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Chapter 1

Introduction

1.1 Single electrons, holes and photons

Quantum dots are tiny boxes in which we can enclose single grains of matter - the
electrons. However, as discovered a century ago by Louis de Broglie, electrons exhibit
both the particle and a wave-like nature, a property that is referred to as wave-
particle duality. In the past two decades thanks to the development of semiconductors
growth techniques we are able to make the boxes out of the semiconductor material
so tiny, that their size is comparable to the length of the electron wave. In such
regime quantum mechanics plays a major role and quantum dots open a fascinating
playground for physicists to first observe, understand and eventually learn to engineer
quantum mechanical properties.

Semiconductor quantum dots, in contrast to electrically defined quantum dots,
can trap both electrons and holes. A recombination of the electron and hole pair
(an exciton) gives a photon, a quantum particle of light. This fact has at least
two profound consequences. First of all, next to the electrical manipulation of the
electron and hole spin, physicist can use light to address this quantum mechanical
property. Single charges can be injected into the boxes with electric field1,2, spin states
manipulated with electric gates or, even faster, with a laser, and finally the result
can be readout in the optical3–6 or electrical way7,8. Therefore quantum dots deliver
a freedom to explore both electrical and optical single spin manipulation schemes.
Secondly, semiconductor quantum dots are natural platforms for interfacing single
spins (stationary qubits) with photons (flying qubits). Spin-photon entanglement has
been recently demonstrated9,10 and a single spin to single photon "coherent quantum
translator" still awaits its realization11. The way in which the spin state is translated
onto a photon polarization depends on quantum numbers for the electron and hole
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1. Introduction

involved in the optical recombination. In III - V semiconductor quantum dots there
are two species of holes (heavy and light) that differ by quantum numbers. In usual
quantum dots, which physicists study for over twenty years, a hole ground state always
has a dominantly heavy character. Because of this, experiments with a pure light hole
ground state were out of reach. In this thesis, we show how a high purity light hole
state can be engineered by careful design of quantum dot shape and strain.

The spin of an electron and a hole can point either up or down, or be in an up-down
quantum superposition state. We can employ this quantum property and use the spin
as a quantum bit. One of the basic requirements for a quantum bit is that the two
levels (up and down) are separated and hence can be individually addressed12. The
magnetic field is commonly used to separate the up and down spin state. In this thesis
we investigate the electron and hole response to the external magnetic field which is
quantified by the g-factors and the diamagnetic shift coefficients.

Finally, exploring the quantum nature of single particles of matter is not the only
possibility that quantum dots offer. Most importantly, quantum dots are also the
sources of single quantum particles of light, photons. The statistics of photons emitted
from the quantum dot makes them very unique and different from the sunlight or
laser photons. In particular, having quantum dots we can produce the light states
of a well defined number of photons. In this thesis we will take a single photon and
demonstrate the most striking effect in quantum mechanics: quantum non-locality.

Quantum non-locality seems to be a valid property of the world we live in, even
though it often counters our intuition and was not easy to accept even by Einstein13.
Physicists use a test developed by John Bell to rule out between quantum non-locality
and local realism. Ideally, two entangled particles are brought far enough to exclude
any communication between them and then the sequence of Bell test measurements is
performed. If the two distant particles behave like a single, inseparable entity, then
their physical state is nonlocal. Our approach is to prove quantum non-locality with
only one particle instead of a pair. In this thesis we show a Bell test performed on a
single photon.

In summary, in this work we explore abstract quantum mechanical concepts such
as non-locality and at the same time address very practical issues of spin states
engineering. In both cases quantum dots are at the heart of our experiments and set
the common denominator of our investigations.

1.2 Thesis overview

Chapter 2 presents an overview of theoretical concepts that this thesis is based on.
We start with the introduction of basic electron and hole spin properties resulting
from the wavefunction symmetry in semiconductor quantum dots. We deduce the
optical selection rules for heavy and light hole exctions and explain how different hole

2



1.2. Thesis overview

states manifest themselves in the polarization of the exciton emission. The physical
intuition behind the Luttinger-Kohn model is developed in order to understand the
influence of the quantum dot shape symmetry and strain distribution on the hole spin
eigenstates.. Finally, we focus on the properties of light emitted from the quantum
dot, in particular its use in the test of the quantum mechanical concept of nonlocality.

Chapters 3 to 6 report on the experiments revealing the heavy and light hole
excitons properties. In chapter 3 we investigate the heave and light hole spin
characteristics that are manifested in the exchange interaction with the electron
as well as the Zeeman and diamagnetic interaction in the external magnetic field.
Experimental results are shown for highly symmetric GaAs/AlGaAs epitaxial quantum
dots, where the hole character can be switched from a dominantly heavy to dominantly
light. Further, a comprehensive study of the magnetic properties of the heavy hole
exciton is presented in chapter 4. A complete g-factor tensor is revealed thanks to the
use of magnetic fields in three different geometries. However, the InAsP quantum dots
studied in chapter 4 differ substantially from the quantum dots studied in chapter 3.
It is not only a difference in composition, but most importantly in the nanostructure
geometry (InP nanowire) and crystal symmetry (wurtzite). In chapter 5 we describe
how to engineer a quantum dot system with a light hole ground state using tensile
strain. Our first observations of the light hole exciton are shown and compared to
the theoretical expectations from the atomistic pseudopotential calculations. Before
the growth of quantum dots with high purity light hole ground state was optimized,
we went through a series of attempts and characterized quantum dots with mixed
hole states. The results of these measurements and the discussion of possible mixing
mechanism can be found in chapter 6.

From considerations of electron and hole spins in semiconductor quantum dots we
move on to an experiment with single photons in chapter 7. In this chapter we
describe our attempt to test the quantum non-locality with only one particle: a single
photon. Our goal is to show that a single photon can be in a superposition of two
distant spatial modes. In order to prove quantum non-locality we implement a Bell
measurement in which we probe wave-like properties of a single photon.

3



1. Introduction
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Chapter 2

Quantum dots: single spins and
single photons properties

Semiconductor quantum dots can act both as convenient hosts of two-level quantum
systems as well as controllable single, non-classical photon emitters. The unquestion-
able advantage of semiconductor quantum dots over other single photon emitters is
the flexibility to tune their size, shape and composition. In this way a large degree
of control of spin properties can be achieved, as well as optical properties. In this
chapter we explain how the electron, heavy and light hole spins properties and optical
selection rules are linked to the wavefunction symmetry. Optical selection rules for
pure spin states in quantum dots are discussed. We explain the effect of shape and
strain anisotropy on spin states mixing and discuss the signature of different mixing
mechanisms revealed in the polarization of the exciton. Finally, after introducing
optical selection rules, we focus on non-classical statistics of quantum dot photons
and their coherence properties.
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2. Quantum dots: single spins and single photons properties

2.1 Quantum dots as hosts for qubits

A semiconductor quantum dot is a zero dimensional structure, where single electrons
and holes can be trapped and manipulated. The spins of electrons and holes form a
two level system constituting a natural candidate for a quantum bit - a qubit. An
advantageous (and very peculiar!) feature of a quantum bit is that the binary values
of a single bit can be brought into a coherent superposition:

|Ψ(t)〉 = cos
θ

2
|↑〉+ e−

i∆Et
h̄ +φsin

θ

2
|↓〉 . (2.1)

This equation describes the spin states |↑〉 and |↓〉 split be the Zeeman splitting
∆E and their time evolution in an external field. In a perfectly isolated system this
spin state would obey the dynamics described above forever. In reality, there are
a number of effects that damp the evolution in time of a spin in a semiconductor.
The randomization of θ leads to the longitudinal spin relaxation, described by a
time T1. The loss of the relative phase information φ is referred to as transverse
spin decoherence, occurring in time T2. Preservation of the spin orientation and its
coherence are the necessary conditions for an undisturbed quantum computation.
Electron spins, for a long time, have been considered as natural candidates for qubits.
In recent years however, increasing attention has been paid to hole spins. Both spin
species have been found to have long coherence times relative to the expected time
for gate operations. Here, we discuss and compare the spin states of electrons and
holes in a quantum dot. Before we summarize the properties of these qubits, such as
relaxation time T1 and coherence time T2, we shall start with the description of the
valence and conduction band in III-V semiconductor quantum dots.

2.1.1 Electron and hole state description

In order to develop understanding of the qubit states in a quantum dot, we shall recall
briefly the description of the electron and hole states in a bulk semiconductor. In
the crystal lattice of a semiconductor, the electron experiences a periodic potential.
According to Bloch’s theorem, this potential introduces a modulation to the free
electron plane wave:

|Ψ(r)〉 = eikr
∣∣ubk(r)

〉
(2.2)

The Bloch state ubk(r) is a periodic function in the Bravais lattice describing an
electron in the band b with wave vector k. The energy of the electron in the momentum
space k for the conduction c and valence v bands is shown in figure 2.1(a). Around the
extrema of the bands the energy dispersion is parabolic and can be approximated with
the energy of a free electron with effective mass mb. The effective mass is obtained
from the curvature of the energy dispersion. This is how the two upper valence
band states take their names: the heavy (HH) and light hole (LH). The HH and LH
sub-bands are degenerate at the Γ point (k = 0) and split into two branches for finite

6



2.1. Quantum dots as hosts for qubits

wave vectors k. The third sub-band in the valence band is the spin orbit split-off (SO)
band.

Let us focus now at the orbital L and spin S quantum numbers for the subbands
at the Γ point (k = 0). A brief look at the symmetry properties of the atomic
eigenfunctions can greatly enhance our understanding of the bandstructure. First, we
start by looking at the energy eigenvalues of the individual atoms that constitute the
semiconductor crystal. The individual atoms have the outermost (valence) electrons
in s- and p-type orbitals. The symmetry and geometric properties of these orbitals are
depicted in fig. 2.1(b). Once the atoms form a crystal, the valence electrons hybridize
into sp3 orbitals that lead to tetrahedral bonding. The crystal develops its own
bandstructure with gaps and allowed bands. In semiconductors the conduction and
valence bands are of major interest. It turns out that the states near the band-edges
behave very much like the s and the three p-type orbitals they had when they were
individual atoms. Electrons in the s-type conduction band have therefore L = 0 and
S = 1/2, resulting in the total angular momentum Je = 1/2. For p-type holes L = 1
and S = 1/2, giving two possibilities for total angular momentum: J = L+ S = 3/2
and J = |L− S| = 1/2. States with J = 1/2 and J = 3/2 are split by the spin-orbit
interaction and a state with J = 1/2 has a lower energy. This is the origin of the
split-off band. States with J = 3/2 have two projections in the z direction: states with
Jz = ±3/2 form a HH subspace and states with Jz = ±1/2 a LH subspace. The Bloch
functions retain much of the symmetries that the atomic orbitals possess. Conduction
band electron states can be expressed as:1:

|ue,↑〉 = |S〉 |↑〉 ,
|ue,↓〉 = |S〉 |↓〉 ,

(2.3)

valence band HH states:

|uHH,↑〉 = − 1√
2
|X + iY 〉 |↑〉 ,

|uHH,↓〉 =
1√
2
|X − iY 〉 |↓〉 ,

(2.4)

LH states:
|uLH,↑〉 = − 1√

6
(|X + iY 〉 |↓〉+ 2 |Z〉 |↑〉),

|uLH,↓〉 =
1√
6

(|X − iY 〉 |↑〉+ 2 |Z〉 |↓〉),
(2.5)

and SO states:
|uSO,↑〉 = − 1√

3
(|X + iY 〉 |↓〉+ |Z〉 |↑〉),

|uSO,↓〉 =
1√
3
|X − iY 〉 |↑〉 − |Z〉 |↓〉).

(2.6)

7



2. Quantum dots: single spins and single photons properties
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Figure 2.1 | (a) The bandstructure of a typical III-V bulk semiconductor. (b) s- and p-
like atomic orbitals.

Since the spin-orbit splitting is large (340 meV for GaAs and 380 meV for InAs)
we exclude the SO states from our further consideration.

An electron in a semiconductor quantum dot is trapped in all three dimensions and
its quantum mechanical behavior becomes apparent. Thanks to the effective mass
approximation, the equation of motion in the band b takes a quite simple form again:

|Ψ(r)〉 = |φ(r)〉
∣∣ubk(r)

〉
. (2.7)

In contrast to the bulk case (eq. 2.1.1), the free electron plane wave function eikr
is replaced with the envelope function φ(r), which is localized at the quantum dot
according to the effective quantum dot potential. It is important to note, that the
Bloch function ubk(r) is still present in the description of the electron states. The
orbital symmetry of carriers trapped in quantum dots will later help us understand
their spin properties and interactions with the environment. In a quantum dot the
HH and LH bands are no longer degenerate (see chapter 6). Typical HH-LH splittings
found in quantum dot experiments are on the order of ∆HH−LH ≈ 10 meV . There
are two reasons why HHs usually form the ground state in a quantum dot. First
of all, since the eigenenergy of the confined state is inversely proportional to the
mass, heavier particles occupy lower levels. Secondly, biaxial in-plane compressive
strain lifts the HH band. This is a major effect responsible for the HH-LH spitting
in Stransky-Krastanov type dots, where strain is required in quantum dot formation.
Due to such large splitting in usual quantum dots, the hole ground state is in first

8



2.1. Quantum dots as hosts for qubits

approximation treated as a purely HH state. For dots with rotational symmetry, the
hole ground state can be more than 90% heavy. Therefore LH states, being beyond
experimental reach, were often neglected. It has been observed for GaAs, InAs, CdTe,
CdSe that in-plane shape elongation can tremendously enhance the LH admixture
typically up to 20− 30%2–4, or even 70% as reported once for InAs quantum dots5.
In this work we will present studies of an almost pure LH ground state achieved with
a unique growth and fabrication technique that introduces tensile strain. Before we
present the results in chapter 5, we shall discuss the optical selection rules for both
the heavy and light hole in a quantum dot.

2.1.2 Relaxation and decoherence

An ideal qubit should be robust against environment influences that lead to decoherence
and relaxation. Here we discuss and compare the performance of three qubit candidates:
the electron spin, the heavy hole spin and the light hole spin.

In bulk III-V semiconductors, hole spin relaxes much faster than electron spin. This
is due to much stronger spin-orbit interaction for holes. The spin relaxation of holes
is extremely fast, in the femtosecond time domain6. However, quantum confinement
can improve this situation. A substantial increase in the hole spin relaxation time
is observed in quantum wells (up to 1 ns7) where the HH - LH mixing is partially
inhibited by motion quantization. Still, the hole spin relaxation time in quantum wells
is typically on the order of 103 times shorter than for electrons. It is only in quantum
dots, that the major hole spin relaxation mechanism, the spin-orbit valence band
mixing, is strongly suppressed. Therefore in quantum dots, the two main spin-flip and
decoherence mechanisms are the same for both electrons and holes: (i) interactions
with phonons and (ii) interactions with nuclear spins8. The nature of these interactions
is different for the hole and electron spin, and we are going to discuss situations where
either the hole or the electron spin is advantageous.

First, we will discuss spin-phonon coupling that is responsible for the spin-flip
transitions between the two Zeeman-split spin levels defining a qubit. This process
limits the T1 time. In quantum dots at low temperatures it is the spin-orbit interactions
that mediates the spin-phonon scattering9,10. Naturally for HHs, due to residual HH-
LH mixing, this process is more efficient. Relaxation time T1 of the electron spin can
be as long as 20 ms (Bext = 4T and T = 1K)11. In an equivalent experiment the HH
spin performs on average 5− 10 times worse, with T1 = 270± 180µs (Bnuclei = 1.5T ,
T = 8K)8. However, it is in principle possible to achieve the hole relaxation time
comparable to electron, or even longer10. The geometry of the quantum dot affects
the magnitude of the spin-orbit interaction. The ratio of the electron to hole spin-orbit
interaction Hso

el /H
so
HH = (l/h)2, depends on the lateral size l of the quantum dot and

the height h. In the limit of strongly two-dimensional quantum dots (l >> h), heavy
holes should have a longer relaxation time than electrons. Despite this prediction
longer heavy hole T1 time has not been reported yet (to the best of our knowledge). In
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2. Quantum dots: single spins and single photons properties

both experiments measuring the electron11 and hole8 spin storage time, the external
magnetic field facilitates the spin-phonon coupling and therefore reduces drastically
the relaxation time T1 ∝ B−5 (effect of Dresselhaus spin-orbit). The best relaxation
time T1 is achieved at zero magnetic field, on the other hand, the magnetic field is
essential in defining well separated and individually addressable two levels of a qubit.
Interestingly, in an experiment demonstrating a single hole spin initialization by Brian
D. Gerardot et al.12 no external magnetic field was needed to individually pump one
of the spin states, because holes are less sensitive to the nuclear spins. This work
brings us to the discussion of the hyperfine interaction for the hole and electron spin.

In typical GaAs quantum dots a carrier spin interacts with a bath of 104−105 nuclear
spins. The nuclear spins create a fluctuating effective magnetic field, the Overhauser
field. The carrier spin precesses in the Overhauser field such that the time-averaged
coherence time, is much shorter than the intrinsic decoherence time, T2. Electrons,
owing to the s-type symmetry, experience a direct contact hyperfine interaction with
the nuclear spin. Holes, however, described by a p atomic orbital whose density
vanishes at the nuclei site, have a strongly suppressed contact hyperfine interaction. A
weaker, long range dipole - dipole interaction with the nuclei dominates13,14. Recent
measurements on InGaAs/GaAs QDs15 and InP/GaInP QDs16 show that the HH
hyperfine interaction is 10 times smaller than for electrons (9% and 11%). Interestingly,
in both cases the sign of the hole hyperfine interaction is opposite to that of the electron.
Otherwise, these results would be in excellent agreement with theoretical predictions
of the anisotropic dipole-dipole hole hyperfine interaction14. The explanation to this
puzzle came with an element-sensitive measurement of hole hyperfine interaction17.
The idea was to first polarize the whole nuclear spin bath with the pump pulse,
and later depolarize selectively one of the isotopes with a radiofrequency oscillating
magnetic field. It was found that anions, such as P and As, have a quite large positive
hyperfine constant (+18% of the electron). Cations (Ga and In), in contrast, have
a negative hyperfine (−4% and −15%). This variation in the sign of the hyperfine
coupling could not be explained if the hole Bloch function had only a p-type symmetry.
As apparent from the expressions of the hole hyperfine Hamiltonians, p-orbitals can
have only a positive contribution:

HHH
hf =

∑
j

Aj

2
|Ψ±3/2(Rj)|2(

12

5
Mp −

18

7
Md)I

j
zS

HH
z +

9

7
Md(I

j
xS

HH
x − IjySHHy ),

HLH
hf =

∑
j

Aj

2
|Ψ±1/2(Rj)|2(

4

5
Mp −

18

7
Md)I

j
zS

LH
z + (

8

5
Mp −

9

7
Md)(I

j
xS

HH
x − IjySHHy ).

(2.8)

where positive integralsMl (l = p, d) depend on the hydrogenic radial wavefunctions
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2.2. Spin to photon interface

Rl(r) corresponding to the shell with orbital momentum L and normalized by the
density (4π)−1|S(0)|2. Only an addition of the d-orbital can lead to a negative sign of
the interaction. To account for a negative hyperfine constant for cations a contribution
of 20% of the d-type Bloch symmetry is estimated. Anions, however, are closer to a
pure p-type orbital.

So far, a comparison was carried out between the electron and the heavy hole spin.
Can the light hole spin provide us with an equally robust qubit as the heavy hole
spin? The answer is apparent from eq. 2.8. Terms IiSi describe flip-flops between hole
and nucler spin. If we consider a pure p-type orbital, HHs are sensitive only to the
z-component of the Overhauser field, whereas LHs can sense the Overhauser field in
any direction, especially in-plane field.14. Therefore the admixture of LH into the HH
state is believed to decrease the performance of the hole qubit in quantum dots13,14.
However, the T2 time of a pure LH state has not been yet experimentally determined.

2.2 Spin to photon interface

Quantum dots made of semiconductors with direct bandgaps are optically active. It
means that the energy quanta of the electromagnetic field can promote the electron
from the valence band to the conduction band, leaving a hole behind. The electron-hole
pair created in the process of light absorption is called an exciton. When the exciton
recombines, it emits a photon. Quantum dots are therefore a natural platform for
spin-photon interfaces. Understanding the optical selection rules that govern the
transitions between the electron and hole spin opens up many interesting possibilities
of addressing the spin with light. It has been shown that one can initialize, control
and readout spin states using laser light12,18–21. Furthermore, HH exciton selection
rules enable spin-photon entanglement22,23, whereas LH optical selection rules allow
for coherent transfer of quantum information from spin to photon and vice versa24.

2.2.1 Optical selection rules

The key to understanding optical selection rules lies in the symmetry of the hole and
electron wavefunctions. To analyze the problem of a quantum dot interacting with
the quantized electromagnetic field, in the strong confinement regime, we can apply
the standard model of a two level system with states |1〉 and |2〉. In a very good
approximation, the interaction of the electron confined in the quantum dot with the
electromagnetic field reduces to the electric dipole interaction. The oscillator strength
f2,1 quantifies how much the two levels are coupled to the radiative field:

f2,1 =
2|eks · 〈2|p |1〉 |2

m0|E2 − E1|
(2.9)

The unit vector eks denotes the direction of light polarization, and 〈2| p |1〉 is the
momentum matrix element. For optical transitions, the momentum matrix element

11



2. Quantum dots: single spins and single photons properties
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Figure 2.2 | Schematic of the electron and hole wavefunction symmetry. The optical
transitions are allowed between states of overall different parity

should be non-vanishing. This imposes certain symmetry criteria on states |1〉 and |2〉.
Since the momentum operator p changes the parity of the state, the electric dipole
transition is possible only between states of different parity. Let us look again at the
electron and hole wavefunctions in the quantum dot:

|1〉 = |φc〉 |uc〉 , |2〉 = |φv〉 |uv〉 . (2.10)

As we have already seen in section 2.1.1, the electron |uc〉 and hole |uv〉 Bloch
functions have a different parity. In order to ensure that the total electron and hole
wavefunctions |1〉 and |2〉 have a different parity, the envelope wavefunctions |φ〉 should
have the same parity. This is the reason why the optical transitions in the quantum
dot are allowed only between the same shells, as illustrated in fig. 2.2.

It can be derived that the following selection rules hold for the quantum numbers:

J − J ′ = 0,±1, L− L′ = ±1, Jz − J ′z = 0,±1. (2.11)

The transitions with Jz − J ′z = ±1 are circularly polarized (σ polarized), as they
involve net transfer of angular momentum and Jz − J ′z = 0 transitions are linearly
polarized (π polarized). We shall recall now the quantum numbers for the electron
and hole states introduced in section 2.1.1. First, we consider the excitons composed
of the HH with Jz = ±3/2 (⇑ or ⇓) and the electron with Sz = ±1/2 (↑ or ↓). We get
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2.2. Spin to photon interface

four exciton states of different exciton total momentum |JX,z〉:

|+2〉 =

∣∣∣∣+3

2
,+

1

2

〉
= |⇑HH↑〉 (2.12)

|+1〉 =

∣∣∣∣+3

2
,−1

2

〉
= |⇑HH↓〉 (2.13)

|−1〉 =

∣∣∣∣−3

2
,+

1

2

〉
= |⇓HH↑〉 (2.14)

|−2〉 =

∣∣∣∣−3

2
,−1

2

〉
= |⇓HH↓〉 (2.15)

with the electron states: ∣∣∣∣+1

2

〉
= |S〉 |↑〉 ,∣∣∣∣−1

2

〉
= |S〉 |↓〉 ,

(2.16)

and HH states: ∣∣∣∣+3

2

〉
= |⇑〉HH = − 1√

2
|X + iY 〉 |↑〉 ,∣∣∣∣−3

2

〉
= |⇓〉LH =

1√
2
|X − iY 〉 |↓〉 ,

(2.17)

Immediately, one can see that two of these states with JX,z = ±2 have to be dark.
The two remaining ones are circularly polarized. The polarization of the transition is
directly governed by the symmetry of the Bloch function. It is not the s-type electron
of the homogenous probability distribution, but the p-type hole that sets the direction
of the electric dipole transition. This is clearly seen from the scalar product of the
unitary polarization vector with the transition dipole matrix elements:〈

+
1

2

∣∣∣∣ e · p ∣∣∣∣+3

2

〉
= 0 (2.18)〈

−1

2

∣∣∣∣ e · p ∣∣∣∣+3

2

〉
= − Π√

2
(ex + iey) (2.19)〈

+
1

2

∣∣∣∣ e · p ∣∣∣∣−3

2

〉
=

Π√
2

(ex − iey) (2.20)〈
−1

2

∣∣∣∣ e · p ∣∣∣∣−3

2

〉
= 0 , (2.21)

where Π = 〈S| px |X〉 = 〈S| px |Y 〉 = 〈S| pz |Z〉. Light has a negligible action on spin,
the electron promoted from the valence band to the conduction band leaves a hole

13



2. Quantum dots: single spins and single photons properties

behind with an opposite spin. From this viewpoint, the optical transition for exciton
states with JX,z = ±2 would not conserve the spin orientation.

There is no such problem for the exciton states composed of the LH and electron
spins. Both of the LH states with Jz = ±1/2 are built from the linear combination of
spin up and down states, therefore they couple to every electron spin orientation:

|+1〉 =

∣∣∣∣+1

2
,+

1

2

〉
= |⇑LH↑〉 (2.22)

|+0〉 =

∣∣∣∣+1

2
,−1

2

〉
= |⇑LH↓〉 (2.23)

|−0〉 =

∣∣∣∣−1

2
,+

1

2

〉
= |⇓LH↑〉 (2.24)

|−1〉 =

∣∣∣∣−1

2
,−1

2

〉
= |⇓LH↓〉 (2.25)

where: ∣∣∣∣+1

2

〉
= |⇑LH〉 = − 1√

6
(|X + iY 〉 |↓〉+ 2 |Z〉 |↑〉),∣∣∣∣−1

2

〉
= |⇓LH〉 =

1√
6

(|X − iY 〉 |↑〉+ 2 |Z〉 |↓〉),
(2.26)

All four LH exciton states are bright, however, with different oscillator strengths:〈
+

1

2

∣∣∣∣ e · p ∣∣∣∣+1

2

〉
= − Π√

6
(ex + iey) (2.27)〈

−1

2

∣∣∣∣ e · p ∣∣∣∣+1

2

〉
=

2Π√
6

(ez) (2.28)〈
+

1

2

∣∣∣∣ e · p ∣∣∣∣−1

2

〉
=

2Π√
6

(ez) (2.29)〈
−1

2

∣∣∣∣ e · p ∣∣∣∣−1

2

〉
=

Π√
6

(ex − iey), (2.30)

All possible optical transitions for the HH and LH excitons are summarized in fig 2.3.
The offset between the HH and LH states was set for clarity of the diagram and does
not impose any specific band ordering (in this thesis we will show experimental results
for two situations: HH or LH on the top of the valence band). The thickness of the
arrows is proportional to the transition oscillator strength. An electron spin up (+1/2)
can recombine with the HH or LH. In the first case the emitted photon is left-handed
circularly polarized (σ−), in the latter case right-handed circularly polarized (σ+). If
the hole state is a mixture of the HH and the LH |hole〉 = α |HH〉+ β |LH〉, then the
resulting photon polarization is elliptical (as the sum of two uneven contributions from

14



2.2. Spin to photon interface

+3/2 -3/2
-1/2 +1/2

+1/2-1/2 L =0

L =1
HH
LH

σ+
σ+zσ− σ−

z

e

3
1 1

32 2

Figure 2.3 | Schematic of the optical transitions between the hole and electron states.

the orthogonal circular components α |σ−〉+ β/3 |σ+〉). Quantifying the ellipticity of
the neutral exciton emission has been an experimental measure of the HH-LH mixing
in QD experiments . We shall notice that the oscillator strength of the transition
to the LH state is 3 times weaker than to the HH state. Why is the probability of
the recombination to the LH state lower than to the HH state? If we look at the
overall picture, it is not. Collecting light emitted only along the z-direction (in other
words: in-plane polarized), shows only part of the LH exciton emission. There is 66%
probability, that the LH exciton will give a z-polarized photon. Such a photon can be
observed only in a non standard micro-luminescence geometry, whit collecion from
the edges of the semiconductor sample. A pure HH exciton emission will not result in
z-polarized light.

In conclusion, there is a crucial difference between the optical transitions derived
from the selection rules for the HH and the LH exciton. The HH couples to only
one electron spin, making the selection rules very clear. In contrary, LH states can
recombine with both electron up and down spin. One can say that there is no "spin
blocade" for the LH transition. In the following sections we will discuss the best use
of those radically different optical transitions.

2.2.2 Spin-photon quantum state transfer

In the context of quantum communication between remote quantum nodes the possib-
ility of transferring the quantum information from the stationary qubit (the electron
or hole spin) on to the flying qubit (a photon) and vice versa, is highly appealing.
Let’s consider a photon in a quantum superposition of states |φph〉 = α |σ+〉+ β |σ−〉
and a quantum dot with the HH band as a ground state. Absorption of such photon
creates a superposition of HH excitons:

|φph〉 = α
∣∣σ+

〉
+ β

∣∣σ−〉 ⇐⇒ |ΦX〉 = α |⇑HH↓〉+ β |⇓HH↑〉 . (2.31)
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2. Quantum dots: single spins and single photons properties

We have transferred the quantum information from the photon to the exciton state,
however, our goal is not yet achieved. Now we shall remove one of the carriers with
an external electric field, so that a single stationary qubit is left. Its quantum state
should be a faithful copy of the photon state. However, the electron and hole spins in
equation 2.31 are inseparable: they are entangled. Any attempt at removing one of
the carriers will instantly collapse the state of the remaining one. As we can see, HH
excitons are not suitable in this scenario of photon to spin state mapping. Nonetheless,
using the LH exciton might be a solution, since one LH state couples optically to both
electron spins (see fig. 2.3). Therefore the hole state can be simply factored out from
the superposition of LH exciton states:

|φph〉 = α |z〉+ β |x〉 ⇐⇒ |ΦX〉 = α |⇓LH↑〉+ β |⇓LH↓〉 = |⇓LH〉 (α |↑〉+ β |↓〉).
(2.32)

The LH can be now removed from the quantum dot without any harm for the electron
state. The electron state carries the information about the photon quantum state.
This scheme was proposed by Vrijen and Yablonowitch24 and became one of our
motivations for engineering quantum dots with LHs. This proposal is not trivial to
implement for a few reasons. First of all, because of the uneven oscillator strength of
the LH exciton transitions, the coefficients in the superposition state α and β might
not be evenly mapped. Secondly, there are certain requirements on the electron and
hole g-factors (ge << gLH). All these issues are discussed in greater detail in the
original proposal. Lastly, another difficulty is an enormous fine structure splitting
(above 400 µeV !) of the LH exiton that we have measured (chapter 3 and 5 of this
thesis), but not considered by the authors.

Why is the LH exciton exchange an obstacle? In eq. 2.32 we consider a photon in a
superposition of x and z polarization. The excitons corresponding to these polarization
states are split by as much as 430 µeV (e.g. QDALH in chapter 3) and therefore a
photon of unusually large natural linewidth would be needed to simultaneously address
both transitions. We can try to bring these excitons closer with external magnetic
field in Faraday geometry. The value of the magnetic field required to cancel the
splitting between the x and z polarized excitons depends uniquely on the quantum
dot electron and hole g-factors. For the studied QDALH we would need B = 15 T,
which is not impossible, however, not very practical. Besides practical reasons, high
magnetic fields are also a problem for the qubit coherence (as discussed already in
section 2.1.2. Could we have anticipated such enormous exchange interaction for the
LH exciton? In the literature on excitons in quantum wells a splitting between x
and z polarized LH excitons was reported to be at least 300 µeV up to 1.1 meV 25.
Moreover, these experimental values found confirmation in theoretical calculations.
In chapter 5 we also provide a theoretical model reproducing the values of exchange
energies.
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Figure 2.4 | A comparison between the application of the (a) spin to photon quantum
state coherent transer and (b) spin-photon entanglement.

2.2.3 Spin-photon entanglement

Spin-photon entanglement is another important step for quantum communication and
quantum networks. It has been demonstrated for trapped ions26, neutral atoms27,28
and nitrogen-vacancy centers29. Recently, it has been reported also for semiconductor
quantum dots in two independent experiments by De Greve et al.23 and Gao et al.22.
In both cases a negatively charged trion X− transition in the magnetic field in Voigt
configuration was used. As a result of a X− recombination, a single photon is emitted
and a single electron remains in the QD. The spin of the electron is entangled with
the energy and the polarization of the emitted photon:

|Φ〉 =
1√
2

(|↓〉 |ωred;H〉+ i |↑〉 |ωblue;V 〉). (2.33)

One degree of freedom in this entangled state has to be erased in order to avoid a
problem of "which-path information". The information about the polarization of
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2. Quantum dots: single spins and single photons properties

the photon was erased with a polarizer in the Gao et al. experiment, whereas the
information about the energy of the photons was erased in a very fast detection in the
De Greve et al. experiment. The exact details of these experiments are not the main
subject of this work, yet it is important to point out the importance of the selection
rules. Spin-photon entanglement in those experiments could be achieved thanks to
clear polarization selection rules for transitions involving heavy holes. To the best of
my knowledge, it would be impossible to implement spin-photon entanglement using
light holes.

Here I would also like to emphasize, that the demonstration of the spin-photon
entanglement does not completely replace the need for spin to photon coherent transfer.
Those two schemes are not equivalent and serve slightly different aspects of quantum
communication, as depicted in figure 2.4. The goal of the first scheme is to transfer
the quantum information from one quantum computer to the other using photons as
mediators. In the second scheme, spin-photon entanglement is a first step towards
entangling remote spins via entanglement swapping. Once the entanglement between
two remote spins is established, the quantum information can be teleported from one
computer to the other, as demonstrated for ions30. Spin-photon entanglement can
be also used to transfer the state of the photon to the electron in a quantum dot as
demonstrated in the follow up experiment by Gao et al.31. In contrast to the Vrijen
and Yablonowitch proposal, the photon is not simply absorbed in the quantum dot,
but its state is teleported to the electron spin in a quantum dot.

2.3 Spin mixing due to shape and strain anisotropy

The shape symmetry of semiconductor quantum dots and strain distribution have a
tremendous influence on the exciton spin states and on the emitted photons polarization.
Strain to a large extent, can redesign a semiconductor bandstructure. It can modify the
bandgap as well as reorder the subbands in the valence band. This is why strain has
become a powerful tool in engineering semiconductor nanostructure properties. The
shape of the quantum dot confining potential determines the character of the quantized
states. In this section we study both the effects of the quantum dot shape and strain
distribution on hole spins. We show how hole states spin mixing demonstrates in the
polarization of the exciton states.

2.3.1 Luttinger-Kohn and Bir Pikus Hamiltonians

For simplicity, we first discuss a semiconductor grown along the [001] direction (z),
which is the case for most semiconductor quantum dots, including the GaAs quantum
dots discussed in section 6.1. The description of wurtzite nanowires grown along the
[111] direction is more complex, because of the built in piezoelectric fields32,33.

The lattice of a semiconductor is under biaxial stress if the interatomic distances a
between the atoms in the x− y plane do not equal the semiconductor lattice constant
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2.3. Spin mixing due to shape and strain anisotropy

a0. The net strain in the semiconductor plane ε‖
is given by

ε‖ = εxx = εyy =
a− a0

a0
. (2.34)

If ε‖ has a negative value, then we have biaxial compressive strain, whereas a positive
value indicates tensile strain. In response to the biaxial stress, the layer relaxes along
the growth direction z as illustrated in fig. 2.5(a). Strain along z εzz is of opposite
sign to ε‖ and linked to it by the Poisson ratio σ:

εzz = − 2σ

1− σ
ε‖. (2.35)

For tetrahedral semiconductors σ is approximately 1
3 so that εzz ' −ε‖.34 The total

strain can be resolved into a purely axial component εax,

εax = εzz − ε‖ ' −2ε‖, (2.36)

and a hydrostatic component εvol(= ∆V/V )

εvol = εxx + εyy + εzz ' −ε‖. (2.37)

In other words, as a result of the hydrostatic strain the volume is changed, wheras as
a result of the axial strain the shape of the structure is affected. It is very useful for
further analysis and predictions to resolve those two strain components.

The band structure of semiconductors can be calculated by many different meth-
ods. The pseudopotential method has been used to look at both the conduction
and valence states in quantum nanostructures (e.g. Ref35–37), as has the tight-
binding method38–40. However, here I choose to discuss the method that speaks
best to my physical intuition, which is the Bloch and envelope function approxima-
tion and the Luttinger-Kohn Hamiltonian41,42 for the valence band description. The
Luttinger-Kohn Hamiltonian of the unstrained structure and the HH and LH subbands
(
∣∣ 3

2 ,
3
2

〉
,
∣∣ 3

2 ,
1
2

〉
,
∣∣ 3

2 ,−
1
2

〉
,
∣∣ 3

2 ,−
3
2

〉
) is given by:

HLK =


P +Q S R 0
S† P −Q 0 R
R† 0 P −Q −S
0 R† −S† P +Q

 (2.38)

Matrix elements in this Hamiltonian define the energy dispersion of the valence
subbands in the momentum space k, using three material parameters γ1 , γ2 and γ3

19



2. Quantum dots: single spins and single photons properties

(which are related to inverse effective masses at the Brillouin zone center):

P = −(
h̄2

2m0
)γ1(k2

x + k2
y + k2

z), (2.39)

Q = −(
h̄2

2m0
)γ2(k2

x + k2
y − 2k2

z), (2.40)

R = −(
h̄2

2m0
)
√

3[−γ2(k2
x − k2

y) + 2iγ3kxky], (2.41)

S = (
h̄2

2m0
)2
√

3γ3(kx − iky)kz. (2.42)

It is worth giving some attention to these terms, because they summarize our under-
standing of the influence of the confinement shape and strain on the valence band in
a very compact way. We recall then the strain Hamiltonian with analogue terms to
the previous Hamiltonian in eq. 2.38

Hstrain =


Pε +Qε Sε Rε 0
Sε† Pε −Qε 0 Rε
Rε† 0 Pε −Qε −Sε
0 Rε† −Sε† Pε +Qε

 (2.43)

Here, the matrix elements are expressed with the Bir-Pikus deformation potentials43
av, b, d and the momentum k is replaced with the strain tensor elements εij :

Pε = av(εxx + εyy + εzz) = avεvol, (2.44)

Qε =
b

2
(εxx + εyy − 2εzz) = −bεax, (2.45)

Rε = −
√

3

2
b(εxx − εyy)− idεxy (2.46)

Sε = −d(εzx − iεyz). (2.47)

Both the axial b and hydrostatic av deformation potentials have negative values
(for e.g. GaAs av = −8.0 and b = −1.744).

Let us first consider diagonal terms in the Luttinger-Kohn Hamiltonian which set
the splitting between the HH and LH bands. In a bulk, unstrained semiconductor, at
Γ point where k = 0, the expression in eq. 2.40 for Q becomes zero. The HH and LH
bands are therefore degenerate. The hydrostatic strain εvol influences the bandgap of
the semiconductor by shifting the valence band edge with respect to the conduction
band edge, as apparent from the expression for Pε (eq. 2.44). Biaxial compressive
strain (εxx, εyy < 0 and εzz > 0) gives a positive value of Qε (eq. 2.45), lifting the HH
band above the LH band. The situation is reversed for biaxial tensile strain. These
effects are summarized in fig. 2.5(b). The hydrostatic component of the compressive
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Figure 2.5 | (a) A schematic representation of the unstrained lattice and the compress-
ive/tensile strain. (b) The influence of strain on the bulk semiconducture bandgap, the
conduction band and both HH and LH hole subbands. (c) The influence of strained on
the energy levels in quantum confinement.
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(tensile) strain increases (decreases) the bandgap. In the case of compression, the
highest band is heavy along kz and lighter along kx,y. On the other hand, tensile
strain gives the highest band being light along kz.

2.3.2 Heavy and light hole spin mixing in quantum dots

Our considerations bring us now to the case of a confined nanostructure, a quantum
dot. Usually, confinement in quantum dots is the strongest in z direction. If h is the
height of a quantum dot, lx and ly denote its lateral size, then kz ∼ 1

h is dominant
over kx ∼ 1

lx
and ky ∼ 1

ly
. It is then easy to see why in flat quantum dots the HH

states are above the LH states: the term Q (eq. 2.40) is positive. Increasing the
height of the QD can push the LH subband closer to the HH45. This is the reason
why the LH admixture to the hole state is high for dots resembling nanorods46–48.
Confined states in a usual, flat quantum dot (h < lx, ly) are shown in fig. 2.5. In
an unstrained quantum dot the ground state has a heavy character. Compressive
strain separates further the confining potential for the HH and the LH, so the splitting
becomes even larger (the case for Stransky-Krastanov quantum dots). Biaxial tensile
strain is predicted to reverse the order of hole subbands also in a quantum dot. We
have verified this prediction and obtained quantum dots with over 95% purity LH
state using tensile strain of 0.36% (see chapter 5).

It is important to note, that biaxial strain will only change the splitting between
the HH and LH states, but will not mix the spin states. Only if strain is not uniform,
so that εxx 6= εyy then the mixing term Rε is non zero. Rε couples the HH state

∣∣ 3
2 ,

3
2

〉
with the LH state

∣∣ 3
2 ,−

1
2

〉
(as well as

∣∣ 3
2 ,−

3
2

〉
with

∣∣ 3
2 ,

1
2

〉
.). The mixed hole states

can be written as:

∣∣hR1 〉 = α

∣∣∣∣32 ,+3

2

〉
+ β

∣∣∣∣32 ,−1

2

〉
, (2.48)

∣∣hR2 〉 = α

∣∣∣∣32 ,−3

2

〉
+ β

∣∣∣∣32 ,+1

2

〉
. (2.49)

Both hole spin components in state
∣∣hR1 〉 recombine with the same electron spin

(
∣∣ 1

2 ,−
1
2

〉
≡ |↓〉), but the HH recombination gives a σ+ polarized photon, whereas the

LH recombination results in a σ− photon. In a general situation of this HH-LH mixing,
an elliptical polarization from the exciton emission should be observed:

∣∣hR1 〉 |↓〉 → ασ+ +
β√
3
σ−, (2.50)∣∣hR2 〉 |↑〉 → ασ− +

β√
3
σ+. (2.51)
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2.3. Spin mixing due to shape and strain anisotropy

We can also consider two more excitons composed of the
∣∣hR1 〉 and ∣∣hR2 〉:∣∣hR1 〉 |↑〉 → α |dark〉+

2β√
3
z, (2.52)∣∣hR2 〉 |↓〉 → α |dark〉+

2β√
3
z. (2.53)

where the optical recombination with the HH spin component is dipole forbidden and
the LH component gives a z-polarized photon. In conclusion, HH-LH mixing can
be manifested by (i) the elipticity of the exciton polarization and (ii) by the weak z
polarized emission of exciton dark states. The same effect of the hole spin mixing can
be caused also by in plane shape elongation, as apparent from the term R (eq. 2.41)
in the Luttinger-Kohn Hamiltonian. The impact of the HH-LH mixing caused by the
shape asymmetry of strain free GaAs QDs has been reported by T. Belhadj et al.49.
The effects of strain and QD shape on the polarization anisotropy of InAs QDs were
described also by C. Tonin et al.50

There is yet another term S (eq. 2.42) that couples different pairs of the HH and
LH spins and gives the following hole mixture:∣∣hS1 〉 = α

∣∣∣∣32 ,+3

2

〉
+ β

∣∣∣∣32 ,+1

2

〉
, (2.54)

∣∣hS2 〉 = α

∣∣∣∣32 ,−3

2

〉
+ β

∣∣∣∣32 ,−1

2

〉
. (2.55)

The polarization fingerprint of the two exciton states composed of the hole
∣∣hS1 〉 and∣∣hS2 〉 states is the admixture of z polarization to circularly polarized states and vice

versa. At the same time two dark states acquire some circular polarization:

∣∣hS1 〉 |↑〉 → α |dark〉+
β√
3
σ+, (2.56)∣∣hS1 〉 |↓〉 → ασ+ +

2β√
3
z, (2.57)∣∣hS2 〉 |↑〉 → ασ− +

2β√
3
z, (2.58)∣∣hS2 〉 |↓〉 → α |dark〉+
β√
3
σ−. (2.59)

It has been observed in several experiments (e.g. ref.5,51) that the HH exciton dark
state transition is not strictly forbidden and reveals in-plane polarization. It is very
likely that this effect originates from the coupling term S (eq. 2.42) in the Luttinger-
Kohn Hamiltonian, that is sensitive to the quantum dot confinement anisotropy.
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2. Quantum dots: single spins and single photons properties

Usually, it was assumed, that the coupling term S is negligible compared to R.52 Also,
strain is unlikely to result in HH-LH mixing described in eq. 2.55, because only shear
strain can cause such effect (see eq. 2.47). However, it is difficult to draw any general
conclusions for quantum dots, since different growth methods can result in various
shape and strain characteristics. In chapter 6, very pronounced HH-LH mixing due to
the S and/or Sε term is shown for epitaxial GaAs quantum dots, where tensile strain
can be induced in order to switch LHs to the ground state.

2.4 Quantum dots as sources of nonclassical photons

A single photon is an energy quantum of the electromagnetic field. Hundred years ago
Max Planck realized that the electromagnetic field has to be quantized in order to
properly describe the black body radiation and save us from the so called "ultraviolet
catastrophe". Nowadays, we learn how to employ single photons in proposals where
the transfer of quantum information is required. Single photons are an ideal platform
for quantum communication transfer over long distance due to their weak coupling
to the environment. Therefore, on demand, controllable single photon generation is
required in numerous experiments. In 1984, Bennett and Brassard proposed a protocol
for secret key distribution53 that uses the single-particle character of a photon to
avoid any possibility of eavesdropping on an encoded message. The preparation of a
single- or few-photon states on demand is also required for quantum repeaters54, and
quantum teleportation55. Photons as flying qubits can serve as information carriers in
scalable quantum networks between processing nodes consisting of stationary qubits
(like quantum dots, NV centers, atoms). In this work, however, we employ single
photons to test one of the most striking properties of quantum mechanics - non-locality.

Quantum dots are natural single photon sources, since recombination of a single
electron-hole pair results in one photon56. There are ongoing efforts to increase
the collection efficiency from quantum dots single photon collection. On the one
hand, the emission of photons can be directed by cavities57 or waveguiding effects
in nanowires58,59 or micropillars60. On the other hand, the emission profile can be
shaped to match a Gaussian profile, hence achieve optimal coupling to the fiber. In
this work we have used GaAs/AlGaAs quantum dots embedded in a weak cavity. In
the following paragraphs we will focus on the properties of single photons, rather than
the source.

2.4.1 Photon statistics

Photons are bosons, implying that there is no restriction on the number of photons that
can occupy the same quantum state. The bosonic nature of photons is demonstrated
in the coherent state (e.g. laser light). The coherent state is described by poissonian
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Figure 2.6 | (a) Set up of a Hanbury-Brown and Twiss experiment, including a 50:50
beam splitter and start- and stop- single photon detectors modules. Photon counting
events and corresponding second order correlation functions for (b) a classical thermal
source (light bulb), (c) coherent light (laser) and (d) a single photon source.

statistics:

|α〉 = e−
|α|2

2

∞∑
n=0

αn√
n!
|n〉 , (2.60)

where |n〉 is a photon number state (a Fock state). A coherent state is defined as an
eigenstate of the the annihilation operator â:

â |α〉 = α |α〉 . (2.61)

We require photons from a single photon source to follow completely different statistics.
There should be not more than just one photon produced by the source at a time. In
other words, the stream of photons from a single photon source should be antibunched.
Single photon states are described by a Fock state, which is an eigenstate of the photon
number operator N̂ = â†â:

N̂ |n〉 = n |n〉 . (2.62)

The second order correlation function, g2(t), describes the photon statistics:

g(2)(t, t′) =

〈
â†(t)â†(t′)â(t)â(t′)

〉
〈â†(t)â(t)〉 〈â†(t′)â(t′)〉

=

〈
Î(t)Î(t′)

〉
〈
Î(t)

〉〈
Î(t′)

〉 , (2.63)

where Î(t) is the time dependent intensity operator of mode â. The Hanbury-Brown
and Twiss setup for the second order correlation function measurement is shown in
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2. Quantum dots: single spins and single photons properties

fig. 2.6(a). The beam of photons is split in two with a 50:50 beam splitter and
counts in each path are recorded with single photon detectors (e.g. avalanche photon
detectors (APDs) or superconducting single photon detectors (SSPDs)). Coincidences
are binned into a histogram using a coincidence module. A second order correlation
measurement allows us to differentiate between different sources of photons. A thermal
source emitting bunched photons shows an enhancement in g(2) near zero delay (fig.
2.6(b)). Sources with a Poisson distribution (lasers) have a flat correlation function as
shown in fig. 2.6(c). A single mode quantum field with photon number variance V (n)
and mean n̄ obeys:

g(2)(0) = 1 +
V (n)− n̄

n̄2
(2.64)

For an eigenstate of the photon number operator (or Fock state), this yields g(2)(0) =
1− 1/n. Therefore for a single photon emitter g(2)(0) = 0.

2.4.2 Single photon coherence

One of the key challenges in the development of the quantum network with quantum
dots is generation of high quality single photons with high efficiency, coherence, and
purity (i.e., suppressed multi-photon emission). In a previous section we have shown
how a second order correlation function quantifies the purity of a single photon
emission. In this section we focus on coherence of single photons which is assessed by
a first order correlation function:

g(1)(t, t′) =

〈
â†(t)â(t′)

〉
〈â†(t)â(t)〉

(2.65)

The first order correlation function measures the capability of the single photon
field coming from two different time-space points to form interference fringes when
superposed. In practice, we use a Michelson interferometer to perform a first order
correlation measurement. A schematic view of the experimental setup is depicted in fig.
2.7 (a). The quantum dot emission is directed to a nonpolarizing beam splitter. After
the beamsplitter, the single-photon field takes both pathways towards the fixed mirror
M1 and movable mirror M2. When the path difference between mirrors is within
the coherence length of the emitted photons we observe single-photon interference
effects through variations in the observed intensity at the output of the Michelson
interferometer where the charge-coupled device (CCD) camera is positioned. We
measure the visibility of the interference fringes defined as:

V = |g(1)(t)| = Imax − Imin
Imax + Imin

. (2.66)

The visibility decreases with increasing delay between the two arms of the interfero-
meter, as apparent from a comparison of the fringes in fig. 2.7 (b) and (c). For light
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Figure 2.7 | (a) Schematic of a Michelson interferometer. The electromagnetic field
is split at a non polarizing 50:50 beamsplitter and then reflected back from mirrors M1
(fixed) and M2 (movable, a motor stage for translations in a cm range, a piezo stage for
fine translations). The fields coalesce at the beamsplitter and the interference fringes are
formed when the relative path difference between the arms is changed with M2. (b) High
visibility of interference is observed when there is no path difference between the two arms
of the interferometer and (c) decreased visibility for 10 cm delay due to finite coherence
of the photons. In (b) and (c) the subwavelength M2 translation scales with the piezo
voltage. (d) Exponential decay of the visibility for photons of 10.7 cm coherence length
translates to T2 = 357 ps.
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with Lorentzian lineshape the visibility decays exponentially with a time constant T2

(coherence time)

V = e−
|t|
T2 . (2.67)

Theoretical upper limit on the coherence time T2 is set by twice the relaxation time
T1 (for a Fourier limited dot T2 = 2T1 holds). However, in practice the coherence
of single photons from a quantum dot is below the Fourier limit due to dephasing
processes characterized by T ∗2 time:

1

T2
=

1

2T1
+

1

T ∗2
. (2.68)

Dephasing is caused by interactions with the environment, therefore the above
bandgap excitation bringing excess energy to the system influences the coherence
properties. It has been shown that quantum dot photons can approach the Fourier
limit (T2/(2T1) > 0.9) in resonant61 and pulsed excitation62. Also, a general strategy
to approach the Fourier limit is to embed the quantum dots in microcavities in order
to accelerate the spontaneous emission rate and have less time to interact with the
environment63.

2.4.3 Single photon non-locality

non-locality is one of the most striking features of quantum mechanics. We are used
to thinking about non-locality in the context of at least two entangled particles that
share a nonlocal property (like polarization of entangled photons). Here we explore
the concept of non-locality of a single particle. In other words, we pose the question:
can we violate a Bell-type inequality with only one particle? In this work we aim
at realizing a proposal introduced by S. M. Tan, D. F. Walls and M. J. Collet64. A
single photon generated in a quantum dot and then sent at the beam splitter will be
our single particle testing quantum mechanical predictions. After the beam splitter, a
single photon field is present in two paths (denoted as b1 and b2):

|Ψ〉 =
1√
2

(i |1〉b1 |0〉b2 + |0〉b1 |1〉b2). (2.69)

This state is mathematically isomorphic to any other form of an entangled state. If we
placed, e.g. an atom in each path, whose spin state depends on the absorption of the
photon, then we would be able to map the state in eq. 2.69 into a spin entangled state.
However, here, we want to prove entanglement of the two modes of the electromagnetic
field when only one photon is present, not entanglement in any other physical system.
Therefore we must think of a way to perform a Bell test for a state in eq. 2.69. How
can we measure correlations in the Fock space spanned by zero and one photon? Let
us first gain more insight into a situation, where a single photon takes two paths. This
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2.4. Quantum dots as sources of nonclassical photons

is actually a well studied concept. In Young’s experiment, a single photon has to pass
simultaneously through two slits in order to explain the observed interference pattern.
Similarly, in optical interferometers a single photon interferes with itself. These
examples show, that measuring wave-like properties of a single photon (interference)
is the way to proceed if we want to verify a simultaneous presence of a single photon
in two different paths. However, we do not want to interfere two paths with each
other. Ideally the two paths b1 and b2 should be separated far enough to lie outside
each other’s light cones in order to exclude any communication between them. In our
experiment we will not yet fulfill this condition. However, in principle there is nothing
fundamental preventing us from bringing the paths at arbitrary large distance. In
each path we place a homodyne detector. A homodyne detector consists of a 50:50
beam splitter, a coherent local oscillator with amplitude αk = αeiθk (k = 1, 2) and
two photodetectors in the output ports. A schematic of the experiment is shown in fig.
3.1(a). The local oscillator is a coherent state with |α| < 1, hence the average photon
number also smaller than one |α|2 < 1. The role of the local oscillator is to provide a
common reference frame for the two paths with a single photon field. The phase of a
local oscillator is equivalent to the angle of the polarizers in the standard Bell test
for polarization entangled photon pairs. In order to perform a Bell test, one has to
look at coincidences between two detectors, let us choose D2 and D3 in fig. 3.1(a).
Obviously, since g(2)(0) = 0 for a single photon, we will not observe any coincidence
counts originating only from a single photon source. However, when the local oscillator
is present, then the two fields (single photon and local oscillator) mix at the beam
splitter. The probability of interference is proportional to the fields’ amplitude in each
path:

Pinterference =
1

2
|α|2, (2.70)

where a fraction 1
2 comes from the single photon field amplitude in eq. 2.69 and |α|2

comes from the local oscillator field. Constructive/ destructive interference in paths to
detectors D2 and D3, depends on the relative phase of the local oscillator θ = θ2 − θ1:

〈ID2ID3〉interference =
1

2
|α|2sin2(

π

4
+
θ

2
), (2.71)

where 〈ID2ID3〉interference denotes a probability that both detectors D2 and D3

simultaneously record a detection event resulting from interference. A derivation of
this formula can be found in the original proposal64. As apparent from eq. 2.70,
the probability of interference increases with increasing local oscillator amplitude.
However, there is a trade off. The overall visibility of interference decreases, because
the local oscillator gives constant coincidence background counts 1

2 |α|
2 × 1

2 |α|
2 as

shown in fig. 3.1(b). Therefore the total coincidence count rate seen by the D2 and
D3 detectors is:

〈D2D3〉total =
1

4
|α|4 +

1

2
|α|2sin2(

π

4
+
θ

2
). (2.72)

29



2. Quantum dots: single spins and single photons properties

D1

D3

D2

D4

α

α

1
P   =1/21

P   =α2
α Pcoal=1/2α2

P   =1/4,1

P   =1/2α2
α

Coincidence

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 100 200 300 400
LO-LO1/4α4

1/
2α

2

Classical

Quantum

Relative phase θ

α

Vi
si

bi
lit

y

(a) (b)

(c)

P 
  =

1/
2

1

Figure 2.8 | (a) Schematic of the experimental set-up capable of performing measurements
complementary to photon number measurements. A single photon field is split in two
paths, such that the probability of finding a photon in each of them is 1/2. A single
photon is detected by only one detector at a time (with probability 1/4) and does not give
coincidence counts. The local oscillator (LO) gives a constant count rate in each of the
detectors (probability 1/2|α|2) resulting in a constant coincidence count rate ( 1/4|α|4).
The interference of the single photon field with the local oscillator is manifested by the LO
phase dependant coincidences. (b) Expected EPR-like correlations among two detectors
for |α| = 0.5. (c) Visibility as a function of the local oscillator amplitude |α| in the case
of a quantum, non-local particle and a classical wave.
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2.5. Conclusion

As apparent from this formula, the coincidences originating from the local oscillator
increase with its amplitude faster, than the interference probability. We can derive a
formula for the visibility interference as a function of |α|:

V =
1

|α|2 + 1
. (2.73)

S. M. Tan et al.64 have contrasted the concept of quantum non-locality of a single
photon with a naive classical field theory. Let us replace the single photon input in fig.
3.1(a) with a classical wave of amplitude β and unspecified phase βe(±iΦ). We should
still expect to see the interference fringes, however, the visibility would decrease:

V =
ρ

ρ2 + ρ+ 1
4

, (2.74)

where ρ = (|α|/|β|)2. In fig. 3.1(c) we plot the interference visibility versus local
oscillator amplitude |α|. In the case of quantum non-locality the visibility increases
with decreasing |α|. For a classical case (we assumed |β = 1|) the trend is non
monotonic and the maximal visibility does not exceed 50%. So far we have not yet
discussed, how we can violate the Bell inequality with a single photon. The coincidence
curve in fig. 3.1(b) shows the Einstein-Podolsky-Rosen type of correlations. For such
correlations the Bell inequality is violated if the visibility exceeds 71% (> 1/

√
2).

In conclusion, in order to verify single photon entanglement in two modes, we can
not look at the particle-like properties at two distant locations, but at the wave-like
properties of a single photon. Hence, a measurement of wave-like properties of a single
photon requires a reference oscillator (additional photons!). This is the reason why this
concept has raised many controversies65. Is it really a single particle non-locality? The
nonlocal properties in this measurement depend on the presence of a single particle.
Therefore all the nonlocal correlations are carried by the single particle state, although
the observation of these correlations requires auxiliary reference particles.

2.5 Conclusion

We have discussed the properties of electron and hole spins in semiconductor quantum
dots. The HH spin emerges as the optimal candidate for a robust qubit used for
information processing (longest T2), whereas the electron spin performs better as a
quantum memory (longest T1). However, there is a possibility to enhance the HH
relaxation time T1 by engineering the shape of quantum dot confining potential.

Naturally, a question arises: what is the LH spin good for? The implementation
of the photon to spin coherent transfer proposal24 seems troublesome, considering
our demonstration of an enormous LH exciton exchange interaction. However, there
is another advantage of LH spins over the HH spins that remains, regardless the
magnitude of the electron-hole exchange. The LH spin, in contrast to the HH spin,
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2. Quantum dots: single spins and single photons properties

couples directly to the radio frequency (RF) magnetic field, hence enabling on-chip
spin manipulation66. This fact becomes apparent from a perturbation term in the
presence of the RF field:

H ′(t) =
1

2
gµBBxe

iωtJx, (2.75)

where g is the spin g-factor for holes and Bx is a small RF field that oscillates at
frequency ω. The frequency ω equals the energy spacing between two qubit states and
the RF field applied for a time τ rotates the qubit state into a coherent superposition
state. For a HH subspace, Jhh,x is simply zero (see the appendix A), whereas for a
LH subspace Jlh,x has a form of a Pauli matrix σx. Therefore the HH spin can couple
to the RF field only indirectly, via spin mixing with the LH (the possible origins
of this mixing are discussed in chapter 6). In summary, the HH and LH spins are
complementary if we consider different spin manipulation schemes. The HH spin,
thanks to its clear optical selection rules is ideal for all-optical manipulation, whereas
the LH spin opens up a possibility of fast electrical spin manipulation. In these
examples high purity of hole spin states is necessary, therefore the quantum dot shape
and strain distribution must be uniform.

Finally, we have characterized basic properties of single photons generated in a
quantum dot. We are witnessing a very promising time for quantum dots as single
photon emitters, since in recent years we have learnt how to approach the Fourier
limit61,62. We are in possession of all the tools to enter a level of quantum experiments
with coherent single photons from quantum dots. In this thesis we will test the
single photon non-locality using quantum dots as controllable single photon sources.
Previously, non-locality has been demonstrated for photons generated in a parametric
downconversion source67.
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Chapter 3

Heavy and Light hole spin
properties

We present an experimental characterization of the light hole exciton spin properties
revealed in the electron-hole exchange interaction, polarization selection rules, dia-
magnetic response and the g factors. A light hole exciton composed of an electron
and a high purity light hole state (> 95% LH) is novel for quantum dots, where either
a heavy hole or a mixed hole ground state is usually present. In our experiment, high
quality symmetric GaAs epitaxial quantum dots were studied, in which the hole char-
acter can be switched from predominantly heavy to predominantly light. Employing
micro-photoluminescence measurements in the external magnetic field (Faraday and
Voigt geometry) completely reveals the fine structure of the heavy and light exciton,
and experimentally determine the values of the spin-spin coupling constants in the
Exchange Hamiltonian.
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3.1 Introduction

In most direct bandgap semiconductors, the physics of holes is much richer than
that of electrons, because they do not only have a spin S = 1/2, but also an angular
momentum L = 1, giving much more freedom in engineering total spin properties. The
projection of the total angular momentum J = 3/2 (for simplicity: hole pseudo-spin)
defines a subspace of heavy holes (HH Jz = ±3/2) and light holes (LH Jz = ±1/2).
Due to p-like Bloch function symmetry around each atom in the crystal, holes do not
experience contact interaction with the spin of nuclei.1,2 Holes hyperfine interaction
is thus 10 times weaker than the hyperfine contact interaction of electrons3,4, leading
to longer coherence. Further, since an electron has a symmetric s-like Bloch function,
it is the p-like hole that directly governs the polarization of excitonic absorption and
emission by setting the direction of the optical dipole. Understanding optical selection
rules for different hole species is not only crucial for conventional electronic devices
but also for the implementation of quantum processing and quantum communication
schemes with quantum dots. Optical selection rules for HHs have proven to be ideal for
all-optical spin manipulation schemes5–9 and for the implementation of spin-photon
entanglement.10,11 LHs, on the other hand, have complementary advantages. In
contrast to HHs they couple directly to the radiofrequency magnetic field12, enabling
on-chip manipulation. In addition, a given LH spin can recombine with both electron
spin states, making coherent spin to photon quantum information transfer possible.13

However, only recently a novel type of QDs with almost pure LH ground state
(> 95% LH character) has been developed.14 Therefore compared to the HH exciton,
the LH exciton of high purity is not yet well characterized experimentally (in quantum
dots LH-HH mixing has been studied15,16). Here, we aim at filling this gap by
presenting measurements of the HH and LH fine structure and magnetic response
in Faraday and Voigt geometry. This work gives more insight into the LH and the
symmetry of its Bloch function.

In our experiment we investigate the photoluminescence of quantum dots, whose
hole character can be switched from dominantly heavy to dominantly light by inducing
tensile strain in thin nanomembranes with embedded quantum dots. The details of
this technique are described in ref.14. Fig. 3.1(a) schematically shows our structure
with GaAs/AlGaAs strain-free, epitaxial quantum dots. In the as-grown sample, holes
in the quantum dot have a dominant HH character. However, when the sacrificial layer
of AlAs is etched away, we are left with 200 nm thick membranes, where the quantum
dot is sandwiched between two thin layers with In atoms. In a thin membrane, the
compressively stressed In-containing layers can partially relax and induce a biaxial
tensile strain of 0.36% in the quantum dot and surrounding AlGaAs matrix. A LH
exciton in contrast to the HH one, emits also photons polarized in z direction. This
is a reason why we collect the photoluminescence from the edge of the sample, as
schematically illustrated in fig. 3.1 (b). This geometry allows us to measure z and y
polarization components of the exciton spectrum. We apply the magnetic field in two
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Figure 3.1 | (a) As-grown sample with strain-free quantum dots and tensile strained
membranes. (b) Measurement geometry: side photoluminescence collected from the edge
of the sample, where y and z polarization components can be measured. Magnetic field
in Faraday (Voigt) geometry is aligned with the sample growth axis z (the plane of the
sample).

directions: along the sample growth direction z (Faraday geometry) and in the plane
of the sample (Voigt geometry).

The polarization of the exciton emission results directly from the orbital symmetry
of the hole Bloch function. We express the hole Jz states in the linear combination of
the orbital Lz and spin Sz eigenfunctions:17,18:
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The states with projection of angular momentum Lz = +1 (Lz = -1) are given
by linear combination of in-plane px and py orbitals (|+1〉 = −1/

√
2 |px + ipy〉 and

|−1〉 = 1/
√

2 |px − ipy〉), whereas Lz = 0 corresponds to the pz orbital. While the first
two states in eq. 3.1, corresponding to the HH states, couple only to in-plane polarized
light, the LH states can be polarized in any direction: x, y, and z. Calculating the
optical transition dipole moments between the electron and the HH, gives two in-
plane circularly polarized bright states (|+1〉HH = |⇑HH , ↓〉, |−1〉HH = |⇓HH , ↑〉) and
two optically forbidden transitions (dark states |+2〉HH = |⇑HH , ↑〉 and |−2〉HH =
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|⇓HH , ↓〉). In case of a LH exciton, all transitions are optically allowed:

|+1〉LH = |⇑LH , ↑〉 → − Π√
6

(ex + iey) (3.2)

|+0〉LH = |⇑LH , ↓〉 →
2Π√

6
(ez) (3.3)

|−0〉LH = |⇓LH , ↑〉 →
2Π√

6
(ez) (3.4)

|−1〉LH = |⇓LH , ↓〉 →
Π√
6

(ex − iey) (3.5)

where Π = 〈s|d |px〉 = 〈s|d |py〉 = 〈s|d |pz〉, d is the dipole moment and ei are the unit
polarization vectors along the i=x, y, z direction.

3.2 Exchange interaction and Zeeman effect Hamiltonians

The electron and hole spins are coupled by the exchange interaction, which estab-
lishes the quantum dot exciton eigenstates. The general formula for the exchange
interaction20? :

Hexch = −
∑

i=x,y,z

(aiσi ⊗ Ji + biσi ⊗ J3
i ) (3.6)

The matrix representation of this Hamiltonian is valid for the h=HH subspace spanned
by the basis vectors |+2〉HH , |+1〉HH , |−1〉HH , |−2〉HH and for the h=LH subspace
with basis vectors |+1〉LH , |+0〉LH , |−0〉LH , |−1〉LH (see eq. 3.2 - 3.5):

Hh
exch

1

2


−δh0 0 0 +δh2

0 +δh0 +δh1 0
0 +δh1 +δh0 0

+δh2 0 0 −δh0

 (3.7)

Only the formulas for the exchange energies δhi (i = 0, 1, 2), expressed in terms of
the spin-spin coupling constants aj and bj (j = x, y, z), are different for the HH and
LH exciton (table 3.1). Spectra of HH and LH exciton at zero magnetic field in
fig. 3.2(a) and (b)) show the exciton polarization eigenstates. As known for the HH
exciton, there are two in-plane linearly polarized bright states resulting from a linear
combination of circularly polarized states |+1〉HH and |−1〉HH 21. However, in fig. 3.2
(a), we observe only one of the linearly polarized states in y. In case of the LH exciton,
the off-diagonal terms in the Exchange Hamiltonian are responsible for coupling states
|+1〉LH with |−1〉LH and states |+0〉LH with |−0〉LH . The resulting eigenstates of
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the exchange Hamiltonian are:

|Bx〉 = 1/2(|+1〉LH + |−1〉LH) → Π√
3
ex (3.8)

|By〉 = 1/2(|+1〉LH − |−1〉LH) → − iΠ√
3
ey (3.9)

|Bz〉 = 1/2(|+0〉LH + |−0〉LH) → 2Π√
3
ez (3.10)

|Dz〉 = 1/2(|+0〉LH − |−0〉LH → 0 (3.11)

In the LH exciton spectrum at zero magnetic field in fig. 3.2 (b) we can recognize
the states |By〉 and |Bz〉 polarized along the y and z directions respectively. The |Bx〉
would be visible from the orthogonal edge of the sample. Interestingly, the fourth
state in eq. 3.11 is dark, even though it is composed of a superposition of two bright
states polarized in z. Eventually, the LH exciton has a dark state, however, unlike the
HH exciton one, it is not forbidden by the optical selection rules. The |Dz〉 state is
dark, because the amplitude of two composite states |+0〉 and |−0〉 perfectly cancels
out resulting in zero oscillator strength. Nonetheless, this condition is relaxed in the
presence of magnetic field which changes the balance of the states |+0〉 and |−0〉. The
Zeeman Hamiltonian describes how strongly the electron and hole spin couple to the
external magnetic field B:

He = −µB
∑

i=x,y,z

(ge,iSe,i − 2κiJh,i − 2qiJ
3
h,i)Bi (3.12)

In Faraday geometry (Bz component) we obtain a matrix form for the h = HH and
h = LH subspace:

Hh
Faraday =

µBBz
2


−(ge,z − gh,z) 0 0 0

0 ge,z + gh,z 0 0
0 0 −(ge,z + gh,z) 0
0 0 0 ge,z − gh,z


(3.13)

It is assumed that the parameter qz in the Zeeman Hamiltonian (eq. 3.12) is smaller
than κz 20. Therefore, the LH g factor gLH,z is expected to be approximately 3 times
smaller than that of the HH gHH,z (table 3.1).

In fig. 3.2(b) we observe that the initially dark LH exciton state gains oscillator
strength. In the spectrum at 3.7 T all four LH exciton states can be recognized (red
arrow points at the dark state). The magnetic field Hamiltonian of the Zeeman effect
in Faraday geometry has a diagonal form. For large enough magnetic field B in z
direction the off-diagonal elements of the exchange Hamiltonian become negligible and
we expect the recovery of the HH and LH basis states. Therefore for the HH and LH
exciton in fig. 3.2 (a) and (b), at Bz = 3.7 T we observe y polarization component of
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Table 3.1 | The HH and LH exciton parameters in the exchange and Zeeman Hamiltonians.

Hamiltonian HH parametes LH parameters

Exchange δHH0 = 1
2 (3az + 27

4 bz) δLH0 = 1
8 (4az + bz)

δHH1 = − 3
4 (bx − by) δLH1 = −(ax + ay)− 5

2 (bx + by)

δHH2 = − 3
4 (bx + by) δLH2 = −(ax − ay)− 5

2 (bx − by)

Zeeman (Faraday) gHH,z = 6κz + 27
2 qz gLH,z = 2κz + 1

2qz

Zeeman (Voigt) gHH,x = 3qx gLH,x = 4κx + 10qx

two bright circularly polarized states. In addition, the LH exciton shows also the two
states polarized in the z-direction. In contrast to Faraday geometry, the Hamiltonian
in Voigt geometry does not have diagonal terms, therefore it will only mix further the
basis states:

Hh
V oigt =

µBBx
2


0 −ge,x gh,x 0
−ge,x 0 0 gh,x
gh,x 0 0 −ge,x

0 gh,x −ge,x 0

 (3.14)

However, it couples different pairs of states than the exchange Hamiltonian and as a
result each state has a contribution of all basis states (fig 3.2). For the HH exciton
this implies that finally the dark excitons can be observed in fig. 3.2(c). For the
LH exciton it means that all four exciton states exhibit at the same time x, y and
z-polarization and that the optical dipoles have a non isotropic emission in every
direction.

In table 3.1 we summarize the expressions for the HH and LH g factors and
electron-hole exchange interaction.

3.3 Fine structure and spin-spin coupling constants

The magnetic field changes also the energy of all exciton states, as shown in the plots
that bridge the spectra from zero to the maximal value of the magnetic field. Grey
lines trace the quadratic shift originating from the diamagnetic effect. By subtracting
this quadratic contribution, the effect of the Zeeman interaction or the HH and LH
exciton can be extracted in fig. 3.12. From the fits we determine the values of the
exchange energies and the g-factors for the HH-like and the LH-like quantum dot
(referred as QDAHH and quQDALH). In table 3.2 we summarize the obtained values
for three quantum dots with the LH exciton and three dots with the HH exciton.
The LH exciton exhibits an exceptionally large δLH1 splitting between the z-polarized
lines (around 470 µeV ). We point out, that the fine structures of the LH exction
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Table 3.2 | Experimental values of the exchange energies (in µeV ) for three dots with the
LH exciton and three dots with the HH exciton. The resulting average spin-spin coupling
constants are calculated. Components of the g-factor tensor obtained in Faraday (gz) and
Voigt (gx) geometry. Note that for the HH exciton in Faraday geometry only the total
exciton gez + gHHz factor is accessible.

Exchange g-factors

(δ0, δ1, δ2) gz gx

QDALH 183.4, 484.6, 9.5 gez = 1.03 |gex| = 0.17

gLHz = −0.33
∣∣gLHx ∣∣ = 0.43

QDBLH 213.7, 448.3, 3.7 gez = 1.42

gLHz = 0.09

QDCLH 209.2, 466.3, 6.3 gez = 1.23

gLHz = 0.02

QDAHH 168.8, 36.5, 10.3 gez + gHHz = 1.56 |gex| = 0.09,∣∣gHHx | = 0.09

QDBHH δHH1 = 12.1 gez + gHHz = 1.49

QDCHH δHH1 = 19.6 gez + gHHz = 0.99

ax = −182, ay = −251, az = 441,

bx = −22, by = 9, bz = −146.

do not differ much from dot to dot (by around 10% for δLH0 and δLH1 ), even though
they are located in different regions of the sample. More measurements in the usual
micro-photoluminescence top geometry confirm the uniformity of these quantum dots
spectral fingerprints (not shown).

Not all of the quantum dots were measured in Voigt geometry, due to practical
inconvenience in our setup. Despite the complete set of exchange energies for the HH
exciton could not be obtained without revealing the dark states in Voigt geometry for
each dot, we assume that measurement for the QDAHH is representative. We depend
on the argument of the uniformity of these quantum dots reported also in Ref.? (if
the quantum dots are similar after the membrane undercut, they must be similar in
the as-grown sample as well). By taking the average values of measured fine structure
of the HH and LH exciton, we are able to get approximate values of the complete set
of the spin-spin coupling constants in the Exchange Hamiltonian (see the bottom of
table 3.2). The values of g factors experience more variations from dot to dot. In
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Figure 3.4 | The diamagnetic shift of LH exciton states composed of pz (red data points)
and px,y (blue data points) orbitals in the (a) Voigt and (b) Faraday geometry.

all cases, the z-component of the LH g-factor gLHz is smaller than the corresponding
electron g-factor and close to zero. The sign of the gLHz must depend on the details of
the confinement experienced by the px, py and pz orbitals.

3.4 Diamagnetic shift and the wavefunction symmetry

It is worth to pay a closer attention to the diamagnetic shift. The magnitude of the
shift reflects both the spatial extension of the wavefunction, as well as its symmetry.
In fig. 3.4 we clearly see that states with a dominant z polarization have a higher
diamagnetic coefficient than the states polarized mainly in-plane. This situation is
reversed for the other two dots, however, the difference is less pronounced (QDBLH :
γz(pz) = 12.4 and γz(px,y) = 13.6; QDCLH : γz(pz) = 14.3 and γz(px,y) = 14.4). For
dot QDALH , there could be some correlation between the negative LH g-factor gLHz
and the higher diamagnetic shift of the pz orbital. It would be interesting to simulate
the wavefunctions associated with pz orbials to understand this behavior better.

3.5 Conclusions

Thanks to the development of a unique growth method of quantum dots with domin-
antly LH state, we can finally describe the properties of LH spins confined to zero
dimensional structures. We have probed the properties of high purity LH and HH
spins by measuring the electron-hole Coulomb exchange and interactions with an
external magnetic field. The LH spin in contrast to the HH spin can be composed
of the pz orbital which exhibits quite different behavior from px and py orbitals in
quantum dots. We observe a much larger Coulomb exchange interaction and slight
difference in the diamagnetic shift. Finally, we can experimentally extract all the
spin-spin coupling constants in the exchange Hamiltonian.
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Chapter 4

Measurement of g-factor tensor
in a quantum dot and

disentanglement of exciton spins

B.J. Witek, R.W. Heeres, U. Perinetti, E.P.A.M Bakkers, L.P. Kouwenhoven and
V. Zwiller

We perform polarization-resolved magneto-optical measurements on single InAsP
quantum dots embedded in an InP nanowire. In order to determine all elements of
the electron and hole g-factor tensors, we measure in magnetic field with different
orientations. The results of these measurements are in good agreement with a model
based on exchange terms and Zeeman interaction. In our experiment, polarization
analysis delivers a powerful tool that not only significantly increases the precision
of the measurements, but also enables us to probe the exciton spin state evolution
in magnetic fields. We propose a disentangling scheme of heavy-hole exciton spins
enabling a coherent transfer of a photon in a time-bin superposition onto the electron
spin.

Part of this chapter has been published in Physical Review B 84, 195305 (2011).
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4. Heavy-holes in the magnetic field

4.1 Introduction

Carrier spins in semiconductor quantum dots (QDs) have attracted considerable
interest due to their potential in quantum information processing based on optical,
ultrafast spin manipulation. In recent years, impressive steps toward this goal have
been demonstrated: high fidelity spin initialization by optical pumping,1 coherent
population trapping2,3 and coherent spin rotation with picosecond optical pulses.4 In
all these cases electron and hole g-factors play a crucial role in defining the qubit energy
levels. In order to optically address only a single spin state and reduce off-resonant
coupling to other states, large g-factors are desired. On the other hand, an electron
g-factor of zero is preferable for coherent photon to spin conversion5–7.

In bulk semiconductors strong spin-orbit interaction is responsible for relatively
large negative electron g-factors8 (e.g. in InAs ge = −14.7 versus free electron ge ≈ 2).
Three dimensional confinement in a quantum dot can result in quenching of the orbital
angular momentum and hence lead to the modification of g-factors.9,10 The influence
of confinement on g-factors has been studied in various experiments.10–15 However,
only some of the electron and hole g-tensor components were probed [e.g. exciton
g-factor gX = (ge,z + gh,z)] providing an incomplete tensor measurement.

Here, we report the results of photoluminescence (PL) measurements in magnetic
fields in three different orientations on two differently charged QDs, that reveal all
of the components of the electron and hole g-factor tensors. Our measurements are
polarization - resolved and therefore provide information about magnetic field-induced
mixing of quantum states, which was not accessible in previous experiments.16 The
nanowire QDs we use are a promising system for g-factor engineering because of the
possibility to controllably grow QDs of different sizes and aspect ratios.

4.2 Model

In order to describe neutral and charged excitons in a magnetic field, we will utilize
the Hamiltonians discussed in detail in Bayer et al.17 and van Kesteren et al..18
For simplicity only holes that form the top of the valance band, i.e., heavy holes
(Jh,z = ±3/2), are considered here. The electron with a spin Se,z = ±1/2 (↑ or ↓) and
heavy hole with Jh,z = ±3/2 (⇑ or ⇓) can form four exciton states of different total
exciton spin projections Jz:

|+1〉 = |↓⇑〉 , |−1〉 = |↑⇓〉 , |+2〉 = |↑⇑〉 , |−2〉 = |↓⇓〉 . (4.1)

The electron and hole spin couple to the external magnetic field via the Zeeman
Hamiltonian. By using these four exciton states as the basis, the Zeeman Hamiltonian
for a magnetic field Bz oriented along the QD quantization axes (Faraday configuration)
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can be represented by the matrix17:

Hz
B =

µBBz
2


gX,+1 0 0 0

0 gX,−1 0 0
0 0 gX,+2 0
0 0 0 gX,−2

 (4.2)

where gX,±1 = ±(ge,z + gh,z) and gX,±2 = ±(ge,z − gh,z) are the expressions for bright
(|±1〉) and dark (|±2〉) exciton g-factors in the z-direction.

The orientation of the magnetic field in the Faraday configuration matches the
QD quantization axis (z, growth direction). Therefore the eigenstates of the Hz

B

Hamiltonian coincide with the chosen basis (4.1).

In the Voigt configuration the magnetic field is applied in the plane of the QD (for
simplicity we consider only the x direction) resulting in breaking of the rotational
symmetry about the z-axis. This leads to the Hx

B Hamiltonian17:

Hx
B =

µBBx
2


0 0 −ge,x gh,x
0 0 gh,x −ge,x
−ge,x gh,x 0 0
gh,x −ge,x 0 0

 (4.3)

The off-diagonal terms account for mixing between bright and dark states. In the
Voigt configuration (Bx) the resulting eigenvectors are linear superpositions of basis
vectors:

|X∗90◦(I)〉 = 1/2(|+1〉+ |−1〉+ |+2〉+ |−2〉)
|X∗90◦(II)〉 = 1/2(|+1〉 − |−1〉+ |+2〉 − |−2〉)
|X∗90◦(III)〉 = 1/2(|+1〉 − |−1〉 − |+2〉+ |−2〉)
|X∗90◦(IV )〉 = 1/2(|+1〉+ |−1〉 − |+2〉 − |−2〉) (4.4)

The labels I to IV indicate the eigenstates ordered by increasing energy.

Electron and hole spins do not only interact with an external magnetic field, but
also with each other. Exchange interaction couples electron and hole spins in QDs
and splits the energy of electron-hole pairs with different spin configurations. The
Hamiltonian for the exchange interaction can be written as17,18:

Hexchange =
1

2


+δ0 +δ1 0 0
+δ1 +δ0 0 0

0 0 −δ0 +δ2
0 0 +δ2 −δ0

 (4.5)

where δ0 is the splitting between bright and dark states, δ1 is often referred in literature
as the fine structure splitting (FSS) of a bright exciton and δ2 is the equivalent splitting
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Figure 4.1 |Structural and optical properties of nanowire quantum dots. (a) Schematic
nanowire and magnetic field orientations. (b) PL spectrum of a single exciton recombination.
(c) Power dependent spectra taken at 10 K under nonresonant (532 nm) excitation at
B = 0. The two emission peaks are identified as a charged exciton (X∗) and charged
biexciton (XX∗). (d) Integrated intensity of X∗ and XX∗ transitions versus excitation
power. The solid (dashed) line is a guide to the eye for linear (quadratic) power dependence.

for a dark exciton. Note that the exchange interaction is present for a single electron
and hole pair (neutral exciton), and vanishes for more complex exciton molecules that
consist of two electrons (total Se,z = 0) and/or two holes (total Jh,z = 0). This is the
case for a biexciton and singly charged excitons.

4.3 Experiment

We studied single InAs0.25P0.75 wurtzite quantum dots (QDs) embedded in InP
wurtzite nanowires grown in the [111] direction. We performed photoluminescence
(PL) measurements with a continuous wave 532 nm excitation laser. The polarization
of the QD emission was fully characterized by the tomography measurements using
two liquid crystal variable retarders. Our cryostat (T ≈ 10 K) with a vector magnet
allowed us to vary the direction of the magnetic field in the x − z plane, with z
being both the optical axis and the nanowire growth direction. Three magnetic
field configurations: Faraday, Voigt and 60◦, that are of a particular interest in our

54



4.3. Experiment

experiment, are given in Fig. 5.1(a) together with a schematic of a nanowire. A
typical QD, with a diameter of 30 nm and height of 10 nm, is surrounded by a thin
shell of InP. Emission linewidths as narrow as 33 µeV [Fig. 5.1(b)] are clear signatures
of the excellent quality of our QDs, which have also demonstrated spin memory in
previous studies19. Power dependent PL spectra presented here [Fig. 5.1(c)] belong to
a singly charged dot for which the g-factors will be determined in Sec. (4.3.1). The PL
intensities of the two observed transitions show a linear and a quadratic dependence
on excitation power [Fig. 5.1(d)] which is consistent with an exciton and biexciton
type of recombination.

4.3.1 Charged Exciton

We start our discussion with a charged exciton X∗ in a magnetic field, since its
description is simpler than the neutral exciton case. As mentioned earlier, there is no
exchange interaction for X∗ and therefore the Zeeman Hamiltonian alone will provide
a sufficient model. Although in our experiment we have no means of distinguishing
between the positively and negatively charged exciton, the description for both cases
is the same. Figure 4.2 presents the X∗ behavior in three different magnetic field
configurations (Faraday, Voigt and 60◦).

The charged exciton PL spectra in the Faraday configuration are given in Fig.
4.2(a). Two exciton states of circular polarization σ+ and σ− corresponding to the
|+1〉 and |−1〉 bright states are observed. The peak positions shift with magnetic
field due to both Zeeman and diamagnetic effects. After subtracting the quadratic
contribution from the diamagnetic shift the exciton state energy versus magnetic field
is plotted in Fig. 4.2(b). The experimental data is fitted with the eigenvalues of
the relevant Hamiltonian, in this case Hz

B (4.2), using gX,+1 = ge,z + gh,z as the free
fitting parameter. Since the two remaining exciton states - dark excitons X∗0◦(II) and
X∗0◦(III) - are not visible in the Faraday configuration, gX,+2 = ge,z − gh,z cannot be
extracted from this measurement.

The situation changes in the Voigt configuration due to mixing between states.
All four exciton states are present in the PL spectra as evident in Fig. 4.2(c). The
transitions are linearly polarized: horizontally |H〉 = 1/

√
2(|−1〉+ |+1〉) and vertically

|V 〉 = i/
√

2(|−1〉 − |+1〉). Interestingly, all four exciton states [X∗90◦(I), X∗90◦(II),
X∗90◦(III), and X∗90◦(IV )] have equal measured intensities implying that they must
all be equally composed of bright and dark components. These empirical observations
are indeed confirmed by analysis of the Hx

B eigenvectors from (4.4). We find an
agreement not only with the fitted energies (Fig. 4.2(d)), but also between observed
and predicted brightness and polarization.

From the Faraday and Voigt configurations only in-plane electron ge,x and hole gh,x
g-factors can be extracted, but the separate values of ge,z and gh,z remain unknown.
This missing information is provided by measurements at an intermediate angle
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Figure 4.3 |(a) Schematic of the neutral exciton and biexciton energy levels in a magnetic
field at 60◦ and (b) corresponding spectrum for B60◦ = 3.2 T (B = [ 2.8 T, 0, 1.6 T ]).

(60◦), where some of the features from the Faraday configuration and from the Voigt
configuration are combined. Similarly to the Voigt configuration, all four exciton states
are observed in the PL spectra, as shown in Fig. 4.2(e). Nevertheless, the PL intensity
of exciton states X∗60◦(II) and X∗60◦(III) is on average three times weaker than the
PL intensity of states X∗60◦(I) and X∗60◦(IV ). The transitions are circularly polarized,
just like in the case of the Faraday configuration. The fit from Fig. 4.2(f) completes
the set of g-factors that is summarized in Table 4.1. Moreover, from the same fit
we obtain the expected degree of mixing between dark and bright states. States
X∗60◦(II) and X∗60◦(III), which were completely dark in the Faraday configuration,
now consist of 26% bright components (|−1〉 and |+1〉 respectively). This gain in
brightness comes at the expense of states X∗60◦(I) and X∗60◦(IV ) whose brightness
drops to 74% (compared to 100% in the Faraday configuration). These predictions
match very well with our experimental observations.

4.3.2 Neutral Exciton

In the analysis of the neutral exciton X0 in a magnetic field one has to take into
account not only the Zeeman Hamiltonian [(4.2) and (4.3)], but also the exchange
interaction Hamiltonian (4.5). Although the exchange energies are much smaller
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than 1 meV and might seem to give only a small correction, the actual effect on the
polarization of the eigenstates will prove to be tremendous.

Figure 4.3(a) presents the schematic of the neutral exciton and biexciton levels
in a magnetic field at an intermediate angle (both x and z field components). The
biexciton, with a total spin Se,z = 0 and Jh,z = 0, experiences no Zeeman effect and
no exchange interaction and therefore its recombination energies perfectly mirror those
of the exciton transitions. Thus, one can identify the same splittings, for instance δE1

and δE2 in Fig. 4.3(a), in both the biexciton and the exciton emission. We will take
advantage of this simple fact and use the biexciton emission to increase the precision
of our measurement [especially Fig. 4.4(e)]. Figure 4.3 (b) presents the spectrum of
a neutral dot in a magnetic field at 60◦, where indeed, δE1 and δE2 have the same
magnitude for the exciton and the biexciton.

Figure 4.4 shows the results of measurements on a neutral QD in the same magnetic
field configurations as previously discussed for the charged QD. We begin with the
Faraday configuration. Two states X0

0◦(III) and X0
0◦(IV ) are visible and their

energies (data points) are given in Fig. 4.4(a). The sum of the exchange and Zeeman
Hamiltonians Hexchange + Hz

B is diagonalized in order to extract the four energy
eigenvalues that fit our data (lines). Simultaneously, we also obtain the eigenvectors
corresponding to the four exciton states. Each eigenvector, representing one state, can
be projected onto the total exciton spin Jz basis from (4.1). All the considered Jz
components are listed in the legend. Fig. 4.4(b) consists of four plots, each describing
the Jz components of a given exciton state. Only states X0

0◦(III) and X0
0◦(IV )

are bright and hence measurable. At zero magnetic field they both consist equally
of |+1〉 and |−1〉 resulting in linearly polarized neutral exciton transitions. With
increasing magnetic field the transitions evolve toward pure σ+ (Jz = |+1〉) and pure
σ− (Jz = |−1〉) polarization. The degree of circular polarization was measured for
exciton states X0

0◦(III) and X0
0◦(IV ) and plotted as gray diamonds. The agreement

with the predicted curve is very good.

In the Voigt configuration, mixing between dark and bright states becomes suf-
ficiently strong around Bx = 2 T to reveal all four exciton states, whose energies
are plotted in Fig. 4.4(c). In contrast to the charged exciton case (Fig. 4.2(d)), all
the exciton states are already split at B = 0 by the exchange energies (δ0, δ1 and
δ2). The solid lines give the fitted eigenvalues of the Hexchange + Hx

B Hamiltonian.
As apparent in Fig. 4.4(d), states X0

90◦(I) and X0
90◦(II) start as completely dark at

zero magnetic field. With increasing magnetic field they acquire bright components:
|H〉 and |V 〉 respectively, and hence become detectable in PL. This gain in bright-
ness (up to 20 % at Bx = 4 T) comes at the expense of X0

90◦(III) and X0
90◦(IV )

states. These initially purely bright states mix with dark components |+2〉 and |−2〉,
decreasing the contribution of |H〉 and |V 〉 to only 80% at Bx = 4 T. Based on the
results given by our model, we draw the conclusion, that state X0

90◦(I) couples to
X0

90◦(III) and state X0
90◦(II) couples to X0

90◦(IV ). The coupled states share the
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4. Heavy-holes in the magnetic field

same symmetry, the first pair form an antisymmetric superposition of spins (at B = 0∣∣X0
90◦(I)

〉
= 1/

√
2(|↑⇑〉 − |↓⇓〉) and

∣∣X0
90◦(III)

〉
= 1/

√
2(|↓⇑〉 − |↑⇓〉)), whereas the

second pair of coupled states is a symmetric superposition of spins. The magnetic
field Bx is responsible for the precession of the carrier spins around the x-axis and
therefore couples the states of the same symmetry.

The total brightness of a pair of coupled states can be defined as the sum of their
bright components. This brightness per pair is conserved, for instance: |

〈
V |X0

90◦(I)
〉
|2+

|
〈
V |X0

90◦(III)
〉
|2 = 1 and |

〈
H|X0

90◦(II)
〉
|2+|

〈
H|X0

90◦(IV )
〉
|2 = 1. Using the above

expressions as normalization factors, the contribution of the |V 〉 component to the
states X0

90◦(I) and X0
90◦(III) (and the |H〉 component to the states X0

90◦(II) and
X0

90◦(IV )) can be determined from the experiment. The data points (gray diamonds)
obtained in this way again follow our predictions with good accuracy.

In the case of the intermediate angle (60◦) in Fig. 4.4(e), the biexciton recombination
energies (mirrored about 0) are represented by triangles, whereas the exciton data are
shown by circles. The evolution of the initially bright states, X0

60◦(III) and X0
60◦(IV ),

is equally well reflected by both sets of data points, which confirms the equivalence of
X0 and XX0 in our experiment.

We focus now on the analysis of Jz components of the exciton states measured in the
60◦ configuration. First of all, a striking asymmetry in the exciton states total spin Jz
composition is immediately recognized in Fig.4.4(f). Unlike in the Voigt configuration
(Fig. 4.4(d)), states X0

60◦(I) and X0
60◦(II) reach a very different contribution of

bright components. At B60◦ = 4 T it is 34% of |+1〉 for state X0
60◦(I) and only

10% of |−1〉 for state X0
60◦(II). Consequently, bright components of states X0

60◦(III)
and X0

60◦(IV ) evolve unevenly; they drop from 100% at B60◦ = 0 to 66% and 90%
respectively at B60◦ = 4 T. Following the same procedure as described for the Voigt
configuration, we add experimental data points (grey diamonds). There is a good
correspondence between the predicted asymmetry and our measurement.

There is a simple explanation for this phenomenon. The energy separation between
the exciton states sets the strength of the coupling. The gap between states X0

60◦(II)
and X0

60◦(IV ) [Fig. 4.4(e)] is significantly bigger than for the other pair of states
(X0

60◦(I) and X0
60◦(III)). This results in a much weaker coupling, which is the main

reason for the practical difficulties in detecting the extremely weak PL emission
from the X0

60◦(II) state. The same arguments should also be applied to the Voigt
configuration [Fig. 4.4(c)]. In this case, however, the splittings between the coupled
pairs of states are similar and the asymmetry becomes a negligible effect.

4.4 Discussion

The complete set of g-factors, exchange energies and diamagnetic coefficients obtained
from the fits for charged and neutral excitons is summarized in Table 4.1. The g-factor
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4.4. Discussion

Table 4.1 | Values of g-factors and exchange energies for both neutral and charged
excitons.

g-factor Neutral Exciton X0 Charged Exciton X∗

ge,z −0.84± 0.02 −0.70± 0.02
gh,z −0.92± 0.03 −1.33± 0.04
|ge,x| 0.96± 0.02 1.00± 0.02
|gh,x| 0.04± 0.02 0.12± 0.01

exchange
δ0 163.7± 2.2 µeV -
δ1 17.7± 2.0 µeV -
δ2 3.5± 2.9 µeV -
diamagnetic coefficient
γ0◦ 11.4± 1.9 µeV/T 2 9.7± 0.7 µeV/T 2

γ60◦ 9.5± 1.7 µeV/T 2 8.2± 1.0 µeV/T 2

γ90◦ 7.3± 1.9 µeV/T 2 7.4± 1.0 µeV/T 2

components and exchange terms δ0, δ1 are determined with high precision. The
magnitude of the FSS (δ1) is confirmed by an additional measurement performed at
zero magnetic field as a function of the PL polarization angle (δ1 = 16.1± 2.6 µeV ).
The diamagnetic coefficients γ0◦ and γ90◦ confirm a stronger confinement along the
z-direction.

In principle our nanowire QD should exhibit C3v symmetry.20 However, several
factors might lower this. First of all the bottom interface of the QD is sharper than the
top one. Second, the randomness of alloying could further reduce the symmetry. In
our case, the Hamiltonians [Eq. (4.2), (4.3), (4.5)] that are attributed to a symmetry
lower than D2d or even no symmetry at all17 reproduce the experimental results very
well.

Performing this type of g-factor mapping experiment,16 we obtain the polarization
resolved spectra and therefore access to the sign of electron and hole g-factors along the
z direction. Strong confinement responsible for orbital angular momentum quenching10
pushes the exciton g-factor to positive values, as reported for a similar InAs/InP
self-assembled QDs system13,14 (gX as high as 1.25). In our case, however, the exciton
g-factor is found to be negative (gX = ge,z + gh,z is −1.76 and −2.03), implying a
weaker confinement. Indeed, the average height of the NW QD is larger than for
self-assembled QDs. In case of the in-plane g-factors it is not possible to tell if they are
positive or negative, since the polarization of exciton states in the Voigt configuration
is insensitive to their sign.

The in-plane hole g-factor gh,x is almost zero, which resembles the situation in
quantum wells21,22. In theory the heavy hole in-plane g-factor is almost negligible and
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4. Heavy-holes in the magnetic field

mostly determined by a Luttinger q parameter21, ghh,x ≈ 3q, whereas the light hole g-
factor takes larger nonzero values23. For bulk InAs and InP, Luttinger parameters are
0.04 and 0.02 respectively24 leading to an estimated ghh,x ≈ 0.09. The experimental
result for nanowire QDs deviates slightly from this approximation, which is not
surprising taking into account the 3D confinement. The charged exciton in-plane hole
g-factor (gh,x = 0.12± 0.01) is larger than the neutral one (gh,x = 0.04± 0.02), and
the same trend was reported for interfacial QDs in GaAs QWs16. Still this value is
not large enough to imply heavy hole - light hole coupling. Although in our analysis
we completely neglect light holes, we still obtain a very precise description of the
experiment, which confirms the validity of our assumption.

The exciton spin behavior is substantially different for the charged and neutral
exciton. As apparent from the charged exciton spectra in Fig. 4.2 the polarization and
relative intensity of the transitions is independent of the magnetic field magnitude,
implying that the mixing between bright and dark states is constant. Dark states
become visible immediately in the nonzero transverse magnetic field, which is crucial
in experiments involving a three-level lambda system formed by charged exciton states
in the Voigt configuration2,3. On the other hand, for the neutral exciton the strength
of bright-dark state mixing increases with magnetic field (Fig. 4.4). The separation
δ0 between the bright and dark states prevents the immediate coupling.

Our studies have demonstrated that the coupling strength between exciton states
can be tuned by a careful choice of the magnetic field angle and magnitude. This
opens the possibility of engineering any superposition of exciton spin states at will.
One particular example is illustrated in Fig. 4.5, where the behavior of a neutral
exciton in a magnetic field at 20◦ is simulated. We took the experimental values of
exchange energies and g-factors listed in Table 4.1. Fig. 4.5(a) plots the energies of
exciton states in a magnetic field up to 6 T. We observe the anticrossing of states
X0

20◦(I) and X0
20◦(III). At the anticrossing, at approximately B20◦ = 3.6 T, the

exciton spin states take a special form. As evident from Fig. 4.5(b) states X0
20◦(I)

and X0
20◦(III) are equally composed of dark |−2〉 and bright |−1〉 components. At

the same time states X0(II) and X0(IV ) do not mix and stay completely dark |+2〉
or completely bright |+1〉. We can write the corresponding spin states at B20◦ = 3.6
T as follows: ∣∣X0

20◦(I)
〉

3.6T
=

1√
2

(|↓⇓〉 − |↑⇓〉) =
1√
2

(|↓〉 − |↑〉)⊗ |⇓〉∣∣X0
20◦(II)

〉
3.6T

= |↑⇑〉∣∣X0
20◦(III)

〉
3.6T

=
1√
2

(|↓⇓〉+ |↑⇓〉) =
1√
2

(|↓〉+ |↑〉)⊗ |⇓〉∣∣X0
20◦(IV )

〉
3.6T

= |↓⇑〉 (4.6)

The hole spin |⇓〉 can be factored out from states X0
20◦(I) and X0

20◦(III) leaving the
superposition of electron spin states. Note that this is possible only because of a
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Figure 4.5 |Simulation of neutral exciton states in a magnetic field at 20◦. The exchange
energies and g-factors are the experimental values. (a) Energy shift due to the Zeeman
effect and (b) the projection of the four exciton states eigenvectors onto the |+1〉, |−1〉,
|+2〉, |−2〉 basis.

very small in-plane hole g-factor, which ensures that the hole spin stays insensitive
to x-components of the magnetic field. Based on these properties we propose a
scheme that enables measuring the electron coherence time T2 in a similar fashion
to the experiment by Kroutvar et al.25 on electron spin relaxation time T1. A
left handed circularly polarized pump pulse (σ−) can create a superposition |↑⇓〉 =
1/
√

2(
∣∣X0

20◦(I)
〉

3.6T
−
∣∣X0

20(III)
〉

3.6T
) that precesses in time at a frequency given

by the difference between the eigenenergies ∆E. This situation is illustrated in
Fig. 4.6, where the photocreated state precesses in the equator plane of the Bloch
sphere. The most crucial feature in this experiment is that we can factor out and
therefore disentangle the hole state and only consider the electron superposition
1/
√

2(|↑〉 − ei∆Et/h̄ |↓〉)⊗ |⇓〉. Under the application of external electric field one can
remove the disentangled hole from the QD without any harm to the coherence of the
electron spin superposition. After a certain delay time a hole can be brought back
to the QD. This will result in a photon emission, whose polarization should exhibit
quantum beats. The envelope of the beats is set by the electron T2. This suggested
method will enable the T2 measurement in time resolved PL. Other techniques of
probing T ∗2 , such as time resolved Faraday26 and Kerr27–29 rotation are based on
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4. Heavy-holes in the magnetic field

Figure 4.6 | Coherent time evolution of the electron spin disentangled from the heavy-hole
spin.

transmission and reflection measurements respectively. In addition, disentangling of
electron and hole can be used for mapping the superposition of a photon in two time
bins onto the up-down superposition of the electron spin (provided that the precession
period is matching the time delay of the two time bins).

4.5 Conclusion

In conclusion, we have presented a set of magneto - optical measurements that leads
to the precise determination of g-factor tensor components for the electron and hole.
In addition, the possibility of polarization analysis has given us a tool to probe the
exciton spin response to the external magnetic field in any configuration. Our model
has proven to provide a complete and self-consistent description of all the observed
experimental effects in magnetic fields, from the evolution of the energy of exciton
states to the prediction of their spin eigenstates. We have proposed a scheme of
disentangling heavy-hole exciton spins that opens a way of measuring electron spin
coherence T2 decoupled from a hole.
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Chapter 5

A light-hole exciton in a quantum
dot

Y. H. Huo, B. J. Witek, S. Kumar, J. R. Cardenas, J. X. Zhang, N. Akopian, R.
Singh, E. Zallo,R. Grifone, D. Kriegner, R. Trotta, F. Ding, J. Stangl, V. Zwiller, G.

Bester, A. Rastelli, and O. G. Schmidt

A light-hole exciton is a quasi-particle formed from a single electron bound to
a single light-hole (LH). This type of fundamental excitation, if confined inside a
semiconductor quantum dot (QD), could be advantageous in quantum information
science and technology. However, it has been neglected so far, because confinement
and strain in conventional QDs favor a ground-state single-particle hole with dominant
heavy-hole (HH) character. Here we demonstrate the creation of a LH exciton ground
state by applying elastic stress to an initially unstrained QD. Its signature is clearly
distinct from that of the well-known HH exciton and consists of three orthogonally-
polarized bright optical transitions and a fine-structure splitting of hundreds of ?eV
between in-plane and out-of-plane components. This work paves the way for the
exploration of the fundamental properties and of the potential relevance of three-
dimensionally confined LH states in quantum technologies.

This chapter has been published in Nature Phys. 10, 46-51 (2014).
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5. Realizing a light-hole ground state in a quantum dot

5.1 Motivation and background

Epitaxial semiconductor quantum dots (QDs) are considered as candidate building
blocks for quantum technologies, as they can act both as hosts of static quantum bits
(excitons1,2, or spins3–8) or as triggered sources of single and entangled photons9–11.
In particular, QDs can confine carriers with a spin coherence time longer than in
the corresponding bulk materials. Hole spins, especially, are receiving increasing
attention, as decoherence due to hyperfine interaction with the nuclear spin bath
should be reduced compared to electron spins.6–8 All experimental studies presented
so far have been dealing with heavy-holes (HH). This is because quantum confinement
lifts the valence band degeneracy and leaves HH states energetically well above the
light-hole (LH) states. Further energetic separation is provided by the compressive
strain, which is required for the growth of self-assembled QDs such as InGaAs QDs
in a GaAs matrix. Some proposals suggest, however, that using LHs instead of HHs
would be beneficial for quantum information technologies. These include the coherent
conversion of photons into electron-spins12, the possibility to directly control the
LH spin state via microwaves13, the direct tomographic measurement of the electron
spin state or spin coherence14, and the faster and more stable control of a magnetic
impurity spin coupled to a QD15. For the realization of these and future proposals, the
LH should be the ground state (GS), as any decay channel would reduce the coherence
time16. While QD LH excitons involving an excited hole-state have been studied17,
and LH-HH mixing induced by shape and/or strain anisotropy has been often observed
in the GS of conventional II-VI and III-V QDs18,19, reports on systems with LH GS
are limited to nanostructures with large height/base ratio20–22, resembling vertical
nanorods. Due to the broad linewidth of the exciton emission from the "dot-in-dot"
studied in Ref22 and the absence of single-nanostructure data for the "columnar
QDs" studied in Ref20,21, it remains however unclear whether a "geometrical route"
is appropriate to obtain QDs with LH GS and with optical properties comparable to
state-of-the-art self-assembled QDs. Here we thus address two open questions: Can
we make high-quality QDs with a GS of dominant LH-type? How does the excitonic
emission of such a QD look like?

5.2 Sample structure

Our successful answer to the first question is to use strain-engineering rather than a
complete redesign of the QD geometry: starting from almost unstrained GaAs QDs
in AlGaAs matrix with a conventional HH GS, we reverse the energetic order of the
HH and LH bands by biaxial tensile stress. Our QDs are obtained by local droplet
etching of nanoholes into an AlGaAs surface followed by GaAs-filling and AlGaAs
overgrowth . A sketch of the heterostructure is shown in Fig. 5.1(a). Compared to
strained self-assembled QDs, GaAs/AlGaAs QDs grown on GaAs (001) substrates
are almost unstrained and their height, which influences the LH-HH splitting, can be
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5.3. Light hole exciton states in photoluminescence
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Figure 5.1 |A QD with light-hole exciton ground state. (a) Schematics of the GaAs QD
heterostructure grown on GaAs (001) substrate. The GaAs QD layer is in the middle of a
pre-stressed (In)AlGaAs membrane. The length of the horizontal arrows is proportional
to the magnitude of in-plane strain in the layers. (b) AFM image of a representative
droplet-etched nanohole on the AlGaAs surface prior to GaAs filling. (c) Schematics of
the GaAs QD heterostructure after selective etching of the AlAs sacrificial layer followed
by strain relaxation and bond back. The initially unstrained QD is now tensile strained.
(d) Energy level diagram and allowed dipole transitions with corresponding polarization
directions. X indicates the neutral light-hole exciton, which consists of a dark (D) state
and three bright (B) states decaying to the crystal ground state (G). x and y denote
in-plane crystal directions [110] and [1-10] and z denotes the growth direction [001].

controlled by adjusting the amount of GaAs used to fill the nanoholes. Since in-plane
anisotropy of the confinement potential is expected to contribute to LH-HH mixing,
the growth protocol is further optimized to obtain highly symmetric QDs (see Fig.
5.1(b))23. Finally, to allow the LH to become the GS, a biaxial tensile strain of about
0.36% is induced on the 8 nm high QDs by embedding them into symmetrically
pre-stressed membranes, which are then released from the substrate24 (see arrows in
Fig. 5.1(a) and Fig. 5.1(c)). Additional fine-tuning of the biaxial strain is achieved by
placing the membranes onto a piezoelectric actuator.25,26

5.3 Light hole exciton states in photoluminescence

In order to experimentally discriminate a LH exciton from a HH exciton, we consider
how a LH, with spin projection Jz = ±1/2 along the [001] crystal direction (z),
manifests itself in the polarization state of emitted photons. We constructed basis
states for a four-dimensional pure LH exciton space composed of the electron spin (↑
and ↓) and LH spin (⇑ and ⇓):

|1〉 = |↑⇑〉 , |2〉 = |↓⇓〉 , |3〉 = |↑⇓〉 , |4〉 = |↓⇑〉 (5.1)

The first two basis states (|1〉 and |2〉) with parallel spins have an angular momentum
projection of J1,z = +1 and J2,z = −1, and emit circularly polarized photons (σ+
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5. Realizing a light-hole ground state in a quantum dot

and σ− respectively). The two remaining states (|3〉 and |4〉) with antiparallel spins
both have J3,z = J4,z = 0 giving rise to linearly polarized photons in the z growth
direction. However, these are not yet the eigenstates in a QD, where electron-hole
exchange interactions should be considered. We thus derived the exchange interaction
Hamiltonian from the theory of invariants27 and solved it for a pure LH exciton. By
assuming that the momentum matrix elements are isotropic, we find the polarization
of the four excitonic eigenstates as shown in Fig. 5.1(d) (see also Ref.28). The exciton
(X) consists of three optically bright (B) states and one dark (D) state. Two bright
states, Bx and By, are linear superpositions of the basis states |1〉 and |2〉. The
resulting polarization of Bx (|1〉 + |2〉) and By (|1〉 − |2〉) is linear along the [110]
(x) and [1-10] (y) crystal directions. The symmetric linear superposition of states
|3〉 and |4〉 forms another bright state Bz (|3〉+ |4〉) polarized along the z direction.
Finally, the oscillator strength of the antisymmetric superposition |3〉− |4〉 cancels out
and a dark state Dz is formed. This means that, in contrast to the conventional HH
exciton configurations, which include two dark states, an additional bright emission
line should be observable by collecting the luminescence perpendicular to the growth
direction.

To verify whether the induced tensile strain is sufficient to switch the LH to the
GS of the valence band of our QDs, we excite µ-photoluminescence (µ-PL) with a
laser beam focused on the sample (001) surface and collect linear-polarization-resolved
PL spectra of as-grown and tensile strained QDs along both z- and x- (cleaved edge)
directions. The spectra for a representative as-grown QD are shown in Fig. 5.2(a),(b)
and are fully consistent with a HH exciton: two in-plane polarized bright-exciton
states, B1 and B2 separated by a fine-structure-splitting (FSS) of 10µeV . (Generally
the directions 1 and 2 do not coincide with the crystal directions x and y in highly
symmetric QDs23). After membrane undercut, the average QD-emission-energy red-
shifts by about 50 meV due to the tensile biaxial strain, as illustrated by the spectra
from another representative QD, shown in Fig. 5.1(c),(d). Most importantly all QD
spectra measured so far display a new line located at 430µeV above the in-plane
polarized doublet B1,2. This line, indicated as Bz in Fig. 5.1(d) is barely visible
when observed along the growth direction, but is very pronounced when detected
from the cleaved edge of the sample and is linearly polarized along z (Fig. 5.1(d)).
In addition, its intensity displays the same excitation-power dependence as B1,2 and
photon cross-correlation measurements between Bz and B1,2 show a lack of coincidence
events at zero delay. All these observations are in line with our expectations for a
LH exciton having three bright recombination channels: B1,2 and Bz. (A relatively
weak z-polarized emission observed in Fig.5.2(b), 5.2(d), 5.3(b) in correspondence to
B1, 2 origins from the x-polarized emission of B1 that due to total internal reflection
at the semiconductor-air interface, partially emerges via the edge of the sample). To
better resolve the B1,2 lines and to access also the dark state Dz of a LH exciton, we
carried out magnetic field-dependent µ-PL measurements in Faraday configuration,
i.e. with magnetic field parallel to the z direction.29,30 In fact, different from the
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Figure 5.2 |Representative µ-PL spectra of heavy-hole and light-hole excitons in single
GaAs/AlGaAs QDs. (a) to (d): Linearly-polarized spectra of neutral excitons along two
perpendicular directions for one representative as-grown QD (a,b) and one tensile-strained
QD (c,d). Spectra are collected along the conventional z [001] direction in (a,c) and
along the x [110] direction from a cleaved edge in (b,d). In (a,c) solid and open circles
correspond to the in-plane polarized lines B1 and B2. For the two QDs, the B1 line has
polarization direction close to x. In (b,d) stars correspond to light polarized along the
cleaved edge (y [1-10] direction), with spectra dominated by the emission of B2, and open
diamonds correspond to light polarized along the z [001] growth direction. Besides the
projection of the in-plane components (mostly B1) on the z direction, the spectrum of a
light-hole exciton in (d) is dominated by the z-polarized line Bz. In all plots, lines are
Lorentzian fits of the experimental data.

HH case in Faraday configuration, the Dz line is expected to become visible due
to magnetic-field-induced mixing with the Bz line. This is analogous to the more
common situation encountered for the dark states of a HH exciton, which become
partially bright when a magnetic field is applied in the x-y plane (Voigt configuration)
due to mixing with the x-y polarized bright excitons. (A quantitative description of
the behavior of a LH exciton in magnetic field is presented in chapter 3). Fig. 5.3(a)
shows polarization-resolved spectra of a single QD collected along the z-direction. The
B1 and B2 lines, which are initially linearly polarized and split by 9.5 (see bottom of
Fig. 5.3(a)), display a diamagnetic shift and split further due to the Zeeman effect.
When the Zeeman splitting becomes larger than the exchange splitting, the exchange
interaction for states B1 and B2 can be neglected and we observe the recovery of
the circular polarization of the basis states |1〉 and |2〉. The picture changes in Fig.
5.3(b), where light is collected along the x-direction. Besides Bz, the initially dark
state Dz appears as a z-polarized line as the field is increased. Analogous to the
in-plane polarized lines B1 and B2, the lines Bz and Dz, initially split by the exchange
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Figure 5.3 |Representative polarization-resolved µ-photoluminescence spectra of light-hole
excitons in a magnetic field applied along the growth direction (Faraday configuration).
Spectra for light collected along the z direction (a) and along the x direction (b). The
colour plots in a,b are obtained by superimposing the intensities of circularly polarized
spectra (with σ+ and σ− polarization) and linearly polarized spectra (with polarization
parallel to the y and z directions), respectively. The polarization-resolved spectra shown
on the top and bottom of (a) and (b) correspond to zero and maximum magnetic field.
The dashed lines in the colour plot in (b) represent fits of the peak positions for the
in-plane polarized B1 and B2 lines (white) and z-polarized Bz and Dz lines (green). Dz

appears as the magnetic field is increased, as shown in the top spectrum of (b).

interaction, shift and split due to the diamagnetic and Zeeman effect. By fitting the
peak energy positions of Bz and Dz, we find that Dz lies 482 µeV below the energy
of Bz at 0 field. Note that the exchange splitting between Bz and Dz is so large,
that it remains dominant over the Zeeman splitting up to the largest magnetic fields
available. As a consequence, the basis states |3〉 and |4〉 cannot be restored. However,
a brightening of Dz is clear and all the four LH exciton states are now observed.
Similar behavior and values of the Dz-Bz spitting have been observed for all measured
QDs.
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5.4. Exchange interaction from the atomistic pseudopotential method

5.4 Exchange interaction from the atomistic pseudopotential
method

While the experimental results discussed so far are in line with the qualitative ex-
pectations of the mesoscopic model, a quantitative prediction of the fine-structure is
necessary to assert that the unexpectedly large FSS is indeed a feature of a single
LH exciton state. We have thus performed numerical calculations using the atomistic
empirical pseudopotential method and configuration interaction, including the electron-
hole exchange interaction.31,32 The structure for the simulation was constructed from
the measured QD morphology by directly using atomic force microscopy (AFM) topo-
graphs of representative AlGaAs nanoholes before and after GaAs filling.23,33 Due
to the lack of compressive strain and the relatively large height ( 8nm), the splitting
between the dominant HH and dominant LH states is significantly reduced, compared
to the common InGaAs/GaAs case. To simulate the experimental conditions, we
introduce an in-plane tensile strain to the simulation cell and relax the atomic positions
as well as the simulation cell in z-direction.31. In Fig. 5.4(a) we plot the HH and
LH character of the valence band GS, h0, which is obtained from the projection of
the atomistic quantum dot wavefunctions onto Bloch states of the underlying bulk,
as a function of the induced strain. We see that, already for a moderate tensile
strain value of 0.2%, the character shifts from dominantly HH to dominantly LH.
For the experimentally determined strain value of 0.36% we expect that h0 has 95%
LH character. We further confirm this value by measuring the in-plane polarization
anisotropy of the emission and using the model of Tonin et al.34 By assuming the GS
to be of dominant LH character, we find that the strained QD, presented in Fig. 5.2(c,
d), has a 99% LH character. In Fig. 5.4(b) we plot the excitonic fine structure as
a function of the tensile strain. The energies are given relative to the lowest (dark)
exciton state Dz. At zero strain we have the well-known situation where the two bright
states are polarized in-plane and are split by a FSS of 8 µeV , in good agreement
with the experimental values, while the dark states are nearly degenerate. When
tensile strain is introduced, the situation changes dramatically with one z- polarized
bright state between 200 and 600 µeV above the Dz, and two bright states, split
by only a few µeV and polarized in-plane, at an energy of around 30-40 µeV above
Dz. These results are in excellent quantitative agreement with the experimental data,
demonstrating that the QDs presented here can be used as model systems to study
and possibly make use of LH states.

According to the calculation in Fig. 5.4(b), the energy separation ∆E between Bz
and the in-plane polarized doublet monotonically increases with increasing tensile
strain. To test this prediction, we have transferred pre-stressed membranes onto a
piezoelectric substrate (PMN-PT) via gold-thermo-compression bonding (see Ref.35
and inset of Fig. 5.5), allowing us to increase (decrease) the tensile strain by simply
decreasing (increasing) the electric field applied across the piezo. (For this experiment,
another sample with asymmetric QDs23 was used. For such QDs, the Bz-line becomes
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Figure 5.4 |Calculation results using the experimental QD structure. (a) Analysis of the
hole character of the ground state h0 as a function of in-plane biaxial strain. The used
GaAs QD has a shape constructed from representative AFM topographs. The dashed lines
and horizontal arrow indicate the value of strain before and after membrane undercut. (b)
Excitonic fine structure, setting the energy of the lowest exciton state to zero. The black
and blue triangles represent the transitions polarized in the growth plane (001) while the
red circles represent the transitions polarized along the growth direction [001]. The size
of the symbols is proportional to the oscillator strengths. The lowest exciton transition
energies are between 1.56 and 1.45 eV for the range of used strains.

easily visible also when observed along the z-direction indicating a radiating dipole
which is tilted away from the ideal z-direction. This facilitates the strain-dependent
measurements by allowing PL collection along the z direction). As shown in Fig. 5.5,
when the electric field changes from 23.3 to -10 kV/cm the exciton energy decreases by
about 9 meV and ∆E increases by about 44 µeV (474 to 518 µeV ). The calculations
predict an increase in ∆E, when going from 0.2% to 0.4% strain, of 105 µeV (388 to
493 µeV ) accompanied by a reduction in exciton energy of 31 meV (1.550 to 1.519
eV). Therefore the change in ∆E relative to the change in emission energy is 3.4
µeV /meV in good agreement with the experimental result of 4.9 µeV /meV .

5.5 Conclusion

In conclusion, we have shown that the excitonic ground-state of self-assembled GaAs
QDs can be switched from the common dominant HH to the LH type by releasing
prestressed membranes with initially unstrained QDs. The excitonic fine structure
was investigated both experimentally and theoretically. The high optical quality of
the presented dots (FWHM 23 µeV for as-grown QDs23, FWHM 37.5 µeV for
LH QDs in released membranes), the compatibility of membrane processing with
electrical control35, and the fact that the ground hole state can have more than
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Figure 5.5 |Dynamic strain tuning of a light-hole exciton. Strain-tuning of exciton energy
and energy splitting (∆E) between the Bz line and the low-energy component of the
in-plane polarized doublet (here indicated as Bx) measured using an asymmetric QD in a
membrane which was released from the GaAs substrate and placed onto a piezoelectric
actuator. The inset is a sketch of the experimental configuration.

95% LH character for tensile strains of 0.4%, demonstrate that three-dimensionally
confined LH may soon be explored as new semiconductor-based quantum systems for
quantum communication technologies.

5.6 Methods

5.6.1 Sample growth, processing and structural characterization

Two samples are discussed in the manuscript (see PL spectra in Fig. 5.2 and Ref36).
Sample #1 contains highly symmetric QDs (see AFM image in Fig. 5.1b and Fig. 5.6)
and sample #2 asymmetric QDs (see AFM images in Fig. 5.7). Both of the samples
were grown by molecular beam epitaxy on semi-insulating GaAs(001) substrates.
Eight-nanometre-deep nanoholes were obtained by depositing 0.5 monolayers of excess
Al on an Al0.4Ga0.6As (001) surface at a substrate temperature of 600 °C followed by
5 min annealing under As2 flux. The nanoholes were then overgrown with 2nm GaAs
(quantum-dot material), followed by 2 min annealing favouring hole filling, 37nm
Al0.4Ga0.6As, and 7nm graded AlxGa1−xAs (with x varying from 0.4 to 0.44). The
morphology of the quantum dots was obtained by measuring with AFM the surface of
two additional samples, where the growth was interrupted after nanohole etching and
after GaAs overgrowth. We can obtain the shape of the resulting QDs by subtracting
AFM images of representative nanostructures before and after GaAs filling. Such
AFM images are shown in Fig. 5.6 together with corresponding linescans. And they
were used to calculate the optical properties of our QDs without adjustable parameters.
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5. Realizing a light-hole ground state in a quantum dot

The quantum-dot layer was placed into symmetrically pre-stressed membranes, which
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Figure 5.6 |(color online). (a) Representative AFM images of the symmetric nanoholes in
AlGaAs matrix (Top) and of the surface after 2 nm GaAs-filling (Bottom). (b) Linescans
of the AFM images along [1-10] and [110] crystal directions vertically offset by an amount
corresponding to the GaAs layers used to form the QDs.

include one In0.2Al0.4Ga0.4As stressor layer below and another above the active
structure. By etching a sacrificial AlAs layer placed below the membrane structure,
the strain, which was originally confined in the InAlGaAs layers, is shared with the
initially unstrained heterostructure (see horizontal arrows in Fig. 5.1(a,c), with lengths
proportional to the strain magnitudes). After etching, the membranes bond-back to
the underlying substrate. A tensile strain of 0.36% was induced in the quantum-dot
layer according to X-ray diffraction measurements.

5.6.2 Optical characterization

We performed µ-photoluminescence measurements using a 532nm continuous-wave
frequency-doubled Nd:YVO4 laser focused onto the sample surface using a microscope
objective with a numerical aperture of 0.42. The same objective was used to collect
light along the z [001] direction. A second objective was mounted at 90deg to collect
light emitted along the x [110] direction. The membranes with underlying substrate
were cleaved and mounted on the cold-finger of a cryostat equipped with multiple
optical windows. For polarization analysis, we rotated an achromatic λ/2 waveplate
by 360◦ at 2◦ steps in front of a linear polarizer. For the magnetic-field-dependent
photoluminescence measurements, the samples were mounted on the top and side
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Figure 5.7 |(a) Representative AFM images of the nanoholes in GaAs matrix (Top) and
of the surface after 2 nm GaAs-filling (Bottom). (b) Linescans of the AFM images along
[1-10] and [110] crystal directions.

facets of a cubic sample holder. A vector magnet was employed to measure each
sample in the Faraday geometry with magnetic fields up to Bmax = 8T (Bmax = 4T )
along the growth direction for samples on the top (side) facet.

5.7 Supplementary

5.7.1 Fine structure of as-grown QDs and of side view PL spectra

The fine-structure of bright excitons confined in as-grown QDs similar to those in
samples used in this experiment have been studied and reported in Refs.23 and37,
respectively. In both cases the fine structure consists of two lines linearly polarized
in the growth plane, indicating a dominant HH character. The QDs in #1 are
characterized by an average fine structure splitting (FSS) of ∼4 µeV and a rather
random orientation of the two mutually perpendicular, linearly polarized bright exciton
lines. In contrast, QDs in Sample #2 are anisotropic, their average FSS is 49 µeV and
the polarization direction of the low energy component is mostly aligned along the
[110] crystal direction.

When the emission is observed along the x direction (cleaved edge), we expect a
radiating dipole oriented along the y direction to produce no signal polarized along the
z (growth) direction. Similarly, for a dipole oriented along the z direction we expect
no light polarized along the y direction. For a dipole oriented along the x direction
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5. Realizing a light-hole ground state in a quantum dot

the situation is slightly more complex. In fact, since the QDs are close to the sample
surface, we expect to collect also light which has undergone total internal reflection
and light which is emitted from the top surface and is refracted towards the objective.
When both in-plane dipoles form a finite angle with respect to the cleaved edge (as it
is generally the case for our symmetric dots) they will both contribute to z-polarized
light. These arguments, backed by finite-difference-time-domain simulations with the
LUMERICAL software, see Fig. S5.8, explain why the side-view polarization-resolved
PL spectra (Fig. 2b, 2d, 3b) show some weak z-polarized signal in correspondence to
the in-plane polarized dipoles.
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Figure 5.8 |Lumerical simulation of a dipole oriented in the x direction. (a) Schematic of
the simulated structure: 20µm × 10µm AlGaAs (refractive index, n = 3.36) membrane of
150 nm thickness on GaAs (n=3.68). The dipole source is embedded in the membrane
200 nm from the sample edge. (b) Far field projection of z-polarized light component
onto a hemisphere in the x direction. Our objective (NA = 0.4) collects light from a cone
of a solid angle 23° centered at (0,0). The x-dipole radiates to the top of the sample (in
a cone in the z-direction). Therefore light emitted at an angle to the top of the sample
will exhibit a z-polarized component (intense red spot on a hemisphere). However, part
of the light emitted to the top undergoes a total internal refection and emerges at the
membrane edge (weak horizontal spot). This light is collected with our objective and seen
as z-polarized.

5.7.2 Magnetic-field-dependent PL data for as-grown QDs (HH
exciton)

The magnetic-field dependent spectra of two representative as-grown QDs in sample
#1 are shown in Fig. 5.9. The polarization of the two bright excitons in Fig. 5.9(a) is
a typical fingerprint of a HH exciton in the Faraday configuration: two bright states of
circular polarization σ+ and σ−. The side view (Fig. 5.9(b)) reveals mostly in-plane
polarized emission and only weak emission polarized along the z direction, whose
origin is discussed in Sec. 3.a. Dark states remain invisible consistent with the highly
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symmetric shape of the QDs and no extra line polarized in the z-direction is observed.
For QDs from sample #2, the latter observation remains valid, while dark states
appear also in Faraday configuration, consistent with the irregular shape of the QDs
(not shown here).
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Figure 5.9 |Color-coded magneto-PL spectra of a single heavy-hole exciton in the as-
grown sample #1 as a function of magnetic field applied along the growth direction
(Faraday configuration). In (a), light is collected along the z-direction and in (b) along the
x-direction. The polarization-resolved spectra are shown for zero and maximum magnetic
field.

5.7.3 Magnetic-field dependent PL spectroscopy of tensile
strained QDs

For 3 QDs we have recorded side view spectra in the magnetic field (in Faraday
configuration up to B = 4 T). As apparent from Fig. 5.10 all of them exhibit the
same, reproducible features: two transitions polarized in-plane and one polarized in
the z-direction. The red arrow at B=4 T points at a very weak emission from the
initially dark state Dz. The QDs differ only by the relative intensity of the in-plane
and z-polarized lines. We extrapolated the position of the dark exciton Dz with respect
to the Bz line using the set of equations for the energy these exciton states in the
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magnetic field B:
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where δ0 is an exchange splitting between in-plane and z-polarized transitions, δ1 is
a splitting between Bz and Dz line, gX,z is an exciton g-factor for z-polarized states,
and γ a diamagnetic coefficient. Subtracting these two equations gives a much simpler
formula dependent only on the g-factor gX,z and δ1:

E(Bz −Dz) =
√
δ2
1 + µ2

Bg
2
X,zB

2. (5.5)

The position of Bz and Dz line was found by fitting a Lorentzian function to the
PL data. Next, we took the difference in Bz - Dz energy and fitted the formula in eq.
5.5. We found the splittings δ1 between Bz and Dz to be 482 µeV, 448 µeV and 466
µeV for dots A, B and C. For each dot the dark exciton is below Bx and By line.
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Figure 5.10 |Polarization-resolved spectra of 3 representative QDs in the undercut
membrane. The magnetic field is applied along the sample growth direction (Faraday
configuration) and the spectra are collected from the side edge of the sample.
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5.7.4 Evaluation of amplitude of HH-LH mixing

Figure 5.11 describes the estimation of HH-LH mixing amplitude β (LH ratio) (see
Eq. (1) of Ref.34 for the definition) using the existing model by Tonin et al. We
first fit polarization-angle-dependent intensity (collected by top configuration) of B1

and B2 lines by a cosine function and then we add the fitted intensities of both lines
to obtain the polarization ellipse of the total in-plane emission intensity. Inset 1 of
Fig. 5.11 shows the polar plot of the measured (B1 - closed circles and B2 - open
circles) and fitted (solid lines) intensities as a function of polarization angle for the
as-grown QD in Fig. 2a. Inset 2 is that of strained QD in Fig. 2c. Inset 3 is the
analysis of a strained QD 5 µm away from the cleave edge where the strain situation
is more ideally biaxial than near the edge. The triangular symbols (solid lines) in
all polar plots are for measured (calculated) total in-plane emission intensities. The
maximum (Imax) and minimum (Imin) of the polarization ellipses of total intensity
(dotted lines in both polar plots) were used to calculate the linear polarization degree
C (=(Imax − Imin)/(Imax + Imin)). The values of β were estimated from the C versus
β plot, as shown in Fig. 5.11 and is calculated using Eq. (7) of Ref.34. The value of
C that we obtained from the polarization ellipse of as-grown(inset 1) is 0.12 which
corresponds to a value of 0.10 for β. For the strained QD near edge (inset 2), the
values of C and β are 0.13 and 0.99 respectively. Surprisingly when the strained QD
is away from the edge, where tensile strain is more ideally biaxial, the polarization
degree decreases to 0.01 which corresponds to 100% LH in the ground state. The
cross marks in Fig. 5.11 show C versus β co-ordinates for all QDs.

5.7.5 Numerical Results

While the model delivers clear results for the polarization of the eigenstates, it does
not reveal the energetic splittings between the exciton states. We therefore calculate
numerically, using the atomistic empirical pseudopotential method and configuration
interaction32, the energetic splittings. The results for InGaAs QDs embedded in GaAs
where the hole states have dominant heavy-hole character are well known. In order
to obtain excitons with light-hole character we use the same approach as followed
experimentally. We calculate the excitonic states, including the electron-hole exchange
interaction31 for different GaAs QDs, embedded in AlxGa1−xAs. The structures are
nearly strain-free and due to the rather large height/base ratio, the splitting between
the dominant heavy- and dominant light-hole states is significantly reduced, compared
to the InAs/GaAs case. Fig. 5.12 shows the heavy- and light-hole character of the first
six hole states in an unstressed GaAs QD. The first hole state h0 has over 90% heavy-
hole character, but the deeper holes, which are only a few meV from h0 have already
a signifiant light-hole character. The composition dependence is non-monotonic, since
the amount of light-hole mixing depends on the orbital symmetry of the states. To
create a ground state hole (h0) with dominant light-hole character, we apply tensile
strain to the simulation cell which favors a light-hole ground state. The strain is
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Figure 5.11 |Linear polarization degree C versus the mixing parameter β . The two polar
plots are for the as-grown QD (top) and strained QD (bottom) demonstrated in the main
text respectively.

defined as as−a0

a0
where as is the lattice constant of the stressed simulation cell and

a0 is the lattice constant of the unstressed structure. Under the stressed conditions,
all the atomic positions are relaxed to minimize the strain energy, using the valence
force field method32. In Fig. 5.4(a) we plot the heavy- and light-hole character of
the first hole state h0 as a function of the applied strain. We see that, already for
rather moderate strain values, the character shifts from dominantly heavy-hole to
dominantly light-hole.

In Fig. 5.4(b) we plot the excitonic fine structure as a function of the tensile strain.
The size of the symbols is proportional to the oscillator strength of the transition.
The energies are given relative to the lowest exciton states that is, in all cases, a dark
state. The color of the symbols give the polarization property of the transitions, blue
and black for in-plane polarization and red for out-of-plane (along [001]) polarization.
The situation at zero strain corresponds to the well known situation where the two
bright states are polarized in-plane and are split by the FSS. The dark states are
nearly unsplit and at zero-energy in the Fig. 5.4(b).
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Figure 5.12 |Analysis of the hole character of the first six hole states in an unstrained
GaAs QD with a shape constructed from representative AFM topographies. The energy is
given with respect to the energy of the ground hole state h0.
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Chapter 6

Impact of strain and shape
symmetry on spin states

The shape symmetry of semiconductor quantum dots and strain distribution have
a tremendous influence on the exciton spin states and emitted photons polarization.
The fine structure splitting of the heavy hole (HH) exciton states, which is sensitive
to the dot shape elongation, is a main obstacle in entangled photon pairs generation.
The shape elongation results not only in the mixing of the HH exciton states, but
leads also to the HH and light hole (LH) exciton states mixing. Importantly, all of the
impressive steps towards quantum computing with spins trapped in quantum dots,
such as the spin initialization, optical spin manipulation and the spin state readout,
rely on the purity of the exciton polarization selection rules, hence the hole state purity.
In this chapter we demonstrate and explain the HH-LH exciton mixing in epitaxial
quantum dots. In particular, we show the experimental evidence of hole spin state
mixing caused by two leading mechanisms: Luttinger-Kohn terms and hole-electron
exchange.
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6.1 Observation of a strong heavy-light hole spin mixing

Before we managed to demonstrate a LH exciton with negligible mixing in quantum
dots (see chapter 5), we went through a series of attempts with quantum dots of
distorted shapes. A novel method developed to induce tensile strain in nanomembranes
containing quantum dots1–4 proved to be sufficient to reorder energetically the LH
and HH band. However, the shape asymmetry of the quantum dot prevented us from
observing clean polarization selection rules for the LH exciton. Here we describe the
HH-LH mixing mechanism leading to the distortion of LH exciton polarization.

6.1.1 Quantum dot sample description

The quantum dots studied here were obtained by local droplet etching of nanoholes into
a GaAs surface5–7 followed by heterostructure overgrowth8,9. The advantage of this
method over strain-induced self-assembly is that the height of the quantum dots, which
directly influences the LH-HH splitting, can be controlled in a wide range even when
the depth of the holes is fixed.10 In addition, these QDs can display single-dot emission
linewidths narrower than 25 µeV 8, allowing detailed investigations of the excitonic fine
structure to be performed. To gather information on the dot morphology, we measured
by atomic force microscopy (AFM) the surface morphology of two additional samples
where the growth was interrupted after the deposition of the bottom barrier and after
GaAs overgrowth, respectively. AFM images of two similarly shaped nanoholes found
on the two samples are shown on the left side of fig. 6.1(a). The approximate shape
of the GaAs quantum dots can be obtained by subtracting the two images, as shown
in fig. 6.1(a). Linescans of the quantum dot interfaces as well as of the resulting
quantum dot shape along two orthogonal directions are shown on the right part of
fig. 6.1(a). We see the GaAs-filled nanohole has an irregular shape, elongated in the
[110] direction. Similar conclusions can be drawn by inspection of other nanoholes.
To generate tensile strain into the GaAs quantum dots, we follow an approach similar
to Refs.1–3. The quatum dots were placed into symmetrically pre-stressed membranes
which include one In0.2Al0.3Ga0.5As stressor layer below and another above the active
structure (see fig. 6.1(b) left). After defining patterns by optical lithography and wet
chemical etching, we selectively remove a sacrificial Al0.75Ga0.25As layer placed below
the membrane structure. In this way the membranes are undercut and bond-back to
the underlying substrate, as shown in the sketch on the right of fig. 6.1 (b). After
release, the strain, which was originally confined into the InAlGaAs layers, is shared
also with the initially unstrained heterostructure (see horizontal arrows in fig. 6.1(b),
with lengths proportional to the strain magnitudes). Strain was quantified by X-ray
diffraction measurements of a similar sample containing a GaAs layer instead of the
(Al,Ga)As heterostructure between the In0.2Al0.3Ga05As layers. From the position
of the peak associated to strained GaAs we obtain a strain value of 0.36% (see ref.4
for more details).
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6.1. Observation of a strong heavy-light hole spin mixing

x/y (nm)

(a) (b)

Figure 6.1 | (a) Representative AFM images of the surface of GaAs-filled AlGaAs nanoholes
(Top) and of the AlGaAs nanoholes (Bottom). The difference between the two images
provides the approximate morphology of the resulting GaAs quantum dot. Linescans of
the AFM images along [1-10] and [110] crystal directions are shown on the right side.
(b) Side-view sketches of as grown sample structure before (left) and after removal of
the sacrificial layer (right). The length of the horizontal arrows is proportional to the
magnitude of in-plane strain in the layers.

6.1.2 Experimental results

Polarization resolved micro-photoluminescence in magnetic field was studied for several
dots in the as grown sample and in the undercut membrane. All of the dots present
very reproducible spectral features, which are shown in fig. 6.2 for two representative
dots (one in the as grown sample and one in the undercut membrane). A quantum
dot in the as grown sample exhibits a slightly distorted behavior of a HH exciton. In
fig. 6.2(a), next to two bright states, a very weak emission from the dark states, which
lies 140.8 µeV below the bright doublet, is observed. Spectra in fig 6.2(b) show that
the emission of the dark states (pointed with arrows) is not exceeding 7% of bright
states intensity. The appearance of dark states can be linked to the non symmetric
shape of the dot that leads to the HH-LH mixing term S (see eq. 2.42). Besides this,
the HH exciton bright state reveal expected polarization: linear at zero magnetic
field, and a high degree of circular polarization at B = 8 T. We observe a dramatic
change of the spectral features for a quantum dot in the undercut membrane in fig.
6.2(c). First of all, the emission energy of quantum dots is shifted to the red, which
is consistent with our expectations of tensile strain (fig. 2.5). Secondly, four exciton
lines are visible, as predicted for a LH state (see chapter 3). However, in a standard
top-view micro-photoluminescence geometry, two LH exciton states polarized in z
direction should not be visible. Here, as we look at the spectra in fig. 6.2(d), all the
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Figure 6.2 | Spectral fingerprints in the magnetic field along the growth direction z(Faraday
configuration) of representative quantum dots in (a, b) the as grown sample and (c, d) the
undercut membrane. (c,d) Polarization-resolved µ-PL spectra of those quantum dots at 0,
4 and 8T. Horizontal (H) and vertical (V) polarization is not aligned with any specific
crystallographic axis of the sample. The arrows in (b) point at a weak emission attributed
to the HH exciton dark state. In the undercut membrane, the energies of the exciton
states in (c) resamble the LH exciton features, however, not the polarization and intensity
of the lines in (d).
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6.1. Observation of a strong heavy-light hole spin mixing

lines have a rather pronounced intensity. In order to compare the nature of these lines
with the case of high purity LH exciton, we subtract the diamagnetic shift (γ = 11.4)
and focus on the Zeeman energy in fig. 6.3(b). The energy of the lines can be fitted
with the Zeeman Hamiltonian for a LH exciton. We therefore can identify which lines
should exhibit purely z-polarization. As labeled in fig. 6.3(b), the line of the highest
energy resembles the Bz exciton, and 398 µeV below we find a state resembling a dark
state Dz of the LH exciton. In addition, we show that the behavior of the quantum
dot in the as-grown sample can be very well reproduced by the Zeeman Hamiltonian
for the HH exciton (fig. 6.3(a)).
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Figure 6.3 | The Zeeman energy of the exciton states in (a) the as grown sample and (b)
the undercut membrane extracted from the experiment by diamagnetic shift subtraction
(points). Solid lines represent the fit to the Zeeman Hamiltonian for (a) the HH exciton
and (b) the LH exciton.

6.1.3 Discussion and conclusion

As apparent from fig. 6.3, the energies of four exciton transitions in the undercut
membrane follow the expectations for the LH exciton in Faraday geometry. Similarly,
the energies of exciton states observed in the as grown sample can be described by
the Zeeman Hamiltonian for the HH exciton. Only the polarization and the oscillator
strength does not match with a pure HH or a pure LH exciton case. Apparently,
the hole spin state, hence the exciton polarization, is a very sensitive measure of
the quantum dot symmetry. Distortion from the polarization of the pure HH and
LH exciton case can be explained by mixing of the HH spin up

∣∣ 3
2 ,

3
2

〉
with the LH

spin up
∣∣ 3

2 ,
1
2

〉
(and the HH spin down with the LH spin down). The effect of such

mixing on polarization of lines is explained in fig. 6.4. HH exciton dark states acquire
circular polarization due to the admixture of the LH states, as seen in our experiment
(fig. 6.2). On the other hand, z-polarized states of the LH exciton gain a component

91



6. Impact of strain and shape symmetry on spin states

of circular polarization related to the admixture of the HH state. This effect is
very strong for the quantum dot in the undercut membrane. Surprisingly, the state
resembling Dz, which should not be visible in our micro-photoluminescence geometry,
has the highest intensity of all lines. Let us look again at the spectra for the undercut
membrane in fig.6.2(d). A line resembling Dz reveals a high degree of left handed
circular polarization (L ≡ σ−), whereas a state similar to Bz is mostly right handed
circularly polarized (R ≡ σ+). Each of these LH-like states couples to one of the
circular HH exciton states. We shall now recall a possible origin of such hole mixing.

z
σ+σ+

dark

z
σ−

dark
σ−

coupling S coupling S

HH LH HH LH

Figure 6.4 | Polarization components of the photons emitted from a HH-LH mixed
state. The term S from the Luttinger-Kohn Hamiltonian couple parallel HH and LH
spins. Transitions forbidden for a purely HH state gain circular polarization. Mixture of z
polarized states with circularly polarized states (σ+ and σ−) is expected.

First of all, it can be due to the shape asymmetry, which makes the S term in the
Luttinger-Kohn Hamiltonian non-negligible:

S = (
h̄2

2m0
)2
√

3γ3((kx − iky)kz. (6.1)

This should be the case for strain free quantum dots in the as grown sample. We
probe the polarization of the GaAs at the location of the quantum dot studied here
(fig. 6.5(a)). We discover that even the emission from the ≈ 100 nm thick GaAs layer
below the quantum dot, is slightly polarized, and there are two split exciton peaks.
This could indicate some non uniform strain distribution already present in the as
grown structure. In the undercut membrane, where tensile strain is induced, the effect
of the mixing is more dramatic, as confirmed by a nonuniform polarization in fig
6.5(b). It is likely that the asymmetric shape of the dot results in uneven distribution
of strain. If shear strain is built up in a quantum dot, then the mixing between HH
and LH spins is enhanced by a term:

Sε = −d(εzx − iεyz). (6.2)

The polarization of GaAs at the location of the quantum dot in the undercut membrane
shows even stronger polarization than in the as grown sample. It is a signature of
further reduction of the structure symmetry.
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Figure 6.5 | Polarization ellipse recorded for the GaAs emission (originating from the
≈ 100 nm thick layer below the quantum dot). (a) The as grown sample at the position of
the studied quantum dot and (b) the undercut membrane at the location of the quantum
dot.

In conclusion, we have identified a dominant term responsible for the HH-LH mixing
in our asymmetric epitaxial quantum dots. This work emphasizes the importance of
the quantum dot symmetry and strain uniformity for the purity of hole spin states.

6.2 Observation of the exchange interaction induced mixing

The Luttinger-Kohn Hamiltonian helps us predict the order and the character of
the valence sub-bands in a semiconductor nanostructure based on the shape of the
confining potential and strain. Once the valence ground state is defined in this method,
there is yet another mechanism which can modify spin states, however, not just the
hole spins, but the overall exciton spins. The exchange Hamiltonian, as we learnt in
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chapter 3 couples the electron and hole spin:

Hexch = −
∑

i=x,y,z

(aiσi ⊗ Ji + biσi ⊗ J3
i ). (6.3)

In chapter 3 we gave the matrix form of this interaction for either a pure HH or a
pure LH exciton 4x4 subspace. Interestingly, if the exchange Hamilonian is calculated
in a complete 8 dimensional exciton states basis (4 HH excitons + 4 LH excitons), we
discover the off diagonal terms that couple both the HH and LH exciton subspaces (see
appendix A). The 8x8 exchange Hamiltonian takes a form (for the exciton |Jz,h, Sz,e〉
basis states
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):

Hexch =

(
HHH
exch HHH−LH

exch

HHH−LH
exch † HLH

exch

)
(6.4)

Where HHH−LH
exch is a HH-LH exciton mixing term:

HHH−LH
exch =

1

2


0 ∆2 0 0

∆1 0 0 0
0 0 0 ∆1

0 0 ∆0 0

 (6.5)

Apparently, the exchange interaction is not only responsible for mixing of the
HH bright exciton states, which is a main obstacle towards entangled photon pairs
generation from a biexciton cascade. It is also responsible for mixing of the HH and
the LH excitons. Coupling between the HH and LH excitons of JX = ±1 momentum:∣∣∣∣+3

2
,−1

2

〉
LH

↔
∣∣∣∣+1

2
,+

1

2

〉
LH

, (6.6)∣∣∣∣−3

2
,+

1

2

〉
LH

↔
∣∣∣∣−1

2
,−1

2

〉
LH

, (6.7)

is given by the ∆1 term:

∆1 = −
√

3

2
(ax + ay)− 7

√
3

8
(bx + by). (6.8)

Here ai and bi (i = x, y, z) are spin-spin coupling constants that determine also the
exchange energies δhj (j = 0, 1, 2) of the h = LH and h = HH exciton. The HH

94



6.2. Observation of the exchange interaction induced mixing

exciton states of JX = ±2 momentum couple to the LH exciton states of JX = 0:∣∣∣∣+3

2
,+

1

2

〉
LH

↔
∣∣∣∣+1

2
,−1

2

〉
LH

, (6.9)∣∣∣∣−3

2
,−1

2

〉
LH

↔
∣∣∣∣−1

2
,+

1

2

〉
LH

. (6.10)

The strength of this coupling is determined by ∆2:

∆2 = −
√

3

2
(ax − ay)− 7

√
3

8
(bx − by). (6.11)

It can be easily shown that the strength of ∆1 and ∆2 coupling relates to the
fine structure of the HH and LH exciton: ∆2 =

√
3/2(δLH2 − δHH1 ) and ∆1 =√

3/2(δLH1 − δHH2 ).

In most of the experiments, mixing induced by the exchange interaction can be
regarded as negligible, unless the bright states of the HH and LH exciton are almost
degenerate. In the following paragraphs we investigate such a case.

6.2.1 Quantum dot sample description

The GaAs quantum dots were grown with the same method as described in section
6.1.1. In fig. 6.6 the AFM image of the nanoholes is shown. In the growth process,
these nonoholes are filled with GaAs to form a quantum dot. Therefore the geometry
of the nanohole reflects the one of the quantum dot. First of all, the nanoholes are
elongated along the [-110] direction. Secondly, most the nanoholes have a relatively
deep insertion. Such deep hole leads to the formation of a quantum dot with strong
confinement in x−y plane, in contrast to the usual case where the strongest confinement
is along the growth direction z. As we discussed in section 2.3.2, such geometry can
lift the LH band above the HH band.

Figure 6.6 | AFM image of elongated and deep nanoholes in AlGaAs. These nanoholes
are filled with GaAs to form quantum dots.
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6.2.2 Experimental results
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Figure 6.7 | Polarization resolved ground state emission from a quantum dot at (a) B=0
T and (b) B=9 T. Polarization state of four emission lines at B=9 T represented on
Poincare spheres.

All of the quantum dots in this sample exhibit a very peculiar spectrum. A
representative ground state emission from a quantum dot at zero magnetic field is
shown in fig. 6.7(a). A polarization selective measurement helps us recognize four lines.
These lines are clearly linearly polarized, since the spectra in circular polarization basis
σ+ and σ− are equivalent. A pair of lines on the lower energy side of the spectrum is
polarized in between the vertical V and diagonal D, whereas the pair of lines of higher
energy is polarized in between the horizontal H and antidiagonal A polarization. Since
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6.2. Observation of the exchange interaction induced mixing

it is difficult to resolve the individual line polarization, it is not possible to say whether
the pairs of lines are perfectly orthogonal to each other. At B = 9 T, however, the
pairs are better separated (fig. 6.7(b)). Still, the separation within the pair does not
increase in the magnetic field. It is possible to calculate the Stokes parameters for
each line and represent the polarization state on the Poincare sphere, as shown in
fig. 6.7(c). Lines in the second pair (line III and IV ) are close to σ− state. Lines
in the first pair, on the other hand, are between the σ+ state and the equator (H
polarization). These features are reproducible for all quantum dots. The separation
between the lines in the pair vary slightly from dot to dot, sometimes it is hard to
resolve the individual line in a pair. Nonetheless, the separation between the lines in
each pair does not seem to be visibly affected by the magnetic field, only the splitting
between the pairs. This conclusion is supported by fig. 6.9(a), which shows the energy
of the four lines in fine steps for another quantum dot in magnetic field.

6.2.3 Discussion and conclusion

As we have learnt in section 6.1,that a dominantly LH exciton can exhibit four
exciton lines in the top-view micro-photoluminescence geometry, when coupled to
the HH exciton by a term S in Luttinger Kohn Hamiltonian. However, such case
should be excluded here, since the splitting between the lines is never as large as
expected for a LH exciton (≈ 400 µeV ). It is also not likely that these lines represent
other than a neutral X0 excitonic complex. All four lines follow the same power
dependence (not shown) and appear to be a ground state excitonic emission. In
order to interpret the unusual spectrum of the neutral exciton shown in fig. 6.7, we
focus on the off-diagonal terms in the exchange Hamiltonian which are responsible
for the HH and LH exciton coupling, ∆1 and ∆2 (see eq. 6.11 and 6.11). For
simplicity, we neglect for a moment other terms in the exchange Hamiltonian and
assume that the basis HH and LH exciton states are the eigenstates in a quantum
dot (
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). This situation can be approximated

in the magnetic field in Faraday geometry11. Fig. 6.8 shows schematically the HH
and LH exciton states split by the Zeeman term µB(gz,e ± gz,h)Bz in the external
magnetic field Bz. Bright states of the HH exciton are circularly polarized in Faraday
configuration, σ+ for a |+1〉HH =

∣∣+ 3
2 ,−

1
2

〉
state and σ− for the |−1〉HH =

∣∣+ 3
2 ,−

1
2

〉
state. Similarly, the in-plane polarized states of a LH exciton are circular: σ+ for
the |+1〉LH =

∣∣+ 1
2 ,+

1
2

〉
and σ− for the |−1〉LH =

∣∣− 1
2 ,−

1
2

〉
. Now, if these states

are sufficiently close, almost degenerate, then we can consider coupling among them
induced by ∆1. The result of such coupling, as shown in fig. 6.8, gives a pair of σ+

polarized states, and a pair of σ− polarized states.

The splitting between the lines within a pair is mostly linked to ∆1 and the initial
HH-LH exciton splitting Q, as well as to the splitting between the HH states δHH1

and LH states δLH2 . However, it should not be affected by the magnetic field (it is
not true only for small values of the magnetic field, when we cannot yet approximate
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Figure 6.8 | A schematic explanation of the exciton states and their polarization resulting
from the HH-LH mixing caused by the coupling term ∆1. For clarity, we consider a
situation in the external magnetic field along the z direction (Faraday geometry), which
allows us to neglect other exchange terms in the exchange Hamiltonian.

the exciton states with |±1〉HH/LH). The lines within a pair, being composed of the
same combination of electron and hole spins, have the same g-factors. Only the two
pairs split apart in the magnetic field. This reasoning already gives quite satisfying
qualitative understanding. Nonetheless, it is still needed to find a Hamiltonian which
could quantitatively reproduce our experimental data. To start with, we will narrow
down the 8 dimensional space of the HH and LH exciton to the excitons measurable
in our micro-photoluminescence geometry. Therefore we can neglect two z polarized
states of the LH exciton and two dark states of the HH exciton. We are left with the
following basis:

|+1〉HH =

∣∣∣∣+3

2
,−1

2

〉
, |−1〉HH =

∣∣∣∣−3

2
,+

1

2

〉
,

|+1〉LH =

∣∣∣∣+1

2
,+

1

2

〉
, |−1〉LH =

∣∣∣∣−1

2
,−1

2

〉
. (6.12)

It is allowed to make this simplification, since there is no matrix element in the 8x8
exchange Hamiltonian that couples the subspace in eq. 6.12 with the remaining four
exciton states. Note that ∆2 couples only the z polarized LH states with HH dark
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Figure 6.9 | (a) Experimental data points representing the Zeeman energy of four exciton
transitions fit with a model based of the exchange interaction induced spin mixing. (b)
Within the model, predicted polarization of the line I, II, III and IV . Equal oscillator
strength for the HH and LH exciton is assumed. (c) Expected polarization of lines and
intensity when HH to LH oscillator strength ratio has a typical value 3.

states. Now, the Hamiltonian for the basis states in eq. 6.12 can be written:

HHH−LH =
1

2


δHH0 +Q δHH1 ∆1 0
δHH1 δHH0 +Q 0 ∆1

∆1 0 −δLH0 −Q δLH2

0 ∆1 δLH2 −δLH0 −Q

 (6.13)
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It is basically an exchange Hamiltonian with an additional diagonal term Q from
the Luttinger Kohn Hamiltonian which sets the HH-LH splitting. As apparent from
fig. 6.9(a), such Hamiltonian reproduces the experimental data for a set of parameters:

δHH0 +Q = 72.5µeV (6.14)
−δLH0 −Q = −87.5µeV (6.15)

∆1 = 55.9µeV (6.16)
δHH1 = 73µeV (6.17)
δLH2 = 98µeV (6.18)

Are these numbers reasonable? The fine structure splitting of the HH bright exciton
and δHH1 as well as the LH exciton δLH2 is very large. It implies ax 6= ay and bx 6= by,
which is a signature of a strongly elongated quantum dot. From the coupling term
∆1 we deduce δLH1 − δHH2 = 64.5 µeV . In symmetric dots δLH1 can be as high as 500
µeV , whereas δHH2 is usually close to zero (see chapter 5). However, we have observed
in section 6.1, that for the asymmetric quantum dot δLH1 is below 400 µeV , while
δHH2 is expected to increase with shape asymmetry. Therefore the values might be
reasonable, however, more experimental data is needed to draw a strong conclusion.
It is not possible to extract an independent value of the HH-LH splitting Q in the
quantum dot. If δLH0 and δHH0 have similar values and are smaller than 80 µeV , then
Q is positive and the HH band is above the LH band. However, it is more common in
experiments to observe δLH0 and δHH0 higher than 80 µeV . In this case the LH band
has to be on top of the valence band. Again, it is hard to say something concrete for
this particular dot shape. Nonetheless for tall dots we would rather expect the LH
band to be a ground state.

We have also checked, if the HHH−LH Hamiltonian gives expected polarization of
exciton states. In fig. 6.9(b) we plot the resulting polarization of four lines projected
on σ+ and σ− polarization. The agreement with our experiment is very good: lines I
and II are indeed mainly σ+ polarized and lines III and IV are σ− polarized. In
this plot, we assumed that the LH exciton oscillator strength is the same as the HH
one. Based on chapter 2, we know that circularly polarized LH exciton transitions are
expected to be 3 times weaker than the HH exciton transitions. We took this ratio
into account in fig. 6.9(c). It does not change the polarization of lines, however, it
affects the relative intensity of the lines. Spectra of the quantum dot in fig. 6.7, show
just a tiny intensity imbalance between the lines. One might be concerned that this
inconsistency is enough to question our model. We could also argue that the ratio
between the HH and LH exciton oscillator strength does not have to be exactly 3. We
get this ratio by making an assumption that the dipole moments for the px, py and pz
orbitals are the same. In my opinion this might be a misleading simplification, since
the quantum dot confinement is not the same in x, y and z direction.
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In conclusion, we have discussed the possibility of HH-LH exciton mixing due
to exchange interaction. We have presented experimental data for an asymmetric
quantum dot which can be very well explained by exchange induced mixing. However,
I would be reluctant to claim that this is the only possible explanation for the observed
effects. In a quantum dot of a very irregular shape there might be plenty of spin mixing
mechanisms taking place. Nonetheless, since growing quantum dots in a strain-free
method of droplet epitaxy becomes more and more popular, it is crucial to understand
what happens if the HH and the LH exciton states are almost degenerate.

6.3 Conclusion

In summary, shape and/or strain anisotropy results in the HH and LH spin states
mixing, which is reflected in polarization of neutral exciton photons. Identifying the
type of distortion from the pure HH and LH exction polarization gives us insight
into the dominant spin mixing mechanism. We have described a mixing terms S in
the Luttinger-Kohn Hamiltonian and shown how it is manifested in the polarization
resolved exciton spectrum. In addition, we have considered yet another sensitive
measure of the dot asymmetry, which is the exchange interaction. Exchange interaction
can lead to another unique spectral fingerprint of the exciton mixing. This work
emphasizes the importance of a controllable and reproducible growth technique of
highly symmetric quantum dots. On the other hand it develops understanding of the
effects that can result from strain tuning of quantum dots8,12,13.
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Chapter 7

Non-locality of a single photon

B.J. Witek, R.W. Heeres

In this chapter we use photons to experimentally test non-locality, one of the
fundamental properties of quantum mechanics. Non-locality has been already shown
for pairs of entangled particles, however here we aim at proving non-locality of a single
particle, a concept introduced in chapter 2.4.3. An InGaAs quantum dot is chosen as
a source of single photons. The non-locality of single photon is tested in a homodyne
detection measurement with a reference local oscillator field (the laser). We show
Einstein-Podolsky-Rosen (EPR) type of correlations for a single photon field in two
spatial modes. After correction for the detectors response time we obtain 74 ± 4%
visibility. This value is limited by the multiphoton emission events from the quantum
dot and discarding them improves the visibility to 98± 4%.
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7. Non-locality of a single photon

7.1 Experimental details

Successful verification of single photon non-locality relies on high visibility of single
photon and local oscillator interference. First of all, in order to ensure high spatial
overlap of two modes we carry on a homodyne detection in a fiber network. Further,
our goal is to achieve the highest possible indistinguishability of the two dissimilar
photon sources. In the following paragraphs we describe our experimental set-up,
characterize the photon sources and show the procedure of tuning the local oscillator
energy to match the single photons.

7.1.1 Fiber network

The polarization maintaining fiber network and its components were designed for 915
nm wavelength (roughly the wavelength of the quantum dot emission). A schematic
of the fiber network is shown in fig. 7.1. There are two independent inputs, one for
single photons and one for the local oscillator field. A tunable Ti:Saphire (Matisse)
laser (labeled as "Laser 1") serves as a local oscillator (continuous wave). A linear
polarizer in front of the fiber coupler ensures that only one polarization (vertical) is
coupled into the fiber. The local oscillator is split into two arms with a 50:50 beam
splitter. In each arm the fiber is wrapped around a piezoactuator, which is used for
the local oscillator phase control and for changing the measurement basis in a Bell
test. Each fiber arm with phase control is 8 meters long before the signal is split
by another beam splitter, this time of 30:70 ratio. Its task is to direct 30% of the
local oscillator signal to the homodyne detectors and 70% of the signal is picked for
the interferometric local oscillator phase measurement. The phase can be readout
by looking at relative currents of two silicon photodetectors D1 and D2 (Thorlabs
Si Amplified detectors). In section 7.1.4 we describe how we implement the phase
control using the feedback based on the signal of D1 and D2.

"Laser 2" is a tunable Ti:Sapphire (Mira) laser used for the non-resonant, pulsed
(≈5 picosecond) excitation of a quantum dot. First, its beam is coupled to a home-
made fiber network, which doubles the repetition rate from 76 MHz to 152 MHz. The
working principle is very simple; we split the laser into two arms with a relative delay
corresponding to half of a repetition period ( 6.3 ns) and merge them again.

The quantum dot is in a home-made helium bath cryostat. Before the quantum dot
emission is coupled to a polarization maintaining fiber network, it passes through a
linear polarizer (vertical orientation). The first 50:50 beam splitter splits the single
photon field to create a nonlocal single photon field entanglement. Next, after 0.8
meters of the fiber, the single photon field is mixed with the local oscillator at the
beam splitters. The beam splitters belonging to the two homodyne detectors are
marked with exclamation marks in fig. 7.1. There is only one APD in each homodyne
detector. Since the spectrum of the quantum dot consists of several lines (see section
7.1.2 we first use a spectrometer to spectrally select only one transition of interest.
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Figure 7.1 | Schematic of the fiber network used for testing quantum mechanical single
photon non-locality. The polarization maintaining fiber and the fiber components (like
beam splitters) were designed for 915 nm wavelength. The local oscillator (’Laser 1’)
and single quantum dot photons (excited by "Laser 2") are coupled to different inputs
of the fiber network. Each input splits in two arms. Red exclamation marks mark the
beamsplitters, where the single photon field mixes with the local oscillator. The result
of the homodyne detection is received by the APD1 and APD2 mounted behind the
spectrometers. Silicon detectors D1 and D2 are used for read out of the relative phase
of a local oscillator, whereas the phase can be set and controlled by piezoA and piezoB.
One of the fiber network outputs is directed to the Michelson interferometer, where the
energy difference between the local oscillator photons and the quantum dot photons can
be detected.

One of the free outputs of the homodyne detector (which is not equipped with
the spectrometer and the APD) is sent to a Michelson interferometer. The signal
carried in this fiber consists both of the quantum dot single photons and the local
oscillator photons. In the following paragraphs (section 7.1.3) we explain how the
Michelson interferometer is used to overlap the energy of the local oscillator and the
single photons.
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7.1.2 Single photon source

We have considered three main criteria when selecting a quantum dot single photon
source: (i) brightness (ii) coherence (iii) wavelength (matching the tuning range of
the Matisse laser).

Figure 7.2 | (a) Spectrum of the InGaAs quantum dot, a bright transition around 913.7
nm is used as a single photon source. (b) Second order correlation function measurement
verifying the purity of a single photon source. The quantum dot is excited with a doubled
rate of Mira (every 6.3 ns). The measurement was performed in the fiber network having
the ’Laser 1’ blocked. Two APDs on spectrometers recorded start-stop counts for the
correlations.

Two quantum dot systems were investigated: self-assembled quantum dots and
nanowire quantum dots. In both cases several quantum dots were measured to select
an optimal candidate. The nanowire system, consisting of InAsP quantum dots in
defect-free wurtzite nanowires is introduced in ref.1. The other sample consists of
self-assembled InGaAs quantum dots in GaAs grown inside an optical cavity defined
by two Bragg mirrors. The cavity has a large volume, therefore it does not change the
lifetime of optical transitions. However, it is of great use in the experiment as light
emitted in resonance with the cavity is directed mostly orthogonally to the sample
surface, towards the collection optics. After a series of measurements we decided to
select the InGaAs self-assembled quantum dot as the source of single photons. The
dot emits photons around 914 nm, which lies still within the Matisse tuning range,
in contrast to most of the dots in the nanowire sample (wavelength 930 nm). We
have picked the brightest line in the spectra presented in fg. 7.2(a). It is possible to
obtain as many as 44 000 counts on an APD after passing through the polarization
maintaining single mode fiber network (which divides the signal in four outputs) and
the spectrometer. Second order correlation function measurement presented in fig.
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7.2(b), verifies the purity of a single photon emission (g2(0) = 0.07). The probability
of detecting two or more photons from a quantum dot P (n ≥ 2) = 1

2 n̂g
(2)(0) is 14

times smaller than for a Poissonian source, for which P (n ≥ 2) = 1
2 n̂.

Figure 7.3 | Coherence properties of the single photon source. (a) Lifetime measurement
in time-resolved photoluminescence; the APD response measured with the picosecond laser
pulse is used to deconvolute the quantum dot signal and get T1 = 544ps. (b) Coherence
measurement in the Michelson interferometer (T2 = 357ps).

In fig. 7.3 we show the radiative lifetime T1 and the phase coherence of the single
photons T2. We determined the lifetime T1 = 544 ps in time resolve photoluminescence
using an avalanche photodiode (fig. 7.3(a)). In order to obtain T1 we fit an exponential
decay convolved with the system response to a picosecond laser pulse. Coherence
length of 10.71 cm measured in the Michelson interferometer translates to coherence
time of T2 = 357 ps. Although our quantum dot is still far from the Fourier limit
(T2/2T1 = 0.32), it is less affected by the inhomogeneous broadening than a nanowire
quantum dot with T2 = 340 ps and T1 = 1.63 ns (T2/2T1 = 0.10).

7.1.3 Local oscillator and single photon indistinguishability

In principle, photons coming from different origins can interfere with perfect visibility,
provided they are made indistinguishable in all degrees of freedom. In our experiment
we can ensure that the quantum dot photons and the local oscillator photons have
the same polarization and identical energy. However, photons from these two sources
differ by orders of magnitude in coherence and bandwidth. Successful interference of
quantum dot photons and laser photons has been demonstrated by A. J. Bennett et.
al2, which encouraged us to proceed with our implementation of the non-locality test.

When coupling light to a polarization maintaining fiber, a polarimeter (Thorlabs
Pax series) was used to measure the extinction ratio. Extinction of 30-40 dB could be
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Figure 7.4 | Single photons and laser photons (local oscillator) in the Michelson inter-
ferometer. (a) Beating in the interference signal resulting from the energy mismatch
∆E = 5.68 µeV between the two photon sources. (b) Laser photons tuned to the energy
of quantum dot photons; no beating observed, a combined beam of photons exhibits
enhanced coherence (18.57 cm) compared to single quantum dot photons (10.71 cm).

maximally achieved.

The next step is to ensure that the two photon sources have the same energy. We
use a scheme based on interference in a Michelson interferometer. We attenuate the
local oscillator so that it gives a comparable count rate to the quantum dot emission
and send both through the Michelson interferometer. If there are two different
energy components present, then we observe ‘beating’ in the interference visibility,
as presented in fig. 7.4 (a). The period of the beats is inversely proportional to the
energy difference between the states. The fit gives us an estimation of the energy
difference ∆E = 5.68 µeV . The local oscillator wavelength is measured with a high
resolution wavelength meter (HighFinesse, resolution 100 MHz = 0.4 µeV) so we can
monitor how the energy shifts when we tune the laser. After shifting the laser energy
by ∆E = 5.80 µeV we observe a perfect spectral overlap with single photons in fig.
7.4(b). The coherence of the quantum dot photons combined with the laser photons
is over 18 cm.

7.1.4 Local oscillator relative phase control

By changing the relative phase between the two arms of the local oscillator we can
observe a formation of the interference pattern with detectors D1 and D2, as shown
in fig. 7.5. The change in relative phase is achieved by stretching one of the fiber arms
with the piezoactuator. A voltage in a range of 0-0.6V can typically induce a phase
change up to 2π. We run such voltage scan as a calibration procedure before taking
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Figure 7.5 | Calibration procedure of the phase stabilization feedback loop. The output
voltage of the silicon detectors D1 and D2 is monitored while the piezoA voltage is being
ramped up from 0 to 0.6V and piezoB kept at a constant voltage. Interference pattern
recorded by D1 and D2 detectors is fitted by a sinusoidal function. The blue line is the sum
of the D1 and D2 detector outputs, which is a test of local oscillator intensity stability.

each data point in the final measurement. For every angle θ from 0 to 2π, there is a
unique correspondence to a given intensity ratio D1/D2 and its slope ∂D1/D2

∂θ .

Next, we run a procedure to set a desired relative phase θ and keep it constant
against any drift in the fiber network. An example is shown in fig. 7.6. A set point
θ = 75◦ corresponds to highly unbalanced output of the D1 and D2 detectors as shown
in fig. 7.6 (a), whereas for θ = 0◦ the detectors outputs should be more balanced,
as in fig. 7.6 (b). The desired ratio in each case is set very quickly at the beginning
and then kept constant throughout the 15 min measurement time. In fig. 7.6 (c) and
(d) we see the action of the feedback control loop, that compensates for any drift
with the piezo voltage. As a result, the relative phase oscillates around the set point
with certain accuracy. Close to the maxima of the sinusoidal function, where the
first derivative changes sign, the feedback becomes more problematic. Therefore, the
relative phase θ = 75 deg is set with lower accuracy (fig. 7.6 (c)) than θ = 10 deg (fig.
7.6 (d)).

7.2 Data acquisition and analysis

The local oscillator operates in a continues wave mode, whereas the quantum dot is
excited with laser pulses every 6.3 ns. We use Time-Tagged Time-Resolved (TTTR)
mode of a HydraHarp picosecond event timer to record individual count events and
their arrival time for the APD1 (channel CH1) and the APD2 (channel CH2). Time-
tagging is synchronized with a dedicated SYNC channel input, being the same pulsed
laser as we use for the dot excitation. The knowledge of arrival time of the photons
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Figure 7.6 | Example demonstration of the phase stabilization procedure for (a,c) θ = 75◦

and (b,d) θ = 10◦. executed for more than 15 min. (a) and (b) show directly the output
voltage of detectors D1 and D2 which is used as a feedback in the stabilization loop. In
(c) and (d) the piezo voltage compensates for the local oscillator phase drift so that the
phase is kept constant. The procedure is more accurate for θ close to 0◦ (d), than for
interference maxima close to θ = ±90◦ (c).

enables us to correlate the detection events between the two channels. Each data
point is integrated for 15 min and we ensure that the local oscillator relative phase θ
and its amplitude α do not change. We record arrival events with 32 ps resolution.

7.2.1 Single channel histograms

Time tagging allows us to construct histograms of events in each of the channels, where
a ’START’ signal is given by the SYNC laser and a "STOP" signal by a detection
event. Fig.7.7 shows a typical single channel histogram calculated from a dataset
obtained in the TTTR mode. The outputs of CH1 and CH2 with respect to the
SYNC signal in the absence of the local oscillator (fig. 7.7 (a) and (b)) are equivalent
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to the lifetime measurement in a histogram mode (fig. 7.3 (a)). The presence of
the local oscillator in fig. 7.7 adds a constant contribution of the CW laser to the
histogram, however, the quantum dot photons arriving every 6.3 ns can still be clearly
distinguished. The local oscillator flat contribution is extracted from the fit (black
lines).

We use the single channel histograms to determine the local oscillator intensity with
respect to single photons intensity. Fig. 7.8 explains the procedure we implement

Figure 7.7 | Single channel histograms built from a data file acquired in a Time-Tagged
Time-Resolved mode. (a, b) Only a quantum dot (QD) signal measured and (c, d)
combined signal with a local oscillator (LO). From the fit (dotted lines) we extract a
constant contribution of the local oscillator and calculate the local oscillator intensity
(ILO) and the quantum dot intensity (IQD). In the absence of the local oscillator (Ibg)
stands for a constant background.

to extract the local oscillator amplitude α from a single channel histogram. In our

113



7. Non-locality of a single photon

experiment, single photons originate from an exciton transition of radiative lifetime
T1, hence the arrival time of a single photon at the detector is characterized by a
single exponential decay (black curve) with time constant T1. However, due to the
finite time resolution of our detectors, the detection time is smeared out by the APD
jitter. In fig. 7.8 (a) a typical histogram trace obtained with our APDs is shown. It
consists of the local oscillator flat contribution (grey shaded area) and the quantum
dot single photon events (purple curve). The APD jitter only gives uncertainty to
the photon detection time, however, the overall count rate is still a good measure of
the single photon source intensity. Therefore we take the area below the APD single
photon curve (purple line) and define it as the quantum dot intensity IQD. For the

Figure 7.8 | Single channel histogram of detection events recorder with (a) finite time
resolution and (b) infinite time resolution.

quantum interference experiment the field amplitude ratio between the local oscillator
and the quantum dot is important. We extract the local oscillator intensity ILO in a
straight-forward way. We are interested in the local oscillator intensity ILO that is
seen by a single photon, hence we look in a time window T1. The effective quantum
dot intensity is more complicated as the quantum dot emission intensity changes in
time. We know that there is 63% probability (1− e−1) that a single photon is emitted
within T1 time. Hence we define the effective quantum dot intensity in time T1 to be
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IQD(1 − e−1) as shown in fig. 7.8 (b). Intensities IQD and ILO in a single channel
histogram relate to the fields amplitude in the following way:

IQD =
1

4
, (7.1)

ILO =
1

2
α2. (7.2)

This relation is clear from a schematic in fig. 3.1 in chapter ??. It follows that the
local oscillator amplitude α is:

α =

√
ILO

2(1− e−1)IQD
(7.3)

7.2.2 Two channel coincidence histogram

To obtain a two channel coincidence histogram we correlate the detection events from
CH0 and CH1. First, we look at the case when only quantum dot photons are present
in the fiber network. Figure 7.9(a) presents the antibunching measurement histogram
constructed from a dataset acquired in a TTTR mode. The number of coincidence
events in the zero-delay peak is clearly suppressed in comparison to the non-zero delay
peaks, therefore, as expected, the quantum dot photons are antibunched. However,
the antibunching peak has a peculiar volcano shape. In order to understand it better
we subtract the contribution from the other peaks. The red curve represents the fit of
a function:

y = y0 +
∑
n

(Ae−
|t−nT |
t1 ∗ e−

(t−nT )2

2w2 ) (7.4)

where n is the number of peaks (> 15), A reflects their amplitude, t1 represents the
exponential decay constant of the quantum dot photons and w is the system response
function width, T = 6.3 ns is the quantum dot excitation period. Important timescales
obtained from the fit are w = 401 ps and t1 = 974 ps (t1 is indeed in the order of
the quantum dot photons lifetime T1). We assume that observed correlations come
only from the quantum dot photons and there are no ‘dark’ correlations, therefore
we keep y0 = 0 for this fit. This assumption is justified since the dark count rate is
less than 1% (0.8% for CH0 and 0.2% for CH1) of the quantum dot signal. The green
curve in figure 7.9(a) represents the data after the subtraction of the contribution
from the peaks outside the zero delay (red curve). Therefore it shows only zero delay
peak coincidences and we zoom into them in fig. 7.9(b). We can fit the volcano shape
with the following function:

y = (A0e
− |t|t1 −Adipe

− |t|
t1,dip ) ∗ e−

t2

2w2 (7.5)

The only fit parameters here are A0, Adip and t1,dip, the system response w and
exponential decay constant t1 are fixed to be the same as for other (non-zero delay)
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Figure 7.9 | (a) Two channel coincidences showing quantum dot antibunching measure-
ment in a TTTR more. Red line represents a fit to the non-zero delay peaks, green line
shows the data after a subtraction of the non-zero delay coincidences contribution. (b)
Zoom into the zero delay peak (green data points) and the fit (red line).

peaks. The shape of the zero-delay suggests that there is some re-feeding of the
quantum dot on the timescale of t1,dip = 430 ps, however, we are not yet able to
explain it.

The two channel coincidence histogram for the case when the local oscillator of
amplitude α = 0.18± 0.01 is present in the experiment is shown in fig. 7.10. We fit
to this data the same function as in eq. 7.6, however, we fix w, t1 and A to be the
same as in the antibunching measurement in fig. 7.9(a). The only fit parameter is y0,
which in this case accounts for the coincidence events from the LO-LO and LO-QD.
Once again, we subtract the contribution from the peaks outside the zero delay (red
curve) to focus our attention on the zero delay peak (green curve). We see that the
appearance of the zero delay peak depends on the phase of the local oscillator! For the
phase of θ = 0◦ we observe a clear dip (fig. 7.10(a)) whereas for the phase of θ = 220◦

a peak appears. This is a signature of phase dependent quantum interference between
the dot photons and the local oscillator photons. In fig. 7.10 (c) and (d) we zoom only
on the interference peak/dip (green curve) which is plot on top of the shape of the
antibunching peak (black curve) from fig. 7.9(b). The effect of the quantum dot and
local oscillator photons interference is manifested by the green curve only in the part
that deviates from the standard antibunching data (black curve). Gray points show
the data corrected for imperfect antibunching and the fit of the interference peak/dip:

y = Aintere
− |t|
tinter ∗ e−

t2

2w2 (7.6)
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Figure 7.10 | (a) Two channel coincidences for quantum dot and local oscillator photons.
The local oscillator amplitude α = 0.18± 0.01 is fixed, whereas the relative phase between
the arms is θ = 10◦ (a,c) and θ = 220◦ (b,d). In (a) and (b) raw data is shown (blue
datapoints), (c) and (d) show only coincidences in the zero delay peak (green datapoints).
Black line represents the shape of the imperfect quantum dot antibunching peak, which is
subtracted to obtain gray datapoints. Orange line is the fit of the interference effect that
accounts for the finite system response time, whereas the purple line is a deconvolution.

Interestingly, we find that tinter = 360ps fits best all the interference peaks and dips
for 9 datasets with different local oscillator phases. This value is the same (within the
errorbar) as the quantum dot coherence time T2 = 357 ps and as argued in ref.3, a
pair of photons is coincident to within photons coherence length. Once again, in the
fit we have accounted for the finite system response time of the width w = 401 ps.
Knowing the response time allows us to reconstruct the interference effect as it would
look with perfect time resolution of our APDs and we show it with a purple line. For
the phase of θ = 10◦ the interference dip goes almost to zero, which is a sign of high
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Figure 7.11 | (a) Two channel coincidences for quantum dot and local oscillator photons.
The local oscillator amplitude α = 0.33± 0.02 is fixed, whereas the relative phase between
the arms is θ = 10◦ (a,c) and θ = 190◦ (b,d). In (a) and (b) raw data is shown (blue
datapoints), (c) and (d) show only coincidences in the zero delay peak (green datapoints).
Black line represents the shape of the imperfect quantum dot antibunching peak, which is
subtracted to obtain gray datapoints. Orange line is the fit of the interference effect that
accounts for the finite system response time, whereas the purple line is a deconvolution.

We have performed the same measurement also for the local oscillator amplitude
α = 0.33±0.02. The effect of the quantum dot and local oscillator photons interference
is more pronounced thanks to a higher relative local oscillator intensity as shown in
fig. 7.11 (a) and (b). However, the overall interference visibility is much lower because
of the constant contribution of the LO-LO correlation events. As apparent from fig.
7.11(c) the interference dip does not reach zero even if we correct for the time response
of the system.
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We summarize our results for different phases and two local oscillator amplitudes
(α = 0.18 and 0.33) in figure 7.12(a) and (b). The EPR-type correlation for the
interference is revealed as a function of the local oscillator phase θ.
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Figure 7.12 | EPR-type correlation for (a) α = 0.18± 0.01 and (b) α = 0.33± 0.02 as
a function of relative local oscillator phase θ. Blue points represent the case when the
dataset is corrected for imperfect antibunching, whereas green points do not correct for it.
All values are corrected for the finite system response time. (c) Visibility as a function of
local oscillator amplitude α. All measurement results lie outside the classical regime. It is
possible to violate Bell’s inequalities with α = 0.18± 0.01.

The data for α = 0.18± 0.01 in fig. 7.12(a) corrected both for the system response
and the imperfect antibunching show very high interference visibility of V = 98± 4%
(blue curve). If we do not correct for antibunching (green curve), the visibility drops to
V = 74± 4%, which is still above the threshold of 71% allowing for Bell’s inequalities
violation. The interference visibility for higher α (0.33± 0.4) in fig. 7.12(a) is around
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7. Non-locality of a single photon

60%. We note that a large uncertainty on the visibility value is a result of very poor
statistics in this measurement (only 5 different phases θ). However, the fit is still
trustworthy, since the minimum and the maximum of the interference occur at the
same phases θ as in fig. 7.12(a). In fig. 7.12(c) all interference results are summarized
and compared to the quantum and classical regimes. It is worth to note that not only
the absolute numbers of the visibility bring us to the quantum regime, but also the
trend. Visibility in our experiment increases with decreasing local oscillator amplitude
α, and it should not be the case if the effect was classical.

7.3 Conclusion

In conclusion, we have demonstrated that it is possible to violate Bell’s inequalities with
a single photon from a quantum dot (for the local oscillator phase of α = 0.18± 0.01).
There are two aspects that can be further improved in our experiment. First of all,
detectors with better time resolution (below the quantum dot photons coherence time
T2) would result in more pronounced interference data without correcting for the finite
time-response. A much more severe issue of the imperfect quantum dot antibunching
should be understood and solved. This effect requires further investigations to draw
some hypothesis. The volcano shape of the antibunching peak was observed for every
antibunching measurement in the TTTR mode.

It will be also very useful to measure quantum dot photons lifetime T1 with better
resolution detectors, since T1 is an important parameter in our fits and is also used in
the definition of α.
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Chapter 8

Outlook

8.1 Spins: heavy or light?

After the efforts of growers, theoreticians and experimentalists were combined in order
to realize the highest purity (>95%) light hole ground state in semiconductor quantum
dots, a natural question arises: in which applications is the light hole advantageous?
In a broader picture, which one of the three spin species in quantum dots - electrons,
heavy holes and light holes - is the most attractive? The answer is not straightforward
and a couple of criteria should be considered which I discuss below.

All-optical manipulation. For all-optical manipulation schemes the heavy hole
is the only good choice thanks to its clear optical selection rules. For an optical
transition involving a heavy hole, there is one to one correspondence between its spin
state and the photon polarization, hence the spin state initialization and the spin
state readout can be done optically. On the contrary, a given light hole spin can result
in two different photon polarizations, depending on which electron spin it couples to.
Both the electron and the heavy hole spin can be subject to optical manipulation. In
the first case a negatively charged exciton optical transition is used1,2 whereas in the
latter case a positively charge exciton transition is addressed3.

All-electrical manipulation. If we consider on-chip spin manipulation, the
electron spin can be addressed either directly with oscillating magnetic field4 or
indirectly with oscillating electric field via the spin-orbit interaction5. Heavy holes in
semiconductor quantum dots present a serious limitation in the first approach, since
they do not couple to the ac magnetic field Bxeiωt (term Bxe

iωtJx is zero for heavy
holes)6. Using light holes is the solution to this problem, which became feasible only
now when we have learnt to engineer a light hole ground state7.
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Thanks to a strong spin orbit interaction there are ongoing efforts to use holes as a
spin-orbit qubit8. Nonetheless, to the best of my knowledge, this approach is limited
only to gate-controlled quantum dots.

Best candidate for a robust, coherent qubit. A great advantage of p-type
heavy holes is that they interact 10 times weaker with the nuclear bath than s-type
electrons9,10 and therefore should preserve their coherence for longer. However, spin
echo technique reveals no drastic difference between the electron11 and the heavy hole3
T2 time (in both cases 1-3 µs). It has been demonstrated that on the one hand the
hole spin is less sensitive to dephasing due to nuclei, but on the other hand it is more
sensitive to dephasing due to electric field3. However, heavy holes’ high sensitivity to
spectral diffusion is mostly a problem in charge tunable and highly dopped structures.
The growth of high purity, defect free nanowires and cooling down to 300 mK should
substantially reduce this obstacle12.

In a previous section I argued that a light hole spin enables electrical on-chip
manipulation with the oscillating magnetic field, whereas the heavy hole does not.
This is an example of a usual trade-off that we have to accept for qubits: an interaction
that allows us to control the the spin state makes it at the same time susceptible to
decoherence due to the environment. Heavy holes cannot be manipulated with the ac
magnetic field Bxeiωt, however, the advantage is that they are decoupled from the x
and y component of the Overhauser field. The admixture of a light hole state to the
heavy hole reduces its coherence time.

Due to spin-orbit interaction holes show 5-10 times shorter spin storage time13
than electrons14 (T1 = 20 ms). However, the strength of the spin-orbit interaction
for holes can be engineered by the quantum dot confinement shape. It is predicted
that for srongly 2D quantum dots the spin-orbit is reduced and we might achieve even
longer T1 time than for the electrons15. Additionally, in such flat quantum dots the
heavy-light hole mixing is reduced, which leads to longer T2 coherence time.

Spin-photon interfaces. Optical selections rules for light holes are an obvious
obstacle if we want to initialize/readout the spin state, but at the same time they come
as a great resource if we want to coherently map a photon polarization superposition
onto the spin superposition16 (the details of this concept can be found in section 2.2.2).
Despite the favorable polarization selection rules, as already argued, the feasibility of
this implementation is seriously reduced by the enormous exchange interaction of the
light hole exciton reported in this thesis.

One to one coherent photon to spin mapping (and vice versa) is a very appealing
tool for quantum networks. Recently, however, spin photon entanglement which can
serve a similar purpose has been demonstrated with quantum dots17,18. Once the
spin and the photon are entangled, we can use this state for teleportation of another
photon onto the spin state19 and effectively realize the photon to spin transfer. These
experiments rely on selection rules for heavy holes which are usually given as a natural
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ground state in quantum dots. Another alternative for one to one coherent photon
to spin transfers based on a heavy hole exciton is to use a photon in a time-bin
superposition instead of a polarization superposition, as shown by Kosaka et al.20.
The same idea can be realized when the electron and heavy hole spins are disentangled
by the careful choice of the magnetic field orientation and magnitude, as proposed in
this thesis (chapter 4).

8.2 Current status and future directions

I see even greater potential for quantum dots in their photons than in their spins.
In my opinion, quantum dots develop into the best on-demand, bright and coherent
single photon sources for quantum optics. Here I mention some of the quantum dots’
advantages which support my claim:

• fast = bright. The radiative lifetime of a quantum dot usually does not exceed
1 ns, whereas for NV centers in diamond the lifetime is typically 12 ns21,22 and
similarly for atoms it is tens of ns.23 Short lifetime enables the generation of
single photons at high repetition rate.

• coherent photons. In recent years quantum dot photons are approaching the
Fourier limit of their coherence thanks to resonant excitation techniques24,25
and the use of microcavities that accelerate the spontaneous emission rate26.
Photon coherence is a basic requirement if we want to look into quantum effects
(e.g. see chapter 7).

• wide range and tunability of emission energy. III-V semiconductor
quantum dot material system can be chosen to emit photons in energies ranging
from infrared in optical communication band (InAs/GaAs quantum dots) to
ultraviolet (GaN/AlGaN quantum dots used in white LEDs). Additionally, we
are provided with a set of tuning knobs (strain, the magnetic and electric field)
for each individual quantum dot if we want to bring it in resonance with another
system e.g. a natural atom27,28.

• electrical and optical excitation. Next to optical excitation, carriers can be
injected into the quantum dot with electric field29. Such electrically driven single
photon emission makes realization of practical and compact single photon sources
possible. Moreover, an entangled light emitting diode has been demonstrated30.

• polarization entangled photons from every dot! It became possible to
reduce to zero the fine structure splitting in almost any dot by simultaneous ap-
plication of large strain and electric fields31. In this way high fidelity polarization
entanglement generation from quantum dots is turning into a routine32.
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Next, we consider the areas that should boost further the development and suitability
of quantum dots for quantum optics:

• Growth. Since the coherence of electron and hole spins in quantum dots directly
affects the coherence of emitted photons, it is recommended to grow quantum
dots with high purity heavy hole ground state. Therefore the efforts should
be focused on growing flat dots with compressive strain. Quantum dots grown
in droplet epitaxy proved to show high shape symmetry33 which is crucial for
spin state purity. It will be interesting to develop a recipe for embedding these
quantum dots in compressive strained nanomembranes. Nowadays tensile strain
nanomembranes are achieved by adding a thin layer of InAlGaAs, where indium
has a higher lattice constant than other materials in the membrane and therefore
’stretches’ the structure. In order to achieve compressive strain we should try a
material with smaller lattice constant, like AlGaAsP. Additionally, the growth
of quantum dots in nanomembranes allows for integration with piezoactuators
for dynamic strain tuning.

• Strain engineering. Strain is a superb knob for tuning the properties of
quantum dots for optics. Biaxial and hydrostatic strain does not affect the
symmetry of the dot, therefore does not mix the spin states. On the other
hand, axial stain can be used to restore the symmetry of the quantum dot31. In
contrast to electric field, strain does not quench the optical oscillator strength.
Strain can be used to both red shift and blue shift the emission by as much as
200 meV34. In the future efforts should be focused on efficient integration of
quantum dots in nanomembranes on piezoactuators.

8.3 Quantum optics: any entanglement is just mode
entanglement!

The single photon mode entanglement presented in this thesis seems to be the least
complicated and least troublesome entangled state to generate (all that we need is
a single photon source and a 50:50 beam splitter). We can map this simple form
of the entangled state on a more complex physical system, like e.g., two ensembles
of rare-earth ions doped into separate crystals35 and achieve entanglement between
two remote quantum memories. Single photon mode entangled state is considered
as a resource for quantum computation in linear optics36. A similar approach was
proposed for generation of entangled electron-hole (hole = missing electron) pairs in a
degenerate electron gas37. In physics of cold atoms and Bose-Einstein condensation it
is proposed to use mode entanglement of a single massive particle for dense coding
and quantum teleportation38. These are the examples of practical implementations
of single particle mode entanglement, however, in my opinion, there are even greater
fundamental implications following single particle non-locality.
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Figure 8.1 | Schematic of the proposed experiment to verify mode entanglement for a
polarization entangled photon pair.

The experiment with single photon mode entanglement has tremendously affected
the way I look at the two photon entanglement. Let’s take a polarization entangled
photon pair, where H and V denotes the polarization state and A and B labels
the spatial mode. I claim the equivalence of the polarization entangled state of two
photons and mode entanglement of two photons:

1√
2

(|H〉A |V 〉B + |V 〉A |H〉B) =
1√
2

(|A〉H |B〉V + |B〉H |A〉V ). (8.1)

This equation is much more than a simple change of labels, it has profound consequences
on how I understand non-locality in quantum mechanics. The left hand side of eq. 8.1
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tells us that we have one photon in mode A and one photon in mode B. Even though
the polarization state of the individual photon is undefined, the two photons show
strong correlations in their polarization. The right hand side of eq. 8.1 gives a little
twist to this well accepted picture. Here we have one photon that is V – polarized
and one photon H – polarized and both of them are delocalized in mode A and B.
Even though the spatial mode of the individual photon is undefined, the pair shows
correlations: if the H photon is found in A mode, then the V photon is in mode B
and vice versa.

In order to show that correlations have a quantum nature, we should measure them in
different bases. The rotation of the polarization basis is straightforward to implement,
but the rotation of basis spanned by 0 and 1 Fock state is not trivial to define.
Therefore it is more intuitive to look at the state in eq. 8.1 as polarization entanglement.
Nonetheless, in this thesis we have successfully implemented a measurement of mode
entanglement equivalent to Fock state basis rotation. I propose an analog test for
a state in eq. 8.1 to prove the equivalence of polarization entanglement and mode
entanglement. The schematic of the setup is presented in fig. 8.1. The source of
polarization entangled photons emits into two spatial modes A and B. In each mode
a polarizing beam splitter (PBS) is used to spatially separate H and V polarized
photons into submodes AH , AV , BH , BV . In each submode, the field of a single
photon is mixed with a weak local oscillator (amplitude α << 1). The details of this
measurement are described in chapter 7 of this thesis. We can probe mode correlations
for the H polarized photon by measuring correlations of the D2(AH) and D4(AH)
detection events as a function of the local oscillator relative phase θ = θA−θB . Similar
correlations can be measured for the V polarized photon, as shown in fig. 8.1. The
point is to compare the correlations for the H photon and V photon. This proposal
is still in a premature stage and I recognize the need for a rigorous mathematical
formulation of the expected correlation curves. However, I believe that it is the right
approach to verify the equivalence of mode entanglement and entanglement in any
other arbitrary degree of freedom (polarization, time bin, energy, etc). If my claim
proves to be correct, then suddenly entanglement will not seem a spooky action at a
distance. Entanglement should be rather seen as between modes, not just particles.
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A. Relevant matrices

A.1 Spin matrices

Electron spin S = 1
2 matrices:

σx =
(

0 1
2

1
2 0

)
σy =

(
0 − i

2
i
2 0

)
σz =

(
1
2 0
0 − 1

2

)
Hole spin J = L+ S = 3

2 matrices:

Jx =


0

√
3

2 0 0√
3

2 0 1 0

0 1 0
√

3
2

0 0
√

3
2 0



Jy =


0 − i

√
3

2 0 0
i
√

3
2 0 −i 0

0 i 0 − i
√

3
2

0 0 i
√

3
2 0



Jz =


3
2 0 0 0
0 1

2 0 0
0 0 − 1

2 0
0 0 0 − 3

2



J3
x =


0 7

√
3

8 0 3
4

7
√

3
8 0 5

2 0

0 5
2 0 7

√
3

8
3
4 0 7

√
3

8 0



J3
y =


0 − 7i

√
3

8 0 3i
4

7i
√

3
8 0 − 5i

2 0

0 5i
2 0 − 7i

√
3

8

− 3i
4 0 7i

√
3

8 0



J3
z =


27
8 0 0 0
0 1

8 0 0
0 0 − 1

8 0
0 0 0 − 27

8
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Heavy hole subspace matrices:
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A.1. Spin matrices

Jhh,x =
(

0 0
0 0

)
Jhh,y =

(
0 0
0 0

)
Jhh,z =

(
3
2 0
0 − 3

2

)
J3
hh,x =

(
0 3

4
3
4 0

)
J3
hh,y

(
0 3i

4
− 3i

4 0

)
J3
hh,z

(
27
8 0
0 − 27

8

)
Light hole subspace matrices:

Jlh,x =
(

0 1
1 0

)
Jlh,y =

(
0 −i
i 0

)
Jlh,z =

(
1
2 0
0 − 1

2

)
J3
lh,x =

(
0 5

2
5
2 0

)
J3
lh,y =

(
0 − 5i

2
5i
2 0

)
J3
lh,z =

(
1
8 0
0 − 1

8

)
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A.2. 8 dimensional Exchange Hamiltonian

A.2 8 dimensional Exchange Hamiltonian
H
e
x
c
h

=
1 2

           −
δH

H
0

0
0

+
∆

2
0

0
0

+
δH

H
2

0
+
δH

H
0

∆
1

0
0

0
+
δH

H
1

0
0

+
∆

1
−
δL
H

0
0

0
+
δL
H

2
0

0
∆

2
0

0
+
δL
H

0
+
δL
H

1
0

0
0

0
0

0
+
δL
H

1
+
δL
H

0
0

0
∆

2

0
0

+
δL
H

2
0

0
−
δL
H

0
∆

1
0

0
+
δH

H
1

0
0

0
∆

1
+
δH

H
0

0
+
δH

H
2

0
0

0
∆

2
0

0
−
δH

H
0

           
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where:

δHH0 = 1
2 (3az + 27

4 bz) δLH0 = 1
8 (4az + bz)

δHH1 = − 3
4 (bx − by) δLH1 = −(ax + ay)− 5

2 (bx + by)
δHH2 = − 3

4 (bx + by) δLH2 = −(ax − ay)− 5
2 (bx − by)

∆1 = −
√

3

2
(ax + ay)− 7

√
3

8
(bx + by)

∆2 = −
√

3

2
(ax − ay)− 7

√
3

8
(bx − by)
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Summary

Quantum dots bridge and interface two worlds: the one of quantum particles of matter
and quantum particles of light. In a similar fashion, this thesis treats both the topics of
single spins and single photons. Our major achievement in the topic of single spins is
engineering quantum dots with a high purity light hole state, whereas up to now only a
high purity heavy hole state or a mixed hole state was accessible in III-V semiconductor
quantum dots. We have developed and optimized the growth technique that offers
strain as a tuning knob to switch from heavy to light hole character in GaAs/AlGaAs
quantum dots. We have provided an experimental evidence of the light hole exciton
based on the analysis of the exciton emission polarization, exchange interaction and
the magnetic response. The atomistic pseudopotential method calculations have
been performed and they have shown an excellent agreement with our experimental
observations. With a demonstration of a light hole exciton we have opened up a new
set of optical polarization selection rules for interfacing spins and photons. One of the
signatures of a light hole exciton is the presence of two exciton states of z-polarization,
however, one of them is dark at zero magnetic field. We have found an extremely
large (≈ 500 µeV) exchange splitting between these two states. This splitting puts
in doubt the feasibility of a single photon to spin coherent transfer scheme based on
light holes. Even though our initial motivation for the search of light hole ground
state is not valid anymore, we expect to witness new applications of the light hole
spin in the following years. A light hole is a novel quantum state in semiconductor
quantum dots and it needs further investigation of its potential e.g. for electrical
manipulation. It will be also very useful to verify the predictions for the light hole
spin interactions with the nuclei and measure its coherence time. The hole spin state
quantum number (3/2 for heavy or 1/2 for light) is not the only spin property that
can be engineered in quantum dots. The characterization of the electron and hole
g-factor tensor shown in this work is the first step towards g-factor engineering by
the choice of the quantum dot composition and shape. We have chosen nanowire
quantum dots as a promising system for g-factor engineering because of the possibility
to controllably grow quantum dots of different sizes and aspect ratios. Our studies
have demonstrated that the coupling strength between exciton states can be tuned
by a careful choice of the magnetic field angle and magnitude. In particular, we have
found the conditions for the electron and heavy hole spin disentanglement. Finally,
we summarize the second part of this thesis, where the nonlocality of a single photon
was tested using single photons from a quantum dot. Visibility as high as 98% has
been measured, whereas the visibility of 71% is enough to violate Bell’s inequalities.
Therefore it is clear that the concept of quantum nonlocality applies to the state of a
single particle just like it does for the entangled particle pair.
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Samenvatting

Kwantum dots vormen een brug en interface tussen twee werelden: enerzijds kwantum
deeltjes van materie anderzijds kwantum deeltjes van licht. Dit komt terug in deze
scriptie, waarin zowel enkele spins als enkele fotonen behandeld worden. Ons belan-
grijkste resultaat op het gebied van enkele spins is de ontwikkeling van kwantum dots
met een grote zuiverheid aan toestanden voor lichte gaten, terwijl tot nu toe alleen een
grote zuiverheid aan toestanden voor zware gaten of een gemixte toestand voor gaten
mogelijk waren in III-V halfgeleider kwantum dots. We hebben een groeitechniek
ontwikkeld en geoptimaliseerd waarbij spanning als afstelling dient om het karakter
van de gaten in GaAs/AlGaAs kwantum dots van zwaar naar licht te veranderen.
We laten een experimenteel bewijs zien voor een licht gat exciton, gebaseerd op
de analyse van de polarisatie van de emissie van dit exciton, de uitwisselingsinter-
actie en de magnetische respons. De berekeningen aan de hand van de atomistische
pseudo-potentiaalmethode komen zeer goed overeen met onze experimentele obser-
vaties. Met een demonstratie van een licht gat exciton ontstaat er een nieuwe set
van optische polarisatie selectieregels voor de interface tussen spins en fotonen. Een
van de kenmerken van een licht gat exciton is de aanwezigheid van twee excitons met
z-polarisatie, hoewel één van deze twee bij een magneetveld van nul donker is. We
hebben een extreem grote (≈ 500 µeV)uitwisselingsenergiesplitsing tussen deze twee
toestanden gevonden. Door deze splitsing kan worden betwijfeld of een protocol voor
de coherente overdracht van foton naar spin gebaseerd op lichte gaten mogelijk zal
zijn. Hoewel de originele reden voor het onderzoek naar lichte gaten hierdoor wegvalt,
verwachten we de komende jaren nieuwe toepassingen voor de spin van een licht gat.
Een licht gat is een recent uitgevonden kwantum toestand in halfgeleider kwantum
dots en er is verder onderzoek nodig om de mogelijkheden te ontdekken, bijvoorbeeld
voor elektronische manipulatie. Het zal ook goed zijn om de voorspellingen voor de
interactie tussen de spin van lichte gaten en kernspins na te gaan, en de coherentietijd
te meten. Het kwantumgetal van de spin van een gat (3/2 voor een zwaar gat, 1/2
voor een licht gat) is niet de enige eigenschap die kan worden bewerkt in kwantum
dots. De karakterisatie van de elektron en gat g-factor tensor die wij laten zien is
de eerste stap naar g-factor bewerking door keuze van compositie en vorm van de
kwantum dot. We hebben kwantum dots in nanodraden gekozen als veelbelovend
systeem voor g-factor bewerking, omdat deze kwantum dots gecontroleerd gegroeid
kunnen worden met verschillende afmetingen en aspect ratio’s. Ons onderzoek laat
zien dat de koppeling tussen exciton toestanden kunnen worden afgestemd door de
grootte en hoek van het magneetveld zorgvuldig te kiezen. Meerbepaald hebben we
de condities gevonden waarbij de verstrengeling tussen spins van een elektron en een
licht gat ongedaan gemaakt kan worden. Afsluitend vatten we het tweede deel van
deze scriptie samen, waar enkele fotonen uit een kwantum dot gebruikt zijn om de
non-lokaliteit van een enkel foton te testen. We hebben een visibiliteit van 98% is
gemeten, waar een visibiliteit van 71% genoeg is om Bell’s ongelijkheid aan te tonen.
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Samenvatting

Dit toont aan dat het concept van kwantum non-lokaliteit op een enkel deeltje kan
worden toegepast op dezelfde manier als op een paar van verstrengelde deeltjes.
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