the expansion of the algorithm to allow for obstacle avoidance during
the landing sequence. This is achieved by applying a multi glide-slope constraint, relaxing the angle as the
space vehicle approaches the terminal location.

5.1. GENERAL FORMULATION
In this section the general formulation of the convex optimization problem is outlined. Included in the dis-
cussion is the reaching of optimal control for dynamical systems through the Pontryagin Maximum Principle.
The general formulation ends with a comparison between convex and nonconvex problems. A general opti-
mization problem mathematically defined with a vector x as the optimization variable reads:

minimize f0(x)

subject to fi (x) ≤ bi , i = 1, ...,m
(5.1)

In the above formulation f0 is the objective function and fi the constraint functions subject to constants bi .
For convex optimization problems both the objective as well as the constraint functions are convex such that
the following inequality is satisfied for all x, y ∈Rn and all α, β ∈R such that α+β = 1, α≥ 0, β≥ 0:

fi (αx +βy) ≤α fi (x)+β fi (y) (5.2)

Two well-known subclasses of convex optimization are the least-squares method and the linear program-
ming method. These methods are not regarded in this research because the former takes no constraints into
account while the latter assumes all constraint functions as linear. This is not useful for the problem at hand
that requires inequality constraints to be satisfied to ensure planetary precision landing. Solving the convex
optimization problem is not done through a predefined analytical formula as it does not exists. However, ef-
fective methods like the Interior-point approach are quite practical for producing full solutions. This method
is generally capable of solving a convex problem within a feasible iteration rate (Boyd and Vandenberghe,
2004) and its functioning foundation is discussed subsequently.
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INTERIOR-POINT METHOD

Consider the following convex optimization problem with includes inequality constraints such that:

minimize f0(x)

subject to fi (x) ≤ 0, i = 1, ...,m

Ax = b

(5.3)

It is a given that the functions f0,..., fm : Rn → R are convex in nature and continuously differentiable twice.
More so, A ∈ Rp×n , rank A = p < n and an optimal solution x? is assumed to exist with the optimal value
defined as f0(x?) = p?. In mathematical optimization, Karush-Kuhn-Tucker necessary conditions are intro-
duced to ensure dual optimal solutions λ? ∈Rm and ν? ∈Rp :

Ax? = b, fi (x?) ≤ 0, i = 1, ...,m

λ? ≥ 0

5 f0(x?)+
m∑

i=1
λ?i 5 fi (x?)+ ATν? = 0

λ?i fi (x?) = 0, i = 1, ...,m

(5.4)

The several options that exist within the Constrained Nonlinear Optimization Algorithms of Matlab to solve
this problem will be utilized in the research. The benefit of this tool is the possibility to include limitless
constraints to solve the guidance problem autonomously and with high fidelity (Szmuk and Açıkmeşe, 2018).

PONTRYAGIN MAXIMUM PRINCIPLE

Many textbooks alternate between employing either the maximum or minimum principle of Pontryagin. This
research adopts the maximum principle model in agreement with Açıkmeşe and Blackmore (2011). For the
Pontryagin Maximum Principle the Hamiltonian H and adjoint equations λ̇̇λ̇λ are defined:

H =−L[x(t ),u(t ), t ]+λλλ(t )T f [x(t ),u(t ), t ] (5.5)

λ̇̇λ̇λT =−∂H

∂x
= ∂L

∂x
−λλλT ∂ f

∂x
(5.6)

Optimal control u? must be appointed such that the Hamiltonian is maximized for u ∈U :

u? = arg[H(x,λλλ,u, t )] (5.7)

CONVEX v s NONCONVEX FUNCTIONS

To gain an understanding regarding the difference between convex and nonconvex functions, the matter is
briefly featured. As depicted in Fig. 5.1, a convex function includes one optimal solution. This solution is
promptly the global solution of the problem and else the non-existence of a global solution proofs itself. For
nonconvex problems on the other hand, several local optimal points exists and addressing which of these
is the global optimum is computationally burdensome. This proofs that the efficiency of convex optimiza-
tion is much higher. Furthermore, from a mathematical perspective, convex functions are easier to interpret.
Finally, it was stated before that lossless convexification of a nonconvex optimization problem does not de-
crease solution quality. To relax the problem this research adapts the lossless convexification process.

5.2. LOSSLESS CONVEXIFICATION
Pointedly, the optimization problem, initially adapted from Açıkmeşe and Ploen (2007), is formulated as a
second-order cone programming problem (SOCP). This class of convex programming has the ability to opti-
mally solve problems in polynomial time, implying that a converged global optimum is found within a deter-
ministic upper bound on the number of iterations in real-time. In Section 5.2.1 the lossless convexification
lemma is outlined for the Mars powered descent guidance based on a convex programming approach. Sub-
sequently, the algorithm description is refined based on enhancements and a discretization process of the
optimal control problem. In Sections 5.2.4 and 5.2.5, the algorithm is further expanded based on a minimum
landing error definition after (Blackmore et al., 2010) and (Açıkmeşe et al., 2013), and parafoil aerodynamic
incorporated guidance, respectively. The former also outlines the Golden Search Method for solving for opti-
mal time-of-flight. This also marks the bridge to the next section on successive convexification.
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Figure 5.1: Graphical example of a convex function (left) and nonconvex function (right).

5.2.1. CONVEX PROGRAMMING
Recall the original guidance problem definition from Section 4.2, specifically Problem 1. The cost function
was defined such that the control strain Tc was minimized over time as conferred in Eq. (5.8).

max
t f ,Tc

(t f ) = min
t f ,Tc

∫ t f

0
‖Tc (t )‖dt (5.8)

To deal with the non-convex nature of the problem emanating from the lower bound of the thrust control
constraint a slack variable Γ is introduced, which replaces ‖Tc (t )‖ in the cost function. Additionally, the mass
flow dynamics is now defined as

ṁ(t ) =−α‖Γ(t )‖ (5.9)

The control authority inequality is redefined accordingly

0 < ρ1 ≤ ‖Γ(t )‖ ≤ ρ2 (5.10)

After Açıkmeşe and Ploen (2007), the Hamiltonian of this redefined problem formulation is characterized as

H(x,m,Tc ,Γ,λ0,λ) =λ0Γ+λT
1 x2 +

λT
2 Tc

m
+λT

2 g −αλ3Γ (5.11)

Notice that x characterizes the state vector such that x = [xT
1 , xT

2 ], containing both position and velocity el-
ements. Furthermore the costate vector λ = [λ1,λ2,λ3]T ∈ IR7. Based on the earlier conferred Pontryagin’s
Maximum Principle, there must exist λ0 ≤ 0 and a continuous function λ in vector form, such that the follow-
ing three conditions must hold:

1. The adjoint function [λ0,λ(t )T ]T 6= 0∀t ∈ [0, t?f ] and

λ̇= ∂H

∂y
(y?, v?,λ0,λ) (5.12)

2. The Pointwise Maximum Principle

H(y?(t ), v?(t ),λ0,λ) ≥ H(y?(t ), v,λ0,λ) ∀v ∈Ψ (5.13)

3. Transversality condition withΨ≡ [y?
T

, v?
T

,λ0,λT )]T such that

[H(Ψ(0)),−λ(0)T ,−H(Ψ(t?f )),λ(t?f )T ]T is orthogonal to vector [0, y?(0)T , t?f , y?(t?f )T ] (5.14)

From the first condition the following conclusions are derived:

λ̇1 = 0 (5.15)

λ̇2 =λ1 (5.16)

λ̇3 = 1

m2λ
T
2 T?

c (5.17)
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Given the boundary conditions entrenched in Problem 1, the following conditions are defined

λ3(t?f ) = 0 (5.18)

H(Ψ(t?f )) = 0 (5.19)

Since λ2(t ) 6= 0, m?(t ) > 0 and the Hamiltonian H depends on Tc (in accordance with Eq. (5.11)), the point-
wise principle implies that ∥∥T?

c (t )
∥∥= Γ?(t ) ∀t ∈ [0, t?f ] (5.20)

ρ1 ≤
∥∥T?

c (t )
∥∥≤ ρ2 ∀t ∈ [0, t?f ] (5.21)

The former implies that the optimal solution for the convexified problem corresponds to the optimal solution
for the original nonconvex case. For the formal proof of the latter the reader is referred to Appendix B, Section
B.1 specifically. Fig. 5.2 depicts the convexification process within the control space. The shaded region in
the upper figure depicts the nonconvex constraint set, which through the slack variable is convexified to the
cone presented in the lower figure.

The remainder of this section is dedicated to the proof of the existence of an optimal solution within the
convex domain. Based on Section 5.1, consider the following general optimal control problem

minJ (y(·),u(·), t f ) =
∫ t f

0
g (y(t ),u(t ))d t

subject toẏ(t ) = f (y(t ), v(t ))
(5.22)

Functions f and g are of continuous nature on Y×V. For each t and y ∈R,Q+(t , y) must be convex, where

Q+(t ) = {
(z1, z2) : z1 ≥ g (y, v), z2 = f (y, v), v ∈U}

(5.23)

Q+(x,m) = (z1, z2, z3, z4), z1 and z4 ∈ IR, z2 and z3 ∈ IR3

≥ Γ, (z2, z3, z4) = (x2, g +Tc /m,−αΓ),ρ1 ≤ Γ≤ ρ2,‖Tc‖ ≤ Γ
(5.24)

Figure 5.2: Two-dimensional and three-dimensional representation of the convexified control space (Açıkmeşe and Ploen, 2007).
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Combining Q+(t ) and Q+(x,m) yields Q+(t , x,m). This implies that (z1, z2, z3, z4) ∈ Q+(t , x,m) is only true if
the following conditions are met

z1 ≥−z4/α

z4 =−αΓ
z3 = g +Tc /m

z2 = x2

−z4 ≥α‖Tc‖
α

∥∥(z2 − g )m
∥∥≤−z4

‖Tc‖ ≤ Γ
ρ1 ≤ Γ≤ ρ2

(5.25)

From the above equalities and inequalities the following conclusions are drawn:

• All equalities are linear
• All inequalities are linear or second-order cone constraints

This implies that Q+(t , x,m) is a convex set. This also implies that the powered descent guidance problem
has an optimal and feasible solution, which concludes the formal proof of the theorem.

5.2.2. ENHANCEMENTS
For the construction of the numerical algorithm that solves the powered descent problem, a change of vari-
able methodology is introduced for the purpose of efficiency. Notice that this entails that the optimal problem
is still formulated in the continuous domain. The discretization of the algorithm will follow later in this sec-
tion on lossless convexification. The method described in this section is based on Açıkmeşe and Ploen (2007)
and Açıkmeşe et al. (2008). First two change of variables are defined such that

σ≡ Γ

m
and u ≡ Tc

m
(5.26)

Consequently, the dynamic equations of Problem 1 are re-written to the following from

r̈ (t ) = u(t )+ g (5.27)

ṁ(t )

m(t )
=−ασ(t ) (5.28)

Re-arranging this differential equation yields

m(t ) = m0e−α
∫ t f

0 σ(τ)dτ (5.29)

The mass flow rate α> 0 and thus minimizing fuel consumption is equivalent to minimizing
∫ t f

0 σ(τ)dτ. The
constraints on the control space in terms of the new variables becomes

‖u(t )‖ ≤σ(t ) ∀t ∈ [0, t f ] (5.30)
ρ1

m(t )
≤σ(t ) ≤ ρ2

m(t )
∀t ∈ [0, t f ] (5.31)

What becomes evident from the above equations that the inequalities are within the convex control space.
However, the mass variable m causes these inequalities to have nonlinear nature, making them nonconvex
in nature. To resolve this matter the inequalities are to convexified. This process is initiates by defining

z ≡ ln(m) (5.32)

Such that mass differential equation conferred earlier becomes

ż(t ) =−ασ(t ) (5.33)

And the inequality now yields
ρ1e−z(t ) ≤σ(t ) ≤ ρ2e−z(t ) ∀t ∈ [0, t f ] (5.34)
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Within this formulation the first segment of the inequality is convex in nature, while the second segment is
not. By utilizing a Taylor series expansion of e−z this matter is resolved, for which the proof is provided in
Appendix B.2. The first part is approximated by means of a second-order cone, using three expansion terms,
such that

ρ1e−z0 [1− (z − z0)+ (z − z0)2

2
] ≤σ (5.35)

In which z0(t ) is a given computed through z0(t ) = ln(mwet −αρ2t ). The latter part approximated by means
of a linear method, using two expansion terms, such that

σ≤ ρ2e−z0 [1− (z − z0)] (5.36)

By defining µ1 ≡ ρ1e−z0 and µ2 ≡ ρ2e−z0, the total convexified inequality is ∀t ∈ [0, t f ] conferred as

µ1(t )[1− [z(t )− z0(t )+ [z(t )− z0(t )]2

2
] ≤σ(t ) ≤µ2(t )1− [z(t )− z0(t )] (5.37)

Additional constraints are posed on the mass of the spacecraft to ensure the physical limits are not violated
throughout the landing sequence. These are enforced through

ln(mwet −αρ2t ) ≤ z(t ) ≤ ln(mwet −αρ1t ) (5.38)

Summarized, the convexified optimal control powered descent guidance problem is provided as

Problem 7: Convexified powered descent guidance problem

Cost Function:

min
t f ,u(·),σ(·)

∫ t f

0
σ(t )d t subject to:

Dynamics:

ṙ(t ) = u(t )+ g

ż(t ) =−ασ(t )

State Constraints:

z0(t ) ≤ z(t ) ≤ ln(mwet −αρ1t )

Control Constraints:

‖u(t )‖ ≤σ(t )

µ1(t )[1− [z(t )− z0(t )+ [z(t )− z0(t )]2

2
] ≤σ(t ) ≤µ2(t )1− [z(t )− z0(t )]

Boundary Conditions:

z0(t ) = ln(mwet −αρ2t ), µ1(t ) = ρ1e−z0(t ), µ2(t ) = ρ2e−z0(t )

z(0) = ln(mwet), r(0) = r0, ṙ(0) = ṙ0, r(t f ) = ṙ(t f ) = 0

5.2.3. DISCRETIZATION
The next and final step within the lossless convexification process is the discretization of the optimal con-
trol problem. A more comprehensive outline has been included in Appendix B.3. The discretization process
transfers the problem from the infinite dimensional to the finite dimensional time domain with equal inter-
vals between the so-called temporal nodes, given as

tk = k∆t , k = 0, ..., N (5.39)
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Some conservative physical bounds can de derived directly from the dynamics. When defining the time
bound as

tmin ≤ t f ≤ tmax (5.40)

The limitations of fuel and thrust levels impose the following bounds

tmin = (mwet −mfuel)‖ṙ (0)‖
ρ2

and tmax = mfuel

αρ1
(5.41)

For the discretized scheme this implies bounds on N such that

Nmin ≤ N ≤ Nmax (5.42)

which leads to the rounded integer bounds computed through

Nmin = round(
tmin

∆t
+1) and Nmax = round(

tmax

∆t
+1) (5.43)

The discretization has a piece-wise linear control input such that

u(t ) = uk + (uk+1 −uk )τ (5.44)

σ(t ) =σk + (σk+1 −σk )τ (5.45)

in which τ is computed through

τ= t − tk

∆t
∀t ∈ [tk , tk+1) (5.46)

This discretization scheme results in a finite dimension second-order cone program within a specified time
t f . The total problem definition is presented below

Problem 8: Discretized and convexified powered descent guidance problem

Cost Function:
min

u0,...,uN ,σ0,...σN
− zN ∀k = 0, ..., N subject to:

Dynamics:

rk+1 = rk +
∆t

2
(ṙk + ṙk+1)+ ∆t 2

12
(uk+1 −uk )

ṙk+1 = ṙk +
∆t

2
(uk +uk+1)+ g∆t

zk+1 = zk −
α∆t

2
(σk +σk+1)

State Constraints:

z0,k ≤ zk ≤ ln(mwet −αρ1t )

Control Constraints:

‖uk‖ ≤σk

µ1,k [1− [zk − z0,k +
[zk − z0,k ]2

2
] ≤σk ≤µ2,k 1− [zk − z0,k ]

Boundary Conditions:

z0(t ) = ln(mwet −αρ2t ), µ1(t ) = ρ1e−z0(t ), µ2(t ) = ρ2e−z0(t )

z(0) = ln(mwet), r(0) = r0, ṙ(0) = ṙ0, r(t f ) = ṙ(t f ) = 0



72 5. CONVEX OPTIMIZATION

Figure 5.3: Half-space orientation of the relaxed pointing constraint (Açıkmeşe et al., 2013).

POINTING CONSTRAINT RELAXATION

The soft landing problem belongs to the class of nonlinear optimal control, which in is formally extended
to hold for the constraint of pointing thrust. Based on the prior established relaxed problem the following
convex constraints are defined

1. Thrust upper bound: ‖Tc (t )‖ ≤ Γ(t )

2. Slack variable bounds: ρ1 ≤ Γ(t ) ≤ ρ2

3. Pointing constraint: n̂Tc (t ) ≥ Γ(t )cosθ

Within the Tc −Γ space, the relaxed pointing constraint forms a half-space of values of thrust, denoted by
(n̂,−cosθ). In Fig. 5.3 the half-space constraint is depicted for several θ values. It also depicts that the re-
laxed set of the pointing constraint is convex in nature. In the next section the algorithm is formulated as a
minimum landing error problem, with a coupled algorithm to solve for optimal time.

5.2.4. MINIMUM LANDING ERROR AND OPTIMAL FLIGHT-TIME
In this section the convexified algorithm for guaranteeing a minimum landing error within the landing sce-
nario is established. The discussion in this segment of the section is associated to the line search method for
finding the optimal time-of-flight, defined as the golden search technique. For the nonconvex counterpart of
the powered descent problem definition the reader is referred to Section 4.2.2. The main idea behind the min-
imum landing error algorithm is to first that the distance between the predefined target and the physically
feasible landing site is minimized. For this purpose the following cost function is defined

min
t f ,Tc (·),Γ(·)

∥∥r(t f )
∥∥ (5.47)

It is denoted that the final result of the minimum landing error is a certain distance to target D . This algo-
rithm hence first guarantees the feasibility of the computed trajectory. Subsequently, based on the computed
trajectory the minimum fuel guidance problem, discussed in the previous section, is solved. Instead of re-
stricting the terminal position at zero, the constrained is relaxed to be∥∥r(t f )

∥∥≤ D (5.48)
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Solving the minimum landing error problem requires three important steps. The first two are the change of
variables process and the time discretization, discussed in Sections 5.2.2 and 5.39, respectively. Without re-
peating the derivation outlined in these previous sections, the entire algorithm outline is provided

Problem 9: Discretized and convexified minimum landing error problem

Cost Function:
min

t f ,Tc (·),Γ(·)
∥∥r(t f )

∥∥ subject to:

Dynamics:

rk+1 = rk +
∆t

2
(ṙk + ṙk+1)+ ∆t 2

12
(uk+1 −uk )

ṙk+1 = ṙk +
∆t

2
(uk +uk+1)+ g∆t

zk+1 = zk −
α∆t

2
(σk +σk+1)

State Constraints:

z0,k ≤ zk ≤ ln(mwet −αρ1t )

Control Constraints:

‖uk‖ ≤σk

µ1,k [1− [zk − z0,k +
[zk − z0,k ]2

2
] ≤σk ≤µ2,k 1− [zk − z0,k ]

Boundary Conditions:

z0(t ) = ln(mwet −αρ2t ), µ1(t ) = ρ1e−z0(t ), µ2(t ) = ρ2e−z0(t )

z(0) = ln(mwet), r(0) = r0, ṙ(0) = ṙ0, r(t f ) = ṙ(t f ) = 0

GOLDEN SEARCH METHOD

The third and last step required is a line search method to obtain the optimal time-of-flight t f , a technique
on which the remainder of this section focuses. The technique makes sure that the interval Nmin and Nmax is
shortened within each iteration by a ratio known as the golden ratio. The powerful technique is possible as
it is known beforehand within which domain the optimal solution can be found. The golden search method,
also referred to as the bisection method, is rather straightforward. As depicted in Fig. 5.4, two points are
picked within a certain pre-defined interval [a,b]. For the landing problem this interval corresponds to the
time-of-flight domain. For these points the algorithm is solved, which in general terms leads to

f (M−) and f (M+) (5.49)

As can be deduced from the figure, f (M−) and f (M+) yield

f (M−) = f (
a +b

2
− ε

2
) and f (M+) = f (

a +b

2
+ ε

2
) (5.50)

Notice that this means that the algorithm needs to be computed twice and the outcome of interest, which in
this case is the fuel mass, is compared with one another. Two possible scenario’s emerge:

1. f (M−) > f (M+)

2. f (M−) < f (M+)
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Figure 5.4: Golden search method with equal intervals 1

Scenario 1 leads to the conclusion that the optimal solution lays on interval [M−,b], while scenario 2 leads
to a solution on interval [a, M−]. So far in the discussion the test points M− and M+ are chosen arbitrarily.
These need to be chosen wisely as they determine the computation efficiency of the algorithm. A proven
way to save time of computation is basing these points on the special properties of the golden ratio φ, which
according to the definition equals:

φ= 1+p
5

2
(5.51)

More specifically, the computation time is decreased through the relation

1

φ2 = 1− 1

φ
(5.52)

Based here-upon the starting points M− and M+ are defined such that

M− = b − b −a

φ
and M+ = a + b −a

φ
(5.53)

This computation is repeated till convergence within a certain pre-defined threshold value is obtained.

5.2.5. PARAFOIL CONVEX GUIDANCE
With the formal proof and mathematical principles being outlined in the previous sections, this segment
of the chapter focuses on the extension of the algorithm towards the compatibility for landing a parafoil.
Distinct from powered descent guidance, the control authority is now provided through the electric powered
pull of the landing canopy. The associated dynamics has been captivated in Section 3.6. The algorithm has
been formulated as a minimum control effort problem such that the control varies between

umin ≤ u(t ) ≤ umax (5.54)

Since the control effort u(t ) is a normalized entity over time, it is known beforehand that the maximum value
umax = 1. Nonetheless, one cannot say per definition that the minimum value umin = 0, as this would require
a scenario with no presence of active aerodynamic forces at all. Given the mission scenario, it is excluded
to define this beforehand. This is especially true as the parafoil will require high angle-of-attack profile to
counter the gravitational pull of planetary body and the emerging wind gusts. Therefore, similar to the pow-
ered descent cases delineated earlier in this chapter, the parafoil guidance problem nonconvex in nature.
Distinct from the powered descent case, the cost function to be minimized is now defined as

min
t

‖u(t )‖ (5.55)

1After http://mathforcollege.com/nm/mws/gen/09opt/mws_gen_opt_txt_goldensearch.pdf

http://mathforcollege.com/nm/mws/gen/09opt/mws_gen_opt_txt_goldensearch.pdf
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Likewise, introducing a slack variable resolves the issue of nonconvex optimal control, such that

umin ≤ Γu ≤ umax (5.56)

Even tough the mass of a parafoil is constant over time, apparent forces cause disturbances within this as-
sumption, making mass yet a function of time. Before continuing the discussion on the guidance problem,
the definition and mathematical principles of apparent masses and inertias are outlined. Notice that no full
derivations are provided. For that the reader is referred to the extensive paper on parafoil apparent physics
by Lissaman and Brown (1993). Any body moving within a fluid causes that particular fluid to be set into
motion which generates a field of pressure about the body. This field is what is known as apparent mass pres-
sure, a ratio between the mass of the vehicle and the shifted mass of air. For an aircraft this phenomena is
often neglected, however, for a parafoil it heavily influences the ram-air dynamics characteristics. This ratio
is approximated through

Mr = m

ρS2/3
(5.57)

in which S is the vehicle surface reference area and ρ is the density computed using the following relation
obtained from Quadrelli et al. (2019), known as the Yelle model

ρ = 5.43e
−0.512

1000 h (5.58)

Notice that the density is a function of altitude, which is a function of time. A ratio Mr in the order of 0.8
is typical for Earth-like environments, while a parafoil within the Titan environment typically has values of
7. In Figs. 5.5 and 5.6 a geometric visualization is provided of an inflated canopy with apparent masses and
inertias. After (Lissaman and Brown, 1993), the representation is defined by a platform of rectangular shape
with span b and chord c. The airfoil is assumed to have thickness t , and the arch of the canopy is defined
by dimension a. It is noted that the actual shape of the parafoil can be modelled using sophisticated using
Computational Fluid Dynamics methods. This is however beyond the scope of both the paper and this thesis.
The reason for that is the fact that the adapted method already provides useful accuracy for apparent mass
modelling. Keep in mind that the computed mass and inertia are not the real dynamic fluid properties but
a representation of the transported energy due acceleration, causing additional work which increases the
velocity Kowaleczko (2014). The tensors of the apparent mass and inertia are defined as

M f =
A 0 0

0 B 0
0 0 C

 and I f =
I A 0 0

0 IB 0
0 0 IC

 (5.59)

The individual components of these governing equations are computed by means of the two set of equations
given in Eq. (5.60) and (5.61). In these equations AR is the aspect ratio, b the wingspan of the parafoil, c
the parafoil chord, h the parafoil height and t its thickness. Furthermore, the equations are related through

Figure 5.5: Depiction of the apparent mass due to a
parafoil in an aerodynamic environment (Lissaman
and Brown, 1993).

Figure 5.6: Depiction of the apparent inertia due to
a parafoil in an aerodynamic environment (Lissaman
and Brown, 1993).
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AR = b/c, t? = t/c and a? = a/b, such that the following relations are established

A = 0.667ρ(1+ 8

3
a2
?)t 2b

B = 0.267ρ(1+2
a2
?

t 2
?

AR(1− t 2
?)t 2c

C = 0.785ρ
√

1+2+a?(1− t?)
AR

1+ AR
c2b

(5.60)

I A = 0.055ρ
AR

1+ AR
c2b3

IB = 0.0308ρ
AR

1+ AR
[1+ π

6
(1+ AR)ARa2

?t 2
?]c4b

IC = 0.0555ρ(1+8a2
?)t 2b3

(5.61)

For a detailed outline of the coefficients and factors to model the influence of apparent mass and inertia is
provided by Kowaleczko (2014). This includes a contribution analysis, with the conclusion that the appar-
ent mass in z-direction is the greatest contributor. Specifically, the same order of magnitude as the entire
canopy. This means the contribution is still significantly lower in order of magnitude compared to the pay-
load, nonetheless, significant enough to be considered. Furthermore, the apparent inertia is largest in y-
direction for short suspension lines (about 5 m), and for long suspension lines (about 10 m) in x-direction.
The contribution of in the apparent inertia is likewise in the same order of magnitude as the canopy.

Now that the matter on varying mass has been outlined, the discussion on the nonconvex lower bound
of the pull control is continued. Just like with the lower bound on the thrust magnitude due to the fact that
the propulsion system cannot be turned off once ignited, the parafoil cannot be guaranteed to have a zero
control magnitude. It is important to denote however that this physically is possible. To resolve to issue and
make sure the computation encompasses a full landing scenario, mass is considered to be time dependent
and thus the differential equation in Eq. (5.32) likewise holds. Through a process of changing variables and
the introduction of the slack variable, the minimum control effort is formulated. From the time history of the
control effort, the total required power can be derived, a discussion beyond the scope of this thesis.

5.2.6. ADVANTAGES AND DISADVANTAGES

To conclude the chapter on lossless convexification, some the advantages and disadvantages coupled to this
method are conferred. The discussion in this section also marks the bridge to the next section on successive
convexification. The main advantages of the lossless convexification method are:

• No loss of generality (i.e., guarantee of an optimal solution). This is especially the case when formulat-
ing the descent algorithm as a minimum landing error problem.

• The soft landing is established, meaning that zero position error and zero touchdown velocity are both
achieved in case a feasible trajectory exists. If not, the minimum landing error guidance algorithm
ensures landing as close as possible to the predefined target.

• The lossless convexification guidance algorithm has been verified and validated extensively. The same
working principle of the algorithm is applied during the booster recovery of the Falcon 9 (precision
landing sequence). Furthermore, as described by Açıkmeşe et al. (2014), the algorithm has been applied
during the MSL mission as part of the fly-away algorithm during terminal descent. Conclusively, as de-
scribed in Chapter 4, the G-FOLD algorithm has been tested extensively by JPL and Masten Aerospace.

• The algorithm is executable in real-time when programmed in high level languages (e.g. C++), although
this is beyond the scope of this research, where a Matlab implementation will be used. Table 5.1 de-
picts the validated CPU time for the earlier conferred G-FOLD algorithm. The algorithm is theoretically
capable to run 8-10 SOCP iterations for each trajectory in a matter of 10 ms in C.

While the above mentioned points are all valid, there some minor downsides to the lossless convexifica-
tion method. These disadvantages are summarized below:

• The golden search method is needed to solve for the optimal time-of-flight problem. The disadvantage
of the golden search method is that its properties do not guarantee theoretical convergence towards an
optimal solution.
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Table 5.1: Preparing for interplanetary precision landing, on-board application feasibility after (Açıkmeşe, 2017).

Monte-Carlo Analysis Flight Implementation
Method NLP-based Generic IPM for SOCP in M Custom IPM for SOCP in C
CPU time (ms) on a laptop 20000 3000 10
Reliability <80% >99% >99%

• The non-linear nature of the equations of motion make it difficult to captivate the full dynamics within
the algorithm. The applied change of variables is possible when considering 3DoF dynamics, but for
the highly nonlinear 6DoF dynamics another methodology needs to be applied.

To ensure that finding the optimal time problem is resolved, as well as the handling of the non-linear
6DoF dynamics, the newest methodology coupled to this algorithm has been exploited. While it works on the
same principle as the lossless convexification method, the successive method approaches the problem in a
slightly different manner. This method guarantees convergence towards an optimal solution within several
iterations. For that reason the method has also been adapted in this research and it the main mathematical
principles are explored in the next section.

5.3. SUCCESSIVE CONVEXIFICATION
The discussion in the previous section on generating a reference trajectory for the powered and parafoil de-
scent phase assumed a 3 DoF analysis. In this section the successive convexification method it outlined,
which in an extension of the previous discussion. The discussion is initiated with an outline on the lineariza-
tion and discretization process. Following up, the trust regions and virtual control parameter are discussed.
Additionally, the final version of the rigid body 6DoF terminal guidance formulation in discrete time is pre-
sented, which marks the end of the section on successive convexification.

5.3.1. LINEARIZATION AND DISCRETIZATION
This section initiates with outlining general linearization theory after which this is directly applied to the fo-
cus system of this research, namely, the six-degree-of freedom successive convexification powered descent
guidance problem. Such linearizations, as shown in the general formulation, are often conducted using Tay-
lor series approximations. Through the linearization operation it becomes possible to investigate the charac-
teristic open-loop behaviour and natural stability of the spacecraft.

MATHEMATICAL FORMULATION OF LINEARIZATION

From a pure mathematical perspective, linearization is defined as linearly approximating a given function at
a given point. These mathematical techniques are applied to assess the local stability of nonlinear differen-
tial equations or dynamical systems that are discrete. The most convenient way of doing this is by utilizing
the complex conjugate pairs eigenvalues of the Jacobian matrix at a certain point of equilibrium. Positive
eigenvalues are indicative of unstable equilibrium while negative eigenvalues are, as can be guessed, stable.
Eigenvalues mixed in sign gives rise to the possibility for a saddle point to exist. For the approximations of
nonlinear systems, i.e., linearization, Taylor series are the widely used mathematical techniques and those
are also adapted in this research. Taylor series for a given infinitely differentiable function f (x) near a given
number a is denoted as: ∞∑

n=0

f (n)(a)

n!
(x −a)n (5.62)

Commonly, the above equation is not often utilized because it is more convenient to approximate a given
function using a finite number of series. If a function is considered with a state of dimensions n and the
linearization is about x = x0, the linearized function reads:

y = f (x0)+ fx1 (x0)∆x1 + fx2 (x0)∆x2 + ...+ fxn (x0)∆xn (5.63)

= f (x0)+
n∑

i=1
fxi (x0)∆xi (5.64)

The result of the linearization using first order Taylor series expansion forms a set of coupled differential
equations in state space form:

∆ẋ = A∆x+B∆u (5.65)
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In this equation the matrices A and B define the system and input, respectively. These can be derived straight
from the nonlinear EoM:

A =


∂ f1
∂x1

· · · ∂ f1
∂xn

...
...

...
∂ fn
∂x1

· · · ∂ fn
∂xn

 and B =


∂ f1
∂u1

· · · ∂ f1
∂un

...
...

...
∂ fn
∂u1

· · · ∂ fn
∂un

 (5.66)

Notice that the functions fn represent the various governing equations of motion that are applied by the
guidance system to assure planetary precision landing through ruling dynamics. In the subsequent section
the linearization is applied to the 6 DoF EoMs for powered descent convex optimization guidance.

DESCENT GUIDANCE LINEARIZATION

In this section linearization theory is applied to the convex problem that has been defined in Section 4.2. The
discussion is initiated with defining the state vector x(t ) ∈R14 and control vector u(t ) ∈R3:

x(t ) = [
m(t ) rT

G (t ) VT
G (t ) qT

B ,G (t ) ωωωT
B (t )

]T
(5.67)

u(t ) = TB (t ) (5.68)

Recall the dynamics and kinematics defined in Eqs. (4.2), (4.31), (4.32) and (4.34), now expressed as a nonlin-
ear vector function f : R14 ×R3 →R14 based on state and control vector:

ẋ(t ) = f (x(t ),u(t )) = [
ṁ(t ) ṙT

G (t ) V̇T
G (t ) q̇T

B ,G (t ) ω̇̇ω̇ωT
B (t )

]T
(5.69)

The next-step is to define the above expression in terms of normalized time τ ∈ [0,1] applying a chain rule:

d

d t
x(t ) = dτ

d t

d

dτ
x(t ) (5.70)

To ease the notation, a dilation coefficient σ = d t
dτ is introduced such that the vector function may be written

in terms of normalized time and this dilation coefficient:

x′(t ) = d

dτ
x(τ) =σ f (x(τ),u(τ)) (5.71)

It is the right-hand side of this equation that is approximated using Taylor series of first order. For a certain
reference trajectory, the state, control and dilation coefficient are defined as x̂(τ), û(τ) and σ̂), respectively.
At a later stage of the discussion these quantities are construed. The complete linearized convex formulation
normalized with respect to time reads:

x′(t ) = A(τ)x(τ)+B(τ)u(τ)+∑
(τ)σ+z(τ) (5.72)

A(τ) = σ̂ · ∂
∂x

f (x,u)
∣∣

x̂(τ),û(τ) (5.73)

B(τ) = σ̂ · ∂
∂u

f (x,u)
∣∣

x̂(τ),û(τ) (5.74)∑
(τ) = f

(
x̂(τ), û(τ)

)
(5.75)

z(τ) =−A(τ)x̂(τ)−B(τ)û(τ) (5.76)

After linearizing the governing EoM, the derivation is proceeded by linearizing the lower bound constraint of
the trust as that is the only remaining nonconvex source. For this a new function g is defined such that g :
R3 →R :

g (u(τ)) = Tmin −||u(τ)| |2 ≤ 0 (5.77)

Applying a first order Taylor series to this time normalized constraint yields:

Tmin ≤ Bg (τ)u(τ) (5.78)

Bg (τ) = ûT (τ)

||û(τ)| |2
(5.79)
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DISCRETIZATION

The rest of this section discusses the discretization, again with respect to normalized time, of the optimization
problem that is needed parameterize the continuous time elements into finite dimensions. The following two
sets are defined:

K = {
0,1, ...,K −2,K −1

}
(5.80)

K̄ = {
0,1, ...,K −3,K −2

}
(5.81)

For the time an index k is introduced such that for all k ∈ K the normalized time follows from:

τk =
(

k

K −1

)
(5.82)

A hold of first-order is assumed over all time τ ∈ [τk ,τk+1] elements for the preservation of feasibility, such
that for all k ∈ K̄ the following control law holds:

u(τ) =
(
τk+1 −τ
τk+1 −τk

)
uk +

(
τ−τk

τk+1 −τk

)
uk+1 (5.83)

u(τ) =αk (τ)uk +βk (τ)uk (5.84)

For the propagation of the state xk = x(τk ) to xk+1 = x(τk+1) a state transition matrix is introduced that is
governed through the following differential equation for all k ∈ K̄ :

d

dτ
ΦΦΦA(τ,τk ) = A(τ)ΦΦΦA(τ,τk ) with ΦΦΦA(τk ,τk ) = I (5.85)

The complete set of governing discrete in time dynamic equations relating xk to xk+1 for all k ∈ K̄ is finally
presented:

xk+1 = Āk xk + B̄k uk + C̄k uk+1 +
∑̄

kσ+ z̄k (5.86)

Āk =ΦA(τk+1,τk ) (5.87)

B̄k =
∫ τk+1

τk

ΦA(τk+1,ξ)B(ξ)αk (ξ)dξ (5.88)

C̄k =
∫ τk+1

τk

ΦA(τk+1,ξ)B(ξ)βk (ξ)dξ (5.89)

∑̄
k =

∫ τk+1

τk

ΦA(τk+1,ξ)
∑

(ξ)dξ (5.90)

z̄k =
∫ τk+1

τk

ΦA(τk+1,ξ)z(ξ)dξ (5.91)

With is discrete format of governing dynamic equations the discussion on linearization is enclosed.

5.3.2. CONTROL REGIONS AND VIRTUAL CONTROL
The main working principle of the successive convexification method is to solve a sequence of relaxed convex
problems in an iterative manner, with i denoting the i th iteration. For this methodology to work properly, the
control regions of must maintain feasible and bounded throughout the landing sequence. This entails that
the cost function is to be augmented to mitigate the risk of unbound solutions. To start with, the following
parameters are defined

δxi
k = xi

k −xi−1
k , ∀k ∈K (5.92)

δui
k = ui

k −ui−1
k , ∀k ∈K (5.93)

δσi =σi −σi−1 (5.94)

Subsequently, defining∆∆∆i ∈RK+ and ∆i
σ ∈R+, the constraints are entrenched

δxi
k ·δxi

k +δui
k ·δui

k ≤ ek ·∆∆∆i , ∀k ∈K (5.95)

δσi ·δσi ≤∆i
σ (5.96)
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To deal properly with the additional constraints, the cost function is augmented through the addition of
weight terms w i

∆ ∈R++ and w∆σ ∈R++, such that

c i
∆ = w i

∆

∥∥∥∆∆∆i
∥∥∥

2
+w∆σ

∥∥∥∆i
σ

∥∥∥
1

(5.97)

Problem 10: Successive convexification problem definition in discrete time:

Cost Function:

min
σi ,ui

k

σi +wv

∥∥∥ν̄ννi
∥∥∥

1
+w i

∆

∥∥∥∆̄∆∆i
∥∥∥

2
+w∆σ ‖∆σ‖1 subject to:

Dynamics:

xi
k+1 = Āi

k x̄i
k + B̄i

k ūi
k + C̄i

k ūi
k+1 +

∑̄i

kσ
i + z̄i

k + ν̄̄ν̄νi
k

State Constraints:

mdry ≤ mi
k

tanγg s

∥∥∥H T
23ri

G ,k (t )
∥∥∥

2
≤ e1 · ri

G ,k

cosηmax ≤ 1−2
∥∥∥Hq qi

B ,G ,k

∥∥∥2

2

Hq =
[

0 0 1 0
0 0 0 1

]
∥∥∥ωωωi

B ,k

∥∥∥
2
≤ωmax

Control Constraints:

Fmin ≤ Bg (τk )ui
k∥∥∥ui

k

∥∥∥
2
≤ Fmax

cosδmax

∥∥∥ui
k

∥∥∥
2
≤ e1 ·uk

Boundary Conditions:

mi
0 = mwet

ri
G ,0 = rG ,i and ri

G ,K = 0

Vi
G ,0 = VG ,i and Vi

G ,K = VG , f

qi
B ,G ,K = qB ,G , f

ωωωi
B ,0 =ωωωB ,i and ωωωi

B ,K = 0

e2 ·ui
K = e3 ·ui

K = 0

Trust Regions:

δxi
k ·δxi

k +δui
k ·δui

k ≤∆i
k∥∥∥δσi

∥∥∥
1
≤∆i

σ

During the process of convergence it can be encountered that the linearization is not feasible, known as artifi-
cial infeasibility. To cope with the requirements of on-board applications, a virtual control parameter νi

k ∈R14

is introduced. This parameter is integrated into dynamics and its assigned a weigh term of its own. In case of
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heavy infeasibility, the control parameter acts to prevent the algorithm from losing convergence. The weight
of parameter is adjusted in accordance with the solution quality of each iteration till a certain desired thresh-
old is achieved. The general rigid-body six-degree-of-freedom terminal guidance formulation is presented
in Problem 10. This includes all relevant forces, which are established in accordance with the nature of the
descent. Notice that formulation is successively convexified and conferred in discrete time.

5.4. MULTI-GLIDESLOPE FOR OBSTACLE AVOIDANCE GUIDANCE
In the last portion of this chapter the algorithm is extended for obstacle avoidance compatibility based on
multi-glideslope constraints. Specifically, when approaching the destination target, roughness of terrain
might raise the need for avoiding path obstacles detrimental to the mission. Examples of such are mountains
and hills for which a subsurface flight constraint or single glideslope constraint does not suffice, or would not
yield the most optimal solution. Determining the properties of this terrain, such as terrain altitude and slope,
would be based on sensor input data (e.g. TRN and HDA) or pre-loaded on-board maps. The discussion re-
garding the navigation aspect of this matter is beyond the scope of this research. This section focuses on the
mathematical principles of multiple glideslope constraint guidance, such that the mission is subdivided into
several segments, and subsequently optimized individually while ensuring mission safety. This is especially
necessary when landing in areas with high variation in elevation. Another mission scenario would be for the
spacecraft to have to land in a crater or in between mountains. The glide-slope constraint enforces that a spe-
cific optimal trajectory to the target is not too shallow nor goes below the surface. The glide-slope constraint
requires the spacecraft to remain within a cone as defined by the minimum slope angle. To cope with the
requirement of, e.g., TRN, the spacecraft orientation in terms of attitude is restrained. By enforcing the cone
shape restricted motion, the lander at higher altitudes for an elongated period, hence surface characteristics
can be observed for an certain extended period of time. As earlier conferred in Chapter 4, S and c are defined
to designate a cone with a vertex at r(t f ), leading to

S,
[

0 1 0
0 0 1

]
and c,

e1

tanγg s
γg s > 0 (5.98)

In this research two mission scenarios are considered in which the activation of this guidance system would
be necessary. Firstly, as depicted in the sample simulation of Fig. 5.7, a scenario might arise in which several
hills raise the need for segmenting the landing sequence into multiple phases, thereby enforcing different

Figure 5.7: Sample simulation of the multiple glideslope constraint for obstacle avoidance during planetary descent. Notice that the
trajectory in the figure is made to touch the extreme points exactly for visualization purposes, which in real-time would not be the case.
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tangent slopes based on hill altitude and slope. This guarantees mission safety while still adhering to the
mission constraints, optimal path planning and soft landing, and is enforced by

for i = 1 : N

γg sn [0,γg smax ] ∈R
r1 ≤ r3

tan(γn)

end

(5.99)

Notice that this loop can be segmented into multiple phases and repeated if necessary. In the example on
the previous page, a total of three phases have been adopted. The trajectory in the figure is made to touch
the extreme points exactly for visualization purposes, which in real-time would not be the case. In the results
section of this thesis the difference between the nominal optimal path and the augmented paths are outlined.

A second possible scenario might arise when a spacecraft needs to land at the rim of a large mountain or in
between a valley. A single and regular glideslope constraint would be too steep in such case, constraining the
trajectory excessively or yielding the optimal path infeasible. For such cases the path is yet again augmented
into differential steps. Distinct from the multiple multi-glide constraint, the obstacle avoidance guidance is
enforced in a slightly different manner. In the outline conferred below the principles are based on a double
phase scenario. For a mission profile requiring more phases, the algorithm can be adjusted accordingly. The
constraint on the first half of the temporal nodes yield

for i = 1 : N /2

αg sn [0,αg smax ] ∈R
βg sn [0,βg smax ] ∈R
r3 ≥αg sn r1 +βg sn

end

(5.100)

While for the second phase of the landing sequence (from N /2 : N ) the constraint is enforced in a same
fashion as outlined in Eq. (5.99). A sample simulation is provided in Fig. 5.8. Likewise, in the results chapter
(Section 7.4) of the thesis, a full analysis is provided compared to the nominal trajectory.

Figure 5.8: Sample simulation of the mountain avoidance guidance algorithm applied during planetary descent. Notice that the trajec-
tory in the figure is made to touch the extreme points exactly for visualization purposes, which in real-time would not be the case.
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SIMULATOR DESIGN AND VERIFICATION

Based on the concepts, theories and mathematical principles outlined in the preceding chapters, this part of
the thesis outlines the simulator design. In particular, this chapter starts (in Section 6.1) with the delineation
on the generated architecture and declares the order in which each individual operation is to be executed.
The design of the guidance, navigation and control systems is centered around the powered or parafoil de-
scent phase nominal trajectory. That is the stage in which utilization of the full spacecraft capability would
make it plausible for the vehicle to correct for accumulated dispersions and re-guide the spacecraft to pre-
cision. Notice that hardware is not part of the designed system nor the research, hence the outline of an
experimental simulator. To ensure the proper working of this algorithm simulator, a step-wise verification
process has been coupled to the research. Section 6.2 delineates the conducted unit tests and established the
correct functionality of the nominal algorithm. This shall also enhance future research at NASA/JPL and TU
Delft on the matter of precision landing on planetary bodies.

6.1. TOP-LEVEL ARCHITECTURE
To initiate the section on the top-level architecture of the simulator, a descriptive functionality overview is
provided. For the outline of the respective elements of the architecture, the reader is referred back to Section
4.1. MATLAB is the software in which the top level architecture is written, for both the Mars simulations as
well as for Titan. The main reasons for choosing this platform is the extensive of built-in convex optimization
solvers (CVX) and the proof of concepts of prior work that have conducted simulations using CVX. Further-
more, as this is a research thesis, real-time implementation of the algorithm is not necessary for proof of
concept. The concept of precision landing is established as a potential solution through Matlab simulations,
with a recommendation to transfer to for example C++ for on-board implementation. The code can be con-
verted to C++ when fast computations are needed, which would be the case for actual flight software. The
methods for numerical propagation of the states are outlined in Appendix C, while the detailed outline of the
algorithm files is provided in Appendix D. Please notice that these files are only available at Delft University
of Technology and NASA’s Jet Propulsion Laboratory / California Institute of Technology.

To follow up with the discussion in this section, Fig. 6.1 depicts the top-level architectural of the simulator
to be designed. The governing model is centered around the guidance of the powered descent phase while
the other systems (i.e., navigation and control) are integrated for closed-loop purposes. Notice, however, that
the navigation segment of the simulator assumes perfect state knowledge (for reasons conferred in Section
4.3). To concretize the integration strategy and appraise the working behavior of each of the individual GNC
model based blocks, the following strategy is followed in the process:

1. Design powered descent guidance (PDG) algorithm (nominal trajectory)
2. Perform point-mass PDG simulation
3. Design powered descent control system
4. Perform point-mass powered descent GNC simulation
5. Extend algorithm to parafoil descent guidance
6. Extend algorithm to obstacle avoidance guidance
7. Perform powered and parafoil descent GNC sensitivity analysis

83
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The verification to be discussed in the next section and the sensitivity analysis to be discussed in the subse-
quent chapter are directly coupled to this design outlined on the previous page. The descriptive outline of
the functionalities are conferred below.

• Guidance: Forming the core of the research and differentiated into two segments: powered (Mars) and
parafoil (Titan) guidance. The nominal trajectories are taking as reference path, while an active guid-
ance system makes sure the vehicle adheres to this optimal path by providing corrective manoeuvres
to the introduced error. Section 4.2 outlines the guidance laws in detail. A sample rate of 100 Hz is used
for simulating the trajectories.

• Control: A PD/PID controller is utilized to maintain the vehicle in-path, running at a control rate of 20
Hz. Control errors (for example, due wind) are induced to assess on-board re-optimization capabilities.
For the outline of the control laws, be referred to Section 4.4.

• Actuators: As described in more detail in Chapters 4 and 5, the Mars landing sequence utilizes thrusters
during the landing segment, while the Titan landing makes use of the pull of the parafoil canopy to
maneuver within the moon’s thick atmosphere. The actuator errors (such as misalignment of thrusters,
which is a realistic scenario), are introduced to test the robustness of the algorithm.

• Flight Dynamics & Environment: The dynamics are governed by the aerodynamic and thruster (i.e.,
propulsive) parameters. For a comprehensive of the governing forces, moments and equations, the
reader is referred to Chapter 3. In Appendix C the mathematical principles of integrators are delineated.

• Navigation: For reasons entrenched in Section 4.3, this research assumes perfect state knowledge.
• Mission Manager: The mission manager runs the landing simulation at a rate of 100 Hz while ensuring

the algorithm adheres to the governing laws.

The algorithm parameters are defined as the established boundary conditions within the problem for-
mulation. This include obstacle avoidance guidance, utilized to dodge hills and/or land near mountain rims.
The models of the two landing sequences considered are the MSL/Mars 2020 like vehicle for the Mars landing
and the parafoil model for Titan. The properties of both have been provided in the preceding chapters. As
the descent phase takes place at relatively low altitudes of the EDL, the gravity and density model are kept
simple. Changes of these two parameters are marginal at low altitudes. As part of the environmental model,
wind gusts play a significant role on both planetary bodies and their effect has been analyzed in this research.
All the above described elements together eventually define optimal trajectories for the space vehicle to fol-
low, thereby establishing precision landing data of various types. This data it utilized for generating graphs
that visualize the landing profile and provide in-depth understanding of the motion. In the next section the
algorithm coupled to this top-level architecture is verified based on the extensive available literature.

6.2. VERIFICATION
In this final section of the chapter a verification framework is entrenched as the proof that the designed prod-
uct complies with prior established requirements. The designed algorithm is directly compared to powered
descent guidance simulations of industry’s best practise in terms of precision landing. Landing on Mars has
been extensively researched and hence considerable literature resources are available for comparison. The
verification is based on point-mass simulations for lossless convexification. The verification process is seg-
mented into six system tests which also marks the outline of this section, and are charted beneath:

1. Verification I: Powered descent guidance for Mars landing utilizing the convex programming approach
based on Açıkmeşe and Ploen (2007) → Section 6.2.1.

2. Verification II: Golden search method for finding the optimal time-of-flight based on Açıkmeşe et al.
(2008) → Section 6.2.2.

3. Verification III: Minimum landing error guidance for Mars Landing based on Blackmore et al. (2010)
→ Section 6.2.3.

4. Verification IV: Non-convex thrust bound and constraint of pointing for powered descent based on
Carson et al. (2011) → Section 6.2.4.

5. Verification V: Soft landing optimal control based on Açıkmeşe et al. (2012) and Açıkmeşe et al. (2013)
→ Section 6.2.5.

6. Verification VI: Six-degree-of-freedom rigid body Mars powered descent guidance after Szmuk and
Açıkmeşe (2018) → Section 6.2.6.
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Table 6.1: Mars landing initial and terminal state conditions in accordance with Açıkmeşe and Ploen (2007) and Açıkmeşe et al. (2013).

The baseline starting conditions are presented in Table 6.1, which are altered slightly based on the specific
unit verification to the maintain the one-on-one verification. Naturally, these adjustment are conferred in
their respective sections. The section concludes by conferring results for six-degree-of-freedom simulations.
The latter simulation properly show the effect of inclusion of the glide-slope constraint within the simulation.

6.2.1. VERIFICATION I: POWERED DESCENT CONVEX PROGRAMMING

The verification results of the convex programming powered descent point-mass simulation are presented in
this section. The comparison inn this section focuses on the landing sequence with solely a no-subsurface
flight constraint (i.e., no other constraints). For the results of the plain sequence (no constraints at all) and
the enforced glide-slope constraint in correspondence with Açıkmeşe and Ploen (2007), the reader is referred
to Appendix E. The starting and terminal state conditions (position, velocity and mass as established in Table
6.1) are in accordance with relevant literature to allow for one-on-one verification. Furthermore, the maxi-
mum thrust T̄ = 3.1 kN, while the throttle level setting various between Tmi n = 0.3T̄ and Tmi n = 0.8T̄ . At last
a landing constraint n̂ f = [1 0 0] is imposed on the sequence such that the vehicle lands in the direction
opposite to the gravity vector. The results for the Mars in-plane maneuver are presented in Fig. 6.2.

From the time history of the position and velocity states it is deduced that the implemented algorithm
produces identical results. Overall the algorithm plots resemble the reference plots very closely. It becomes
evident from the position plot that when not enforcing the glide-slope constraint, the trajectory may reach
zero-altitude early on in the sequence. This phenomena causes a large portion of the flight segment (t ∈
(25,50) to be subterranean, which is not desired during powered descent. In Figs. E.1, E.2 and E.3 the ex-
amples are conferred of a plain maneuver (no constraints) and a maneuver with the glide-slope constraint
enforced, respectively. Section 6.2.3 also delineates the latter matter in more detail.

In accordance with denoted Lemmas in Chapter5 and Appendix B, the throttle history marks a max-min-
max profile, corresponding with profiles often encountered in optimal control literature. With regard to the
acceleration and net force time history there is one significant difference in the final value of the gravity di-
rection acceleration. This difference might be attributed to the fact that the respective literature seems to
enforce a final burn in that direction. This hypothesis has been tested by varying the final thrust direction
magnitude, which indeed generates different final throttle profiles. Another difference cause could be the
applied discretization scheme. The same type of discrepancy is observed for the final throttle setting. This
might also be the direct consequence of the small difference between the fuel consumption of the two algo-
rithms, 387.9 kg vs 389.4 kg as respectively denoted in Table 6.2. Nonetheless, both plots are overall rather
similar. This also becomes evident from the thrust pointing in the final figure. It is evident from the overall
plots that the control and state constraints are satisfied throughout the entire sequence.

Table 6.2: Outline of the optimal flight-time t f and fuel consumption mfuel results of the literature source Açıkmeşe and Ploen (2007)
and the designed algorithm. Notice that the left part of each table segment refers to the respective values obtained by Açıkmeşe and
Ploen (2007), while the right part denotes the figure and result of this thesis.

Parameters Paper Fig. E.1 Paper Fig. 6.2 Paper Fig. E.2 Paper Fig. 6.3
Optimal time (s) 72 73 75 75 81 81 69 71
Fuel consumption (kg) 387.9 389.4 390.4 391.8 399.5 399.9 293.6 293.4
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(a) Position profile (b) Velocity profile

(c) Acceleration profile (d) Net force profile

(e) Throttle profile (f) Pointing orientation profile

Figure 6.2: Mars in-plane maneuver with a subsurface flight condition and the glide-slope constraint not enforced,. Time history of the
position, velocity, acceleration, net force, throttle setting and pointing orientation. Figures in correspondence with Fig. 6 of Açıkmeşe
and Ploen (2007).

To demonstrate the working principle of the thrust point constraint, the example described in the last
portion of this section is used. This corresponds to Fig. 6.3, with altered starting conditions of r0 = [5000,0,0]T

and ṙ0 = [0,0,0]T with respect to the nominal conditions established in Table 6.2. Initially, the vector points
in the opposite direction of the gravity direction, which later on in the sequence is reversed. Likewise, the
algorithm produces near identical results with regard to the paper. Small discrepancies are again observed
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(a) Position profile (b) Velocity profile

(c) Acceleration profile (d) Net force profile

(e) Throttle profile (f) Pointing orientation profile

Figure 6.3: Mars in-plane maneuver for visualization purposes of the thrust point constraint. Time history of the position, velocity,
acceleration, net force, throttle setting and pointing orientation. Figures in correspondence with Fig. 10 of Açıkmeşe and Ploen (2007).

which are given similar reasons as the ones conferred for Fig. 6.2. Additionally, it is observed that the location
of the temporal nodes differs from the paper at various locations. This further emphasizes the idea that
the discretization scheme is the main cause of the differences. Conclusively, the system test of the convex
programming algorithm is verified.
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6.2.2. VERIFICATION II: GOLDEN SEARCH METHOD

The methodology for finding the optimal time-of-flight during the powered descent sequence, the golden
search method, has been outlined in Chapter 5. In this section the verification of this methodology is pro-
vided. In Fig. 6.4 several fuel consumption values have been plotted against a time-of-flight range (based on
conservative minimum and maximum values). The figure, which is typical in nature for a t f vs fuel usage
plot, is motivated through the realization that the minimum fuel is a function of uni-modal nature that has
a global minimum. The fuel consumption figure corresponds to the starting values entrenched in Table 6.2
while running the guidance for fuel optimal large diverts algorithm. Notice that the physical limit denotes
the maximum on-board fuel of 400 kg, which rules out a significant portion of the possible flight time values.

The optimal flight time corresponds to a rounded-off value of 73 seconds, one second longer than the
value presented in the paper for the same scenario. The reasons for this slight difference are attributed to the
discrepancies discussed in the previous section. The throttle profile is marginally different, which naturally
causes a different mass consumption profile and hence a different optimal time of flight. Discretization of
the algorithm plays a significant role here-in. As mentioned in Açıkmeşe et al. (2008), time discretization
even causes rise to the issue of inter-sample subsurface flight. This means within the instances of time (i.e.,
the temporal nodes), there is no guarantee on a theoretical base that the algorithm adheres to the imposed
constraint. This is due to the fact that the constraints (especially the glide-slope constraint to be outlined in
the next section) is imposed on a number of finite instances of time. This issue can resolved by imposing
additional constraints, for which the reader is referred to the paper for further information. Regarding the
optimal time of flight, within the given context, it is verified that the algorithm produces realistic results.
Conclusively, the system test of the golden search algorithm is verified.

Figure 6.4: Golden search method applied for finding optimal time-of-flight t f .

6.2.3. VERIFICATION III: MINIMUM LANDING ERROR

The second simulation in terms of Mars landing assumed an out-of-plane maneuver (three-dimensional
Euclidean space) with the enforcement of glide-slope constraint. Furthermore, the algorithm is extended
such that it is compatible for providing a minimum landing error guidance sequence. The conditions are
slightly altered with respect to the conditions entrenched in Table 6.2. The propulsion system is limited in
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terms of minimum and maximum thrust such that ρ1 = 4972N and ρ2 = 13260N , with a depletion rate of
α = 4.53×10−4 s/m. To prevent the trajectory from reaching the surface early in the descent, a glide-slope
constraint is enforced at an angle of 4°. The initial position and velocity are given by r0 = [1500,500,2000]T

m and ṙ0 = [−75,0,100]T m/s. In Figs. 6.5 and 6.6 the results of the simulations are provided. Corresponding
to the results in Blackmore et al. (2010), the algorithm was terminated at t f = 79s with a fuel consumption

(a) Position profile (b) Velocity profile

(c) Acceleration profile (d) Thrust angle profile

(e) Throttle profile (f) Angle above surface profile

Figure 6.5: Mars out-of-plane maneuver with the glide slope constraint enforced. Time history of the position, velocity, acceleration,
thrust angle, throttle setting and angle above surface. Figures in correspondence with Fig. 2 of Blackmore et al. (2010).
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Figure 6.6: Mars out-of-plane maneuver with the glide slope constraint enforced. Horizontal and vertical plane transfer. Figures in
correspondence with Fig. 2 of Blackmore et al. (2010).

of 399.4 kg. This establishes the value of the convex optimization minimum landing error method, as an op-
timal solution was found even when the spacecraft’s physical boundaries where nearing its edge in terms of
distance from target and initial velocity. One can observe from the figures that the altitude trajectory abstains
from tending to zero until sequence termination in the soft-landing process, which verifies the proper work-
ing on the glide-slope constraint. This is especially well visible in Fig. 6.6. Likewise, the throttle profile is of
a max-min-max nature, after the lemma of optimal control problems. Furthermore, the soft landing on the
spacecraft is entrenched, as both position and velocity elements terminate at zero. In Appendix E an example
is provided for which the paper claims there is no absolute soft landing. What is remarkable however is that
designed algorithm of this research still managed to guide the spacecraft to precision landing. Conclusively,
the system test of the minimum position error guidance algorithm is verified. The next section further
enhances the non-convex pointing constraint and the thrust bound.

6.2.4. VERIFICATION IV: NON-CONVEX POINTING CONSTRAINT AND THRUST BOUND
The pointing constraint formulation as part of the powered descent algorithm ensures that the spacecraft ori-
entation is restricted within a desired pointing cone. This constraint is needed for example for terrain-relative
sensors that need a specified viewing field during descent and landing. The constraint, and the lower thrust
bound coupled to it, are both non-convex in nature. The convexified algorithm is verified in this section. The
descent is initiated assuming the following properties:

• Initial mass m0 = 2000 kg
• Fuel mass m f = 300 kg
• Minimum operational throttle ρ1 = 0.2Tmax

• Maximum operational throttle ρ2 = 0.8Tmax

• Maximum design thrust Tmax = 24000 N

The simulations are performed out-of-plane, such that the position vector and velocity vector have non-zero
elements in all three Euclidean space. Defined in the guidance frame, the following initial conditions hold
r0 = [2400,450,−330]T and ṙ0 = [−10,−40,10]T A total of three simulations have been run with a variation in
pointing constraint. The first to be unconstrained, the second at angle of 90° and the last at 45°, the result
of which have been captivated in Table 6.3 and Fig. 6.7. As can be observed from the left figure, the profiles

Table 6.3: Outline of the fuel consumption mfuel and optimal flight-time t f results of the literature source Carson et al. (2011) and the
designed algorithm. Notice that the left part of each table segment refers to the results of the paper, while the right part denotes the
results of the designed algorithm of this thesis.

Parameters Fuel Paper (kg) Fuel Algorithm (kg) Flight Time Paper (s) Flight Time Algorithm (s)
Unconstrained 200.1 199.3 44.63 46
90 ° Constraint 201.8 201.8 46.96 49
45 ° Constraint 222.3 222.3 57.29 59
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(a) Thrust pointing profile (b) Throttle setting

Figure 6.7: Mars out-of-plane maneuver with the pointing constraint enforced. Thrust pointing attitude and throttle profile. Figures in
correspondence with Figs. 5 and 6 of Carson et al. (2011).

(a) Surface trajectory (b) Velocity norm

Figure 6.8: Mars out-of-plane maneuver with the glide slope constraint enforced. Surface trajectory and velocity norm. Left-hand figure
in correspondence with Fig. 6c of Açıkmeşe et al. (2013).

of thrust pointing remain well within the established restrictions. The associated throttle magnitude profile
is included in the depiction. The figures are well in correspondence with the original formulation of Carson
et al. (2011). The only observed difference is the initial throttle value, which for the paper is about 38% and
for the designed algorithm lays around 75%. This is likewise attributed to the formulation of the discretiza-
tion scheme. This idea is further enforced through the provided table. For this research the choice has been
made to make the flight-time a integer variable, hence the rounded off numbers. The paper presents different
values, which consequently leads to a different fuel consumption of the unconstrained simulation. Remark-
ably, the fuel consumption for the remainder two simulations are exactly the same. At last it is stated that the
tighter the vertical angle constraint, the higher the fuel usage and the required flight time. With that obser-
vation it is concluded that the system test of the thrust pointing and thrust bound algorithm is verified.

6.2.5. VERIFICATION V: SOFT LANDING OPTIMAL CONTROL

In this final section on unit verifications, the algorithm is run to solve the soft landing optimal control prob-
lem. The targeted landing site is defined at d = 0. This unit verifications marks the entire planetary soft
landing sequence with all its constraints and is based on Açıkmeşe et al. (2013). Similar to the unit verifica-
tion conducted in previous section, it becomes evident from Fig. 6.8 that the tighter the pointing constraint,
the more overshoot of the surface trajectory. The three trajectories correspond to the earlier conferred throt-
tle profile. It is denoted that for these simulations a glide-slope angle γg s of 30 ° was enforced. The velocity as
depicted in the right-hand figure was given a maximum value of 90 m/s. It becomes evident from the velocity
norm plot that the algorithm manages to maintain below this normalized velocity throughout the sequence.
From the surface trajectories it becomes evident that the 45° case overshoots the y-axis to maintain satisfac-
tion of the pointing constraint, while the 90° and the unconstrained cases take a more direct path. This is in
exact accordance with the results obtained by Açıkmeşe et al. (2013). With that observation it is concluded
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that the system test of the soft landing optimal control algorithm is verified. In the next and final part of
this chapter the emphasis is put on establishing the working principle of the glide-slope constraint through a
6DoF successive convex optimization out-of-plane sequence.

6.2.6. VERIFICATION VI: SIX-DEGREE-OF-FREEDOM MARS POWERED DESCENT GUIDANCE

The results for the six-degree-of-freedom Mars powered descent simulation are presented beneath. It is de-
noted that the simulations have been carried out assuming normalized unit values, rather that actual dimen-
sions. This has been done to keep the discussion in accordance with Szmuk and Açıkmeşe (2018). Nonethe-
less, rather than reproducing the exact results of the paper, the designed algorithm that has been verified in
the previous sections has been extended to become compatible with successive optimization guidance. The
position profile in Fig. 6.9a clearly shows how the mission constraints are satisfied by making sure that the
final position in all three directions match the landing location in the inertial guidance frame. Interestingly,
the x−position shows signs of a large diversion from the path, indicating the algorithm has difficulty main-
taining a more straight path. A similar observation is deduced from Fig. 6.9c. The up-north trajectory shows
a large deviation in northern direction, before the algorithm re-guides the spacecraft to the designated tar-
get. For the position profile in Fig. 6.9b these deviations are not explicitly present. It is concludes that the
imposed glide-slope constraint obviously affects the position profile, but that this does not necessarily mean
the integrated state variables, i.e., velocity and acceleration, are affected in a similar fashion. Furthermore,
in accordance with the results obtained by Szmuk and Açıkmeşe (2018), the optimal throttle profile in Fig.
6.9d deviates from the optimal profile max −mi n −max often encountered in control theory literature. De-
spite this difference, the profile is clearly shows a sign of an optimal profile while adhering to the imposed

(a) Position profile (b) Velocity profile

(c) Up-north trajectory (d) Throttle time history

Figure 6.9: Successive convexification simulation results: position, velocity, trajectory and throttle setting.
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(a) Acceleration profile (b) Net force profile

Figure 6.10: Successive convexification simulation results: acceleration and net force time history.

normalized thrust magnitude bounds. Despite the fact that trajectory has been initiated with a reference tra-
jectory which is dynamically infeasible, the algorithm managed to correct for this within 9 iterations. The
imposed virtual control parameter plays a significant role here-in. Nonetheless, it should be mentioned that
this algorithm is very well suitable for on-board implementation, the successive method does not provide full
theoretical guarantee of convergence to an optimal solution in finite time. The applied method is however
more robust compared to the golden search method discussed in Section 6.2.2. This is attributed to the fact
that the time element is modelled as convex variable, thereby being an integral part of the framework. Further
research is needed to establish whether the obtained time is indeed the theoretical optimal value, a matter
beyond the scope of this thesis.

Additionally, the time history profiles of the acceleration and net force are provided in Figs. 6.10a and
6.10b, respectively. The acceleration profile in z−direction is in accordance with the behavior of the trajectory.
That is, a coast burn is initiated at the start of the sequence. Subsequently, the spacecraft transfers into a
gliding phase, with no acceleration in z-direction between 15s and 33s. Finally, to correct for this phase, a
terminal burn is initiated. Accordingly, the net force profile shows similar behavior.

Notice that for visualization purposes two simulations have been run, one in which the glide-slope con-
straint is not enforced (Fig. 6.11a) and one in which the constraint is enforced (Fig. 6.11b). The inertia and
moment properties of the MSL/Mars 2020 like vehicle are included in Appendix A. From the plots it becomes
evident how the trajectory is affected by the constraint in three-dimensional Euclidean space. The proper
working of the glide-slope constraint is verified and the verification chapter is concluded. A detailed anal-
ysis about varying the constraint in a step-wise fashion per mission segment will be discussed in Section 7.4.

(a) Glide-slope constraint not enforced (b) Glide-slope constraint enforced.

Figure 6.11: Mars 3D simulation visualization in normalized three-dimensional Euclidean space.
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RESULTS

In this chapter of this research report the relevant simulation results are conferred, starting with the results of
the active guidance, navigation and control system for precision landing on Mars. The nominal flight condi-
tions for Mars EDL have been entrenched in the mission heritage chapter and are in line with realistic values
for MSL and Mars 2020. For the active GNC system errors are induced to this nominal flight-path to assess
the ability of the guidance system to maintain track to the designated landing site. In Section 7.1 the com-
parison is established between the nominal flight trajectory and the active guidance system. Subsequently,
in the same section, conclusions are drawn regarding the proper working of the precision landing system.
As part of the robustness assessment, the algorithm has been extended to become compatible with landing
on Titan, incorporating parafoil dynamics within the high-density environment. The results are presented
in Section 7.2, distinguishing between 3DoF and 6DoF high-fidelity dynamics. Likewise, the algorithm has
also been extended to be capable of obstacle avoidance during powered descent. This includes avoidance of
hills during descent and landing near rims of mountains or in valleys. These matters are outlined in 7.4. To
maintain a clear overview of the simulations, a comprehensive simulation plan has been generated:

• Guidance, navigation and control simulations. Initially, the nominal trajectories are conferred after
which the results for the active cases are presented. This allows for a proper distinction analyses be-
tween the two. It is denoted that initial state conditions and constrains are kept similar. A total of
two cases are investigated: (1) plain powered descent sequence and (2) a descent trajectory with an
enforced glide-slope constraint.

• Titan precision landing simulations. As part of the research conducted at NASA/JPL/Caltech, the al-
gorithm has been extended to become compatible with landing in the Saturn’s moon environment.
Simultaneously, this allows for a robustness assessment of the algorithm. A total of three simulation
cases are delineated. The first two assume three degree-of-freedom point-mass dynamics and are dif-
ferentiated between (1) plain conditions and (2) wind conditions with enforced glide-slope constraint
and pointing constraint. The latter (3) encompasses high-fidelity 6DoF dynamics with the conditions
similar to (2). The analyses include a sensitivity analysis for parafoil descent guidance.

• Obstacle avoidance guidance. The last part of the simulations, as part of the robustness assessment of
the designed algorithm, is the extension towards compatibility of obstacle avoidance. Included in the
outlined simulations are two cases: (1) hill avoidance guidance and (2) planetary landing near moun-
tain rims and in valleys.

It is denoted that all simulations have been carried using CVX in Matlab. For an extensive guide on the al-
gorithm files, the reader is referred to Appendix D. However, it is again emphasized that these files are not part
of the public domain and only available for use at NASA’s Jet Propulsion Laboratory and to a limited extent at
Delft University of Technology. The next chapter concludes the dissertation by presenting some conclusive
remarks regarding the research, as well as recommendations to enhance future research and implementa-
tion of guidance algorithms for precision landing on Titan. This chapter concludes with powered descent
sensitivity analyses, pushing the boundaries of the algorithm to evaluate its working in varying conditions.

95
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7.1. NOMINAL AND CLOSED-LOOP GUIDANCE, NAVIGATION AND CONTROL

The nominal starting conditions for the Mars landing sequence have been established in the chapter on her-
itage systems based on MSL and Mars 2020 class vehicles, specifically in Tab. 2.3. In this section the nominal
simulated precision landing trajectories are presented. These simulations come in two types: plain uncon-
strained simulation (Fig. 7.1) and glide-slope constrained simulation (Fig. 7.2).

(a) Position profile (b) Velocity profile

(c) Acceleration profile (d) Net force profile

(e) Throttle profile (f) Orientation angle profile

Figure 7.1: Nominal unconstrained Mars powered descent landing simulation. Time history of the position, velocity, acceleration, thrust
angle, throttle setting and orientation angle.
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(a) Position profile (b) Velocity profile

(c) Acceleration profile (d) Net force profile

(e) Throttle profile (f) Orientation angle profile

Figure 7.2: Nominal glide-slope constrained Mars powered descent landing simulation. Time history of the position, velocity, accelera-
tion, thrust angle, throttle setting and orientation angle.

From the two simulations it becomes directly evident that the state and control constraints are satisfied
throughout the entire simulated landing sequence. Furthermore, the soft landing optimal control problem
is solved, which establishes the proper working of the precision landing technology. In Fig. 7.1 the time
history of the up position (z-direction) clearly shows a subsurface flight after 30 seconds of flight. This is
an obviously highly undesired phenomenon. Notice, this entails the algorithm adheres to the subsurface
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flight condition rz ≥ 1, as depicted in Fig. 7.1a. Through the enforcement of the glide-slope constraint this
issue is resolved, as becomes evident from the position depiction in Fig. 7.2a. The velocity profiles in Fig.
7.1b and 7.2b are quite similar. Nonetheless, the magnitudes of the two plots differ significantly. This is
attributed to the fact that the imposed constraint enforces more limits on the algorithm, causing the sequence
to deviate more from the plain case. The acceleration (Fig. 7.1c and 7.2c), net force (Fig. 7.1d and 7.2d) and
throttle profiles (Fig. 7.1e and 7.2e) differ mainly in discretization properties. The dynamics however for
both cases is rather similar. The thrust angle profiles of Fig. 7.1f and 7.2f differ significantly, which is a direct
consequence of the fact that the θ-angle is a function of the altitude (i.e., the glide-slope constraint affects this
significantly). Conclusively, the nominal trajectories follow a desired optimal path, remain within the defined
physical limits, adhere to the flight dynamics and, finally, establish planetary precision landing. Nonetheless,
these nominal trajectories simulate trajectories assuming ideal conditions. Planetary landing sequences take
place in conditions which are from ideal, especially when landing on Mars.

In Fig. 7.3 and 7.4 more realistic simulations are presented, i.e., closed-loop guidance and control within
error inducing environments. In the next paragraph more information is provided regarding the simula-
tions of the closed-loop GNC system. In the presented closed-loop guidance and control simulations several
sources of errors have been introduced to assess the proper working of the designed GNC algorithm. This can
be observed from the random nature of the acceleration and throttle plots. Notice that this section outlines
a single run example, which is needed to outline the behavior. The Monte Carlo analysis associated to the
closed-loop GNC will be discussed in Section 7.1.1. The figures are in correspondence with the earlier pre-
sented nominal cases to allow for one-on-one difference analyses. Therefore Fig. 7.3 outlines the results for
the plain case (no constraints), while Fig. 7.4 includes the enforced glide-slope constraint. The only differ-
ence between the nominal and closed-loop plots is the last figure on the right-hand side. For the closed-loop
guidance and control cases the thrust angle rather than the pointing angle has been included, to show the
random variation of the thrust variable. The loop is based on Fig. 6.1 and includes all facets of planetary
landing. More specifically, the following sources of errors have been introduced for a single case:

• Induced thrust misalignments through random variations of the convexified minimum and maximum
thrust magnitude. The misalignment is given a ∆ρ = 5% order with a standard deviation σ∆ρ = 1%.

• Thrust noise which alters the spacecraft acceleration. Notice that this differs from the thrust misalign-
ment. The magnitude variation is given a ∆T = 100 N order, with a standard deviation σ∆T = 25 N.

• Navigation variations in terms of position, velocity and on-board fuel mass. Notice that this research
assumes perfect state knowledge for reasons defined in Section 4.3. Introducing artificial navigation
errors is merely included to assess guidance robustness. Standard deviations from the normal are con-
sidered such that σr = 1.0, σv = 0.5, and σm = 0.5 for the navigation loop.

To close the full GNC loop a PID controller is coupled to the guidance algorithm. Section 7.1.1 outlines some
Monte Carlo analysis batches, while the control design overview is presented in Section 7.1.2. For specifics
regarding the design the reader is referred to Section 6.1 and for outline of the controller type the reader is
referred to Section 4.4. At last, state propagation is provided through a fourth-order Runge-Kutta integrator,
of which the specifics are included in Appendix C.

From the two sets of figures it becomes clear that despite the introduction of several sources of error,
the algorithm still manages to guide the spacecraft to the designated target through a precision landing se-
quence. The closed-loop GNC simulations produces similar results compared to the counter nominal cases
for both the position profiles in Fig. 7.3a and 7.4a, and the velocity profiles in Fig. 7.3b and 7.4b. This is ex-
pected, as the algorithm should guide the spacecraft to the nominal path despite induced errors. The convex
optimization method is robust method for guaranteeing soft landing. The control and state constraints are
likewise adhered to. What is remarkable is the fact that despite the introduction of random errors which affect
the acceleration, net force, throttle and thrust angle profiles, the algorithm manages to fly the spacecraft in
a path very similar to the nominal case. This observation holds for both the plain case and the glide-slope
constrained case. In Fig. 7.5 the in-plane trajectories for both landing sequences are provided. The mass
depletion dynamics figures, i.e., the variation of mass due fuel depletion, are given for both cases in the same
figure. From the trajectory plots it becomes more evident what important role the glide-slope constraint
plays. The mass depletion dynamics figures are rather similar and both remain within the desired physical
limit. These observations conclude the section on closed-loop guidance and control. In the next section the
results for precision landing on Titan are provided.
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(a) Position profile (b) Velocity profile

(c) Acceleration profile (d) Net force profile

(e) Throttle profile (f) Orientation angle profile

Figure 7.3: Closed-loop GNC unconstrained Mars powered descent landing simulation. Time history of the position, velocity, accelera-
tion, thrust angle, throttle setting and thrust angle.

7.1.1. MONTE CARLO ANALYSIS
To provide insight into the robustness of the algorithm, this section outlines a Monte Carlo analysis of six test
cases. For all cases a sample number n = 500 has been used. Also, a normal random type of distribution has
been outlined using the Matlab ’normrnd(µ, σ)’ command to generate the simulated errors. For the exact
values of the order of change and the respective standard deviations, the reader is referred to the discussion
in the previous section. In the previous sections of this chapter it has been conferred that the algorithm
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(a) Position profile (b) Velocity profile

(c) Acceleration profile (d) Net force profile

(e) Throttle profile (f) Orientation angle profile

Figure 7.4: Closed-loop GNC glide-slope constrained Mars powered descent landing simulation. Time history of the position, velocity,
acceleration, thrust angle, throttle setting and thrust angle.

manages to stay well within the mission constraint limits, and is also able to robustly tackle induced errors
(as became evident in the single test case). Nonetheless, an aspect that needs to analyzed is the behavior
of fuel mass consumption due to the induced errors, which is what this Monte Carlo analysis focuses on
(theoretical outline provided in Appendix C.3). The following six alterations have been considered:
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(a) Closed-loop GNC flight trajectory - plain case (b) Closed-loop GNC flight trajectory - glide-slope case

(c) Closed-loop mass depletion over time - plain case (d) Closed-loop mass depletion over time - glide-slope case

Figure 7.5: Closed-loop GNC trajectory plot plain (top-left) and glide-slope constrained (top-right). Associated mass depletion over
times figures included beneath.

1. Variation of lower thrust limit → Fig. 7.6a.
2. Variation of upper thrust limit → Fig. 7.6b.
3. Thrust misalignment → Fig. 7.6c.
4. Error in initial position → Fig. 7.6e.
5. Error in initial velocity → Fig. 7.6d.
6. Error in initial mass → Fig. 7.6f.

The results of the run test cases are presented in Fig. 7.6 as histograms containing 500 samples. It is re-
called that the total available fuel mass was established to be 400 kg. Overall, the histograms have a uniform
distribution, indicating consistency in data. In Fig. 7.6a the histogram for altering the lower thrust magnitude
is presented. Interestingly, the variations are quite extreme for this case. The algorithm manages to maintain
within the desired limit for 440 samples. Nonetheless, for about 60 samples the maximum fuel bound is vi-
olated. This means that the trajectory switches to minimizing the landing error. This is mainly attributed to
the fact that a too high lower bound on the thrust significantly increases fuel consumption, leading to this
undesired phenomenon. It is therefore advised for actual flight cases to maintain thrust bounds within rea-
sonable limits, both upper and lower. A similar conclusion is drawn when inducing thrust misalignments, as
depicted in Fig. 7.6c. For all the other test cases the algorithm adheres to the on-board fuel limit. Changes
in velocity have a more significant affect on fuel consumption than changes in position and velocity. This
is shown in Figs. 7.6e, 7.6d and 7.6f, respectively. Nonetheless, the variations are less extreme compared to
the thrust bound cases. This concludes the algorithm robustness assessment based on Monte Carlo analy-
ses, with a main conclusion that despite the undesired deviation in for a marginal number of samples, the
algorithm obtains a very high success rate when inducing errors of random nature.
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(a) Variation due change in lower thrust magnitude (b) Variation due change in upper thrust magnitude

(c) Variation due thrust misalignment (d) Variation due initial velocity error

(e) Variation due initial position error (f) Variation due initial total mass error

Figure 7.6: Monte Carlo histogram distributions for various test cases.

7.1.2. CONTROL SYSTEM DESIGN

In this section an outlines is provided regarding the control system that has been used to close the guidance
and control loop. It is again emphasized that this research mainly focused on the guidance aspect of GNC
for planetary precision landing. The loop has been closed using a PID controller, which is considered to be
a sophisticated control method. Yet, there are of course other more robust methods, such as the H-infinity
methodology. A matter beyond the scope of this research, as a PID controller suffices for the proposed analy-
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ses. On a side note it is stated that despite the basic principles of PID control, it is often used for actual flight
implementation as it provides robust results with ease of design. For this research a PID controller has been
used with gain values: KP = 0.875, K I = 0.75, and KD = 0.125. These values have been established based on
a trial-and-error fine tuning of the controls: position, acceleration and velocity, respectively. These controls
are multiplied by the actual time response mass of the vehicle. The step response plot in Fig. 7.7 has been
generated in Matlab using the step command.

Figure 7.7: Bode diagram (magnitude and phase) of the PID controller.

From the figure it becomes evident that the step response has no overshoot. Please notice that only the
first two seconds of the response have been presented, as the response after remained constant. Also, there is
no presence of a steady-state error. The rise time appears to be very fast, which is desired. Based on this plot
it is concluded that the closed-loop system is stable. For the problem at hand, this analysis suffices to analyze
the precision landing sequence. It is advised that for actual flight implementations, a more detailed control
analysis is carried out. This should include bode plots, gain tuning and root locus plots, amongst others.

7.2. PRECISION LANDING ON TITAN
In this section the designed algorithm is extended to become suitable for landing a powered parafoil on Ti-
tan. The conferred results are based on both three-degree-of-freedom point-mass simulations for lossless
convexification and six-degree-of-freedom successive convexification simulations. The conditions for land-
ing on Titan are repeated in Tab. 7.1. The exact order of magnitudes of the initial parafoil descent states have
been provided in Section 2.3.2. In Section 7.2.1 the results of two types of point-mass simulation are pre-
sented: an in-plane manoeuvre with the glide-slope constraint not enforced and a 3D manoeuvre with the
glide-slope constraint enforced. For both cases the starting and terminal state conditions (position, veloc-
ity and mass) are in accordance with relevant literature to allow for one-on-one verification. These starting
conditions are presented in Tab. 2.3. Section 7.2.2 on the other hand outlines the rigid-body simulations
based on six-degree-of-freedom dynamics. In both sections conclusive remarks are conferred regarding the
robustness of the algorithm and the establishment of soft landing on Titan.

7.2.1. POINT-MASS SIMULATIONS: THREE-DEGREE-OF-FREEDOM DYNAMICS
The results for the Titan 3D manoeuvre (no glide-slope constraint nor wind) are presented in Figs. 7.8 and
7.9. From the figures it becomes evident that the algorithm adheres to the soft-landing constraint (both in 2D
and 3D space). It also becomes clear that the surface is reached quite fast, as a consequence of leaving out the
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Table 7.1: Titan landing initial and terminal state conditions (randomly generated) in accordance with Quadrelli et al. (2019)

slope constraint. Notice that these simulations assume ideal conditions (no Titanian winds). Interestingly,
the easting direction path deviates largely, both in terms of position and variation of velocity. This is observed
in Fig. 7.8 and attributed to the lack of control authority in that direction. Also, the algorithm contains a
constraint to land against the wind. There reason for including this constraint is to make sure that the parafoil
does not get into stall conditions, thereby endangering mission safety. Therefore, during terminal descent
the direction is changed aggressively. Likewise for powered descent, the convex optimization algorithm is
capable of doing this. In Fig. 7.9 this phenomenon can be observed. Also included in this figure are a 3D plot
of several random state simulations to assess the algorithm’s capabilities to handle dispersions of varying
nature. Conclusively, the algorithm for landing on Titan assuming ideal conditions works properly. The next
paragraph outlines the landing manoeuvre assuming wind and a glide-slope constraint.

The results of the 3D manoeuvre with the glide-slope constraint enforced and wind inclusion are pre-
sented in Figs 7.10 - 7.13. The figures contain the time histories of the position and velocity and the trajecto-
ries in 2D and 3D Euclidean space. Furthermore, the control history of the pull is included and the aerody-
namic accelerations in all three directions. At last, the aerodynamic angles of relevance, the angle-of-attack
and side-slip angle are plotted against time. In the next paragraph the simulation results are discussed.

From the control history it is derived that the guidance algorithm tells the spacecraft to glide in the first
part of the sequence (zero-control effort) after which the control effort is maximized. The aerodynamic angles
maintain within acceptable limits and the final position and velocity vector is at the desired zero-magnitude
level (soft-landing), as becomes evident from Figs. 7.12b. The inclusion of the glide-slope constraint be-
comes clear in both the 2D and 3D plot. The sequence remains well above ground till the termination of the

(a) Position profile (b) Velocity profile

Figure 7.8: Titan point mass simulation (3DoF) with the glide-slope constraint not enforced and no wind. Position and velocity time
histories of the optimal in-plane trajectory.
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(a) Trajectory up-east (b) 3D trajectories

Figure 7.9: Titan point mass simulation (3DoF) with the glide-slope constraint not enforced and no wind. Optimal in-plane and out-of-
plane trajectories.

sequence. It also becomes clear that the inclusion of the glide-slope constraint improves the landing con-
straint against the wind. This is observed from the easting position of the position profile, which changes
sign after approximately 50 s to switch direction. Note, the wind magnitudes used in this simulation have
been conferred in Section 3.7. The 2D and 3D trajectory plots in Fig. 7.11 further entrench the truth of this
observation. Like for the plain case, the control authority in easting direction is seen to be rather limited. As
expected, the lift acceleration is the largest contributor of the motion, followed by the drag. The sequence
requires a high angle-of-attack profile throughout almost the entire sequence. This can be compared to a
lifting body during planetary entry. The side-slip angle profile shows low values of the angle, which is in ac-
cordance with earlier simulations carried out at the Jet Propulsion Laboratory. Conclusively, the algorithm is
extended to work successfully for point mass simulations with 3DoF dynamics. In the next section the rigid
body (6DoF) simulations are presented.

7.2.2. RIGID-BODY SIMULATIONS: SIX-DEGREE-OF-FREEDOM DYNAMICS
The results for the six-degrees-of-freedom Titan parafoil descent simulation are presented in this section. In
this section a single example is given based on the following starting conditions:

r0 = [9,−7,183]T m and v0 = [9,0,−8]T m/s (7.1)

The next section will outline a detailed sensitivity analysis through the variation of governing variables. From
Figs. 7.14 it can be observed that the positioning and velocity terminate at zero magnitude, hence the soft-

(a) Position profile (b) Velocity profile

Figure 7.10: Titan point mass simulation (3DoF) with the glide-slope constraint enforced and wind included. Position and velocity time
histories of the optimal in-plane trajectory.
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(a) Trajectory up-east (b) 3D trajectories

Figure 7.11: Titan point mass simulation (3DoF) with the glide-slope constraint enforced and wind included. Optimal in-plane and
out-of-plane trajectories.

(a) Control profile (b) Aerodynamic accelerations

Figure 7.12: Titan point mass simulation (3DoF) with the glide-slope constraint enforced and wind included. Time histories of the
control normalized pull and aerodynamic accelerations.

(a) Angle-of-attack profile (b) Sideslip angle profile

Figure 7.13: Titan point mass simulation (3DoF) with the glide-slope constraint enforced and wind included. Time histories of the
aerodynamic angles: angle-of-attack and side-slip angle.

landing simulation is successful. Both control authorities (symmetric and asymmetric deflections) remain
with the desired normalized values between 0 and 1, as becomes evident from Fig. 7.15. Interesting remark
is that the control authorities seem to take turns in controlling the parafoil to the target. From the attitude
rate plot (Fig. 7.16) it becomes evident that control authority in y-direction is anew rather limited. This is in
accordance with the established equations, as the deflections have no control over the force in y-direction
(side force) nor the moment in y-direction (pitching moment). This issue could be tackled through inclusion
of a propulsion system. The quaternion attitude representation is restricted to have one unit quaternion
of one, which is the case as deduced from Fig. 7.16b. Furthermore, Figs. 7.17a and 7.17b, show that the
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(a) Position profile (b) Velocity profile

Figure 7.14: Titan rigid body simulation (6DoF) with the glide-slope constraint enforced and wind. Time history of the position and
velocity states.

(a) Symmetric control profile (b) Asymmetric control profile

Figure 7.15: Titan rigid body simulation (6DoF) with the glide-slope constraint enforced and wind. Time history of the control deflec-
tions.

(a) Attitude rate profile (b) Quaternion attitude profile

Figure 7.16: Titan rigid body simulation (6DoF) with the glide-slope constraint enforced and wind. Time history of angular rates and
quaternion angles.

sequence starts off by gliding in opposite direction to the wind, after which a switch is made to use the wind to
benefit. At termination, the spacecraft is turned back in opposite direction of the wind, which is an imposed
constraint on the system. This is included to allow the parafoil to use the wind to slow down. From this single
working example it is concluded that the algorithm is very well suitable for landing a parafoil on Titan, thereby
successfully ensuring precision landing. Nonetheless, to assess the robustness of the algorithm, a sensitivity
analysis has been carried out, of which the results are conferred in the subsequent section.
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(a) Trajectory up-east (b) 3D trajectory

Figure 7.17: Titan rigid body simulation (6DoF) with the glide-slope constraint enforced and wind included. Optimal in-plane and
out-of-plane trajectories.

7.3. SENSITIVITY ANALYSIS PARAFOIL DESCENT
This section outlines a discussion on the sensitivity analyses that has been coupled to the design and sim-
ulation approach of the parafoil descent cases. This sensitivity is necessary because the parafoil design pa-
rameters and initial flight conditions have been engineered, both no flight reference exists. Furthermore, an
incorporation of a sensitivity analysis provides great insight into how several conditions may effect the flight
trajectory, the control effort and the attitude. Through this process the robustness of the parafoil guidance
algorithm is typically evaluated. This insight is of vital importance for the understanding of precision landing
trajectories and how design parameters influence the accuracy. Based on the simulation results it is even pos-
sible to point out possible risk factors that influence the landing precision or the flight trajectory in general.
The parameters that are included in the sensitivity study have been captivated in Tab. 7.2. Notice that these
values have been altered for a total of 6 cases: adding 5%, 10% and 20%, and reducing 5%, 10% and 20% to
the nominal case. While the percentages are relative, absolute values have been used in the simulations.

Table 7.2: Parameters of sensitivity and their respective percentages.

Parameter Description Sensitivity percentage
r0 initial position ± 20%
v0 initial velocity ± 20%
CL total lift coefficient ± 20%
CD total drag coefficient ± 20%
r0 and v0 coupled position and velocity ± 20%
CL and CD coupled lift and drag coefficients ± 20%

The results are now conferred for each scenario, presenting time histories of the position, velocity, throttle
setting and the trajectory. These entities have been chosen as they provide the most valuable simulation
information. In Fig. 7.18 - 7.33 all the simulation results are presented. To maintain a clear discussion, this
section outlines a short discussion and some conclusions per varied variable:

• Initial position sensitivity: presented in Figs. 7.18 - 7.20. From the position profile the conclusion is
drawn that despite the imposed variation, the algorithm behaves in a similar fashion. The trajectories
presented in Fig. 7.19a show very similar behavior. On the other hand, the total control history varies
extremely with variation in initial position. This effect is strongest for a 20%. While the control still
adheres to the imposed bound between 0 and 1, the fluctuations are large. The switch logic might get
too excessive for on-board control. The algorithm no longer follows a distinct max-min-max profile.
Rather, it seems as if noise has been introduced despite the fact that this is not the case. The quaternion
and attitude profiles show stable variations just like the position and velocity profiles.

• Initial velocity sensitivity: presented in Figs. 7.21 - 7.23. The observations are very much alike for the
previous case. Additionally, it is denoted that the control fluctuation to some extend is extremer and
present for multiple flight cases. Nonetheless, the control bounds stay within the imposed limit and all
trajectories show signs of stability.
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• Lift coefficient sensitivity: presented in Figs. 7.24 - 7.26. The lift coefficients have a very strong effect
on both position and velocity. This is of course expected, as the coefficients govern the aerodynamics.
Interestingly, the trajectories are very similar however, with a single major outlier for the 20% case.
Control profiles show signs of extreme fluctuation, probably due to the heavy change in attitude, as can
be observed in Figs. 7.26b and 7.26a.

• Drag coefficient sensitivity: presented in Figs. 7.27 - 7.29. The drag coefficients show a similar yet
stronger effect compared to the lift cases. Interestingly, the trajectory profile 7.28a is rather similar to
lift counterpart. Control fluctuations are likewise extreme, but within the imposed limits. This is again
a consequence of the less stable attitude for the extremer cases.

• Coupled initial position and velocity sensitivity: presented in Fig. 7.30 and 7.31. Coupling these two
parameters leads to limited variation. Results are quite robust with overall very similar results. The
conclusion is drawn that the algorithm is very well capable of guiding the parafoil to the target for a
wide range of starting state conditions in terms of position and velocity.

• Coupled lift and drag coefficient sensitivity: presented in Fig. 7.32 and 7.33. As expected, for this
case variations are extreme for position, velocity, attitude rate and quaternion. The parafoil has been
designed assuming engineered aerodynamic parameters. Heavy alterations in these governing param-
eters leads to very different profiles. For actual flight implementation the most optimal parameters
would of course be considered.

(a) Position profile (b) Velocity profile

Figure 7.18: Parafoil descent position and velocity time histories due to initial position sensitivity of ± 20%.

(a) Trajectory (b) Control profile

Figure 7.19: Parafoil descent trajectory and total control history due to initial position sensitivity of ± 20%.
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(a) Attitude rate profile (b) Quaternion attitude profile

Figure 7.20: Parafoil attitude rate and quaternion attitude time histories due to initial position sensitivity of ± 20%.

(a) Position profile (b) Velocity profile

Figure 7.21: Parafoil descent position and velocity time histories due to initial velocity sensitivity of ± 20%.

(a) Trajectory (b) Control profile

Figure 7.22: Parafoil descent trajectory and total control history due to initial velocity sensitivity of ± 20%.
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(a) Attitude rate profile (b) Quaternion attitude profile

Figure 7.23: Parafoil attitude rate and quaternion attitude time histories due to initial velocity sensitivity of ± 20%.

(a) Position profile (b) Velocity profile

Figure 7.24: Parafoil descent position and velocity time histories due to lift coefficients sensitivity of ± 20%.

(a) Trajectory (b) Control profile

Figure 7.25: Parafoil descent trajectory and total control history due to lift coefficients sensitivity of ± 20%.
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(a) Attitude rate profile (b) Quaternion attitude profile

Figure 7.26: Parafoil attitude rate and quaternion attitude time histories to lift coefficients sensitivity of ± 20%.

(a) Position profile (b) Velocity profile

Figure 7.27: Parafoil descent position and velocity time histories due to drag coefficients sensitivity of ± 20%.

(a) Trajectory (b) Control profile

Figure 7.28: Parafoil descent trajectory and total control history due to drag coefficients sensitivity of ± 20%.
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(a) Attitude rate profile (b) Quaternion attitude profile

Figure 7.29: Parafoil attitude rate and quaternion attitude time histories to drag coefficients sensitivity of ± 20%.

(a) Position profile (b) Velocity profile

Figure 7.30: Parafoil descent position and velocity time histories due to coupled initial position and velocity sensitivity of ± 20%.

(a) Attitude rate profile (b) Quaternion attitude profile

Figure 7.31: Parafoil descent trajectory and total control history due to coupled initial position sensitivity of ± 20%.
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(a) Position profile (b) Velocity profile

Figure 7.32: Parafoil descent position and velocity time histories due to coupled lift and drag coefficients sensitivity of ± 20%.

(a) Attitude rate profile (b) Quaternion attitude profile

Figure 7.33: Parafoil descent trajectory and total control history due to coupled lift and drag coefficients sensitivity of ± 20%.

7.4. OBSTACLE AVOIDANCE GUIDANCE
In this portion of this chapter the algorithm is extended for obstacle avoidance compatibility based on multi-
glideslope constraints. In this research two mission scenarios are considered in which the activation of this
guidance system would be necessary. Specifically, when approaching the destination target, roughness of
terrain might raise the need for avoiding path obstacles detrimental to the mission. As stated in Chapter 5
hills for which a subsurface flight constraint or single glideslope constraint does not suffice, or would not
yield the most optimal solution. This scenario is further elaborated on in Section 7.4.1. The second mission
scenario occurs when the spacecraft has to land at the rim of a mountain or in a valley/crater. This scenario
is further discussed in the last part of this section.

7.4.1. HILL AVOIDANCE
This section focuses on outline of the multiple glideslope constraint guidance simulation. The mission seg-
ment is divided into several parts and each portion is provided its own glide-slope constraint. Subsequently
each segment is optimized individually while ensuring mission safety. This is especially necessary when land-
ing in areas with high variation in elevation. In Fig. 7.34 the difference between a single and multiple glide-
slope constraints are depicted in a single figure. In the simulation a total of three phases have been adopted.
The trajectory in the figure is made to touch the extreme points exactly for visualization purposes, which in
real-time would not be the case. Contrary to the expectation, the multi glide-slope constraint actually re-
laxes the burden on the guidance algorithm. As can be observed from the figure, a single constraint pushes
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Figure 7.34: Simulation of the hill avoidance guidance algorithm applied during planetary descent. Notice that the trajectory in the figure
is made to touch the extreme points exactly for visualization purposes, which in real-time would not be the case.

the algorithm to maintain unnecessary heights throughout a large portion of the simulation. Meanwhile, the
segmentation causes the optimal path to follow a more relaxed path. It is therefore highly recommended
for actual planetary landing algorithms to include a hill avoidance algorithm that in real-time calculates the
required slopes and altitudes (for example based on TRN). This would relax the strain on the guidance sys-
tem and ensure mission safety while still adhering to the ultimate mission goal: planetary precision landing.
Another interesting observation is the fact that despite the relaxation of the slope in the mid-phase and final
phase of the landing sequence, the algorithm still decides to travel the spacecraft up, glide and then push for
an after burn. The latter has been concluded after careful analysis of the control history associated to this
trajectory, which very closely resembles the control history plot of Fig. 7.4. Conclusively it can be stated that
the hill avoidance guidance algorithm is a valuable addition to the system.

7.4.2. PLANETARY LANDING AT MOUNTAIN RIMS AND VALLEYS

A second possible scenario might arise when a spacecraft needs to land at the rim of a large mountain or in
between a valley. A single and regular glideslope constraint would be too steep in such case, constraining the
trajectory excessively or yielding the optimal path infeasible. For such cases the path is yet again augmented
into differential steps. Distinct from the multiple multi-glide constraint, the obstacle avoidance guidance is
enforced in a slightly different manner. Rather than originating from the target landing site, this glide-slope
may enforce anywhere. In Fig. 7.35 the simulation for landing near the rim of a mountain is presented. From
the plot it becomes directly evident what significant role the obstacle avoidance algorithm plays during plan-
etary precision landing. As can be seen in the figure, a single glide-slope constraint would have caused the
trajectory to crash into the mountain, which of course would be detrimental. Differentiating the constraint
in two phases, one with a mountain line and one with a glide-slope, allows for optimal path planning while
ensuring mission safety. Anew it is observed that despite the relaxed constraint in the terminal phase, the
trajectory of the convex optimization method still enforces the spacecraft to fly upwards, glide and then land.
This is attributed to the dynamics of the planetary precision landing sequence. The latter is proven by remov-
ing the imposed constraint, and simulating a sample. Without the imposed constraint the algorithm merely
on the dynamics shows similar behavior, which leads to the conferred conclusion.
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Figure 7.35: Simulation of guidance algorithm applied during planetary descent to land at mountain rims or in valleys. Notice that the
trajectory in the figure is made to touch the extreme points exactly for visualization purposes, which in real-time would not be the case.

7.5. SENSITIVITY ANALYSIS POWERED DESCENT
This chapter concludes with a discussion on the sensitivity analyses that has been coupled to the design and
simulation approach of the research. This sensitivity is necessary because some of the parameters have either
been approximated or guessed based on engineering sense and are thus not known to the extend of desired
accuracy. Furthermore, an incorporation of a sensitivity analysis provides great insight into how several con-
ditions may effect the flight trajectory or quite the opposite, not effect the flight path at all. Through this
process the robustness of the results is typically evaluated. This insight is of vital importance for the under-
standing of precision landing trajectories and how design parameters influence the accuracy. Based on the
simulation results it is even possible to point out possible risk factors that influence the landing precision or
the flight trajectory in general. The parameters that are included in the sensitivity study have been captivated
in Tab. 7.3. An additional sensitivity study is added in which each time it is assumed that a single of the
navigation sensor seemingly shows failure and is therefore unable to provide the spacecraft with state (i.e.,
position, velocity and angular rate) estimations.

Table 7.3: Parameters of sensitivity and their respective percentages.

Parameter Description Sensitivity percentage
r0 initial position ± 20%
v0 initial velocity ± 15%
m mass (fuel and dry) ± 10%
Tmax maximum thrust magnitude ± 10%
γg s glide-slope angle + 100%

Now that the parameters of sensitivity are established, the sensitivity analysis procedure is outlined. For each
parameter, two sensitivity examinations are established: one of parameter increase and one of parameter
decrease, both based on the respective sensitivity percentages. A step-size 5% is chosen for sensitivity per-
centages equal to 15%, and 20%. For the sensitivity percentage of 10%, cases of 1%, 5% and 10% are analyzed.
Notice that for the glide-slope constraint only positive values are considered, up to a value of 100% above
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the nominal angle of γg s = 4°. While one parameter is adjusted it is made sure that all other variables are
maintained constant to be able to draw rationale conclusions. It goes without saying that only the variables
that influence the trajectory are considered. The results are now conferred for each scenario, presenting time
histories of the position, velocity, throttle setting and the trajectory. These entities have been chosen as they
provide the most valuable simulation information. In Fig. 7.36 - 7.44 all the simulation results are presented.
The final paragraph of this section presents some conclusive remarks regarding the sensitivity.

A variation of five governing variables has been conducted to assess the proper working of the algorithm.
The results have been presented in the preceding figures. For an analysis of coupled variables, please be
referred to Section 7.3. To maintain a clear discussion, this section outlines a short discussion and some
conclusions per varied variable:

• Initial position sensitivity: presented in Figs. 7.36 and 7.37. From the position profile the conclusion
is drawn that despite the increase in distance from the target, both in easting and upwards direction,
the algorithm maintains its ability to guide the spacecraft to terminal conditions. Coupled to this the
algorithm also manages to terminate at zero velocity for all cases. Nonetheless, as becomes evident
from the throttle profile, for an increase in initial position of 20%, the algorithm no longer follows a
distinct max-min-max profile. Rather, it seems as if noise has been introduced despite the fact that this
is not the case. The conclusion is drawn that the distance is actually too large for the algorithm given
the available fuel mass. A further increase in position would have yielded an infeasible trajectory.

• Initial velocity sensitivity: presented in Figs. 7.36 and 7.37. Interestingly, altering the velocities has
more effect on the position time history than the altering the positions themselves. This is attributed
to the coupled dynamics, in which position is a propagated variable that is dependent on time and
velocity. The remark regarding the throttle profile discussed in the preceding point becomes even more
evident for the initial velocity sensitivity case. The non-linear dynamics immediately cause the throttle
to vary highly at increasing velocities. It is denoted that this is not a desired phenomenon, as altering
the throttle setting to often might lead to engine failure.

• Mass sensitivity: presented in Figs. 7.40 and 7.41. Similar conclusions as delineated above are drawn
with regard to the variation in mass. As expected the mass variation has tremendous effect on the
velocity, as velocity is directly coupled to the depletion dynamics. As the fuel and dry mass are not
related linearly, a simple one-on-one scaling does not working for the precision landing problem.

• Maximum thrust sensitivity: presented in Figs. 7.42 and 7.43. Indirectly this encompasses all variables
associated with the thrust magnitude and orientation. Lowering the thrust magnitude likewise more
burdensome for the algorithm, as the same mass needs to be carried with less force.

• Glide-slope sensitivity: presented in Fig. 7.44 and 7.45. The trajectory plot shows that each simulation
adheres to the enforced cone constraint. The algorithm is very well capable of handling this constraint.
However, at at high-valued angles the play-field of the spacecraft may get restricted too much. This is
evident from the 100% increase, where the control history alters highly. Nonetheless, the powered de-
scent guidance algorithm maintains its capability to establish the soft landing at the designated target.

Figure 7.36: Powered descent position and velocity time histories due to initial position sensitivity of ± 20%.
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Figure 7.37: Powered descent control time history and emerging trajectories, both due to initial position sensitivity of ± 20%.

Figure 7.38: Powered descent position and velocity time histories due to initial velocity sensitivity of ± 15%.

Figure 7.39: Powered descent control time history and emerging trajectories, both due to initial velocity sensitivity of ± 15%.
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Figure 7.40: Powered descent position and velocity time histories due to initial mass sensitivity of ± 10%.

Figure 7.41: Powered descent control time history and emerging trajectories, both due to initial mass sensitivity of ± 10%.

Figure 7.42: Powered descent position and velocity time histories due to maximum thrust sensitivity of ± 10%.
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Figure 7.43: Powered descent control time history and emerging trajectories, both due to maximum thrust sensitivity of ± 10%.

Figure 7.44: Powered descent position and velocity time histories due to glide-slope sensitivity of + 100%.

Figure 7.45: Powered descent control time history and emerging trajectories, both due to glide-slope sensitivity of + 100%.
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CONCLUSIONS & RECOMMENDATIONS

Precision landing is an anticipated technology for future interplanetary missions. Achieving this requires ad-
vanced autonomous GNC technologies to allow spacecraft to land autonomously and optimally, as on-board
resources are limited. This research, which has been conducted at JPL’s Department of Robotics (Modeling &
Simulation of Planetary Vehicles) and Delft University of Technology, has therefore focused on autonomous
guidance and control for planetary precision landing. Based on the defined problem statement and the es-
tablished focus aspects of this research, the entrenched research question was stated to be as followed:

What order of magnitude precision for landing on planetary bodies can be achieved by using advanced
guidance, navigation & control systems in combination with state-of-the-art autonomous trajectory
optimization algorithms?

Specifically, this research focused on the planetary bodies Mars and Titan, for which the lossless and succes-
sive convex optimization methods have been adapted. From the carried out analyses the conclusion is drawn
that absolute precision landing through this robust method is very much possible. It is emphasized however
that despite robust guidance and control methodologies, proliferation of other anticipated technologies are
needed to eventually establish planetary precision landing. Powered descent guidance for Mars landing se-
quences is an extensively research topic and the research has been based on the comprehensive availability of
literature. The algorithm has been extended to become compatible with two more mission scenarios. As part
of the NASA Space Exploration Technology Directorate, a parafoil has been proposed for landing on Titan
due to its cost effectiveness, ease of deployment, relatively low mass compared to the prospective payload
and capabilities of precise autonomous delivery. The first extension of the algorithm therefore focused on
making the convex optimization method compatible for landing a parafoil on Titan. At last, the algorithm
was extended for obstacle avoidance compatibility based on multi-glideslope constraints. Specifically, when
approaching the destination target, roughness of terrain might raise the need for avoiding path obstacles
detrimental to the mission. A comprehensive number of conclusions and recommendations have been de-
rived, which are delineated after providing brief answers to each research sub-questions.

• RQ-1: Is a convex optimized real-time generated guidance algorithm capable of precisely guiding the
spacecraft to predetermined landing ground?
Despite the random nature associated with entry, descent and landing, the convex optimization al-
gorithm has proven to robustly tackle dispersions and guide the spacecraft to the designated landing
site. The extension to compatibility for landing on Titan, the added obstacle avoidance design and the
conducted sensitivity analysis further entrench this statement.

• RQ-2: What cost function, state constraints and control constraints are needed based on the mission
scenarios?
For all mission scenarios imposing the glide-slope constraint is needed. Other state constraints are
lower and upper velocity bounds for avoidance of stall and structural damage, respectively. Further-
more, the control constraint naturally follows from the spacecraft properties, thus either thrust bounds
or pull control bounds. The cost function is entrenched based on the desired final outcome: minimiz-
ing fuel consumption, limiting position error of minimizing control effort. All these cases have been
researched in this thesis, and for all cases the convex optimization method adapted well.

121
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• RQ-3: Is a convex optimized real-time generated guidance algorithm capable of retaining to the state
and control constraints throughout the entire sequence?
For all cases considered in this research, the state and control constraints were adhered to. No cases
were encountered in which the constraints were violated. At times, constraints were relaxed deliber-
ately to assess the working principle of the guidance system. The convex optimization framework is a
very powerful tool for incorporating state and control states into the guidance scheme.

• RQ-4: How does the incorporation of a three-degree-of- freedom fuel/power optimal trajectory differ
from a six-degree-of-freedom trajectory?
From the verification and results chapter the conclusion is drawn that the three-degree-of-freedom is
more easily implemented. Nonetheless, it has become evident that implementation of a 6DoF guid-
ance scheme is vital, especially for landing on Titan. In the parafoil sensitivity analysis there has been
shown that alterations in variables might cause extreme fluctuations in attitude (i.e., attitude rate and
quaternion attitude), a matter to be controlled for actual flight. For Titan this is more present due to
the relatively more significant wind, as well as the inherent design of a parafoil spacecraft.

• RQ-5: Is the algorithm capable of generating optimal divergence paths in real-time in case the nominal
trajectory turns out to be non-feasible?
An extensive minimum landing error analysis has been carried out, from which the conclusion is drawn
that the algorithm is indeed capable of minimizing distance to target for extreme scenarios that give rise
to such an guidance scheme. It is denoted that the designed algorithm serves as a proof of concept, as
Matlab is not fast enough for flight implementation. For on-board guidance C++ would be one of the
logical choices.

• RQ-6: Are the landing accuracy and the fuel/power consumption mutually related?
In the robustness assessment and sensitivity analyses carried out in this research, it was found that
the fuel/power consumption is highly related to imposed errors. All Monte Carlo generated histograms
showed a wide sensitivity for variation in variables. Additionally, it is denoted that from a theoretical
perspective the accuracy and consumption are of course mutually related. This is explained as follows:
in case infinite fuel would be available, a fuel theoretical guarantee could be provided of reach the target
within infinite time. This would turn the problem into an infinite horizon optimal control problem.

• RQ-7: How does the algorithm performance differ between a thin atmosphere (Mars) and thick atmo-
sphere (Titan) landing sequence?
In terms of establishing soft landing, the algorithms do not differ (i.e., in their eventual goal). However,
the spacecraft for landing on either planetary body differs significantly from the other. This means
that no definitive conclusion can be drawn with respect to the performance of the convex optimization
method within thin and thick atmospheres. On the other hand, it is now known that the method is suit-
able for landing on Earth (SpaceX booster recovery), Mars and Titan. This give rise to the probable con-
clusion that the adapted method theoretically works robustly in a wide range of type of atmospheres.

• RQ-8: Is a landing accuracy on the order of meters theoretically feasible?
Based on the carried analyses the conclusion is drawn that a landing accuracy is certainly feasible. It
is however denoted that advanced guidance schemes play a significant role here-in, but are not suffi-
cient. Besides tackling the limitations of the guidance system itself, the coupled systems require equal
advancement. The recommendation section further elaborates on this matter.

• RQ-9: What affect do uncertainties in the state variables have on the algorithm, i.e., how robust is the
algorithm?
Two sensitivity analyses have been carried out. One for parafoil terminal descent associated to Titan,
and a similar one for powered descent to landing on Mars. For both cases the conclusion was drawn
that the algorithm is very robust in tackling uncertainties. Furthermore, three sources of error were
introduced into the closed GNC loop: thrust magnitude errors, thrust misalignments and navigation
errors. The algorithm managed to tackle these errors while adhering to all constraints and solving the
imposed cost function.
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CONCLUSIONS

Conventionally, large dispersions are caused during the initial EDL phase, which are corrected for during
terminal descent. This research has adapted the convex optimization method for simulating terminal descent
sequences, with a distinct focus on guidance formulated as a finite horizon optimal control problem. The
simulations have been verified by directly comparing the results to industry’s current best practise (for Mars
landing). All simulations have been carried using CVX in Matlab. The obtained results are found to be (near)
identical and hence the designed algorithm has been verified. The algorithm has subsequently been extended
to make it compatible for a Titan parafoil landing simulations and obstacle avoidance. To maintain a clear
discussion on the drawn conclusions, the are delineated in an enumerate fashion:

1. From the time history of the position and velocity states it is deduced that the implemented algorithm
produces identical results. Overall the algorithm plots resemble the reference plots very closely. It be-
comes evident from the position plot that when not enforcing the glide-slope constraint, the trajectory
may reach near zero-altitude early on in the sequence. This phenomenon causes a large portion of the
flight segment to be subterranean, which is not desired during powered descent.

2. The throttle history marks a max-min-max profile, corresponding with profiles often encountered in
optimal control literature. With regard to the acceleration and net force time history there is one sig-
nificant difference in the final value of the gravity direction acceleration. This difference might be at-
tributed to the fact that the respective literature seems to enforce a final burn in that direction. Another
difference cause could be the applied discretization scheme. The same type of discrepancy is observed
for the final throttle setting. This might also be the direct consequence of the small difference between
the fuel consumption of the two algorithms for the plain case, 387.9 kg vs 389.4 kg. Additionally, it is
observed that the location of the temporal nodes differs from the Açıkmeşe and Ploen (2007) at various
locations. This further emphasizes the idea that the discretization scheme is the main cause of the dif-
ferences. Nonetheless, both plots are overall rather similar. This also becomes evident from the thrust
pointing figures. It is evident from the overall plots that the control and state constraints are satisfied
throughout the entire sequence.

3. The optimal flight time found through the golden search method corresponds to a rounded-off value
of 73 seconds, one second longer than the value presented in the Açıkmeşe and Ploen (2007) for the
same scenario. The reasons for this slight difference are attributed to the discrepancies discussed in
the previous item. The throttle profile is marginally different, which naturally causes a different mass
consumption profile and hence a different optimal time of flight. Discretization of the algorithm plays
a significant role here-in. It is denoted that the golden search method does not theoretically guarantee
the obtaining of time of flight in real time, hence the adaption of the more robust successive method.

4. For the minimum error landing algorithm, corresponding to the results in Blackmore et al. (2010), the
algorithm was terminated at t f = 79s with a fuel consumption of 399.4 kg. This establishes the value of
the convex optimization minimum landing error method, as an optimal solution was found even when
the spacecraft’s physical boundaries where nearing its edge in terms of distance from target and initial
velocity. One can observe from the figures that the altitude trajectory abstains from tending to zero until
sequence termination in the soft-landing process, which verifies the proper working on the glide-slope
constraint. Likewise, the throttle profile is of a max-min-max nature, after the lemma of optimal control
problems. Furthermore, the soft landing on the spacecraft is entrenched, as both position and velocity
elements terminate at zero. An example is provided for which the paper claims there is no absolute soft
landing. What is remarkable however is that designed algorithm of this research still managed to guide
the spacecraft to precision landing.

5. It becomes evident from the velocity norm plot that the algorithm manages to maintain below this
normalized velocity throughout the sequence. From the surface trajectories it becomes evident that
the 45° case overshoots the y-axis to maintain satisfaction of the pointing constraint, while the 90° and
the unconstrained cases take a more direct path. This is in exact accordance with the results obtained
by Açıkmeşe et al. (2013).

6. Based on Szmuk and Açıkmeşe (2018) the six-degree-of-freedom Mars powered descent simulation are
entrenched. From the two plots (including the 3D surface plot cone) it becomes evident how well the
trajectory adheres to the glide-slope the glide-slope constraint in three-dimensional Euclidean space.
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7. For the Titan landing cases, both the 3DoF and 6DoF simulations show promising results for on-board
implementation. The soft-landing is guaranteed while adhering to imposed mission constraints. The
control time history remains within desired limits, as well as the aerodynamic angles. The terminal
landing is enforced such that the payload lands in parallel direction to the gravity vector. The glide-
slope constraint has been properly enforced to ensure the spacecraft does not reach the surface fast,
which would cause an undesired sub-surface flight. Likewise, the pointing constraint has been en-
forced successfully to cope with the requirements of Terrain Relative Navigation.

8. From the figures of the obstacle avoidance simulations it becomes directly evident what significant
role the algorithm plays during planetary precision landing. A single glide-slope constraint would have
caused the trajectory to crash into the mountain, which of course would be detrimental. Differentiating
the constraint in two phases, one with a mountain line and one with a glide-slope, allows for optimal
path planning while ensuring mission safety. Anew it is observed that despite the relaxed constraint
in the terminal phase, the trajectory of the convex optimization method still enforces the spacecraft to
fly upwards, glide and then land. This is attributed to the dynamics of the planetary precision landing
sequence.

RECOMMENDATIONS

The next steps in future research are the implementation of the 9DoF high-fidelity model within NASA/JPL
sophisticated DARTS (Dynamics Algorithms for Real-Time Simulation) tool to test for real-time hardware de-
sign and visualize terminal descent within the software. Actual testing in C++ is also advised to guarantee
fast convergence. Including thrusters and on-board fuel (to a certain allowable mass) is also advised for Titan
terminal descent to increase control authority. This is especially true for motion in (force) and around (mo-
ment) Easting direction, as direct control of side force and pitch moment are not possible within the parafoil
dynamics framework. To avoid stall and destruction of the parafoil through mechanical loads, minimum and
maximum velocity magnitudes should be imposed in actual flight, respectively. Like with the Mars case, Titan
simulations should be run to test the robustness of the algorithm in case a trajectory turns out to not be fea-
sible. This is defined as a minimum landing-error problem, which basically minimizes position error in case
absolute soft-landing (zero position error) is theoretically not possible. The latter can have many reasons,
but the most significant is distance from target. These considerations, amongst others, will eventually lead
to the realization of precision landing on Mars and Titan. For the system level recommendations, like for the
conclusions, a comprehensive list is provided:

1. Guidance system recommendations:
The guidance system, though being very robust, has been limited by the chosen models and the cho-
sen dynamics. First of all, a sophisticated analysis should be carried out regarding the (atmospheric)
properties of both Titan and Mars. For the parafoil, a more detailed dynamics analysis can be carried
out by incorporating 9DoF multi-body dynamics. Aerodynamic effects should be considered for the
Mars case. Optimal time-of-flight should be found more robustly, while theoretical guarantees for this
matter should be investigated.

The depletion of mass due thrust causes the moment of inertia to change over time. This effect has not
directly been taken into account into this research, and thus requires further analysis.

The discretization scheme heavily influences the control profile, amongst others. This became evident
in the verification chapter. Various schemes should be designed and tested. On top of that, it has been
denoted that in between the temporal nodes there is no theoretical guarantee of adhering to imposed
constraints. The discretization scheme plays a significant role here-in and should carefully be designed.

State propagation has been established using the Runge-Kunga 4 integrator. Different methods should
be tested to assess the response of the GNC system.

The research adapted a method of uploading a reference trajectory to the computer and running the
sequence, which is then controlled through a PID controller. The method of on-board adaptive correc-
tion should be explored, as it might provide more robust results.

2. Navigation system recommendations:
This research assumed perfect state knowledge for both the nominal and error-integrated simulations.
Consequently, without the proper determination of state, the vehicle would loose orientation relative



125

to the nominal trajectory. For actual flight applications the navigation is thus a crucial entity. This
includes the integration of sensor inputs through navigation filters.

Besides the inertial measurement unit and the Terrain Relative Sensors, a GPS like constellation should
be designed around the planetary body at which the landing will take place. This could be in the form
of micro-satellites to aid during EDL. Lack of robust navigation systems such as GPS cause large dis-
persions, a matter to be solved.

3. Control system recommendations:
The GNC loop has been closed using a PID controller. Alternative methods, such as H-infinity control
should be explored. A detailed sensitivity analysis should be coupled to this to conclude whether more
sophisticated controllers are beneficial for precision landing matters. Furthermore, it is advised that
for actual flight implementations, a more detailed control analysis is carried out. This should include
bode plots, gain tuning and root locus plots, amongst others.

A problem often encountered in EDL control is that advanced control system have difficulty following
up with the guidance sample rate, especially for attitude control. While this is a limit imposed by ro-
bustness of the flight computer, it should be considered in the design phase. On-board applications are
limited of course by the maximum descent mass. Nonetheless, control systems of proper robustness
exist for incorporation into the planetary descent problem and should therefore be explored.

The matter of actuator saturation has not been considered in this research. For both the Mars and Titan
landing cases this phenomenon could occur and should therefore be modelled. Also, singularities in for
example the transfer functions might occur. Coupled to the incorporation of navigation, measurement
noise might arise. These sources for errors should all be counted for in the design of flight systems.
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A
DESIGN PARAMETERS MSL & MARS 2020

NASA has chosen to build on the legacy of Curiosity as a design baseline for Mars 2020 (Fosse et al., 2015).
For that reason scaling methodologies shall be applied to the MSL design, of whom the before-mentioned
properties are available. Prior to launch, the mass properties of MSL were determined on a spin balance table
(at the Kennedy Space Center in the Payload Hazardous Servicing Facility). Given the empirical nature of
the results, a sensitivity analysis will be coupled to the procedure. The sensitivity percentages depend on the
accuracy of the measurements, the reliability of the source and the type of scaling (i.e., linear or quadratic).
Important to mention is that the managers of the Mars 2020 mission have stated in Gerstenmaier (2017) that
the mass growth of the rover is one of the open risks of the project. Mass particularly affects inertia, location
of the CoG and thrust needed for maneuvering, hence careful considerations are a prerequisite. Furthermore
scaling also influences aerodynamic properties. These matters are outlined in this Appendix.

A.1. MASS AND DIMENSIONS SCALING

On 24th October 2011, the MSL spacecraft went through a final mass measurement with a predefined accu-
racy requirement of 0.5%. After accounting for the various elements, the total spacecraft mass was found to
be 3838.7 kg ± 16.7 kg, which meant an accuracy of 0.4% was achieved and thus the requirement was met.
The rounded individual mass contributions of the major flight systems as determined by NASA are presented
in Tab. A.1. Confer to the design concept presented in Wilson (2013), initially the Mars 2020 would have had
a mass of 950 kg. However, due to scientific demands imposed on the design team, the current payload mass
of the mission equals 1050 kg.

Table A.1: Rounded and percentile individual mass contributions of the major Mars Science Laboratory flight systems. Data source:
NASA/JPL

Mission stage Substages Total mass (kg) Mass percentile (%)
Cruise 539 14.0
EDL 2401 62.5

Backshell 891 23.2
Powered descent stage 730 19.0
Hydrazine fuel 400 10.4
Heat shield 380 9.9

Payload (Curiosity rover) 899 23.4
Total 3839 100

A.2. PRINCIPAL MOMENTS OF INERTIA SCALING
Distinctive to the above, the principal inertia scaling shall be of a quadratic essence. First, the Moments of
Inertia (MoIs) about the principle axes (i.e., Ixx , Iy y and Izz ) for MSL shall be established. The inertia values
of the entry capsule have been obtained from Schoenenberger et al. (2014) while all others values presented
in Tab. A.2 are retrieved from Fields (2012), Petrick et al. (2014) and analytical models (irrelevant data left
blank). On a confidence interval of 99.87%, the MoI of the dry spacecraft shall be known within 5%. Such
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Figure A.1: Mars Science Laboratory major flight systems (Prakash et al., 2008) (Fields, 2012) (adjusted).

was the requirement established in Fields (2012), where there is also stated that the Izz values were directly
measured. Notice that the Ixx and Iy y values of the powered descent stage have been established based on
normalized ratios obtained from measurements of a 100 mm subscale module of the MSL capsule.

Table A.2: Mars Science Laboratory principal Moments of Inertia: predicted and measured Izz values from Fields (2012) and estimated
entry capsule values from Schoenenberger et al. (2014).

System Ixx (kg-m2) Iy y (kg-m2) Izz (kg-m2) Izz Percentile difference (%)
Predicted Predicted Predicted Measured

Entry capsule 4800 3800 2900 - -
Rover - - 768.9 772.2 0.4
Descent stage (dry) 1045.9 748.2 713.3 723.6 1.4
Backshell - - 1039.9 1039.6 0.0
Heatshield - - 1318.1 1365.0 3.4
Cruise stage - - 1115.1 1163.1 4.1
Maximum difference 4.1%

The coordinate systems are chosen as such that the products of inertia are approximately zero, hence
leaving only the principal moments of inertia. This assumption can be made in case the spacecraft has two
axes of mass symmetry. While in reality an axis is never perfectly symmetrical in terms of mass, this assump-
tion maintains it validity due to negligible offsets. Bedford and Fowler (2008) provide the following relation:

I =
 Ixx −Ix y −Ixz

−Iy x Iy y −Iy z

−Izx −Iz y Izz

=
Ixx 0 0

0 Iy y 0
0 0 Izz

 (A.1)

By applying the parallel-axis theorem, an object’s inertia matrix I’ can be used to determine the inertia matrix
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of I based on differential mass elements and distances from the original CoG:

Ixx = Ix′x′ + (d 2
y +d 2

z )m

Iy y = Iy ′y ′ + (d 2
x +d 2

z )m

Izz = Iz ′z ′ + (d 2
x +d 2

y )m

(A.2)

While distance will be assumed to scale linearly for the Mars 2020 class vehicle, inertia shall have a quadratic
effect as delineated in the equations. Because the high mass density of fuel tanks have a large distance from
the CoG, the effect will be greatest. In the above discussion for powered descent, only dry spacecraft mass
has been considered. Inertia values for the fueled spacecraft to be computed in the subsequent research will
be based on scaling of mass (previous section), scaling of distance and the parallel-axis theorem. By applying
this method, inertia assessment at various instances of the powered descent phase will be possible. Finally it
is denoted that, given the 5% MSL measurement accuracy requirement settled in Fields (2012), the quadratic
nature of the scaling and the intermediate reliability of the source (i.e., partly analytical models), a sensitivity
study of ± 10% shall be coupled to the principal moment of inertia scaling.

A.3. AERODYNAMICS ASSESSMENT
For modelling of the aerodynamic forces and moments, knowledge of the force and moment coefficients is
required. Because the shape of the Mars 2020 vehicle reassembles MSL, the assumption is made that these
non-dimensional coefficients are similar. However, to maintain the scientific tendency of the research, a sen-
sitivity analysis will be coupled to this assumption. The sensitivity values are based on the great analysis
conducted by Way et al. (2013) on the aerodynamics of the MSL. The aerodynamic force coefficients are pri-
marily defined in terms of an axial and normal component through Eq. (A.3), where ax and az stand for the
acceleration information provided by accelerometer.

C A =− max

q̄Sr e f

CN =− maz

q̄Sr e f

(A.3)

The dynamic pressure is determined from the climate database density values at radar measured altitudes.
The accelerations are obtained from the IMU in accordance with the following relation extracted from Karl-
gaard et al. (2013): ax

ay

az

=
ãx

ãy

ãz

−
 −(ω2

y +ω2
z ) (ωxωy − ω̇z ) (ωxωz + ω̇y )

(ωxωy − ω̇z ) −(ω2
x +ω2

z ) (ωyωz − ω̇x )
(ωxωz − ω̇y ) (ωyωz + ω̇x ) −(ω2

x +ω2
y )

xm

ym

zm

 (A.4)

In this equation ãx , ãy and ãz are the sensed IMU accelerations and xm , ym and zm the position of the sensors
relative to the CoM of the vehicle in the B-frame. The measured angular velocities and their derivatives are
also provided by the IMU system. The lift and drag coefficients are derived using orientation geometry:

CL =CN cosα−C Asinα

CD =CN sinα+C Acosα
(A.5)

In a similar fashion the moment coefficients are determined by:

Cl =
Maero,i

q̄Sr e f br e f

Cm = Maero, j

q̄Sr e f br e f

Cn = Maero,k

q̄Sr e f br e f

(A.6)

Angular rate information provided by the IMU is used to determine the static moments Maero. As stated in
Way et al. (2013), these moments are subject to significant errors. Yet another reason to couple a substantial
sensitivity to the analysis. The data conferred in this appendix has been used as a baseline reference because
detailed aerodynamic properties and flown trajectories are not available (yet) for Mars 2020.
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B
PROOF OF THEOREMS

In this appendix several proof of theorem is provided regarding parts of the convex optimization method. In
Section B.1 the formal proof is outlined that guarantees that the designed algorithm adheres to the threshold
bounds of the thrusters. In the subsequent section, the Taylor Series expansion outlined in Section 5.2.2
is proven to maintain within the control magnitude limits throughout the landing sequence. Section B.3
outlines the comprehensive time discretization process, which also marks the end of this appendix.

B.1. THRUST LIMITS
In Section 5.2 part of the directly relevant proof has been conferred with regard to the lossless convexification
method. This section focuses on the proof of the latter part of Eq. 5.21. This implies that the thrust limit
must remain within the desired threshold values throughout the entire landing sequence. For this purpose
the Hamiltonian is defined by Açıkmeşe and Ploen (2007) such that

H(Ψ(t )) = R12(t )Γ?(t )+R0(t ) with R12(t ) = R1(t )+‖R2(t )‖ (B.1)

For completeness, the R-values are provided through

R0(t ) =λ1(t )T x2(t )+λ2(t )T g (B.2)

R1(t ) =λ0 −αλ3(t ) (B.3)

R2(t ) = λ2(t )

m(t )
(B.4)

In accordance with the pointwise principle, the following conditions are derived

Γ?(t ) =
{
ρ1, if R12(t ) < 0)
ρ2, if R12(t ) > 0)

(B.5)

The condition to be proven must show that R12(t ) 6= for [0, t?f ]. From T?
c = R2Γ

?/‖R2‖ it is derived that

Ṙ1 =− α

m
‖R2‖Γ? (B.6)

From the fact that λ2 = mR2, it is derived that

d ‖R2‖
d t

= 1

m

d ‖λ2‖
d t

+ α

m
‖R2‖Γ? (B.7)

From which follows that

m ˙R12 = d

d t
‖λ2‖ =− 1

2‖λ2‖
λT

2 λ1 = 1

2‖λ2‖
(‖λ1‖2 t −λT

1 a) (B.8)

In the above equation vectors λ1 and a are constant. As mass m is larger than zero, Ṙ12 6= 0 as for all t if λ1 6= 0.
To complete the theorem, it has to proven that also for the case that λ1 = 0 the statement Ṙ12 6= 0 is still valid.
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Assume some scalars β1 and β2 which are both positive, for which holds that

0 = r0 +
g t 2

f

2
+ ṙ0t f +β1n̂ (B.9)

0 = ṙ0 + g t f +β2n̂ (B.10)

In which n̂ equals λ2/‖λ2‖. Multiplying both inequalities with −g /
∥∥g

∥∥ leads to

0 = r01 +
ĝ t 2

f

2
+ ṙ01 t f (B.11)

0 = ṙ01 + ĝ t f (B.12)

Here r01 and ṙ01 are the initial position and velocity components, respectively. Notice that these are defined
opposite to the axis of gravity direction. Combining both yields

r01 =−ṙ 2
01

/2ĝ ≤ 0 (B.13)

ṙ01 > 0 (B.14)

In Section 5.2 it has been established that r01 > 0 as the subsurface glide constraint. This would contradict
the above established inequality and hence R12(t ) 6= 0 for all λ1 and t , which formally completes the proof.

B.2. TAYLOR SERIES
In Section 5.2.2 outlined the Taylor series expansion about the established equation e−z , which is contin-
uously differentiable. This section focuses on the proof of this methodology. By applying the Mean Value
Theorem one obtains

e−z = e−z0
{

1− [z(t )− z0(t )]+ [z(t )−z0(t )]2

2

}
−e−ẑ

[z(t )−z0(t )]3

6 (B.15)

In which ẑ ∈ [z0, z], which implies that

e−z0
{

1− [z(t )− z0(t )]]+ [z(t )−z0(t )]2

2

}
≥ e−z (B.16)

This shows that the lower bound in Eq. 5.37 is larger than the one in Eq. 5.34. For the upper bound similar
conclusions can be drawn, starting with

e−z = e−z0
{
1− [z(t )− z0(t )]

}+e−ẑ [z(t )− z0(t )]2

2
(B.17)

Likewise ẑ ∈ [z0, z] this implioes that

e−z0
{
1− [z(t )− z0(t )]]

}≥ e−z (B.18)

The latter proves that the upper bound in Eq. 5.34 is larger than the upper bound in Eq. 5.37. This marks the
completion of the formal Taylor Series expansion proof.

B.3. DISCRETIZATION OF TIME
This section outlines the mathematical principles behind the conversion of the infinite-dimensional problem
to a finite one through time discretization. Recall that for time intervals ∆t the temporal nodes are given by
Eq. 5.39. A vector of parameters is defined such that

η=

 p0
...

pM

 where p j ∈R4 (B.19)

The control variables u and σ are described in terms of Eq. B.19 and basis functions φ(·), such that[
u(t )
σ(t )

]
=

M∑
j=0

p jφ j (t ) t ∈ [0, t f ] (B.20)
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The dynamics of the powered descent problem, which are differential equations in nature, may be expressed
in terms of those coefficients, yielding

yk ≡
r(tk )

ṙ(tk )
z(tk )

=Φk

 r0

ṙ0

lnmwet

+Λ
[

g
0

]
+Ψη k = 1, ..., N (B.21)

[
uk

σk

]
≡

[
u(tk )
σ(tk )

]
=Υη k = 1, ..., N (B.22)

In these equations the matrices Φk ,Ψk ,Λk and Υk are time indexed functions determined based on the the
choice of basis functions. After Blackmore et al. (2010), in the research a linear piecewise nature of these
functions has been adapted. Here-from follows that M = N , such that

φ j (t ) =


t j −t
∆t when t ∈ [t j−1, t j )

t−t j

∆t when t ∈ [t j , t j+1)
0 otherwise

(B.23)

Define some matrices such that

E = [I3×3 03×4] (B.24)

F = [01×6 1] (B.25)

Eu = [I3×3 03×1] (B.26)

Ev = [03×3 I3×3 03×1] (B.27)

Mathematical outline of the time discretized minimum landing error guidance problem

Cost Function:

min
N ,η

∥∥EyN
∥∥2 subject to:

∥∥EuΥkη
∥∥≤ eT

4 Υkη, k = 0, ..., N

ρ1e−z0(tk )
[

1− (F yk − z0(tk ))+ (F yk−z0(tk )2

2

]
≤ eT

4 Υkη≤ ρ2e−z0(tk )
[
1− (F yk − z0(tk ))

]
Eyk ∈ X, k = 1, ..., N

F yN ≥ lnmdry

yT
N e1 = 0

Ev yT
N = 0

yk =Φk

 r
ṙ

lnmdry

+Λk

[
g
0

]
+Ψkη k = 1, ..., N

The above problem can solved highly efficiently with a guarantee for global convergence towards the optimal
solution. Within this framework N replaces time t as the time-of-flight parameter. The methodology for
finding the optimal time-of-flight has been established in Section 5.2.4.
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C
NUMERICAL METHODS

To obtain numerical solutions for the governing equations presented in the chapters on flight dynamics, guid-
ance, navigation & control and autonomous optimization, numerical analysis methods are required. Nu-
merical methods are a combined discipline of mathematics and computational computer sciences, utilized
for the creation, implementation, propagation and analysis of continuous variables problems. Shortly, one
can state that numerical analysis concerns all aspects from theoretical development to the efficient practical
implementation of a problem. As more detailed models of assorted science problems are developed, more
sophisticated numerical analysis methodologies become increasingly needed (Chasnov, 2012). Systems that
undergo some sort of change are commonly described by differential equations. For the problem at hand, i.e.,
planetary precision landing, it has been made clear numerical methods are needed to propagate within the
GNC loop. This appendix focuses on techniques used for integration of the predefined governing equations.

C.1. GOVERNING PRINCIPLES
This section focuses on the important mathematical principles that are connected to the numerical meth-
ods. Some key driving factors are established from which the efficiency and characteristics of a numerical
integrator can be derived. The mathematical definition of a first order ordinary differential equation is given:

y ′ = f
(
x, y(x)

)
(C.1)

To enhance the discussion the assumption is made that y = y(x) is differentiable and x is an independent
variable. However, as the above problem may raise an infinite number of solutions, an additional condition
is established. From this initial condition a unique solution may be derived:

y(x0) = y0 (C.2)

It is also possible to take the above system to a higher order of dimensions, thereby assuming a set n of
ordinary first order differential equations:

y ′
1 = f1(x, y1(x), ..., yn(x))

y ′
2 = f2(x, y1(x), ..., yn(x))

...

y ′
n = fn(x, y1(x), ..., yn(x))

(C.3)

Assuming an unique initial condition exists for each of these differential equations, the system is written in
matrix and vector form:

y′ = f (x,y) (C.4)

y(x0) = y0 (C.5)
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In the vector space system of Eqs. (C.4) and (C.5) the following holds:

y′ = (y ′
1, ..., y ′

n)T

f (x,y) =

 f1(x, y1, · · · , yn
...

fn(x, y1, · · · , yn


y0 = (y10 , ..., yn0 )T

(C.6)

In case the first order differential equation of Eq. (C.1) is considered to be of a general form with order m, the
differential equation reads:

y (m)(x) = f (x, y(x), y ′(x), ..., y (m−1)(x)) (C.7)

Auxiliary functions can be introduced such that the mth order differential equation can be transferred to a
system of first order differential equations. These auxiliary functions are:

z1(x) = y(x)

z2(a) = y ′(x)

...

zm(x) = y (m−1)(x)

(C.8)

The complete system of first order differential equations then reads:

z′ =


z ′

1
...

z ′
m−1
z ′

m

=


z2
...

zm

f (x, z1, z2, · · · , zm)

 (C.9)

The equations of translational motion and rotational motion derived for entry, descent and landing form var-
ious systems of n ordinary differential equations. Both the three as well as the six degree of freedom equations
have been outlined. The former requires the solving of a system of six differential equations while the latter
requires twelve coupled equations at a minimum. In the next section the numerical integrators for solving
these type of equations are outlined.

C.2. NUMERICAL INTEGRATORS
Numerical integration is the process in which approximate solutions are found for definite integrals using
techniques to be discussed in this section. Uberhuber (1997) makes a distinction between univariate and
multiple variable integrals through the terms of definition quadrature and cubature, respectively. The inte-
grators are used for state propagation purposes (Pocha, 1987). In this section the mathematical procedures
related to some types of integration methods are outlined. Even though the Euler integration is not robust
enough for the problem at hand, it is still outlined because of the insight it provides regarding integration
methodologies. The initial value problem Euler integrator is discussed in Section C.2.1. A more sophisticated
form for solving initial value problems is the Runge-Kutta 4 (RK4) method to be delineated in Section C.2.2.

C.2.1. EULER INTEGRATOR
A well-known but in terms of accuracy and stability limited numerical integration method is the one of Euler.
Its advantages are the simple implementation and the fact that it provides a useful starting point for under-
standing integration methods. The essentials of the working principle are based on finding a slope at a certain
point and with a step-size h then calculate a new slope to alter the direction to that desired new slope (Evans,
2009). The equation that describes the general form for integrators and gives and governs the approximation
of the next value is defined:

x(t0 +h) ≈ x0 +hΦ= η(t0 +h) (C.10)

In this equation, x is the physical truth value, x0 the initial value, η the numerical approximation and h the
step-size. It is the increment functionΦ that defines the integration and for the Euler integrator this function
is given in Eq. (C.11).

ΦEuler = ẋ0 = f (t0,x0) (C.11)
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Since the integration is performed over time, the function f is a time-derivative of the vector x and thus a
function of t0 and/or x0. Notice that this method has only been described as it provides insight into the
propagation matter. This research adapted a more robust method, further described in the next section.

C.2.2. RUNGE-KUTTA 4 INTEGRATOR
A quite celebrated numerical method for finding solutions to differential equations is the Runge-Kutta (RK4)
method. It has the advantage that the step length may be adjusted at any time in the computation course.
Also, if implemented correctly, the results are (in a relative sense) quite accurate (Milne, 1950). In a similar
fashion, the RK4 method is based on Eq. (5.1), but the increment function is different from that of Euler. For
the RK4 method the increment function is given in Eq. (C.12). Four different approximations are used to de-
scribe the changes of the parameter(s) during the integration step. These approximations are then averaged.
Notice that this is still a single-step technique as no information comes from xn−1.

ΦRK 4 = 1

6
(k1 +2k2 +2k3 +k4) (C.12)

In this equation ki are time-derivative vectors at various points within the integration step. These vectors are
calculated using the Equations given in C.13.

k1 = f (t0,x0)

k2 = f (t0 +h/2,x0 +hk1/2)

k3 = f (t0 +h/2,x0 +hk2/2)

k4 = f (t0 +h,x0 +hk3)

(C.13)

Notice that the derivatives at t0, t0 +h/2 and t0 +h are used in this integration method.

C.3. STOCHASTIC SIMULATIONS
Stochastic simulations belong to a class of numerical methods in which the behavior of both variables as well
as the system as a whole is assessed in case stochastic (random) probabilities are introduced (Gilmore, 2006).
A broad spectrum of engineering and science problems comprise phenomena that are random in space and
time (Field, 2008). Planetary precision landing is a perfect example of a physical process that involves various
uncertainties. Because the nature of the uncertainties is random, stochastic simulations create a framework
of random values from which outputs are computed and recorded. New random variables are introduced
during each step until a sufficient amount of data is accumulated. Based on the total data output a most
probable conclusion is drawn regarding the likelihood and variety range of the estimates. A stochastic pro-
cess is a mathematical model utilized for conducting the simulation. The Monte Carlo simulation is a very
powerful tool to generate these sample estimates. Across the numerous papers read on planetary precision
landing, the Monte Carlo is by far the most utilized method. This methodology has therefore been adapted
into the research.

C.3.1. MONTE CARLO TECHNIQUE
The Monte Carlo technique is considered to be a type of stochastic sampling technique. The principle is
rather simple: parameters are obtained in a random way for which the outcome of the function is evaluated.
This is repeated for a number of samples after which the absolute minimum from these samples is located.
Commonly, the normal distribution is used for the dissemination of the random values. In probability theory
this continuous probability distribution is also known as the Gaussian distribution with probability density:

f (x|µ,σ2) = 1p
2πσ2

e−
(x−µ)2

2σ2 (C.14)

In this equation µ is the mean of the distribution, σ the standard deviation and σ2 the variance. It is assumed
that the three-sigma rule holds such that all values lay within an empirical treat of 3σ = 99.7% from the mean.
To ensure the usefulness of this method and dub the central limit theory applicable, the number of samples
needs to be sufficiently high. General advantages of the Monte Carlo method are that the full spectrum is
covered with relatively small numbers of samples and the CPU time is limited. Furthermore, it is easy to
implement, check and interpret. Main disadvantages are the fact that the method is not robust and that
the resolution is limited. However, the advantages are of greater value with respect to the disadvantages.
Furthermore, verification through the grid search technique should highlights conceivable flaws.
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This document encompasses a brief descriptive outline regarding the developed modeling and simulation
algorithm for precision landing on planetary bodies. Please notice that these algorithms are only available
for use at NASA’s Jet Propulsion Laboratory and to a limited extent at Delft University of Technology. The
convex optimization guidance method has been adapted during the research conducted at the Jet Propulsion
Laboratory. The absolute soft landing guidance problem is characterized as a finite horizon optimal control
problem. That is, the optimal performance measures for a finite time t = [0, t f ] within system control. All
simulations have been carried out in Matlab, specifically by using the CVX modeling system for convex op-
timization. Part D.1 describes the process for downloading and installing CVX to make Matlab compatible
for running the simulations. To allow for ease of user interface, Part D.2 outlines the general structure of the
contained files. A clear distinction is made between landing on Mars and landing on Titan, of which the con-
tained files have been delineated in Sections D.3 and D.4, respectively. These bodies are of course different
in essence, in the sense that Mars has a rather thin atmosphere for which conveniently rocket thrusters are
utilized in the terminal landing sequence. For Titan on the other hand, a Precision Aerial Delivery Systems
(PADS) parafoil is proposed due its conveniency within the Saturian moon’s thick atmosphere. Yet, the nature
of the (convex optimization) precision landing guidance problem for both celestial bodies is rather similar.

D.1. MATLAB CVX - SETUP PROCESS
This section outlines the setup process for making Matlab compatible with CVX disciplined convex program-
ming. It is important to mention that CVX is not a native Matlab toolbox that can be installed from the Math-
works environment, hence additional yet straightforward steps are required for compatibility purposes. The
process includes a download and several installation steps. For general information regarding CVX Matlab
software for disciplined convex programming, please be referred to http://cvxr.com/cvx/. At the bottom
of the page there is a link to a PDF file that contains an extensive CVX Users’ Guide.

DOWNLOAD
At the time of writing the most current software version release is Matlab CVX 3.0 Beta, which can be down-
loaded from http://cvxr.com/cvx/beta/. The software is compatible with Linux, Mac and Windows 64
bit, and Windows 32 bit. Download CVX for the desired operating system and, if needed, unzip the down-
loaded folder. Make sure that within the main downloaded folder ’cvx’ there is a .m file named: cvx_setup.

INSTALLATION
After completion of the download process, the next step is to (permanently) setup CVX within Matlab. Move to
the Matlab root directory on your device (where Matlab has been installed) and open the ’toolbox’ folder. On
a Windows device the source file is often found in path ’C: \Program Files\MATLAB’. On a Mac device move to
Finder, open Applications, right-click on Matlab and click ’Show Package Contents’. After localizing toolbox,
copy the downloaded ’cvx’ folder (entirely) into the ’toolbox’ folder. Now open the .m file: cvx_setup from
the following path: ’..\Matlab\toolbox\cvx’ and run it from the opened directory (do not copy it elsewhere).
Once opened, click the Matlab run button. Installation hereafter should take several seconds, depending on
the computation speed of the device. After successful installation Matlab returns the following prompt as an
completion response:
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D.2. FILES OVERVIEW
This section provides a higher-level overview of the files to allow interested users to navigate more easily
through the folders. Please be referred to Figure D.1 to follow up with the subsequent outline. The main
folder is named Simulations, after which a first split is made, based on the distinct planetary body, i.e., ei-
ther Mars Landing or Titan Landing. The next division is based on model fidelity. For three-degrees-of-
freedom (3DoF) simulations a process by the name of lossless convexification is adopted, which is a class
of convex optimization utilized to ensure absolute soft landing (zero position error and zero touchdown
velocity). Comprehensive literature and the main Lemma that proofs transfer of the inherently nonconvex
guidance problem to the convex domain without loss in generality can be found at https://doi.org/10.
1109/TCST.2012.2237346. For the successive convex optimization guidance literature, which is basically
an extension of the lossless convex guidance problem that allows for the advanced application of six-degree-
of-freedom (6DoF) high-fidelity dynamics and likewise allows time to be defined as an optimization variable,
please be referred to https://doi.org/10.2514/6.2018-0617. As depicted in the figure, both the Mars
and Titan landing simulations include a distinct Lossless 3DoF and a Successive 6DoF folder. It is impor-
tant to mention that within each of these folders, a folder named Reference can be found which includes
research papers (PDF-files) which have been utilized for that respective simulation. For example, ’..\Sim-
ulations\TitanLanding\Lossless\Reference’ particularly includes literature on the Titan environment, 3DoF
parafoil dynamics, lossless convex optimization, etc. For a comprehensive overview of how all of these refer-
ences have been fused together in the research, the reader is referred to the report.

In the final part of this section the lowest level of Figure D.1 is described. The Guidance for Fuel Optimal
Large Divert (G-FOLD) algorithm is found in the Lossless 3DoF folder, while the full powered descent algo-
rithm is included in the Successive 6DoF folder. Both these Mars landing simulations are to be described in
more detail in Section D.3. In a similar fashion, for Titan landing simulations there is a Guidance for Control
Optimal Large Divert (G-COLD) algorithm within the Lossless 3DoF folder. The full parafoil descent algo-
rithm is to be found in the Successive 6DoF folder. The two latter matters, regarding simulating and model-
ing Titan precision landing, are broadly described in Section D.4. The section on Titan precision landing also
marks the end of this user manual.

https://doi.org/10.1109/TCST.2012.2237346
https://doi.org/10.1109/TCST.2012.2237346
https://doi.org/10.2514/6.2018-0617
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Figure D.1: Overview of the folders contained within the main folder Simulations.

D.3. MARS LANDING SIMULATIONS
This section outlines the Matlab files contained within the Mars Landing folder. All Mars simulations have
been performed as an exercise of algorithm verification. Extensive literature for Mars landing is available and
several flight software has even been validated (such as G-FOLD). Please note that in all the Matlab files com-
ments are included for ease of tracking regarding what is being computed and what variables are relevant.
The section starts with the outline of the G-FOLD algorithm .m files, which is based on lossless convex op-
timization and comes in two types. The second and likewise final part outlines the main successive convex
optimization powered descent algorithm.

1. Guidance for Fuel Optimal Large Diverts
As before-mentioned, the lossless powered descent guidance algorithm adapted in the research is re-
ferred to as G-FOLD. This algorithm can be defined in two fashions. Fuel optimal guidance practically
ensures zero touchdown velocity and zero position error while adhering to the on-board fuel limit con-
straint. This algorithm has been described beneath first. Building further upon this algorithm, mini-
mum landing error guidance simulates cases in which a trajectory with zero error magnitude turns out
to be infeasible. In the latter case the guidance algorithm has to ensure safe landing while minimizing
position error and flying a fuel optimal path.

• Fuel Optimal Guidance
The fuel optimal guidance folder by itself contains three folders: Papers, Simulations and Figures.
The Papers folder basically contains the relevant literature for this particular algorithm. The lat-
ter folder contains the simulations results (i.e., Figures). This section focuses on the Simulations
folder, which contains the .m simulation files. However, in order to follow up with discussion,
please open https://doi.org/10.2514/1.27553, as the algorithm is exactly reproducing the
results in this paper (which moreover can also be found in the Papers folder).

The Simulations folder within the Fuel Optimal folder contains the following elements:

1. Constants
The two files contained within are PDMarsConstants.m and randomposvel.m

* Notice that folder names are marked with color

* Notice that the .m file names are marked with color

https://doi.org/10.2514/1.27553
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PDMarsConstants.m: contains the needed constants for Mars Powered Descent Guidance.
This includes fundamental physical constants, spaceflight constants, Mars bulk parameters
and thruster data of the descent stage vehicle. Comments within the file point out the specific
meaning of variables as well as their units.

randomposvel.m: is a random state (position and velocity) generation file. The generated
states are within a realistic magnitude range (specified in the file for each state element).
This file serves the purposes for testing the robustness of the algorithm by randomly varying
starting states to be able to observe how the guidance system reacts to it.

2. Final thrust, subsurface and glide-slope
Each of these three folders contains two .m files, figureX.m and GFOLD.m. The final thrust
folder additionally also includes plot3D.m

figureX.m: this file contains the code that generates the figures for visualization. The X is a
number which refers to which figure of the earlier defined paper is being reproduced. To clar-
ify with an example: the final thrust folder containts figure5.m, which reproduces figure 5 of
the paper.

GFOLD.m: is the actual working guidance algorithm that utilizes the earlier defined PDMarsCon-
stants.m. Notice that it does not utilize the randomposvel.m, as starting states for this case
are fixed to reproduce the paper figures. The algorithm starts with defining the remaining
constants (vehicle mass, start and final state conditions, gravity vector and time constants).
Optimal time is assumed to be a given in the current case. The remainder of the file includes
the optimal CVX guidance computation sample code for G-FOLD:

1 % Sample of the powered descent guidance algorithm
2 cvx_solver SeDuMi % Self−dual minimization to solve SOCP
3 cvx_begin % I n i t i a l i z e convex optimization
4

5 variables ( ) , maximize ( )
6

7 subject to
8 % I n i t i a l conditions
9 eq ( r ( : , 1 ) . . . , eq ( v ( : , 1 ) . . . , eq ( z ( 1 ) , . . .

10

11 % Final conditions
12 eq ( r ( : ,N) . . . , eq ( v ( : ,N) . . . , eq (u ( : ,N) . . .
13

14 %% Dynamics
15 for i =1:N−1
16 eq ( v ( : , i +1) . . . , eq ( r ( : , i +1) . . . , eq ( z ( i +1) . . .
17 end
18 %% Numerical algorithm
19 for i =1:N
20 %% Control constraint
21 norm(u ( : , i ) ) . . .
22

23 %% Taylor s e r i e s expansion
24 z0 = . . . , z1 = . . . , mu1 = . . .
25

26 % Second−order cone and l i n e a r inequal i ty
27 sigma ( i ) . . .
28 end
29 cvx_end % End convex optimization
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The above code is a sample of the G-FOLD code which has been conferred for explana-
tion purposes. The cvx_solver is defined generally defined first, depending on the applica-
tion. The default solver is SDPT3, used for solving standard semi-definite programs (SDP).
Generally, self-dual minimization (SeDuMi) is faster, through the implementation of a self-
dual embedding technique that performs optimization over self-dual homogeneous cones.
This however comes at the expanse of reliability. As none of the solvers are perfect, the
solver type has been varied throughout the research to find out which solver is preferred
for which application. Following up, cvx_begin tells CVX to start the optimization process.
The variables should be defined, which is this case include position (r ), velocity (v), con-
trol parameter (u), mass logarithm (z) and slack variable (sigma). The cost function in the
above example is defined as maximizing z, which implies the maximization of mass (and
hence the minimization of fuel consumption). The cost function is subject to certain equal-
ity conditions (initial and final), dynamics and a defined numerical algorithm. Please be re-
ferred to the enhancement paper on convex optimization guidance for precision landing:
https://doi.org/10.2514/6.2008-6426. This document perfectly outlines the deriva-
tion of the dynamics, explains why the mass logarithm has been adapted as an optimization
variable and defines the numerical convexification algorithm that naturally follows from that.
The termination of the algorithm is established through cvx_end.

Based on mission requirements, additional state and control constraints can be enforced
within the convex optimization framework. Example of such are the glide-slope constraint
(avoids sub-surface flights through and glide cone at an angle γ) and the pointing constraint
(copes with the requirements for TRN by restricting pointing to a certain maximum angle θ.

plot3D.m: this file is contained in the final thrust folder and plots the motion in 3D Euclidean
space. Notice that this is not a verification algorithm but rather for visualization purposes
only. The guidance algorithm working principle is still operating under the same code.

3. Golden Search
Additional to figureX.m and GFOLD.m, the Golden Search folder includes conditions.m,
GoldSearch.m and minfuel.m.

conditions.m: this .m files adds certain simulations parameters additional to PDMarsCon-
stants.m, which are relevant for this particular simulation.

GoldSearch.m: this applies a Golden Search algorithm (line search) to find the optimal time
of flight. This is briefly explained in the paper. Notice that the Golden Search algorithm has
no theoretical guarantee of finding topt in real-time. This is one of the reasons for applying
successive convexification in a later stage. The GoldSearch.m applies consecutive iterations
of minimum fuel optimizations (using minfuel.m) through applying the golden ratio for con-
vergence to an acceptable threshold value.

minfuel.m: this .m file is a function containing the G-FOLD algorithm in function form (to
allow for ease of iterations). The input values are all defined throughout the other files. The
output is the fuel usage, which is compared relative to earlier computed fuel values. The
GoldSearch.m uses this information to determine the direction in which to convergence.

• Minimum Landing Error Guidance
The minimum landing error guidance algorithm, also referred to as soft landing problem, is an
algorithm that minimizes position error relative to the target in case zero position error turns out
to be infeasible based on the dynamics and fuel limit. In essence it is an extension of the G-FOLD
algorithm, just defined in a slightly different fashion. Likewise, the folder itself contains: Papers,
Simulations and Figures. The Simulations folder contains several of the files which already have
been conferred above: PDGMarsConstants.m, conditions.m, GoldSearch.m and minfuel.m. Ad-
ditionally, a few files are added to simulate the guidance problem, which are: guidance.m, min-
fuelPE.m, plotFuel.m and plotMotion.m.

https://doi.org/10.2514/6.2008-6426
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guidance.m: this is the main algorithm that basically runs all the other files. First, Gold-
Search.m is run to obtain optimal time, followed by minimum landing error guidance (min-
fuelPE.m). The guidance algorithm terminates by running (minfuel.m).

minfuelPE.m: This function computes a minimum fuel trajectory based on a given optimal
time and returns the minimum position error within the fuel limit. This can either be abso-
lute zero or near it (depending on trajectory feasibility). This scenario is realistic based on in
EDL trajectories. The minimization or r from target is subsequently used in minfuelPE.m.
To compute the minimum fuel trajectory within the given feasible range.

plotFuel.m: plots the total fuel consumption for a wide ranges of time to proof that the opti-
mal time found is indeed corresponding to minimum fuel.

plotMotion.m: plots the time history of the motion. This includes horizontal plane transfer,
vertical plane transfer, angle above surface, throttle, position, velocity, acceleration, thrust
angle and rate.

2. Successive Convexification Powered Descent Guidance
Within the successive convex guidance framework, time becomes an optimization variable. Further-
more, six-degree-of-freedom is captured and each state is propagated in a discrete step-wise fashion.
To be able to do so, a first guess is needed regarding all convex variables. This is established through
iterationzero.m, a first iteration of the solution. Notice that is solution can be dynamical inconsistent
and feasible (guaranteed convergence is the power of the successive method). The guidance.m is the
main file that runs the finite horizon optimal control algorithm. In order to follow up with discussion,
please open https://doi.org/10.2514/6.2018-0617. The file motionplots.m is the equivalent of
the earlier delineated plotMotion.m. The file parameters.m defines the simulations parameters. Fi-
nally, to cope with the requirements of 6DoF dynamics, an omega tensor file (omega.m) and a file
computing the direction cosine matrix (CBI.m) are included.

iterationzero.m: this file runs the initial guess guidance algorithm. The control effort multi-
plied by a virtual control parameter is the cost function to be minimized. This virtual control
parameter is needed to make the initial guess a feasible trajectory. The framework is very
similar to the earlier conferred GFOLD.m setup.

guidance.m: the main file runs the first iteration (iterationzero.m), from which it extracts
the relevant parameters needed for the subsequent iterations. To enforce convergence in a
controlled fashion, the change in time, position, velocity and control is restricted between
each iteration. Also, a certain maximum number of iterations is defined in case the threshold
desired tolerance is not reached before. On a side note, the latter has not been encountered
during the research. The convergence requirements are established as follows:

1 for i = 1 :N
2 %% Convex parameter bounds ( enforce convergence )
3 l e ( t f − t fk , 1) ; % Maximum delta time
4 l e (norms( r−rk ) , 1) ; % Maximum delta position norm
5 l e (norms( v−vk ) , 1) ; % Maximum delta v e l o c i t y norm
6 l e (norms(u−uk ) , 1) ; % Maximum delta control norm
7

8 %% I t e r a t i o n conditions
9 i f ( k == kmax) | | ( abs ( ( cvx_optval − cvxk ) ) <=vct )

10 break
11 end
12 end

https://doi.org/10.2514/6.2018-0617
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parameters.m: is the file in which the simulation parameters are defined. This includes vehi-
cle mass data, thruster data, flight conditions, state conditions, gravity vector, flight moment
data and initialization parameters.

omega.m: this function takes the angular velocityω-vector as input and returns theω-tensor,
also defined as the skew-symmetric matrix. This computation is needed in propagation of
quaternion dynamics.

CBI.m: this function takes the quaternion vector as input and returns the direction cosine
matrix. This computation is required in the process of propagating the torque dynamics.

D.4. TITAN LANDING SIMULATIONS
Precision landing on Titan formed the core of the research, as employing convex optimization guidance for
the parafoil terminal descent phase has not been extensively researched before. This section outlines the
Matlab files contained within the Titan Landing folder. The aero-maneuvering dynamics and control formu-
lation for parafoil precision landing on Titan is mainly based on https://doi.org/10.1109/AERO.2019.
8742230. The remainder of the research utilized during the research is contained within the Papers folder.
Anew note that in all the Matlab files comments are included for ease of tracking regarding what is being
computed and what variables are relevant. The section starts with the outline of the G-COLD algorithm .m
files, which is based on lossless convex optimization. The final part outlines the main successive convex
optimization parafoil descent algorithm.

1. Guidance for Control Optimal Large Diverts

As before-mentioned, the lossless parafoil descent guidance algorithm adapted in the research is re-
ferred to as G-COLD. This is defined as such due to the fact that for a parafoil the control effort rather
than the fuel usage is minimized. This algorithm has been simulated in two fashions. There is the Ideal
case, in which it is assumed that there is no wind present in the terminal descent. The Wind inclusion
algorithm assumes the contrary. The files contained for each of these cases are elaborated on beneath.

• Ideal Conditions
Within this folder there are several folders that can be found that include simulation plots and
the .fig files of these respective figures. Please be referred to the earlier mentioned report for an
outline of these simulation results. For the ideal case, there are two main .m files contained that
run the simulation: PDconstants.m and PDalgorithm3D.m. These files contain the respective
constants and main algorithm, respectively.

PDconstants.m: includes the relevant constants needed for the simulation, such as Titan
gravity. Notice that some Martian data is also included to allow for algorithm generalization
in a later stage. In this way the algorithm can be run for either planetary body without having
to worry about defining each planetary bulk variable at each time.

PDalgorithm3D.m: runs the main guidance simulation based on a reduced 3DoF model. Ini-
tial position and velocity state conditions are generated in a random fashion, based on real-
istic magnitudes for Titan terminal descent. The cost function within this framework is the
minimization of the control effort. Finally, this file also generates a 3D-motion plot and the
time history of trajectory, position and velocity.

• Wind Inclusion
Contains a more sophisticated 3DoF model of the parafoil landing sequence. Anew, there is fig-
ures and plots folder, containing .fig and .png simulation files, respectively. Besides the .m files
PDconstants.m and PDalgorithm3D.m that this folder also contains, there are additional ones.
These are:
parameters.m, angleofattack.m angleofsideslip.m, CDc.m, CL.m, CY.m, density_titan.m and
wind_titan.m. Each file is briefly described to allow for ease of user interface:

https://doi.org/10.1109/AERO.2019.8742230
https://doi.org/10.1109/AERO.2019.8742230
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parameters.m: includes the additional relevant constants needed for the simulation. These
are the aerodynamic elements, discretization scheme. This file runs randomstate.m, which
are randomly generated conditions that have been saved to maintain consistent starting con-
ditions throughout the simulation to allow for more compelling comparisons.

angleofattack.m: this function takes the spacecraft velocity and wind velocity as input values,
from which it computes the effective velocity. Subsequently it calculates the angle-of-attack
α.

angleofsideslipe.m: this function takes the spacecraft velocity and wind velocity as input val-
ues, from which it computes the effective velocity. Subsequently it calculates the side-slip
angle β.

CDc.m: this function takes the angle-of-attack and individual drag coefficient contributions,
from which it computes the drag coefficient. Please notice, this does not include the drag co-
efficient contribution due δs , because this is a convex optimization variable defined within
the main framework.

CDc.m: this function takes the angle-of-attack and individual lift coefficients contributions,
from which it computes the lift coefficient. Please notice, this does not include the lift coeffi-
cient contribution due δs , because this is a convex optimization variable defined within the
main framework.

CY.m: this function takes the side-slip angle and individual side-force coefficients contribu-
tions, from which it computes the total side-force coefficient.

density_titan.m this function takes the flight altitude and returns the local air density on
Titan. Be referred to https://doi.org/10.1016/j.pss.2012.05.015 for information re-
garding computing environmental properties of the Saturnian moon.

wind_titan.m this function takes the flight altitude and returns the wind velocity in three di-
rections: zonal, meridional and zonal. Likewise, be referred to https://doi.org/10.1016/
j.pss.2012.05.015 for information regarding computing environmental properties of the
Saturnian moon.

2. Successive Convexification
In the final section of this algorithm outline, the successive parafoil descent guidance algorithm is pre-
sented. Within the successive guidance framework, time is an optimization variable. Six-degree-of-
freedom is captured and each state is propagated in a discrete step-wise fashion. This requires a first
guess regarding all convex variables. This is established through iteration.m, a first iteration of the so-
lution. Like for Mars case, the guidance.m is the main file that runs the finite horizon optimal control
algorithm. Also, to cope with the requirements of 6DoF dynamics, an omega tensor file (omega.m)
and a file computing the direction cosine matrix (CBI.m) are included. The file motionplots.m plots
the desired time histories of the motion. The file parameters.m defines the simulations parameters.
There are several files from the G-COLD case which are anew applied. Additionally, there are more
aerodynamic computation files included to cope with the requirements for 6DoF dynamics. These are:
aeroparameters.m, aerodynamics.m, flightpath.m, Rbn.m, Rpw.m and quat2eul.m:

aeroparameters.m: includes the additional relevant constants needed for the simulation. These
are the parafoil properties, (apparent) mass and inertia computations. This file also includes
the needed distances between spacecraft part and the center of mass to be able to compute the
parafoil moments.

aerodynamic.m: this file runs an initial guess on the aerodynamic forces and moments for both
parafoil and payload. It largely utilizes the aero-parameters priory established.

https://doi.org/10.1016/j.pss.2012.05.015
https://doi.org/10.1016/j.pss.2012.05.015
https://doi.org/10.1016/j.pss.2012.05.015
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flightpath.m: this function takes the spacecraft velocity and wind velocity as input values, from
which it computes the effective velocity. Subsequently it calculates the flight-path angle γ.

Rbn.m: this function computes the transformation matrix from the navigation to the body frame.

Rpw.m: this function computes the transformation matrix from the wind to the parafoil frame.

Rpw.m: this function computes the transformation matrix from quaternions to Euler angles.

Within the convex optimization frame, the aerodynamic force naturally plays a prominent role in parafoil
dynamics. The dynamics is propagated in a discrete fashion. This includes a dynamic pressure q com-
putation, local air velocity vu , the aero-control coefficients, and the wing control parameters δs and δs .
Furthermore, the value for the payload drag coefficient is included. At last, the total drag value is mul-
tiplied by 1.3 to account for suspension line drag contribution. By mentioning this, the user manual of
the algorithm is concluded.
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E
ADDITIONAL VERIFICATION RESULTS

As continuation of Chapter 6, this appendix provides several additional verification results. These results
further establish the proper working of the designed algorithm and are presented for the enhancement of
future research on the matter of planetary precision landing. For a detailed outline of the algorithm itself,
the reader is referred to Section 6.1, Section 6.2 and Appendix D. For each figure conferred in this appendix,
a short description is provided regarding the results. This includes a short descriptive outline of the main
similarities and differences with respect to industry’s best practise on the subject matter. The caption of each
figure refers to the respective paper of which the results have been reproduced.

• Figure E.1: This figure marks the run of the plain convex optimization algorithm, thus without any
constraints. From the position profile it is observed that the spacecraft gets below the surface, which
obviously is not a desired phenomenon. This further establishes the need for the glideslope constraint.
The results are near identical to the ones presented in Açıkmeşe and Ploen (2007).

• Figure E.2: Different from the previous figure, this figure contains a glide-slope constraint at angle of
4°. This becomes evident from the position figure, as the trajectory remains well above the surface
throughout the entire simulated flight. Likewise, results are near identical to the ones presented in
Açıkmeşe and Ploen (2007).

• Figure E.3: In correspondence with Fig. E.2, this figure depicts the tangent line due the glide-slope
constraint in two-dimension Euclidean space. This figure corresponds exactly to the result obtained
from the algorithm of Açıkmeşe and Ploen (2007).

• Figure E.4 and Fig. E.5: These figures correspond to the results of Blackmore et al. (2010). However,
there is a distinct difference as the algorithm of the paper reports the trajectory to be infeasible, ensur-
ing a safe landing at a distance of 404 m from the target. The designed algorithm however managed to
guarantee soft landing, thus exactly at the predefined landing location. The optimal time-of-flight of 78
s and fuel usage of 400 kg however are in correspondence. Notice that for this simulation the velocity
was altered to equal to ṙ0 = [−75,40,100]T , such that there is an initial velocity vector with non-zero
elements in all three directions of Euclidean space.

For convenience purposes Tab. 6.2 is anew provided without cross-reference nor caption

Parameters Fig. 5 Fig. E.1 Fig. 6 Fig. 6.2 Fig. 7 Fig. E.2 Fig. 10 Fig. 6.3
Optimal time (s) 72 73 75 75 81 81 69 71
Fuel consumption (kg) 387.9 389.4 390.4 391.8 399.5 399.9 293.6 293.4

Conclusively it is again emphasized that based on the five unit verifications outlined in Section 6.2, the
designed algorithm has been extensively verified. Based on this verification the algorithm has been extended
to become compatible for landing on Titan using a parafoil. Furthermore, the algorithm has been extended
to include obstacle avoidance guidance to ensure mission safety in multiple mission scenarios.

151



152 E. ADDITIONAL VERIFICATION RESULTS

Figure E.1: Mars in-plane manoeuvre with no constraints enforced.. Time history of the position, velocity states, acceleration, net force,
throttle setting and pointing orientation. Figures is correspondence with Fig. 5 of Açıkmeşe and Ploen (2007).
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Figure E.2: Mars in-plane manoeuvre with the glide-slope constraint enforced. Time history of the position, velocity states, acceleration,
net force, throttle setting and pointing orientation. Figures is correspondence with Fig. 7 of Açıkmeşe and Ploen (2007).
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Figure E.3: Visualization of the glide-slope constraint, after Fig. 8 of Açıkmeşe and Ploen (2007).

Figure E.4: Mars out-of-plane manoeuvre with the glide slope constraint enforced. Time history of the position, velocity states, acceler-
ation, thrust angle, throttle setting and angle above surface. Figures is correspondence with Fig. 3 of Blackmore et al. (2010).
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Figure E.5: Mars out-of-plane manoeuvre with the glide slope constraint enforced. Horizontal and vertical plane transfer. Figures is
correspondence with Fig. 3 of Blackmore et al. (2010).



156



BIBLIOGRAPHY
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