
 
 

Delft University of Technology

Unravelling dislocation networks in metals

Arechabaleta Guenechea, Zaloa; van Liempt, Peter; Sietsma, Jilt

DOI
10.1016/j.msea.2017.10.099
Publication date
2018
Document Version
Final published version
Published in
Materials Science and Engineering A: Structural Materials: Properties, Microstructures and Processing

Citation (APA)
Arechabaleta Guenechea, Z., van Liempt, P., & Sietsma, J. (2018). Unravelling dislocation networks in
metals. Materials Science and Engineering A: Structural Materials: Properties, Microstructures and
Processing, 710, 329-333. https://doi.org/10.1016/j.msea.2017.10.099

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.msea.2017.10.099
https://doi.org/10.1016/j.msea.2017.10.099


Contents lists available at ScienceDirect

Materials Science & Engineering A

journal homepage: www.elsevier.com/locate/msea

Unravelling dislocation networks in metals

Zaloa Arechabaleta⁎, Peter van Liempt, Jilt Sietsma
Dept. Materials Science and Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
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A B S T R A C T

Understanding the intricate structure of dislocations in metals is a major issue in materials science. In this paper
we present a comprehensive approach for the characterisation of dislocation networks, resulting in accurate
quantification and significantly increasing the insight into the dislocation structure. Dislocation networks in
metals consists of dislocation segments, pinned by microstructural obstacles. In the present paper a model is
introduced that describes the behaviour of these dislocation segments in the pre-yield range of a tensile test on
the basis of fundamental concepts of dislocation theory. The model enables experimental quantification of the
dislocation density and segment length from the tensile curve. Quantitative results are shown and discussed on
the development of the dislocation network as a function of increasing degree of plastic deformation, including
validation and physical interpretation of the classical Taylor equation.

1. Introduction

The mechanical behaviour of metals is governed by dislocations.
Dislocation lines, spontaneously occurring lattice defects, are present in
any crystalline metal at a typical density ρ of 1011–1015 metre per cubic
metre material (m−2). It is generally accepted that their motion effec-
tuates plastic deformation. In most models for dislocation behaviour “a
dislocation” is considered as a discrete entity, which either remains
stationary or becomes mobile when subjected to a mechanical stress
[1]. These distinct dislocations are envisaged to interact through their
surrounding strain fields. However, dislocations cannot end within a
crystalline structure [2] and they can therefore not be regarded as
discrete, separate units. Dislocations form a continuous network. This
network, termed “Frank net” by Cottrell in 1957 [3], interacts with
microstructural features like precipitates, solute atoms and grain
boundaries and self-interacts with dislocation lines within the network
(see Fig. 1a). In the interaction points, dislocation motion is impeded
and these points are commonly indicated as “pinning points”. The
network is thus subdivided into dislocation segments between micro-
structural pinning points. When applying a stress, the central parts of
the segments can and will move, but the segments do remain attached
to the pinning points. The motion of dislocations thus consists of the
bowing out of dislocation segments (a schematic example is given for
one segment in Fig. 1a). The main characteristics of the dislocation
network that are relevant for the strength and deformation of the metal
are the dislocation density and the distribution of dislocation segment
lengths. The present paper will show that these characteristics can be

quantitatively determined from a repeated cycling tensile test (see
Fig. 1b and c for the equipment and results on a low-alloy (LA) and an
interstitial-free (IF) steel studied in this paper), an experimental method
that is easily and cheaply accessible for every materials scientist.

2. Experimental

Repeated cycling tensile tests were performed on two samples of
the LA steel and two samples of the IF steel. Both are single-phase
ferritic (BCC) steels. The main alloying elements for the LA steel are
0.08 wt% C, 0.30 wt% Mn, 0.10 wt% Si, and for the IF steel 47 wt-ppm
C, 0.15 wt% Mn, 0.049 wt% Ti. The tensile tests were conducted on an
Instron 5982 electromechanical tester, with a maximum capacity of
100 kN, at room temperature and in displacement control. Standard
ASTME E-8 dog-bone specimens of 1.0 mm thickness were used for the
LA steel, whereas for the IF steel the dog-bone specimens were of
275 mm total length, 60 mm gauge length and 12.5 mm gauge width,
with a thickness of 0.7 mm. In order to accurately measure the strain,
also at small strain in the pre-yield region, a duplex extensometer set-up
was used (Fig. 1b) [4]. The repeated cycling tests consisted of 20
loading and unloading steps, in each of which the stress was reduced to
10 MPa after the application of 0.5% plastic true strain.

3. Results and discussion

The cycling true stress-strain curves, averaged over the two mea-
surements for each steel grade, are shown in Fig. 1c. The first loading
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step was not included in the analysis, because it was affected by internal
stresses and imperfect initial alignment of the samples. The Low-Alloy
steel shows the phenomenon of yield point extension and therefore also
the second and third cycle of this steel were not included in the ana-
lysis. Each loading curve consists of a pre-yield region with subse-
quently a transition to plastic deformation at the stress that is indicated
as the yield stress in the present paper. This quantity is also often in-
dicated as the flow stress, but in these experiments it is actually the
stress at which yielding (re)occurs, which is why we will refer to this
quantity as the yield stress. From Fig. 1c it can readily be seen that the
yield stress in the subsequent loading steps depends on the plastic strain
εp. This dependence, the work hardening behaviour, is generally known
to be caused by the development of the dislocation structure within the
metal during plastic deformation. Understanding the dislocation
structure in metals is therefore of paramount importance for under-
standing the mechanical behaviour of these materials. Nevertheless, in
most experimental and modelling studies the intricate dislocation
structure is characterised by just one parameter, the dislocation density
ρ. Moreover, the experimental determination of the dislocation density
is complicated and can be achieved only with limited accuracy.
Transmission Electron Microscopy can be used for direct observation of
dislocations, but effects of sample preparation and the limited volume
that can be probed do not allow accurate quantification [3]. X-Ray
Diffraction is commonly employed for experimental determination of
the dislocation density [5–7], but the quantification requires restrictive
assumptions in the analysis that cannot be independently tested and
that render quantification on an absolute scale cumbersome. Never-
theless, X-Ray diffraction has been employed in many experimental
studies to determine the dislocation density [4,8,9], including in situ
studies by synchrotron radiation [10,11]. The electrical resistivity has
also been proposed for the experimental determination of ρ [12], but
this is an indirect method that requires additional assumptions. How-
ever, basic dislocation theory shows that it is not in the first place the
dislocation density, but the length of dislocation segments that governs
the mechanical behaviour of metals. Therefore a scientific focus on
dislocation segment-length distribution is crucial for a better under-
standing of the mechanical behaviour of crystalline metals. Regrettably,
very limited experimental information on dislocation segment lengths is
available in the literature. Jakobsen et al. [13] have presented syn-
chrotron observations on the localised behaviour of dislocations. Mes-
serschmidt [14] discusses internal friction measurements for the

analysis of the dislocation segment length, but application of the
method has been very limited. To the best of the authors' knowledge no
method is available with which a quantitative overall picture of dis-
location segments in a metal can be obtained. The present paper will
show that such quantification is possible by analysing the pre-yield
behaviour during a tensile test.

Classical dislocation theory describing the behaviour of a disloca-
tion segment that is bowing out under the influence of a mechanical
stress (Fig. 1a) is widely accepted [3]. The central equation gives the
relation between an applied stress σ and the radius of curvature r of the
bowing dislocation segment, a consequence of the dislocation line stress
being in equilibrium with the applied stress:

=σ MGb
r2

, (1)

in which M is the Taylor factor, G the shear modulus and b the length of
the Burgers vector [15]. The bowing out of a dislocation segment of
length L becomes critical at a stress σc given by

=σ MGb
L

.c (2)

At stresses higher than σc the dislocation line stress can no longer
compensate the applied stress, the stress equilibrium is lost and the
dislocation segment is activated as a Frank-Read source. This is the
onset of plastic deformation and σc is therefore the stress at which the
dislocation segment of length L yields. Considering the entire structure,
a distribution of segment lengths will be present. The macroscopically
observed yield stress σy is determined by an effective segment length
representing this distribution. We assume that this effective length can
be approximated by the average segment length L , which is then re-
lated to σy by an equation that is equivalent to Eq. (2):

=σ M Gb
L

,y (3)

involving the average Taylor factor M ( =M 3.06 for BCC [16]). Note
that L is not determined by the distances between self-interaction
points of the dislocation network only (Fig. 1a), because of the influ-
ence of other microstructural pinning points, like solute atoms and
precipitates. These points include grain boundaries, so the grain size
effect on the yield stress is also effectuated in L .

At the start of the tensile test, when the applied stress is zero, the
dislocation segments are in principle straight between their pinning
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Fig. 1. The mechanical behaviour of metals during a tensile test. (a) Schematic representation of the dislocation network, with segments terminating at self-interaction points of the
network, at average distance Ld, and at microstructural pinning points caused by other obstacles, like precipitates, jogs, solute atoms and grain boundaries (red dots). At zero stress, all
segments are straight; the bowing out of dislocation segments, sweeping an area A when a small stress is applied, is shown for one segment. The scale bar is merely indicative. (b) The
tensile test, with the duplex extensometer set-up [4]. (c) The repeated cycling tensile curves for the Low-Alloy (LA) and the Interstitial-Free (IF) steels that were investigated in this study.

Z. Arechabaleta et al. Materials Science & Engineering A 710 (2018) 329–333

330



points, which is the configuration with the lowest defect energy because
of the minimum length of the dislocation lines. At a non-zero stress
below the yield stress, i.e. in the pre-yield region, each dislocation
segment will bow out to a certain extent, into a circle segment [3],
schematically shown for one segment in Fig. 1a. The extent of bowing is
determined by the equilibrium between applied stress and dislocation
line stress, as described by Eq. (1). Note that this process does not in-
duce any irreversible change in the dislocation network. The bowing
out of N dislocation segments per cubic metre causes an equivalent true
strain εa that is reversible in nature and is called anelastic strain [4,17].
A dislocation network of N segments of average length L represents a
dislocation density =ρ NL . The anelastic strain is then given by

= =ε NbA
M

ρbA
M L

,a (4)

where A is the average area swept by the dislocations in moving from
the straight zero-stress configuration to the curved configuration (see
Fig. 1a). The anelastic strain is additional to the lattice strain σ E/ that is
determined by the Young's modulus E, and thus causes a decrease of the
apparent Young's modulus =Θ σ

ε
d
d . Eq. (4) shows that the pre-yield re-

gion of the tensile curve contains information on the dislocation density
ρ and the average segment length L . This information can be extracted
when considering the extended Kocks-Mecking (KM) plot [4,17], a plot
of Θ as a function of σ .

In Fig. 2 several examples are given of extended Kocks-Mecking
plots for the loading steps in the tensile curves in Fig. 1c. Fig. 2 shows
the distinct deviation of Θ from the value of the Young's modulus,
which is caused by additional anelastic strain due to the bowing out of
dislocations (Eq. (4)). The plastic region of the extended KM-plot
(Fig. 2) is barely visible because of the small values of both Θ and the
stress increase in this region as compared to the (an)elastic region. At
very low values of σ , Θ is influenced by effects of the preceding un-
loading step, as will be discussed in a forthcoming paper on the un-
loading behaviour of the dislocation network.

As early as 1956, the initial value for Θ, at =σ 0, was related,
starting from Eq. (4), to the quantity ρL 2 by Schoeck [18], but recently
Van Liempt and Sietsma derived, based on the same physical principles,
the equation that describes the entire pre-yield part of the extended
Kocks-Mecking plot [17]:

= −
− + + − −

Θ M Es s
M s s ρL ν s s s

1
1 (1 )( (1 ) arcsin( ))

,
2 3 2

2 3 2 2 2 (5)

with =s σ σ/ y and ν is Poisson's ratio ( =ν 0.29). The red dashed lines in
Fig. 2 show the fits of this equation to the pre-yield region of several
loading curves. The agreement is seen to be very good, except for the
aforementioned spurious effect of the preceding unloading step at low σ
and the somewhat lower experimental Θ-values at higher σ , most likely
caused by microplasticity. The fit of Eq. (5) eventually involves two
fitting parameters: the dislocation density ρ and the average segment
length L . The latter determines the value of σy, and thus s, through Eq.
(3).

The evolution of the dislocation density ρ and the average segment
length L as a function of plastic strain εp, is shown in Fig. 3 for both
steel grades. The pre-yield region of the tensile curve is thus shown to
supply quantitative information on the dislocation network, developing
as a function of plastic strain.

The decrease of the average dislocation segment length, related to
the increase in dislocation density, causes the material to become
stronger, a phenomenon that is known as work hardening. It has since
long been accepted that the so-called Taylor equation [19] describes the
relation between yield stress and dislocation density. This equation
reads:

= +σ σ αM Gb ρ .y 0 (6)

In this equation α is a constant, for which usually values in the range
0.15–0.4 are assumed. The first term in this equation, σ0, represents the
strength contribution due to other microstructural obstacles than dis-
locations. The Taylor equation is based on considering dislocations as
separate entities, which interact through the strain fields surrounding
them. The distance between these dislocations is assumed to be in-
versely proportional to ρ , while the character of α is not clearly de-
fined. Although widely accepted, the Taylor equation should be con-
sidered as a semi-empirical relation, where its validation is very limited
due to the poor accuracy of dislocation density data and to the
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experimental ambiguity in the determination of the yield stress, in
which the widely applied 0.2% offset method is practically useful, but it
is not based on the dislocation behaviour. Moreover, no physical
meaning has yet been proposed for the parameter α. The measurements
presented in the present paper provide a possibility for experimental
validation of the Taylor equation. The relation between the yield stress
and the dislocation density and the fit to Eq. (6) is shown in Fig. 4 for
both materials. It can be seen that the fit of the Taylor equation is very
accurate, yielding the values = ±σ (87 50 ) MPa and = ±σ (84 50 ) MPa
for the LA steel and the IF steel, respectively. For the parameter α, the
value =α 0.389 ± 0.010 is found for the LA steel and = ±α 0.410 0.010
for the IF steel.

The validity of the Taylor equation allows for further analysis of the
dislocation network. The second term in the Taylor equation represents
the strength contribution σd (equal to −σ σy 0) that is due to pinning by
self-interaction points of the dislocation network, with average distance
Ld (see Fig. 1a). Now that the value of σ0 has been determined (Fig. 4),
for each loading cycle the distance Ld, representative for the dislocation
network (Fig. 1a), can be calculated by means of

= =σ αM Gb ρ M Gb
L

.d
d (7)

Eq. (7) shows the physical meaning of the Taylor parameter α in the
present interpretation of the dislocation behaviour:

= −α L ρ( ) .d
1 (8)

The parameter α thus relates the observable parameter, the dis-
location density, with the microstructural parameter that determines
yielding, the segment length. The dimensionless quantity L ρd re-
presents the structure of the dislocation network, combining its char-
acteristics ρ and Ld. The validation of the Taylor equation (Fig. 4)
implies that the parameter α retains a constant value when the dis-
location network changes as a consequence of the plastic deformation
process. This implies that the quantity L ρd , a quantitative re-
presentation of the dislocation network, remains constant (having the
values 2.58 ± 0.07 for the LA steel and 2.44 ± 0.06 for the IF steel),
although ρ changes. Such observations enable closer studies of the
processes that lead to the evolution of the dislocation network during
plastic deformation.

The novel approach presented in this study to come to better un-
derstanding of the role of the dislocation network in plastic deformation
of metals yields an accurate and consistent quantification of dislocation

characteristics, derived from the pre-yield part of the tensile curve. The
consistency of the approach and the resulting values can further be
examined by considering the magnitude of the anelastic strain that
results from dislocations bowing out in the pre-yield region εa, Eq. (4).
When the applied stress is approaching the yield stress, the dislocation
segments evolve towards semi-circles. At the yield stress, when a dis-
location segment has become a semi-circle, it has swept an area Lπ

8
2.

Inserting the average value Lπ
8

2 for A into Eq. (4), the average anelastic
strain at the yield stress, εa

y, can be expressed as

⎜ ⎟= = ⎛
⎝

+ ⎞
⎠

ε
πbρL

M L
σ
L

πb
M

ρL
8

1
8

,L
a
y

2 2

2 (9)

with = −σ L LL
2 2 2 the variance of the segment length distribution. The

magnitude of the anelastic strain is not only of theoretical interest, but
also at the basis of the magnitude of springback, a technologically
important phenomenon. In the present study, the anelastic strain at the
yield stress has been experimentally determined from each loading
curve by subtracting the elastic strain σ E/y from the total strain at

=σ σy. Its relation with the product ρL is shown in Fig. 5. The figure
shows that indeed a linear relation is found, albeit with a slight de-
viation at low values of ρL . The slope of the line fitted with Eq. (9) is
(0.047 ± 0.002) nm for the two steels. This implies, using the pre-
viously given values for b and M , ≈σ L0.5L

2 2. This analysis of the ane-
lastic strain again shows the consistency of the present approach and
provides information on the width of the distribution of segment
lengths in the dislocation network.

4. Conclusions

The present study proposes an accessible, cheap and accurate
method to quantify the dislocation network in metals, based on tensile
tests and widely accepted physical principles of dislocation behaviour.
Besides the quantification of the dislocation density, the method also
yields the value of the average dislocation segment length and even an
estimate of the width of the segment length distribution. An accurate
experimental validation of the Taylor equation for work hardening is
presented, introducing the physical meaning of the parameter α in this
equation (Eq. (8)). Wider application of this method can lead to valu-
able increased insight into the behaviour of dislocations in many as-
pects, like the effect of bake hardening in steel due to the decrease of
the segment length while the dislocation network remains unaffected,
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the magnitude of springback that is directly related to the density and
behaviour of dislocations during unloading, the interaction between
dislocations and precipitates, the mechanisms of recovery and many
other examples.
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