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A B S T R A C T

Smart robotics will be a core feature while migrating from Industry 3.0 (i.e., mass manufacturing) to Industry
4.0 (i.e., customized or social manufacturing). A key characteristic of a smart system is its ability to learn.
For smart manufacturing, this means incorporating learning capabilities into the current fixed, repetitive, task-
oriented industrial manipulators, thus rendering them ‘smart’. In this paper we introduce two reinforcement
learning (RL) based compensation methods. The learned correction signal, which compensates for unmodeled
aberrations, is added to the existing nominal input with an objective to enhance the control performance. The
proposed learning algorithms are evaluated on a 6-DoF industrial robotic manipulator arm to follow different
kinds of reference paths, such as square or a circular path, or to track a trajectory on a three dimensional surface.
In an extensive experimental study we compare the performance of our learning-based methods with well-known
tracking controllers, namely, proportional-derivative (PD), model predictive control (MPC), and iterative learning
control (ILC). The experimental results show a considerable performance improvement thanks to our RL-based
methods when compared to PD, MPC, and ILC.

1. Introduction

In Industry 4.0, prominently referred to as the fourth industrial
revolution, the existing manufacturing processes will be extensively
computerized. This will lead to a ‘smart factory’ which is characterized
by modularity, inter-operability, and real-time capabilities. Thanks to
these features, the existing mass manufacturing methodology will be
eventually replaced by social or custom manufacturing. Manufacturing
firms including small and medium enterprises can gain easy and af-
fordable access to robotic technologies that can be customized to meet
their needs (Rüßmann et al., 2015). To get superior cost efficiency and
to provide better quality of the manufactured products, for each task
the industrial robot must be well calibrated. This is also essential to
ensure high accuracy and precision (Conrad et al., 2000). Unfortunately
calibration is a time consuming process hence in order to achieve
faster deployment, the robotic industry may need to change from
current fixed control architecture to a flexible control framework (Lu,
2017). That is, an industrial robot which is designed for a fixed and
repetitive task must be replaced by a ‘smart manipulator’. Here, a smart
manipulator is defined as a robotic manipulator that can utilize the
operational data to self-optimize. Additionally, a smart manipulator
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full disclosure statements refer to https://doi.org/10.1016/j.engappai.2018.11.006.
∗ Corresponding author.

E-mail address: snageshr@ford.com (S.P. Nageshrao).

must have the capability to learn and perform a desired task without any
explicit task-specific controller. In this work, we augment the standard
feedback controller with learning-based compensators that self-optimize
to provide optimal performance.

Feedback control methods have been widely used in manufacturing
robotics, particularly in motion control problem such as tracking.
Precise reference tracking is one of the foremost requirements in the
manufacturing robotic applications. This will enable the manipulator
arm to move accurately along a predefined trajectory. It has been an
active research area for more than three decades (Lewis et al., 2003).
Numerous examples of tracking applications using manipulator arms
range from simple tasks such as pick-and-place in packaging industry
to more complex tasks such as deburring, welding or printing on an
irregular surface.

Control methods for reference tracking can be broadly classified into
model-based methods (An et al., 1988) and model-free methods (Long-
man, 2000). For many model-based control approaches, closed-loop
stability of the manipulator system can be proven. However, the perfor-
mance of a manipulator arm, being a physical system used in a complex
environment, is often stymied by system non-linearities, sensor noise,
and external disturbances. These aberrations can be tedious to model
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and are difficult to compensate. If they are not corrected appropriately,
model uncertainties can lead to degradation of performance during the
course of operation (Murray et al., 1994). The current trend in manu-
facturing requires frequent re-programming of robots, this manual task-
specific modeling and tuning is prohibitively expensive. Even an initially
well-performing model-based controller provided by the manufacturer
may degrade over time. This effect can be due to changes in physical
characteristics of the manipulator such as, deteriorated servos, worn
out gears, etc. The subsequent re-modeling or re-tuning of the model-
based controller can be time consuming and costly. Some aspects of
this problem can be addressed by using model-free methods such as
learning-based control techniques.

Two of the well-known learning-based control techniques are itera-
tive learning control (ILC) (Bristow et al., 2006) and repetitive control
(RC) (Cuiyan et al., 2004). In ILC the objective is to minimize the track-
ing error iteratively. ILC works as follows, first the controller executes a
given task, calculates the tracking error, and uses the error to obtain the
control signal for the next iteration. This process is repeated until the
error is within an acceptable bound. ILC is prominently used to achieve
tracking and/or disturbance rejection of a periodic signal. However,
ILC requires the same initial position and velocity of the system in
every iteration. For various applications such as manufacturing this
requirement can be difficult to satisfy. Repetitive control is based on
a similar principle. Additionally, in RC the initialization problem of
ILC is addressed by using the internal model, however, this requires
the reference trajectory to be periodic. Because of this, a number of
control characteristics such as the convergence property needs to be
treated differently (Longman, 2000). Also, it is nontrivial to incorporate
a measure of optimality when using ILC or RC for any generic nonlinear
system.

The stated problem can be (partially) rectified by augmenting a
nominal controller with learning capabilities resulting in a combination
of model-free and model-based methods (Nguyen-Tuong and Peters,
2010). This leads to a self-adjusting controller that can ensure opera-
tional and performance constraints throughout the operational life span
of a manipulator arm. The self-adjusting property can be considered as
an extra degree of freedom and can be used to compensate for model
and parametric uncertainties.

In this paper, we propose two novel reinforcement learning (RL)
based methods to improve the performance of a nominal tracking
controller. RL is a semi-supervised machine learning approach that is
prominently used in sequential decision making problems, where an
agent1 is required to interact and control an uncertain or unknown
system. The agent learns to optimize its behavior by maximizing a prede-
fined performance measure. RL has been successfully applied in a wide
variety of applications, e.g., games (Tesauro, 1995), human computer
interaction (Isbell et al., 2006), and general purpose learning (Mnih
et al., 2015).

RL is also prominently used as a control approach in robotics (Kober
et al., 2013); well-known examples are autonomous helicopter con-
trol (Coates et al., 2010), humanoid robot (Peters et al., 2003), soccer
robot (Duan et al., 2007), and manipulators (Bayiz and Babuska, 2014;
Bucak and Zohdy, 2001). However, in spite of these promising results,
applications of RL in industry or to industrial robotics are rather limited.
This can be attributed to the lack of extensive experimental evaluation
of RL-based reference tracking methods. The purpose of this article is to
bridge this gap and to demonstrate the feasibility of RL in real-world
applications such as industrial manipulators. The framework we use
is based on the actor-critic scheme that was introduced in Bayiz and
Babuska (2014). A major advantage of our methods is that they can be
used to augment any existing, stabilizing feedback controller such as PID
or LQR. Both simulation and experimental studies have shown a rela-
tively safe learning, compared to pure RL-based control. Additionally, if

1 In this article, the term agent is synonymous with actor and controller, and
are used interchangeably.

model-free control, e.g., PID, is used for nominal operation, then there
will be no explicit need to identify/learn a system model.

The main contributions of this paper are as follows.

• We extend our initial results from Pane et al. (2016). Based
on the RL-based control input compensator from Pane et al.
(2016), in this work a novel RL-based method, called the reference
compensation method, is developed.

• An extensive experimental evaluation of the introduced methods
is performed on a 6-DoF industrial robot, the UR5. The control
objective is to follow different types of reference paths, like a
square or a circular path, or to track a trajectory on a curved three-
dimensional surface.

• The methods developed are compared with well-known tracking-
control methods namely, PD, MPC and ILC. PD is used as a baseline
for model-free, non adaptive control method, while MPC is used as
a reference for model-based control framework and finally ILC is
chosen as a baseline for model-free and adaptive method. In Pane
et al. (2016) we only compared against PD.

The rest of paper is organized as follows. Section 2 gives an in-
troduction to RL. Following that, in Section 3, the proposed RL-based
methods are explained. The implementation of the methods to control a
six DoF manipulator and a comparison with PD, MPC, and ILC is given in
Section 4. Finally, Section 5 concludes the paper with a note on possible
future research.

2. Reinforcement learning preliminaries

Reinforcement learning is an online data-driven machine learning
method that enables an agent to perform a desired control task without
any prior knowledge of the system’s dynamics. This section gives a brief
introduction on the theory of reinforcement learning and of the actor-
critic method.

2.1. Introduction to RL

In a reinforcement learning process, an agent learns a specific task
by interacting with its environment. The learning process, assuming a
discrete-time setting, is as follows. At every time step 𝑡 the agent applies
an action 𝑢𝑡 ∈ R𝑚 which is a function of the system state 𝑥𝑡 ∈ R𝑛. This
results in the state transition of the environment to a new state 𝑥𝑡+1,
and the agent also receives a numerical reward 𝑟𝑡+1 ∈ R. This process is
repeated for 𝑇𝑠 samples, which is referred to as a learning episode.

The goal is to learn a controller, also called the policy 𝑢 = 𝜋(𝑥), so
as to maximize the cumulative discounted sum of rewards, termed the
return 𝑅𝜋 :

𝑅𝜋 = E𝜋

[

𝑟𝑡+1 + 𝛾𝑟𝑡+2 + 𝛾2𝑟𝑡+3 +⋯ =
𝑇𝑠
∑

𝑘=0
𝛾𝑘𝑟𝑡+𝑘+1

]

(1)

with the scalar constant 𝛾 ∈ [0, 1) is the discount factor.
In most RL methods, the learning process is modeled as a Markov

decision process (MDP) (Sutton and Barto, 1998). Mathematically, an
MDP is represented as a tuple ⟨𝑋,𝑈, 𝑓 , 𝜌⟩ whose elements are: the state
space𝑋, the action space 𝑈 , the state transition function 𝑥𝑡+1 = 𝑓 (𝑥𝑡, 𝑢𝑡),
and the reward function 𝜌 ∶ 𝑋 × 𝑈 → R providing the instantaneous
reward 𝑟𝑡+1. The reward function is devised by the design engineer as per
the control objective. The mathematical definition of MDP may include
the discount factor 𝛾 (Mansley et al., 2011) and the control horizon
𝑇𝑠 (Coates et al., 2010) as additional elements of the tuple.

If the agent follows a certain policy 𝜋, the return function (1) can be
formulated in a recursive form, thus resulting in the value function and
Bellman equation in the form:

𝑉 𝜋 (𝑥) = E𝜋
[

𝜌
(

𝑥, 𝜋(𝑥)
)

+ 𝛾𝑉 𝜋 (𝑥′)
]

.

The value function 𝑉 𝜋 gives the cumulative reward (1) from certain
state 𝑥 ∈ 𝑋 and following the policy 𝜋 from that state. In RL algorithms,
the objective is to find a policy 𝜋∗ that maximizes the value function.
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Fig. 1. Actor critic structure (diagram reproduced from Grondman et al. (2012a)).

According to Bellman’s optimality principle, the optimal value func-
tion is

𝑉 ∗(𝑥) = max
𝑢

(

𝜌(𝑥, 𝑢) + 𝛾𝑉 ∗(𝑓 (𝑥, 𝑢)
)

)

(2)

where ∗ denotes the optimality. The optimal policy 𝜋∗ can be derived
from 𝑉 ∗ (Sutton and Barto, 1998). Most of the widely used RL methods
iteratively improve the value function and the policy until the optimality
condition is satisfied.

2.2. Actor-critic method

Actor-critic (AC) is one of the solutions to the RL problem based on
the temporal difference learning approach (Grondman et al., 2012a).
In AC a separate policy (actor) and a value function (critic) are learned
simultaneously. Their relation to the environment (process) is visualized
in Fig. 1. The AC method works as follows: at time step 𝑡 the actor senses
the current system state 𝑥𝑡 and applies an action 𝑢𝑡 based on policy 𝜋.
This leads to a new system state 𝑥𝑡+1 and a numerical reward 𝑟𝑡+1. Using
this the temporal difference (TD) error 𝛿 at time 𝑡 is calculated as

𝛿𝑡 = 𝑟𝑡+1 + 𝛾𝑉 (𝑥𝑡+1) − 𝑉 (𝑥𝑡). (3)

This indicates how well the value function 𝑉 satisfies the Bellman
optimality (2) (Sutton and Barto, 1998). Using the TD error, the critic
updates its estimate of the optimal value function. An action 𝑢𝑡 that
results in a positive TD, 𝛿𝑡 > 0, is favorable as it performs better than
expected, hence it must be given a higher preference by the agent. This
is achieved by updating the actor to be more preferential for 𝑢𝑡 when
it encounters a similar state 𝑥𝑡. Conversely, the agent should prefer an
action less when it results in a negative TD, i.e., 𝛿𝑡 < 0.

For continuous state and action spaces, such as in the case of a
robot manipulator arm, the actor and critic need to be approximated.
For this purpose, we use linear-in-parameter approximators with an a
priori defined basis function vector and a yet to be learned unknown
parameter vector. A generic function approximator 𝐹 (𝑥) is denoted by
𝐹 (𝑥, 𝜓) = 𝜓⊤𝜙(𝑥), where 𝜓 ∈ R𝑛p is the unknown parameter vector of
dimension 𝑛p and 𝜙(𝑥) ∈ R𝑛p is the user-defined known basis function
vector. Using the linear in parameters feature the derivative of 𝐹 (𝑥, 𝜓)
is 𝜕𝐹 (𝑥, 𝜓)∕ 𝜕𝜓 = 𝜙(𝑥). In this work we have used radial basis function
(RBF) given by �̃�(𝑥) = 𝑒−0.5(𝑥−𝑐)⊤𝐵−1(𝑥−𝑐) where 𝑐 ∈ R𝑛 is the center
and 𝐵 ∈ R𝑛×𝑛 the covariance matrix of the RBF. The basis function
is normalized (Grondman, 2015) 𝜙b𝑖 (𝑥) = �̃�b𝑖 (𝑥)

/

∑𝑛p
𝑗=1 �̃�b𝑗 (𝑥) where b

signifies which entity it belongs to, i.e., actor a or critic c, for the 𝑖th
element of the RBF vector. The actor and critic are approximated as

�̂�(𝑥, 𝜗) = 𝜗⊤𝜙a(𝑥), (4)

𝑉 (𝑥, 𝜃) = 𝜃⊤𝜙c(𝑥), (5)

respectively, where 𝜗 ∈ R𝑛a and 𝜃 ∈ R𝑛c are the unknown actor and
critic parameters, respectively.

The vanilla actor-critic method, which is used in this work, is given
in Algorithm 1. A Gaussian exploration noise 𝛥𝑢𝑡 is added to the output
of the actor, i.e., 𝑢𝑡 = �̂�(𝑥𝑡, 𝜗𝑡) +𝛥𝑢𝑡 (see line 10 in Algorithm 1). Thanks

Algorithm 1 Actor-critic algorithm.
1: Initialize 𝜆, 𝛾, 𝛼𝑎, 𝛼𝑐
2: Initialize 𝜗0, 𝜃0
3: for each episode do
4: Initialize 𝑥0
5: Obtain a random initial action 𝑢0
6: Initialize eligibility trace 𝜁0 = 0
7: 𝑡 ← 0
8: repeat
9: calculate the exploration term 𝛥𝑢𝑡

10: calculate the current action 𝑢𝑡 = �̂�(𝑥𝑡, 𝜗𝑡) + 𝛥𝑢𝑡
11: apply 𝑢𝑡, measure 𝑥𝑡+1
12: obtain reward 𝑟𝑡+1 = 𝜌(𝑥𝑡+1, 𝑢𝑡)
13: 𝛿𝑡 = 𝑟𝑡+1 + 𝛾𝑉 (𝑥𝑡+1, 𝜃𝑡) − 𝑉 (𝑥𝑡, 𝜃𝑡)

14: 𝜁𝑡+1 = 𝜆𝛾𝜁𝑡 +
𝜕𝑉 (𝑥,𝜃)
𝜕𝜃

|

|

|

|𝑥=𝑥𝑡 ,𝜃=𝜃𝑡
15: 𝜃𝑡+1 = 𝜃𝑡 + 𝛼𝑐𝛿𝑡𝜁𝑡+1
16: 𝜗𝑡+1 = 𝜗𝑡 + 𝛼𝑎𝛿𝑡𝛥𝑢𝑡

𝜕�̂�(𝑥,𝜗)
𝜕𝜗

|

|

|

|𝑥=𝑥𝑡 ,𝜗=𝜗𝑡
17: 𝑡 ← 𝑡 + 1
18: until t = 𝑇𝑠 number of samples
19: end for

to the exploration 𝛥𝑢𝑡 an agent can visit various states multiple times.
For a given approximated value function (5) at state 𝑥𝑡+1, reward 𝑟𝑡+1,
and value at state 𝑥𝑡, i.e., 𝑉 (𝑥𝑡, 𝜃𝑡), the TD-error 𝛿𝑡 in (3) can be easily
obtained (see line 13). Eligibility traces 𝜁𝑡, are used to increase the
convergence rate of the critic (Sutton and Barto, 1998; Grondman et al.,
2012b). Finally, the actor and critic parameters, 𝜗 and 𝜃, are updated
using the TD-error (see line 15 and 16 in Algorithm 1) (Grondman et al.,
2012b).

3. RL compensation methods

In this section, we present the two control methods, namely, RL-
based input compensation and RL-based reference compensation. We
start by deriving a general framework which incorporates the RL com-
pensation into a nominal feedback controller. Afterwards, we continue
on to a detailed explanation of each method.

3.1. General framework

Let the dynamic model of the manipulator arm in discrete-time be

𝑥𝑡+1 = 𝑓 (𝑥𝑡, 𝑢𝑡) (6)

where 𝑓 ∶ R𝑛×𝑚 → R𝑛 is an unknown nonlinear function of system state
𝑥 and control input 𝑢. The discrete-time assumption can be justified due
to the computer control of the manipulator arm. The system output is

𝑦𝑡 = 𝐶𝑥𝑡 (7)

where 𝑦 ∈ R𝑙 and 𝐶 ∈ R𝑙×𝑛 denote the output and output matrix
respectively. For accurate tracking the output 𝑦 must follow a given
reference trajectory 𝑦ref ∈ R𝑙. We assume an existing nominal feedback
controller

𝑢 = 𝑔(𝑦ref − 𝑦) (8)

where 𝑔 ∶ R𝑙 → R𝑚 is a function of the tracking error 𝑒 = 𝑦ref − 𝑦.
The existing controller 𝑔 is assumed to include a feedforward term that
cancels the various forces acting on the manipulator arm, e.g., gravity
and Coriolis terms. Typically, this controller is provided by the robot
manufacturer. However, as the extended operation can lead to wear
and tear, an existing nominal feedforward controller may no longer
compensate for the changes in the dynamics. This will result in a
deteriorated or unacceptable control performance.
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Fig. 2. RL control input compensation framework for a 6-DoF robot, e.g., the UR5. A RL-based compensator is learned for each joint separately using the actor-critic framework. Here
the correction is added to the control action.

Fig. 3. RL reference compensation framework for the joint space trajectory. In this case, the method is applied to a 6-DoF robot, e.g., the UR5. A RL-based compensator is learned for
each joint separately using the actor-critic framework. Here the correction is added to the reference signal.

Fig. 4. RL reference compensation framework for the Cartesian space trajectory. A RL-based compensator is learned for each Cartesian direction separately using the actor-critic
framework. Here the correction is added to the reference signal.

In this paper we propose two RL based compensation methods that
can reduce the tracking error thanks to their online learning capabilities.
The first approach is called the reinforcement learning based control input
compensation method and was introduced in Bayiz and Babuska (2014),

where model learning AC (Grondman et al., 2012b) was used to learn

a compensator for a 1-DoF robot in a simulation environment. In this

paper, we use the vanilla actor-critic method instead of the model
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learning AC. This will reduce the number of parameters to be learned,
thus simplifying the learning algorithm.

A correction signal is added to the nominal control input. The
resulting control input to the system at time 𝑡 is

𝑢𝑡 = 𝑔(𝑒𝑡) + ℎ(𝑒𝑡) (9)

where ℎ ∶ R𝑙 → R𝑚 is a yet to be learned RL agent. Similar to the
nominal controller, the RL policy ℎ is also a function of the tracking
error 𝑒.

The second approach is called the reference compensation method.
As the name suggests, the correction is added to the reference signal
instead, resulting in a modified reference

�̃�ref 𝑡 = 𝑦ref 𝑡 + 𝑝(𝑒𝑡) (10)

where 𝑝 ∶ R𝑙 → R𝑙 is an error dependent RL-based reference compen-
sator.

The compensators ℎ and 𝑝 are parameterized in terms of the predeter-
mined basis function vector and the parameter vector to be learned, see
(4). Similarly, the value function (critic) 𝑉 is also approximated using a
function approximator (5).

Apart from acting on a different state (reference signal or control
input, which in our experiments correspond to position and velocity
respectively), the two methods also differ in the space of signal to
be compensated. While the control input compensation only allows
to compensate in joint space, the reference compensation can provide
corrections in either joint or Cartesian space. Furthermore, as will be
explained in more details in the following sections, our experiments
show that there are trade-offs between the two methods. The RL input
compensation generally results in a lower tracking error, but introduces
a higher amplitude of jitter in the presence of noise/disturbance. The
RL reference compensation converges faster, but the error is larger and
the rise-time is slower.

3.2. RL-based input compensation method

For the manipulator arm, the RL based input compensator is formu-
lated as a function of the joint space error and its derivative. Therefore,
the RL state is

𝑥 =
[

𝜃ref − 𝜃
�̇�ref − �̇�

]

=
[

𝑒𝜃
�̇�𝜃

]

, (11)

where 𝜃, �̇� ∈ R are the position and velocity of the arm, and 𝑒𝜃 ∈ R
is joint error. In Bayiz and Babuska (2014) the reference signal was
also included while formulating the input compensator. Including the
reference signal has the drawback that a different RL compensator has
to be learned whenever a new reference trajectory is provided.

A major advantage of the input compensation framework is its
scalability, i.e., it can be applied to a multiple DoF manipulator arm in a
straightforward fashion. For instance, if we apply this method to a 6-DoF
UR5 robot, a separate RL compensator is learned for each joint, resulting
in a total of 6 ACs. A schematic representation of the RL based input
compensation framework is given in Fig. 2. As depicted in the diagram,
the compensation signal 𝛥�̇�𝑖 is added to the control input of each joint,
i.e., 𝑢 = �̇�ref . This signal is the output of the learned compensation
policy ℎ which is a function of the state 𝑥 (see (9) and (11)). Following
the actor-critic scheme explained in Section 2.2 and Algorithm 1, the
policy is approximated by parameterizing a number of basis functions.
Furthermore, the resulting compensated control signal ̃̇𝜃ref is bounded
by saturation limits in order to ensure safe operation of the systems.

3.3. RL-based reference compensation method

Instead of modifying the control signal, the second method directly
compensates the reference signal fed to the system. Depending on the
tracking task, the correction signal can be added either to the joint
space reference or to the Cartesian space reference. Figs. 3 and 4 shows

the diagram of the RL reference compensation applied to the joint and
Cartesian space respectively.

The RL based joint space reference compensator is a function of joint
space error and its derivative. The RL state becomes

𝑥 =
[

𝑒𝜃
�̇�𝜃

]

(12)

where 𝑒𝜃 = 𝑟 − 𝑦 is the joint space error. For the Cartesian space
counterpart, the RL state is a vector of Cartesian error and velocity given
by

𝑥 =
[

𝑒𝑤
�̇�

]

(13)

where 𝑒𝑤 and �̇� are the error and the velocity in one of the Cartesian
axes respectively.

Similar to the RL-based control input compensation, the correction
policy is learned by using one of the above state vectors as its variable.
As the learning progresses, improved approximations of the policy
functions are obtained by adjusting the basis functions weights.

Compensating in a different signal space may require different
number of AC agents. For the joint space compensation method, the
required number of learning agents is the same as the number of DoFs.
For the Cartesian space compensation method, at most three RL-based
compensators are needed. The choice is generally dictated by the trade-
off between a fast response of the system and the oscillatory behavior
caused by the measurement noise. This trade-off will be a topic of the
discussion in the next section.

4. Experimental results

In this section, experimental evaluations of the proposed methods
are presented. We start by describing the robot setup and then we define
the different tracking references used for evaluation. Following this we
briefly introduce the three benchmark controllers: PID, MPC, and ILC.
Finally, we analyze the tracking results of the RL methods in comparison
to the benchmark controllers.

4.1. UR5 robot

The UR5 is a 6-DoF industrial manipulator produced by Universal
Robots (see Fig. 5). The robot has a manufacturer-provided, internal
controller to compensate the gravity and Coriolis forces. The controller
and the robot model are not available due the manufacturer’s propri-
etary reasons. This controller can hence be considered as a black-box
system.

The UR5 is chosen as the platform for a robotized 3D printer system
that was developed at TU Delft. A print head and a laser scanner sensor
are attached to the robot’s end-effector. The objective is to print on a 3D
curved surface by taking the advantage of the manipulator arms large
workspace. First a CAD model of the 3D surface is built by using the
laser scanner. The model is then used in the subsequent printing stage.

The UR5 can be controlled by sending a velocity or position com-
mand either in the joint or Cartesian coordinates. In this work, we
choose joint-space velocity command since it results in a smoother
motion and also avoids singularity problems. As a consequence of this
control input, an implementation of an external feedback controller to
track the position reference is required.

4.2. Tracking tasks

Three different tracking tasks have been designed to assess the
performance of the learning compensator. The first task is to track a
square-shaped trajectory in the 𝑥−𝑧 plane with the objective to minimize
the 𝑧 axis error (see Fig. 5 for the orientation of the robot’s axis frames).
The reference trajectory is first generated in the Cartesian space and
then transformed to the joint space by using inverse kinematics. In the
second task, the reference is a circular trajectory in the 𝑥–𝑦 plane. The
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Fig. 5. The UR5 Robot. Left: The joint’s axis positioning and the reference frame used in
this paper. The joints in alphabetical order (A to F): base, elbow, shoulder, wrist 1, wrist
2, and wrist 3. Picture is courtesy of Universal Robots. Right: the 3D printing system with
the robot moving on top of the surface of a curved object.

objective is to minimize both the 𝑥 and 𝑦 error. For the last task, the
robot minimizes the position errors in the 𝑥− 𝑦− 𝑧 axes while following
a path above a smooth curved surface as shown in the right panel of
Fig. 5.

4.3. Benchmark controllers

Three different types of controllers namely, PD, MPC, and ILC,
are used as a basis to compare the performance of the developed RL
methods. PD is used as an example for a model-free, non adaptive
controller, MPC is used as a reference for model-based controllers
and finally ILC represents model-free and adaptive controllers. Brief
descriptions of these controllers are given below.

4.3.1. Proportional-derivative controller (PD)
The nominal controller is a standard PD described by the following

discrete-time transfer function

𝐶(𝑧) = 𝐾𝑝 +𝐾𝑑
𝑧 − 1
𝑇𝑠

(14)

where 𝐾𝑝 and 𝐾𝑑 are the P and D gains, respectively, and 𝑇𝑠 is the
sampling time. The PD controller regulates each joint of the UR5 robot.
Since the UR5 internal controller compensates the dominant nonlinear-
ities, the joints become decoupled. This way, the PD controllers can be
tuned independently.

4.3.2. Model predictive control (MPC)
Model predictive control is a model based control method that is

prominently used in the process industry (Richalet et al., 1976; Cutler
and Ramaker, 1980). MPC uses the system model to predict, at each
time step, the future states and to compute the corresponding control
inputs up to a specified horizon. The control input is calculated so as to
minimize a cost function subject to pre-defined constraints.

In this paper, we use linear MPC that was previously implemented
in de Gier (2015). Each UR5 joint is modeled as a SISO system with com-
manded velocity and joint position as the input and output, respectively.
The model parameters are identified using the subspace identification
method (Verhaegen and Verdult, 2007). This model is used to predict
the system states up to 𝑁𝑝 steps. The optimal control input is calculated
by minimizing the following cost function

𝐽𝑡 =
𝑁𝑝−1+𝑡
∑

𝑖=𝑡
(𝑦ref𝑖+1 − 𝑦𝑖+1)

⊤𝑊𝑒(𝑦ref𝑖+1 − 𝑦𝑖+1) + 𝛥𝑢
⊤
𝑖 𝑊𝑢𝛥𝑢𝑖 (15)

where 𝑦ref denotes the reference signal, 𝛥𝑢𝑡 = 𝑢𝑡 − 𝑢𝑡−1, 𝑁𝑝 is the pre-
diction horizon, 𝑊𝑒 and 𝑊𝑢 are the error and control weight (diagonal)
matrix, respectively.

Similarly to the PD controller, the MPC is implemented for each
joint separately. In order to ensure real-time performance, no constraints
are imposed on the MPC. This results in an unconstrained quadratic
optimization problem whose globally optimal solution can be obtained
easily.

Fig. 6. The tracking performance of the proposed RL compensation methods compared
to the benchmark controllers for the square reference.

Table 1
The 𝑧-axis tracking performance of RL compensation methods compared to the other
controllers for square reference tracking.

Error (mm) PD MPC ILC RL-1 RL-2

Final steady state −0.5858 0.0185 −0.4798 0.0412 0.1423
RMS 7.4669 9.676 5.502 6.4721 7.2051

4.3.3. Iterative Learning Control (ILC)
Iterative learning control is a model-free, adaptive control approach.

It is based on the premise that in the absence of an explicit external
correction the tracking errors in a repetitive task remain unchanged.
To compensate for the repetitive error, an ILC correction is added
to a nominal tracking controller thus resulting in a gradual error
minimization. The working principle of the ILC-based compensation
method is similar to the RL based methods described before.

In this paper we use linear ILC to control each joint of the UR5 robot.
The ILC control law is based on a PD-type learning rule

�̂�𝑗+1𝑡 = 𝑄(𝑞)
[

�̂�𝑗𝑡 + 𝑘𝑝𝑒
𝑗
𝑡+1 + 𝑘𝑑 (𝑒

𝑗
𝑡+1 − 𝑒

𝑗
𝑡 )
]

(16)

where superscript 𝑗 denotes the 𝑗th iteration, 𝑒 is the tracking error,𝑄(𝑞)
is a discrete-time low pass filter to improve robustness (Bristow et al.,
2006), 𝑘𝑝 and 𝑘𝑑 are the proportional and derivative gain respectively.

4.4. Reference tracking results

The tracking results of both RL compensation methods compared to
the three benchmark controllers are provided as follows. For all tasks,
the control loop is executed with a sampling time of 0.008 s (125 Hz).
A video of the tracking experiments can be obtained from the website
from the supplementary material.
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Table 2
The parameters of the RL-based input compensation for the first reference tracking task. Note that there are four actor-critics for
the first four joints.

Parameter Symbol base elbow shoulder wrist-1

Actor learning rate 𝛼𝑎 0.04 0.06 0.03 0.03
Critic learning rate 𝛼𝑐 0.8 0.7 0.9 0.9
No. of actor RBFs – [19 9] [19 9] [19 9] [19 9]
No. of critic RBFs – [21 9] [21 9] [19 9] [19 9]

Actor RBF variance 𝐵𝑎

[

3𝑒−7 0
0 9𝑒−3

] [

3𝑒−5 0
0 3𝑒−2

] [

3𝑒−4 0
0 9𝑒−2

] [

3𝑒−4 0
0 9𝑒−2

]

Critic RBF variance 𝐵𝑐

[

3𝑒−7 0
0 6𝑒−3

] [

3𝑒−5 0
0 8𝑒−3

] [

1𝑒−4 0
0 4𝑒−2

] [

3𝑒−4 0
0 7𝑒−2

]

Reward matrix 𝑄
[

8𝑒4 0
0 10

] [

4𝑒5 0
0 10

] [

5𝑒5 0
0 10

] [

5𝑒5 0
0 10

]

4.4.1. Task 1: Square reference
A square trajectory along the 𝑥 direction is used as reference to

evaluate the developed tracking control method. Since the end effector
orientation does not change throughout the trajectory, only four learn-
ing agents, namely for the base, shoulder, elbow and the wrist 1, are
needed. The reward function is formulated as the following quadratic
function

𝜌(𝑒𝑖, �̇�𝑖) = [𝑒𝑖 �̇�𝑖]𝑄𝑖[𝑒𝑖 �̇�𝑖]⊤ (17)

where 𝑒 is the joint error, 𝑄 ∈ R2×2 is a diagonal reward matrix and 𝑖 is
the joint index.

For each agent, the AC parameters are tuned separately using the
following approach. The number of RBFs are obtained by iterating
through a range of values; a value which balances the trade-off between
under-fitting and excessive computational cost is chosen. The diagonal
values of 𝑄 and 𝛼 are first initialized with low values in order to yield a
relatively small actor output. These values are then gradually increased
to achieve a faster, yet monotonic convergence.

Similarly, the PD and MPC controllers are also tuned with heuristics.
The PD gains are first initialized with low values. The proportional
gain is then gradually increased to reduce the error until a slight
overshoot occurs. Finally, the derivative gain is increased to suppress
the overshoot. As for the MPC, the diagonal elements of 𝑊𝑒 are first
initialized with small values while those of𝑊𝑢 with large values in order
to have a less aggressive control input. Then, we gradually increase
𝑊𝑒 and decrease 𝑊𝑢 in order to have a faster controller and smaller
errors. Finally, for the ILC controller, we follow the tuning rule described
in Bristow et al. (2006).

Fig. 6 shows reference tracking in the 𝑧 axis for the two RL methods
in comparison to the benchmark controllers. Two performance criteria,
final steady state and RMS errors, are compared in Table 1.2 Compared
to the nominal PD controller, the two learning-based methods success-
fully reduce both the steady-state and the RMS error. Compared to MPC,
the RL controllers achieve a lower RMS error, while the steady state
error is larger. The opposite result is obtained when it is compared to
ILC. The reason of the large RMS error is that we limit the RL to learn the
compensation policy within the continuous region to avoid large spikes
in the error derivatives, making the compensation signal outside that
region almost zero, i.e., uncompensated. Although the RL controllers
outperforms MPC and ILC only in one of the two performance criteria,
Fig. 6 shows that its step response is still preferable since it exhibits
neither nonminimum-phase behavior nor overshoot. Furthermore, the
RL controller’s step responses also show faster settling times.

If we compare the two RL methods, the RL reference compensation
has a slightly larger RMS error than the RL input compensation. A
possible explanation for this difference is that the latter method modifies
a reference trajectory instead of the control input directly. The result is
a less aggressive response which is unable to reduce the error as quickly
as the RL control input compensation method.

2 In Tables 1, 9, Figs. 6, 8, and 11, RL-1 and RL-2 corresponds to input-
compensation and reference-compensation, respectively.

Table 3
The ACs parameters of the RL-based reference compensation for the first reference tracking
task. There is only one actor critic that corrects the 𝑧-axis reference.

Parameter Symbol 𝑧-axis AC

Actor learning rate 𝛼𝑎 0.002
Critic learning rate 𝛼𝑐 0.5
No. of actor RBFs – [19 11]
No. of critic RBFs – [20 10]

Actor RBF variance 𝐵𝑎

[

2𝑒−6 0
0 3𝑒−3

]

Critic RBF variance 𝐵𝑐

[

9𝑒−7 0
0 9𝑒−4

]

Reward matrix 𝑄
[

5𝑒8 0
0 0.1

]

Table 4
The MPC parameters used for all three tracking tasks.

Parameter Symbol Value

Prediction & control horizon 𝑁𝑝 30

Error cost matrix 𝑄
[

1000 0
0 10

]

Input cost matrix 𝑅 1

Table 5
The ILC parameters for the first and second reference tracking task.

Joint Parameter

𝑘𝑝 𝑘𝑑 Filter time constant 𝜏

base 0.4 4 0.35
shoulder 0.1 10 0.5
elbow 0.1 15 0.5
wrist-1 0.1 10 0.35
wrist-2 0.1 1 0.35
wrist-3 0.1 1 0.35

The discounted return or learning curve for the first RL method is
shown in Fig. 7. As evident from the figure, the return is monotonically
converging for all joints. On the other hand, the learning curve for
the RL reference compensation method shows an erratic behavior, as
shown in Fig. 7. There are two possible reasons for this behavior. First,
it might be caused by the RBFs which are initialized with inappropriate
values, causing the learning curve to deteriorate before improving. The
second explanation is that the reference discontinuities introduce very
large TD errors. This causes the policy and value function to change
rapidly during the first 80 trials before finally settling to more ‘‘stable’’
parameters.

The convergence time for RL input and reference compensation is
approximately 350 and 170 trials, respectively (each trial consists of
1375 samples). Both RL methods are still slower than ILC which reaches
convergence in 55 trials. The final tracking performance improves with
the number of learning trials.

The RL-based input and reference compensation parameters are
reported in Tables 2 and 3, respectively. Meanwhile, the parameters
for PD, MPC and ILC are listed in Tables 2, 4 and 5, respectively.
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Fig. 7. The sum of rewards (return) of all the learning agents for the square reference. Left: RL input compensation, right: RL reference compensation. Note that appropriate scaling to
the discounted return curves is applied for readability.

Table 6
Tracking performance comparison for the circular reference.

Error measure (mm) MPC ILC PD RL-1 RL-2

RMS 𝑥 1.0613 0.5109 4.2388 0.4847 0.4962
RMS 𝑦 1.0108 0.4662 1.9859 0.3215 0.2408
Max absolute 𝑥 1.6935 1.0565 6.0253 1.0529 0.9557
Max absolute 𝑦 1.6938 1.9269 3.0798 1.1213 1.6508

4.4.2. Task 2: Circular reference
The second reference tracking task is to follow a circular path in

the 𝑥-𝑦 plane with a fixed end-effector orientation. This causes all joints
except for wrist 3 to move. Therefore, a total of five learning agents
are needed for the RL-based input compensation. As for the RL-based
reference compensation, Cartesian space compensation is chosen again.
Since the goal is to minimize errors in the 𝑥 and 𝑦 axes, two actor-critics
are needed.

The 𝑥-𝑦 reference trajectory and the tracking error are given in Fig. 8.
Two performance measures, RMS and maximum absolute errors, are
provided in Table 6. Clearly, the proposed RL controllers outperform
PD, MPC and ILC. The only drawback is that the RL based controllers
produce high-frequency jitters. This can be attributed to the inherent
jitter in the robot manufacturer’s velocity controller that influences
the learned policy. This jitter cannot be removed due to the black-
box nature of the robot’s velocity controller. The amplitude of the
jitter is, however, not larger than in the nominal case. The learning
curves for both methods are shown in Fig. 9. The RL-based input and
reference compensation required 70 and 30 trials, respectively. This is
comparatively faster than ILC which requires about 90 iterations.

Between the two proposed methods, the RL control input compen-
sation method is better as it quickly minimizes the tracking error. This
is because it directly compensates the joint velocity. The RL reference
compensation has a slower response since the corrected trajectory is
tracked by the nominal PD controller. However, the RL-based reference
compensation converges much faster. Furthermore, since this method
modifies the position reference instead of the control input, a slightly
smoother behavior is obtained. The parameters for RL-based methods
are listed in Tables 7 and 8, while the ILC and MPC parameters remain
unchanged.

4.4.3. Task 3: Printing trajectory
For the third tracking task, the robot follows a trajectory along a

smooth curved surface while keeping the printing head aligned with
the normal of the surface (see the right panel of Fig. 5). This trajectory
simulates the path that the robot must execute during a 3D printing
process. Since the task is performed in a configuration where the robot
arm stretches out, a slight deviation in the joint position significantly
affects the 𝑦 and 𝑧 position. Therefore, this task is expected to require
more iterations to achieve minimal joint errors. A total of 5 actor-critic
agents are required for the RL-based input compensation. For wrist-3,

Fig. 8. Top to bottom: the 𝑥 − 𝑦 trajectory of the RL methods compared to other control
methods for the circular reference, 𝑥 axis error, 𝑦 axis error.

no learning agent is needed as it does not change the position of the
end-effector. As for the RL-based reference compensation method, the
correction is performed in the joint space instead of Cartesian space. The
reason is that the inverse kinematics algorithm of the UR5 controller
is apparently not reliable as it sometimes returns non-smooth joint-
space trajectories. Therefore, 5 actor-critics are also employed for the
RL-based reference compensation.
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Fig. 9. The sum of rewards (return) of all the learning agents for the circular reference. Left: RL-input compensation, right: RL reference compensation. Note that appropriate scaling to
the discounted return curves is applied for readability.

Fig. 10. The discounted sum of rewards (return) of each learning agent for the 3D printing reference. Note that appropriate scaling to the discounted return curves is applied for
readability. Furthermore, the number of trials per agent can be different, as shown with different number of trials per agent.

Table 7
The ACs parameters of the RL-based control input compensator for the second reference tracking task.

Parameter base shoulder elbow wrist-1 wrist-2

Actor learning rate 𝛼𝑎 0.04 0.06 0.03 0.04 0.04
Critic learning rate 𝛼𝑐 0.8 0.7 0.9 0.8 0.8
No. of actor RBFs [19 9] [19 3] [19 3] [19 3] [19 3]
No. of critic RBFs [21 9] [21 9] [19 9] [19 9] [19 9]

Actor RBF variance 𝐵𝑎
[

3𝑒−5 0
0 0.1

] [

3𝑒−5 0
0 6

] [

3𝑒−5 0
0 8

] [

3𝑒 − 6 0
0 0.1

] [

3𝑒−5 0
0 6

]

Critic RBF variance 𝐵𝑐
[

3𝑒−5 0
0 9𝑒−3

] [

3𝑒−5 0
0 1

] [

3𝑒−5 0
0 1

] [

3𝑒−6 0
0 3𝑒−2

] [

3𝑒−5 0
0 0.3

]

Reward matrix 𝑄
[

1𝑒6 0
0 10

] [

1𝑒6 0
0 10

] [

1𝑒6 0
0 10

] [

1𝑒6 0
0 10

] [

1𝑒6 0
0 10

]

Table 8
The ACs parameters of the RL-based additive reference modifier for the second reference
tracking task.

Parameter Symbol AC-1 AC-2

Actor learning rate 𝛼𝑎 0.02 0.02
Critic learning rate 𝛼𝑐 0.5 0.5
No. of actor RBFs – [19 11] [19 11]
No. of critic RBFs – [20 10] [20 10]

Actor RBF variance 𝐵𝑎

[

3𝑒 − 6 0
0 0.05

] [

5𝑒 − 7 0
0 0.1

]

Critic RBF variance 𝐵𝑐

[

3𝑒 − 6 0
0 0.05

] [

5𝑒 − 7 0
0 0.1

]

Reward matrix 𝑄
[

5𝑒8 0
0 0.8

] [

5𝑒8 0
0 0.1

]

The evaluation of the RL control law and of the benchmark con-
trollers is given in Fig. 11. The performance measures are provided in
Table 9. The comparison shows that both RL controllers significantly
improve the nominal performance. However, compared to the MPC and
ILC controllers, the first RL method performs worse in the 𝑦 and 𝑧 axis

Table 9
The tracking performance comparison for the 3D printing reference.

Error (mm) MPC ILC PD RL-1 RL-2

RMS 𝑥 1.9287 0.6111 19.3509 0.46153 0.82856
RMS 𝑦 0.0616 0.0979 0.53016 0.20632 0.1972
RMS 𝑧 0.3107 0.3440 2.6643 0.36981 0.43733
Max absolute 𝑥 2.3499 3.9082 20.8915 1.2626 1.9246
Max absolute 𝑦 0.2963 0.4854 2.0685 0.60674 0.5844
Max absolute 𝑧 1.1019 1.5896 4.2995 1.3896 1.0341

tracking. In the 𝑥 axis, it outperforms all other controllers. Meanwhile
for the second RL method, in comparison to ILC, it loses in all RMS
errors. However, the maximum absolute errors attained in the 𝑥 and 𝑧
axes show a better result. This implies that the ILC is superior at reducing
the overall error, but inferior at minimizing the error variance. This is
verified in Fig. 11 which shows that there are several spikes in the ILC
errors.

In the experiment, it is again found that the RL controllers suffer
from the inherent jitter caused by the robot’s internal velocity controller.
This issue may be rectified by using a low pass filter for the joint state
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Fig. 11. Reference tracking result of the 3D printing reference task using RL controllers.
Top to bottom: the reference and measured 𝑥, 𝑦 and 𝑧 trajectory of the end-effector,
absolute tracking error on 𝑥, 𝑦 and 𝑧 axes.

measurement. This was not carried out during the experiment since
it may result in a lower overall bandwidth due to the filtering delay.
The learning curves for all the RL-compensated joints are visualized in
Fig. 10. The proposed methods need around 650 and 300 trials (each one
consisting of 1250 samples), respectively, to reach the optimal policy. It

is important to highlight that in the experiments, the individual actor-
critic compensators are not necessarily trained simultaneously. This
is due to the difficulty in finding learning parameters which would
synchronize them, i.e., achieve a similar learning duration for all of
them. This is the reason why the number of trials for each joint may
be different, as Fig. 10 shows. For this task, the RL-based controller
parameters are reported in Tables 10 and 11, while the ILC parameters
are shown in Table 12.

Based on the experimental results, we showed that RL-based com-
pensation methods can significantly reduce the tracking errors without
relying on a model, which is an advantage compared to a model-based
controller such as MPC. Furthermore, another benefit of using RL-based
methods is that the control engineers can flexibly define the reward
function so that it is most suitable for the tasks at hand. For example, a
higher penalty with respect to the larger error can be imposed by using
a higher-order polynomial function. Nevertheless, some limitations still
exist. One is that for some tasks, the learning time can be quite slow, as
indicated in the last tracking example. Another drawback is the number
of parameters to specify is larger than with the MPC and ILC methods.

5. Conclusion & further research

In this paper we have developed and implemented two RL-based
compensation schemes to improve the suboptimal tracking performance
of a feedback controller in a multi DoF robot arm. The capacity to
self-optimize the controllers of robot arms is essential in the Industry
4.0 setting. This capability is required in order to cope with frequent
changes in the manufacturing process, to guarantee high accuracy
and precision, and hence to ensure cost efficiency and high quality
of the manufactured products. For both methods, the technique of
additive compensation is used. The first method compensates the control
input given by the nominal controller whereas the second method
compensates the nominal reference trajectory. The compensation is
realized as a continuous state policy function which is constructed by
an actor-critic algorithm. Three reference tracking tasks are devised to
test the methods. Furthermore, PD, MPC, and ILC controllers are also
implemented and their performances are compared.

The RL control input compensation method has an advantage in a
faster response since it compensates in the velocity space, thus a higher
bandwidth is obtained. Furthermore, it also achieves a smaller error
compared to the second method. However, the first RL method is more
susceptible to oscillatory behavior. The oscillation is typically induced
by the measurement noise or an uncertainty in the robot’s servo system
(e.g., inherent jitter). Moreover, since the learning process must be
kept safe, it results in a slower learning speed. On the other hand, RL
reference compensation is advantageous with respect to the smoothness
of the tracking response. This is because it only changes the reference
while the gain of the controller is kept intact. Another advantage is it
converges faster compared to the first method. The limitation of the
second method, however, is that the response is less aggressive and the
tracking error is slightly larger than that of the first RL method.

The comparative experimental study shows that, for a discontinuous
reference such as the square trajectory, the RL-based method results in
a more favorable response than the MPC and the ILC. For a simpler
smooth trajectory such as the circular reference, the RL-based methods
successfully outperform both the ILC and the MPC. However, in a
more complex task, like following the printing trajectory, the RL-based
controller performance is still slightly inferior to the MPC and ILC.
For all tasks carried out in the experiment, we always assume that
the reference is known. Had the assumption been invalid, RL would
lose the Markov property and hence convergence would no longer be
guaranteed.

There are at least two issues which are interesting for future research.
First is to see how the proposed methods perform in a torque controlled
robot manipulator. The UR5 robot used in our experiments only allows
for velocity commands to its internal controller. This method, however,
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Table 10
The ACs parameters of the RL-based control input compensator for the third reference tracking task.

Parameter base shoulder elbow wrist-1 wrist-2

Actor learning rate 𝛼𝑎 0.005 0.06 0.03 0.01 0.05
Critic learning rate 𝛼𝑐 0.1 0.5 0.9 0.1 0.5
No. of actor RBFs [35 5] [35 5] [35 5] [21 5] [19 5]
No. of critic RBFs [21 9] [21 9] [21 9] [19 9] [19 9]

Actor RBF variance 𝐵𝑎
[

1𝑒−5 0
0 0.1

] [

4𝑒−5 0
0 0.2

] [

3𝑒−5 0
0 0.5

] [

1𝑒−4 0
0 0.3

] [

2𝑒−5 0
0 0.3

]

Critic RBF variance 𝐵𝑐
[

4𝑒−5 0
0 2𝑒−3

] [

5𝑒−5 0
0 0.01

] [

7𝑒−5 0
0 0.01

] [

1𝑒−4 0
0 0.01

] [

2𝑒−5 0
0 0.01

]

Reward matrix 𝑄
[

1𝑒6 0
0 10

] [

1𝑒3 0
0 10

] [

1𝑒3 0
0 10

] [

1𝑒5 0
0 10

] [

2𝑒4 0
0 10

]

Table 11
The ACs parameters of the RL-based reference compensator for the third reference tracking task.

Parameter base shoulder elbow wrist-1 wrist-2

Actor learning rate 𝛼𝑎 0.002 0.002 0.002 0.002 0.002
Critic learning rate 𝛼𝑐 0.5 0.5 0.5 0.5 0.5
No. of actor RBFs [19 11] [19 11] [19 11] [19 11] [19 11]
No. of critic RBFs [20 10] [20 10] [20 10] [20 10] [20 10]

Actor RBF variance 𝐵𝑎
[

6𝑒−7 0
0 1𝑒−3

] [

1𝑒−5 0
0 5𝑒−3

] [

7𝑒−6 0
0 5𝑒−3

] [

7𝑒−6 0
0 5𝑒−2

] [

7𝑒−7 0
0 1𝑒−1

]

Critic RBF variance 𝐵𝑐
[

6𝑒−7 0
0 8𝑒−4

] [

1𝑒−5 0
0 3𝑒−3

] [

7𝑒−6 0
0 3𝑒−3

] [

7𝑒−6 0
0 8𝑒−3

] [

7𝑒−7 0
0 7𝑒−2

]

Reward matrix 𝑄
[

2𝑒7 0
0 0.8

] [

4𝑒7 0
0 0.8

] [

4𝑒7 0
0 0.8

] [

8𝑒7 0
0 0.8

] [

6𝑒7 0
0 0.8

]

Table 12
The ILC parameters for the third reference tracking task.

Joint Parameter

𝑘𝑝 𝑘𝑑 Filter time constant 𝜏

base 0.6 1 0.35
shoulder 0.4 1 0.5
elbow 0.4 1 0.5
wrist-1 0.4 1 0.35
wrist-2 0.4 1 0.35
wrist-3 0.4 1 0.35

is limited in terms of the control bandwidth. An access to the motor
torques means a higher control bandwidth therefore the possibly of
reducing the tracking error even more.

Secondly, for the RL control input compensation method, it would be
interesting to investigate the effect of formulating the reward function
in terms of the Cartesian errors instead of the joint errors. In our
implementation, we only work with joint errors because this was seen
as the most feasible approach since the compensation signal is sent to
each joint of the robot.

The proposed RL-based methods are relevant for Industry 4.0 where
a much wider variety of products are manufactured while, at the
same time, quality must be maintained. For applications that require
high positioning accuracy, fine tuning the controller for each task will
be infeasible, hence a self-learning capability will be necessary. The
proposed methods are also well aligned with the data-driven philosophy
of Industry 4.0, in which the logged data can be continuously exploited
to better the performance.

Appendix A. Supplementary data

Supplementary material related to this article can be found online
at http://dx.doi.org/10.1016/j.engappai.2018.11.006 or https://www.
dropbox.com/s/tdkhp4io6yojh94/RL_based_compensation.wmv?dl=0.
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