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Abstract
The Prandtl mixing-Iengthmodel of turbulent exchange ofmass andmomentum is applied
to calculate the entrainment of overlying water into a layer of suspended fine sediment at
a horizontaI bed. In the field the flow and turbulence in such a concentrated benthic
suspension (CBS) are driven by a streamwise pressure gradient resulting from the tide.
However, in this report a proposed laboratory experiment is simulated in which flow and
turbulence in the CBS are driven by a movable bottom screen which is started
instantaneously from rest. The aims of the calculations are to show the feasibility of this
laboratory experiment, to carry out a sensitivity analysis and, in future work, to compare
with experimentaI results. Damping functions accounting for the reduction in turbulent
exchange caused by density stratification are calibrated using results of entrainment
experiments with two-fluid systems reported in the literature. The adopted modelofthe
rheological behaviour ofthe CBS is ofthe Herschel-Bulkley type. In addition, the effects
of hindered settling and sidewall friction are included. Entrainment rates are found to be
particularly sensitive to the speed of the screen and the excess weight of the sediment,
whereas the rheological model has little influence.
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1 Introduetion
Suspended fine sediments in tidal waters may be deposited during slack water periods to
form a mud layer, also designated in the literature as a (high-)concentrated benthic
suspension (CBS), on a more permanent bed. When after slack water the tide strengthens,
the associated streamwisepressuregradient causes the CBS layer to flow with the overlying
water layer. Inthe CBS layer turbulence is generated by bed friction, as aresult ofwhich
water is entrained into this layer so that the depth of the CBS layergradually increases and
the sediment concentration decreases. Ifthe water depth is not too large, the sediment will
get mixed across the whole water column after some time.

On a larger time scale, a similar process may occur during the neap-tide spring-tide
cycle. Mud deposited during neap-tide then is mixed across the water depth, or part of it,
during spring tide.

When the mud has deposited, the process of self-weight consolidation commences at
concentrations beyond the gellingvalue. Pore water is expelled, concentrations increaseand
a bed structure develops. As a result a yield strength develops, first at the base of the mud
layer and later on also at higher levels. A non-zero yield strength implies that, during
acceleration of the tidal flow, only the part of the mud layerstarts to flow in which the tide­
induced shear stress is larger than the yield stress. This (upper) part ofthe mud layer is a
CBS, whereas the part that does not flow behaves as a soil.

On the relatively small time scale of the tidal cycle the developedyield strengthmay be
small so that the entrainment process described is likely to dominate.However, in the case
of the neap-tide spring-tide cycle sufficient time is available during neaps for the yield
strength to become large so that the classical erosion process as described by Partheniades
(1965) will take place.

The entrainment process described has received little attention (Kranenburg and
Winterwerp 1997,Winterwerp 1999).For this reason a laboratoryentrainment experiment
is to be carried out as part ofthe EC-MAST3 COSINUS Project,which deals with cohesive
sediment transport and processes in the bed. This experiment will be carried out in the
annular flume ofthe Delft University ofTechnology. Contrary to the situation in the field,
flow and turbulence in the CBS layer are produced by a rotating bottom screen on which
the mud had deposited when the screen was at rest, see Figure 1 and Kranenburg and
Bruens (1998).

The aims of the work reported herein are to develop a mathematical model of the
entrainment experiment to be conducted in the laboratory, to show that the experiment is
feasible and to carryout a sensitivityanalysis.Infutureworkthe mathematical model,which
can be easily adapted to tidal-flow conditions,will be validatedwithdata obtained from the
experiment.

Mathematical modelling of the entrainment process requires a rheological model of the
CBS and a turbulence model. For this purpose a Herschel-Bulkley type ofmodel and the
Prandtl mixing-length (PML)model are adopted, respectively.The bed (the bottom screen)
is assumed to be horizontal and the flow is uniform. These simplifications allow a one­
dimensional model to be used.

The mathematical model is described in Section 2 of this report. Results of numerical
simulations ofthe experiment mentioned are presented in Section 3.Conclusions from this
work are drawn in Section 4.·
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2 One-dimensional entrainment model

2.1 Mean-flow equations
The flow considered is a uniform free-surface flow of water and CBS over a horizontal
bottom screen. A study of Spalding and Svensson (1977) indicates that ignoring any
rotational efIects as occurring in annular flumes does not seriously affect the entrainment
modelling. Therefore, the effects of rotation are neglected.

Adopting the Bousinesq approximation for small density difIerences, the equation of
motion in the direction of the flow becomes

au ::= ~ (v au _ <uw» _ 2_ 'tw

at az az Pw B (2.1)

where U = U(z,t) is the averaged flow velocity of water and CBS, t time, z the vertical
coordinate (positive upward, z = 0 at the screen), Pw the density of the water, v the kine­
matic viscosity of the CBS, <uw> the turbulent shear stress, 'tw the sidewall friction and B
the width of the flume.

The mass balance equation for the sediment reads

ac a
- = -(WC - <wc»at az s (2.2)

where C =C(z,t) is the averaged sediment concentration,Ws the settling velocity and <wc>
the vertical turbulent mass transport. As the primary cohesive particles form larger flocs,
molecular difIusion of the sediment is negligible.

The kinematic viscosity ofthe CBS is modelled according to a Herschel-Bulkley type
of expression,

v = v [1 + (~) q ( lau/azlo) r]
w p Ps Iau/az I (2.3)

where Vw is the kinematic viscosityofthe water, Ps the density ofthe sediment, lau/azlo is
a reference shear rate (= 1S-I), and p, q and r are positive coefficients. Thixotropie efIects
are not accounted for by (2.3).

The dependenee of the viscosityon the velocity gradient represents the shear-thinning
behaviour of mud suspensions.The influence of turbulent shear is not explicitly taken into
account in (2.3), but is probably not negligible. The appropriate shear-rate parameter for
turbulence is G = (e/v)ll2,where e is the dissipation rate. Inthe case oflocal equilibrium of
the turbulence, which is also assumed in the PML model, e is equal to the turbulence
production, <uw>au/az = v-r(au/az)2,where vT is the eddy viscosity.The parameter G then
becomes equal to (v/v)I12lau/azl. A requirement for the flow to be turbulent is that v/v
» 1 (e.g., v/v> 15).This means that in turbulent local-equilibriumshear flow G is always
larger than lau/azl. In (2.3) this effect is absorbed in the parameter p. The sensitivity of
results to this parameter is discussed in Section 3.2.

As only suspensions are considered,consolidation and the build-up of a yield strength
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prior to an experiment are beyond the scope of this report. Ifstrengthdevelops, it will start
to do so at the screen. The underlyingassumption therefore is that the applied shear stress
at the screen is larger than the yield stress.As is shown in Section 3, the shear rates near the
screen in case a flow is generated are large so that viscous shear stress is dominant and
some strength has little influence.

Sidewall friction is modelled as usual for turbulent flow,

(U ~ 0) (2.4)

where À is a friction coefficient given by a formula of the Blasius type (Kranenburg and
Winterwerp, 1997).

The effect ofhindered settlingon the setdingvelocity is modelledaccording to Ross and
Mehta (1989),

(2.5)

where Wois the settling velocity of a single floc and egel the gelling concentration.
Water, sediment and screen are assumed at rest before an experiment is started. The

initial conditions (at t = 0) therefore are given by

U(z,O) = 0 (2.6)

C(z,O) = Co(z) (2.7)

The boundary conditions at the free surface (z = h) are

<uw>(h,t) = 0 (2.8)

C(h,t) = 0 (2.9)

Equation 2.9 ensures that the transport causedby settling vanishes at z = h; it follows from
(2.8) and the turbulence model presented in Section2.2 that aU(h,t)/az = 0, and hence from
(2.13) presented in Section 2.2 that, as required, <wc>(h,t) = o.

The boundary conditions at the screen (z = 0) are the standard conditions for flow past
a smooth wall, and a zero sediment transport,
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u. ( Z)U(z,t) = Us - -In 1 + -
lC Zo

(z ... 0) (2.10)

WsC(O,t) - <WC>(O,t)= 0 (2.11)

where U, = Ult) is the speed ofthe screen (U 1.0)= 0), u*the friction velocity, lCVon Kar­
man's constant (x = 0.41) and Zo a viscous length scale, Zo = 0.11 v(O,t)/u*(t).

2.2 Turbulence model
The PML model gives the vertical transports of momentum and mass as (e.g., Rodi, 1980)

<uw> = - Z2(Z,t) au au F(Ri)
az az

(2.12)

<wc> = - _1_Z2(z,t) au ac G(Ri)
0TO az az (2.13)

where l(z,t) and 0TO are mixing-length and turbulent Prandtl-Schmidt numher under neutral
conditions, and F(Ri) and G(Ri) are damping functions accounting for the reduction in
turbulent exchange caused by density stratification. The gradient Richardson number Ri is
defmedas

Ri = _ Ilg ae( aU)-2
Pw az az

(2.14)

where Il = (Ps - Pw)/Ps'
The flow of CBS as shown in Figure 1 can be classified as a turbulent wall boundary­

layer flow. The mixing-Iength distribution in such a flow can he approximated, in the case
of negligible stratification and high Reynolds numbers, by a ramp function given by (e.g.,
Cebeci and Bradshaw, 1977)
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I = KZ (0 s Z s eH) (2.15)

1 = eH (eH < Z :5; H) (2.16)

where H is the depth ofthe turbulent CBS layer and e a coefficient, e = 0.20 ± 0.02. The
value adopted herein is e = 0.20.

Equation 2.16 indicates that in the domain eH < z s H the mixing length increases as
H increases during the entrainment process. This means that in a numerical model of this
process the depth H has to he determined as a function of time. A simpIer approach would
be to replace H in (2.15) and (2.16) by the water depth h, which is constant. However, in
this way turbulent exchange is overestimated and the entrainment rate, dH/dt, becomes too
large. It is shown in the Appendix that, in the case where H < eh and stratification is
negligible, the simpler approach yields an entrainment rate that is too large by a factor of
about three. However, the error is less when stratification suppresses the turbulence and
thus reduces the effective mixing length.

The depth H(t) ofthe CBS layer is defined herein as the level at which the difference of
the concentration at time t from the initial concentration equals the concentration at the
screen multiplied by a factor of 0.001,

IC[H(t),t] - Co[H(t)]I = O.OOIC(O,t) (2.17)

Results were found to be insensitive to variation of this factor provided it was much less
than one. An additional condition is dHidt ~ o.

It is well known from the literature that the damping functions in the PML model are far
from universal. Inparticular, these functions differ for free turbulence and wall turbulence.
In free turbulence the direct influence of rigid boundaries on the turbulence structure is
minor, whereas this influence is dominant in wall turbulence. The damping functions
adopted in an earlier report (Kranenburg, 1998)apply exclusively to free turbulence. These
functions read, for eddy viscosity and eddy diffusivity, respectively,

1F(Ri) = ----
(1 + 2.4Ri)2

(2.18)

1G(Ri) = ----
(1 + 2.4Ri)4

(2.19)
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An example of flows in which wall turbulence prevails is the atmospheric surface layer. In
this case the turbulence damping is stronger than suggested by (2.18) and (2.19). A well­
known expression representing this stronger damping is the Monin-Obukhov relation, which
can be written as F(Ri) = (1 - PRil, in which 0 s Ri s lip. Empirical values of the
coefficient p range from 5 to 10 with P ::::7 as the most likely value (e.g., Rodi, 1980).
However, it is also known that this relation overestimates damping in the case of strong
stratification, that is, for values of Ri near lip (e.g., Turner, 1973).To accommodate the
damping function F(Ri) to this fact an exponential function is proposed herein,

F(Ri) = exp(- a.Rl) (2.20)

inwhich a.is an empirical coefficient.Comparisonwith theMonin-Obukhov relation shows
that a. should be about 2p, that is, a. ::::14 ± 4. The coefficient a. is determined for the
present application in Section 2.3.

The turbulent Prandtl-Schmidt number OTin stratified wall flows, where OT= oToF/G,
varies much less with Ri than in free turbulence.However, because of experimental scatter,
it is difficult to devise a functional relationship between OTand Ri. Arya (1972) reported
values ranging from 1.4 to 1.7 for Ri larger than 0.03. Gartrell (1979) found values of OT
between one and about two, but again the scatter was large. For this reason, and because
entrainment rates are influencedmainly by the value of OTfor near-collapsing turbulence,
it is assumed that OTis constant (= 01'0)' The adopted value of OTis 1.5, which is about the
mean value of the figures mentioned. As a consequence of a constant OT'the damping
functions F and G become the same,

G(Ri) = F(Ri) = exp( - a.Ri) (2.21)

2.3 Calibration of damping functions
The coefficient a. in (2.21) is determined using experimental data from entrainment
experiments with a two-fluid systemreported in the literature. For this purpose the settling
velocity is equated to zero, sidewall friction is dropped, the viscosity is equated to that of
the fluids (water), and the lower layer is the denser layer. The bottom screen is started
instantaneously and its speed kept constant afterwards.

Laboratory experiments corresponding to this simplified case were carried out for the
first time by Kantha et al. (1977)1. However, the results of those authors were much
influencedby sidewall fricton. Price (1979) and Thompson (1979) independently described
methods to correct for this effect, and found that for sufficiently strong stratification the
entrainment rate dH/dt is given by an expression ofthe form

Ilnmost entrainment experiments, includingthose of Kantha et al., a shear stress is exerted at
the top ofthe water column so that the upper layer is the entraining layer.
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1dH k--- :::
u. dl R i.lf2 (2.22)

where k is a constant, k ::: 0.6 (price) to about 0.9 (Thompson), and Ri; is a bulk
Richardson number given by Ri; =W/(PJl*2). Here w is the total excess weight ofthe lower
layer which in the present case is given by

Ho

W = ag f Co(z)dz
o

(2.23)

Kranenburg (1984) carried out laboratory experiments in which sidewall friction was
compensated for, and obtained results that approximately agree with (2.22) for Ri; larger
than about 20 and k = 0.6 ± 0.1. These experiments were simulated with the present PML
model. Figure 2 shows a comparison between calculated and measured entrainment rates,
both determined using the maximum-gradient method', for ex= 12. The agreement with the
measurements is excellent. The results, both experimental and theoretical, show a small but
significant deviation from the Ri*-112 behaviour given by (2.22).

Some calculations were also made with ex= 15. Inthis case both dH/dt and U.were less
so that a curve slightly below that in Figure 2 was obtained. Because the friction veloeities
at the bottom screen were realistic for ex= 12, and too low for ex= 15, all further
calculations were carried out with ex= 12.

Kranenburg (1984) measured density distributions, which can be used to check, to some
extent, the assumed value of OT. Figures 3a and 3b show results obtained with the present
mathematical model. The water depth is 0.3 m, the speed ofthe screen is 0.5 mis and the
excess weight given by (2.23) is 30.2 N/m2• All concentration distributions in Figure 3a for
OT = 1.5 showan inflection point, whereas those in Figure 3b for OT = 1 do not. Because
all measured density distributions also showed inflection points, the value OT = 1.5 is the
more realistic one.

For comparison, Figure 3c shows results obtained with the damping functions for free
turbulence given by (2.18) and (2.19). Inthis case the calculated concentration distributions
are completely at varianee with the measurements, which yielded distributions closely
resembling those of Figure 3a.

Comparing Figures 3a and 3b, it is seen that for a fixed value of exthe entrainment rates
are less for the larger OT (which is not surprising because the eddy diffusivity decreases for
increasing OT). Therefore the calibrated value of exdepends on the value of OT selected.

2A tangent is drawn through the inflection point in the concentration distribution at time t; the
point of intersection of the tangent with the vertical axis gives the layer depth H(t).
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3 Numerical computations

3.1 Cases examined
The equations presented in Section 2 were solved numerically to examine entraining flows
of CBS, and to provide a theoretical basis for the laboratory experiment referred to in the
Introduction. The numerical scheme used was the explicit Euler scheme and the grid was
equidistant. The assumed values of the various parameters involved are representative of
the laboratory experiment. The water depth above the screen is 0.25 m, the width of the
flume is 0.30m, the densities ofwater and sediment are 1000and 2600 kg/nr', the kinematic
viscosity of the water is 1O~m% and the settling velocity is put at 2 x 10-4mis. The initial
distribution of the sediment concentration is given by

Co(Z) = Ct + (Cgel - Ct) (1 - _!__J2
Ho

(3.1)

where Ho= R(O),Cgel= C(O,O)and Ct= eCHo, 0). The assumed values of these parameters
are listed in Table 3.1 together with those ofthe speed ofthe screenU, and the rheological
parameter r in (2.3). The rheological parameters p and q are put at 106 and 3, which values
correspond, to an order of magnitude, to valuesmeasured by De Wit (1995) and Berlamont
and Van Goethem (1984).

Table 3.1. Computationa/ runs. Va/ues differingfrom those of Run 1are underlined

Run
No.

Ho
(m)

r

1 0.05 150 100 0.90 0.8

2 0.05 150 100 !1.@ 0.8

3 0.05 150 100 .L2Q 0.8

4 0.05 150 100 0.90 Q

5 0.05 200 UQ 0.90 0.8

6· !!...l.Q 150 100 0.90 0.8
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As stated before, the bottom screen is started instantaneously from rest (at t = 0) and its
speed remains constant afterwards. The boundary conditions are given by (2.8) through
(2.11). The time step and grid size are 0.002 s and hll 00. This grid size is sufficiently small
for the solutions to converge"

3.2 Results
The results of Run 1 shown in Figure 4 indicate that, as discussed before, the entrainment
process causes the depth of the CBS layer to increase, and concentrations to decrease.
However, the entrainment rate (dHldt) decreases for larger times, mainly because of
sidewall friction. The influence of sidewall friction, which reduces flow veloeities and
therefore entrainment rates, increases with time because the depth of the flowing layer
increases. An increase in settling velocity also reduces entrainment rates, but this effect was
found to be of minor importance because of hindered settling.

As in the case ofthe two-fluid system dealt with in Section 2.3, density stratification
greatly reduces entrainment rates. Although the flow near the bottom screen is virtually
unstratified, stratification is strong at the entraining interface (the lutocline).

In some cases a more or Iess steady-state final situation was obtained with the CBS
layer depth Iess than the water depth. Figure 4 also shows this tendency.

Figures 5 and 6 (Runs 2 and 3) show the strong influence ofthe speed ofthe screen.
Hardly any mixing seems to occur for U, = 0.60 mis, whereas complete mixing is found for
U, = 1.20 mis. In Run 2 the mixing may even be overestimated, because the calculated
depths of the CBS layer (as indicated by the dashes on the left of the vertical axis) seem
quite large. This may have led to an overestimation of the mixing length.

Figure 7 shows the results of Run 4, in which the shear-thinning behaviour of the
viscosity was omitted (r = 0). Near the screen, where the shear rates are largest (about 120
S·I), the viscosity now is large initially. The higher viscosity causes higher entrainment rates
because momentum is more easily transferred in the upward direction, but this effect
diminishes in later stages as concentrations decrease.

Itmay be questioned in the case of Run 4 whether the flow in the CBS layer should
become turbulent. The initial kinematic viscosity at the screen is 1.9 x 10-4m2/s and the
friction velocity is 0.15 mis. The thickness of the viscous sublayer, which is about 10v/u*,
then becomes 0.013 m. As the initial depth of the CBS layer is 0.05 m, this layer wiIl
become turbulent for the larger part. However, a low-Reynolds number extension ofthe
PMLmodel, e.g. the Van Driest model, would be needed to obtain correct results, the more
so because the grid size is only 0.0025 m. It is noted that the low-Reynolds-number problem
onlyexists initially. At t ::= 100 s the kinematic viscosity has decreased to a value for which
the thickness of the viscous sublayer no longer exceeds the grid size. This problem does not
exist either in the more realistic case where r is around 0.8.

The results are very sensitive to a reduction of the parameter q, because the viscosity
then may become extremely large. However, ifp and q are varied simultaneously so that the
viscosity retains realistic values, the results change little. For example, the combinations
(p,q) = (6 x 104,2) and (p,q) = (1.8 X 107,4), both give v ::= 2 X 10-4m2/s for C = 150

3Thenumerical model was also tested by comparing results for a homogeneous fluid with the
analytical solution given in the Appendix. The computed dimensionless entrainment rate is
0.315 ± 0.010, in agreement with the analytical result.
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kg/m' and lau/azl = 1 S-I, and yield almost the same results as those of Run 1.
The turbulence-induced shear,which is discussed in Section 2.1, effectively reduces the

parameter pin (2.3). However, even equatingthis parameter to zero, that is, putting v = vW'
yields results that differ little from those of Run 1. The depth ofthe CBS layer at t = 50 s
is less by 3 percent, but for larger times differences are hardly distinguishable.

Higher initial concentrations reduce the entrainment rates, becausemore work has to he
done against gravity to transport the sediment upward. An example is shown in Figure 8
(Run 5).

Finally, Figure 9 (Run 6) shows the influence of a thicker CBS layer. The results are
similar to those ofFigure 5 (Run 2), which is not surprising. InRun 2 the input ofkinetic
energy is reduced, with respect to Run 1, by a factor of about (0.60/0.90)2 ::::0.44, and in
the case of Run 6 the work to be done is larger than in Run 1 by a factor 2. The overall
Richardson numbers Ri; for Runs 2 and 6 therefore do not differ 80much.
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4 Conclusions
The following conclusions can be drawn from this work:

1. The distribution ofthe mixing-length in the PMLmodel should be adapted to the depth of
the turbulent (CBS) layer, in particular if stratification is weak.

2. The computations made support the fmding reported in the literature that the damping
functions in the PML model are different for free turbulence and wall turbulence. Inthe
latter casethe Prandtl-Schmidtnumbervariesconsiderablylesswith the gradient Richardson
number. The exponential damping functionsproposedyield satisfactory results for two-fluid
systems.

3. The numerical results indicate that the laboratoryexperiment referred to in the Introduetion
and Section 3.1 is feasible in that turbulent entrainment and mixing seem to occur at
realisable speeds of the bottom screen.

4. The computational results for the laboratory experiment are sensitive to the speed of the
bottom screen and the excess weight ofthe CBS. The results are quite insensitive to settling
velocity, and to the rheological parameters p, q and r provided that the viscosity does not
become unrealistically large. Even equatingparameterp to zero to account for floc break-up
by turbulent shear hardly influences the results.

5. Application ofthe mathematical model developed to field situations has to be preceded by
validation with data from the laboratory experiment simulated.
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Appendix - Analytical solution for a homogeneous fluid

The equations presented in Section 2 can he solved analytically inthe special case where:
• The shear stress at the bottom screen is constant.
• Viscous effects are negligible.
• Sidewall friction is absent.
• Density stratification is absent.
The last condition is not a necessary one, but is introduced herein for the sake of
convenience. It implies that the couplinghetween momentum equation (2.1) and the mass
balanee (2.2) is dropped.

The momentum equation (2.1) together with the PMLmodel (2.12) now can he written
as

au = s. [12(Z,t) au au]at az az az (Al)

This equation allows a similarity solution ofthe form U = U(1'), where 1')is given by

z1') --
H(t) (A2)

Substituting from (A.2), Equation A.1 becomes

(A.3)

where we= dH/dt is the entrainment rate and U' = dl.l/dr].Equations 2.15 and 2.16 show
that the mixing-Iength l(z,t) can hewritten as l(z,t)=H(t)<t>(1'),where <t>is a known function
of n. Equation A3 thus can be written, for U' < 0,

(A.4)

This result shows that in the case of similarity the entrainment rate is constant.
Equation A.4 can be integrated once to give

(A5)
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where the integration constant Cl is determined from the boundary condition (2.8) for the
shear stress at z = H, that is, at 11= 1. As the shear stress is proportional to (<I>u'l,
Equation (A.5) becomes

(A.6)

At the screen (z = 0), the relationship <uw>(O,t) = u/ gives -<I>(O)U'(O)= u.. Substitu­
ting from (A.6) then gives

1

E f 11d11 = 2
• 0 <1>(11)

(A7)

where E. =wju. is a dimensionless entrainment rate. Equation A.7 shows that E. is
proportional to the dimensionless mixing-length <1>.

Adopting the mixing-length distribution given by (2.15) and (2.16), the integral in (A7)
can be evaluated to give

6E. = 4K---
1 + 62

(A8)

Substituting the values of Kand 6 selected in Section 2.2, that is, K= 0.41 and 6 = 0.20, the
dimensionless entrainment rate becomes E. = 0.31, somewhat larger than the value of 0.28
Tennekes and Lumley (1972) derived from experimental data.
Ifa mixing-length distribution for turbulence in the whole water column is prescribed,

the mixing-length in a shallow CBS layer (HIh« 1, which is usually true in the field) then
is given by I <= KZ. This case corresponds with a value of 6 equal to one so that the
dimensionless entrainment rate becomes 2K= 0.82. Neglecting the fact that only the CBS
layer is turbulent, and its consequenses for the mixing-length distribution, therefore results
in an entrainment rate that is too high by a factor of almost three. It is noted that this result
applies to the unstratified case.
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Figure 1. Entraining flow of a CBS layer. A bottom screen drives the flow and produces
turbulence. The curved arrows indicate the engulfment of overlying water by the
turbulent motions in the CBS layer. The lutocline given by z = H(t) moves
upward. The notation is explained inSection 2.
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Figure 2. Entrainment rates in a two-fluid system calculated with ex= 12 and OT= 1.5 (solid
line). The experimental data indicated by asterisks are taken from Kranenburg
(1984).
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Figure 3. Influence of damping functions and turbulent Prandtl-Sehmidt number on
calculated concentrationand velocity distributions in a two-fluid system. fl. Eqs.
2.20 and 2.21, or = 1.5 (the final value of Ri, is 630),..h. Eqs. 2.20 and 2.21,
0r= 1 (the final value of Ri, is 500), c. Eqs. 2.18 and 2.19, 0ro= 0.7. The
time interval between plots is 100 s. The total simulation time is 600 s. The
horizontal dasheson the left of the vertical axes indicate the depths of the CBS
layer at the times the distributions are plotted. For Figure 3e see next page.
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Figure 3c. For caption see previous page.
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Figure 4. Concentration and velocity distributions for Run 1.The time interval between
plots is 50 s. The total simulation time is 600 s.
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Figure 5. Concentration and velocity distributions for Run 2. The time interval between
plots is 50 s. The total simulation time is 400 s.
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Figure 6. Concentration and velocity distributions for Run 3. The time interval between
._plo~s_~_~~_5~'.The total simulation time is 400 s.
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Figure 7. Concentration and velocity distributions for Run 4. The time interval between
plots is 50 s. The total simulation time is 400 s.
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Figure 8. Concentration and velocity distributions for Run 5. The time interval between
plots is 50 s. The total simulation time is 600 s.
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Figure 9. Concentration and velocity distributions for Run 6. The time interval between
plots is 50 s. The total simulation time is 400 s.




