
Delft University of Technology
Master of Science Thesis in Embedded Systems

Robust Bluetooth Low Power
Communication

Benjamin Joey Hendriks

Embedded
Networked
Systems

Robust Bluetooth Low Power Communication

Master of Science Thesis in Embedded Systems

Embedded and Networked Systems Group
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft University of Technology
Mekelweg 4, 2628 CD Delft, The Netherlands

Benjamin Joey Hendriks
B.J.hendriks@student.tudelft.nl

Johnhendriks.jr@gmail.com

09-02-2022

mailto:B.J.hendriks@student.tudelft.nl
mailto:Johnhendriks.jr@gmail.com

Author
Benjamin Joey Hendriks (B.J.hendriks@student.tudelft.nl)
(Johnhendriks.jr@gmail.com)

Title
Robust Bluetooth Low Power Communication

MSc Presentation Date
23-02-2022

Graduation Committee
Przemys law Pawe lczak, Associate Professor, Embedded and Networked Systems Group, TU Delft
Gerard Jansen, Associate Professor, Circuits and Systems Group, TU Delft

mailto:B.J.hendriks@student.tudelft.nl
mailto:Johnhendriks.jr@gmail.com

Abstract

This work presents the first intermittent connection mode for Bluetooth Low En-
ergy (BLE) on an energy harvesting sensor that maintains a connection during
power failures. This is achieved by modifying existing open-source BLE software
that runs on solar radiation harvesting BLE hardware architecture designed by
[13]. The intermittent operation is achieved by turning off the microcontroller
(MCU) between data packets and turn it on right before the exchange of pack-
ets. With an external RTC the MCU is switched on and off. Also the external
RTC is always powered on during the connection, such that the time can be re-
stored on the MCU if it is turned on again. In order to further reduce the power
consumption, an connection interval adaptation algorithm is implemented. This
algorithm adapts the data rate to the stored energy of the device. The connec-
tion interval adaptation algorithm can reduce the data rate beyond what the
current BLE specification allows for and thus reduces the power consumption
even more.

The results from the experiments show that the implemented intermittent
BLE software can sustain a BLE connection for more than an hour and can be
more power efficient than the default non-intermittent BLE software at a low
data rate of at least one packet every 10 s or more. Also, at the maximum BLE
slave latency measured of one packet every 14 s the intermittent BLE software
is almost two times more power efficient. Finally when the connection interval
adaptation algorithm was enabled the connection time was further increased.

This work has shown what the implications of an intermittent BLE connection
is and how further improvements can be made. The methodology used in this
work to run an intermittent connection can be applied to many networking
system and can be an inspiration for any future works.

iv

“We absolutely must leave room for doubt or there is no progress and no
learning. There is no learning without having to pose a question. And a

question requires doubt. People search for certainty. But there is no
certainty.” – Richard P. Feynman

vi

Preface

This thesis is written for my master graduation of Embedded Systems track at
TU Delft. This topic was of particular interest to me due to the importance
of how technology impacts the planet. I hope that this thesis can contribute
to a more clean and sustainable future especially with the rapidly upcoming
technologies.

First I want to thank Jasper de Winkel and Przemys law Pawe lczak for their
amazing support. Despite the pandemic and other obstacles they really helped
me stay motivated and were always available to contact if I had any questions.
Secondly I want to thank my parents John Hendriks, Ellen Hendriks and sister
Angela Hendriks for their support and interest throughout the thesis. Also I
want to thank my dog Joep for my well deserved breaks and walks that I kept
me going for the day. Finally I want to thank Nowi Energy company for their
support during this thesis and the hardware they made available.

Benjamin Joey Hendriks

Delft, The Netherlands
9th February 2022

vii

viii

Contents

Preface vii

1 Introduction 1

2 Related Work 2
2.1 Bluetooth Low Energy . 2
2.2 Timekeeping for Battery-free Platforms 3
2.3 Low-Power Devices Powered by Energy Harvesting 4
2.4 Intermittently-powered Systems 4

2.4.1 Intermittently-powered Systems: Hardware 4
2.4.2 Intermittently-powered Systems: Software 5

3 Bluetooth Low Energy 6
3.1 The Bluetooth Low Energy Stack 6

3.1.1 Physical Layer . 6
3.1.2 Link Layer . 7
3.1.3 Host Controller Interface 9
3.1.4 Logical Link Control and Adaptation Protocol 9
3.1.5 Attribute Protocol . 10
3.1.6 Generic Attribute Profile 10
3.1.7 Security Manager Protocol 11
3.1.8 Generic Access Profile . 11

3.2 Intermittent BLE stack . 11
3.3 Challenges . 12

3.3.1 Integrating Intermittent Software With Bluetooth Low
Energy . 13

3.3.2 Networking Through Power Failures 13
3.3.3 Improving Beyond Bluetooth Low Energy 13

4 Intermittently-Powered BLE Architecture 14
4.1 Battery-free Intermittently-powered BLE Architecture 14
4.2 Assumptions . 16

5 Implementation 17
5.1 Hardware Design . 17

5.1.1 Power Management . 17
5.1.2 Microcontroller . 18
5.1.3 External Real-Time Clock 19

ix

5.2 Software Design . 19
5.2.1 Bluetooth Low Energy Software Stack 20
5.2.2 Checkpointing Software 21
5.2.3 Timekeeping . 21
5.2.4 Connection Interval Adaptation Algorithm 25

6 Evaluation Results 29
6.1 Experiment Setup . 29
6.2 Power Consumption Measurements 30

6.2.1 Key Insights from Power Consumption Measurements . . 34
6.3 Connection Time Measurements 35

6.3.1 Key Insights from Connection Time Measurements 36
6.4 Connection Interval Adaptation Algorithm Measurements 37

6.4.1 Key Insights from Connection Interval Adaptation Al-
gorithm Measurements . 39

7 Limitations and Future Work 43
7.1 Limitations . 43

7.1.1 Maybe Long Term Deployment Need To Be Tested? . . . 43
7.1.2 Maybe The Setup Was Limited? 44
7.1.3 Maybe Other Hardware Platform Is Required? 44
7.1.4 Maybe Different Software Platform? 45
7.1.5 Maybe a Hybrid Intermittent Solution Is More Optimal? 45
7.1.6 Maybe BLE Protocol Needs Optimization? 45

7.2 Future Work . 46

8 Conclusion 48

x

Chapter 1

Introduction

The Internet of Things (IoT) refers to billions of connected sensors [16]. Power-
ing all these sensors with batteries will impact the environment and increase
the maintenance cost. An answer to this problem is energy harvesting, which
utilizes ambient energy to power these small sensors. As a consequence these
energy harvesting sensors might operate intermittently i.e., only when enough
power is available [14].

Generally-speaking data from energy harvesting IoT sensors is send sporadic-
ally, and only when there is enough power available to the sensor. If an energy
harvesting IoT sensor would setup a connection, the connection usually lasts
until there is no more power in the system [22] or preemptively disconnects be-
fore it runs out of power [5]. Losing and reestablishing a connection between
power failures is time consuming and ineffective, therefore a method to sustain
a communication despite the power interrupt is highly desired.

Bluetooth Low Energy (BLE) is a widely used communication protocol for
low-powered sensors. While there are designs available that demonstrate battery-
free BLE (i.e., where BLE is broadcasting information as soon as harvested
energy becomes available [55, 60, 31, 17]), to the best of our knowledge there
is no research conducted on actively maintaining a connection to recover from
power failures. A few studies however did implement an active battery-free BLE
connection, but the connection was terminated either as soon as energy was not
available [22] or when no more power could be harvested [5]. The advantage of
maintaining a connection mode for BLE is that devices can communicate peer
to peer and in some scenarios a connection can be more power efficient than
broadcasting. This could also for example be beneficial for wearable devices
that require two-way communication such as a smartwatch or update firmware
on hard to reach devices.

Therefore the goal of this thesis is to implement a connection mode for BLE
on an energy harvesting sensor in order to maintain a connection during power
failures. A custom circuit from [13] is used designed for intermittent BLE.

The structure of this thesis is as follows. Chapter 2 presents the related works.
Chapter 3 provides the necessary background on BLE. Chapter 4 describes
the architecture of the battery-free BLE sensor, while Chapter 5 describes the
architecture implementation. In Chapter 6 the results of the evaluation of the
battery-free BLE sensor are shown. Chapter 7 presents the discussion and the
recommendations for the future work. Finally, Chapter 8 concludes the thesis.

1

Chapter 2

Related Work

This chapter will briefly review existing research results related to the thesis. In
the following sections we will cover results on BLE, timekeeping, energy harvest-
ing platforms and intermittently-powered platforms. These topics are related to
the design of the energy-harvesting intermittently-powered BLE device presen-
ted in Chapter 4.

2.1 Bluetooth Low Energy

Most of the research on BLE with energy harvesting devices is centered around
beacon applications. BLE beacons are devices that broadcast (advertise) data
to any listening device. Work of [55] presented a BLE beacon with solar energy
harvesting that focused on measuring power consumption using various trans-
mitted packet sizes. In work [31] a solar harvesting BLE beacon is presented
that is tested in different light intensities and also deployed in realistic scenarios.
In this paper they chose a big super-capacitor in order to prolong operation
time even when there was almost no energy to be harvested. Unfortunately,
both [55, 31] lacked power saving techniques to prolong the lifetime of the BLE
beacon.

The first work that focused on the quality of service and maximizing the
lifetime of the BLE beacon was [17]. In this work the authors were using their
own algorithm that turns off most sensors that were not used and changed the
advertising interval depending on different levels of power. Another study [6]
demonstrated a trade-off between cold booting and sleeping between two BLE
advertisements. It shows that when a device can harvest very little power it
is more power efficient to cold boot the device and reach higher advertising
rates. While if there is plenty of power in the system it is more feasible to sleep
between advertisements to achieve a higher advertising rate. However, this
study is limited since the data to generate the model is made from theoretical
values (datasheets and data from other studies) and there is no experiment to
reproduce the results. In [22] the suitability of both advertising and connection
mode is determined. Both modes were tested with various light conditions and
the power consumption and operation time was measured. It concluded that
connection mode is more power efficient in some light scenarios. This study
is however limited due to the unrealistic light scenarios during the test (only

2

programmed light levels from a lamp were used). Furthermore no efforts were
made for power savings to extend the lifetime or maintain connection during
power failures.

In [5] a speedometer is attached to a wheel of a bicycle that generates power
(with a magnet and coil) for a BLE device that will setup a connection with
a smartphone if enough power is harvested and will terminate the connection
when the wheel stops moving. The speed data is send during the connection
from the BLE device to the smartphone only when the values changes (notify).
This study shows an application specific solution and found an optimal setup
for the longest operation time.

Some implementations of battery-free BLE beacons are already on the market.
The company Williot [64] has small BLE tags that use Radio Frequency (RF)
signals from the environment to transmit specific product data where the tag
is attached to. For instance a BLE tag that can measure temperature will
be attached on a bottle of wine and will advertise the temperature of the wine
periodically to any listening device. The requirement is that there should always
be a central device to keep track of the advertising packets and there should
always be enough RF signals to keep the tag advertising. Another battery-
less BLE beacon that is on the market is from Cypress [54], which uses BLE
beacons to send product information of specific items to smartphones or sensor
data using solar harvesting.

2.2 Timekeeping for Battery-free Platforms

Having reliable timekeeping for energy-harvesting battery-free devices during
power failures is a difficult task since internal timers do not capture power off
time. Moreover, a high accuracy millisecond-level timekeeping is necessary for
BLE. In [26] three remanence based timekeeping methods are proposed that
determine the off time by measuring the decay in capacitive devices. The first
method is Time and Remanence Decay in SRAM (TARDIS), which has a poor
timing resolution but is able to determine a time indication between power fail-
ures from a few seconds up to multiple hours. The second method is called
Custom Time And Remanence Decay (CusTARD) that uses a dedicated capa-
citor to measure the decay and has a higher timing resolution than TARDIS and
lower power consumption, but cannot detect long power failures (up to about
40 seconds). The final method is a variation of CusTARD where a low power
Real-Time Clock (RTC) is added that has the highest accuracy of timekeeping
but also has the highest cost and long reset time (up to several seconds). Only
the CusTARD solution with the added RTC might be accurate enough for BLE.
In [10] an improved remanence timekeeping method is proposed called Cascaded
Hierarchical Remanence Timekeeper (CHRT) and shows that it outperforms an
external RTC in startup time and power consumption. The CHRT solution
however only has a clock accuracy in the order of milliseconds, which is not
sufficient for BLE.

3

2.3 Low-Power Devices Powered by Energy Har-
vesting

Thanks to energy harvesting batteries can be removed from low-power devices.
This results in long-term and self-sustainable deployment for low-power devices.
However, without batteries new implementations of hardware and software have
to be made in order to operate in the more uncertain environment. A lot of
research on energy harvesting for low-power devices is already done for the ar-
chitecture [32], sensor nodes [58], harvesting the energy [63, 15] and networking
[35].

2.4 Intermittently-powered Systems

When low-power devices rely on energy harvesting instead of batteries, the
devices can only operate when enough energy is harvested. This is called inter-
mittent operation. With intermittent operation the device can turn on and off
depending on the energy that is harvested. This requires changes in the hard-
ware and software since execution paths of programs can be interrupted due to
power failures.

2.4.1 Intermittently-powered Systems: Hardware

Lots of research is done on designing architectures for low-power energy harvest-
ing devices [9, 31, 23, 24]. The most notable differences compared to traditional
low-powered devices include energy harvesters, energy storage and the different
memory systems.

Energy Harvesters: The most common energy harvesting sources for low-
power devices are solar radiation, RF transmissions, pressure, vibration and
heat [53]. The choice of the harvester usually depends on the environment and
the workload of the device. Solar radiation is known for having a high power
density 10 to 100 mW/cm2 outdoor while RF harvester could harvest up to 1
to 10 mW/cm2 [53]. However, solar radiation is limited to daylight or artificial
light while RF sources are available even during the night.

For a typical BLE device such as the Nordic nRF52840 [43] the power con-
sumption during a radio transmission is about 18 mW (at 6 mA and 3 V). There-
fore the most safe choice would be the solar radiation harvesting. This can
harvest enough energy for the radio transmissions and is also easy to use for
prototyping.

Energy Storage: The harvested energy needs to be buffered in order to
have enough voltage and current to power most devices [53]. The energy storage
determines how long the device can be turned on. Super-capacitors can charge
and discharge energy much faster than regular batteries and are more durable.
However, the energy density is much lower than batteries. This results that
when energy is harvested it can be accessed much quicker but also depletes
faster. Furthermore regular capacitors have less energy density than super-
capacitors but are typically smaller and cheaper than super-capacitors [21].

For intermittently-powered BLE typically the most energy is required when
the radio need to be turned on. This requires that most energy need to acquired
in a short moment of time. Thus super-capacitors are the best choice here due

4

to their fast charge and discharge capability compared to batteries and regular
capacitors.

Memory Architectures: In order to keep the data consistent between
power failures the data needs to be stored before the device is turned off and
restored when the devices turn on. This may be required for data to be further
processed or to retain a system state. In works such as [11, 66] non-volatile Fer-
roelectric Random Access Memory (FRAM) is used. Other non-volatile memory
such as flash has limited write cycles in the order of ten thousands, while FRAM
can endure trillions of write cycles [61]. Also FRAM has faster access and is
generally more power efficient than flash. However, FRAM generally is not as
efficient in power consumption and has slower access times than Static Random
Access Memory. (SRAM) [36] meaning that changing the memory entirely to
FRAM might reduce memory efficiency.

Since the power consumption needs to be as low as possible it is most feasible
for intermittently-powered BLE to have FRAM to store its memory contents
in before turning off. Since this memory is low power and quick to access the
system will not be halted for the memory for to long. Also it is non-volatile and
thus will remain the content after power failures.

2.4.2 Intermittently-powered Systems: Software

Due to the intermittent operation on energy harvesting low-power devices the
execution of software can be interrupted at any random time and at any place
in the code. This can result in lost or corrupted data. There are currently two
methods for intermittent operation [36] (i) checkpointing [50, 4, 66, 30] and (ii)
task-based programming [67, 25, 37, 8].

Checkpointing systems store the state of the system in non-volatile memory
usually at regular intervals, specific areas in the code or when low power is detec-
ted. This way when the device will power on it can restore from the checkpoint
and will execute from that point forward. The task-based system breaks the
program into atomic tasks that are idempotent. These tasks are constructed in
a graph-like structure where the data flow from the tasks is determined. During
power failures the tasks can then be restarted when required depending on the
constraints that are put on the task. Checkpoint systems are straightforward
and it is not difficult to expand existing software with checkpoints. However,
the drawback of checkpointing is the memory overhead due to big pieces of data
have to be stored. On the other hand porting software to atomic and idem-
potent tasks gives more control of the system. However, the porting of already
existing software is very complex and time consuming [36, 34].

Currently there is no intermittent BLE software stack and to modify or cre-
ate one in a task-based system would be near impossible for this thesis. The
checkpoint system is much more interesting to use for intermittently-powered
BLE, mainly because checkpoints can be added to the existing software without
changing the code drastically. Most of the code thus remains intact and do not
need to be split op in different tasks. Furthermore when the software needs to
be changed or different functionalities are added the checkpoint system remains
roughly the same, while with task based systems a whole range of tasks might
need to be adjusted.

5

Chapter 3

Bluetooth Low Energy

This chapter describes the necessary background information of BLE and the
challenges of powering BLE intermittently. In Section 3.1 the BLE stack archi-
tecture is described. In Section 3.2 explains how BLE can be powered intermit-
tently without the penalty of re-initializing a connection. Finally in Section 3.3
the challenges of designing an intermittently-powered BLE device is described.

3.1 The Bluetooth Low Energy Stack

The BLE protocol stack is composed of three parts: the controller, the host
and the application [62]. Between the controller and host is the Host Controller
Interface (HCI). The controller part is usually a physical device that facilitates
the transmission and reception of the BLE signals and contains (i) Physical
Layer (PHY), (ii) Link Layer (LL) and (iii) HCI. The host part is typically a
software stack that specifies how BLE data is constructed and BLE devices in-
teract. It contains (i) Logical Link Control and Adaptation Protocol (L2CAP),
(ii) Attribute Protocol (ATT), (iii) Generic Attribute Profile (GATT), (iv) Se-
curity Manager Protocol (SMP) and (v) Generic Access Profile (GAP). The
application part consists of the logic, user interface and data handling which all
relate to what the application was implemented for. An example would be an
app that can interact and interpret a heart rate value from a connected BLE
sensor. In Figure 3.1 the BLE protocol stack is illustrated. Each layer of the
BLE stack is described in Sections 3.1.1 to 3.1.8.

3.1.1 Physical Layer

The Physical Layer contains the hardware that is capable of sending and receiv-
ing BLE data. The BLE radio operates in the 2.4 GHz Industrial Scientific and
Medical band. This band is divided into 40 radio frequency channels, each chan-
nel with a bandwith of 2 MHz. These 40 channels are divided in 3 advertising
channels (channels 37, 38 and 39) and 37 data channels (channels 0 to 36). The
radio uses Gaussian Frequency-Shift Keying modulation with a transmit output
power between −20 to 10 dBm [7]. The maximum data-rate for Bluetooth 4.2
is 1 Mbit/s and for Bluetooth 5.2 it is 2 Mbit/s [20, volume 1, page 187].

6

Application Layer

Generic Access Profile Generic Attribute
Profile

Security Manager
Protocol

Logical Link Control and Adaptation Protocol

Attribute Protocol

Host Controller Interface

Link Layer

Physical Layer

Application

Host

Controller

Figure 3.1: The BLE architecture [62].

3.1.2 Link Layer

The Link Layer controls the Physical Layer and handles the state of the com-
munication for BLE devices. There are three advertising channels used for
broadcasting data and device discovery in order to establishing a connection.
The broadcasted data is typically send on all three advertising channels to avoid
interference with other traffic sources like Wi-Fi.

The data channels are used for bidirectional communication between connec-
ted devices. There are 37 data channels and data is exchanged on one channel
each time. The host and end device constantly switch channels on which they
communicate via adaptive channel hopping, reducing the interference from other
signals. The basic formula defining the next hop is:

fn+1 = fn + h mod 37

Where h (denoting channel hop) is between 5–16, fn is the current channel num-
ber and fn+1 the new channel number. The hop number h is randomly chosen
at the start of the connection. The adaptive frequency hopping scheme makes it
possible to let devices determine that channels with to much interference can be
removed from the channel list. This will be explained in more detail in Section
5.2.4.

At the Link Layer there are two types packets: advertising packets, sent
through the advertising channels, and data packets sent through the data chan-
nels. Both advertising packets and data packets have the same packet structure
as shown in Figure 3.2. The maximum packet size can be up to 266 octets.
The preamble field is usually one octet long but can be two octets long when
communicating on 2 Mbit/s. The access address field is fixed for advertising
packets with a constant value, while in data packets it contains the address of
the receiving device. The header field contains specific information about each
packet type, which is explained in more detail in [20, volume 6, page 2865]. The
length field indicates the length of the packet. The payload field contains the
actual data that has to be send and is specific for each data type but could
contain, for example, a sensor value or information to establish a connection.
The Cyclic Redundancy Check (CRC) field is a 24 bit error-detecting code [20,
volume 6, page 2865].

7

1 byte 4 bytes 2 - 37 bytes 3 octets

Payload CRCPreamble Access Address

1 - 2 octets 4 octets 0 - 255 octets

LSB MSB

Header

1 octet

Length

1 octet

Protocol Data Unit (PDU)

Figure 3.2: BLE Link Layer packet [20, volume 6, page 2865].

Advertiser Scanner

Advertising packet: Channel 37

Advertising packet: Channel 38

Advertising packet: Channel 39

Advertising packet: Channel 37

Advertising packet: Channel 38

Advertising packet: Channel 39

Advertising
Event

Advertising
Event

Advertising
Interval

Figure 3.3: Unidirectional exchange of advertising packets from ad-
vertiser to scanner [27].

There are 4 different communication states handled in the Link Layer (also
knows as roles): advertiser, scanner, master and slave. These four roles can
be divided into two pairs: (advertiser, scanner) and (master, slave). We will
describe them below.

Advertiser and Scanner

The advertiser and scanner both send and receive data with advertising packets
on the advertising channels. These advertising packets are send periodically
with the predefined advertising interval. For BLE the advertising interval ranges
from 20 ms to 10.24 s [20, volume 4, page 2483]. Typically the advertiser sends
data and the scanner listens to one of the three advertising channels. In Figure
3.3 the exchange of advertising data from advertiser to scanner is shown. Note
that the advertiser does not have any feedback from the scanner if the data is
received or not.

The advertiser can have three properties: (i) connectable: the advertiser is
able to connect to other devices (ii) scannable: the scanner is able to request
additional data (iii) directed: a special type of packet for faster connecting
where the target Bluetooth address is in the payload. An advertiser can have a
combination of these properties or none [62]. When the advertiser is connectable
the scanner can respond to an advertising packet from the advertiser, which then
acts as a device discovery packet, with a connection request. If the advertiser is

8

scannable, the scanner can send a scan request and the advertiser can then send
scan response data. The scan response data contains more information about
the advertiser, for example the device name.

Master and Slave

The master and slave both send and receive data with data packets on the
data channels. Before a typical connection is made, a scanner will send a con-
nection request on one of the three advertising channels as a response to the
advertising packet. If the advertiser accepts this request, the two devices have a
connection. The scanner that initiates the connection will be the master of the
connection, while the advertiser that accepts the connection will be the slave of
the connection. The master will manage the connection and determine which
hop frequency is used. The slave follows the masters decisions. Each exchange
of data in a connection is called a connection event and the time between these
events is called the connection interval. Note that multiple data packets can be
transferred during a connection event. The connection interval is initially set by
the master. The slave can request a different connection interval, but the master
could decide to reject this request. The connection interval ranges from 7.5 ms
to 4 s with increments of 1.25 ms. In Figure 3.4 the connection establishment
between master and slave is shown.

The connection can be terminated by both master and slave via a connection
terminate packet or exceed the Connection Supervision Timeout. The Con-
nection Supervision Timeout is the maximum time between two received data
packets before the connection is terminated. This timeout ranges from 100 ms
to 32 s. The Slave Latency is the number of skippable connection events from
the slave when there is no data required to send. For example with a slave
latency of two, the slave can skip two connection events if no data is available
to send. If there is data to be sent it will not skip any connection event. The
Slave Latency value ranges from 0–499, if it is within the Connection Supervi-
sion Timeout. The Connection Supervision Timeout and Slave Latency both
are initially determined by the master via the connection request.

3.1.3 Host Controller Interface

The HCI facilitates the communication between the host layer and the controller
layer from the BLE architecture. For systems where the host and controller are
each executed on a different chip the communication between these layers is done
via a physical medium, most commonly USB or UART. This was more common
in older Bluetooth classic designs. With cheaper System on Chip designs the
host and controller are more commonly integrated in one chip and the HCI
becomes redundant.

3.1.4 Logical Link Control and Adaptation Protocol

The L2CAP combines data from ATT and SMP to create a BLE packet. The
L2CAP fragments large data into chunks to fit them in the BLE packets. At
the receiver side the L2CAP combines fragmented packets in order to construct
the data for the upper layers.

9

Advertiser Scanner

Advertising packet: Channel 37

Advertising packet: Channel 38

Advertising packet: Channel 39

Advertising packet: Channel 37

Advertising packet: Channel 38

Connection Request: Channel 38
Hop: 8, Conn Interval: 45 ms

Slave Master

Data packet: Channel 8

Data packet: Channel 8

Data packet: Channel 16

Data packet: Channel 16

Connection
interval
(45 ms)

Connection
Event

Connection
Event

Hop
frequency

+8

Figure 3.4: Example packet exchange between master and slave during
initiating connection with connection interval of 45 ms and a hop-
frequency of 8 [27].

3.1.5 Attribute Protocol

The ATT is a protocol for facilitating the exchange of data between two BLE
devices. This data is stored in a specific structure called an attribute. An
attribute is stored on a server, which is the device that contains the data. The
device that wants to access this data is called the client. Both master and slave
can be a server and client simultaneously, meaning both can store and request
data from each other. For example an attribute can store a the heart rate value
in beats per minute on a server, and a smartphone (client) can request this data.

3.1.6 Generic Attribute Profile

GATT defines how data is stored and transferred. The data is stored in a
hierarchy where characteristics are stored in services and services are stored in
profiles. Each profile contains services which is a bundle of specific data called
characteristics. The service is stored in an attribute which describes the kind
of data stored. The characteristics is also an attribute which contain specific
information of each type of data like the actual sensor value.

For example the Bluetooth SIG has predefined a Heart Rate profile that
contains different services for heart rate monitors. One basic service is the Heart

10

Rate service. It is defined such that this Heart Rate service has a Heart Rate
Measurement characteristic that stores the heart beat value in beats per minute,
Body Sensor Location characteristic that stores the location of the monitor on
the body, like wrist or foot, and Heart Rate Control Point characteristic which
is used to enable a client to write control points to the server to control behavior
[28].

3.1.7 Security Manager Protocol

SMP is a protocol that makes it possible for devices to pair and distribute differ-
ent type of security keys. Some data values (characteristics) require encryption
before they can be send. Typically if data needs to be encrypted, two devices
pair by authenticating each other. Then the packets will be encrypted using a
short term key. This short term key is configured by the temporary key and
with two random values from each device. The temporary key can be configured
in three ways (i) ”just works”, which is basically a zero value that is used when
there is not interface available to authenticate (ii) ”passkey entry”, where via a
pin-code the authentication is done (iii) ”out of band”, when both devices have
authentication data that is acquired outside BLE for example via Near-Field
Communication (NFC) authentication. Finally when pairing is done the long
term keys are distributed to have faster authentication when both devices are
reconnected later [27].

3.1.8 Generic Access Profile

GAP defines how BLE devices can discover and communicate with each other.
For example with GAP it is possible for a smartphone to connect to a BLE
sensor and have them interact with each other. For GAP four roles are defined:
(i) broadcaster uses the LL advertiser role and transmits advertising packets,
(ii) observer uses the LL scanner role which receives and collects data from
advertising devices, (iii) central uses the LL master role and is the device that
can connect to one or more devices, and (iv) peripheral uses the LL slave role
that sends out advertising packets in order to receive a connection request from
a central and connect to this central. Furthermore GAP describes modes for the
roles, which is a state where the device execute a certain procedure. For example
a broadcast mode in which a device will advertise packets. The procedure is a
specific set of actions to reach a goal. This can be a specific set of data packets
in order to update a connection interval. When a device is in a specific GAP
mode there can be a procedure coupled to it and vice versa but it can also be
standalone [62].

3.2 Intermittent BLE stack

To maintain a connection with the BLE stack with intermittent operation the
LL needs to be integrated with the software stack supporting intermittent op-
eration. The LL is the only layer in the BLE stack that operates in real-time.
During a connection both the master and slave have to exchange packets in or-
der to maintain the connection. It is allowed to skip some connection intervals
and still maintain the connection, if it is within the Connection Supervision

11

Frequency

Time

2480 MHz

2402 MHz

Frequency

Time

2480 MHz

2402 MHz

Power FailurePower Failure Power Failure

Default BLE connection operation

Intermittent BLE connection operation

Connection event

Missed connection event

Figure 3.5: Example depiction of the exchange of packets in the form
of connection events between a master and slave. Top figure shows
the default BLE connection operation, where each connection event
has a successful exchange of packets. Bottom figure shows the in-
termittent BLE connection operation, where due to power failures
some connection events are skipped. Note that the slave device must
know how much time each power failure takes in order to configure
the right radio frequency to continue the connection.

Timeout. If due to a power failure a connection interval is missed, the slave
has to know how many connection intervals are missed because of the adaptive
frequency hopping that changes the channel frequency after each interval. It
then must determine how many connection intervals have been skipped and,
if it is within the allowed time, set the frequency accordingly. That is why
timekeeping in battery-free BLE is necessary even when the system has power
failures. Additionally when the slave is in a connected state it has to get back in
the connected state without having to reestablish the connection with the mas-
ter. In Figure 3.5 an example is shown where the importance of timekeeping
is shown. The figure illustrates that if a device boots up from a power failure
during a connection it has to know how long it was powered off. If this is not
the case it becomes impossible to know what frequency the radio has to listen
to and when it has to turn the radio on in order to continue the connection.

3.3 Challenges

Integrating BLE with software framework supporting intermittent operation to
maintain a BLE connection on a BLE slave device during power failures has

12

several challenges that needs to be addressed. In the following sections we list
these challenges.

3.3.1 Integrating Intermittent Software With Bluetooth
Low Energy

The first, implementation-related, challenge is to find and understand an open-
source BLE software stack in order to implement the necessary features to over-
come power failures. Especially access to the Link Layer in the BLE software
stack is required due to access to the timing and frequency when recovering from
power failures during connection. The BLE software stack has to be preferably
bare-metal, since saving the state of a complex operating system will only add
more complexity.

When a power failure has occurred it is important that the state of the con-
nection can be recovered and that the peripherals are configured correct in order
to continue to operate. The intermittent operation software has to be integrated
in the BLE software stack but must not interfere with the critical sections that
would hinder the regular (non-intermittent) BLE operations.

3.3.2 Networking Through Power Failures

The second challenge is to maintain a connection during power failures. A
notion of time after recovering from a power failure is required to be able to
communicate on the right frequency, and to know at which moment the slave
device must turn on the radio to receive a packet from the master device. This
exact timing requires a way to synchronize the clocks when the device is turned
on again. Also the state of the connection has to be maintained, which means
the right procedures have to be followed even during power failures in order, for
example, to establish a connection.

3.3.3 Improving Beyond Bluetooth Low Energy

For the final challenge the amount of energy available to the system is an im-
portant aspect when BLE runs intermittent. For a connection it is essential
to have good power management such that the connection can be maintained.
Between connection events a BLE slave typically sleeps. Keeping the device
in sleep mode can consume significant power if the interval is in the order of
seconds. It might be more power efficient to turn off the device if long sleep
periods are expected. However, saving the state and recovering from a power
failure also adds overhead which should be considered as well.

BLE has a power saving technique called slave latency, that will skip certain
radio events when no data is pending to be send. The slave latency is limited
by the BLE specification to be not bigger than half of the supervision timeout.
This way there must be at least two connection events before the supervision
timeout is reached, which will reduce the likelihood of disconnecting. However,
more power could be gained by turning the device off for longer periods of time
than the slave latency if it is withing the supervision timeout. Furthermore the
slave latency is a connection parameter which also limits the flexibility during a
connection to change the time it has to be turned off, because new connection
parameters have to be negotiated between the master and slave.

13

Chapter 4

Intermittently-Powered
BLE Architecture

We now present the architecture of our battery-free intermittently-powered BLE
system. Our architecture is based on the hardware design of [13]. It is important
to note that the work of [13] originated from another MSc project of [59] on the
same topic of battery-free intermittently-powered BLE system. The software
architecture presented in this thesis has been developed independently from
[59] and no interaction between the author of this MSc thesis and the author
of [59] happened. In other words the hardware design is not part of this thesis,
only the software implementation. The motivation of why this design was chosen
and the architecture of the design is described in Section 4.1 while Section 4.2
describes the assumptions that are made for this project.

4.1 Battery-free Intermittently-powered BLE Ar-
chitecture

To address the challenges listed in Section 3.3 as remarked above, we chose
the hardware of [13] that allows to sustain bi-directional BLE communication
despite power failures. In Figure 4.1 the high-level system design is shown. Note
that the hardware of the external sensors are present in the hardware but are
not used and are not further discusses for this thesis.

In the hardware architecture solar harvesting is used which is a reliable and
power-dense source [53]. Also light is an easy power source to control, that is
beneficial for experimenting. Finally it is easy to add more solar panels if this is
required, which will prevent this solution from not being capable of harvesting
enough power. The harvested solar energy is boosted by a DC-DC converter
and stored in a super-capacitor, which powers the components.

The microcontroller (MCU) runs an open source BLE software stack with
access to all BLE stack layers. Additionally the MCU has BLE hardware integ-
rated, that is able to send and receive BLE packets. The MCU will also run ded-
icated checkpointing software to store and restore the internal state on FRAM.
FRAM is a fast and durable (with many write cycles) non-volatile memory that
is able to quickly store and restore data. Checkpointing is chosen over task-

14

DC-DC converter Super-capacitor External RTC

MicrocontrollerFRAM

Radio

Initialization

Sleep

Check voltage &
determine off

time MCU

Not connected Connected

MCU off

 BLE Software

 Power saving algorithm

 Checkpointing software

 Timekeeping software

Store
Checkpoint

Send period turn
off time to

external RTC
Turn off MCU

Send data
packet

Receive data
packet

Send
Advertising

packet

Wake up MCU

Restore
checkpoint

Synchronize
clocks

Set radio
frequency

External sensors

(not used)

Solar Harvesting

Figure 4.1: High-level battery-free intermittently-powered BLE system
design: (top) hardware (based on [13] and (bottom) software.

based systems due to the lower complexity. The first challenge of integrating
the intermittent software with BLE is addressed here because the checkpointing
software is integrated with the BLE software and the whole system state will
be stored in FRAM when the MCU will be turned off.

Having a high accuracy clock on BLE devices will reduce the receive window.
The receive window is the time that the BLE radio is turned on while receiving
data. This receive window is determined by both the master and slave clock
accuracy. Ideally the radio should be turned off as much as possible, since
the power consumption of the radio is high. This is why the external RTC
is chosen over the remanence timekeeping, because it has a higher accuracy
clock. The idea, originally proposed by [33], is that the external RTC is always
powered on during operation and can switch the power of the MCU on or off.
The external RTC is always on because it has a long startup time (order of
seconds). The MCU will communicate with the external RTC and determines
when to turn off and for how long. This way the MCU can be turned off
during long connection events or sleep times and wake up in time to commit to
the connection. The timekeeping will be performed by the external RTC and
monitored by the MCU. This way the timing on the external RTC is used as a
reference point to synchronize the internal clock of the MCU. The solution with
the external RTC addresses the second challenge of networking through power
failures.

In order to operate intermittently, two features will be implemented on the
MCU: (i) the MCU will be turned off between connection intervals via the
external RTC and (ii) the MCU must skip multiple connection intervals when
low power is detected to be able to harvest more energy. The assumption is that
the sleep function compared to turning off the MCU will consume considerably

15

more energy. Note that here the connection interval will not be changed, but
some connection intervals will be skipped to reduce the data rate. This is
done because changing the connection parameters requires that the master and
slave device negotiate on the new connection interval. This can take several
connection intervals in order to be negotiated, which is to slow. By skipping
connection intervals data rate is slowed down without the need for changing the
connection interval. Also, BLE does support this feature itself which is called
slave latency (described in Section 3.3.2). Skipping connection intervals will be
different than the slave latency though, since the connection interval skips will be
dynamically determined based on the energy in the system. The slave latency
value is also a connection parameter value, and thus need to be negotiated
between the master and slave device. By skipping multiple connection intervals
the third challenge is addressed by improving beyond BLE.

The implementation of the intermittent BLE connection by turning off the
MCU and skipping connection intervals to save power will add overhead be-
cause of storing a checkpoint, restore the checkpoint, synchronizing clocks and
restoring the time. This is because the storing and restoring of the checkpoint
needs to be done to the external FRAM. Furthermore, with the external RTC
the time must synchronized and mapped to the internal clock on the MCU in
order to make use of the external RTC time. The idea is that the external
RTC will be the main clock of the system where all timing for the BLE stack
will be based upon. To conclude, we preemptively turn off the MCU between
connection intervals instead of waiting for the power to deplete. The advantage
of this approach is that during the power off time the device can harvest energy.
The disadvantage is that there is overhead added to each connection event.

4.2 Assumptions

In this thesis some assumptions are made in order to keep the project man-
ageable. The above architecture will be implemented for a BLE slave device
that will connect to a powered (i.e. non-battery free and non-intermittently-
powered) master device. In addition there will be no fundamental changes
applied to the BLE stack such that the slave device is not compatible with
other BLE master devices. This means that there are no hacks made in packet
structure or changes in certain protocols which need a specific modded BLE
master to be able to connect. Furthermore, the external RTC is the component
that powers the MCU and FRAM on and off. This mean the external RTC
will be continuously powered during the connection. The device and software
implementation is able to maintain the connection intermittent for at least one
hour when powered. This is to ensure that the added intermittent software is
stable.

16

Chapter 5

Implementation

This chapter recapitulates the description of the hardware design we have used
in this thesis (and which was presented first in [13]) and describes the imple-
mentation of the software that maintains timekeeping and time synchronization
to sustain a BLE connection on an energy harvesting device. Section 5.1 de-
scribes the hardware design. In Section 5.2 describes the software design.

5.1 Hardware Design

In Figure 5.1 the photo of the early fabricated board from [13], used by us for
the software implementation in this project, is shown. In the following sections
each component of the presented hardware will be described in more detail.

5.1.1 Power Management

The Nowi NH2D0245 energy harvesting Power Management Integrated Circuits
(PMIC) [46] is a DC-DC converter that extracts the low power output from the
solar panels [65] using a rectifier. It stores this energy in two Seiko Instruments
CPH322A super-capacitors [29] of 11 mF each. The NH2D0245 only operates
at 2.5 V and will therefore not boost anything from the solar panel when the
voltage drops under this value. This means that if the voltage reaches below
this point the whole system will shut down and most likely not recover, since the
super-capacitors will not recharge if the DC-DC converter is disabled. The two
super-capacitors are placed in parallel powering the Ambiq AM1805 external
ultra-low power RTC [1], which is always powered on during operation. The
external RTC switches the power of the EYSKBNZWB BLE module [68]. The
EYSKBNZWB is build around the Nordic nRF52840 Bluetooth System-on-Chip
[43] MCU. The MCU is connected with the Fujitsu MB85RS4MT 512 kB FRAM
[18]. The FRAM is connected to the same power source as the MCU, meaning
that if the MCU is shutdown by the external RTC it also shuts off the FRAM.
Finally an over-voltage protection is added when the voltage from the super-
capacitor is over 3.3 V to protect the internal hardware.

17

Super-
cap

 VBATDC_IN

GND

DC-DC
converter

Solar
panel

External RTC
PSW

FOUTVCC Sync pulse

VCC

MCU

FRAM

SPIGND SPI

GPIO
input GND

QSPI

VCC

QSPI

GND

MCU off time

CheckpointRestore

H

A B

C

D

E F

G

Figure 5.1: Hardware overview of the system used in our implementa-
tion [13]: (top) Photo of the used board (version v1.4): (A) EYSKBN-
ZWB BLE module, (B) SWD 10-pin debug, (C) Fujitsu MB85RS4MT
512 kB FRAM, (D) Ambiq AM1805 external ultra-low power RTC,
(E) Seiko Instruments CPH322A 11 mF super-capacitor [29], (F) Nowi
NH2D0245 energy harvesting PMIC, (G) solar panel connector, (H)
Micro USB power supply. (bottom) Schematic hardware overview of
core elements of the considered hardware.

5.1.2 Microcontroller

The nRF52840 has an 32–bit ARM Cortex-M4 64 MHz processor chosen for the
wide variety of features and power efficiency. The nRF52840 will be further
referred to as MCU. The MCU contains all the necessary peripherals such as
timers and radio to send and receive BLE packets. External FRAM is added to
the system and is connected via the Quad Serial Peripheral Interface (QSPI) to
the MCU and is used to store and restore the checkpoints fast and reliable from
the MCU. Furthermore the MCU is connected to the external RTC via Serial
Peripheral Interface (SPI).

18

5.1.3 External Real-Time Clock

The Ambiq AM1805 external ultra-low power RTC [1] is used for switching the
power of the MCU on/off, time synchronization and timekeeping. The VCC of
both the MCU and FRAM are connected to an power switching output (PSW)
of the external RTC. The MCU can instruct the external RTC to turn the MCU
off (which will also turn off the FRAM) and to turn the MCU on at a given time
value via the alarm feature. The alarm feature is configured such that it will
switch the power switching output when the alarm value is reached. This means
the MCU can determine how long it will be turned off. When the time value has
passed, the external RTC will turn the MCU on again with the power switching
output via the alarm feature. Also, an output of the external RTC is connected
to the General Purpose Input/Output (GPIO) input of the MCU which will be
switched on whenever the synchronization of the two clocks need to occur. This
signal is called the synchronization pulse. More about the functionality of time
synchronization will be described in Section 5.2.3.

5.2 Software Design

The software architecture for intermittently-powered networked systems is illus-
trated in Figure 5.2. The BLE advertising interval is fixed at 2 s and the con-
nection interval at 1 s. These values are chosen because they are large enough
to not deplete the super-capacitors rapidly. When the next connection inter-
val or advertisement is bigger than 250 ms the proposed software architecture
is executed. When this software is executed first the capacitor voltage will be
checked in order to determine if there is enough power in the system or to skip a
number of intervals in order to harvest more power. Then the MCU determines
the next clock synchronization moment and for how long it has to be turned
off. This period is send to the external RTC and used in its alarm feature to
turn the MCU on again. Via the external RTC the VCC of the MCU is then
turned off. With the external RTC alarm feature the MCU will turn on after
this period is over. Then the MCU will boot and run its startup code. After-
wards the checkpoint is restored. The synchronization pulse is set via the alarm
feature on the external RTC and when this signal is received the internal RTC1

will start. Furthermore, the timing and the configuration of the peripherals are
restored such that the radio is ready to be used. The MCU will then sleep until
the connection interval or advertisement occurs. After that the next connection
interval or advertisement is determined again. The proposed software system
also includes intermittent advertisements. However, the focus of this thesis and
the implementation will be on the intermittent connection, so no evaluation of
advertisements are presented here.

In the software architecture presented on Figure 5.2 we can see the BLE
software stack, which includes a light-weight Operating System (OS), which is
described in Section 5.2.1. The contributions in this thesis are split per differ-
ent software sections which are added to the OS: the Checkpointing software,

1On the nRF52840 the timer peripheral is called the Real-Time Counter instead of the
abbreviation: Real-Time Clock (RTC) used in this thesis. However, to keep it simple we use
the same abbreviation for both clocks, while we will precede it with ”internal” and ”external”
to note the difference.

19

Initialization

Sleep

Send advertising
packet on

channel 37, 38,
39

Receive data
packet channel

0 - 36

ConnectedNot
connected

Send data
packet channel

0 - 36

Next interval
≤ 250 ms

Determine Sync.
pulse and MCU

off

Next interval
> 250 ms

Send MCU off
alarm on

external RTC

Turn off MCU
via external RTC

Start up core
functionality

MCU

Restore
checkpoint

Set Sync. Pulse
alarm external

RTC

Start internal
RTC (clocks

synched)

Restore timing
and interrupts

Configure
hardware

peripherals and
set right channel

frequency
RADIO

Check voltage
Supercapacitor

Determine if
number of

intervals need to
be skipped

BLE software stack

Time Synchronization

Checkpointing software

Time Restoring

Custom slave latency

Determine next
radio operation

MCU off

Software parts

Store checkpoint

Wait for Sync.
pulse

Figure 5.2: Software architecture of the intermittent BLE software.
Here the different colors indicate different software parts.

described in Section 5.2.2, Timekeeping, described in Section 5.2.3 and the Con-
nection Interval Adaptation Algorithm, described in Section 5.2.4.

5.2.1 Bluetooth Low Energy Software Stack

The BLE software stack that is used for our implementation is the Packet-
craft Protocol Software [47]. This BLE software stack is a newer version of
the more elaborate documented ARM Mbed Cordio software stack [38]. The
newer version still has all the same core functionalities, but contains BLE ver-
sion 5.2 instead of 5.1. Packetcraft Protocol Software BLE software stack is
chosen mainly for its low-complexity and full accessible code of all the BLE
stack layers. Other considerations were: Zephyr [69], Apache NimBLE [2] and
Nordic SDK [45]. All software stacks worked on the nRF52840 chip. However,
Zephyr and Apache NimBLE implemented both a Real-Time Operating Sys-
tem (RTOS) with a lot of additional features. To be able to store and restore a
RTOS would dramatically increase the complexity of the software. The Nordic
SDK is less complex, but is closed source which does not give access to the link
layer of the BLE stack.

The light-weight OS in Packetcraft Protocol Software is called Wireless Soft-

20

ware Foundation (WSF) and it can be seen as a loop that checks for OS events,
handles timing services and finally sleeps until an interrupt occurs [38]. The
radio operations are interrupt driven and are served with the highest priority.
The software can be configured with two different clocks: (i) high frequency
1 MHz clock that uses the TIMER peripheral or (ii) the RTC peripheral that
uses a 32.768 kHz clock. The latter is the most power efficient and is used for
this thesis.

The original Packetcraft Protocol BLE software stack, downloaded from [47],
will be referred to as the default BLE software, while the developed intermittent
software made for this thesis will be further referred to as the intermittent BLE
software. Note that in the BLE software stack there are different BLE applic-
ations. These applications are slave device applications with different kind of
BLE profiles. For example a fit application that can connect to a master device
which can measure heart rate values or a uribeacon application that advertises
URL links. The developed intermittent software is a modified fit application
with custom software that removes the fit BLE services. For this work only a
custom and empty service is created that will not be used. Furthermore for all
applications (intermittent or default) of the software stack two improvements
are implemented (i) enabling the DC/DC regulator in the MCU to reduce the
power consumption of the radio and (ii) implement CMAKE (written by Jasper
de Winkel, direct supervisor of this MSc thesis) which makes adding multiple
libraries and building the code easier.

5.2.2 Checkpointing Software

The implemented checkpointing software is MPatch [12]. This software was first
presented and used in [11] and then Jasper de Winkel made it compatible for
the nRF52840 MCU for [13]. The nRF52840 compatible MPatch software made
by Jasper de Winkel is used for this thesis. With MPatch certain consecutive
memory regions can be marked as patches. In our design we use these patches
to determine before compilation manually what data in the .bss (statically alloc-
ated variables) and .data (global and static local values) memory regions need
to be checkpointed before the MCU turns off. The less data that needs to be
checkpointed the faster the storing and restoring is. Due to the complexity of
the BLE stack there have not been much work done on defining what memory
regions are critical to checkpoint. This means that more data is checkpointed
than is required in some instances, which results in longer checkpoints and more
power consumption. The main contribution of this thesis is about placing the
checkpoint functions on the correct location in the BLE software stack code.

5.2.3 Timekeeping

The external RTC is used to keep track of the time between power outages of
the MCU and to synchronize with the internal RTC of the MCU. When the
clocks are synchronized and the exact amount of clock ticks are determined the
timing from the MCU can be restored. Synchronization of the clocks is required
in order to accurately know how many clock ticks have occurred in the off time
of the MCU. This accuracy is required to know when the radio should be active
and receive during the connection. In addition having clock tick accuracy will
keep the radio receive window of the slave device small, which will reduce the

21

power consumption. The written synchronization software of the clocks, used
in this thesis, is developed in collaboration with Jasper de Winkel and is also
used in [13]. The time synchronization between the internal and external RTC
and the restoration of timing will be described separately below.

Time Synchronisation

The MCU and the external RTC, which will be synchronized with the internal
RTC after the MCU is booted up. Both the external RTC and the internal RTC
in the MCU are using 32.768 kHz timers. To have both clocks synchronized for
one clock tick on the external RTC one clock tick must also happen on the MCU.
This can be achieved by starting the internal RTC on the MCU exactly when one
clock tick on the external RTC occurs via an interrupt generated by the external
RTC. Unfortunately on the external RTC chip Ambiq AM1805 [1] there are no
registers to read the exact amount of clock ticks of the 32.768 kHz clock. Also
there is no way to switch an output (or to generate) some interrupt on exactly
one clock tick of the 32.768 kHz clock. The only way to read out or set the time
of the clock is in years, months, date, hours, minutes, seconds and hundreds of
a second. This means that hundreds (steps of 10 ms) is the most accurate time
value that can be read or used for features such as an alarm, that can switch an
output from the external RTC when a defined time value is reached (in steps
of 10 ms). There are however time values which can be used to generate an
interrupt that have exact amount of ticks of the 32.768 kHz clock and which
is also divisible by 10 ms. For instance one is second has exactly 32768 ticks,
which is 100 times 10 ms. When we divide this by 4 we got 250 ms with exactly
8192 ticks or 25 times 10 ms. This is the lowest amount of time that is divisible
by 10 ms and has an exact amount of clock ticks from a 32.768 kHz clock. This
means that in intervals of 250 ms the clock can be synchronized with the MCU.
Since the external RTC starts with 0 ticks we know that on every 250 ms interval
exactly 8192 clock ticks have occurred. Note that on every multiple of 250 ms
on the external RTC a synchronization moment is possible for the MCU. This
is why in order to have intermittent operation the next connection interval or
advertisement needs to be bigger than 250 ms.

The MCU will use the alarm feature from the external RTC for two things: (i)
to turn on the power from the MCU (ii) to send a signal (called the synchroniza-
tion pulse) to the GPIO of the MCU that will generate an interrupt to start the
internal 32.768 kHz RTC (which will synchronize the clocks). The alarm time
for when the MCU should be turned on is determined by when the synchroniza-
tion can happen. Thus the MCU must be turned on before the synchronization
pulse. The synchronization pulse is the last synchronization moment before the
connection interval (which is the last multiple of 250 ms before the connection
interval). The time when the MCU is turned on and when the synchronization
happens is fixed at 20 ms and is used for booting the MCU and restoring the
code from the checkpoint. In Figure 5.3 the procedure of the communication
between the external RTC and MCU for time synchronization is shown.

This solution however leads up to additional overhead between the synchroniz-
ation pulse and the connection interval. If, for example, the connection interval
is at 900 ms from the perspective of the external RTC than the last possible
synchronization moment is at 750 ms (the last multiple of 250 ms before the
connection interval). This leaves 150 ms of time between the synchronization

22

MCU External RTC

Set alarm ΔT MCU off &
switch VCC MCU off

8

Wait for ΔT
Switch VCC MCU on

MCU off
for ΔT

7

9
Set alarm ΔP synchronization pulse

Set sync. time

Wait for ΔP
10

Wait for ΔPSend synchronization pulse

Start internal
32KHz RTC

Determine current time at External RTC in
ms:
ΔC

Determine next connection event in ms:
ΔE = ΔC + Next conn. event.

Determine sync. pulse in ms:
ΔP = (ΔE) - (ΔE mod 250ms)

Determine MCU off time in ms:
ΔT = ΔP - 20ms

Request time registers

Send time register values

1

2
3

4

5

6

11

Figure 5.3: Procedure of time synchronization between external RTC
and MCU. Here the ∆C is the current time of the external RTC,
∆E is the next connection interval time projected on the external
RTC time, ∆P the synchronization moment which is the last 250 ms
multiple before the connection interval and ∆T the wake up time for
the MCU which is 20 ms before the synchronization moment such that
the MCU can boot up and restore the checkpoint.

pulse and the connection interval. During this overhead the MCU has to sleep
most of the time to be as energy-efficient as possible. This overhead however can
be reduced by moving the anchor point of the connection interval closer to the
synchronization pulse or vice versa. The anchor point is the starting time of the
connection interval and can be reduced via two methods: (i) changing the clock
speed of the external RTC and (ii) changing the connection interval temporarily
on the MCU. By changing the clock speed of the external RTC to be slightly
faster than the internal RTC of the MCU the synchronization pulse will move
slightly closer to the anchor point of the connection interval. Then also the re-
ceive window of the MCU radio has to be increased due to the more inaccurate
clock. This method works but leaves the radio on for longer at every connection
interval and can take up to 10 minutes in order to reduce the gap significantly,
thus will not be further discussed here. However, changing the connection inter-
val temporarily can reduce the overhead much faster. The MCU is programmed
such that it can detect this overhead and if this overhead is above 150 ms it will
change the connection interval from 1 s to 990 ms. This change in the connection

23

parameters is done from the slave device, which is typically done from the master
device. When the time between the synchronization pulse and connection inter-
val is between 105 ms and 125 ms the connection interval is updated again. This
is because it takes usually about 7 to 8 BLE connection intervals before the con-
nection interval is actually changed. This way the time between the synchron-
ization pulse and the connection interval will be around 25 – 55 ms most of the
time. However, it is required that the master device cannot does not change the
anchor point of the connection interval when the connection interval is changed.
When this method was tested with the nRF Connect app for Android [39] as a
master device it became clear that the Android OS schedules the anchor point
of the connection interval at a random time. This way we cannot predict where
the anchor point will be when we change the connection interval. With the nRF
Connect app for PC [40] as a master device this is predictable and is therefore
used as the master application. Changing the connection interval is usually
done by the master device but the slave device can request a connection para-
meter update via the L2CAP CONNECTION PARAMETER UPDATE REQ
[20, volume 3, page 1069] command. This packet is send with the update request
command along with the new connection parameters: the maximum connection
interval, minimum connection interval, slave latency and supervision timeout.
However, the master device has to accept these new connection parameters,
which will be the case with our master device. The master will then send a
LL CONNECTION UPDATE IND [20, volume 6, page 3035] with the updated
values and the connection parameters are changed at a specific connection inter-
val indicated by the master. With the new feature of changing the connection
interval slightly in order to reduce the time between the synchronization pulse
and the connection interval, there is a bug that sometimes when the connec-
tion interval is changed at the start of the connection, the connection interval
is not updated correctly and the connection fails. This is a bug that has not
been resolved yet and due to the low likelihood of this problem it is not further
investigated.

Time Restoration

Time for state restoration is required in order to accurately determine the next
connection interval after the MCU is turned on. The BLE software will schedule
the next connection interval in the RTC compare register2 after the radio op-
erations are done. When the MCU is turned off all the peripheral registers are
cleared. Also the internal RTC counter value always starts at zero and cannot
be set to another value.

In order to set the right value of the next connection interval after the MCU
is turned on the external RTC is used as the main clock of the system. This
can be done by using the synchronization pulse time and the internal RTC. We
know that when the synchronization pulse occurs the external RTC clock has
an exact amount of RTC ticks and the internal RTC clock will start when the
synchronization pulse occurs. When the synchronization pulse time is converted
to RTC ticks and then added with the internal RTC ticks the total amount of
RTC ticks can be determined. Note that the external RTC has time value
registers that need to be converted to 32.768 kHz RTC ticks. This way, even

2The compare register is a register where a RTC clock tick value can be set which is used
to generate an interrupt or start an event in the software.

24

during power failures when the internal RTC ticks are reset to zero, the MCU
can still determine the total elapsed time. Since the RTC counter value will
always start at zero and cannot be set to another value a compensation value
is used to convert the time on the MCU to the time on the external RTC. The
compensation value is the last synchronization pulse time, where the external
RTC time is converted to internal RTC ticks. Throughout the whole BLE
software stack there is one set of function calls made to the internal RTC to
read out the counter value, to set the compare register value or to read out
the compare register value. By embedding the compensation value in this set
of function calls to the internal RTC functions, from the BLE software stack
perspective, the clocks have not been reset. If, for example, the counter value of
the internal RTC then is required by the BLE software stack, the current internal
RTC ticks are then added to the compensation value. This way when the MCU
has been rebooted the time value that is then returned with the compensation
value will resemble the actual elapsed time value instead of the internal RTC
tick value that starts at zero after the reboot. Note that the internal RTC is a
24 bit counter and thus wraps around the timer.

In this implementation and the results constructed for this thesis there is an
error made in setting the compensation value, where the internal RTC counter
value is added to the synchronization pulse time to construct the compensation
value. This was done in order to have the exact time stamp in RTC ticks in
the function that sets the compensation value. However, if the current RTC
time value is read by the BLE software stack with the compensation value, the
RTC ticks that were added for the compensation value are then added twice
(one time for constructing the compensation value and then added with the
compensation value itself). Since these RTC ticks are one to at most two RTC
ticks this has not been detected during testing and to the best of our knowledge
did not interfere with the stability of the system.

The external RTC has an accurate 32.768 kHz crystal and the error value is
measured at around 10 ppm. When we configure the MCU with the default
20 ppm clock accuracy that is also used for the internal RTC, the radio receive
window will miss the data packet of the master device usually within a minute.
However, when the MCU is configured at 50 ppm the receive window will not
miss the data packet from the master device for more than an hour. This extra
inaccuracy is probably the cause of the conversions that are done from the
external RTC time to the internal RTC time and vice versa. Also, the interrupt
of the synchronization pulse that starts the internal RTC does have a slight
delay which could cause that slight inaccuracy. Finally note that for unknown
reasons when two devices are connected with the intermittent BLE software the
connection times out at around 4000 s. After setting the radio receive window
to the maximum value we excluded the possibility that a clock drift will timeout
the connection. Currently the cause of this problem is not know since it is time
consuming to fix this problem. Therefore this bug is not solved for this thesis.

5.2.4 Connection Interval Adaptation Algorithm

The connection interval adaptation algorithm is implemented such that the data
rate adapts to the VCC voltage level of the MCU. The assumption is that an
intermittent operating BLE device should be aware of the energy budget that
it has. By monitoring the VCC voltage of the MCU (which is connected to

25

the super-capacitors) the MCU is aware of its power budget. This way the
MCU can determine what data rate it want to operate depending on how much
voltage is measured at the super-capacitors. The VCC is chosen, because the
super-capacitor is connected to the VCC of the MCU. The MCU can meas-
ure the voltage with the Successive Approximation Analog-to-Digital Converter
(SAADC) peripheral. The software for the connection interval skips is a mod-
ified version of the slave latency code that was present in the BLE software
stack.

In Figure 5.4 the connection interval adaptation algorithm is presented. First
the voltage of the super-capacitors is read (sample). The first time the algorithm
is executed the starting point of the connection interval skips is determined
(init skips(sample)). The starting points in the init skips function were de-
termined by trial and error. Whenever the super-capacitors were fully charged
via the USB connection, the super-capacitors were charged at 3 V. Since the
voltage measurement of the super-capacitor is done after the connection inter-
val for the intermittent BLE software, the measured voltage is typically around
2.9 V. At the start there are always at least two connection interval skips, this
is because zero connection interval skips has a high power consumption and not
to much power is lost at the start of the measurements. Furthermore, the MCU
will not continue operation when the voltage is measured at around 1.7 V. That
is why at 2.2 V the maximum number of connection interval skips are chosen to
have a buffer for the system to harvest more energy. The other starting point
values between 2.2 V and 2.8 V were spread equally in steps of 0.1 V (except at
2.8 V).

After the initialization the algorithm will always check the sample value to
determine if the skips need to change by checking if the voltage has dropped
or increased by 0.1 V (indicated in blue as v in Figure 5.4). This is done by
checking the old sample value, which is the value that is saved whenever the
skips are changed. The old sample value is checked, because the voltage over
the capacitors increase or decrease gradually. By comparing it with this old value
from when the connection interval skips were changed, we only change the skips
whenever a bigger change occurs (in our implementation at least 0.1 V). This
0.1 V is determined by trial and error and was chosen due to the good balance
between not changing the connection interval to often due to the fluctuation
between measurements and still have an accurate enough measuring range to
detect significant changes. After testing with values bigger than 0.1 V, the
adaptation of the connection interval skips was slow. Especially in a low power
setting where not much energy was harvested a lot power power was wasted
since it had to drop a significant voltage level. Otherwise, when testing with
smaller values than 0.1 V the connection interval skips would change to often
and would sometimes keep changing between two values due to the different
fluctuations in the measured super-capacitor voltage.

When the voltage of the super-capacitor has increased with 0.1 V, there will
be subtracted five (indicated in red as n in Figure 5.4) from the total amount
of connection interval skips with a minimum of zero connection interval skips.
Also, when the voltage of the super-capacitor has decreased with 0.1 V, then
there will be added five (indicated in red as n in Figure 5.4) to the total amount
of connection interval skips with a maximum of 30 connection interval skips.
The number five was chosen since there are six steps of 0.1 V between 2.2 V
and 2.8 V and a total of 30 connection interval skips. Note at line 15 of Figure

26

 1: sample = measure_VCC()
 2:
 3: if (first_check) //only first time this function is called
 4: skips = init_skips(sample)
 5: first_check = 0
 6: old_sample = sample
 7:
 8: if (sample < 2.2V) //low voltage skip max amount
 9: skips = 30
10:
11: else if (sample < (old_sample - v)) //v = 0.1 Volt
12: skips += n // n = 5
13: if (skips > 30)
14: skips = 30
15: if (skips == 0)
16: skips = 1
17: old_sample = sample
18:
19: else if (sample > (old_sample + v) //v = 0.1 Volt
20: skips -= n //n = 5
21: if (skips < 0)
22: skips = 0
23: old_sample = sample
24:
25: return skips

check_battery_level()

 1: if (sample > 2.8V)
 2: skips = 2
 3: else if (sample > 2.7V)
 4: skips = 5
 5: else if (sample > 2.6V)
 6: skips = 10
 7: else if (sample > 2.5V)
 8: skips = 15
 9: else if (sample > 2.4V)
10: skips = 20
11: else if (sample > 2.3V)
12: skips = 25
13: else if (sample > 2.2V)
14: skips = 30
15:
16: return skips

init_skips(sample)

Figure 5.4: Pseudo code for the connection interval skip adaptation al-
gorithm. Here the number of skips (red) ”n = 5” and the voltage of
when the connection interval skips will change depending on the pre-
vious voltage level of when the connection interval skips were changed
is at (blue) ”v = 0.1 V”. The starting point of connection interval skips
in the function ”init skips()” is constructed depending on the values
”n” and ”v”.

5.4, if the connection interval skips are zero and is required to increase, the
connection interval skips is only increased by one. This is done, because when
there is a lot of energy in the system the measured voltage fluctuates heavily
around 0.1 V, which is most likely due to the high data rate that has a high
power consumption from the MCU. Adding this value of one does not make the
connection fluctuate heavily between zero and five connection interval skips, but
between zero and one connection interval skips which improves the data rate
significantly.

The connection interval skips for the connection interval adaptation algorithm
is different from the BLE slave latency, because it can change the number of
connection interval skips depending on the voltage level while the BLE slave
latency is a connection parameter that has to be changed with acceptance from
the master device. In addition, the connection interval skips for the connection
interval adaptation algorithm can skip up to 30 connection interval skips. This
is more than the BLE slave latency, which ranges from zero to (connSupervi-
sionTimeout / (connIntervalMax × 2)) - 1) (for the BLE 5.2 specification [20,
volume 3, page 1071]). This is possible since the maximum super vision timeout
for each connection can be configured to 32 s. If then the connection interval
is set to 1 s, the BLE protocol will allow for 31 connection interval skips of 1 s
to be skipped as long as the last second a data packet is exchanged between
the master and slave. However, operating on these boundaries will reduce the
reliability of the connection. This is why this configuration is typically not re-
commended. In order to improve the reliability of the connection a feature is

27

added to the code that when the connection interval skips is bigger than 15 and
a packet from the master device is not detected at the connection interval, the
slave device will not skip any connection intervals until a packet from the master
device is received. Note that the master device is not aware of the connection
intervals skips and thus will send at every connection interval a packet to the
slave device. The maximum connection interval skips is capped at 30, such that
when at 30 connection interval skips a packet is missed the slave device has as
least 2 more data packets that it can receive from the master device. This way
some additional reliability in the connection is added. The advantages of the
connection adaptation algorithm is that there is no connection update via the
master device required in order to skip a different connection interval and more
connection intervals can be skipped compared to what the BLE 5.2 specifica-
tion slave latency allows. This way more power can be saved when the MCU
is turned off. The disadvantages of the connection adaptation algorithm is that
data packets are delayed, the data rate is low and a less reliable connection
when data rate is very low (more than 15 connection interval skips).

There is however a conflict when during connection skips also the connection
parameters need to be updated. If the master device decides to update the
connection between skips the slave device must consider this change in order
to have the correct timing of the connection intervals. This is done by turning
on the MCU at the connection interval the connection parameter is changed.
This way there do not have to be taken into account two connection intervals
during the skips, which will reduce the complexity. After that the connection
interval adaptation algorithm will determine the skips as explained before. Also
a bug is detected from the default BLE software, where the first four connection
intervals cannot be skipped when the skips are greater than 14. This is fixed by
simply never skip the first four connection intervals.

28

Chapter 6

Evaluation Results

This chapter presents the results of maintaining a BLE connection, timekeep-
ing during power failures and synchronizing time on a solar energy harvesting
device. Section 6.1 describes the setup for the experiments. Section 6.2 presents
the power consumption of the proposed software stack (further referred to as
intermittent BLE software) and the power consummption during a connection
will be compared with the non-intermittent default Packetcraft Protocol Soft-
ware (further referred as default BLE software). Section 6.3 shows a theoret-
ical model that is constructed from power measurements, and will present the
connection interval skip value at which the intermittent BLE software is more
power efficient than the default BLE software. Note that for the default BLE
software the connection interval skips are configured via the BLE slave latency
(described in 3.3.2), while for the intermittent BLE software the connection
interval skips are done by actually skipping connection intervals (as described
in 5.2.4). Furthermore, this section presents an experiment that will test the
previous mentioned model, by comparing the connection time for different fixed
connection interval skips for both the intermittent and default BLE software
in a low light condition. Finally, Section 6.4 presents the experiments of the
connection interval adaptation algorithm under various light conditions and will
show how the connection interval skips will adjust to the light intensity.

6.1 Experiment Setup

In Figure 6.1 the experiment is shown. In this setup a solar panel is placed in a
cardboard box with a controllable Philips Hue white ambient light source [48].
This way the solar panel is shielded from other light sources. The Saleae Logic
pro 8 logic analyzer [51] is connected to the intermittent device and laptop to
trace the status of the radio, the voltage over the super-capacitor (VBAT), the
VCC of the MCU and the voltage of the solar panels (VSOL). The trace of
the Saleae logic pro 8 is debugged on the laptop with the Logic 2 software [52]
version 2.3.37. There are two nRF52 Development Kits added to the setup [42],
one with nRF sniffer [41] version 3.1.0 software that will live capture Bluetooth
packets with Wireshark version 3.4.8, and the second development kit acts as
a programming tool and debugger for the intermittent device. Also the nRF52
Dongle [44] is connected to the laptop and is the master BLE device. This

29

A

B

C

F

H

E

D

G

Figure 6.1: Setup intermittent BLE measurements: (A) the laptop that
is connected to the nRF52 Development Kits, nRF52 Dongle and the
Saleae logic pro 8. Also it runs the Wireshark analyzing tool, nRF
Connect App for PC and the Saleae Logic 2 software, (B) nRF52
Dongle, (C) nRF52 Development Kit (debugging and programming),
(D) nRF52 Development Kit (capturing packets with nRF Sniffer),
(E) Saleae Logic pro 8, (F) the intermittent BLE device, (G) Philips
Hue ambient white lamp, (H) AM-1513CA solar panel.

master device is configured and programmed via the nRF Connect App for PC
[40] version 3.0.0 on the laptop.

For our experiments a custom application is used for both the intermittent
software and the default BLE software. The custom application is a stripped
down version of the heart rate application from the default BLE software and
has one custom service that is not used for these measurements. This way
only empty packets will be exchanged after the service discovery has been done.
Furthermore all the software files are build with debug and UART mode off to
further reduce the power consumption.

6.2 Power Consumption Measurements

The goal of this experiment is to compare the power consumption of the con-
nection interval of the default BLE software with the intermittent BLE software
to determine the overhead and when the intermittent software is more power
efficient than the default software. In order to measure the power consump-
tion the X-NUCLEO-LPM01A (STM32 power shield) [57] is used as a power

30

Default BLE Software
Label Function Time (ms) Energy (µJ)

A Pre-processing 0.56 1.679
B Radio: RX & TX 0.74 7.486
C Post-processing 0.23 0.899

Total 1.53 10.064
Intermittent BLE Software

Label Function Time (ms) Energy (µJ)
D Booting 1.25 42.610
E Startup code 1.85 25.606
F Restoring checkpoint 7.75 91.520
G Sleep: wait for sync. pulse 16.25 40.204
H Restore timing & pre-processing 0.50 2.991
I Sleep: wait for connection interval 35.00 81.738
J Radio: RX & TX 0.81 7.930
K Power saving algorithm 0.46 2.919
L Checkpoint 8.00 86.071
M Post-processing, turn off MCU 0.76 3.639

Total 72.63 385.228

Table 6.1: Power consumption and time of the labels showed in Figure
6.2 of the default BLE software and the intermittent BLE software.

source instead of the solar panel and is configured to power the system at 3 V.
With the X-NUCLEO-LPM01A the current in Ampére and power in µJ can be
measured and monitored with the STM32 Cube Monitor [56] software tool. The
advantage is that with the X-NUCLEO-LPM01A we can accurately measure the
MCU-off current between connection intervals of the intermittent BLE software.
However, the STM32 Cube Monitor tool has a very poor and inaccurate way of
measuring small time values of µs, resulting in less accurate time measurements.

In this experiment the power consumption of fixed connection interval skip
zero and 14 are measured for ten minutes. For the default BLE software the slave
latency is configured on the master with nRF Connect App for PC software. For
the intermittent BLE software the connection interval skips are programmed in
the code. The power consumption of the minimum and maximum connection
interval skips were measured such that with linear scaling all the connection
interval skip values inbetween can be calculated.

In Figure 6.2 the power consumption of a connection interval is shown for both
the default and intermittent BLE software at connection interval skip 0. In Table
6.1 the energy values are given for all events labeled in the figure. The results
show that our implementation of the active part of the intermittent connection
interval takes roughly 47 times longer in time and costs approximately 38 times
more energy at zero connection interval skips. A note of caution is due here
since this is not the power consumption of the whole connection interval that
includes the sleep or off time.

The main advantage of the intermittent BLE software is that it turns off the
MCU between connection intervals. This means that the longer the MCU is
turned off the more power efficient the intermittent solution becomes. In Table

31

Time (s)

149.020 149.080

D
E

F

G

H

I

J

L M

7500

0

Time (s)

A

B

C

K

75.2795 75.2800 75.2805 75.2810

5000

2500

7500

0

5000

2500

149.040 149.060

C
ur

re
nt

 (μ
A

)
C

ur
re

nt
 (μ

A
)

Figure 6.2: Power consumption of an empty connection interval packet
without the sleep/off time: (Top) default BLE software and (Bottom)
Intermittent BLE software. Both measurements were configured with
a connection interval of one second and zero connection interval skips.
The time and energy of the labeled parts are defined in Table 6.1.

6.2 the total power consumption is shown, that includes the sleep or off time, of
connection interval skips zero and 14. It is interesting to observe that with 14
connection interval skips the intermittent BLE software is almost two times
more power efficient. This is primarily due to difference between the default
BLE software’s sleep current at roughly 25 µA, and the MCU-off current of the
intermittent BLE software at roughly 3 µA. Since the longer the MCU is not
active, the more impact this difference will have and this will result in that the
intermittent BLE software eventually will be more power efficient. However,
at zero connection interval skips the default BLE software is almost five times
more power efficient than the intermittent BLE software.

Knowing the power consumption at connection interval skips zero and 14,
we can estimate the power consumption of the connection interval skip values
inbetween. A model is constructed that shows the power consumption of the
connection interval skip values ranging from zero to 14. From this model we
can determine what number of connection interval skips the intermittent BLE

32

Default BLE Software Intermittent BLE Software
Connection

Interval Skips
Time (s) Energy (µJ) Time (s) Energy (µJ)

0 1.000 86.022 1.001 417.108
14 15.019 1110.391 15.017 601.176

Table 6.2: Comparison between the default and intermittent BLE soft-
ware of the power consumption and time at zero and 14 connection
interval skips of the whole connection interval. This includes the sleep
time for the default BLE software and the off time for the intermittent
BLE software.

software is more power efficient than the default BLE software. A model is
chosen over measuring every individual connection interval skip, mainly because
each the measurement took a considerable amount of time (around 30 minutes)
and this was not feasible for 28 measurements.

The connection interval skip values in-between zero and 14 in the model are
determined by applying linear scaling between the measurement from zero con-
nection interval skips and 14 connection interval skips for both the default and
intermittent BLE software. In order to apply the linear scaling correctly, five
random connection intervals per measurement are taken and then for each in-
dividual BLE software part the computation time and power consumption is
determined. Five connection intervals for each measurement was chosen to de-
termine the average value for each individual software part. Furthermore, the
BLE software parts are the functions presented in Table 6.1, the sleep function
between the connection intervals for default BLE software and the MCU turned
off for the intermittent BLE software. Since not all software parts have the
same power consumption per unit of time, the linear scaling is not applied to
the total computation time and power consumption of one connection interval
but to their individual software parts. Then the computation time and power
consumption of all the software parts are added together and each connection
interval skip value is determined. Note that not all software parts have been
applied to linear scaling but only to a few. Most of the software parts, such as
storing or restoring a checkpoint will have a fixed computation time and power
consumption. But there are four software parts identified that will have a vari-
able computation time and power consumption: (i) The radio receive window
for both the default and intermittent BLE software that will increase when the
number of connection interval skips increase, (ii) the time between the synchron-
ization pulse and the connection interval for the intermittent BLE software that
will vary depending on the anchor point of the connection interval, (iii) the
sleep function between connection intervals from the default BLE software that
will increase when more connection interval skips occur and (iv) the MCU-off
time between connection intervals from the intermittent BLE software that will
increase when more connection interval skips occur. The external RTC is al-
ways turned on, also for the default BLE software while the external RTC is
not used. Since this is such a low powered device (100 nA) it is not deducted
from the power consumption calculation due to the negligible impact. Finally to
construct the total power consumption for each connection interval skip the soft-
ware parts with fixed power consumption is added with corresponding variable

33

0 5 10 14
Connection interval skips

200

400

600

800

1000

1200

Po
we

r c
on

su
m

pt
io

n
(

J)

3.33

7.66

11.9

Intermittent BLE software: 250 ms Sync to conn. evt.
Intermittent BLE software: 126 ms Sync to conn. evt.
Intermittent BLE software: 0 ms Sync to conn. evt.
Default BLE software

Figure 6.3: Calculated power consumption for a connection interval of
one second at different connection interval skips of the default and
intermittent BLE software. For the intermittent BLE software the
whole range of the overhead of the time between the synchronization
pulse and the connection interval is added. The blue dots indicate
the intersection between the power consumption of the default BLE
software and the intermittent BLE software at the lowest, middle and
highest overhead from the time between the synchronization pulse
and the connection interval.

power consumption part.

In Figure 6.3 the model of the power consumption for the default BLE software
and the connection interval skips of the intermittent BLE software is shown for
each connection interval skip between zero and 14. In addition the overhead of
the time between synchronization pulse and connection interval is shown ranging
between zero and 250 ms. This shows the variation of which the intermittent
BLE software can run depending on this overhead. The figure shows that in the
most ideal case where there is no time overhead between synchronization pulse
and connection interval with 4 connection interval skips the intermittent BLE
software is more power efficient than the default BLE software.

6.2.1 Key Insights from Power Consumption Measure-
ments

The results of the power consumption measurements show that with 14 con-
nection interval skips at one second connection interval the intermittent BLE

34

software is almost two times more power efficient than the default BLE software
while at zero connection interval skips the default BLE software is five times
more power efficient. In addition, the overhead from the active parts of the
software (not when the MCU is sleeping or turned off) for the intermittent BLE
software takes roughly 47 times longer in time and costs approximately 38 times
more energy at zero connection interval skips than the default BLE software.
The biggest overhead is rebooting, run the startup code, storing and restoring
of the checkpoints, and the idle time between the synchronization pulse and
the connection interval. The overhead could be reduced by choosing an MCU
that boots faster or more power efficient, optimize the startup code (if pos-
sible), operate in FRAM instead of SRAM to remove the overhead of storing
and restoring to external memory, move the anchor point of the connection in
order to reduce the time between the synchronization pulse and the connection
interval, and finally, have an external RTC that can synchronize the clocks in
smaller intervals than 250 ms in order to reduce the time between the synchron-
ization pulse and the connection interval. With the model that is created it is
determined that between four and 12 connection interval skips the intermittent
BLE software is more power efficient depending on the time between the syn-
chronization pulse and the connection interval. This is because the power saved
from the intermittent BLE software by turning off the MCU is more than the
added overhead of intermittent operation and thus will result in a lower power
consumption than the default BLE software. It must be emphasised though
that this result comes from the proposed theoretical model that only depends
on the data from power measurements of the 14 connection interval skips and
the zero connection interval skips for both the intermittent and default BLE
software. In other words, more measurements need to be performed in order to
verify its correctness.

6.3 Connection Time Measurements

The results of the power consumption model, given in previous section, shows
that in theory the intermittent BLE software can be more power efficient than
the default BLE software. In the next experiment presented here this model is
tested in order to determine if the model is correct. This is done by measuring
the total connection time up until the device runs out of energy of both the
default and intermittent BLE software. The goal is to measure for connection
interval skips 0, 5, 10 and 14 the total connection time for both the default and
intermittent BLE software. Two measurements are done for each connection
interval skips and the average is determined. During the experiment, at the
start of each measurement, the voltage in the super-capacitor will be charged
fully via the USB connection. Also, the power supply will remain constant and
the solar panel is placed in a fixed low light setting for all measurements at 300 lx.
The 300 lx value is chosen such that for most configurations the measurements
will not have enough energy to last more than an hour. This is to determine the
total connection time within reasonable time and because there is a bug that
will terminate all connections at around 4000 s. Moreover, 300 lx is a typical
indoor light level for most rooms in a house [3]. Before the connection starts
the USB cable that powers the MCU is removed at the same time the master
device will attempt to connect to the slave device, such that the super-capacitor

35

will approximately have the same voltage at the start of each measurements.

In Figure 6.4 the average connection time for both the default and intermit-
tent BLE software is shown at connection interval skips 0, 5, 10 and 14. It
is interesting to observe that the connection time of the default BLE software
does not change as much when the connection interval skips increased compared
to the intermittent BLE software. At zero connection interval skips the inter-
mittent BLE software has approximately one-tenth of the connection time of
the default BLE software, while at 14 connection interval skips the intermittent
BLE software has approximately double the connection time compared to the
default BLE software. The data from these measurements can be compared with
the model in Figure 6.3. Here we can see the same trend that first the default
BLE software is more power efficient but when the connection interval skips in-
creases the intermittent BLE software becomes more power efficient. From the
measurements it is determined that between 5 and 10 connection interval skips
the intermittent BLE software is more power efficient. This is also what can be
made out of the model. These measurements confirm that the intermittent BLE
software can be more power efficient when the amount of connection interval
skips increases. However, one limitation of this experiment is that a small data
set is used. The connection time for some measurements did vary significantly
for some measurements. For example for the intermittent BLE software at 5
connection interval skips the connection times were measured at 814.478 s and
678.128 s which is 746.303 s average. The variable connection time from the
measurements at the same connection interval skips can be caused by several
factors, such as the voltage in the super-capacitor will never be exactly the
same at the start of each connection. Also for the intermittent BLE software,
the anchor point of the connection interval is different for each connection, which
affects the time between the synchronization pulse and the connection interval.
Finally, during the measurement of the intermittent BLE software at 14 connec-
tion interval skips one measurement failed early at around 1000 s when trying
to change the connection interval. The cause of this problem is not found but
most likely the master device terminated the connection, since the slave device
was advertising afterwards.

6.3.1 Key Insights from Connection Time Measurements

The results of the connection time measurements show that a BLE connection
is maintained for almost an hour at 300 lx and be almost two times more power
efficient than the default BLE software at 14 connection interval skips and a con-
nection interval of one second. The point where the intermittent BLE software
is more power efficient is around 10 connection interval skips. This proves that
the intermittent BLE software is more power efficient from a range of at least
10 to 14 connection interval skips at a connection interval of one second than
the default BLE software. Also small factors can change the connection time
such as, the voltage in the super-capacitor at the start of the measurement will
never be exactly the same value, the solar panel can be slightly moved between
measurements and temperature can influence

36

0 5 10 14
Connection interval skips

0

500

1000

1500

2000

2500

3000

3500

Co
nn

ec
tio

n
tim

e
in

 se
co

nd
s

Intermittent BLE software
Default BLE software

Figure 6.4: Average connection time in seconds for default (orange) and
intermittent (blue) BLE software measured at 300 lx for connection
interval skips 0, 5, 10 and 14.

6.4 Connection Interval Adaptation Algorithm
Measurements

Finally, with two experiments the connection interval adaptation algorithm
(shown in Figure 5.4) is tested, where the device is put under multiple light
conditions in order to determine how the algorithm adapts the connection in-
terval skips to the light intensity. The goal of these experiments are to determine
the effectiveness of the connection interval adaptation algorithm and to determ-
ine if the connection interval adaptation algorithm can increase the connection
time of the intermittent BLE software.

In the first experiment two measurements are done with the intermittent BLE
software, one with the connection interval adaptation algorithm and the other
without the connection interval adaptation algorithm (fixed at 14 connection
interval skips). For both measurements, the solar panel is exposed to a fixed
light scenario of 300 lx. The goal of the first experiment is to determine if the
connection time increases with the connection interval adaptation algorithm
compared to the fixed 14 connection interval skips that was presented in 6.3
and to determine the effect of the connection interval adaptation algorithm
on the VCC voltage. The VCC voltage of the MCU is measured, because
the connection interval adaptation algorithm will select the connection interval
skips based on the VCC voltage of the MCU. The 14 connection interval skips
are chosen, since this was the most power efficient intermittent BLE connection.
Note that by measuring the VCC of the MCU, the voltage of the super-capacitor
is measured.

In the second experiment also two measurements are done with the inter-
mittent BLE software, one with the connection interval adaptation algorithm

37

and the other without the connection interval adaptation algorithm (fixed at
14 connection interval skips). However here for both measurements the solar
panel is exposed to a series of different light scenarios: first four minutes no
light, then four minutes at 100%, then four minutes at 25%, four minutes at
50%, four minutes at 75%, four minutes at 100% and finally no light until the
device will have its power depleted. The goal of the second experiment is to
determine how effective the connection interval adaptation algorithm responds
to increases and decreases in the voltage of the VCC. The extreme light values
were chosen to see changes of the VCC faster in a smaller time window. The
current setup is not very reactive to small light changes at low light strengths,
such as 300 lx, due to the relative big super-capacitors and only one solar panel.
The specific light scenario is chosen for two reasons: (i) to see how the connec-
tion interval adaptation algorithm reacts to sudden changes of the energy input
(at the start no light and then suddenly 100%) and (ii) when the energy input
gradually increases (the increasing steps from 0% to 100%).

For the setup of both experiments the solar panel is placed in a closed card-
board box and the light source is regulated in one of six different scenarios
(depending on the measurement): no light (10 lx), 17% (300 lx), 25% (630 lx),
50% (2550 lx), 75% (3645 lx) and 100% (6565 lx) light intensity. Furthermore,
the lamp can be set to a color scene and is configured in the ”Concentrate”
light scene on the Philips Hue Bluetooth app [49] version 1.34.0, since this was
the brightest light scene that was available. The connection is established from
the master device (nRF52 Dongle) on the nRF Connect App for PC with the
connection interval of one second and zero connection interval skips. Also, the
super-capacitors were fully charged during advertisement and when the connec-
tion request was send the USB power of the intermittent device was unplugged.

The results are constructed by mapping the light strength, connection interval
skips and the VCC of the MCU to the same timeline. The connection interval
skips and the measured voltage of the MCU are retrieved from the intermittent
BLE software. This is possible due to the FRAM that is in the system that
can store these values and can be debugged after the measurements are done.
The light strength is configured manually in the Philips Hue Bluetooth app.
With the logic analyser the voltage of the solar panel, the VCC of the MCU
and the radio events are monitored. This way the light strength can be mapped
to the connection interval skips (for the second measurement). Finally, with
the Wireshark monitoring tool all packets of the connection are monitored and
timestamped. With this data everything can be mapped to one timeline. Note
that during the experiments the connection interval also was changed in order to
reduce the time between the synchronization pulse and the connection interval.
These connection interval skips are not included to the figures since they are
not part of the algorithm and the state of the battery.

In Figure 6.5 the results of the first experiment is shown. The results show
that the connection time with the connection interval adaptation algorithm
has increased with roughly 600 s compared to the fixed 14 connection interval
skips. However, the connection time with the connection adaptation algorithm
most like could be increased, since the voltage of the VCC was at 2.4 V when
the connection was timed out due to the bug described in Section 5.2.3. The
VCC voltage decay with the connection interval adaptation algorithm does not
decrease as much as without the connection interval adaptation algorithm. With
the connection interval adaptation algorithm there is even an increase in the

38

voltage of the VCC at around 2500 s. The voltage drops for the measurement
with the connection interval adaptation algorithm at around 1300 s and 3000 s,
are when the connection interval changes in order to reduce the gap between
the synchronization pulse and the connection interval. This increase the power
consumption, since the data rate is changed here for a short duration. When
comparing both measurements the average connection interval skips with the
connection interval adaptation algorithm is 17.98 compared to 14 for the fixed
connection interval skips. This means that the data rate is lower when using
the connection interval adaptation algorithm. However, the voltage in the VCC
with the connection interval adaptation algorithm does not decline as much
as with the fixed connection interval skips. This is because of the increase in
connection interval skips, since the connection interval adaptation algorithm
can skip beyond the 14 connection interval skips and thus save more power.

In Figure 6.6 the results of the second experiment is shown. The results show
that with the same light scenario the connection interval adaptation algorithm
increases the connection time. This is because of the increased connection inter-
val skips beyond 14 than can be achieved with the connection interval adaptation
algorithm. Also, when comparing the VCC voltage it shows that with the con-
nection interval adaptation algorithm the voltage fluctuates more when the light
is at 100%. This is because the data rate is high here (between zero and one
connection interval skip) that does increase the power consumption significantly.
Furthermore, at around 1000 s the VCC voltage of the connection adaptation
algorithm is at almost 2.5 V compared to the fixed 14 connection interval skips
at around 2.75 V. This is because the connection interval adaptation algorithm
requires to have the voltage dropped in order to increase the connection interval
skips, which takes time and in this case more energy. The average connection
interval skips with the connection interval adaptation algorithm is 18.37, which
is higher than the 14 connection interval skips mainly because of the 30 connec-
tion interval skips at the end of the measurement. However, for the connection
interval adaptation algorithm the connection interval skips adapts to the VCC
voltage of the MCU and thus utilizes the energy more effective by being able to
be more active when the voltage is high in the super-capacitor.

6.4.1 Key Insights from Connection Interval Adaptation
Algorithm Measurements

The results from both experiments show that the connection interval adaptation
algorithm can increase the connection time of an intermittent BLE connection.
This is primarily because the connection interval adaptation algorithm can skip
more connection intervals than the current BLE 5.2 specification allows for at
15 connection intervals (for our implementation 14). When comparing the VCC
of the connection adaptation algorithm measurements with the fixed connec-
tion interval skips measurements, it also shows that the connection adaptation
algorithm can reduce the decay of the voltage in the VCC by increasing the
connection interval skips. This will stabilize the voltage of the VCC, which will
increase the connection time. However, the results also show that the data rate
of the connection can decrease during low light settings due to the connection
interval adaptation algorithm. Furthermore the connection interval adaptation
algorithm can only change the connection interval skips depending on the in-
crease or decrease of VCC voltage. This means that currently the connection

39

0 500 1000 1500 2000 2500 3000

13.5

14.0

14.5
Co

nn
ec

tio
n

in
te

rv
al

 sk
ip

s

0 500 1000 1500 2000 2500 3000
Time (s)

2.00

2.25

2.50

2.75

VC
C

M
CU

 (V
)

(a) Fixed 14 connection interval skips measurement.

0 500 1000 1500 2000 2500 3000 3500 4000

10

15

20

25

Co
nn

ec
tio

n
in

te
rv

al
 sk

ip
s

0 500 1000 1500 2000 2500 3000 3500 4000
Time (s)

2.3

2.4

2.5

2.6

VC
C

M
CU

 (V
)

(b) Connection interval adaptation algorithm measurement.

Figure 6.5: Experiment 1: The connection interval skips and the
voltage of the VCC of the MCU at 300 lx during an intermittent BLE
connection for (top) fixed at 14 of connection interval skips and (bot-
tom) the connection interval adaptation algorithm. The connection
parameters for both measurements is one second connection interval
and zero connection interval skips.

interval adaptation algorithm cannot preemptively reduce the connection in-
terval skips if less energy is harvested, but only when the voltage drops. For
this implementation the VCC voltages are mapped to the connection interval
skips. More ideal would be that the connection interval adaptation algorithm
could also implement the charging or discharging rate of the super-capacitor in
order to change the connection interval skips more preemptively without having
the voltage to drop to a certain level in order to have the maximum amount
of skips. Moreover, the results must be interpreted with caution, since there

40

are only four measurements compared here. More measurements must be done
in order to fully back up the previous described claims. There was chosen for
only a small data set, since these experiments take a considerable amount of
time. Also, the light scenarios are not comparable with real life scenarios and
the connection interval adaptation algorithm might not be suitable for every
application. Finally, with these experiments the goal was to determine if the
connection adaptation algorithm is effective and if the connection time could
be further increased compared to the fixed connection interval skips, which is
shown here.

41

0 500 1000 1500 2000 2500 3000 3500
Time (s)

0

50

100

Lig
ht

 st
re

ng
th

 (%
)

0 500 1000 1500 2000 2500 3000 3500
Time (s)

13.5

14.0

14.5

Co
nn

ec
tio

n
in

te
rv

al
 sk

ip
s

0 500 1000 1500 2000 2500 3000 3500
Time (s)

2.0

2.5

3.0

VC
C

M
CU

 (V
)

(a) Fixed 14 connection interval skips measurement.

0 500 1000 1500 2000 2500 3000 3500 4000
Time (s)

0

50

100

Lig

ht
 st

re
ng

th
 (%

)

0 500 1000 1500 2000 2500 3000 3500 4000
Time (s)

0

10

20

30

Co
nn

ec
tio

n
in

te
rv

al
 sk

ip
s

0 500 1000 1500 2000 2500 3000 3500 4000
Time (s)

2.0

2.5

3.0

VC
C

M
CU

 (V
)

(b) Connection interval adaptation algorithm measurement.

Figure 6.6: Experiment 2: The connection interval skips and the
voltage of the VCC of the MCU at 300 lx during an intermittent BLE
connection with a fixed light scenario (top) fixed at 14 of connec-
tion interval skips and (bottom) the connection interval adaptation
algorithm. The connection parameters for both measurements is one
second connection interval and zero connection interval skips.

42

Chapter 7

Limitations and Future
Work

This chapter describes the limitations and future work for this thesis. In Section
7.1 the limitation of this thesis is described. In Section 7.2 the recommendations
for future work are presented.

7.1 Limitations

In the following subsections the limitations of this project are described.

7.1.1 Maybe Long Term Deployment Need To Be Tested?

The current implementation does not allow for long deployment testing due to
a software bug in the intermittent BLE software (described in Section 5.2.3)
that will timeout the connection at around 4000 s. This timeout does not occur
with the default BLE software and is not related to a clock drifting issue, since
the connection timed out even when tested with the maximum receive window.
Trying to fix the bug was time consuming and the bug is not resolved yet. Most
likely the cause of the bug is due to the intermittent BLE software a variable is
reaching a limit that will cause the timeout.

Also, the Nowi NH2D0245 PMIC DC-DC converter does not operate under
2.5 V, meaning that when the voltage reaches under 2.5 V the harvested solar
energy will not boost the voltage of the super-capacitor. In our experiments this
limitation was not prominent. Note that during the algorithm measurements
the voltage was also under 2.5 V. This is because the voltage is measured by
the MCU after the radio operation is done, and since this requires significant
amount of energy the voltage of the super-capacitor drops temporarily. This
means that the voltage measured by the MCU is typically lower than when
the voltage will be measured when the MCU is turned off. However, for long
term deployment with a lower light intensity the device might never charge the
super-capacitor if the voltage consistently drops under 2.5 V. This need to be
addressed in future implementations by having a DC-DC converter that will
boost at a lower voltage than 2.5 V, otherwise the device is not able to harvest
enough energy.

43

7.1.2 Maybe The Setup Was Limited?

This work did not consider a battery powered device, nor does it make a compar-
ison with a battery-powered device. The comparison between a battery powered
and intermittent powered BLE device does not fit in the scope of this thesis.
Adding a battery to the system instead of the super-capacitor would not change
the way the software operates but only changes how much energy the system
has. Also, a new revision of the hardware had to be made in order to connect
a battery to the system. The most interesting comparison that could be made
with a battery powered device, would be to compare the connection time. How-
ever, due to the connection timeout bug no long term deployment measurements
can be done with battery powered. Hence this is why no batteries were used in
this thesis.

In this work only one solar panel is used for the measurements. The main
reason for this was to not harvest to much energy, such that the connection time
for each measurement is shorted. With shorter connection times the measure-
ments were more manageable and did not exceed the connection timeout bug
value.

7.1.3 Maybe Other Hardware Platform Is Required?

The main hardware components that result in significant overhead are: (i) the
external FRAM, where the checkpoint needs to be stored and restored, (ii) the
external RTC, that adds idle time due to the synchronization pulse. The check-
pointing in this implementation is not optimized since currently all data is stored
from SRAM to FRAM and restored back. Most of this data is not used during
the connection, such as the data used for advertising. Due to the complexity of
the BLE software stack the process of determining what data should be check-
pointed and what data does not need to be checkpointed (since the old data in
FRAM is the same) would take a considerable amount of time. Also this would
only optimize the current application and needs to be maintained for every new
application. A more maintainable solution would be to operate completely in
FRAM, which is not possible on the nRF52840 MCU. This way the overhead of
transporting data from the SRAM and FRAM would be removed, which would
be a considerable amount.

The overhead from the external RTC is that the synchronization time can
happen in intervals of 250 ms and should always happen if the MCU is turned on
before the connection event. This can result in considerable amount of idle time,
where the MCU has to wait for the connection event after the synchronization.
This overhead could be removed by having an external RTC that has the option
of reading out the current clock tick value. Otherwise, an internal RTC on the
MCU that can run separately from the MCU and has the capability of turning
the MCU on or off like the external RTC does. To the best of our knowledge
there is no ultra low power external RTC that has clock tick accurate registers
nor a MCU with an embedded power switching RTC that is also capable of BLE
communication.

44

7.1.4 Maybe Different Software Platform?

In this work the Packetcraft Protocol Software is used to implement intermittent
software, however this was not the most power efficient BLE software stack.
The closed source Nordic SDK is the most optimal BLE software for the nRF
platform. On the current hardware the Nordic SDK with the maximum slave
latency (in this thesis 14 connection interval skips) is not compared with the
intermittent BLE software. This is not done because this was overlooked and
realised at the end of the thesis. Therefore there was no time to test this. Other
considerations of different MCU’s and software stacks were not done, mainly
because the checkpointing system was compatible in ARM environment and a
lot of technical support was available from the partner NOWI for the nRF52840
chip.

7.1.5 Maybe a Hybrid Intermittent Solution Is More Op-
timal?

From the results it is concluded that the most optimal power efficient solution
for the intermittent BLE software is to have a hybrid solution. This hybrid
solution means turning off the MCU bewteen connection events at the data rates
the intermittent BLE software is more power efficient and to put the MCU in
sleep mode between connection events at data rates the default BLE software
is more power efficient. The hybrid solution is most likely an improvement
that is recommended for a future implementation, especially in combination
with the connection interval adaptation algorithm where the data rate changes.
However, currently the hybrid solution is not implemented in the intermittent
BLE software since there was no time to implement this. In this thesis we found
out where the intermittent BLE software is more power efficient than the default
BLE software and how the intermittent BLE software could be improved.

7.1.6 Maybe BLE Protocol Needs Optimization?

A big limitation of the BLE standard is that there are a lot of optional features
available that are not included by default in BLE devices. For this work one
such feature was missing in the Packetcraft Protocol Software stack, which is
the slave initiated anchor point placement [20, volume 6, page 3039]. This is a
feature where the slave device can negotiate with the master device where the
anchor point of the connection event starts. This way the idle time between
the synchronization pulse and the connection event could be reduced without
changing the connection interval. Furthermore, for Android devices the anchor
point placement is always random and is decided by the Bluetooth driver. This
means that for Android devices the current intermittent BLE software would
not work optimally, since the time between the synchronization pulse and the
connection event will always be random depending on how the Bluetooth driver
of Android schedules the anchor point. Thus in order for intermittent BLE
software to work properly, there has to be a BLE standard with guaranteed
features that work on different platforms as well.

Furthermore, the results of the connection interval adaptation algorithm shows
that increasing the connection interval skips beyond the current maximum slave
latency value of 15 (for the BLE 5.2 specification [20, volume 3, page 1071]) can

45

reduce the power consumption. This is beneficial for an intermittent device in
order to harvest more power and continue operation. It is remarkable to see
that in the BLE 4.0 specification the maximum slave latency value could be
theoretically 31 [19] if the supervision timeout is 32 s at a connection interval
of 1 s. Currently nothing is stopping us from having more than 15 connection
event skips event if the current BLE software is version 5.2. Nonetheless, for
intermittent BLE it would be advised that the older slave latency policy would
be made available again, since our data has shown that this could improve the
connection time.

7.2 Future Work

In future work we recommend that the hardware should be further optimized.
Especially by executing the code in FRAM, which will remove the store and
restore overhead. This will require a different MCU and changes in the check-
pointing software. Also, more research must be done about how to synchronize
the external RTC with the internal clock of the MCU. Ideally the synchroniza-
tion pulse should be removed, but this requires a different external RTC than
currently is implemented that is able to access the clock tick values. To the
best of our knowledge no such external RTC is currently available that has ac-
cess to the clock tick values, has power switching capabilities and is ultra low
power. Hence, more research must be done in order to determine if these ex-
ternal RTC’s exist and otherwise this thesis might be an inspiration for future
work to develop this hardware.

Also, the software needs optimization in future work. Currently no hybrid
solution is implemented that combines the intermittent BLE software with the
default BLE software. In future work this hybrid solution should be implemen-
ted and tested in order to determine if this would increase the connection time.
It is expected that the hybrid solution will be effective in combination with the
connection interval adaptation algorithm, since the data rate can vary signi-
ficantly depending on the VCC voltage of the MCU. Finally, the software bug
should be resolved that makes the intermittent BLE software timeout at around
4000 s. This way long term deployment of the intermittent BLE software can
be tested.

Furthermore, the current Packetcraft Protocol Software stack is not the most
optimal software for this MCU. In future work having access to the most op-
timal software is required to have better performance for the intermittent BLE
software. Also, then the intermittent BLE software can be tested against the
state of the art non-intermittent BLE software at different data rates to test how
power efficient the intermittent BLE software is. In addition it is recommended
that the current architecture of intermittent BLE software will be used for ex-
ploring how other networking protocols can operate intermittent. Most of the
principles that were used in this project, such as how the timing is synchronized
and restored can be applied to other networking protocols like Zigbee, Z-Wave,
Wi-Fi and LoRa.

In future work it is recommended that the connection interval adaptation al-
gorithm would be revised. Currently the connection interval skips are mapped
to a specific VCC voltage. This means that only when the voltage drops the
connection interval skips increases. Thus some significant energy is wasted be-

46

fore the power consumption can be reduced. Therefore it would be better if
the connection interval adaptation algorithm would have input from the energy
source to determine the data rate preemptively. This could result in less VCC
voltage drop before the right connection interval skip value is found.

47

Chapter 8

Conclusion

The goal of this thesis was to implement a BLE connection mode on an energy
harvesting sensor with timekeeping and time synchronization in order to main-
tain a connection during power failures. This study has shown that running a
BLE connection intermittently is possible by turning the MCU off between con-
nection events and restoring the operation just in time for the next connection
event. All the timing of the radio operations is mapped to an external RTC and
is controlled by the MCU in order to have timekeeping and time synchroniza-
tion. Furthermore a connection interval adaptation algorithm is implemented
that manages the data rate depending on the measured voltage in the system
by the MCU. Changing the data rate is done by skipping certain connection
events, much like the BLE slave latency.

The results show that the implemented intermittent BLE software can sustain
a BLE connection for more than an hour and can be more power efficient than
the default non-intermittent BLE software at a low data rate of at least one
packet every 10 s or more. Also, at the maximum BLE slave latency measured
of one packet every 14 s the intermittent BLE software is almost two times
more power efficient. Furthermore, with the implemented connection interval
adaptation algorithm it is possible to skip more connection intervals than the
current BLE 5.2 standard allows for. This results in a longer connection time
when the connection interval adaptation algorithm is enabled.

The current implementation of the intermittent BLE software connection has
some hardware and software implications that add significant overhead that still
need to be addressed. For the hardware, mainly the overhead from storing and
restoring all data to external non-volatile memory should be reconsidered. Our
suggestion to remove the overhead of storing and restoring would be to operate
entirely from non-volatile memory. Also, the external RTC currently can only
synchronize in intervals of 250 ms, which results in long idle time when the MCU
is turned on. In future work, more research has to be done on how a different
external RTC could remove the requirement to be only able to synchronize in
intervals of 250 ms. Furthermore, one software implication for intermittent BLE
software is that due to a bug the connection always times out at around 4000 s.
For long term deployment of intermittent BLE connections this must be resolved
in future research.

To conclude this thesis is to the best of our knowledge the first work that shows
that it can maintain a BLE connection intermittent. Also some effort has been

48

made to improve the intermittent BLE connection by introducing a connection
interval adaptation algorithm. This work has shown what the implications of
an intermittent BLE connection is and how further improvements can be made.
The methodology used in this work to run an intermittent connection can be
applied to many networking system and can be an inspiration for any future
works.

49

50

Acronyms

ATT Attribute Protocol. 6, 9, 10

BLE Bluetooth Low Energy. iii, 1–21, 24–40, 42–46, 48, 49

CHRT Cascaded Hierarchical Remanence Timekeeper. 3

CRC Cyclic Redundancy Check. 7

CusTARD Custom Time And Remanence Decay. 3

FRAM Ferroelectric Random Access Memory. 5, 14–19, 35, 38, 44, 46

GAP Generic Access Profile. 6, 11

GATT Generic Attribute Profile. 6, 10

GFSK Gaussian Frequency-Shift Keying. 6

GPIO General Purpose Input/Output. 19, 22

HCI Host Controller Interface. 6, 9

IoT Internet of Things. 1

ISM Industrial Scientific and Medical. 6

L2CAP Logical Link Control and Adaptation Protocol. 6, 9

LL Link Layer. 6, 11

MCU microcontroller. iii, 14–19, 21–29, 31–33, 35, 37–40, 42–46, 48

NFC Near-Field Communication. 11

OS Operating System. 19–21, 24

PHY Physical Layer. 6

PMIC Power Management Integrated Circuits. 17, 18, 43

51

QSPI Quad Serial Peripheral Interface. 18

RF Radio Frequency. 3, 4

RTC Real-Time Clock. iii, 3, 15–19, 21–25, 33, 35, 44, 46, 48

RTOS Real-Time Operating System. 20

SAADC Successive Approximation Analog-to-Digital Converter. 26

SMP Security Manager Protocol. 6, 9, 11

SPI Serial Peripheral Interface. 18

SRAM Static Random Access Memory.. 5, 35, 44

TARDIS Time and Remanence Decay in SRAM. 3

WSF Wireless Software Foundation. 20, 21

52

Bibliography

[1] Ambiq. AM18X5 Real-Time Clock with Power Management
Family. https://ambiq.com/wp-content/uploads/2020/10/

Artasie-AM18X5-RTC-Datasheet.pdf, 2019. Last accessed: Jun.
17, 2021.

[2] Apache. Apache NimBLE. https://github.com/apache/mynewt-nimble,
2021. Last accessed: Jun. 17, 2021.

[3] Archtoolbox. Recommended Lighting Levels in Buildings.
https://www.archtoolbox.com/materials-systems/electrical/

recommended-lighting-levels-in-buildings.html, 2021. Last
accessed: Feb. 08, 2022.

[4] Naveed Anwar Bhatti and Luca Mottola. HarvOS: Efficient code instru-
mentation for transiently-powered embedded sensing. In Proc. IPSN, page
209–219, Pittsburgh, USA, April 2017. ACM.

[5] Luca Buccolini, Paola Pierleoni, and Massimo Conti. Design and energetic
analysis of a self-powered bluetooth low energy speed sensor. In Proc.
EEEIC, pages 1–6, Florence, Italy, 2016.

[6] Bradford Campbell, Joshua Adkins, and Prabal Dutta. Cinamin: A per-
petual and nearly invisible BLE beacon. In Proc. EWSN, page 331–332,
Graz, Austria, 2016.

[7] Riccardo Cavallari, Flavia Martelli, Ramona Rosini, Chiara Buratti, and
Roberto Verdone. A survey on wireless body area networks: Techno-
logies and design challenges. IEEE Communications Surveys Tutorials,
16(3):1635–1657, 2014.

[8] Alexei Colin and Brandon Lucia. Chain: Tasks and channels for reliable in-
termittent programs. In Proc. OOPSLA, page 514–530, Amsterdam, Neth-
erlands, October 2016. ACM.

[9] Alexei Colin, Emily Ruppel, and Brandon Lucia. A reconfigurable energy
storage architecture for energy-harvesting devices. In Proc. ASPLOS, page
767–781, New York, USA, March 2018. ACM.

[10] Jasper de Winkel, Carlo Delle Donne, Kasim Sinan Yildirim, Przemys law
Pawe lczak, and Josiah Hester. Reliable timekeeping for intermittent com-
puting. In Proc. ASPLOS, pages 53—-67, New York, USA, March 2020.
ACM.

53

https://ambiq.com/wp-content/uploads/2020/10/Artasie-AM18X5-RTC-Datasheet.pdf
https://ambiq.com/wp-content/uploads/2020/10/Artasie-AM18X5-RTC-Datasheet.pdf
https://github.com/apache/mynewt-nimble
https://www.archtoolbox.com/materials-systems/electrical/recommended-lighting-levels-in-buildings.html
https://www.archtoolbox.com/materials-systems/electrical/recommended-lighting-levels-in-buildings.html

[11] Jasper de Winkel, Vito Kortbeek, Josiah Hester, and Przemys law
Pawe lczak. Battery-free game boy. In Proc. IMWUT, volume 4, New
York, USA, September 2020. ACM.

[12] Jasper de Winkel, Vito Kortbeek, Josiah Hester, and Przemys law
Pawe lczak. MPatch Checkpoint Library. https://github.com/TUDSSL/

ENGAGE/blob/master/software/libs/mpatch/README.md, 2020. Last ac-
cessed: Jun. 17, 2021.

[13] Jasper de Winkel, Haozhe Tang, and Przemys law Pawe lczak. Connec-
ted despite power failures: Intermittently-powered bluetooth that works,
September 2016. submitted for publication.

[14] TU Delft. Intermittent computing to replace trillions of
batteries. https://www.tudelft.nl/en/stories/articles/

intermittent-computing-to-replace-trillions-of-batteries,
2021. Last accessed: Sep. 20, 2021.

[15] Abdul-Rahman El-Sayed, Kevin Tai, Mohammad Biglarbegian, and Shohel
Mahmud. A survey on recent energy harvesting mechanisms. In Proc.
CCECE, pages 1–5, May 2016.

[16] Ericsson. Cellular networks for massive IoT. https:

//www.ericsson.com/en/reports-and-papers/white-papers/

cellular-networks-for-massive-iot--enabling-low-power-wide-area-applications,
2021. Last accessed: Sep. 20, 2021.

[17] Francesco Fraternali, Bharathan Balaji, Yuvraj Agarwal, Luca Benini, and
Rajesh K. Gupta. Pible: Battery-free mote for perpetual indoor BLE
applications. CoRR, abs/1812.04717:1–4, 2018.

[18] Fujitsu. MB85RS4MT Memory FRAM. https://www.fujitsu.com/uk/

Images/MB85RS4MT.pdf, 2018. Last accessed: Jun. 17, 2021.

[19] Core Specification Working Group. Bluetooth Core Specification: Version
4.0, volume 3, page 77. Core Specification Working Group, 2010.

[20] Core Specification Working Group. Bluetooth Core Specification: Version
5.2. Core Specification Working Group, 2019.

[21] Fredrik Häggström and Jerker Delsing. IoT energy storage - a forecast.
Energy Harvesting and Systems, 5(3-4):43–51, 2018.

[22] Steven Lain Hearndon. An analysis of bluetooth low energy in the con-
text of intermittently powered devices. Thesis, Clemson University, South
Carolina, USA, 2016.

[23] Josiah Hester, Lanny Sitanayah, and Jacob Sorber. Demo: A hardware
platform for separating energy concerns in tiny, intermittently-powered
sensors. In Proc. SenSys, page 447–448, Seoul, South Korea, November
2015. ACM.

[24] Josiah Hester and Jacob Sorber. Flicker: Rapid prototyping for the bat-
teryless internet-of-things. In Proc. SenSys, pages 1–13, Delft, Netherlands,
November 2017. ACM.

54

https://github.com/TUDSSL/ENGAGE/blob/master/software/libs/mpatch/README.md
https://github.com/TUDSSL/ENGAGE/blob/master/software/libs/mpatch/README.md
https://www.tudelft.nl/en/stories/articles/intermittent-computing-to-replace-trillions-of-batteries
https://www.tudelft.nl/en/stories/articles/intermittent-computing-to-replace-trillions-of-batteries
https://www.ericsson.com/en/reports-and-papers/white-papers/cellular-networks-for-massive-iot--enabling-low-power-wide-area-applications
https://www.ericsson.com/en/reports-and-papers/white-papers/cellular-networks-for-massive-iot--enabling-low-power-wide-area-applications
https://www.ericsson.com/en/reports-and-papers/white-papers/cellular-networks-for-massive-iot--enabling-low-power-wide-area-applications
https://www.fujitsu.com/uk/Images/MB85RS4MT.pdf
https://www.fujitsu.com/uk/Images/MB85RS4MT.pdf

[25] Josiah Hester, Kevin Storer, and Jacob Sorber. Timely execution on inter-
mittently powered batteryless sensors. In Proc. SenSys, pages 17:1–17:13,
Delft, Netherlands, November 2017. ACM.

[26] Josiah Hester, Nicole Tobias, Amir Rahmati, Lanny Sitanayah, Daniel Hol-
comb, Kevin Fu, Wayne P. Burleson, and Jacob Sorber. Persistent clocks
for batteryless sensing devices. ACM Trans. Emb. Comput. Syst., 15(4),
August 2016.

[27] Robin Heydon. Bluetooth Low Energy: The Developer’s Handbook, chapter
7–11. Pearson, 2012.

[28] Microchip Technology Inc. Attribute and Data Hierarchy. https:

//microchipdeveloper.com/wireless:ble-gatt-data-organization,
2021. Last accessed: Nov. 14, 2021.

[29] Seiko Instruments Inc. Chip Capacitors CPH3225A. https://www.sii.

co.jp/en/me/datasheets/chip-capacitor/cph3225a/, 2021. Last ac-
cessed: Nov. 11, 2021.

[30] Hrishikesh Jayakumar, Arnab Raha, Woo Suk Lee, and Vijay
Raghunathan. Quickrecall: A hw/sw approach for computing across power
cycles in transiently powered computers. J. Emerg. Technol. Comput. Syst.,
12(1):8:1–8:19, July 2015.

[31] Kang Eun Jeon, James She, Jason Xue, Sang-Ha Kim, and Soochang Park.
LuXbeacon—a batteryless beacon for green IoT: Design, modeling, and
field tests. IEEE Internet of Things Journal, 6(3):5001–5012, June 2019.

[32] Pouya Kamalinejad, Chinmaya Mahapatra, Zhengguo Sheng, Shahriar
Mirabbasi, Victor C. M. Leung, and Yong Liang Guan. Wireless energy
harvesting for the internet of things. IEEE Commun. Mag, 53(6):102–108,
June 2015.

[33] Giannis Kazdaridis, Nikos Sidiropoulos, Ioannis Zografopoulos, Polychronis
Symeonidis, and Thanasis Korakis. Nano-things: Pushing sleep current
consumption to the limits in IoT platforms. In Proc. IoT, Malmö, Sweden,
2020. ACM.

[34] Vito Kortbeek, Kasim Sinan Yildirim, Abu Bakar, Jacob Sorber, Josiah
Hester, and Przemys law Pawe lczak. Time-sensitive intermittent comput-
ing meets legacy software. In Proc. ASPLOS, pages 85—-99, Lausanne,
Switzerland, 2020. ACM.

[35] Xiao Lu, Ping Wang, Dusit Niyato, Dong In Kim, and Zhu Han. Wire-
less networks with RF energy harvesting: A contemporary survey. IEEE
Commun. Surveys Tuts, 17(2):757–789, 2nd Quart. 2015.

[36] Brandon Lucia, Vignesh Balaji, Alexei Colin, Kiwan Maeng, and Emily
Ruppel. Intermittent computing: Challenges and opportunities. In Proc.
LIPIcs, volume 71, pages 8:1–8:14, 2017.

[37] Kiwan Maeng, Alexei Colin, and Brandon Lucia. Alpaca: Intermittent exe-
cution without checkpoints. Proc. ACM Program. Lang., 1(OOPSLA):96:1–
96:30, October 2017.

55

https://microchipdeveloper.com/wireless:ble-gatt-data-organization
https://microchipdeveloper.com/wireless:ble-gatt-data-organization
https://www.sii.co.jp/en/me/datasheets/chip-capacitor/cph3225a/
https://www.sii.co.jp/en/me/datasheets/chip-capacitor/cph3225a/

[38] ARM Mbed. Arm Mbed Cordio. https://os.mbed.com/docs/

mbed-cordio/19.02/introduction/index.html, 2021. Last accessed:
Jun. 17, 2021.

[39] Nordic. nRF Connect for Mobile. https://play.google.com/store/

apps/details?id=no.nordicsemi.android.mcp&hl=nl&gl=US, 2020.
Last accessed: Jan. 29, 2021.

[40] Nordic. nRF Connect for Desktop. https://www.nordicsemi.com/

Products/Development-tools/nrf-connect-for-desktop, 2021. Last
accessed: Nov. 19, 2021.

[41] Nordic. nRF Sniffer for Bluetooth LE. https://www.nordicsemi.com/

Products/Development-tools/nRF-Sniffer-for-Bluetooth-LE, 2021.
Last accessed: Nov. 19, 2021.

[42] Nordic. nRF52 DK. https://infocenter.nordicsemi.com/pdf/nRF52_

DK_User_Guide_v1.3.1.pdf, 2021. Last accessed: Nov. 19, 2021.

[43] Nordic. nRF52840. https://infocenter.nordicsemi.com/pdf/

nRF52840_PS_v1.6.pdf, 2021. Last accessed: Nov. 19, 2021.

[44] Nordic. nRF52840 Dongle. https://www.nordicsemi.com/Products/

Development-hardware/nrf52840-dongle, 2021. Last accessed: Nov. 19,
2021.

[45] Nordic. Software development kit for the nRF52 series and
nRF51 series SoCs. https://www.nordicsemi.com/Products/

Development-software/nrf5-sdk, 2021. Last accessed: Jun. 17,
2021.

[46] Nowi. NH2D0245-004 Energy Harvesting PMIC. https://media.

digikey.com/pdf/Data%20Sheets/Nowi/NH2D0245_Datasheet.pdf,
2021. Last accessed: Jun. 17, 2021.

[47] Packetcraft. Packetcraft Protocol Software. https://github.com/

packetcraft-inc/stacks, 2020. Last accessed: Jun. 17, 2021.

[48] Philips. Hue white ambiance 1-pack E27. https://www.philips-hue.

com/nl-nl/p/hue-white-ambiance-1-pack-e27/8719514328167, 2021.
Last accessed: Nov. 24, 2021.

[49] Google Play. Philips Hue Bluetooth. https://play.google.com/store/

apps/details?id=com.signify.hue.blue, 2021. Last accessed: Nov. 24,
2021.

[50] Benjamin Ransford, Jacob Sorber, and Kevin Fu. Mementos: System sup-
port for long-running computation on RFID-scale devices. In Proc. AS-
PLOS, pages 159–170, Newport Beach, USA, March 2011. ACM.

[51] Saleae. Saleae Logic Pro 8 Analyzer. http://downloads.saleae.com/

specs/Logic+Pro+8+Data+Sheet.pdf, 2018. Last accessed: Jun. 17, 2021.

[52] Saleae. Logic 2 Software Download. https://support.saleae.com/

logic-software/sw-download, 2021. Last accessed: Nov. 24, 2021.

56

https://os.mbed.com/docs/mbed-cordio/19.02/introduction/index.html
https://os.mbed.com/docs/mbed-cordio/19.02/introduction/index.html
https://play.google.com/store/apps/details?id=no.nordicsemi.android.mcp&hl=nl&gl=US
https://play.google.com/store/apps/details?id=no.nordicsemi.android.mcp&hl=nl&gl=US
https://www.nordicsemi.com/Products/Development-tools/nrf-connect-for-desktop
https://www.nordicsemi.com/Products/Development-tools/nrf-connect-for-desktop
https://www.nordicsemi.com/Products/Development-tools/nRF-Sniffer-for-Bluetooth-LE
https://www.nordicsemi.com/Products/Development-tools/nRF-Sniffer-for-Bluetooth-LE
https://infocenter.nordicsemi.com/pdf/nRF52_DK_User_Guide_v1.3.1.pdf
https://infocenter.nordicsemi.com/pdf/nRF52_DK_User_Guide_v1.3.1.pdf
https://infocenter.nordicsemi.com/pdf/nRF52840_PS_v1.6.pdf
https://infocenter.nordicsemi.com/pdf/nRF52840_PS_v1.6.pdf
https://www.nordicsemi.com/Products/Development-hardware/nrf52840-dongle
https://www.nordicsemi.com/Products/Development-hardware/nrf52840-dongle
https://www.nordicsemi.com/Products/Development-software/nrf5-sdk
https://www.nordicsemi.com/Products/Development-software/nrf5-sdk
https://media.digikey.com/pdf/Data%20Sheets/Nowi/NH2D0245_Datasheet.pdf
https://media.digikey.com/pdf/Data%20Sheets/Nowi/NH2D0245_Datasheet.pdf
https://github.com/packetcraft-inc/stacks
https://github.com/packetcraft-inc/stacks
https://www.philips-hue.com/nl-nl/p/hue-white-ambiance-1-pack-e27/8719514328167
https://www.philips-hue.com/nl-nl/p/hue-white-ambiance-1-pack-e27/8719514328167
https://play.google.com/store/apps/details?id=com.signify.hue.blue
https://play.google.com/store/apps/details?id=com.signify.hue.blue
http://downloads.saleae.com/specs/Logic+Pro+8+Data+Sheet.pdf
http://downloads.saleae.com/specs/Logic+Pro+8+Data+Sheet.pdf
https://support.saleae.com/logic-software/sw-download
https://support.saleae.com/logic-software/sw-download

[53] Teodora Sanislav, George Dan Mois, Sherali Zeadally, and Silviu Corneliu
Folea. Energy harvesting techniques for Internet of Things (IoT). IEEE
Access, 9:39530–39549, March 2021.

[54] Cypress Semiconductor. Solar-powered BLE sensor beacon. https://www.
cypress.com/file/280631/download, 2021. Last accessed: Jun. 17, 2021.

[55] Carlo Signer. Batteryless bluetooth low energy communication. Bachelor
thesis, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland,
2017.

[56] STMicroelectronics. Software tool for power and ultra-low-power
measurements. https://www.st.com/resource/en/data_brief/

stm32cubemonpwr.pdf, 2021. Last accessed: Nov. 24, 2021.

[57] STMicroelectronics. STM32 Nucleo expansion board for power consump-
tion measurement. https://www.st.com/resource/en/data_brief/

x-nucleo-lpm01a.pdf, 2021. Last accessed: Nov. 24, 2021.

[58] Sujesha Sudevalayam and Purushottam Kulkarni. Energy harvesting sensor
nodes: Survey and implications. IEEE Commun. Surveys Tuts., 13(3):443–
461, 3rd Quart. 2011.

[59] Philo Tang. Ultra-low-power architecture for wireless internet of things.
Master thesis, Delft University of Technology, Delft, Netherlands, 2021.

[60] Pietro Tedeschi, Kang Eun Jeon, James She, Simon Wong, Spiridon
Bakiras, and Roberto Di Pietro. Privacy-preserving and sustainable con-
tact tracing using batteryless BLE beacons. CoRR, abs/2103.06221:1–11,
March 2021.

[61] Priya Thanigai. FRAMs as alternatives to flash memory
in embedded designs. https://www.embedded.com/

frams-as-alternatives-to-flash-memory-in-embedded-designs/,
2012. Last accessed: Nov. 8, 2021.

[62] Kevin Townsend, Carles Cuf́ı, and Robert Davidson. Getting Started with
Bluetooth Low Energy: Tools and Techniques for Low-Power Networking.
O’Reilly, Sebastopol, USA, 2014.

[63] Alex S. Weddell, Michele Magno, Geoff V. Merrett, Davide Brunelli,
Bashir M. Al-Hashimi, and Luca Benini. A survey of multi-source energy
harvesting systems. In Proc. DATE, pages 905–908, 2013.

[64] Williot. Wiliot platform: IoT pixels. https://wiliot.com/product/

iot-pixel, 2021. Last accessed: Jun. 17, 2021.

[65] Panasonic Electric Works. AM-1513CA Amorphous Silicon Solar
Cell. https://www.panasonic-electric-works.com/cps/rde/xbcr/

pew_eu_en/ca_amorton_solar_cells_en.pdf, 2020. Last accessed: Jun.
17, 2021.

[66] Joel Van Der Woude and Matthew Hicks. Intermittent computation
without hardware support or programmer intervention. In Proc. OSDI,
pages 17–32, Savannah, USA, November 2016. USENIX.

57

https://www.cypress.com/file/280631/download
https://www.cypress.com/file/280631/download
https://www.st.com/resource/en/data_brief/stm32cubemonpwr.pdf
https://www.st.com/resource/en/data_brief/stm32cubemonpwr.pdf
https://www.st.com/resource/en/data_brief/x-nucleo-lpm01a.pdf
https://www.st.com/resource/en/data_brief/x-nucleo-lpm01a.pdf
https://www.embedded.com/frams-as-alternatives-to-flash-memory-in-embedded-designs/
https://www.embedded.com/frams-as-alternatives-to-flash-memory-in-embedded-designs/
https://wiliot.com/product/iot-pixel
https://wiliot.com/product/iot-pixel
https://www.panasonic-electric-works.com/cps/rde/xbcr/pew_eu_en/ca_amorton_solar_cells_en.pdf
https://www.panasonic-electric-works.com/cps/rde/xbcr/pew_eu_en/ca_amorton_solar_cells_en.pdf

[67] Kasım Sinan Yıldırım, Amjad Yousef Majid, Dimitris Patoukas, Koen
Schaper, Przemyslaw Pawelczak, and Josiah Hester. Ink: Reactive ker-
nel for tiny batteryless sensors. In Proc. SenSys, page 41–53, Shenzhen,
China, November 2018. ACM.

[68] Taiyo Yuden. EYSKBNZWB Bluetooth Low Energy 5.0. https:

//www.yuden.co.jp/jp/product/category/module/img/TY_BLE_

EYSKBNZWB_DataReport_V1_0_20190227E.pdf, 2019. Last accessed:
Jun. 17, 2021.

[69] Zephyr. The Zephyr Project. https://github.com/

zephyrproject-rtos/zephyr, 2021. Last accessed: Jun. 17, 2021.

58

https://www.yuden.co.jp/jp/product/category/module/img/TY_BLE_EYSKBNZWB_DataReport_V1_0_20190227E.pdf
https://www.yuden.co.jp/jp/product/category/module/img/TY_BLE_EYSKBNZWB_DataReport_V1_0_20190227E.pdf
https://www.yuden.co.jp/jp/product/category/module/img/TY_BLE_EYSKBNZWB_DataReport_V1_0_20190227E.pdf
https://github.com/zephyrproject-rtos/zephyr
https://github.com/zephyrproject-rtos/zephyr

	Preface
	Introduction
	Related Work
	Bluetooth Low Energy
	Timekeeping for Battery-free Platforms
	Low-Power Devices Powered by Energy Harvesting
	Intermittently-powered Systems
	Intermittently-powered Systems: Hardware
	Intermittently-powered Systems: Software

	Bluetooth Low Energy
	The Bluetooth Low Energy Stack
	Physical Layer
	Link Layer
	Host Controller Interface
	Logical Link Control and Adaptation Protocol
	Attribute Protocol
	Generic Attribute Profile
	Security Manager Protocol
	Generic Access Profile

	Intermittent BLE stack
	Challenges
	Integrating Intermittent Software With Bluetooth Low Energy
	Networking Through Power Failures
	Improving Beyond Bluetooth Low Energy

	Intermittently-Powered BLE Architecture
	Battery-free Intermittently-powered BLE Architecture
	Assumptions

	Implementation
	Hardware Design
	Power Management
	Microcontroller
	External Real-Time Clock

	Software Design
	Bluetooth Low Energy Software Stack
	Checkpointing Software
	Timekeeping
	Connection Interval Adaptation Algorithm

	Evaluation Results
	Experiment Setup
	Power Consumption Measurements
	Key Insights from Power Consumption Measurements

	Connection Time Measurements
	Key Insights from Connection Time Measurements

	Connection Interval Adaptation Algorithm Measurements
	Key Insights from Connection Interval Adaptation Algorithm Measurements

	Limitations and Future Work
	Limitations
	Maybe Long Term Deployment Need To Be Tested?
	Maybe The Setup Was Limited?
	Maybe Other Hardware Platform Is Required?
	Maybe Different Software Platform?
	Maybe a Hybrid Intermittent Solution Is More Optimal?
	Maybe BLE Protocol Needs Optimization?

	Future Work

	Conclusion

