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Editorial 

This eleventh issue of our selective collection 
of reports on the scientific progress in our group is 
in line with the tradition of trying to cover a broad 
range of topics, touching both theoretical aspects 
of identification and control and their application 
to real-world problems. 
Let us specifically mention the external authors that 
appear in this issue of our collection. Zoltán Szabó 
and J ózsef Bokor both from the H ungarian Academy 
of Sciences contributed to a paper on realization the­
ory for system expansions in terms of generalized 
orthonormal basis functions that continues work in 
the identification area. The integration of identi­
fication and control for the design of a micro ac­
tuator, the outcome of a post-doctoral project of 
our former Ph.D. student Raymond de Callafon at 
the University of California at San Diego, is co­
authored by D.H.F Harper, F .E. Talke and Robert 
Skelton (UCSD). A further step towards the exten­
sion of validation techniques for model and uncer­
tainty structures as they appear in robust control 
theory has been taken in a project by our former 
M.Sc. student Michiel Krüger that has been com­
pleted at the University of California at Berkely to­
gether with Kameshwar Poolla (UCB). Our contin­
uing activities in pro ce ss control are represented by 
a paper on the sequential optimization of large-scale 
industrial processes that is co-authored by former 

vi 

M.Sc. student Joris van der Schot and Ton Backx 
(Aspentech). We would particularly like to thank 
these "guest" authors for their contribution to this 
issue. 
The remaining contributions by our Ph.D. students 
and staff members center around activities most of 
which have been previously addressed in this se­
ries: robustness tests for parameter dependent sys­
tems and their application in the controller design 
for a CD-player, the multi-Ievel control of our hy­
draulically driven flight-simulator, the modeling of 
a flexible wind-turbine, and the input parametriza­
tion problem in model predictive control. 

Additional information on the activities of our 
group, as weIl as reprint versions of the papers in 
this and previous volumes of our progress report, 
can be found on our WWW-site: 

www-sr.wbmt.tudelft.nl/sr 

Finally we would like to wish all our colleagues, 
friends and contacts a happy and properous 1999. 

Okko Bosgra 
Paul Van den Hof 
Carsten Scherer 
Editors 

o.h.bosgra@wbmt.tudelft.nl 
p.m.j.vandenhof@wbmt.tudelft.nl 

c.w.scherer@wbmt.tudelft.nl 
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Validation of uncertainty models in the presence of 
stochastic disturbance signals 

Michiel V.P. Krüger§t and Kameshwar Poolla~ 

§ Mechanical Engineering Systems and Control Group 
Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands. 
E-mail: m.kruger@iname.com 
~ Department of Mechanical Engineering, University of California, Berkeley, CA, USA. 

Abstract. In this paper a new procedure is developed for the validation of uncertainty 
modeis. Previous work has been in a deterministic, a probabilistic and even a probabilistic 
- worst-case framework. However, the assumptions made in these approaches limit the 
applicability of the developed methods. Therefore a new, more general validation method 
for uncertainty modeis, also in a mixed probabilistic - worst-case framework, is proposed. 
This method leads to more realistic uncertainty bounds. Numerical results of this methoà 
are encouraging. 

Keywords. Model validation, uncertainty model, stochastic disturbance signal, mixed 
probabilistic - worst-case approach. 

1 Introduction 

During the last decade higher performance demands 
for closed-loop systems resulted in new control de­
sign techniques such as Hoo and robust control 
(Balas et al., 1991; Packard and Doyle, 1993; Zhou 
et al., 1996). Hoo-theory aims at minimization of 
the maximum energy gain between input and output 
signals. Robust control theory extends this concept 
to uncertainty models which consist of a nominal 
model which approximates the relevant dynamics of 
the real system, and a description of the signal and 
model uncertainty. Robust control theory guaran­
tees stability and performance for all systems within 
the uncertainty description. Successful implemen­
tation of the designed robust controller on the real 
system then depends on the ability of the uncer­
tainty model to capture the dynamics of the real 
system. An accurate uncertainty model, suited for 
robust control design, is therefore neccessary. 
Knowledge of the system can be fruitfully used to 

tM.V.P. Krüger was with the Mechanica! Engineering Sys­
tems and Control Group, Delft University of Technology, and 
is now with the Department of Mechanical Engineering, Uni­
versity of California, Berkeley, CA, USA. 
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model a system. However, in many situations accu­
rate knowledge of the system is not available or the 
model becomes too complex to be used for control 
design. Therefore, identification techniques have 
been developed which estimate a (low-order) nomi­
nal model based on IlO-data (Ljung, 1987). 
Once a model has been identified, one question re­
mains: is the model good enough for the purpose 
it was designed for? Validation methods, which 
confront the estimated model with (new) measure­
ments from the real system can answer th is question. 
These methods test whether the postulated model, 
the prior information and the assumptions are con­
sistent with the (new) observed data. A model and 
the priors are not invalidated if there is not hing in 
the data which is in conflict with the model and 
the priors. This, however, does not mean that the 
model and the priors are validated as future mea­
surements may invalidate the model and the priors. 
Strictly speaking it is therefore only possible to in­
validate a model based on observed data. 
As the nominal model is always an approximation 
of the real system, a residu al signal is needed to ac­
count for the observed data. In the classical identi­
fication framework (Ljung, 1987) it is assumed that 



the residual can be modeled as filtered white-noise 
which is uncorrelated with the input signal. Valida­
tion methods in the classical framework, therefore, 
test whether the noise signal, needed to account for 
the observed data, has the properties of an uncor­
related white noise signal. However, these valida­
tion methods can only be applied to one model at a 
time instead of model sets and they are therefore not 
suited for uncertainty models which descibe a family 
of models around a nominal model. This problem 
resulted in validation methods for uncertainty mo­
deIs which can deal with model sets (Poolla et al., 
1994; Smith et al., 1997). These methods, which as­
sume the dis turban ce signal and uncertainty to be 
deterministic and hard-bounded, compute the mini­
mum uncertainty and disturbance signal needed to 
account for the observed data. If the size of the 
disturbance signal and uncertainty are smaller than 
a pre-specified value, the model is not invalidated. 
However, these methods have some significant dis­
advantages as mentioned by Hjalmarsson (1993) and 
Goodwin et al.(1992). First of all, the disturbance 
signal can be worst-case, i.e. highly correlated with 
the input signal, without stating the probability 
that this will occur. Secondly, a hard bound on 
the disturbance signal implies that no outliers oc­
cur. However, in order to account for occasional 
but unlikely large values of the disturbance signal, 
the error bound must be unnecessary large. The 
resulting uncertainty model is therefore often very 
conservative. 
In order to decrease the conservatism in the model 
it was proposed in De Vries (1994) and De Vries and 
Van den Hof (1995) to use a hard-bounded uncer­
tainty description to account for undermodeling and 
a stochastic disturbance signal, which is not worst­
case at all time instants, to account for noise distur­
bances. This approach results in a mixed probabilis­
tic - worst-case model for the real system. However, 
na general validation method, without limiting as­
sumptions such as periodicity of the input signal (De 
Vries, 1994) or LTI uncertainties (Hakvoort, 1994), 
has yet been developed to deal with these mixed 
modeis. In this paper we will present a method to 
solve this problem. 
The remainder of this paper is organized as follows. 
In section 2 the problem is defined in mathemati-

y 

z 

u 
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v 

Fig. 1: Model of the data-generating system 
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cal terms. Section 3 will then discuss an optimal 
model inversion method based on the Kalman Filter 
which will be used to solve the validation problem. 
The main results will then be discussed in Section 4. 
Section 5 will discuss a numerical example. Finally, 
the conclusions will be presented in Section 6. 

2 Problem formulation 

Suppose that an uncertainty model is postulated for 
the real system and suppose that the real system is 
affected by a stochastic disturbance signal which can 
be modeled as a filtered unit-variance white noise 
signal (this is arealistic assumption as every mea­
surement is corrupted by noise). By incorporating 
the noise model in the uncertainty model, we can 
assume, without loss of generality, that the distur­
bance signal is a unit-variance white noise signal. In 
the sequel of this paper we will denote this stochas­
tic disturbance signal with e. 
The uncertainty model then consists of aLTI nom­
inal model M including weighting functions for the 
uncertainty and disturbance signal, an uncertainty 
block D., IjO-data u and y, and an unknown unit­
variance white noise signal e, see Fig. 1. 
The uncertainty D. is assumed to be norm-bounded 
with a block-diagonal structure, 

D. E .à.(r) := {D. = diag(D.l, ... ,D.N) : D.i is 

ni xni, and IID.II ~'Y}. (1) 

Note that no assumptions on the class of the uncer­
tainty are made a priori, i.e. the uncertainty is not 
assumed to be, for example, LTI. The unit balI of 
A. is denoted by 

BA. = {D. E A.(1)}. (2) 

The validation problem for uncertainty models in 
the presence of noise can then be stated as follows: 

Problem 2.1 
Given a perturbation model M, and an I/O-datum 
(u,y) with length N, see Fig. 1, does there exist a 
disturbance signal e and an uncertainty D., where e 
is a unit-variance white noise signal and D. E BA. 
(see (2)), such that, 

where 

y=FI(M,D.)[~] 

Fj(M, D.) = [Mu M12] + 
M21 M22 

[ ~~: ] D.(I - M33D.)-1 [M31 M32 ] 

is the lower LFT of Mand D.. 

(3) 



Fig. 2: The postulated nominal model. 

The model is not invalidated if a unit-variance white 
noise signal e and an uncertainty II~II < 1 can be 
found such that the model can account for the ob­
served data. This problem will be solved in two 
steps which will eleborated in next sections. The 
basic idea is as follows: 

1. Omit the uncertainty ~ which connects z and 
v, see Fig. 2, and estimate signals ê and v such 
that 

(a) y = M [ ! 1 ' i.e. the (ê, v)-pai';8 feM;ble 

(b) IIêl12 + IIvl1 2 is minimized 

(c) ê is a unit-variance white-noise signal 

2. Compute zand determine the minimum value 
of II~II such that v = ~z. 

If II~II > 1 the observed data can not be genera­
ted by the proposed model without violating the as­
sumptions and the model is then invalidated. The 
question how to change the model if it is invalidated 
will not be addressed in this paper. 
In Section 3 we will showhow the Kalman Filter 
(KF) can be used to estimate a feasible (ê, v)-pair 
satisfying l(a) ans l(b). However, in general the es­
timated noise signal ê will not be unit-variance and 
white (l(c)). Therefore a different feasible (ê,v)­
pair must be estirnated. This can be done by using 
a weighting in the KF estimation process. An itera­
tive procedure will then result in which the weight­
ing is updated for each new KF estimation step ac­
cording to the difference between the obtained and 
desired properties of ê until ê becomes unit-variance 
and white. In section 4 we will extensively discuss 
this iterative procedure (step 1 of the validation pro­
cedure). In this section we will also briefly discuss 
step 2. Standard validation techniques, available in 
literature, will be used in this step. A schematic 
picture of the validation process is given in Fig. 3. 

3 Optimal model inversion 

Consider the following problem (see also Fig. 2): 

Problem 3.1 Given an uncerlainty model Mand 
an I/O-datum (u,y) with length N, estimate a dis­
turbance signal ê and an uncerlainty signal v such 

3 

Model M IlO-data u,y 

Step 1 

Compute II~II 
Step 2 

II~II < 1 II~II > 1 
Not invalidated Invalidated 

Fig. 3: Scheme of the validation procedure. 

that the (ê, v)-pair is feasible and IIêll2 + IIvll 2 is min­
imized. 

Minimality with respect to 11 . 112 allows occasional 
outliers in the data without introducing too much 
conservatism. Note that we do not yet impose any 
constraints on the estimated noise signal ê. 
Suppose that the model M is LTI with the following 
state-space description: 

AXk + BuUk + BwWk 

CXk + Duuk + Dwwk 

(4) 

(5) 

with Wk = [ :: ] the output of a stationary white 

noise process. The Kalman Filter (KF) will now be 
used to estimate this unknown signal. The KF acts 
like an observer: 

where x is the estimated state and K is the optimal 
steady-state Kalman Gain. The estimated output 
is then defined by 

(7) 

Now define fI as the error between fi and y, i.e., 

fik = fik - Yk 

CXk + DuUk - Yk (8) 

The signal fI is then the output of a system with 
input signals u and Y and internal state x. Define 
'Yk = E[:~Ïkflk], where E denotes mathematical ex­
pectation. 



A-KC -(Bw - KDw) 

v -1/2C -1/2D 
'Yk -'Yk Wr; w 

Fig. 4: This state-space system maps w into v. 

Fact 3.2 
Suppose that the disturbance signal w is a unit­
variance, white and zero mean signal. The s'ignal 
y is then also white zero mean. So, 'Y;1/2Yk is then 
unit-variance, white, zero mean. 

Upon use of (4), (5) and (6) the state error z = x-x 
can he determined, 

Now define v as the weighted prediction error, 

(10) 

The signal v is thus the output of a system with 
wasinput and z as internal state, see Fig. 4. Now 
define G(q) as the transfer function between the dis­
turbance wand the signalv, i.e., 

v(t) = G(q)w(t) = G(q) [ ~~~~ ] (11) 

with G(q) = [k~O ge(k)q-k k~O gv(k)q-k ]. 

The relation between the disturhance signal wand 
the signal v can then he written as, 

l V(~~~ 1) 1 ~ Tvw l W(~~~ 1) 1 (12) 

where wO = [~n ], N is the length of the data 

record and Tvw E R N x 2N is a lower triangular 
Toeplitz matrix. 

Fact 3.3 
As assumed in Fact 3.2, the disturbanee signal w is 
unit-variance white, and therefore E[ww*] = I. The 
signal v (equation (10)) is by definition white, zero 
mean with E[vv*] = TvwE[ww* ]T:w = I . Therefore 

(13) 

The signals e and vare thus related by (12) to the 
signal v which can he computed. This linear system, 
however, is underdetermined and it has therefore an 

4 

(A-KC)" ('Y;1/2 C ) * 

--- _~ -1/2D )* -(Bw-KDw)* ':tIC w 
v w 

Fig. 5: This adjoint filter computes w from v. 

infinite number of solutions. In order to (in)validate 
the system we are interested in the minimal solution 
to the linear system of equation (12). We therefore 
have to solve the following prohlem: 

minimize 11 ~ 11 such that v = Tvww = Tvw [ ~ ] . 

Upon use of the pseudo-inverse of Tvw and (13) we 
get w = T:w(TvwT:w)-1V = T:wv. Using the ad­
joint filter in Fig. 5 we can compute w from the 
signal v. 

Remark 3.4 In the validation problem w eonsists 
of a stoehastie signal e and an undermodeling signal 
v, whieh is in general not stoehastie. A nonlinear 
filter eould, therefore, be better, but the derivation of 
such a filter for general noise statisties is eonsider­
ably more diffieult. Considerations of eomputation 
and implementation thus compel us to seek a linear 
state estimator. We assume that violation of the 
assumption that w is stochastie hardly affects the 
optimality of the estimated signal w. 

4 Iterative validation procedure 

In this section our main results will be presented. 
We will consider again the system in Fig. 2. In Sec­
tion 3 we explained how a feasihle (ê, 'Û)-pair with 
minimum variance could he constructed. However, 
the estimated noise signal ê will in general not he 
unit-variance white according to our assumption. 
First of all, we will explain how the variance can 
be forced to become 1 with the use of a constant 
weighting. The developed method can then easily 
be extended to a frequency dependent weighting in 
order to guarantee whiteness of ê. 
The residu al r needed to account for the observed 
data is the result of the signals e and v, 

Therefore, there is an infinite set of consistent (e, v)­
pairs. Only one single consistent pair, sufficiently 
small in size, is needed in the validation procedure. 
For each 'Y E [0,IIMïï1rI12] with 'Y = lIell2 there 
exists a signal v('Y) such that IIv(,,()1I2 is minimized 
and such that the (e, v("())-pair is feasible. A trade­
of! curve hetween IIel1 2 and IIvl1 2 can then he made, 



"------'---'=----+-II ell 2 

I = IIell2 II Mi;lrll 2 

Fig. 6: 'Ifadeoff curve between uncertainty and 
noise. 

see Fig. 6. This figure implies that no (e*, v*)-pair 
can be found which is feasible if the point defined 
by (lIe*1I2, IIv*1I2) lies below the curve. 
This plot is a direct extension of the uncertainty 
tradeoff curve as discussed by Kosut (1995). 
The Kalman Filtering procedure will compute a fea­
sible (ê, v)-pair such that the co st function J = 
IIvll 2 + lIêll2 is minimized. The point Olêll2, IIv1l 2

) 

will then lie on the tradeoff-curve. However, in gen-

eral, cov(ê) = 1I~2 =I 1, where N is the number 
of datapoints. Suppose IIêl ll 2 < N . A new feasi­
bIe (ê2,v2)-pair, with lIê2112 > lIêl ll 2 can be esti­
mated if the effect of lIê2112 on J is decreased, i.e. 
J(a) = IIv2112 + a 211ê2112, with a < 1. 
Suppose that a weighting a has been defined (how 
this can be done will be explained later). A new 
system M (a) which consists of the nominal model 
Mand the inverse of the weighting a can then be 
created, see Fig. 7. The KF estimation procedure 
can then be used to estimate a feasible (ê(a), v)-pair 
for M (a). The final step will be the multiplication 
of the estimated noise signal ê(a) with the inverse 
of the used weighting a to get the estimated noise 
signal ê for the original system M, i.e. ê = a-lê(a). 
If the weighting function a is chosen properly, lIêll 2 

will get closer to N. Several updates are of ten re­
quired to get lIê211 = N. This implies an iterative 
procedure to get the desired properties for ê. 
Convergence of the iterative procedure is very im­
portant in order to guarantee that ê becomes unit­
variance. 
In the sequel of this section we will use matrices in­
stead of dynamic systems to describe the relation 

- - - - - - - - - - M(a) , , 
y u 

M e 

z v 
L __________ , 

Fig. 7: New system M(a). 
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between two signais. All the signals will therefore 
be represented in vectors, i.e., e E R NXl , v E R Nxl 

where N is the number of data points. 
The Kalman Filter, applied to the model M(a) (see 
Fig. 7), solves the following problem 

2 

~,~n 11 :e 11 such that r = M* [ ~ ] (15) 

where r E R Nxl is the residual, i.e. r = y - Mllu 
(see Fig. 2), and M* = [M12 M13 1 with M l1 E 
R NxN, M12 E RN xN and MI3 E R NxN alllower 
triangular Toeplitz matrices. 

The vector [ ~ ] in (15) can then be written as: 

[ ~ ] = [ :: ] - [ ~~ ] f (16) 

where [~~] E R 2N xI is a feasible solution to 

r = M* [ ~] and [~~] f is in the null-space of 

M*, with fE RN XI, BI E RN xN and B2 E R NxN. 
Without loss of generality we will assume: 

1. 

[ BI * B2*] [ ~~] = J. (17) 

2. 

[ BI * B2*] [ ~~ ] = O. (18) 

The problem in (15) then results in: 

The optimal solution fOpt to this problem is: 

fOpt [a2B;BI + B~B2rl [aBi Bi] [ ::0 ] 
[(a2 - l)B; BI + IJ -1 [ (a2 - l)Bieo ] . 

(19) 

Define the following cost function: 

J(a) = cov(eopt
) 

= ~ lieo - BJ/opt
l1

2 

= ~ JJ(I-BI[(a2-1)BiBI +Ir\a2-1)B; )eoJJ2 

(20) 



where N is the numher of data points. This expres­
sion can then he rewritten with use of the Matrix 
Inverse Lemma, 

J(a) 

(21) 

The following iterative procedure is used to update 
the cost weighting a: 

(22) 

Now we want to find ä such that J(ä) = 1, where 
J(a) is given hy (21). 

Theorem 4.1 
The iterative procedure given in (22) will converge 
to J(a) = 1. 

Proof: 
Introduce (3 = a 2 and K((3) = [I + ((3 - l)W], 
where W = BIB; and 1- W > o. 

I 4 41 I 2 -21 ak+1 - ä = (3k+1 - (3 

~ le~K((3k)-2QK(t3)-2eol 

where 

This leads then to the following expression, 

(23) 

where 

x = K((3k)-2y 

Y = [(I-2W+W
2
)+ (:::t3) (W-W

2
)] . 

It can he shown that lXI < I. Suhstitution of this 
strict inequa!ity in (23) leads to 

I 2 -21 1 I * - 2 11 2 -21 I 2 -21 (3k+1-(3 < N eoK((3)- eo (3k-(3 = (3k-(3 . 

Therefore it can he concluded that the algorithm 
converges. 0 

Por faster convergence the following relation is pro­
posed to update a in the case that a ~ ä 

(24) 

Again we want to find ä such that J(ä) = 1, where 
J(a) is given hy (21). 
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Theorem 4.2 
The iterative procedure given by (24) will converge 
to J(ä) = 1 ij lak - al < ê and ê is sm all. 

Proof: 
This pro of is similar to the proof of Theorem 4.1. 

o 

The first method (22) will converge for any ao while 
the second method (24) will only converge for ao 
close to ä. The rate of convergence, however, may 
he slower for the first method than for the second 
method. Therefore, we propose the following proce­
dure: 

1. Use (22) in the first iteration steps to hring any 
initial condition ao close to ä. 

2. Use (24) in the following iteration steps to est i­
mate ä in order to increase the rate of conver­
gence. 

The iterative procedure with a constant weighting 
a will only guarantee cov(ê) = 1; however, the spec­
tra! properties of the estimated noise signal ê may 
still he not satisfying. Therefore, instead of a con­
stant weighting a, a frequency-dependent weight­
ing a(w) should he used in the iterative procedure. 
This frequency-dependent weighting should he cho­
sen such that differences hetween the spectral den­
sity of the estimated noise signal ê and the desired 
spectra! density for this signal are eliminated. 
The spectral density <l>x(w) of a signal x is defined 
hy (Ljung, 1987) 

00 

<l>x(w) = L Rx(r)e- iwT (25) 
r=-oo 

where Rx(r) is the autocorrelation function of the 
signal x, 

Rx(r) = Ex(t)x(t - r) . (26) 

In the case that the signal x is a unit-variance white 
noise sequence <l> x (w) = 1. 
The frequency dependent weighting a(w) should 
therefore he updated according to the following it­
erative procedure: 

ao(w) = 1 

a%+1(w) a%(w)F(eiw
) (27) 

where 
(28) 

Por faster convergence the following iterative proce­
dure can he used: 

1 

a%(w)lF(eiW )12. (29) 
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Fig. 8: Data-generating system 

Although convergence has not (yet) been proved for 
this frequency dependent iterative procedure, it has 
been successfully used in several experiments. 
In this new approach with a frequency dependent 
weighting the spectrum of ê is forced to become flat. 
As aresult, chances are much higher that ê is un­
correlated with v and u than in the deterministie 
approach. 
Once a feasible (ê, v)-pair with ê unit-variance and 
white is available (step 1 of the validation proce­
dure) we can continue with step 2 whieh involves the 
computation of the input to the uncertainty ~ (M 
is completely known), and II~II, i.e. the size of the 
uncertainty whieh connects zand v. Knowledge and 
insight in the system can be fruitfully used to choose 
the class of uncertainty (LTI, LTV, static nonlin­
earity, etc.). Several validation techniques (Poolla 
et al., 1994; Smith et al., 1997), depending on the 
class of uncertainty which is assumed, can then be 
used to compute II~II. 

5 Numerical example 

A simple numerical example will be used to show the 
ability of the iterative procedure to recover the used 
e and v signais. The model in this example consists 
of a second order low-pass filter Pnom with a lightly 
damped resonance peak at z = 0.9893 ± 0.0396i, 

[ 
0.9797 -0.0407] [ -0.4469 ] 

Xk+1 0.0407 0.9988 Xk + 0.0445 Uk 

Yk [-0.4469 -0.0445] Xk + 0.0995uk 

disturbed by a filtered white noise sequence and a 
weighted additive uncertainty, which consists of an 
LTV system and a statie nonlinearity N, see Fig. 8. 
The weighting for the uncertainty is given by 

W(z) = 0.4786 - 0.4738z-1 

1 - 0.9048z-1 
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Fig. 9: Estimated signals ê and 'Û and real signals e 
and v. 

and the white noise disturbance signal e is filtered 
by 

H(z) = 0.0153 - 0.0141z-1 

1 - 0.9608z- 1 

The statie nonlinearity is defined as 

N : Vk = atan(100vU 
50 . (30) 

The LTV system consisted of a slowly varying gain 
between -1 and 1. A low frequency input signal u 
and a unit variance white noise signal e were used 
to generate data for the validation .procedure; 4096 
uniformly spaced samples were used. The signals v 
and e' = H(z)e were chosen such that lIe'11 2 

;:::: Ilv11 2
. 

Aim of the first step in the validation procedure is 
to estimate the e and v. The computed size of the 
uncertainty in the second step will be more realistie 
if the real signals e and vare well approximated. 
The initial weighting was constant for all frequen­
des, i.e. ao(w) = 1. For each estimated noise sig­
nal ê the spectral density was computed at 128 uni­
formly spaced frequency points between 0 and 'Ir. A 
fourth order, stabie, minimum-phase (to avoid un­
stabie behavior of M(a)) system F(eiw ) was then 
estimated such that lF(eiw )12 ~ <Pê(W). In the first 5 
iteration steps a(w) was updated according to (27). 
In the next 10 iteration steps a(w) was updated ac­
cording to (29). In this way, the spectrum of ê was 
forced to become (almost) flat. Fig. 9 shows the es­
timated noise and uncertainty signais, resp. ê and v 
together with the real signals e and v. Both ê and 
vare good approximations of the real signals e and 
v. Besides, the cross-correlation between ê and u is 
within the 99% confidence bounds, see Fig. 10. 
Hence, we can conclude that the iterative procedure 
has successfully approximated the real signals e and 
v such that the (ê, v)-pair is feasible without violat­
ing the assumptions on the estimated noise signal ê. 
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Fig. 10: Auto- and cross-correlation of resp. ê and 
ê,u together with confidence bounds. 

6 Conclusions 

In this paper we have made an attempt to solve the 
uncertainty model validation problem in a mixed 
probabilistic - worst-case framework without limi­
ting assumptions on the uncertainty or the input 
signal. For this purpose a two-step method was pro­
posed. The residual signal, needed to repro duce the 
observed data, is separated in a stochastic signal 
e, which accounts for disturbances on the system, 
and a deterministic signal v which accounts for un­
derrnodeling. In the first step a feasible (ê, 'Û)-pair is 
computed such that ê is unit-variance and white. An 
iterative procedure has been developed to achieve 
this. Convergence of this iterative procedure is only 
proved in the case that a constant weighting is usedj 
examples, however , show that this iterative proce­
dure converges also if a frequency dependent weight­
ing, based on the spectrum of ê, is used. In some 
cases uncorrelatedness between ê and u cannot be 
achieved with this frequency dependent weighting 
function . Therefore it is still an open problem how 
to guarantee that ê and u are uncorrelated. 
In the second step standard model validation tech­
niques can be used to estimate IILlII. The model is 
invalidated if the size of the uncertainty is bigger 
than a pre-specified value. 
Solutions to the deterministic validation problem 
are based on convex optimization problems con­
structed directly from IlO-data. As a result these 
methods are limited to 500 to 1000 data samples 
with the current state of the art in optimization and 
computed technology (Smith et al., 1997) . The vali­
dation method for uncertainty modeis, developed in 
this paper, is computationally more attractive and 
is not limited to short data sequences. 
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Abstract. This paper investigates the application of a recently developed gain scheduling 
technique to the control of the radial positioning servosystem in a compact disc (CD) 
player mechanism. In this application the gain of the plant and the disturbances affecting 
it depend on the operating point of the system. We model this situation with a linear 
parametrically-varying (LPV) generalized plant where the performance specifications vary 
according to the operating conditions. Our purpose is to show in how far stability and 
performance can be guaranteed through the design of an LPV controller. 

Keywords. Gain scheduling, Linear Parametic Varying (LPV) control, Linear Matrix 
Inequalities (LMIs), CD player. 

1 Introduction 

Gain scheduling is a technique that allows to syn­
thesize controllers for nonlinear systems using lin­
ear design tools. In many applications, it is known 
how the behavior of a system varies with the oper­
ating points and it is possible to parametrize these 
variations in terms of some variables that can be 
measured on-line. In the classical approach to gain 
scheduling, one linearizes the system around a cer­
tain number of operating points and designes a lin­
ear controller at each point. In a subsequent step, 
all these locallinear controllers are" glued" together 
by means of some interpolation algorithms to get a 
global one, valid over the whole operative range. As 
a main drawback of this procedure there are no gen­
eral recipes to perform the interpolation step in such 
a way that stability and performance can be guar­
anteed. Furthermore it is not clear what properties 
of the linear controllers enforce a desired specifica-

tThis paper was presented at the 6th IEEE Mediterranean 
Conference on Control and Systems, June 9-11, 1998, Al­
ghero, Italy. Copyright of this paper remains with World 
Scientific Publishing. 

§The research of Marco Dettori is sponsored by Philips 
Research Laboratories, Eindhoven, The Netherlands 
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tion for the global one. A more recent approach to 
gain scheduling is based on LPV techniques (Apkar­
ian and Gahinet, 1995; Helmersson, 1995; Packard, 
1994; Scorletti and El Ghaoui, 1995; Wu, 1995). In 
this framework it is possible to systematically de­
sign a family of linear controllers scheduled on the 
operating point without the need for interpolation 
procedures. It has been shown that the synthesis of 
an LPV controller results in a convex optimization 
problem that can be solved using Linear Matrix In­
equalities (LMIs). In this paper we apply the full 
block scalings LPV techniques presented in Scherer 
(1997) and Nijo et al. (1996) to the control of a 
CD player mechanism. The model of th is system 
exhibits a gain that depends nonlinearlyon the po­
sition of the track that is being re ad on the disco 
Furthermore the disturbances acting on the system 
are described as periodic signals with harmonic com­
ponents at the (time-varying) rotational frequency 
and its multipies. The need for a scheduling is there­
fore twofold: to account for gain variations and to 
get adaptive disturbance suppression. 



2 Theory overview 

In this section we recapitulate briefly the theoreti­
cal background. For a more complete discussion we 
refer to Scherer (1997). 

2.1 From nonlinear to LPV systems 

There are no general recipes to transform a nonlin­
ear system into an LPV. In this subsection we want 
to sketch one of the possibilities, without being too 
rigorous from a mathematical viewpoint. Consider 
a nonlinear system of the form 

x = a(x,ql)+bl (x,qdw+b2(x,qdu 

Z = cdx, qd + dl (x, qdw + d2(x, qdu (1) 

y c(x, qd + d(x, ql)W 

where x is the state, w an exogenous input (distur­
bance to be rejected andjor reference to be tracked), 
u the control input, Z the performance output, y the 
measured output and ql E III is an unknown param­
eter that affe cts the system description. If x = 0 is 
an equilibrium of the system, that is a(O, qd = 0, 
Cl(O,ql) = 0 and C(O,ql) = 0 for all ql, it is possible 
to rewrite (1) as: 

x = A(x,qdx+Bl (x,qdw+B2(x,ql)U 

Z = Cl (x, qdx + Dl (x, qdw + D2(x, ql)U 

y C(X,ql)X + D(x,qdw 

where A(.), B l (.), B2 (.), Cl (.), D l (.), D2 (.), C(.) 
and D(.) are smooth matrix valued mappings. To 
transform the nonlinear system into an LPV sys­
tem, we replace the occurrence of the state x(t) in 
the system matrices with a time-varying parameter 
q2(t). With p = (ql, q2)' we obtain 

x = A(P(t»x + Bl(p(t»w + B2(p(t»u 

Z = Cl (P(t»x + Dl (P(t»w + D2(p(t»u (2) 
y = C(p(t»x + D(p(t»w. 

It is obvious that this replacement introduces con­
servatism: disregarding the coupling between x and 
p, (2) admits a larger set of trajectories than (1). 
On the ot her hand, we get two advantages. First, 
we can make use of the existing systematic design 
techniques for (2). Second, a controller that guar­
antees stability and performances for (2) does it as 
well for (1). In some cases it is known that the state 
trajectories of (1) satisfy a bound like x(t) E Il2 

for all t ~ O. Then the design specifications for (2) 
should be achieved only for pet) E Il = III X Il2 . The 
starting point in LPV control design is the charac­
terization of performance for (2) in terms of a Lya­
punov function. In this paper we choose the L 2 

induced gain from w to z as performance measure. 
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It is known that (2) is exponentially stabie and has 
L2 gain smaller than "I if there exists a Lyapunov 
matrix X > 0 that satisfies the strict bounded real 
lemma 

[ 

A(p)' X + X A(P) 
Bl(P)'X 

Cl(p) 

XBl(P) Cl(p), 1 
-"11 Dl (P)' < 0, 'lip E Il. 

D 1 (P) -"11 

In order to get rid of the parameter dep enden ce, as 
an alternative to gridding techniques, a set of ex­
tra variables is introduced that are called scalings. 
These variables code the information about the pa­
rameters through quadratic inequalities. The pas­
sage from the analysis inequalities in terms of X 
and the scalings to the synthesis inequalities is then 
performed as described in Scherer et al. (1997). 

2.2 LPV synthesis: problem formulation 

The dependence of the system (2) on the parameter 
pEIl is supposed to be such that we can represent 
it as linear fractional transformation (LFT): 

[ ! 1 = [:1 c;~ ~: ~ 1 [ :1 1 ' W2 = ~(P)Z2 Z2 H2 F21 F2 E2 W2 
Y C Dl D2 0 u 

(3) 
where Wl -+ Zl is the performance channel and 
~ : Il -+ R kxl is a continuous, possibly nonlin­
ear function. The value set of ~(.) is assumed to 
be contained in a convex set with finitely many ex­
treme points: ~(Il) C conv{~I, ... , ~q}. It is well 
known that in case of rational dependence on p of 
the system matrices in (2), one can obtain the LFT 
representation (3) with the linear function 

(4) 

and shift and rescale the parameter set to 

Il = {(Pl, ···,Pm) : -1 '5:. Pi '5:. 1 'liJ = 1, ... ,m}. 

In robust control design, the parameter pis consid­
ered unknown and the goal is to find an LTI con­
troller that stabilizes and achieves performances for 
the system (3) for every pEIl. In LPV design, the 
parameter p is still considered a priori unknown, 
but on-line measurable. This extra information is 
then used in the controllaw. In this framework, the 
structure of the controller is assumed to be the same 
of the plant (3): an LTI part K 

[
Xc] [A Bel Be2] 
u = Cel Del De12 
Ze Ce2 De21 De2 [ ~] (5) 



scheduled with 

(6) 

where .6.e is a ke x Ze real matrix-valued function. 
We can recast this problem in the standard robust 
control set-up, just representing the controlled sys­
tem as an augmented LTI part 

:i; A G1 G2 0 B 0 
Zl Hl F1 F12 0 El 0 

H2 F21 F2 0 E2 0 
0 0 0 0 0 I 

(7) 
Z2 = 
Ze 

y C Dl D2 0 0 0 

We 0 0 0 I 0 0 Ze 

scheduled as 

and interconnected with the LTI controller (5) . As 
the only difference, also .6.e (.) is a design variabie. 
The synthesis problem for the chosen performance 
specification amounts to finding an LTI controller 
(5) and a scheduling function (6) such that, for all 
parameter curves p : [0,00) -+ ll, the closed loop 
system is exponentially stabie and has minimal L 2 

induced gain from W1 to Zl . Notice that in this prob­
lem formulation the rate of change of the parameters 
is not taken into account. Hence a possible a pri­
ori knowledge of the boundedness of this rate cannot 
be brought into the design what is another potential 
source of conservatism. 

2.3 LPV synthesis: solution 

The discussion of the theory behind the LPV syn­
thesis problem is beyondthe scope of this paper and 
we refer again to Scherer (1997). In what follows 
we will only present algorithmically the sequence of 
steps that have to be performed to design an LPV 
controller. As mentioned before, the first step is 
the introduction of scalings to code the information 
about the parameters. In Scherer (1997) it is as­
sumed that the set of admissible parameters is de­
scribed through a set of symmetric matrices 

p = [~ ~] with Q < 0 (9) 

that satisfy the constraint 

[ .6.r) ]' p [ .6.r) ] > 0 for all p E ll. (10) 

Notice that, due to the assumption .6.(ll) C 
conv{.6.1 , ... , .6.q }, the constraint (10) is implied by 

[ ~j r p [ ~j ] > 0 for all j = 1, ... , q (11) 
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that allows to parametrize the scalings with a fi­
nite number of linear matrix inequalities. In the 
literature other choices for the set of scalings can 
be found. In Scorletti and El Ghaoui (1995) the 
scalings are restricted to have block diagonal struc­
ture Q = diag( Q1, ... , Qm) < 0, R = -Q and 
S = diag(Sl, ... , Sm) with S + S' = 0 or even S = 0 
like in Apkarian and Gahinet (1995). The choice of 
the full-block scalings (9),(10) comprises the other 
ones what can reduce the conservatism in the solu­
tion of the synthesis problem. On the other hand, 
this choice increases the number of variables of the 
problem and can create problems in numerical im­
plementations. Once a set of scalings has been cho­
sen, the algorithm proceeds as follows: 

• Partition the scalings as 

Q [ Q1 
Q~2 

Q12 ] 
Q2 

8 [ 81 

821 
812 ] 
82 

(12) 

R = [ Rl 
R~2 

R 12 ] 
R2 

according to that in (8). 

• Find, if feasible, X, Y, Q1, Rl, Sl, Q1, Rl, Sl 
that minimize 'Y subject to the LMI constraints: 

sy(XA) XGl H~ XG2 +mS~ H~Rl 

* -,J F{ F~lSi F~lRl 

* * -,J F12 0 

* * * Ql + sy(SlF2) F~Rl 

* * * * -Rl 

sy(AY) Gl YH~ ym+G2 fh G2Ql 

* -,J Fi F~l 0 

* * K' m 
-,J F12S1 H2Ql 

* * * Rl +sy(HSd F~Ql 

* * * * -Ql 

Ql < 0, [ ~j ] I [~t ~:] [ ~j ] > 0 

Rl < 0, [~j r [~t ~:] [~j ] > 0 

for all j = 1, ... , m, where Kn and Km are basis 
matrices of the kemels of 

[B' 0 E~ 0 E~], [C Dl 0 D2 0] 



and sy(A) := A' + A. This is a standard 
LMI problem that can be solved with available 
solvers, like LMILAB (Gahinet et al., 1995). 

• Define 

[ 
-Ql SI] - [Ql 81] 

M:= Sl -Rl ,M:= 81 Rl . 

Suppose that M - M-l is nonsingular (what 
can always be achieved by a small perturbation 
since the synthesis inequalities are strict). Find 
adecomposition (M _M-l)-l = JAJ' where J 
is orthogonal and A = diag(Al , -A2 ) with Al > 
o and A2 > O. Denote by kc and ie respectively 
the number of positive and negative eigenvalues 
of A. 

• Define 

Z:= [O~;l ], Z:= [ O~~J (13) 

and calculates matrices Tl and T2 of respec­
tively kc and ie columns such that 

T{(A - J' Z'(Z' MZ)-l Z' J)Tl > 0 
T{(A-J'Z(Z'MZ)-IZ'J)T2 < 0 

• Set T := [Tl T2), N := JT, L := J' AJ and 
calculate the missing blocks of the full scalings 
(13) from 

• Calculate matrices fj, Wand "ti from 

[ q ~].= [ Q _ SR-IS' SR-l]-l 
W' V' R-IS' _R- l · 

and partition them as in (13). 

• The required scheduling function ~e is then 
given as 

~e(P) := -W2 + 

[ -, - ] [ (h "''1 + ~(P)] [WI2] 
U12 W21 (W1 + ~(P))' VI V12' 

• It only remains to design the LTI part (5) of 
the controller. This can be done as a nomi­
nal design for the extended plant (7) with the 
quadratic performance specification 

1
00 

[ :: 1 '[ T ~ :1 ~ 1 [ :: 1 dt ~ 0 
Ze 0 S 0 R Ze 

along the lines of Scherer et al. (1997). 
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3 Application to the CD Player 

A Compact Disc (CD) player is an optical device 
that decodes and repro duces binary coded informa­
tion. The information signal is stored in a spiral 
shaped track on a reflective disc which rotates by 
effect of a turn-table DC-motor. The rotational fre­
quency varies according to the position on the disc 
of the track that is being read, approximatively from 
8 Hz (innermost position) to 4 Hz (outermost posi­
tion). Track following is performed by a radial arm 
at the end of which an optical element is mounted. 
A diode in th is element generates a laser beam which 
is focused in a spot on the information layer of the 
disco A system of four photodiodes provides po­
sition error information, which is the only signal 
available for contro!. A controller is needed for ac­
curate radial and vertical positioning of the laser 
spot. In this paper we will consider only the radial 
loop. From frequency domain identification exper­
iments and curve fitting techniques we estimated a 
model of the transfer function H (s) from the current 
which drives the arm to the position error. Due to 
the geometry of the arm, the gain of H varies in a 
nonlinear way according to the position on the di sc 
of the track that is being read. Through identifi­
cation experiments at several track positions, the 
gain profile of fig. 1 has been estimated as func­
tion of the radial displacement r from the center 
of the di sc (Dötsch, 1998). In this way we get a 
model of the system that is in the LPV form (2) 
with r as parameter. The main control specifica­
tion is to keep the time domain amplitude of the 
position error signal bounded in the presence of dis­
turbances. To avoid loosing track, the maximum 
allowable error should be O.Ij.tm. The major source 
of disturbances is given by the eccentricity of the 
track that, by standardization of Compact Discs, 
cannot exceed 100j.tm. Hence the controlled system 
should achieve a time domain attenuation of the dis­
turbances of a factor 1000. The information about 
the physical origin of the disturbance signalleads us 
to model its spectrum as a series of pulses centered 
around the rotational frequency and its higher har­
monics, with an amplitude that is decaying at a rate 
-40 dB/dec. Due to the variation of the rotational 
frequency during operational conditions, the loca­
tion of this pulses will vary in time. In the current 
controller implementation for audio players, distur­
bance suppression is achieved by pushing down the 
amplitude of the sensitivity function in the whole 
frequency band where they can occur. As a rule of 
thumb, the objective is achieved when the sensitiv­
ity has amplitude below -60 dB up to the rotational 
frequency. The field of use of the CD mechanism, 
however, is being gradually extended to new appli-



10' 10' 
Frequency [Hz] 

Fig. 1: Nominal amplitude of H(jw) together with 
its normalized gain as function of the radial 
displacement 

cations, like CD-ROM or DVD-ROM, that require 
a faster data readout and a shorter access time, to­
gether with a higher density of the data on the disco 
These improvements are achieved by an increase of 
the rotational frequency of the disc to 30 Hz. In this 
case, a uniform attenuation of the sensitivity func­
tion below -60 dB up to 30 Hz would result in an 
untolerable increase of the bandwidth. The presence 
of high-frequent resonant modes (due to flexibility of 
the mechanical structure) and unmodeled dynamics 
puts un upper bound on the achievable bandwidth. 
Therefore we suggest to selectively suppress the dis­
turbances only at the frequencies where they are 
present, and to schedule this suppression with the 
on-line-measured rotational frequency. 

3.1 LPV model 

As it emerges from the preceding discussion, in the 
CD player there are two features that dep end on the 
operating conditions: the gain and the location of 
the disturbance spectrum. Both these variations can 
be parametrized in terms of one parameter, namely 
the rotational frequency. The variation of the gain 
in fig . 1 can, in fact, be related to the rotational fre­
quency frot through the expression 21T frot = vs/r, 
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where V s is the constant linear velocity at the scan­
ning point. The variation of the disturbance loca­
tion is not a phenomenon that is intrinsic to the 
plant, but it can be brought into the design via 
scheduling the weighting functions . This can be seen 
as an extension of the concept of gain scheduling: it 
is not only a way to adapt to parametric variations 
of the plant, but also a tooi to impose a different 
specification for every operating point. As an ad­
vantage of the generalized plant set-up, scheduling 
of the system and of the performance filters can be 
done exactly in the same fashion, just by "puIling 
out the deltas" from the combined state space re­
alizations and writing it as an LFT representation 
like in (3). In our design we chose as performance 
filter the series connection of two notches 

W
1 

(8) = 8 2 + 2(zW08 + W5 8
2 + 4(zW08 + 4W5 

8
2 + 2(pW08 + W5 8

2 + 4(pW08 + 4w5 

where Wo = 21T frot is the scheduling parameter. The 
values (p and ( z are chosen in order to obtain a good 
trade-off between disturbance suppression (related 
to the notch height) and robustness against inaccu­
rate positioning (related to the notch width). It is 
interesting to mention that in our experience the nu­
merical solvability of the synthesis LMI is strongly 
related to the shape of the notches: when we choose 
for very sharp notches ((p = 0.1 and (r = 10) the 
solver is not able to assess feasibility. This can be 
due to numerical problems generated by poles too 
close to the imaginary axis. Another possible expla­
nation can be in the present design method which 
does not account for the rate of variation of the pa­
rameter. Asking for the instantaneous positioning 
of a very selective notch can be a too severe require­
ment. The analysis of this phenomenon will be a 
subject of further research. We would like to men­
tion an alternative approach that consists in using 
the intern al model principle in place of the perfor­
mance weightings. The relation between the two 
approaches will be analyzed in forthcoming work. 
A second weighting function W2 (8) has been used 
to enforce high-frequent roll-off of the controller for 
robustness issues. An LFT representation (3) for 
the generalized plant has been determined where 
6.(p) = pI is of si ze 8 x 8 and the performance 
channel Wl ~ Zl of size 2 x 2 is defined through 
the standard weighted PS IK S problem. The per­
formance specification of minimizing the L 2 gain of 
this channel ad mits the intuitive interpretation of 
Hoo loop-shaping, according to the chosen weights, 
of the closed-loop transfer functions for "frozen" 
value of the parameters. Obviously, this frequency­
domain interpretation is meaningful only in the case 
of "slowly" time-varying parameters. 



3.2 Results 

We designed controllers for several values of the 
dam ping coefficients (p and ( z in order to find the 
best trade-off between the amount of disturbance 
suppression and the admissible interval of variation 
of the rotational frequency. For the choice (p = 0.2 
and (z = 2 we got a controller that achieves expo­
nential stability and an L2 gain of 2.18 for frot E 
[25H z, 35Hz]. Five different plots of the sensitivity 
function and the corresponding controller for the 
five "frozen" values frot = 25,27.5,30,32.5, 35H z 
are plotted respectively in figures 2 and 3, from 
which we can clearly see that the controller does 
effective adaptive notch placement. However, 

102 10' 
Frequency [Hz] 

Fig. 2: Amplitude of the sensitivity function for five 
"frozen" values of frot 

Fig. 3: Amplitude of the designed controller for five 
"frozen" values of frot 

the significative test of the design should be done 
through time-domain simulations (or even better 
real implementation) that include also the transient 
effects. In fig. 4 the position error signal correspond­
ing to a track disturbance w(t) = sin(27rfrot(t)t + 
ePi) + 0.25 * sin(47r frot(t)t + eP2) is shown, where ePi 
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Fig. 4: Disturbance (above) and corresponding er­
ror signal (below) for linear variation of frot 

and eP2 are random initial phases. 
In this simulation frot varies linearly from 25 Hz at 
t = 0 s to 35 Hz at t = 0.1 Sj the linear variation 
of the rotational frequency is the characteristic of 
the sequential reading mode of the CD, although 
here it is assumed to be much faster for simula­
tion purposes. We can see that the error signal re­
mains in the prescribed amplitude bound. Finally, 
we have plotted in fig . 5 the position error signal 
corresponding to the same disturbance w(t) when 
frot undergoes a step variation from 25 Hz to 35 Hz 
at t = 0.005 s. This behavior corresponds to the 
command of track jumping in the CD. After tran­
sient effects, the controller brings the error back into 
the desired range in about 7 milliseconds. 

4 Conclusions 

In this paper we have shown that LPV-based gain 
scheduling techniques can be used to successfully 
design a controller that improves the performance 
of the CD player mechanism, accomplishing the 
requirements of the new high-level applications in 
a broad interval of the (increased) rotational fre­
quency. To this end we used the concept of gain 
scheduling not only as adaptation to plant varia­
tions, but also as a tooI to impose performance spec-
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Fig. 5: Disturbance (above) and corresponding er­
ror signal (below) for step variation of frot 

ifications that dep end on the operating conditions. 
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performance of systems that depend rationallyon uncertain parameters on the basis of the 
so-caUed fuU block S-procedure. The use of this tooI allows us to derive in a straightfor­
ward manner the analysis inequalities for robust stability and robust performance in the 
presence of time-invariant and/or time-varying parameters. Furthermore, in the resulting 
tests we have the flexibility to search for the existence of an affine parameter-dependent 
or a rational parameter-dependent Lyapunov function. In the first case, the analysis 
problem is convex and, through the use of a general class of scalings, we get sufficient 
conditions which are shown to be less conservative than existing alternatives. In the sec­
ond case, the analysis problem is not convex, but the use of a D-K type iteration can lead 
to improvements of the results compared to the affine case. 
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1 Introduction 

A fundamental issue in control design is to assess 
to what extent stability and performance proper­
ties of a (controlled) system can be guaranteed in 
face of uncertainty or variations of the system pa­
rameters. A lot of research effort has been devoted 
to the investigation of this problem. One of the 
main approaches is based on the application of Lya­
punov's stability theory and it has led to the no­
tions of quadratic stability and affine quadratic sta­
bility for systems whose stability can be proven via 
aquadratic Lyapunov function that is, respectively, 
constant or affinely dependent on the parameters. 
With the recent developments in the field of semidef­
inite programming, this approach has become very 
attractive also from a computational viewpoint. In 
Boyd et al. (1994) the search for a Lyapunov func­
tion that assesses robust stability or performance 
of systems affinely dependent on parameters has 

tThe research of Marco Dettori is sponsored by Philips 
Research Laboratories, Eindhoven, The Netherlands. 
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been cast in an LMI framework. This line has 
been further developed in Fu and Barabanov (1997), 
Gahinet et al. (1996), Feron et al. (1995). In the lat­
ter paper the authors represent the parametric un­
certainty through quadratic inequalities and make 
use of the standard S-procedure (Boyd et al., 1994) 
to arrive to stability tests expressed in terms of a 
certain class of scalings. 
This paper aims to show that using a generalization 
of the S-procedure we arrive at stability (and perfor­
mance) conditions which are expressed in terms of 
a more general class of scalings, leading to less con­
servative results. Furthermore, our criteria do not 
apply only to system that are affinely dependent on 
the uncertain parameters, as usually considered, but 
can also handle rational dependence. As an extra 
novelty, we address the search for aquadratic Lya­
punov function which depends rationally on the pa­
rameters. This search is based on an algorithm that 
is reminiscent of the D-K iteration (see e.g. Zhou 
et al. (1996)). FinaUy, we illustrate our results by 
numerical examples. 



2 Notation 

Throughout the paper we use bold face letters to 
indicate sets; for instance 6 is a set and 15 its gener ic 
element. With 6 = conv(60 ) we denote that 6 is the 
convex huIl of 60' With I we indicate the identity 
matrix of unspecified size, while In is an identity 
matrix of size n x n. Given the matrices M1, .. . ,Mk , 

we indicate with diag(Ml, ... , Mk) the matrix 

( 
~' ~2 .~ ) . 

o 0 Mk 

We use the following notation for an LFT represen­
tation: 

:Fl (( ~~ I~; ),M)= FA+FBM(I - FDM)-lFc 

and we say that the LFT is well-posed when I -
FDM is nonsingular. Sometimes, to avoid writing 
huge formulas we denote an inequality like M'T M < 
o with (* )'T M < O. Finally we use the term scalings 

either referring to the matrix P = ( ~ I ~) or to 

its blocks Q, S and R . 

3 The set-up 

Consider the uncertain system: 

x = A(8)x, x(O) = Xo (1) 

where the parameter vector 8 belongs to the set 
6 = {c5 = (c51, ... ,8k ) : 8j E [~j,Jj], j = 1, .. . ,k} . 
Without loss of generality we assume that the pa­
rameter values are shifted in such a way that the 
nominal value corresponds to c5 = 0, hence 0 E 6. 
Notice that 6 is the convex huIl of the finite set 
6° = {c5 = (c51 , ... ,8k): 8j E {~j,Jj}, j = 1, ... ,k}. 
In this paper we focus on rational parameter­
dependence that allows to represent the describing 
matrix as a linear fractional transformation (LFT): 

where ,ó,A(.) is a linear mapping Rk -t Rlxq. It 
is important to notiee that the image of 6 under 
,ó,A (.) is nothing but the convex huIl ofthe set ..6. ~ = 
{,ó,A(c5) : 8 E 6°}. 

4 Main result 

By standard Lyapunov theory, the uncertain system 
(1) is asymptotically stabie if and only if there exists 
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a symmetrie matrix function X (15) on 6 such that for 
allc5E6: 

X(c5) > 0 (2) 

A(8)' X(c5) + X(c5)A(c5) < 0 (3) 

The latter inequality can be equivalently rewritten 
in the form: 

( 
A(c5) ) I (0 I) ( A(c5) ) 
X(c5) I 0 X(c5) < 0 for all 15 E 6 

(4) 
that is more suitable to derive our results. 
We cannot solve the problem at this level of gen­
erality, because standard algorithms do not allow 
to solve functional inequalities directly. We should 
therefore impose a structure on X(8) in order to 
arrive at inequalities on matrix unknowns. Further­
more, condition (4) imposes an infinite number of 
constraints on the unknowns. 
In this paper we try to search for a rational X (15). 
This amounts to searching for the coefficients in the 
LFT representation: 

where ,ó,x(8) = diag(81I, ... ,8kI) is block diago­
nal and, hence, ,ó,x(c5) E conv(..6.~), with ..6.~ = 
{diag(81I, .. . , c5kI) : 8j E {~j,Jj} , j = 1, .. . ,k}. 
This assumption is needed to enforce the symmetry 
constraint on X (8) what will be subject of discussion 
in the next sections. Notice that the often consid­
ered affine dependence on the parameter is just one 
special case where X D vanishes. 
Generalizing the result of Feron et al. (1995) we can 
show that the positivity condition (2) is automat­
ically implied by the inequality (3), provided that 
the LFT representation (5) is well-posed: 

Lemma 4.1 Ij the system (1) is nominally stable 
(i.e. stable lor 15 = 0) and I - XD,ó,x(8) is non­
singular lor all 8 E 6, (3) implies X(c5) > 0 lor all 
15 E 6. 

Proof: Condition (3) for 8 = 0 and nominal 
stability imply X(O) = XA > O. Suppose that, 
by contradiction, there exists a J E 6 such that 
X(J) is not positive definite. Since 6 is pathwise 
connected, there exists a continuous curve c5(t), 
t E [0,1], with 8(t) E 6 for all t E [0,1], 15(0) = 0 
and 15(1) = J. The hypothesis of well-posedness 
implies continuity of X(c5(t)). Consider now the set 
T = {t E [0,1) : X(8(t)) is not positive definite}. 
By hypothesis, this set is non-empty and bounded; 
hence to = inf T is finite. We claim that X (8 (to)) is 
positive semidefinite but not positive definite. Sup­
pose that, by contradiction, there exists an Xo such 



that the function J(t) = x~X(J(t))xo is negative in 
t~: by continuity there exists a non-empty interval 
(to - €, tol where J(t) is negative, contradicting to 
being a lower bound of T. Therefore X(ó(to» 2: o. 
Suppose now that X(ó(to» > 0: by continuity 
there exists a non-empty interval [to, to + €) where 
X(J(t» > 0, contradicting to being the largest lower 
bound of T . Having proved the claim, we conclude 
the existence of an i such that X(Ó(to))i = 0 which 
contradicts (3) . Hence X(Ó) > 0 for all Ó E ö. 

The key-point of our result consists in the ap­
plication of the full block S-procedure (Scherer, 
1997) to the inequality (4). Roughly speaking, the 
full block S-procedure is a tooI which allows to 
eliminate parameter dependenee in a certain class 
of matrix inequalities through the introduction of 
scalings. Let us recall this result in our setting: 

Lemma 4.2 (Full Bloek S-Proeedure) . 

Suppose F(ó) = :Fl ( ( ~ I ~~ ) , ~(Ó») and T is 

a symmetrix matrix. Then for all Ó E Ö 

F(Ó)'T F(ó) < 0 and I - FD~(Ó) is nonsingular 

ij and only ij there exists a symmetrie sealing 

(~ ~) su eh that 

and 

Notice that (6) and (7) ensure the well-posedness of 
the LFT representation of F(ó). The inequality (6) 
is independent from the parameters which only con­
strain the scalings through (7). Ideally one has to 
determine the set of all scalings that satisfy (7) and 
check whether there is one element in this set for 
which (6) holds. Unfortunately, the exact descrip­
tion of this set is in general hard, if not impossible. 
This is the reason to work with subsets that ad­
mit traetabie descriptions. Obviously, the smaller 
the subset, the smaller the freedom to satisfy (6). 
Among the various possibilities for the choice of this 
subset, let us point out two important cases: 

• If ~(ó) has the specific structure ~(ó) = 
diag(ó1I, ... , ÓkI) (what can be always supposed 
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without loss of generality) one can choose the 
subset of the block-diagonal scalings described 
by: 

Q diag(Ql, ... ,Qk) <0, R= - Q 

S diag(Sl, ... , Sk), Sj + Sj = 0 

where the partition is the same as that of ~(ó). 
The structure of this class of scalings is tailored 
to make the constraint (7) automatically satis­
fied. On the other hand, the number of scalar 
variables is kept relatively low what leads to 
fast computations. 
This class of scalings is the one considered in 
J.L theory (the D and G scalings) and has been 
also used in Feron et al. (1995) to search for a 
parameter-dependent Lyapunov function. 

• A larger subset of all the scalings that satisfy 
(7) can be implicitly parametrized by a finite 
number of inequalities: 

( ~;Ó) )' (~, ~) ( ~;Ó) ) > 0 'dó E 80 

(8) 

In order to let (8) imply (7), an extra concavity 
constraint should be imposed on Q what intro­
duces conservatism. The simp lest constraint to 
think of is Q < o. A less conservative condition 
is based on partial concavity arguments and can 
be formulated as follows: represent ~(ó) as 

k 

~(ó) = L ójRjLj 
j=l 

with matrices Rj, Lj of fuIl column, row rank 
respectively. Then it suffices to rest riet Q as: 

RjQRj < 0, for j = 1, ... , k (9) 

Clearly this second class of scalings, full bloek, 
comprises the block-diagonal class as a special 
case. As aprice to pay for reducing conser­
vatism, the number of scalar variables is largely 
increased, slowing down numerical computa­
tions. 

In implementing the tests to be presented, one has 
the flexibility to choose the class of scalings which is 
more suitable, based on conservatism against com­
putational efficiency considerations. We stress the 
fact that even in the case of block-diagonal scalings, 
our results are new in that they allow to treat also 
nonlinear (rational) parameter-dependence of A(ó) . 
To apply the full block S-procedure to the in­
equality (4), we have just to replace F(ó) with 



( A( óy X (óy )'. It is easily seen that this func­
tion admits the LFT representation 

( A(Ó) )=:fi((:A ~ iB) (~A(Ó) 0 )) 
X(ó) l CD 0 ' 0 ~x(Ó) 

Xc 0 XD 

We arrive at the following result 

Lemma 4.3 There exists a funetion X(Ó) = 
XA + XB~x(Ó)(I - XD~X(Ó))-l Xc whieh sat­
isfies (4) il and only il there exist lour matrices 
XA,XB,XC,XD and a symmetrie sealing 

(10) 

sueh that l or all Ó E Ö 

(11) 

and 

* Ol 0 0 0 0 A B 0 

* 10 0 0 0 0 XA o X B 

* 00 Ql Q12 81 812 0 1 0 < O. 
* 00 Q~2 Q2 821 82 0 0 I 

* 00 8~ 8~1 Rl R12 C D 0 

* 00 8~2 8~ Rb R2 Xc 0 XD 
(12) 

As we can see, (12) is not convex in XA, XB, Xc, XD 
and the scalings together. F'tuthermore we should 
impose the constraint that X(Ó) is symmetrie. We 
will do this in the next two section, separating the 
case in whieh we seek for an affine function X (ó), 
from the case in whieh we seek for a genuine LFT 
function. In the first case we will obtain an LMI 
test, while in the second we will propose D-K-like 
iteration. 

5 Search for affine X (b) 

If we examine (12), we ob serve that the left hand 
side is affine in the unknowns if keeping Xc and XD 
fixed. This motivates the choiee for a Lyapunov ma­
trix of the structure X(Ó) = Xo + Ó1Xl + ... + ÓkXk, 
where the Xj, j = 0,1, ... , k are n x n symmetrie 
matrices. The LFT representation then reads as: 

X(Ó) = Fl ( ( ~A I~B) ,~x(Ó)) (13) 
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where XA = X o, X B = (Xd ... IXk) and V = 

(Inl .. ·IIn )'. 
We observe that this parametrization of the affine 
X (ó) can be inefficient from a computational view­
point, requiring each diagonal block of ~x (ó) to 
be n x n, irrespecti ve of i ts 'original' si ze in ~ A ( Ó) . 
Nevertheless, in this way we ensure symmetry of the 
Lyapunov matrix while keeping Xc = V fixed . 
Substituting the expres sion (13) in (12), we arrive 
at the following result: 

Theorem 5.1 The uneertain system (1) is asymp­
totieally stable lor all Ó E Ö il there exist two matri­
ces XA and XB, and a symmetrie sealing P ol the 
structure (10) that satisfies (11) and 

* Ol 0 0 0 0 A B 0 

* 1 0 0 0 0 0 XA o XB 

* 00 Ql Q12 81 812 0 1 0 < O. 
* 00 Q~2 Q2 821 82 0 0 I 

* 00 8~ 8~1 Rl R12 C D 0 

* 00 8~2 8~ Rb R2 V 0 0 
(14) 

6 Search for rational X (&) 

A first problem is to impose the symmetry 
constraint on X(ó) = XA + XB~x(Ó)(I -
XD~X(Ó))- l Xc. Due to the block diagonal struc­
ture of ~x(ó), the constraints XA = X A, XB = Xc 
and XD = Xi:> would ensure symmetry of X(Ó). 
These requirements are, however, too strong. This 
can be seen, for instanee, by considering the case of 
affine dependenee X(Ó) = XA + XB~X(Ó)XÉ: the 
coefficients of the scalar Ój 's are forced to be positive 
semidefinite. A possibility to overcome this prob­
lem is to choose a Lyapunov matrix of the structure 
Z(ó) = X(ó) + X(Ó) ' . In this way the symmetry 
is automatically ensured, at the price of increasing 
the size of the ~ block by a factor two. In fact, the 
LFT representation of Z(ó) is: 

r(I
XA 

+ X A 
XB Xc) (~x(Ó) 0 )~ 

Z(8)=FI\ ik ~D i
b

' 0 ~x(8)~ ' 
(15) 

Substituting this expression in (12) we can formu­
late the following theorem 

Theorem 6.1 The uneertain system (1) is asymp­
totieally stable lor all 8 E Ö il there exist lour ma-



triees XA, XB, Xc, X D and a symmetrie sealing 

p= 

Q1 Q12 Q13 SI S12 S13 
Q~2 Q2 Q23 S21 S2 S23 
Q~3 Q~3 Q3 S31 S32 S3 

S~ S~l S~l Rl R 12 R 13 
S~2 S~ Sb ~2 R 2 R 23 
S~3 S~3 S~ R~3 R~3 R3 

su eh that for all 8 E ~ 

and 

* 
* 
* 
* 
* 
* 

* 
* 
* 
* 
* 
* 
* 
* 

p 

.6. A (8) 0 0 
o .6. x (8) 0 
o 0 .6. x (8) 
I 0 0 
OIO 
OOI 

>0 

Ol 0 0 0 0 0 0 
10 0 0 0 0 0 0 
o 0 Q1 Q12 Q13 SI S12 S13 
o 0 Qb Q2 Q23 S21 S2 S23 
o 0 Qb Q~3 Q3 S3l S32 S3 
o 0 S~ Sh Sh Rl R 12 R13 

o 0 S~2 S~ Sb R~2 R 2 R 23 
o 0 Sb S~3 S~ R~3 R~3 R3 

A B 0 0 
XA+XA 0 XE Xc 

0 I 0 0 
0 0 I 0 < O. 
0 0 0 1 
C D 0 0 

Xc 0 XD 0 
X' B 0 0 X' D 

(16) 

(17) 

In the inequality (17) cross-products between the 
scalings S and Rand the variables XE, Xc and 
XD appear, rendering the problem nonconvex. A 
possible solution is to perform an iterative two-step 
procedure, reminiscent of the D-K iteration, where 
in each step a convex problem is solved. To this 
end we need to introduce a small modification 
in the inequality (16) by multiplying the blocks 
.6. A (8) and .6.x (8) with a factor r. This parameter 
represents the stability radius and the idea is to 
build an iteration that successively maximizes r, 
starting from the value r = 0 (corresponding to 
nominal stability analysis). If the value r = 1 is 
reached, then the given system is robustly stable 
against all the admissible parameter variations. 
The proposed algorithm is as follows (note than in 
the inequalities (11) and (16) .6. A (8) and .6.x (8) 
should be replaced by r.6.A (8) and r.6.x(8)): 

21 

Inizialization: Maximize rover (11) and 
(14). This amounts to find the biggest stabil­
ity radius that can be ensured with an affine 
parameter-dependent Lyapunov function according 
to Theorem 3. Let r aff , X Aff and XÎJff the value of r, 
XA and X B obtained in this way. Then solve (16) 
and (17) on the scalings, for r = raff, XA = O.5XAff, 

XB = O.5XÎJff , Xc = V and X D = O. This second 
phase of the inizialization process is required to 
get the initial values of the scalings to use in the 
iteration. Note in fact that the scalings obtained 
at the end of the "affine optimization" cannot be 
directly used since they are smaller in size. 

Af ter this inizialization the iteration starts. 
The step j - 1 leads to a Lyapunov matrix and 
scaling P such that (16) and (17) hold for the 
parameter r = rj-1. The j-th step then proceeds 
in two substeps: 

First substep: Fix S and Rand maxlmlze r 
by varying XA,XB,XC,XD and Q over (16) and 
(17). The obtained Tj satisfies rj-1 :::; Tj. 

Second substep: Fix XB, Xc and XD and 
maximize r by varying XA, Q, S and Rover (16) 
and (17). The obtained r j satisfies Tj ::; r j. 

The iteration will define a nondecreasing se­
quence rl :::; r2 :::; .... If there is one index for which 
rj 2:: 1 then robust stability is assessed. Otherwise, 
this algorithm cannot guarantee robust stability. 

We want to make the following remarks on 
the iteration: 

• In the numerical implementation, the condi­
tions (11) and (16) should be substituted by 
conditions on a finite number of points. As al­
ready noticed, this is done through the choice 
of certain subset of scalings. If we choose the 
block diagonal scalings, then (11) and (16) are 
automatically satisfied. If we choose the full 
block scalings, then we enforce (11) and (16) 
only for 8 E ~o and we add the concavity con­
straints (9) . 

• The parameter r multiplies the scalings in (11) 
and (16). Therefore, the minimization has to 
be performed by bisection. 

It is important to stress the fact that this iterative 
approach is only one of the possible ways to deal 
with Bilinear Matrix Inequality (BMIs are linear in 
two subsets of the unknowns separately) like (17). 
In particular, there are no general criteria that give 



a systematic way to initialize the algorithm (and a 
wrong starting point can let the whole procedure 
fail) or to divide the unknowns in the two subsets. 
One can then make different choices and get differ­
ent algorithms with different chances of success. 

7 Time-varying parameters 

In this case the differential equation (1) that define 
the system reads as: 

x(t) = A(ö(t))x(t), t 2: 0 (18) 

where the parameter vector ö is a continuously dif­
ferentiable time-varying function Ö : [0,00) ~ R k. 

We assume that ö(t) E Ö for all t 2: 0 and also the 
rate of variation is bounded: 6(t) E 6 = conv(öo), 
Öo = {(61 , ... ,6k) E Rk : 6j E {,B .,,Bj}, j = 1, ... ,k} 

-3 
for all t 2: o. As we did for Ö, we assume without 
loss of generality that 0 E öo. 
The Lyapunov criterion in this case reads as 
(Scherer, 1995): 

Theorem 1.1 IJ there exists a eontinuously differ­
entiabie and symmetrie Junction X : Ö ~ R n x n 

sueh that Jor all Ö E Ö and all 6 E 6 , 

k 8X . I: 8ö . (ö)Öj + A(ö)' X(ö) + X(ö)A(ö) < 0, (19) 
j=l 3 

then the uneertain system (l8) is exponentially sta­
bie. 

Analogously to the time-invariant case it can be 
shown that the positivity condition X (ö) > 0 is 
automatically implied by (19), provided that (I -
XD.6. X(Ö)) is nonsingular for all ö E Ö. 
Let us assign to X(Ö) the function X(ö, 6) given by 

. . k 8X . 
X(ö, ö) = I: 8ö. (ö)Öj. (20) 

j=l 3 

The condition (19) can then be rewritten in the 
form: 

for all ö E ö, 6 E 6. 
The application of the full block S-procedure is 
straightforward, once an LFT representation for 
( A( ö)' X (ö)' X (ö, 6)' )' has been determined. This 
is made explicit in the next two subsection for the 
affine and for the rational case. 
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1.1 X(Ö) affine 

In this case X(ö) = XA + XB.6.X(Ö)V, and hence 
X(ö,6) = XB.6.x(6)V. The required LFT represen­
tation is therefore: 

( 

A(ö) ) 
X(ö) 

X(ö,6) 

AB 0 0 
XA OXB 0 
o 0 0 XB 
CD 0 0 

Xc 0 0 0 
Xc 0 0 0 

(

.6.A(Ö) 0 0) 
, 0 .6.x (ö) O. 

o 0 .6.x (ö) 

(22) 

The application of the full block S-procedure leads 
to the following result 

Theorem 1.2 The uneertain system (18) is expo­
nentially stabie Jor all Ö E Ö and all 6 E J ij there 
exist two matrices X A and XB, and a symmetrie 
sealing 

p= 

Q1 Q12 Q13 81 812 8 13 

Q~2 Q2 Q23 8 21 82 S23 
Qb Q23 Q3 S31 S32 S3 
S~ S21 S31' Rl R12 R 13 
S~2 S2 S~2 R~2 R2 R23 
S~3 S23 S~ R~3 R23 R3 

sueh that Jor all (ö,6) E ö x J 

* .6.A (ö) 0 0 

* 0 .6.x (ö) 0 

* p 0 0 .6.x (6) 
>0 

* I 0 0 

* 0 I 0 

* 0 0 I 

and 

* I 0 0 0 

* A B 0 0 

* (0 00 F 

!l 
XA o XB 0 

* o 0 I 0 
0 0 o XB 

* o 10 0 
0 I 0 0 

* 1100 0 
0 0 I 0 

* o 00 0 
0 0 0 I 

* C D 0 0 

* V 0 0 0 

* V 0 0 0 

(23) 

< O. 

(24) 

Like in the time-invariant case, this last condition 
is an LMI whose feasibility can be directly checked, 



once the set of scalings has been chosen. 
Notice that we have applied the full block S­
procedure introducing scalings for both parameters 
Ó and 8. As an alternative, one could intro duce scal­
ings only for Ó. This would lead to an inequality 
similar to (24) that depends on 8. The key-point is 
that the parameter 8 enters affinely, as can be seen 
in (19), so that the resulting problem will be again 
an LMI problem. In this second case we have a scal­
ing P of a smaller size, at the expense of so~vin~ an 
inequality like (24) for each extreme point Ó E Ö. 

7.2 X(ó) rational 

In the case where the Lyapunov matrix is described 
as (15), .we ~an give the following LFT representa-
tion of Z(Ó, ó): 

Z(ó,J) = F, ( ( 11 
0 0 XB x' X B 

x' 1 c C 

XD 0 0 0 o 0 
0 x' 0 0 o 0 , D 
0 0 XD 0 XD 0 
0 0 0 x' o Xb D 

Óx(ó) 0 0 0 
0 Óx(ó) 0 0 

Óx(8) 0 0 0 
0 Óx(8) 0 0 
0 0 Óx(ó) 0 
0 0 0 Óx(ó) 

Applying the full block S-procedure we arrive at the 
following result: 

Theorem 7.3 The uneertain system (18) is expo­
nentially stabie for all Ó E Ö if there exist four ma­
trices XA, XB, Xc, XD and a symmetrie sealing 

sueh that (25) and (26) are satisfied for all (ó,8) E 
ö x J. 

Despite of the bigger size of this inequalities (due 
to the choice made to enforce the symmetry con­
straint on Z (ó)) the structure is the same as that 
of the time-invariant case. A similar D,K-like itera­
tion procedure can be applied to numerically solve 
the problem. 

8 Ro bust performance 

Our results for robust stability extend in a straight­
forward manner to robust performance analysis. Let 
us consider the uncertain system 

x(t) A(ó(t))x(t) + B(Ó(t))wp(t), x(O) = 0 

z(t) C(ó(t))x(t) + D(ó(t))wp(t), 
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where the parameter vector Ó is a continuously dif­
ferentiable time-varying function Ó : [0,00) -+ R k . 

As before ó(t) E Ö and 8(t) E J for all t ~ O. Sup­
pose the system can be given the following LFT rep­
resentation: 

( 
A(ó) B(Ó)) (( A BI B2) ) 
C(ó) D(Ó) = Fl Cl Dl D12 ,ÓE(Ó) . 

C2 D21 D 2 

(27) 
We consider the so-called Quadratic Performance 
specification: the performance is defined by the ma­
trix 

(28) 

and we say that the system (27) has robust 
quadratic performance if it is robustly stabie and 
there exists an € > 0 such that for every wp E 122 : 

(oo (Wp(t))' P (wp(t)) < - €llw 112 . (29) Jo zp(t) p zp(t) - p 2 

Notice that the quadratic performance spec ad mits 
as special cases the Hoo spec for Qp = -'",PI, Sp = 0 
and Rp = land the positive real spec for Qp = 0, 
Sp = - ~ land Rp = O. Furthermore the H 2 and 
the generalized H 2 cases can be obtained with little 
modifications. The following analysis result holds 
(Scherer, 1995): 

Theorem 8.1 The uneertain system (27) has ro­
bust quadratic performance ij there exists a symmet­
rie matrix function X (ó) > 0 sueh that for all Ó E Ö 
and all 8 E J 

* o 0 11 
2 0 0 I 0 

* o I 0 0 0 A(Ó) B(ó) 

* o I 0 0 0 0 X(ó) 0 

* 11 0 0 0 0 0 X(ó,8) 0 

* o 0 0 0 Qp Sp 0 I 

* 0 o 0 0 S' p Rp C(Ó) D(Ó) 
(30) 

To apply the full block S-procedure we only need 
to have the LFT representation of the outer factor . 
The discussion for the robust stability case can be 
repeated with minor modifications for the robust 
performance case, so we can easily derive the tests 
for the existence of an affine X (ó) or for a rational 
one. 

9 N umerical examples 

In this section we present some numerical examples 
of the application of the proposed stability tests. 
All the computations have been performed using the 
LMI Lab of the LMI Control Tooibox for Matlab 



* ÓA(Ó) 0 0 

* 0 Óx(Ó) 0 

* 0 0 Óx(Ó) 

* 0 0 0 

* 0 0 0 

* 0 0 0 

* 0 0 0 

* p 0 0 0 

* 0 0 0 

* 1 0 0 

* 0 1 0 

* 0 0 I 

* 0 0 0 

* 0 0 0 

* 0 0 0 

* 0 0 0 

* 1 0 

* A B 

* XA+XA 0 

* 0 0 

* o 0 1 0 C 00 V 

iJ 
C D 

* o 1 0 0 X c 

* 11 0 0 0 X ' B 

* o 0 0 0 Xc 

* X' B 

* 0 

* 0 

(Gahinet et al., 1995) . We consider the uncertain 
system defined by 

( 

-1 

A(ó) = 0.581 

2aÓ1 
o 

151 0 
-2 0.5152 

o -3 + aÓ2 
-2aÓ1 0 

for several values of the parameter a. We define 
the stability radius p as the large st positive number 
for which the algorithm can assess the stability of 
the uncertain system for all parameters in the set 
{(Ó1,Ó2) : IÓjl ~ p, j = 1, 2} . In the following fig­
ure we compare the stability radia we have obtained 
for five different values of a using the algorithm pro­
posed in Theorem 3 with fuU block scalings and the 
algorithm proposed in Feron et al. (1995) . 

From the figure we see that the proposed algorithm 
performs always bet ter and the performance im­
provement increases with the value of a: for a = 0.1 
is about 10% and for a = 1 is about 34%. 

0 
0 
0 
0 
0 

0 

0 0 0 0 
0 0 0 0 

0 0 0 0 

Óx(Ó) 0 0 0 
0 Óx(Ó) 0 0 

Óx(6) 0 0 0 

0 
0 
0 
0 
0 
0 
I 
0 
0 
0 

0 
0 

XB 
0 
0 

XD 
0 
0 

0 
0 
0 
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Óx (6) 0 0 
0 óx(ó) 0 

>0 (25) 
0 0 Óx(ó) 
0 0 0 
0 0 0 
0 0 0 

0 0 0 

I 0 0 
0 I 0 
0 0 1 

0 0 0 0 0 0 0 
0 0 0 0 0 0 0 

X' c 0 0 0 0 0 0 
0 0 0 XB X' C XB X' C 

0 0 0 0 0 0 0 
0 0 0 0 0 0 0 <0 (26) 

X' D 0 0 0 0 0 0 
0 X D 0 0 0 0 0 

0 0 X' D 0 0 0 0 

0 0 0 XD 0 XD 0 
0 0 0 0 X' D 0 X' D 

Fig. 1: Values of p obtained with the algorithm in 
Theorem 3 (*) and with the algorithm in 
Feron et al. (1995) (0) 



10 Conclusions 

In this paper we have presented a general result 
based on the full block S-procedure from which is 
possible to derive in a straightforward manner sev­
eral robust stability and robust performance cri­
teria. As novelties, these criteria allow to deal 
with rational parameter dependence of the uncer­
tain system and to address the search of a rational 
parameter-dependent Lyapunov function. Finally, 
we have shown with numerical examples that, even 
in the standard case of affine parameter-dependent 
systems with affine parameter-dependent Lyapunov 
functions, the proposed criterion performs better 
than existing alternatives. 
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Abstract. We show that tensor product splines form a suitable tooI to numerically con­
struct parameter dependent Lyapunov functions to test robust performance for systems 
that dep end on time-varying parameters. Based on the excellent approximation power of 
this class of multivariate splines, we show how it ispossible to avoid conservatism in the 
corresponding robust performance analysis test. 
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dent Lyapunov functions, linear matrix inequalities, tensor product splines . 

1 Introduction 

In this paper we reveal how to arrive at non­
conservative tests for the stability and performance 
analysis of linear systems that depend possibly non­
linearlyon a time-varying parameter. The ap­
proach is based on finding a parameter dependent 
Lyapunov matrix that defines a Lyapunov function 
which is quadratic in the system's state. It is well­
known that such a stability test can be reduced to 
sol ving a partial differentiallinear matrix inequality 
(PDLMI) for the parameter dependent Lyapunov 
matrix. 
In the liter at ure , several approaches have been pro­
posed to tackle such problems. It is known how 
to reduce the search for a solution of the PDLMI 
by using basis functions and a gridding of the pa­
rameter space in order to arrive at a finite number 
of conventional LMIs that are amenable to standard 
algorithms. It remains unclear which basis functions 
to choose, and how to perform the gridding in order 
to guarantee the validity of the PDLMI throughout 

tThis paper was presented at the 37th IEEE Conference 
on Decision and Control, 16-18 December 1998, Tampa, FL, 
USA. Copyright of this paper remains with IEEE. 

§ The author would like to thank Marco Dettori and Jan 
van Hulzen (Delft University of Technology) for many helpful 
discussions. 
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the parameter set. 

The purpose of the present paper is to show that 
tensor product splines form a systematic choice of 
basis functions that is guaranteed to be successful 
irrespective of the particular dep enden ce of the sys­
tem on the parameter. Secondly, we reveal that scal­
ing techniques allow to guarantee the validity of the 
PDLMIs even if choosing for a coarse subdivision of 
the parameter set. 

The proposed approach is seen as a generaliza­
tion of those based on constructing continuous and 
piecewise affine solutions to the PDLMI (Johans­
son and Rantzer, 1997; Lim and How, 1997). Our 
technique will allow to construct piecewise polyno­
mial Lyapunov matrices with an arbitrary order of 
smoothness over the whole parameter set without 
the need to worry about interpolation conditions on 
the boundary of the sub-boxes in a partition, and 
without requiring the exclusion of certain parame­
ter hypersurfaces. In addition, we will prove that 
a sufficiently fine parameter set partition will guar­
antee the success of the algorithm. Finally, we will 
show that this technique can be employed even if 
the system matrices are not rational in the param­
eter, by simply approximating such non-linearities 
with multivariate splines. 



2 Tensor product splines 

Let us recall some bits of the theory of tensor prod­
uct splines as exposed in the excellent monograph 
by Schumaker (1981). Suppose the parameter set is 
given as 

Let each interval be partitioned as 

On [ai, bi), we consider the space of all functions 
whose restriction to [8i ,/,8i,/+1), l = 0, ... ,ki, is a 
polynomial of degree at most mi - 1, and that is 
mi - 2 times continuously differentiable. (Since we 
will typically choose mi = 3,2,1 to obtain polyno­
mial pieces of degree 2,1,0, we work with functions 
that are continuously differentiable (mi = 3), con­
tinuous (mi = 2) or piecewise constant (mi = 1). 
Everything what will be said holds true if we al­
low for variations in smoothness over breakpoints.) 
This space of splines of order mi is known to have 
dimension mi + k i . It admits a basis that con­
sists of B-splines Bi,j (.), j = 1, ... ,mi + ki . These 
functions have minimal support and they form a 
partition of unity. Using suitable recursion for­
mulas, one can easily calculate the values and the 
derivatives of these functions in a numerically sta­
bIe fashion. We will require the following knowledge 
about their support: On the interval (8i ,/' 8i ,/+1), 
l = 0, ... ,ki, the functions Bi,j (.) are strictly posi­
tive for j = l + 1, ... ,l + mi and all the ot hers vanish 
on the closure [8i ,/,8i ,/+1]' 
The corresponding space of tensor-product splines 
S is defined as the span of the functions 

d 

Bj(8) := II Bi,}, (8i ) 
i=1 

- parametrized by j := (h, ... ,jd), with 1 ~ ji ~ mi+ 
ki . Since all these functions are linearly independent, 
the space S has dimension nt=1 (mi + ki)' More 
importantly, on the box 

8l = 8(11' ___ ,ld) := [81 '/1' 81,ll+1] X ... X [8d'/d' 8d,/à1] 

parametrized by l := (h, ... ,ld) only the functions 
Bj with li + 1 ~ ji ~ li + mi do not vanish such 
that any 8 E S has the representation 

II +m1 ld+md d 

8(81, ... ,8d) = L ... L ct(jl, .. _ ,jd) II Bi,j, (8i ). 
31=/1 +1 id=ld+1 i=1 

Hence, only nt=1 mi of all possible nt=1 (mi + ki) 
coefficients affect the linear combination due to the 
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small support of the B-splines. This is particu­
larly important since mi can be kept small and 
fixed, whereas ki might have to be taken large in 
order to reduce the approximation error in quasi­
interpolation schemes. Finally, we clearly have 

m1-1 md-1 d 

B·(8) = ~ ... ~ (.I·l ( ) II(8- - 8- 1 )'" 3 L..J ~ iJ3" VI, .. · ,Jld t 't, i 

i=1 

on the box 8l with coefficients that can be effi.­
ciently calculated; any non-vanishing Bj on the box 
8l is a multivariable polynomial with degree at most 
nt=1 (mi - 1). 
This discussion leads us to an essential insight to 
arrive at our computational algorithms. 

Lemma 1 There exist matrices Aj,l' B, Cj,l, and 
D of dimension not larger than nt=1 mi such that 

where ~(8) = diag (81I, ... , 8dI) . 

Remark. Note that one could as welliet the degree 
of the polynomials vary with the parameter sub­
boxes such that Band D would vary in size; this 
would allow to control the number of variables in 
the LMIs to be derived. 
As a fundamental benefit in relying on spline-spaces, 
we can resort to excellent non-trivial results about 
the approximation power of tensor product splines. 
These results are based on quasi-interpolation op­
erators that lead to computable approximation 
schemes and that realize, at the same time, the 
best theoretical approximation order. Therefore, 
these quasi-interpolation operators are practically 
useful to approximate general multivariable non­
linearities. Let us denote by B(8) the Banach space 
of all bounded functions on 8 equipped with the 
norm Ilflloo := sUP6EÖ If(8)1· 

Theorem 2 Consider an arbitrary sequence of par­
titions of the parameter box 8 for which the measure 

d k-
maxmàxl8- -+1 - 8- -I i=1 j=O t,) t,) 

(1) 

of the mesh size converges to zero. For each 
partition there exists a bounded linear (quasi­
interpolation) projection mapping Q : B(t5) ~ S 
such that the resulting sequence of operators has the 
following properties: If f E B(8), the uniform ap­
proximation error 

liJ - Qflloo 



converges to zero . If f is continuously differentiable 
and if mi > 2, then even 

d 8 
Il f - Qf ll oo + L 11 88. (f - Qf) lIoo 

i=1 t 

converges to zero . 

By letting the coarseness of the partition converge to 
zero, we can hence let Qf E S uniformly converge 
to f . If f and Qf are continuously differentiable, 
the uniform approximation error for the first order 
partial derivatives converges to zero as weIl. This re­
sult differs somewhat from that given in Schumaker 
(1981; Theorem 12.7) but it can be proved along the 
same lines. 

3 Model description 

Let us assume that the system to be analyzed is 
described as 

x 
z 

A(8(t))x + B(8(t))w 
C(8(t))x + D(8(t))w 

(2) 

where 8(.) is any (continuously differentiable) pa­
rameter curve that satisfies 8(t) E 8, 8(t) E J. The 
value of the parameter curve is contained in the pa­
rameter box 8 = {8 = (81 , . . . ,8d ) E IRd 18i E 
[ai, bi)} whereas its derivative is assumed to be con­
tained in the rate box J = {8 = (81 , ... , 8d ) E 

IRd I 8i E [ái , bi)}' The system itself is described 
with possibly non-linear functions A(.), B( .), C(.), 
D(.). 
Assumptions. A(.), B(.), C(.), D(.) are continu­
ous on the parameter box 8. There exists a 80 E 8 
for which A(80 ) has all its eigenvalues in the open 
left-half plane. Finally, the rate box J contains O. 
(Note that we allow for ái = bi = 0 to capture the 
situation that 8i ( . ) is known to be constant.) 

4 Problem formulation 

Our goal is to characterize whether the system (2) 
is robustly performing as characterized in the fol­
lowing easily proved result. 

Theorem 3 With 

( 0 

!I 0 0 

n 
2 

1.1 0 1 0 

Po ~ '~ I 0 0 
0 0 -'"'(I 
0 0 0 
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suppose there exists a continuously differentiable 
symmetrie valued function X (.) on 8 such that 

o 
C(8) 

o 
o 

X(8)B(8) 
I 

D(8) 

< 0 (3) 

holds for all Ó E 8 and J E iJ. Then, for any admis­
sible parameter curve, system (2) is exponentially 
stabie and the square of the L 2 -gain of w -+ z is 
smaller than '"'(. 

Remark 1. The function X(.) is guaranteed to be 
positive definite: If we plug in 8 = 80 , 8 = 0, we 
infer from the stability of A(80 ) that X(8o) > O. 
Since 8 is connected and the inequality (3) prevents 
X(.) from becoming non-singular, the claim follows. 
Remark 2. The solvability of (3) is sufficient for 
guaranteeing exponential stability and the L 2-gain 
bound. In case of J = {Ol, it can be shown that 
the converse holds as weIl and the characterization 
in this result is exact. It is well-known that , alter­
natively, one could characterize robust performance 
by solving a (frequency parametrized) family of real 
SSV -problems. Therefore, deciding the solvability 
of (3) corresponds to exactly solving this family of 
pure real SSV-problems. The benefit of working with 
(3) is to avoid frequency gridding what is particu­
larly crucial in view of the pos si bIe discontinuity of 
the real SSV in the frequency. 
Our main goal in this paper is to provide general 
tools that allow to find the infimal attenuation level 
'"'( for which (3) still has a solution. 

5 Model approximation 

In a concrete problem, the parameter 8 of ten en­
ters A(.), B(.), C(.), D(.) in a non-linear fashion. 
Our technique for robust performance analysis will 
rely on a Linear Fractional Transformation (LFT) 
representation of these functions . In order to ar­
rive at such a representation, it is customary to 
approximate the non-linearities by rational func­
tions of the parameters. Typically, one would re­
sort to polynomial interpolation or approximation 
in order to arrive at an LFT representation that is 
valid over the whole parameter range. However, it 
is well-known that polynomial approximation shows 
a pretty poor global behavior. It has been argued 
that approximation by splines is an excellent alter­
native to overcome the shortcomings of polynomial 
approximation techniques. In addition, simple and 
practically useful quasi-interpolation schemes aIlow 
to systematically approximate non-linearities (Schu­
maker, 1981) . In practice, the non-linearities enter 



(2) sparsely, and they of ten depend on one param­
eter only. Hence one can resort to univariate spline 
approximation such that the resulting overall ap­
proximant is most easily constructed as a tensor 
product spline. This is one of the motivations to 
prefer tensor product splines over the more gener al 
box splines (de Boor et al., 1993). 
In summary, by Theorem 2, for any € > 0 we can 
find a partition of the parameter box Ó into sub­
boxes Ó I such that 

11 
( 

A(.) B(.)) _ (QA(.) QB(.)) 11 < € 
C(.) D(.) QC(.) QD(.) . 

00 

where QA(.), QB(.), QC(.), QD(.) are tensor prod­
uct splines as described in Section 2. By Lemma 1, 
these approximants hence admit the LFT represen­
tation 

(4) 

on the box ÓI. 

Remark. If the parameters do not vary in time, 
it suffices to use mi = 1 such that QA(.), QB(.), 
QC(.), QD(.) will be piecewise constant functions. 
In general, one would rather choose mi = 2 to ar­
rive at continuous approximants, but smoothness of 
higer order is not required for the discus sion to fol­
low. 
Instead of sol ving (3), we now rather consider the 
inequality obtained by replacing A(.), B(.), C(.), 
D(.) with their approximants QA(.), QB(.), QC(.), 
QD( .): 

(~l :0 

d . 8X 
0 Ei=l c5i 8ó. (15) 

I 0 
X (15) QA( 15) X (15) QB(c5) 

0 I 
QC(c5) QD(c5) 

6 Construction of solutions 

We search for solutions of (5) of the form 

X(c5) = 2:XjBj(c5) 
j 

< O. 

(5) 

(6) 

with symmetric matrix coefficients Xj. Here the ba­
sis functions for the underlying spline space is con­
structed with respect to the same partition used in 
the system representation; of course, one could also 
fust refine this partition if necessary. 
It is obvious that (5) turns into an infinite family 
of LMIs in X j that is parametrized with 15 and 8. 

30 

Note that the right-hand side is a rational function 
in (15,8). In general, it will not suffice to solve the 
inequality at the extreme points of the parameter 
box ÓI in order to guarantee its validity throughout 
the whole box. Fortunately, there is a systematic 
technique how we can still reduce the infinite family 
of LMIs to a finite family. 

oB· 
For that purpose we recall that Bj( .), 015: (.) and 

the system approximants admit LFT representa­
tions on ÓI. By standard LFT calculus, 

( 

d' 8B· ) E j Xj Ei=l c5i 7it(c5) 0 
Ej XjBj(c5)QA(c5) Ej XjBj (15) QB(c5) 

QC(c5) QD(c5) 

admits, on the box Ó/, a lower LFT representation 
with coefficient matrix 

and with ~/(O,J) diag(olI, ... ,OdI,61I, ... ,6d I) . 
This allows to apply the full-block S-procedure 
(Scherer, 1997): Solving (5) is equivalent to find­
ing symmetrie Xj and scalings Q/, SI, RI such that, 
with 

Pe = ( :0 11 ~I ~/)' 
o Sr RI 

the following inequalities hold: 

o 
Cl 

o 
o 
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E · XjB~~ 3 3, 

o 

<0 

(7) 

. . (*)( QI VOE c5/,OEc5: * sr ~: )( ~(~,8) ) >0. 

(8) 

This is, still, an infinite family of LMIs. By imposing 
extra constraints on Ft, one can re duce the infinite 
to a finite family of LMIs and, still, guarantee their 
validity over the whole parameter box. Let us recall 
three possibilities (Iwasaki and Hara, 1998; Dettori 
and Scherer, 1998; Scherer, 1996): 



• FUll block scalings that are indirectIy described 
by LMIs. 

• Block-diagonal scalings that can be explicitly 
parametrized (as appearing in standard SSV­
theory) to satisfy (8). 

• Fixed scalings as in standard smali-gain argu­
ments. 

In concrete situation one has to take the following 
trade-off into account: Choosing a large class of scal­
ings leads to an LMI system with many variables; 
then one expects to be abie to work with a coarse 
grid of the parameter space what reduces the num­
ber of LMIs. Taking a smaller c1ass of scalings re­
duces the number ofvariables; however, through the 
pos si bie need for a finer parameter grid one might 
be forced to increase the number of LMIs. 
Independent of which of the relaxation schemes is 
employed, we can always guarantee the success of 
the technique if the subdivision of the parameter 
set is sufficiently refined. 

Theorem 4 Suppose that the symmetrie Xj and PI 
solve (7)-(8). Then X(.) as defined in (6) is a so­
lution of (5). 
Consider any sequenee of partitions for whieh (1) 
eonverges to zero. Suppose that for any sueh parti­
tions the LMIs (7)-(8) have a solution. Then X(.) 
as defined in (6) solves (3) if the mesh size (1) is 
suffieiently small. 
Conversely, if (3) does have a solution, the LMIs 
(7)-(8) do have a solution if the mesh size (1) is 
suffieiently sm all. 

Remarks 1. It is straightforward to formulate the 
corresponding result for minimizing the disturbance 
attenuation level ,. 
Remarks 2. The first statement extends results 
that have been obtained for piecewise affine Lya­
punov matrices and piecewise affine system descrip­
tions: the feasibility of the LMI system leads to a 
solution of the analysis PDLMI (5) for LFT system 
descriptions. In the second part, we need to make 
sure that the LFT approximation of the system ma­
trices is good enough to arrive at a solution of (3). 
Remarks 3. As a novel aspect, the third statement 
reveals that our scheme is only successful if the origi­
nal PDLMI (3) does have a solution. Hence, we have 
found a sufficient and neeessary test for the solvabil­
ity of the LMI (3) that is arnenable to numerically 
reliabie algorithms. 
Remarks 4. The numerical effort decreases drast i­
cally if it is known that the parameters are constant. 
Then it suffices to work with piecewise constant Lya­
punov matrices. Since the inequalities (7)-(8) are 
decoupled, they can be solved for each parameter 
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box independentIy. Still, however, it is pos si bIe to 
exactIy solve the corresponding robust performance 
problem that admits an alternative formulation as 
a real SSV-problem. 

7 Example 

We have implemented the proposed scheme (with 
block-diagonal scalings as in SSV-theory) in Matlab 
Version 5 using the LMI-Tooibox and the Spline­
tooibox. 
Let us consider the system defined with 

foró E [-0.9,0.9], JE [-r,r], rE [0,0.7]. Thissys­
tem is not quadratically stabie. We applied the pro­
posed technique with splines of order three (mi = 2) 
for the break-points {-0.9, -0.5, 0, 0.5, 0.9}. 

" 

10 

Fig. 1: Optimal, for r E [0,0.7]. 

- 1 

Fig. 2: Largest eigenvalue of X(ó) for Ó E 
[-0.9,0.9] and r E [0,0.7]. 



Fig. 3: Smallest eigenvalue of X(ó) for Ó E 
[-0.9, 0.9} and r E [0,0.7]. 

In Figure 1, we plot the optimal attenuation level 
"y over the rate of variation. It is nice to obsèrve 
how the attenuation level increases with an increas­
ing bound on the rate. For r = 0, one can confirm 
the achievable attenuation level by applying the cor­
responding SSV test. Finally, Figures 2 and 3 show 
the largest and the smallest eigenvalue of the Lya­
punov matrix what indicates how it needs to be ad­
justed to account for changes on the admissible rate 
of parameter variations. 

8 Conclusions 

We have proposed a numerical scheme that allows to 
test robust performance of systems that dep end on 
time-varying rate-bounded parameters without con­
servatism. The scheme admits an immediate spe­
cialization to time-invariant parameters and hence , , 
provides an alternative to real SSV-techniques with­
out the need for frequency gridding. 
Among the many non-addressed questions, we in­
tend to address in our further research the pos si bil­
ities for an automatic refinement of the mesh and 
the closely related question of how to decide when 
to stop the algorithm. 
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Abstract. This paper addresses economic operating optimality of chemical processes 
during transients: e.g. batch operation or grade-changes in continuous settings. A general, 
dynamie-economie problem formulation is set up, with the process dynamies described by 
a DAE model and the economie objective defined as the maximization of added value. The 
so-called sequential approach, which is of ten considered most convenient and robust for 
large-scale dynamie optimization, uses control parametrization to discretize the problem 
and solves successive quadratie approximations to converge to a local optimum. In many 
problems where realist ic economic objectives are used, the nonlinearity of the objective 
function is expected to be more severe than the nonlinearity of the plant, and - which 
is worse - far from quadratie. In such cases, many iterations will be needed to converge, 
because the quadratic fit at each iteration varies greatly over the search space. Here, we 
present the early results of a new approach, successive sequential quadratic programming, 
which solves a nonlinear program every iteration, based on a linear approximation of the 
process dynamies and the real, nonlinear cost function. For the class of problems under 
consideration, such an approximation will be more accurate than aquadratie one, yielding 
faster progress towards the solution. The method is applied on a realist ie grade change 
problem for a HDPE polymerization simulation model. 

Keywords. Large scale dynamie optimization, economic optimization, control 
parametrization method, SSQP method, SQP method, HDPE polymerization. 

1 Introduction 

Economie optimization of the operation of in dus­
trial processes is believed to lead to significant 
increase in plant profitability. There has been a 
tradition in process industries to regard economic 
process optimization (determining where to drive 
the plant) seperately from process control (taking 
the actions required to reach that optimum oper­
ating range, while compensating for disturbances), 
e.g. (Figueroa et al., 1994; Amini et al., 1992; Bai­
ley et al., 1993; Bandoni et al., 1994). This is 
reflected in the layered structure of the state-of-the 
art combined optimization and control system for 
(petro-) chemie al plants, as indicated in Figure 1. 
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Both layers have different goals and operate on 
different domains : the optimizer calculates steady 
state optimal operating conditions based on the 
plant economics, whilst the advanced control 
layer provides setpoint tracking and disturbance 
rejections, thus regarding plant dynamies. The 
underlying idea of steady-state optimization is that 
process dynamics are either unimportant, or just a 
nuisance impeding reaching the optimum operating 
conditions instantaneously. To reject the effect of 
slow disturbances and plant-model mismatch, the 
optimal setpoints are calculated and implemented 
recursively. The idea might come up that, if we 
are able to increase the optimization frequency (by 
using fast numerieal optimizers and by reducing the 



Real-Time Process Optimizer 

1 1 
Controller (e.g. MPC) 

1 1 
plant + basic controls 

Fig. 1: Controljoptimization hierarchy of state-of­
the-art (petro-)chemical plants. 

natural time-to-steady-state of the process through 
increased controller aggressiveness), then we can 
also optimally deal with transitions in the process 
behavior. Next to practical problems, however, 
this line of thought is fundamentally unsuited 
sin ce the actual optimum operating conditions 
comprise both out- and inputs, which are linked by 
dynamic Iaws. A conceptually better viewpoint on 
optimal operation would be to take these process 
dynamics as relevant aspects of the overall plant 
economics. This means that we let go of the idea 
of "optimal operating point" and change it for "op­
timal operating trajectory". Instead of optimizing 
steady-state plant economics and merely controlling 
plant dynamics, we seek to economically optimize 
plant dynamics. Note that the applicability of such 
dynamic-economic operating strategies is not lim­
ited to those processes that are moved deliberately 
from one operating point to another: every process 
where money is lost due to the inability to opti­
mally adjust the operating conditions according to 
disturbances is also a candidate. Shifting attention 
to dynamic optimality of the process not only has 
consequences for our own image of the process, but 
also for the technologies and strategies needed to 
come close to dynamic-economic optimal operation. 
The INCOOpl project aims at developing an 
integrated approach towards dynamic-economic 
optimal operation of chemical processes. Main 
ingredients in such an approach are techniques for 
large-scale, on-line dynamic optimization, state 
estimation and multivariable control. In this paper, 
we limit our attention to dynamic optimization in 
an off-line setting. 

In literature, dynamic optimization is extensively 
addressed, as it is an important ingredient in many 
control strategies. In Nonlinear Model Predictive 

lINCOOP is an abbreviation for "INtegration of COntrol 
and OPtimization". 
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ControI for example, a nonlinear optimization prob­
lems is solved every sample to calculate the controls 
(Biegier and Rawlings, 1992; Ali and Elnashaie, 
1997; Sistu et al., 1993). For traditional reasons, 
the objective functions that are defined for such 
control-related dynamic optimization problems of­
ten involve quadratic penalties on tracking errors 
and input moves. We feel that for real-life prob­
lems linear or quadratic objective functions are of­
ten oversimplifications. 
Two basic solution methods for large-scale dynamic 
optimization can be distinguished: the sequential 
approach and the simultaneous approach. The se­
quential approach utilizes parametrization of the 
controls to discretize the problem (Jang, 1987; Vas­
siliadis, 1993). An integration tooI is used to eval­
uate the model equations and hen ce the objective 
function, the constraints and the gradients. Suc­
cessive search directions towards the Iocal optimum 
are determined by an outer loop optimizer, which 
is generally a Sequential Quadratic Programming 
tooI (SQP) (Edgar and Himmelblau, 1988). In the 
simultaneous approach, both the controls and the 
states are parametrized (Li and Biegier, 1989) to 
transform, mostly via collocation on finite elements, 
the dynamic optimization problem into a Nonlinear 
Program which can be solved using a Nonlinear Pro­
gramming tooI (e.g. SQP or Generalized Reduced 
Gradient (GRG) (Edgar and Himmelblau, 1988)). 
The big advantage of the simultaneous approach is 
that the objective function and the process model 
equations converge simultaneously (infeasible path 
method), while the process model equations are nec­
essarily satisfied in every iteration in the sequential 
approach. However, the sequential approach is sim­
pIer in implementation and especially for stiff sys­
tems, it may actually be an advantage instead of 
a disadvantage that the model equations are sat­
isfied every iteration. All problems related to nu­
merical integration are dealt with by the integra­
tion tooI, whereas for the simultaneous approach 
these numerical probIems interfere with the choice of 
parametrization and collocation intervals. For these 
reasons, in our research we focussed on the sequen­
tial approach. 
An important aspect in dynamic optimization is the 
solution time. Minimizing solution time is espe­
cially relevant in on-line applications of optimiza­
tion. Because the model integrations are most time­
consuming, the solution time will be strongly related 
to the number of iterations needed to converge. This 
number can actually be quite low if the problem is 
approximately quadratic (a quadratic approximate 
program is solved every iteration to yield a search 
direction). For problems that are strongly ("non­
quadratically") nonlinear, many iterations will be 



needed and the sol ut ion time will be long. In this 
paper we present the early results of a new optimiza­
tion method that deals specifically with economic 
objective functions (van der Schot, 1998). This 
method increases solution speed for the large class of 
problems where the nonlinearity of the cost function 
is more severe than that of the process model. The 
outline of the paper is as follows: in Section 2 the 
dynamic-economic optimization problem is defined. 
The conventional sequential approach to sol ving this 
problem is described in Section 3. The particular 
structure of a class of dynamic-economic problems 
is investigated in Section 4. This investigation leads 
to the introduction of our new approach (Successive 
SQP) in Section 5. The application of SSQP on a 
polymerization grade change case is described and 
evaluated in Section 6. Some discussion on the pro­
posed algorithm is contained by Section 7. Finally, 
conclusions are given in Section 8. 

2 Problem formulation 

Off-line determination of optimal trajectories can be 
useful in batch processes and in the control of tran­
sients that are known weIl in advance. The transla­
tion of the real-life problem to a mathematical prob­
lem formulation comprises the definition of a model 
and an objective function (Edgar and Himmelblau, 
1988). The construct ion of an adequate model2 is a 
challenge in itself and an academic problem when it 
comes to the definition of general model adequacy 
requirements for dynamic optimization. The con­
struction of a suitable objective function is of ten a 
case-specific task which requires knowledge of not 
only the process behavior but also of feedstock and 
consumer market situations (see e.g. (McAuleyand 
MacGregor, 1992)). For reasons of generality and 
consistency we decided to have the objective indi­
cated by a unified and unambiguous performance 
indicator: money. Assuming the prices of all mate­
rial and energy flows to be known, we can construct 
a so-called "money conservation law" (e.g. (West­
erterp et al., 1984) mentioned the "money balance" 
in a modeling framework) for the process: 

where $ is the money holdup, $" is the added value, 
and $in and $out are respectively the costs related 
to the physical input to the process and the rev­
enues related to the physical output of the process. 
What we want to maximize is the added value over 

2Note that model "dequacy in the framework of optimiza­
tion is not necessarily related in a one-to-one fashion to model 
accuracy, (Forbes et al., 1994). 
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a certain time interval [to, t, l: 

l
tl ltl max $adt=$(tf)-$(tO)- ($in(t)-$out(t))dt, 

to to 
(2) 

subject to a so-called "continuity constraint" 

(3) 

where $ L is the minimum holdup that is required 
for continuity of operation and $u is the maximum 
holdup that is tolerabie. Constraint (3) may be re­
dundant if other constraints with respect to produc­
tion volume are already defined. The prices that are 
used to calculate the revenues will of ten depend on 
product quality, which is related to the operating 
conditions of the process. More generally, we in­
troduce functions <I> and :3 and a vector of process 
variables z such that: 

$out(t) - $in(t) 

$(t, ) 

<I>(z(t)), 

:3(z(t,)), 

(4) 

(5) 

z, which contains all variables that appear in the 
cost function or in the later to be mentioned physical 
constraints, will generally be a combination of some 
of the inputs u, some of the state variables x and 
some of the algebraic variables y, i.e. 

z = Cxx + Cyy + Du, (6) 

with respectively state, algebraic variabie and input 
selector matrices Cx , Cy and D. The input, state 
and algebraic variables are related through the pro­
cess dynamics, which we assume to be described by 
aDAE: 

x(t) 

o 
f(x(t), u(t), y(t)), 

g(x(t), u(t), y(t)). 

(7) 

(8) 

This model is included in the overall optimization as 
a set of constraints. We so obtain the general form 
of the (infinite dimensional) dynamic optimization 
problem: 

max 
uit) 

s.t. 

v = Jt~ <I>(z(t))dt + S(Z(tf)), 

x(t) = f(x(t), u(t), y(t)), 
o g(x(t), u(t), y(t)), 

z(t) C",x(t) + Cyy(t) + Du(t), 
o < c(z(t)). 

(9) 

c is a general constraint function that represents the 
physical constraints and also includes the continuity 
constraint (3). The choice of c involves an investiga­
tion of the back-off, i.e. control freedom, that needs 
to be taken into account. This issue has been dealt 
with in literature for the steady state case (Bandoni 
et al., 1994); for the dynamic case the concept of 
back-off is rather new and a nice research topic. 



u(t) numeri cal z(t) 

solver 

construct calculate V 
u(p, t) and e 

optimizer 
p V,e 

Fig. 2: Sequential solution strategy for large scale 
dynamicoptimization. 

3 Standard sequential approach, us­
ing SQP 

The conventional sequential solution approach is 
based on the discretization of the controls: u = 
u(p, t), introducing parameters p, to yield a fi­
nite dimensional problem. Common parametriza­
tion methods make use of splines, polynomials or 
wavelets. The sol ut ion strategy based on th is 
parametrized problem, which is of sequential na­
ture, is indicated in Figure 2 (St0ren and Hertzberg, 
1995). 
An initial parameter vector is chosen. With the ac­
cording input trajectories, the model is integrated 
using a numerical sol ver to obtain values for the ob­
jective function V, the constraints e and the gradi­
ents dV I dp and del dp. The gradients can be quite 
efficiently obtained by integrating, along with the 
model equations, the so-called sensitivity equations 
(St0ren and Hertzberg, 1995). These can be de­
rived by taking the derivatives of equations (7) and 
(8) with respect to the parameters p: 

a ( ax ) a fax a f au af ay 
ap at = ax ap + au ap + ay ap) (10) 

o = ag ax + ag au + ag ay. (11) 
ax ap au ap ay ap 

Substitution of (11) in (10) (under the con dit ion 
that U is nonsingular, i.e. in the case the DAE 
system is of index 1), and change of the order of 
differentiation yields: 

~ (ax) = A ax + Eau, (12) at ap ap ap 

with 

(13) 
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Fig. 3: Nonlinearity characteristic of the process 
model and the economic objective function. 

B = [af _ af [ag] -1 ag]. (14) 
au ay ay au 

The integration of the sensitivity equations can be 
done quite efficiently since the Jacobian matrices 
that are required can be taken from the integra­
tion of the model equations. Based on the state 
sensitivities, dVldp and deldp are calculated in a 
straightforward manner. With this gradient infor­
mation and an approximated Hessian, aQuadratic 
Program (QP) is set up and solved to yield a search 
direction, followed by a line search in that direc­
tion. Alternatively, the trust region (TR) approach 
to SQP sets up a QP within certain limits, i.e. it 
determines the step size a priori to be restrained to 
some surrounding of the current point in which we 
"trust" the quadratic model (Moré, 1983). The QP 
solution then yields a direct ion and step size which 
is implemented on the nonlinear model. If satisfac­
tory improvement is obtained then the new point is 
adopted, otherwise the TR is reduced and a new QP 
solved. 

4 Problem structure 

The solution time of the SQP is strongly related to 
the number of integrations that needs to be per­
formed (and thus the number of iterations ). The 
number of iterations can actually be quite small 
if the problem is approximately quadratic. For 
strongly nonlinear3 problems however, many iter­
ations (and thus many costly integrations) will be 
needed. The dynamic-economic problem as we for­
mulated it in Section 2 is in fact expected to be 
strongly nonlinear in many practical cases. The 
main reason for th is is the relation between product 
quality and its price, which will be almost discon­
tinuous in many problems. The nonlinearity of the 
process itself, on the other hand, is expected to be 
rather smooth and less severe. This is illustrated in 
Figure 3. 
Hence, for the class of problems under consideration, 
the mapping from p to V comprises a smoothly non­
linear part z(P) that is hard (or in terms of costs: 

3The adjective "strongly" must be interpreted as "other 
than quadratic" here ... 



expensive) to evaluate and a strongly nonlinear part 
V(z) that is easy and inexpensive to evaluate. It is 
easy to see that for this class of problems the ap­
plication of the standard SQP approach is highly 
inefficient. Take for example the case where the 
model is Linear Time Varying and the cost func­
tion strongly nonlinear. If we would, unaware of 
the linearity of the model, apply the SQP method, 
then we would need many iterations (and as many 
integrations) to converge to the optimum, since the 
quadratic approximation of V (p) will only be valid 
in a small region. However, one integration of the 
model's sensitivity equations provides all the infor­
mation we need to characterize the process behav­
iorj all other integrations are redundant and a waste 
of time. Based on this understanding of the struc­
ture of many dynamic-economic problems, we now 
intro duce the Successive SQP approach that explic­
itly takes into account the nonlinearity of the cost 
function. 

5 N ew approach using successive 
SQP (SSQP) 

To speed up sequential solution of strongly nonlin­
ear dynamic-economic optimization problems we 
need to find a way to increase the progress/iteration. 
lntuitively we can accomplish this by increasing the 
validity range of the approximate problems that we 
solve every iteration (recall that the conventional 
SQP method utilizes aquadratic approximation). 
In the SSQP method that we propose here, this is 
realized by construct ion of a nonlinear approxima­
tion, based on a linear approximation of the model 
and the fully nonlinear objective function. The 
approach comprises a 5 step-procedure, as des cri bed 
below (we adopt the trust region approach here for 
reasons that will be discussed in Section 7): 

Step 1: initialization 
l is set to 1 (first iteration). An initial trust region 
T R~, and a parameter vector of length M, pI = Po, 
is chosen to initialize the dynamic optimization. 

Step 2: objective and constraint evaluation 
The model equations are integrated with input 
ul(t) = u(pl,t) . The solutions are denoted xl(t) and 
yl (t). For reasons that will become clear shortly, 
the objective function is evaluated by calculating 
the Riemann sum: 

N 

VJ = Vd(zl) = L q>(zl(iT))T + 3(zl(tf)), (15) 
i=l 

where z = [z(T)Tz(2T)T .. . z(NT)T]T, N = tJlT, 
and T is the integration time step that is used. 
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The constraints c can be evaluated using in­
terior points or using an end-point constraint 
o = Jt

tl min(c(z(t)), O)dtj sin ce the constraint 
handling 

0 

can be done exactly the same way as in 
the standard sequential approach, we do not treat 
this issue extensively here. 

Step 3: gradient evaluation 
The sensitivities of zl with respect to pi are evalu­
ated along the trajectories (xl (t), ui (t), yl (t)) at dis­
crete times T, 2T, . .. , NT. The gradients can be 
stacked in a sensitivity matrix S~pl~~zl to yield: 

[ 

f::.zl(T) j [ f::.pi j f::.zl (2T) _ f::.p~ 
: - S~pl~~ZI : 
. . 

f::.zl(NT) f::.p~ 

(16) 

or, in short notation:f::.zl = S ~p' ~~z' f::.pl. A prac­
tical and efficient way of constructing S~pl~~ZI is 
given in the Appendix. The choice of T contains 
two aspects: the relevancy of the different time 
scales for the economic performance of the plant, 
and the desired accuracy of the sensitivity matrix. 

Step 4: determination of search step 
A search step is calculated by solving the following 
NLP: 

min 
~p' 

S.t. 

- I I Vd = Vd(z + S~pl~~zlf::.p), 
linearized constraints (17) 

f::.pl ETRI 
p' 

using for example SQP optimization. All Jacobians 
can be calculated analytically, so the co ding of the 
optimization can be done efficiently. lnstead of 
using linearized constraints, we can also include 
nonlinear interior point constraints Cd based on the 
original nonlinear constraints c: 
o ~ Cd(zl + S~pl~~zl f::.pl). 

Step 5: evaluation of progress; adaptation of 
trust region 
The new solution p* = pi + f::.pl is implemented 
on the nonlinear model as in to step 2 and the 
resulting objective is denoted Vd*. The following 
rule base is used for the trust region adaptation: 

lF Vd* < VJ, 
set Vi+I - V* pl+l - p* calculate T RIH d - d' -, p , 

and goto step 3 (l = l + 1), 
ELSE 

reduce T R~ and goto step 4 (l = l). 

The update of the Trust Region may involve both 
shape and size updates. Of course, the exact limits 



and update rules are tuning parameters to the algo­
rithm (see e.g. (Moré, 1983)). 
The SSQP procedure and a comparison with the 
(trust-region-based) SQP method are summarized 
in Table 1. 

6 Example on HDPE process 

The proposed method has been tested on a 
medium-scale model of a fluidized bed high-density 
polyethylene (HDPE) reactor functionally similar 
to the problem studied by McAuley and MacGregor 
(1992). This sample process has been chosen 
because polyethylene manufacturers are faced with 
an increasing need to operate flexibly with respect 
to different quality grades of polymer, which are 
mainly characterized by the density and so-called 
melt-index of the product. This flexibility caUs for 
frequent grade transitions from one product to the 
other, during which the plant pro duces off-spec 
material which can only be sold at a lower price 
than on-spec product (Figure 4). We have applied 
the methods developed to define and find the 
economicaUy optimal grade transition between two 
given grades (A and B) . Finding such trajectories 
can lead to significantly improved plant profitability. 

0.5 

;31 0.1 

Fig. 4: Relation between quality (indicated by 
melt-index and density) and price for a cer­
tain grade of HDPE. 

Test setup 

The process model is a complex, stiff, nonlinear 
DAE system with 3800 variables (of which 100 
states) implemented in SpeedUp. The optimization 
routine was developed in MATLAB, with a simp Ie 
communication protocol for the transfer of data 
and commands. As with all control parameter­
ization methods, there was no need to alter the 
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existing process model, hence numerical integration 
problems were avoided. AU solution times reported 
were obtained on a multiplatform setup of a 500 
MHz Alpha station (simulation code) and a Dual 
Pentium 200 MHz machine (optimizer code) and 
exclude communication time. The manipulated 
variables chosen are those that most influence the 
product quality, and the inventory control: the 
feed ratio C2/C4

4 , the feed ratio H2 /C2 , the purge, 
the N2 feed and the bedlevel setpoint. These were 
parameterized by a tot al of 50 variables (10 each) 
using piece-wise linear functions. The inputs were 
aUowed to vary from time 0 to 12 and held constant 
at the (supposed known) desired steady-state values 
from t = 12 to t = 25 in order to force the process 
to attain steady state within the interval concerned. 
This is similar to the use of control and prediction 
horizons in Model Predictive Control algorithms. 
The initial grade change trajectories were chosen 
as ramps, yielding a transition foUowing the dashed 
line in Figure 5. The dotted lines represent the spec­
ifications on melt-index and density for both grades. 

Solution 

Maximizing the added value over a grade transit ion 
for this reactor poses a dynamic optimization 
problem that possesses the structure of Figure 3: 
a costly but relatively smooth process model and 
sharp edges in the objective function. Therefore, 
the SSQP method was used to solve the problem. 
The optimal trajectories were calculated for several 
market conditions (prices for grade A, grade B 
and off-spec product), each yielding a different 
grade-change policy. The solution time for one 
setting of the market conditions is summarized 
below, where the numbers correspond to the steps 
in Table 1. 

(1) SLl.pl-tLl.zl 546 CPUs (7 times dz/dp) 
(2) NLP sol. 194 CP Us (585 times V(z) 

and 215 times 
dV/dz) 

(3) DAE integr. 667 CP Us (16 times z(P)) 
Tot al 1407 CP Us = 24 CPUmin. 

The typical time needed for one optimization run 
was 25 CPU minutes. Of this time, more than 85% 
was spent on process model integration and sensitiv­
ity calculations, in line with previous research. This 
shows that integration of the process model is the 
main bottleneck in optimization and any at tempt 
to reduce the number of model integrations needed 
is likely to re duce total optimization time. As we 
can see, the number of process simulations needed 

4implemented on the model using a ratio-controller. 



Table 1: Comparison between SQP and SSQP in the "trust region" setting 

SQP 
1. linearize z (p ) 

linearize V (z ) 
update Hessian of V(z(P)) 

2. solve QP within TR V(z(P)) 
3. evaluate V on nonlinear model 

V better : adopt new & goto 1 
V worse: reduce T R & goto 2 

is surprisingly low for SSQP, only 16 time-expensive 
simulations! This should be seen in contrast to 
the number of inner loop iterations of 585, which 
indicates the nonlinearity of the economic objective. 

Results 

The results on the HDPE process show improved 
profitability of plant operation during a grade tran­
sition. The optimizer changed the input profiles to 
such an extent that both the off-spec time and the 
off-spec volume were reduced, which yielded an in­
crease in added value (profit + net holdup) over the 
fixed interval of 25 hours. In Figure 5 the optimal 
trajectories for melt-index, density and the produc­
tion flow are plotted in solid lines for the situation 
where off-spec production is evaluated at the feed 
price and grade A resp. grade B is worth DM 1.35 
and DM 1.45. We see that the optimizer succeeds 
in bringing the production from A to B in a short 
time, whilst the production flow is somewhat at­
tenuated during the changeover. Apparently, the 
space within the grade specifications is optimally 
exploited to perform the grade change at maximum 
efficiency. More details on the example can be found 
in (van der Schot, 1998) . 

7 Discussion 

We motivated the development and application of 
the SSQP method by stating that the nonlinearity 
of economic cost functions will in many problems be 
non-quadratic and more severe than that of the pro­
cess model. We did not give a mathematical proof 
for this. Nor did we provide a feasible way to check 
this . At the moment we do not have such a check 
available in a suitable form. We may however, look 
at the Taylor expansion of the nonlinear mapping 
p --+ V to get a hold of some heuristics. The Hes-

SSQP 
1. 

2. 
3. 
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linearize z(P) 
do not approximate V(z) 

solve NLP within T R z(P) 
evaluate V on nonlinear model 
V bet ter : adopt new & goto 1 
V worse: re duce T R & goto 2 

sian in the Taylor expansion is given by: 

02V = 02V (OZ)2 + oV 02z 
Op2 oz2 op OZ Op2 . (18) --....--

2ndorder dynamics 

In the SQP method, this Hessian is approximated 
from successive gradients, using for example a BFGS 
update (Edgar and Himmelblau, 1988). In the 
SSQP method, only the part of the Hessian related 
to the second order derivative of the cost function 
is present. Thus, a basic assumption underlying 
the SSQP approach, which allows us to discard the 
second order dynamics term of z (P) from the sec­
ond order term of V(P) is that the contribution of 

~~ * is an order of magnitude smaller than that 

of ~ (~;) 2 • If this is not the case, the SSQP 

method may actually yield worse progress than the 
SQP method. On the ot her hand, all higher order 
derivatives of the cost function also appear in the 
Taylor expansion, since we do not approximate the 
cost function, which will favor the SSQP approach 
in those situations where nonlinearity of the process 
is less severe. 
Our choice for the trust region-based determination 
of a search step instead of the more common line 
search-approach, needs some motivation. Although 
we might just as weIl use a line search to confront 
the search directions with the real nonlinear process 
behavior, we feel that the trust region approach is 
more powerful in the SSQP setting. Note that the 
solutions resulting from the inner loop NLP will pro­
vide proper search directions (and will actually also 
be good "search steps") if they are located within 
the region where the inner loop approximation is ex­
pected to be accurate (i.e. in the so-called "Trust 
Region" .). If th is is not the case, the quality of the 
search directionsjsteps may actually be rather poor 
and slow convergence may result. A second advan­
tage of the Trust Region approach is that not only 
the search step is altered af ter an unsuccesful imple­
mentation of a new solution, but - at the relatively 
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Fig. 5: Grade change under normal market conditions for loose MI specifications (dotted-lines: specifications, 
dashed-lines: initial trajectories, solid-lines: optimal trajectories). 

low cost of 1 extra solution of the inner loop NLP 
- a new, and thus more suitable, search direction is 
also calculated. 

8 Conclusions 

The INCOOP project aims at an integration 
of proeess control and plant-wide optimization. 
In this paper we dealt with the problem of 
dynamic-eeonomic optimization in an off-line 
setting. We defined a dynamic-economic objective 
as to maximize the added value of the plant over 
some time interval. Mathematically, this comes 
down to solving an optimization problem with 
algebraic-differential constraints. Based on an 
investigation of the sequential approach to sol ving 
such problems and its inefficiency for strongly 
nonlinear objeetive functions, we motivated the 
introduction of a new approach, successive sequen­
tial quadratic programming. The proposed method 
solves an NLP - eonstructed from a linearized 
process model and an exact (non-approximated) 
objective function - instead of a QP in the inner 
loop of a dynamic optimization problem. This 
yields much more accurate steps in the outer loop, 
hence greatly reducing the number of nonlinear 
model integrations needed. The extra inner loop 
iterations are inexpensive, thus total optimization 
time ean be reduced by an order of magnitude for a 
large class of problems. The optimization approach 
was tested suecesfully on a HDPE polymerization 
grade change problem, with the process described 
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by a complex, stiff, nonlinear DAE system with 
3800 variables implemented in SpeedUp. 
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Appendix: construct ion of SDoP-tDoZ 

An efficient and convenient way of obtaining the 
mapping dz I dp is by using a high order fixed step 
size integration algorithm to solve the sensitivity 
equations. Even if the Jacobians are not available 
from the model integration this would require only 
few evaluations of the Jacobians along the nominal 
trajectories. Most simulation tools provide this op­
tion in the form of a linearization algorithm, which 
does nothing more than the evaluation of the Ja­
cobians by numerical perturbation. In SpeedUp the 
linearization option is called "CDI" (Control Design 
Interface) . In Mathworks' Simulink, the lineariza­
tion tooI is called "linmod". The result is generally 
presented in state space form: 

Llx(t) = AkLlx(t) + BkLlu(t), (A.l) 

where A and Bare given by respectively (13) and 
(14) . Having at our disposal these Jacobians for 
t = T , 2T, .. . ,NT we can integrate the sensitivity 
equations to obtain 

Llx((k + I)T) = «PkLlx(kT) + r kLlu(kT), 

k = 0, . . . , N - 1, where «Pk = eAkT and r k 
(k+l)T 

J eAkT Bk dr (Lee and Ricker, 1994). Note that 
kT 

applying this high order integration comes down to 
the discretization of the state space system (A.l), 
zero-or der-holding u . For convenience and ease of 
notation, we assume that the economically rele­
vant variabie z are related to x and u only: Llz = 
CxLlx + DLlu. Following (Lee and Ricker, 1994) we 
can construct the IlO matrix Tu by integrating the 
process model: 

Do 
cro 
C«Plr O 

C«P2«Plr O [ 

Llu(T) 1 
~U(2T) . 

Llu(NT) 

Introducing Up as the parametrization-dependent 
mapping from p to u, 

[ 

Llu(T) 1 
~U(2T) = UpLlp, 

Llu(NT) 

we obtain SD.p-tD.z = TuUp . 
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Abstract. The Simona institute does research into flight simulator mot ion techniques. 
Core of the institute will be the Simona Research Simulator of which the motion system 
has been constructed. With flight simulator motion systems one wants to provide the pilot 
in the simulator with appropriate generalized specific forces. This has to be attained by 
steering six parallel hydraulic servo actuators. To deal with the complex control require­
ments, a fast multi-processor board was connected to the system. A multi level control 
structure was developed in which foreach level specific tasks were defined in close relation 
with the other levels. The control structure consists of the following. With fast inner loop 
pressure control the hydraulic actuators are turned into force generators. Acceleration 
references can be provided to a feedback linearising controller which accounts for the 
non-linear mechanics. References con sist of both stabilizing corrective accelerations by 
outer loop feedback of the reconstructed platform pose as desired accelerations provided 
by a smoothly interpolating reference model based feed forward. In this way an extensive 
model based controller could be implemented on the mot ion system. A benchmark test 
is being developed which has to quantify the level of improved performance. 

Keywords. Robotics, multivariable nonlinear systems, mathematical model based con­
trol, implementation, aeronautics. 

1 Introduction 

The Simona flight simulator motion system, see 
Fig. 1., is a hydraulically driven mechanical system 
with six degrees of freedom and shows relevant non­
linear fast and slow dynamics. It forms a represen­
tative test bed to do research into motion control. 
The Sim on a institute (Advani et al., 1997) tries to 
enhance the general standard of various aspects of 
flight simulator technology and as such the motion 
controller has to serve both as a research object and 
as a safe and high performance part of experiments 
e.g. into human perception. 
The eventual task of high performance simulator 

tThe original version of this paper was presented at the 
2nd IEEE Systems, Man and Cybernetics IMACS Con­
ference CESA '98, April 1-4, 1998, Hammammet, Tunisia. 
Copyright of th is paper remains with IEEE. 
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motion control is improved mot ion realism. With 
flight simulator motion systems one wants to pro­
vide the pilot in the simulator with appropriate gen­
eralized specific forces i.e. both rotational and trans­
lational accelerations plus gravity (Martin, 1995). 
Particularly in case of tight pilot control, e.g. land­
ing, phase lag of realized versus desired accelerations 
should be minimal. In this way smaller differences 
between simulator and in-the-àir flight conditions 
will exist. 
By construction design for control (low mass, centre 
of gravity, stiff synergetic structure) an important 
basis for enhanced performance has been attained. 
This has to be fully exploited by advanced controller 
design techniques. 
With the hardware, fast multi processor dsp-boards, 
and software, automatic dsp-code generation from 
higher level simulation programs, used in this 
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Fig. 2: Multi level control of the Simona Motion System 

Fig. 1: The mot ion system of the SRS with an tem­
porary dummy platform load in the central 
workshop of mechanical engineering. 
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project, it is possible to iterate fast on a controller 
design method of setting the specifications, analyz­
ing the system, synthesizing the controller and im­
plementing on the actual experimental set up. Com­
plex model based controllers can be implemented on 
the mot ion system. 

2 Problem Description 

Since the motion controller to be designed has to 
deal with a complex system, extensive modelling 
took place with the control objective in mind, even 
before construction (Koekebakker et al., 1996; Van 
Schothorst, 1997). In the earlier stages measure­
ments could be done on an experimental set up in 
which each hydraulic actuator was tested separately. 
At this point tests can be performed with a dummy 
platform replacing the eventual simulator on top of 
the mot ion system (Koekebakker et al., 1995c). 
By analysis of both theoretic models derived from 
basic physicallaws as experiment al models based on 
measurements taken, an inventory of the relevant 
control problems was put together. 

• Control objectives 
Flight simulation or fooling a pilots motion 
awareness basically forms a control problem 
with mixed objectives. The system should pro­
vide for the accelerations being simulated with­
out running out of stroke. This problem is 
mainly left to a host which has to co me up with 
feasible trajectories but the motion controller 
still has to both track reference accelerations 
as to stabilize platform pose . 

• Hydraulies. 
Control of the long-stroke hydraulic actuators 
used in flight simulator motion systems is not 



easy since the ph ase lag introduced by the servo 
valve together with the non-negligible high fre­
quent transmission line resonances form a sta­
bility problem (Van Schothorst et al., 1994). 

• HydraulicsjMechanics 
F'tnther the bilateral coupling of the hydraulic 
mechanical system with strong energy exchange 
via pressurejflow and forcejvelocity introduces 
mechanical pose dependent resonances with in­
teraction over the actuators. The dynamics re­
sulting from this interaction forms the most rel­
evant part of the system as shown in Koeke­
bakker et al. (1998c). 

• Mechanics 
With the actuators mounted in parallel to the 
simulator, the construct ion forms a so-called 
Stewart platform. Due to the resulting kine­
matic loops, care should be taken to model this 
system with only explicit differential equations 
(Koekebakker et al., 1996). This requires mod­
elling in appropriate coordinates i.e. the plat­
form pose. As only the actuators lengths are 
being measured, a transformation to platform 
pose is required to be able to apply model based 
control. This transformation is, dual to the ac­
tuator trajectory generation of serial robots, ex­
plicitly known from platform pose to actuator 
length but not injective. 

• Trajeetory generation 
The reference acceleration and pose will be cal­
culated at a low sample rate host computer 
which incorporates a complex airplane model. 
References have to be introduced smoothly to 
the motion controller. But smoothing the sig­
nal should not result in responses with too 
much phase lag sin ce the timing of on-set mo­
tion is an important part of simulation quality. 

This paper will describe a control strategy which 
takes into account the afore mentioned problems 
and resulted in a controller which could be imple­
mented on a real-time control computer connected 
to the motion system. 

3 Control Strategy 

By design of a control structure which has four lev­
els, each of which have their own specifications in 
close relation with the other levels, one can circum­
vent having to solve a too complex set of problems 
at once. Further it is shown that this structure leads 
to an implementable controller. 
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Fig. 3: Typical systems frequency response, bode­
plot of (l,l)-element valve steering voltage 
to actuator pressure. 

Genera! idea 

Looking at Fig. 2. in which the control structure 
is schematically depicted we consider the following 
con trol levels with reference to the applied control 
theory. 

Level 1. Local hydraulic pressure control loops 
(Heintze and Van der Weiden, 1995; Van 
Schothorst, 1997; Sepehri et al., 1990). 

Level 2. MultivariabIe feedback linearisation 
(Koekebakker, 1998b; Slotine et al., 1991). 

Level 3. Outer loop position stabilisation (Qu and 
Dawson, 1996). 

Level 4. Reference model based control (Koeke­
bakker et al., 1998a; Tomizuka, 1993). 

In short, the actuators are turned into pressure gen­
erators by local controllers. These controllers re­
ceive their reference pressure from a feedback lin­
earisation loop in which pressures can be calculated 
necessary to track desired accelerations. Desired ac­
celerations are partIy corrections which are required 
to stabilise the pose of the simulator and for most 
the cues generated to provide the pilot with reason­
able motion awareness. As these cues have to be 
smoothed but not delayed, a reference model based 
controller has to calculate appropriate cues for the 
feedback linearisation controller. 
The next sections will describe the different control 
levels more closely. 



-----------

L.-------l _A 1+---;----' 
ij 

Fig. 4: Basic structure hydraulically driven motion 
system. 

Inner loop pressure control 

To turn the hydraulic actuators into nice force gen­
erators two of the afore mentioned control prob­
lems have to be solved at this level. Feedback of 
the pressure can result in stability problems since 
the relatively long trans miss ion lines cause badly 
damped resonances together with ph ase lag of the 
valve. Further the coupling between the mechanics 
and hydraulics results in the pose and load dep en­
dent rigid modes of the system. Looking at the fre­
quency response of the system at its neutral pose 
in Fig. 3., the rigid modes can be observed in the 
frequency area between 7 Hz and 25 Hz. At 200 Hz 
the transmission lines cause peaking (at 75 Hz also 
a notch results). The valve has a bandwidth of 
150 Hz which can clearly be observed by looking 
at the phase. Flexibility in the mechanics caused 
some additional parasitic modes between 40 Hz and 
80 Hz. 
The coupling from which the rigid modes result, can 
be dealt with using the control method introduced 
by Sepehri et al. (1990) and successfully applied by 
Heintze and Van der Weiden (1995). A hydrauli­
cally driven motion system basically has the struc­
ture given in Fig.4. Through the valves, V, the oil 
flows, ;jJ, can be steered by the inputs, z. The re­
quired oH flows are mainly determined by the speed 
at which the volumes in the actuators have to be 
filled . These are equal to the velocities, q, of the 
actuators times the area of the piston, A. Together 
with the oH loss due to the leakage L, the net oH 
flow difference cause the pressures p to ri se through 
the hydraulic oH stiffness, C. 

p = C(Vz - Lp - Aq) 

The acceleration of the actuators is determined 
by the inverse pose dependent mass matrix, M-1 , 

which causes the interaction, times the forces sup­
plied by the actuators minus the viscous friction 
along the actuators due to the hydraulic bearings, 
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Fig. 5: Modified feedback linearising control struc­
ture 

B. 

Gravity forces and the less relevant coriolis and cen­
tripetal forces are assumed to be dealt with at the 
higher levels . 
By compensation of the oH flow due to actuator ve-
10 city, the hydraulics can be decoupled from the 
mechanics. A smooth 50 Hz bandwidth pres su re 
generator can be obtained by filtering the pressure 
feedback signal properly. As the inner loop con­
troller does not inter act with the mechanics it could 
be designed and tested with the one degree of free­
dom experimental set up (Van Schothorst, 1997). In 
this way the hydraulic servo actuators which usually 
are considered velo city engines, are turned into force 
generators. 

Multivariabie feedback linearisation 

The force generators can now be used to control 
the non-linear and multivariable mechanics. With 
model based calculation of the required forces to 
accelerate along the desired path, Xd, given a mea­
sured pose and velo city, the system is provided with 
both feed forward and decoupled feedback linearised 
correction paths to be used by the higher level con­
trollers. 
The proposed control structure is given in Fig.5. 
This structure differs from the standard computed 
torque controller of a mechanical system. In mod­
elling for control the parallel Stewart platform con­
figuration, one has to take care of generating a ex­
plicit set of differential equations (Koekebakker et 
aL, 1996). Since this is only possible taking the plat­
form pose as the generalised coordinates, the con­
troller has to incorporate an algorithm which cal-
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Fig. 6: Acceleration step response of the platform 
in surge direction at different (normalised) 
amplitudes controlled by the multiple level 
controller. 

culates these coordinates from the measured actua­
tor lengths, l, and translates desired platform forces 
into required actuator pressures. In Koekebakker 
(1998b) the structure of th is part of the controller 
will be presented in more detail. 
The actuator lengths, l can be calculated from the 
platform pose x. 

l = f(x) 

Measuring the actuator lengths, the platform pose 
has to be reconstructed iteratively. 

With the jacobian, J, defined by 

J(x) = :! 
In Koekebakker (1998a) it is shown that this iter­
ation converges within the accuracy of the length 
measurements after 2 iterations in every part of the 
workspace going through the iteration at 1 kHz. 
This update frequency is attained. 
The desired actuator pressures can be constructed 
by calculation of the platform mass matrix M, cori­
olis and centripetal forces C and gravity G. These 
are functions of the reconstructed platform pose. 

Although careful identification of the model param­
eters should improve this controller, filling in design 
values for these parameters like masses, inertias and 
centres-of-gravity already results in reasonable per­
formance by decoupling interaction up till 80%. 
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Outer loop control 

The outer loop controller will have to stabilise the 
simulator pose to prevent the actuators from run­
ning out-of-stroke. As the feedback linearising con­
troller decouples the mechanics into separate dou­
ble integrators, the outer loop can generate cor­
rection accelerations resulting from a filtered PD­
structure to stabilize these integrators. The correc­
tion accelerations, Xc, should not exceed human sen­
sory thresholds (Hosman and Van der Vaart, 1980) 
i.e. generate no noticeable false cues. Therefore the 
correct ion should be sufficiently smooth (filtered) 
and only requires limited bandwidth (weIl below 
1 Hz). 
Although a P(I)D-structure of the outer loop con­
troller robustifies the system (Qu and Dawson, 
1996), explicit robust control will have to be used to 
more accurately deal with the varying system con­
ditions one en counters working within a real-time 
environment. 

Reference model based control 

The motion control computer is provided with de­
sired simulator accelerations (Xd) and poses (Xd) 
by a host which controls the over all simulation (in­
cluding visual, instrumental and acoustic stimuli). 
These signals are generated by a model of the vehi­
cle to be simulated and a subsystem called wash-out 
filters which translate vehicle mot ion into feasible 
simulator motion. Although the host comes up with 
new set points at relative low update frequency (ca. 
60 Hz) the fact that the system being simulated are 
known, will enable areasonabie prediction of the 
next set point. 
The reference model based control has the task to 
deal with the set points and fut ure predictions in a 
proper way. Using knowledge of the set points sup­
plied (mainly the fact that the signals do not con­
tain information at frequencies higher than 30 Hz) a 
smooth interpolation filter provides a suitable refer­
ence acceleration to the feedback linearisation level 
together with a smooth jerk (derivative accelera­
tion) signal which can be used as lead signal in the 
same feed forward channel. 
The reference model based control shows consider­
able improvement W.r.t. ph ase lag or delay in simu­
lating on-set of abrupt (e.g. landing bump) and fast 
varying motion (e.g. turbulence) (Koekebakker et 
al., 1998a). 

4 Implementational issues 

The multiple level controller has been implemented 
on a real-time multi-processor dsp mot ion computer 
(dSpace, 1996) connected to the motion system 
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Fig. 7: Example simulator critical manoeuvre: 
landing with cross wind, desired and mea­
sured (biased, dashed) acceleration in heave 

with a temporary dummy platform (ca. 2.5 tons). 
In this set-up one C40-processor has to perform 
all communication with the outside world (bottle­
neck W.r.t. sampling frequency) and could be run at 
5 kHz. Also the coprocessor which calculates the 
inner loop control runs at 5 kHz necessary to deal 
with the relevant fast actuator dynamics. 

In this respect the multiple level structure pays-oft' 
since the other levels, especially the feedback lin­
earising control run on yet another coprocessor at 
1 kHz which is just sufficient to go through all the 
algorithms involved. 

Design of the control structure was performed in the 
us er friendly environment of Matlab ISimulink l from 
which c-code can be generated automatically and 
connected with user-written code. In this way rapid 
prototyping of complex controllers as presented in 
this paper becomes feasible. Going from a Simulink 
model to a controller running in a real time environ­
ment takes ab out 10 minutes. 

In Fig. 6. the platform coordinates are plotted dur­
ing a acceleration step in the most difficult direct ion 
of surge (forward motion). The platform is moved 
fast and smooth at its desired acceleration at ampli­
tudes ranging from 0.05 mi 82 to 1 mi 82 . At ampli­
tudes of 0.005 g, some noise can be observed. Plots 
had to be shifted to let t = 0 correspond and scaled 
to normalised desired value of 1. 

48 

Fig. 8: Testing Simona research simulator motion 
system with shuttle 

5 Performance quantification 

Performance of the mot ion system was defined by 
the degree of motion realism attained. There are no 
measures known which exactly quantify this. More 
research into human perception has to point out how 
this has to be done. The Simona Research Simulator 
could play a role in attaining this goal. 

At this moment a test is being developed which 
should enable some quantification. Part of th is test 
will be a set of benchmark manoeuvres which are 
considered as simulator critica!. At the simulator 
facility of the Royal Dutch Airline, 30 manoeuvres 
such as hard landing, response to maximum clear air 
turbulence, brake release during take-oft' roU, etc., 
were recorded by the aerospace group of the Simona 
institute. In Fig. 7 the heave accleration of the mo­
tion system carrying a dummy platform with the 
expected fuU operational payload of 4000 kg is de­
picted in performing a landing manoeuvre with cross 
wind. The three landing bumps and high frequency 
taxiing rumble af ter touch down are in close corre­
spondance to the desired response. The results of 
a fuU performance calibration test, as it is called in 
fiight simulation motion evaluation, can be found in 
(Koekebakker et al., 1998b). Also the light weight 
shuttle has been tested on top of the motion system 
in the Central Workshop at Mechanical Engineer­
ing as depicted in Fig. 8. Of course, final evaluation 
can only be performed af ter the simulator has put 
into operation at the Simona building where a new 
hydraulic power unit has to be connected. 

1 Matlab and Simulink are registered trademarks of the 
Math Works, Inc. 
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Abstract. For successful large scale application of wind energy the price of electricity 
generated by wind turbines should decrease. Model based control can be important since 
it has the potential to reduce fatigue loads, while simultaneously maintaining a desired 
amount of energy production. The controller synthesis, however, requires a mathematical 
model describing the most important dynamics of the complete wind turbine. In this 
paper a systematic approach for modeling the structural dynamics of flexible wind tur­
bines wil be presented. The so-called superelement modeling methoq is used to divide 
the structure into a number of superelements consisting of four rigid bodies connected by 
torsional springs, and dampers. The stiffness of the torsional springs is derived directly 
from physical data. SD/FAST is used to generate the equations of motion. Finally, the 
power of this modeling approach will be demonstrated through comparing measured rotor 
blade eigenfrequencies with those of the superelement approximation. 
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1 Introduction 

In the 1970s the concern about the limited fossil 
fuel resources, and their impact on the environment 
awakened. Due to this growing concern, interest 
revived in using renewable energy sources in order 
to meet the constantly rising world energy demand. 
In addition, the oil crises of 1973 and 1979 led to 
the realization that the amount of energy import 
should be decreased so as to become less dependent 
of oil exporting countries. One way to use renewable 
energy sources is to generate electrical energy using 
wind turbines. 

1.1 Wind energy 

However, for successful large-scale application of 
wind energy the price of electricity generated by 

tAuthor to whom correspondence should be addressed. 
The research of David Molenaar is sponsored by Stork Prod­
uct Engineering and Lagerwey Windturbine b.v. 
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wind turbines should decrease. To achieve this goal, 
the main requirement is an increase of the reliabil­
ity of wind turbines. At present, the reliability is 
lower than expected due to the underestimation of 
fatigue loaós in the wind turbine design. F\uther­
more, over the recent years a number of wind tur­
bines are blown to pieces during storms. These op­
erating difficulties have resulted in a relatively high 
price of electricity generated by wind turbines. 

Hence, the most important underlying motivation 
for wind energy research for large-scale energy pro­
duction is the aim to reduce the price of the pro­
duced electrical energy. A wind turbine will then 
have low construction costs, long lifetime, low main­
tenance level, and efficient energy conversion. It is 
evident that each of these points more or less inde­
pendently reduces the cost per unit of delivered elec­
trical energy. Following from this ambition, there 
is a trend towards lighter and more flexible wind 
turbines. Additionally, advanced control can be im-



portant (Bongers, 1994; Molenaar, 1995; Molenaar, 
1996) . 

1.2 The Lagerwey LW-50j750 wind turbine 

The joint project of Stork Product Engineering, 
Lagerwey Windturbine B.V., and Delft University 
of Technology offers the possibility to investigate the 
potentialof advanced control design on a real wind 
turbine: the Lagerwey "LW-50/750". 
The LW-50/750 is a 750 kW, variable speed wind 
turbine with an upwind rotor of 50.5-meter diam­
eter. The rotor consists of 3 blades that can be 
actively and individuaHy pitched over the fuH span. 
The pitch control is used for power control at full 
load, and to stop the turbine if the safe operating 
limits are exceeded. The turbine is equipped with 
a gearless synchronous ring-generator, which con­
verts the mechanical power into electrical power at 
variabie frequency. Subsequently, an IGBT based 
frequency converter is used to convert the electrical 
energy of varying frequency to the grid with a fixed 
50 Hz. frequency. The generator torque will follow 
an external set point signal, which is calculated by 
the control computer. The support structure con­
sists of a 46.165-meter conical tower with a circular 
cross section, and a foundation . The tower is made 
of tubular steel. 
The Lagerwey LW-50j750 belongs to a new gen­
eration of wind turbines which are more ftexible 
than the majority of the turbines now on the mar­
ket. It has soft characteristics realized in all sub­
systems in order to reduce internal stresses, and 
thereby to make lighter, and hence less costly com­
ponents possible. The explanation for this is that in 
a stiff system concept the transient air loadings go 
into the structural components as physical strains, 
and (sooner or later) in duce fatigue damage. In 
a soft system concept, on the other hand, these 
air loadings are reacted primarily by the subsys­
tem masses with little strain energy involvement. In 
ot her words: the subsystems bend under the tran­
sient air loading by which internal stresses will be 
reduced. Hence, there is low tendency for fatigue 
failure in a dynamically soft system. 

1.3 Model based control 

Flexible, variable speed wind turbines as the LW-
50/750, however, require a careful design analysis. 
If the system is not weIl tuned, the potential bene­
fits can be lost or even reversed. The reason for this 
is that due to the variabie speed operation the sys­
tem travels through a broad spectrum of excitation 
frequencies which implies that the eigenfrequencies 
of the individual components should be designed 
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carefully. In addition, ftexible systems will be more 
prone to instabilities (Bierbooms et al., 1987) . 
Furthermore, since a wind turbine consists of me­
chanical components for which the fatigue loads are 
mainly determined by the damping of the mechani­
cal resonance frequencies (Molenaar, 1995), there is 
the possibility that by active control of the generator 
shaft reaction torque the damping of these modes is 
increased, implying an a~ditional reduction of the 
fatigue loading. 
Besides reduction of fatigue loads, optimal energy 
should be extracted from the wind. These two con­
trol objectives are, however, more or less conftict­
ing. Hence, a trade-off has to be made between the 
amount of acceptable fatigue loads and the desired 
energy production. To achieve the conflicting con­
trol objectives, a mathematical model describing the 
most important dynamics of the complete wind tur­
bine is required to design such a controller. Hence, 
the following problem can be formulated, as a first 
step in modeling the complete system. 

1.4 Problem formulation 

Examine the possibility to devise a systematic ap­
proach for modeling the structural dynamics of ftex­
ible wind turbines like the Lagerwey LW-50j750, 
suited for time-domain simulation, analysis of dy­
namic loads, and model based control design. 

1.5 Motivation of approach 

The intended use of the models is thus for both time­
domain simulation, analysis of dynamic loads, and 
control design purposes, which is difficult to achieve 
in the same model. The LW-50/750 should therefore 
modeled as a set of interacting modules (e.g. ro­
tor, and tower) allowing easy configuration changes 
and providing maximum physical insight. In the 
wind energy community there is a wide variety in 
different design codes used to model a wind tur­
bine's dynamic behaviour (Molenaar, 1998b) . In 
general, these codes have been developed from a 
modeling, and not from a control design point of 
view. Furthermore, the current generation design 
codes has received very little validation against mea­
surements from especially ftexible, variable speed 
wind turbines (Pedersen, 1996). Therefore we have 
decided to develop a new wind turbine design code 
incorporating all current know-how regarding mod­
eling, identification, and control of wind turbines. 
We will use the general-purpose simulation program 
SIMULINK to create special-purpose wind turbine 
dynamic models in a modular setting. 
In this article we willlimit ourselves to the modeling 
of the structural dynamics. The structural models 
should meet the foHowing requirements: 



• The structural model should allow easy inter­
action with in particular the aerodynamic sub­
module. This interaction should take place via 
rotor blade/tower movements and aerodynam­
ical forces; 

• The model parameters of the structural model 
should have a physical interpretation and be­
sides that, it should be possible to derive them 
di,rectly from (known) physical data; 

• The model structure should allow experimental 
model parameter updating in order to reach the 
desired accuracy; 

• The model order should stay limited, i. e. must 
be suited for model based control design. 

The outline of this paper is as follows. First, in Sec­
tion 2 the concepts and software tools for mechanical 
modeling are reviewed. Subsequently, the superele­
ment modeling method will be discussed, and eval­
uated using an Euler-Bernoulli beam. Next, in Sec­
tion 4 the developed systematic modeling approach 
will be presented and demonstrated on a single rotor 
blade. Section 5 concludes this paper. 

2 Mechanical modeling: concepts 
and software tools 

More and more engineering work relies on math­
ematical models of the studied object (Ljung and 
Glad, 1994). Loosely put, a model of a system is a 
tooI we use to answer questions about the system 
without having to do an experiment. After all, it is 
sometimes more appropriate to perform simulations 
than to carry out experiments. The reason might be 
one of the following: it either is too expensive, too 
dangerous, or simply impossible: the real system 
does not (yet) exist. A dynamic model of a system 
of interest allows the designer to study more alterna­
tive concepts in shorter time, reduces the number of 
tests needed for design validation, and thus reduces 
the costs and risks of the complete design cycle. In 
addition, a dynamic model of a real system offers 
the possibility to design, and evaluate the impact 
of different control strategies on the system's per­
formance. Hence, we have to make a model of the 
system under consideration. 
In this paper we will focus our attention on mechan­
ical models of flexible wind turbines. But what kind 
of mechanical model should be used or is most ad­
equate for the actual problem? Without exception, 
all different kinds of mechanical models are based on 
the classical mechanics formulated by Sir Isaac New­
ton (1642-1727) in his book PhilosophitE Naturalis 
Principia Mathematica in 1687 (Newton, 1687). 

53 

At present, four different kinds of mechanical mod­
els are commonly used (Kreuzer, 1994): 

• Multibody Systems. In the Multibody Sys­
tem (MBS) approach, a real mechanical system 
is approximated with a finite number of rigid 
bodies, coupled by inelastic joints (e.g. slider, 
pin) to the Newtonian reference frame; 

• Finite Element Systems. In the FES 
method, the real flexible structure is regarded 
as an assembly of a finite, but large number 
geometrically simpie, discrete elements; 

• Continuous Systems. Continuous System 
(COS) consist of flexible bodies of which the 
mass and elasticity can be exactly mathemati­
cally represented; 

• Hybrid Multibody Systems. A Hybrid 
Multibody System (HMBS) may built up of a 
combination off all three methods of modeling 
mentioned above, leading to the most complex 
model of a mechanical system. 

The MBS approach leads to a finite number of dif­
ferential equations. The COS mechanical modeling 
method, on the other hand, results in partial dif­
ferential equations which can be solved exactly only 
for very simple geometric structures (e.g. beams). 
The FES approach results in complex, high order 
models mainly suited for layout, design, and thor­
ough system analysis. Since we want a limited or­
der model of the real system under consideration, 
we have decided to use the MBS approach to model 
the Lagerwey LW-50j750. 

3 Superelement method 

In the Multibody System approach a real mechan­
ical system is approximated with a finite number 
of rigid bodies. However, when the deformation of 
(a part of) the system has a significant effect on 
the dynamic behaviour, the elasticity can no longer 
be neglected. Inclusion of elasticity by way of so­
called flexible bodies is essential in order to reach 
the same level of accuracy as for stiff mechanical sys­
tems. The price to be paid is, of course, an increased 
model order. There are severa1 ways of modeling 
flexible bodies within the MBS methodology, see for 
an over view e.g. (Shabana, 1985; Shabana, 1997). 
The simp lest way is to equally distribute the mass 
of the flexible body into lumped masses, intercon­
nected by ideal, massless springs and dampers. This 
is the so-called "lumped-mass method". A more ac­
curate model is obtained by using the concept of the 
so-called "superelement" as introduced by Rauh and 
Schiehlen (Rauh, 1989; Rauh and Schiehlen, 1987). 



Following this approach, a (part of a) flexible body is 
approximated with a number of superelements con­
sisting of a series of rigid bodies connected byelastic 
force elements as springs, and dampers, see Fig. l. 
The main question is "What should be the values of 
the spring constants in order to produce a compre­
hensive and accurate model of the flexible system?" 

Fig. 1: Superelement: i. e. multibody approximation 
of a fiexible body consisting of four rigid bod­
ies connected by springs, and dampers. 

3.1 Determination of spring constants 

The purpose of this paragraph is to determine the 
torsional spring constants of each superelement. 
We will limit ourselves to bending; the interested 
reader is referred to (Molenaar, 1998a) for the ax­
ial and torsional result. Consider thereto an Euler­
Bernoulli beam with length L loaded with a con­
stant force F perpendicular to the longitudinal axis . 
Since this is a case of pure bending, we may use the 
basic differential equation of the deflection curve of 
a prismatic beam to determine the total deflection 
8 at the free end (GereTimoshenko, 1987), i.e. 

d 2v M 
dy2 EI 

with v the transverse displacement, v" = ~, EI 
the bending stiffness, and M the bending m~ment. 
Substituting the expres sion for the bending mo­
ment, the differential equation becomes 

EIv"=-M=FL-Fy 

The fi.rst integration of this equation gives 

, Fy2 
EIv = FLy - -2- + Cl 

The constant of integration Cl can be found from 
the condition that the slope of the beam is zero at 
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the support; thus v'(O) = 0, which results in Cl = O. 
Therefore 

, Fy2 
EIv = FLy - -2- (1) 

Integration of this equation yields 

FLy2 F y3 
Elv= -- - - +C2 2 6 

The boundary con dit ion ·on the deflection at the 
support is v(o) = 0, which shows that C2 = 0. Thus, 
the equation of the deflection curve is 

(2) 

The angle of rotation () F and the deflection 8 F at 
the free end of the beam are readily found by sub­
stituting y = L into Eqs. (1) and (2) respectively. 
The equation of the deflection curve for an Euler­
Bernoulli beam loaded by a couple M at the end 
of the beam can be determined analogously. The 
results for both cases are summarized in Eq. (3). 

[ 
8 ] 1 [2L3 3L

2
] [ F ] 

() = 6EI 3L2 6L M 
(3) 

Inversion of this equation results in 

[ F] = EI [ 12 -6L] [8] 
M L3 -6L 4L2 () 

(4) 

From Fig. 2 it can be easily derived that 

[ 
CzI + Cz2 Cz2 ] [Á')'l] = 

Cz2 Cz2 + Cz3 Á')'2 

(5) 

and that the following rel?-tion holds 

(6) 

with k the partitioning coefficient. 
Substituting Eq. (5) and (6) in Eq. (4) gives the 
following spring coefficients 

Cxl = 6EIx (1 - 2k)2 
L 

(7) 

Czl = 6Elz (1 _ 2k)2 
L 

(8) 

Cx3 = 6EIx (1 - 2k)2 
L 

(9) 

Cz3 = 6Elz (1 _ 2k)2 
L 

(10) 



F 

'------_._-_. __ ._-~ y 

Fig. 2: Defections and slopes of a superelement with 
length L. Each (symmetric) superelement 
consists of three rigid bodies with lengths kL, 
(1 - 2k)L, and kL. 

2EIx 2 
Cx 2 = --( -1 + 6k - 6k ) 

L 

2EIz 2 
Cz 2 = --( -1 + 6k - 6k ) 

L 

(11) 

(12) 

in which Ix, and Iz represent the area moments of 
inertia with respect to the centroid C of an Euler­
Bernoulli beam of length L. Since the polar area 
moment of inertia with respect to an axis perpen­
dicular to the plane of the figure at point C is equal 
to the sum of the area moments of inertia with re­
spect to any two perpendicular axes x and z passing 
through the same point and lying in the plane of the 
figure, we get the following expres sion for Ix and Iz 

(13) 

The partitioning coefficient k (0 < k < ~) of the su­
perelement exerts influence on the kind of approx­
imation of the eigenfrequencies. In (Rauh, 1989) 
is has been concluded that choosing a partitioning 
coefficient from the range ~ ::; k ::; t results in 
models that approximate the exact eigenfrequencies 
with a limited number of superelements. Further­
more, with k = ~ (1 - ~) ~ 0.211 it follows that 
Cx 2 = Cz2 = 0, and that Eq. (7) to (10) reduce to 

2E1x 
(14) Cx1 = -y;-

2EIz 
(15) Czl = -y;-

2EIx 
(16) Cx3 = -y;-

2EIz ( 
Cz 3 = -y;- 17) 

resulting in a relatively simp Ie model. In this case, 
some eigenfrequencies are smaller, and some are 
larger than in reality, while the errors decrease very 
fast. 
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3.2 Comparison of the exact eigenfrequen-
cies with Superelement approximation 

Now we will compare the exact eigenfrequencies 
of an Euler-Bernoulli beam with those of the Su­
perelement approximation in order to pass judgment 
about the appropriateness to use one of the approx­
imations for modeling the structural dynamics of 
flexible mechanical systems. 
The Euler-Bernoulli beam considered has length 
L = 50 m, modulus of elasticity E = 21 . 1010 N /m2, 
area of beam cross-section A = 11" m2, mass per unit 
length p = 7850 kg/m3 , and area moment of inertia 
1 _1 4 

- 4"11" m . 

3.2.1 Exact eigenfrequencies 

The exact analytical eigenfrequencies are obtained 
by solving the following frequency equation (Weaver 
et al., 1990): 

cos(kL) cosh(kL) = -1 

The first four roots of this equation are: 

k1 * L = 1.875104069 

k2 * L = 4.694091133 

k3 * L = 7.854757438 

k4 * L 10.99554073 

The exact eigenfrequencies in radians per second 
are: 

(18) 

where E the modulus of elasticity, 1 area moment 
of inertia, p the mass density of the material, and A 
the cross-sectional area of the beam. These frequen­
cies are listed in Fig. 3, and will serve as reference 
solution. 

Fig. 3: The first four exact eigenfrequencies of the 
Euler-Bernoulli beam. 

3.2.2 Superelement approximation 

Now we will approximate the Euler-Bernoulli beam 
using a number of superelements. The beam is built 



in at the base. The torsional spring constants for 
each superelement are determined as follows: 

Czl = Cz3 = 2Elz [Nm] 
Lse 

with E the modulus of elasticity, Iz the area moment 
of inertia, and Lse the length of the superelement 
which is, in turn, defined as 

L 
Lse=­

N se 

with L the length of the Euler-Bernoulli beam and 
Nse the number of superelements the beam is sub di­
vided in. SD/FAST (Hollars et al., 1994), a general­
purpose multibody program which automatically 
derives special-purpose simulation code for mechan­
ical systems approximated by rigid bodies, is used 
to generate the equations of motion. 
The first four eigenfrequencies of the Superelement 
approximation as function of the number of su­
perelements are listed in Fig. 4. 

Fig. 4: The first four eigenfrequencies in radians 
per second of the Superelement approxima­
tion as function of the number of superele­
ments. 

The exact analytical sol ut ion is used to evaluate the 
Superelement approximation. In order to do so, the 
relative frequency errors are computed. This error 
is defined as: 

R I Multibody eigenfreq. 100 00 e . error = . -1 
Exact eigenfreq. 

[%] 

The relative errors for the first four eigenfrequen­
cies of the Superelement approximation are plot­
ted in Fig. 5. The pattern is clear: dividing the 
beam into more superelements produces more eigen­
frequencies (of which only the first four are shown), 
and improves the accuracy. The limiting case be­
ing an infinite number of superelements of which 
the eigenfrequencies equal to those of the exact so­
lution. In addition, the mode shapes become better 
defined with an increasing number of superelements, 
since information on more locations along the beam 
is available. As expected, some eigenfrequencies are 
smaller, and some are larger than in reality, while 
the errors reach the indicated 1 % error bound rather 
fast. 
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Fig. 5: The relative errors for the first four eigen­
frequencies of the Superelement approxima­
tion as function of the number of superele­
ments N se with k = Hl - ~). Dashed­
dotted lines: + 1 % and - 1 % error bound. 

3.3 Centrifugal stiffening 

It is important to stress that the applied superele­
ment modeling approach automatically acounts for 
centrifugal stiffening effects. Af ter all, as the length 
of the rigid bodies within each superelement are con­
stant, it follows that deformation of the blade auto­
matically pro duces axial deformations and thereby 
automatically pro duces centrifugal stiffening. It 
is shown in (Molenaar, 1998a) that for an Euler­
Bernoulli beam th is modeling approach represents a 
consistent approximation to the continuum model, 
in the sense that it represents a discretization of 
the continuum model with an approximation accu­
racy that increases with an increasing number of 
superelements. 

4 Multibody model of the 
LW-50j750 

In this section we will present a systematic approach 
for modeling the structural dynamics of flexible 
wind turbines like the Lagerwey LW-50/750, suited 
for time-domain simulation, analysis of dynamic 
loads, and model based control design. The so­
called superelement modeling method will be used 
to di vide the structure into a number of superele­
ments consisting of a series of rigid bodies connected 
by torsional springs, and dampers. The stiffness of 
the torsional springs will be derived directly from 
physical data. SD/FAST is used to generate the 
equations of motion. 
The resulting models of varying complexity can be 
easily coup led to obtain a model describing the 



structural behaviour of the complete Lagerwey LW-
50/750 or any other flexible wind turbine. All mod­
els are available within the MATLAB/SIMULINK 
environment. We will demonstrate the modeling ap­
proach by comparing the non-rotating rotor blade 
eigenfrequencies obtained from a fuIl-scale modal 
test with those from the superelement approxima­
tion. 

4.1 Example: APX-45 rotor blade 

The rotor blades of the Lagerwey LW-50/750 are de­
signed, and manufactured by Aerpac Special Prod­
ucts B.V., Hengelo, The Netherlands (Rodenburg 
et al., 1996). The blades are mainly made of glass 
fiber reinforced epoxy (GRE). The applied lami­
nated composite layer structure and the fact that 
the layers of the composite are composed of or­
thotropic material implies that it can cost a sig­
nificant amount of time deciphering the parameters 
defining the blade. Here it is assumed that the blade 
definition file is provided by the manufacturer. 
The APX-45 rotor blade will be subdivided into a 
number of superelements. Chosen is to use the ro­
tor blade specific FAROB output file TableJrb as the 
starting point. F AROB is the structural blade mod­
eling module within the wind turbine design code 
FOCUS used to design the APX-45 rotor blade. Ta­
ble.frb contains - among ot her things - the blade 
mass, and the flexural rigidity in the two princi­
pal bending directions at a number of locations be­
ginning at the blade tip and en ding with the blade 
root. Undefined locations are interpolated in a sub­
sequent step after converting the file to a MATLAB 
MAT-file. Note that, in principle, any file that con­
tains the mentioned blade data can be used as start­
ing point. Obviously, the resulting model accuracy 
strongly depends on the quality of the input data. 
At this point the user has to select the complexity 
of the rotor blade model by specifying the number 
of superelements the blade is to be subdivided in. 
The required SD/FAST parameters are then auto­
matically generated and stored in a blade specific 
file with the specified number of superelements ap­
pended to the basename "Blade" (e.g. Blade2.mat 
contains the SD/FAST data of a rotor blade divided 
into 2 superelements). Finally, the SD/FAST data 
is converted into a pretty format, and at the same 
time loaded into MATLAB's workspace. 
The developed blade modeling procedure consists of 
three main steps: 

• Step 1: Run Frb2Mat.m by simply typing 

» Frb2Mat 

in the MATLAB command window to con­
vert a rotor blade specific F AROB output 
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file Table.frb to a MATLAB MAT-file named 
FileName.mat. "FileName" is a user-selected 
name (e.g. APX45) which has to be en­
tered when the following message emerges in 
the command window: Name for generated 
MAT-file: This step is illustrated in the up­
per part of Fig. 6. 

• Step 2: Run BladePM.m by typing 

» 81adePM 

in the MATLAB command window. The user 
is asked first to enter in the command window 
the name of the generated MAT-file containing 
the blade data. Subsequently, the parameters 
in this file are converted into a blade specific file 
named BladeX.mat with "X" a user-specified 
number representing the number of superele­
ments N se in which the blade is subdivided. 
This step is illustrated in the middle part of 
Fig. 6. 

• Step 3: Conversion of BladeX.mat to the re­
quired SD /FAST input parameters (Mass, Iner­
tia, Inb2Joint, Body2Joint) and spring/damper 
constants by running BladeXda.m. This step 
is also required to load the data into the 
workspace for each simulation and is illustrated 
in the lower part of Fig. 6. 

Fig. 6: Main three steps in the blade modeling pro­
cedure . 

The non-rotating rotor blade eigenfrequencies ob­
tained from the fuIl scale modal test performed by 
the Stevin Laboratory of Delft University of Tech­
nology (Van Leeuwen et al., 1997) are used to eval­
uate the mul ti body approximation. In order to do 



so, the relative frequency errors are computed. This 
error is defined as: 

R I 
Multibodyeigenfreq. 100 100 e. error = . -
Measured eigenfreq. 

[%) 

The relative errors for the first two eigenfrequen­
cies of the multibody approximation are plotted in 
Fig. 7. From this figure it is clear that the errors 
do not converge to zero with an increasing num­
ber of superelements. Investigation has shown that 
they converge to zero when compared to the eigen­
frequencies as computed by F AROB. This illustrates 
the fact that the quality of the models is limited by 
the input. The main reason that the blade struc­
tural properties in reality may differ from predicted 
values is that the blades are manufactured by hand­
lay-up. However, the results show that it is possible 
to derive limited order multibody models suited for 
time-domain simulation, analysis of dynamic loads, 
and model based control design directly from phys­
ical data. 
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Fig. 7: The relative errors for the first two flap and 
lead-lag eigenfrequencies of the APX-45 ro­
tor blade as function of the number of su­
perelements. Dashed-dotted lines: + 2% 
and - 2% error bound respectively. 

5 Conclusions 

In this paper the possibility to devise a systematic 
approach for modeling the structural dynamics of 
flexible wind turbines like the Lagerwey LW-50j750, 
suited for time-domain simulation, analysis of dy­
namic loads, and model based control design has 
been investigated. The following conclusions can be 
drawn: 

58 

• The so-called superelement modeling method 
used to divide the structure into a number of 
superelements consisting of a series of rigid bod­
ies connected by torsional springs, and dampers 
represents a consistent approximation to the 
continuum model. In the sense that it repre­
sents a discretization of the continuum model 
with an approximation accuracy that increases 
with an increasing number of superelements. 

Comparison of the exact eigenfrequencies of an 
Euler-Bernoulli beam with those from the su­
perelement method has shown that the latter 
is particularly useful for approximating the first 
number of eigenfrequencies with a limited num­
ber of superelements. In general, these low­
est frequency modes have the largest amplitude 
and are the most important to be approximated 
weU for time-domain simulation, analysis of dy­
namic loads, and control system design; 

• The power of the presented modeling approach 
to approximate the dynamic behaviour of flex­
ible mechanical systems with limited order 
multibody models derived directly from physi­
cal data has been shown by comparing the rotor 
blade non-rotating eigenfrequencies with those 
obtained from a fuU scale modal test. Hence, it 
can be concluded that the presented approach 
is very suitable for modeling the structural 
dynamics of flexible wind turbines for time­
domain simulation, analysis of dynamic loads, 
and control design. 

6 Future work 

Modeling without a making statement about the 
quality of the obtained models is useless. In this 
article modal test data is used to validate the ob­
tained rotor blade modeIs. However, in a next step 
the rotor (consisting of three blades connected to the 
hub) will be dynamicaUy coupled to the tower. The 
resulting system modes may not be equal to the sum 
of the component modes. Besides that there are a 
number of uncertainties (e.g. how rigid or flexible 
is the tower connected to the concrete foundation?) 
which have significant impact on the model qual­
ity. Therefore, the structural model of the Lager­
wey LW-50j750 will be validated using experimental 
data. This allows us to experimentally determine 
the dam ping too. 
Furthermore, we have focused our attention in this 
article on the error between the measured and mod­
eled eigenfrequencies. Thereby assuming that the 
mode shapes become bet ter defined with an increas­
ing number of superelements. Although this is a 
reasonable assumption (note that with an increas-



ing number of superelements information on more 
locations along the beam is available) in a next step 
attention should be payed to the error between the 
measured, and modeled eigen vectors (or: mode 
shape). Af ter all, the motion a superposition of the 
various mode shapes, each at different amplitude. 
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Abstract. In this paper a realization theory and associated algorithms are presented for 
the construction of minimal realizations on the basis of a sequence of expansion coefficients 
in a generalized orthonormal basis. Both the exact and the partial realization problem are 
addressed and solved, leading to extended versions of the classical Ho-Kalman algorithm 
which is restricted to handling expansion sequences in the standard basis functions z-k. 
In the construction of the realization algorithms, fruitful use is made of a system analysis 
in the transform domain, being induced by the choice of basis functions. The resulting 
algorithms can also be applied in approximate realization and in system approximation. 
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1 Introduction 

In recent years renewed attention has been paid to 
the development and use of orthonormal basis func­
tions in system theory, and particularly in system 
identification. Considering linear system descrip­
tions in terms of orthogonal basis functions expan­
sions, linearly parametrized models can result by 
restricting the models to finite expansions and con­
sidering the expansion coefficients as the parameters 
to be estimated. 
In this work the choice of basis functions is known 
to be rather crucial for determining the length of the 
expansion that is needed (and thus the number of 
parameters that has to be estimated) for arriving at 
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accurate system descriptions. The flexibility that is 
available in the basis construction mechanism can 
essentially contribute to a fast convergence of the 
series expansion for aspecific system. 
For Laguerre functions (Wahlberg, 1991), this flex­
ibility rests in the choice of a single pole location, 
while two pole locations can be fixed in the two­
parameter Kautz functions (Kautz, 1954; Wahlberg, 
1994) . Generalized versions of these approaches 
have been developed by Heuberger et al. (1995) 
using repeated blocks of all-pass sections of user­
chosen order, and have been analysed for system 
identification purposes in Van den Hof et al. (1995). 
Ninness and Gustafsson (1997) have presented and 
analysed an alternative structure where the need for 
repetition of all-pass sections has been removed. 
These generalized orthonormal basis functions 
(GOBF) have been shown to be powerful not only in 
the classical prediction error identification problem, 
but also in frequency domain identification (Nin­
ness and Gómez, 1996; Schipp et aL, 1996; De Vries 
and Van den Hof, 1998), model uncertainty estima­
tion (De Vries and Van den Hof, 1995; Hakvoort 



and Van den Hof, 1997) and system approximation 
(Wahlberg and Mäkilä, 1996; Oliveira e Silva, 1996) . 
The particular basis functions of Heuberger et al. 
(1995) give rise to a general theory on signal and 
system transformations induced by these so-called 
Hambo basis functions, such that a signal x(z) and 
a system P(z) admit alternative descriptions, de­
noted by x(>,) and P(>.) in the transform domain. 
This is caused by the repetiton of basis poles that is 
involved in these functions. These transformations 
have been analysed in Heuberger and Van den Hof 
(1996). 
Here we address the following problem: 
Consider a linear time-invariant system in the form 
of a series expansion 

00 

P(z) = L CkFk(Z) 
k=l 

where {Fk(Z) h=1.2 .... is a sequence of (orthonormal) 
basis functions in 1i2. The problem is to construct a 
minimal state space realization (A, B, C, D) of P on 
the basis ofthe sequence of coefficients {cd k=l ..... N. 
For N = 00 and Fk(Z) = z-k the problem reduces 
to a minimal (exact) realization problem, as solved 
by the celebrated Ho-Kalman algorithm (Ho and 
Kalman, 1966). Using the same basis functions, 
and considering finite N, the corresponding min­
imal parlial realization algorithm is analysed and 
solved in Tether (1970), including the formulation 
of conditions under which the problem has a unique 
solution. In this lat ter situation, the required algo­
rithm for obtaining a solution is basically the same 
Ho-Kalman algorithm as applied in the infinite data 
case. 
Szabó and Bokor (1997) have extended the exact 
realization theory to the situation of Hambo basis 
functions, for the case of infinite data (N = 00), 
see also Szabó et al. (1998) . In th is paper it will 
be shown how these results connect to system de­
scriptions in the related transform domain, and ad­
ditionally the partial realization problem (N < 00) 
will be addressed and solved, and consequences will 
be indicated also for the approximative case. 
The paper is structured as follows: first in section 
2 the theory on generalized orthonormal basis func­
tions is summarized. In sections 3 and 4 some re­
sults are formulated that are instrurnental in han­
dling the realization problems. Next the exact re­
alization problem is addressed in section 5 and the 
partial problem in section 6. Some comments on 
the approximate realization problem conclude the 
paper. 
Unless otherwise stated, all systems in this paper are 
scalar systems in the discrete time domain. Multi­
variable extensions are straightforward. In the dis-
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crete time domain the space 1i2 can either be de­
fined to include only strictly proper systems or to 
include proper systems as weIl. In this paper we 
will use the latter definition, formally defined by 
stating that 1i2 consists of all complex valued func­
tions which are analytic outside the closed unit disk 
and squared integrable over the unit circle. In th is 
version of the paper all proofs are omitted. 

2 Generalized orthonormal basis 
functions 

In this section the main ingredients of the theory 
on orthonormal basis functions will be briefly re­
viewed. For details see Heuberger et al. (1995), Van 
den Hof et al. (1995), Heuberger and Van den Hof 
(1996), Ninness and Gustafsson (1997). The basis 
functions are constructed from state trajectories re­
lated to balanced realizations of square inner func­
tions (i.e. stabie all-pass systems). A transfer func­
tion Gb E 1i2 is inner if it satisfies IGb(eiw)1 = 1 
for all w E [-71',71'] . It was shown in Roberts and 
Mullis (1987) that (in discrete time) inner func­
tions can be realized by particular state space re­
alizations that are orthogonal, i.e. they satisfy 
Gb(z) = D + C(zJ - A)-l B where 

[A B]*[A B] C D C D = J. (1) 

It is straightforward to show that the elements 
<PI (z), ... , <Pnb (z) of the nb dimensional vector func­
tion 

(2) 

are mutually orthonormal in the standard H2 inner 
product sense (with '[' denoting the unit circle), 

Fllrthermore consecutive multiplication of these 
functions with Gb(Z) results in an orthonormal set, 
given by the components {<P(k-l)nb+l"", <Pknb} of 
the nb dimensional vector functions 

kEN (4) 

and it can be shown that the set of all these func­
tions {<Pi(Z)}~1 constitutes a basis for the strictly 
proper part of H 2 • 

Directly resulting from the basis for strictly proper 
stabie systems in 1i2, a basis for (the related Hilbert 
space of i 2 [1, 00 )-signals follows, by considering the 
inverse z-transforms of the 1i2-signals. Denoting 

00 

Vk(Z) = L Vk(t)Z-t (5) 
t=l 



(6) 

the components of the nb-dimensional functions 
Vk(t) will constitute an orthonormal basis for 
e2 [1, 00). Note that these functions are in fact the 
impulse responses of the functions Vk (z) with the 
property that 

At-IB 

(Gb(q) ·I)vk(t). 

(7) 

(8) 

When it is neccesary to know the underlying real­
ization these functions will be denoted by 

(9) 

Considering this general class of basis functions, for 
any strictly proper system H(z) E H2 or signal 
y(t) E e2 [1, 00) there exist unique series expansions: 

00 

H(z) = L LfVk(z) 
k=l 
00 

y(t) = LyT(k)Vk(t) Y(k) E IRnbxI . (11) 
k=l 

Note that these basis functions can incorporate sys­
tem dynamics in a very general way. One can con­
struct an inner function Gb from any given set of 
poles, and thus the resulting basis can incorporate 
dynamics of any complexity, combining e.g. both 
fast and slow dynamics in damped andjor resonant 
modes. 
For specific choices of Gb(Z) well known classical 
basis functions can be generated, such as the stan­
dard pulse basis Vk (z ) = z - k, the Laguerre ba­
sis and the two-parameter Kautz functions (Kautz, 
1954; Wahlberg, 1994), see Heuberger et al. (1995). 

Signal and system transformations 

The f 2-basis functions generate a signal transfor­
mation f 2[1,00) -+ e~b[l,oo) as follows. Let y(t) E 
f 2 [1 , 00) with an expansion as in equation (11), then 
we denote the Hambo transform as the mapping H: 
e2 [1,00) -+ H;b, determined by 

00 

H(y) := jJ(..\) = LY(k)..\-k (12) 
k=l 

This Hambo transform of e2-signals also induces 
a linear system transformation. This transformed 
system describes the dynamical relationship be­
tween (transformed) input and output signais: 

Let P E 1-l2 and let u, y E f 2 such that y(t) = 
P(q)u(t). Consider the Hambo transform û"(..\) , jJ(..\) 
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of the e2 signals u, y as defined above, then there 
exists a P E H;b x nb satisfying 

jJ(..\) = P(..\)û"(..\). (13) 

The mapping T: H2 -+ H;bxnb defined by T(P) := 

P(..\) is referred to as the Hambo system-transform. 
It turns out that th is function P(..\) can be expressed 
through variabie transformations, using the nb x nb 

inner function 

N(z) := A + B(z - D)-IC (14) 

with McMillan degree 1 and balanced realization 
(D,C,B,A). If we write P(z) = E~lPkZ-k, then 

00 

P(..\) = LPkNk(..\) (15) 
k=l 

or differently denoted: P(> .. ) = P(Z)IZ-l=N(À). 
Important properties of the Hambo system trans­
form are invariance of the McMillan degree and the 
fact that 

(16) 

From a signal processing point of view the rep­
resentation of systems as operators acting on 
transformed signals fits into the H -matrix repre­
sentation framework as discussed by Audley and 
Rugh (1973) . 

Given this background material the problem ad­
dressed in this paper can be formulated as follows: 

Given a system G(z) and an orthonormal basis 
{Vk(Z)}~l' such that G(z) = L~I L[Vk(z) 

construct an algorithm to derive a minimal state 
space realization of G(z), based on the expansion 

sequence {L I,···, LN}. 

This problem will be approached through the 
Hambo system transform, by revealing the rela­
tion between the expansion coefficients {Ld and 
the Markov parameters of the transformed system 
G(..\) and thus creating the Hank~l matrix of the 
transformed system, denoted by H. Furthermore 
the relation between ft and the Hankel matrix of 
G(z), denoted by H, will be established. At the 
same time these relations are given for the shifted 

~ ~ 

system G (z) := zG(z), with Hankel matrix Hand 
t: t: 

its Hambo transform G(z), with Hankel matrix H. 
The solution of the problem is based on an exten­
sion of the Ho-Kalman algorithm and the solution 
of the classical minimal partial realization problem, 
given by Tether (1970). 

lThe Hankel matrix associated with the Hankel operator. 



3 The Hambo transform of c/Jk(Z) 

The key property of the basis functions, that will 
be used in this paper, is the fact that the Hambo 
transform of the elements of VI (z) can be calculated 
explicitly, as stated in the following proposition: 

Proposition 3.1 Let the vector valued function 

VI(z) = [<PI(Z) <P2(Z) ... <Pnb(Z) f be given by 
(2). Then for 1 ~ k ~ nb there exist matrices 
Pk, Qk E ]Rnb Xnb such that 

1. the Hambo system transform of <Pk(Z) satisfies 

2. the matrices {Pk, Q k} are the solution of the 
following set of Sylvester equations: 

APkAT + Ber AT = Pk 
AQkAT + BerCTBT + APkCTBT = Qk 

where ek is the kth Euclidean unit vector. 0 

This so-called 2-Markov parameter description is 
possible, because the poles of <Pk (z) are contained 
in the poles of Gb(z) (Heuberger and Van den Hof, 
1996). 
To facilitate the notation in the following sections we 
introduce a compact form for the set of all matrices 
{Pk,Qk} : 

(17) 

(18) 

4 From expansion coefficients to 
Hankel matrices in the transform 
domain 

In this section it will be shown how the material 
of the previous sections allows the calculation of 
the Hambo system transform, given an expansion in 
terms of orthonormal basis functions. The system 
transform will be expressed in terms of Markov pa­
rameters, connecting directly to the Hankel matrix 
of the system transform. Hence, given an expansion 
G(z) = E~I LrVk(z) we will show how this can be 
translated into an expansion G(À) = E~o MkÀ-k. 
The result is given in terms of the notation (17,18), 
and ® denoting Kronecker product. 

Proposition 4.1 
00 

G(À) = LMkÀ-k, where 
k=O 

Mo = [Lr ® I]pT (19) 

Mk = [Lr+! ® l]pT + [Lr ® I]QT (20) 

o 
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In the course of the paper we will need a similar 
expression for the Hambo transform of the shifted 

r-
function G (z) := zG(z). This expres sion readily 
follows from the observation that 

(21) 

which shows that 

00 

zG(z) = L ((Lr B) + (Lr A)VI (z) )G:-I(z) (22) 
k=l 
00 00 

k=l k=l 

We can now apply equation (16) to the first summa­
tion and Proposition 4.1 to the second summation, 
resulting in the next proposition: 

Proposition 4.2 

r-
G(À) 

r-
Mo 
r-
Mk 

= where 

(Lr B)l + [(Lr A) ® l]pT 

(Lr+! B)l + [(Lr+l A) ® l]pT 

+ [(Lr A) ® I]QT 

o 

The latter two Propositions show how the set of ex­
pansion coefficients can be efficiently transformed 
into Markov parameters of the Hambo system trans­
form of the (shifted) transfer function, which iIE-me-

- r-
diately results in the Hankel matrices Hand H. 
This section will be concluded with establishing 
the connection between J!he Hankel matrices in the _ r-

transform domain (H, H) and the corresponding 
r-

Hankel matrices in the standard domain (H, H). 
This connection turns out to be determined by a 
set of transformation matrices, that are derived from 
the all-pass function Gb(Z). 

Proposition 4.3 Given a system G(z) with Han­
kel matrix H a'!!;d its Hambo transform G(.~) with 
Hankel matrix H, then there exist unitary matrices 
Tl, T2 such that H = TI-

I HT2 = TT HT2 where 

(Tdij = Vi(j){A,B,C,D} (24) 

(T2 )ij Vi(j){AT,cT,BT,DT} (25) 

where Vi(j){F,G,H,J} is defined by equations (7-9). 
o 



This property immediately shows that the rank of 
the Hankel matrices in both domains are equal and 
that any fuU rank decomposition (for instance by 
singular value decomposition) of H immediately re­
sults in a fuU rank decomposition of H. This prop­
erty will be of use in the generalization of the Ho­
Kalman realization algorithm, discussed next. 

5 Exact realization 

In this section the generalization of the Ho-Kalman 
algorithm will be discussed, generalized in terms of 
the GOBF basis. It is assumed that the Hankel ma­
trices involved are fuUy known, i.e. the matrices 
are of infinite dimension, or equivalently aU Markov 
parameters are known. The classical minimal real­
ization problem can be stated as: 

Given a sequence of p x m constant matrices 
{Yi}~I' find a triple {A,E,C} with A ofminimal 

dimension such that Yi = CA i-I E for i E N. 

This problem has a solution if and only if there 
exist integers N', N such that rank(HN',N) = 
rank(HN'+i,N+j) = no for all i,j = 0,1,2,"', where 

YN 1 YN +I 

YN+~'-I 
(26) 

and in this case no is the minimal state space di­
mension. Under the assumption that the unknown 
system is finite dimensional, a minimal state space 
realization can be determined using the Ho-Kalman 
algorithm, also known as Ho's algorithm. 

A concise description of the standard Ho-Kalman is 
given first, for details see Ho and Kalman (1966). 
The description is in terms of the infinite Hankel 
matrices rather than in terms of the finite Hankel 
matrices, to facilitate the derivation of the general­
ized realization algorithm later in this section. 

Algorithm 5.1 (Ho-Kalman). 
t-

Given Hankel matrices H, H, with elements Hij = 
t-

gi+j-I and Hij= gi+j, where {gk} is the set of 
Markov parameters of a finite dimensional system 
G(z), the following steps result in a minimal state 
space realization {Ag, Eg, Cg} of G(z): 

1. Let H have a full rank decomposition H = r· ~, 
i.e. rank(f)=rank(~)=rank(H). 

t- t-
2. Then H obeys the relation H = r . Ag . ~. 

65 

t-
3. H ence Ag can be retrieved with Ag = r+· H· ~ + , 

with 0+ indicating the Moore-Penrose pseudo­
inverse. 

4. Furthermore Eg and Cg are created from 

Eg = ~ [ I; ] and Cg = [lp 0] r. 

o 

The extended minimal realization problem ad­
dressed here is summarized by: 

Given a sequence of nb x 1 constant matrices 
{Li}~o, and an orthonormal basis {Vk(Z)}~1 find 
a triple {Ag , Eg , Cg} with Ag of minima I dimension 

such that the system G(z) = Cg[zl - Ag]-I Eg 
obeys an expansion G(z) = 2:~=o LfVk(Z) 

For the solution of this problem explicit use is made 
of the t:.ansformation property H = Tl' HT2 and 
t- t-
H= Tl' HT2 , given by Proposition 4.3. Substituting 
these relations in Algorithm 5.1 results in a real­
ization alg~rithm based on the Markov parameters 

- t-
in Hand H. The missing link is then the relation 
between the expansion coefficients {Ld and these 
Hankel matrices. That relation is established by 
Propositions 4.1 and 4.2. 

This approach leads to the foUowing algorithm. 

Algorithm 5.2 (Generalized Ho-Kalman). 
Given a series expansion G(z) = 2:~o LfVk(Z), 

the following steps result in a minimal state space 
realization {Ag, Eg, Cg} of G(z): 

t-
1. Calculate the Markov parameters {Mkl, {Mk} 

_ t-

of the Hambo system transforms G(>,) , G(À) us­
ing Propositions 4.1 and 4.2. 

- t-
2. Create Hankel matrices H,H, with elements 

- t- t-
Hij = Mi+j-I and Hij =Mi+j-I. 

...... -... .......,,,.... 

3. Let H have a full rank decomposition H = r· ~ 
- -t- t- - -4. Then H obeys the relation H = r . Ag . ~ 

- t--
5. H ence Ag can be retrieved with Ag = r+· H· ~ + 

6. Furthermore Eg and Cg are created from 

Eg = 3.T2 [ ~] and Cg = [1 0] Tl'r 

o 



An important feature here is the fact that only one 
row c.q. column of the transformation matrices 
TT, T2 is required to calculate the state space re­
alization. In general the calculation of Eg and Cg 
involves infinite dimensional matrix calculations. In 
the special case that 0(>.) is a finite impulse re­
sponse model, this will be reduced to finite opera­
tions. This occurs when the underlying system G(z) 
has only a finite number of non-zero expansion co­
efficients: 

N 

G(z) = L LfVk(z) (27) 
k=l 

which results with Propositions 4.1 and 4.2 in sys­
tem transforms 

N - N 
O(À) = LMkÀ-k G(À)=LMkÀ-k. (28) 

k=O k=O 

- +-
In this case we can decompose Hand H as 

(29) 

and the full rank decomposition of ft reduces to: 

(30) 

where î\, Lil are finite matrices. It follows that the 
realization {Ag, Eg, Cg} can be calculated by 

Ag = -+ +- -+ r l ·Hl · ~l (31) 

E-g = Lil (T2h (32) 

C- T - (33) = (Tl hrl g 

where (T2h and (TTh are finite submatrices of the 
transformation matrices T2 and TT. 
This algorithm is basically the same as the algo­
rithm in (Szabó and Bokor, 1997). The main dif­
ference is the numerically more efficient calculation 
of the Markov parameters (step 1) and the transfor­
mation matrices Tl, T2 • For numerical examples of 
this application see (Szabó and Bokor, 1997; Szabó 
et al., 1998) . 

6 Partial realization 

In this section the generalization of the so-called 
partial realization problem is described and a so­
lution to this problem is presented. The partial 
realization problem (Tether, 1970) deals with the 
case of limited information, i.e. only a finite num­
ber of Markov-parameters is known. The problem 
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is the construction of a finite dimensional minimal 
state space realization that fits these Markov pa­
rameters. The minimal partial realization problem 
aims at finding such a realization with a minimal 
McMillan degree over all possible realizations. The 
partial realization problem can be solved, using the 
Ho-Kalman algorithm, without posing any restric­
tions on the given set of Markov parameters, and 
it is straightforward to show that also the minimal 
partial realization problem has at least one solution 
(Tether, 1970). However, the question when such a 
solution is unique is more involved. The key prop­
erty that ensures a unique solution is a rank con di­
tion on the finite Hankel matrix, created with the 
given set of Markov parameters. 
The following lemma gives conditions for the exis­
tence of a unique minimal partial realization. 

Lemma 6.1 (Tether, 1970) 
Let {Yl , ... , Y No} be an arbitrary sequence of p x m 

matrices and let Hi,i' i + j ~ No, be a corresponding 
block Hankel matrix. Then a minimal partial real­
ization given by the Ho-Kalman algorithm is unique 
(modulo similarity transformations) if and only if 
there exist positive integers N', N such that 

1. N'+N=No 

2. rank(HNI,N }=rank(HN1H,N }=rank(HNI,N+l}. 

o 

Generalizing this property to the GOBF case is more 
involved than in the exact realization case, because 
proposition 4.3 is only valid for infinite Hankel ma­
trices and not for finite matrices. The key idea to 
overcome this problem is to extend these finite ma­
trices to infinite dimensions, using the Ho-Kalman 
algorithm in the transform domain. This will result 
in (minim~) realizations of the underlying systems 
- +-
G(z) and G(z), which are guaranteed to be unique 
under rank conditions given by jemma 6.1. Since 

- +-
a minimal realization for G(z), G(z) automatically 
gives a full rank decomposition for the associated 
infinite Hankel matrices in terms of the product of 
the observability and controllability matrices 

+- +- +-
H= r·~ 

we can apply Algorithm 5.1 to obtain 

+- +- +- - - - +-+--
H = r . ~ = r . Ag . ~ -t Ag = r+ r ~~ +, 

which expres sion can be calculated using Sylvester 
and Lyapunov equations. Along the same line of 
reasoning the matrices Eg and Cg are derived. This 
leads to the following algorithm: 



Algorithm 6.2 Generalized Minimal Partial 
Realization 

Let {Lk}f~l be the first No expansion coefficients 

of a scalar system G(z) and let {Mk,Mdf~Ol be 
the Markov parameters of the Hambo system trans-

t--
form of G(z) respectively its shift G (z) , as de-
fined by Propositions 4.1 and 4.2. Assume that both 

dldf~~l and {Mdf~~l satisfy the conditions of 
Lemma 6.1. Then a unique minimal state space re­
alization {Ag, Bg, Cg} of G(z) is obtained as follows: 

1. Use the Ho-Kalman algorithm to create min­
i"!!.al_ s~te space realizations { A, B, C} and 

t-- t-- t--

{A, E, cl, such that for 1 ~ k ~ No 

- t--
2. Observe that the infinite Hankel matrices H, H, 

constituted by these realizations have fult rank 
decompositions 

[ B AB ... ] 

t-- t-- t--

H = r· L\:= 

3. Apply the generalized Ho-Kalman algorithm 5.2 
(step 5 and 6) to derive 

Ag (34) 

= (fTf)-1(fTh(6LiT)(LiLF)-1(35) 

Eg = LiT2 [ ~ ] (36) 

Cg = [1 0] T[f (37) 

o 

Remark 6.3 Note that - for the algorithm to work 
P"2'P~rl1L - it is not required that the realization 

t-- t-- t--
{A,B,C} is minimal. 

Given this algorithm, the question will arise why 
and when it would be of use. This will typically be 
the case in an approximation or identification set­
ting, using an orthonormal basis function approach. 
One of these situations is where a finite number of 
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expansion coefficients is estimated, i.e. estimation 
of the parameters {Lk} in a model structure 

N 

y(t) = L L[Vk(q)U(t) + e(t), (38) 
k=l 

and the number of significant coefficients Lk is rela­
tively high, such that a direct state space realization 
would result in a high order model. One approach 
in this case would be to apply model reduction tech­
niques to obtain a lower order model. However, such 
a procedure will not make use of the intrinsic in­
formation contained in the expansion coefficients or 
the directly related Markov parameters of the trans­
formed system. 
The merit of Algorithm 6.2 is that it makes full use 
of this information and hence will improve the qual­
ity of the resulting approximation. It will further­
more give much more insight in the McMillan degree 
of the underlying system. 
It is important to note that the presented par­
tial realization algorithm intrinsically requires two 
applications of the standard Ho-Kalman mecha­
nism. Only in the classical case this can be reduced 
to one application, because there a realization of 
{Mdf~l immediateley results in a realization of 

t--
{M k} f~l ' Also in the generalized case these sets 
with Markov parameters are obviously closely re­
lated and it might be possible to further simplify 
the algorithm. 

7 Approximate realization 

The generalized Ho-Kalman algorithms described 
in the previous sections can be applied in an ap­
proximate fashion as is the case with the stan­
dard Ho-Kalman algorithm (Zeiger and McEwen, 
1974; Kung, 1978). Most commonly the full rank 
decomposition of iI will be computed by means of 
a singular value decomposition. One can then sim­
ply truncate the SVD by setting the smaller sin­
gular values to zero, and proceed as in the non­
approximative case. When algorithm 2 is applied 
in an approximate sense, in the situation where all 
expansion coefficients are known, the resulting re­
alization will be exactly the same as the one ob­
tained by application of the Ho-Kalman algorithm 
in the original domain. This is caused by the uni­
tary transformations in Proposition 4.3. 
The situation becomes different in the case where 
only a finite number of Markov parameters is given. 
Note that in that partial realization case we ne~d 

_ t--

only to truncate the SVD of H and not that of H. 
The consequences of this method when compared to 
the standard partial realization algorithm still have 
to be further explored. 



8 Conclusions 

The problem has been addressed of constructing a 
minimal state space realization on the basis of a 
sequence of expansion coefficients in a generalized 
orthonormal basis function expansion. The classi­
cal Ho-Kalman algorithm, designed for minimal re­
alization on the basis of Markov parameters, has 
been extended for expansions in a general class of 
basis functions. Whereas in the classical situation 
one algorithm essentially solves both the exact (in­
finite data) and the partial (finite data) problem, in 
the generalized case different algorithms result. The 
presented algorithms can also be used for construct­
ing reduced order state space models on the basis of 
estimated expansion coefficients. 
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Abstract. For certain applications the performance that can be achieved with model 
predictive control is restricted by the large computational demand of the on-line optimiza­
tion. For these applications, such as large scale and fast sampled systems, it is important 
to choose the degrees of freedom in the on-line optimization problem carefully to obtain 
a satisfactory trade-off between performance and complexity. In th is article it is inves­
tigated how, alternative to e.g. the standard pulse or blocking mechanisms, other input 
parametrizations can be used to obtain high performance model predictive control with 
only a small amount of free variables. An efficient parametrization is obtained using the 
observation that the class of all solutions to a finite or infinite horizon LQ control problem 
can be parametrized with a number of free parameters that is equal to the model order, 
without loss of performance. The inifinite horizon controller with th is parametrization is 
shown to provide a stabie closed-loop system, also if constraints are active. The complex­
ity of the parametrization can be systematically reduced using standard LQG-balanced 
reduction. Constrained stability of the closed-Ioop system is preserved with this reduction 
approach. The proposed algorithms are illustrated with a simulation example. 

Keywords. Model predictive control, infinite receding horizon control, input 
parametrization. 

1 Introduction 

Model predictive control (MPC) or receding hori­
zon control (RHC) is a control strategy where at 
each time instant the control action is determined 
by an on-line optimization of a cost function. An 
optimal input trajectory over a certain horizon in 
the future is determined of which the first sample 
is used as actual control input. To obtain a control 
action for the next time instant this procedure is 
repeated. This strategy is denoted as receding hori­
zon control strategy. Because at each time instant 
an optimization problem is solved, restrictions on 
control inputs and other process variables can be in­
corporated explicitly by ad ding a set of constraints 

tThe research of Edwin van Donkelaar is supported by 
the Dutch Technology Foundation (STW) under contract 
DWT55.3618. 
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to the optimization problem. For an over view of 
the extensive literature on model predictive control 
see Garcia and Morari (1989) and Morari and Lee 
(1997). 
The large computationalload has restricted the use 
of MPC to relatively slow processes as of ten encoun­
tered in the process industry. It is still a difficult 
task to design a high performance model predictive 
controller for applications where the computation 
time is a major restriction e.g. in large scale and 
fast sampled systems. 
A design variabie with which the optimization com­
plexity can be reduced, is the parametrization of 
the input trajectory. The location and number of 
free variables in the input trajectory have a large 
influence on both the computational load and the 
performance of the controller. Therefore, a trade­
off has to be made between performance and com-



plexity. The larger the freedom in the optimization 
problem, the higher the performance level that can 
be obtained, but at the cost of a larger computa­
tional burden. In this paper it is investigated how 
the input parametrization can be chosen such that 
only a small number of parameters is consumed to 
obtain a high level of performance. 
In literature several choices are made for the loca­
tion of the degrees of freedom in the input trajec­
tory. For finite horizon predictive control the input 
can be parametrized freely over a prediction horizon 
(Kwon and Byun, 1989). For this choice the opti­
mization complexity can become very high if a large 
amount of preview of possible constraint activation 
is required. A possible way to reduce the number 
of degrees of freedom is to choose a parametrization 
of the input in which the first few samples are free 
and after that are held constant. This approach is 
followed in many industrial applications of model 
predictive control such as dynamic matrix control 
(DMC, Cutler and Ramaker (1980)) and model al­
gorithmic control (MAC, Richalet (1993)). Another 
way to parametrize the input is by blocking (Ricker 
et al., 1988). where the input trajectory is built 
up by a number of blocks over which the input is 
held constant. In Lee et al. (1995) wavelet theory 
is applied to analyze the concept of blocking. In 
predictive functional control (PFC, Richalet et al. 
(1987)) the input is parametrized in terms of poly­
nomials and goniometric functions. 
For infinite horizon predictive control the input is 
parametrized freely over the first few samples and 
thereafter it is assumed to be either fixed to zero 
(Rawlings and Muske, 1993) or an LQ optimal con­
troller is assumed to be active (Scokaert and Rawl­
ings, 1996). In the latter situation it is shown that 
infinite horizon LQ optimality can be obtained but 
possibly at the cost of a considerable computational 
load. Especially for the class of systems we are fo­
cussing on i.e. large scale systems and fast sampled 
systems, the number of degrees of freedom needed 
to obtain optimality will typically be high. 
With the approaches described above to reduce the 
number of degrees of freedom and thereby the com­
putationalload, a large amount of trial and error is 
needed to obtain a suitable input parametrization 
for which a good trade-off between complexity and 
performance is achieved. Also the performance loss 
can be high if only a few degrees of freedom are al­
lowed in the optimization problem. 
In this article it is investigated how other 
parametrization of the input trajectory for model 
predictive controllers can be used to improve the 
trade-off between performance and complexity. An 
approach is discussed to determine a parametriza­
tion such that only a small number of parameters 
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is consumed to obtain a closed-Ioop system that is 
equivalent to finite or infinite horizon LQ optimal 
control in the unconstrained case. The input tra­
jectory is parametrized in terms of an expansion 
in basis functions which can be calculated a priori. 
The number of applied basis functions, and hence 
the optimization complexity, can be reduced sys­
tematically with a standard model reduction tooI, 
namely LQG balanced reduction. This reduction 
method provides the user with valuable information 
about how much the number of basis functions can 
be reduced, such that the decrease in unconstrained 
performance level is small. This provides a tooI to 
make the trade-off between unconstrained perfor­
mance and complexity in a more systematic way. 
In section 2 the problem is specified in mathemat­
ical terms. In section 3 an approach is presented 
to choose the degrees of freedom in finite and infi­
nite horizon model predictive control. In section 4 
this procedure is applied to an infinite horizon LQ 
criterion with constraints. In section 5 a system­
atic procedure for the reduction of the number of 
free variables is described. In section 6 the ideas 
are illustrated on simulation examples. Section 7 
concludes the paper. 

2 Model predictive control 

Linear model predictive control or receding horizon 
control provides a solution to the problem of con­
strained control of systems. Let the system be given 
by the state-space description 

x(t + 1) = 
y(t) 

Ax(t) + Bu(t), x(O) = Xo 

Cx(t) (1) 

where x(t) E JRn is the state vector and u(t) E JRnu 
the input vector at time t. The matrix A has eigen­
values strictly inside the unit disc, IÀ{A}I < 1 and 
the pair (A, B) is controllabie and (C, A) is observ­
abie. The aim is to control this system while satis­
fying constraints on the input and state variables 

Kuu(t) < ku for all t 

Kzx(t, xo) < kz for all t (2) 

where Ku E JRnu xnu , Ku E JRnxn are the matrices 
that specify the input and state constraints. These 
matrices can have a different row dimension than 
specified and can be time-varying but are specified 
in this way for convenience of notation. 
The most commonly used cost nmction in model 
predictive control is the quadratic cost function 
given by 

P-l 

J(u(·)) = L {XT(t)QIX(t) + UT(t)Q2 U (t)}+ (3) 
t=o 



+xT(P)Qox(P). 

with the weighting matrices Ql, Q2 2: 0 and the 
pair {Ql, A} is detectable. The optimization prob­
lem that has to be solved on-line in model predic­
tive control is given by the quadratic programming 
problem 

(4) 

subject to KuU::; ku,KxU::; kx(xo), 
with UT = [uT(O) uT(l) ... uT(p -1)] and the Hes­
sian H = R + GT QG and gT = H'[ QG where 

0 0 

B 0 
I 
A 

G= AB B ,Hz = A2 

0 AT 
AT-IB AT-2B ... AB B 

(5) 
where G E JRpnxpnu and Hz E JRTnxn , 

Q = diag(Ql, ... , Ql, Qo) E JR(P+l)n x(P+l)n and 

Ku 

ku 

diag(Kv" ... , Kv,) E JRncu xPn and 
T 

[k~ ... k~] JR ncu 

Kx diag(Kz, ... , Kz)G E JRncz xPn and 
T 

kx(xo) = [k; ... k;] - KxHzxo E JRncz 

The cost function that is minimized in (4) is defined 
as J(U,xo) . 
At each time instant the value Xo in the quadratic 
program is updated with the measured value of the 
state (full information case) or a prediction of the 
current state (partial information case) . In this way 
at each time instant an updated quadratic program 
is specified where possibly another set of constraints 
is active. 
The input trajectory U can be parametrized in 
various ways. A general way to describe the 
parametrization of U is such that the class of obtain­
able input trajectories is a subspace of JRPn u which 
has a (considerably) lower dimension than the full 
space. This can be described by 

where 0 is the free parameter and <IJ is a user­
chosen matrix of which the columns form a basis 
for the space of all input trajectories that can be 
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achieved. For each input sample over the horizon 
this parametrization is described by 

where n(} is the number of free variables in the op­
timization. The input parametrization above in­
cludes the conventional input parametrization and 
parametrization using blocking. These parametriza­
tions boil down to respectively: 

I 0 0 

o 
<lJpv,lse = I 

4Jblock = 

o 0 I 

I 0 0 

I 0 

o I 

I 
o 

o 

o 
o 
I 

o 0 0 I 

E JRPnuxMnu 

where M is the control horizon. With the input 
space parametrized by the column span of <IJ, the 
optimization problem that has to be solved is, simi­
lar to conventional MPC: aquadratic programming 
problem. This is given by 0* = argmin(} J(O) with 

subject to the constraints 

Ku<IJO::; ku, Kx<IJO ::; kx(xo) 

which is linear in the free parameter O. 
The matrix </> is clearly a design variabIe that is able 
to influence the controlled behaviour in a crucial 
way. The main question is, how this freedom can be 
used in a structured way to obtain a clear trade-off 
between closed-loop performance and optimization 
complexity. 

3 Finding a suitable input 
parametrization 

From a conceptual point of the view, the input 
parametrization problem, as stated in the previ­
ous section, is the following. Let the system to 



be controlled be given by g. The input of the 
system is given by u(t) E JRnu and the state by 
x(t) E JRn. The inputs and states are constrained 
by Kuu(t) < ku and Kxx(t) < kx respectively. At 
this point the system can be either linear or nonlin­
ear but it is assumed to be discrete time. Let the 
on-line optimization problem for receding horizon 
control be given by 

inf J(Ç,U,xo) (9) 
UEU 

where U is the input trajectory which is an ele­
ment of some set U which is totally specified by 
the linear input and state constraints imposed on 
the system, J(.) is a cost function that reflects the 
desired performance and Xo is some variabie that is 
a function of the measurement with which the opti­
mization problem is initialized at each time instant 
t. The variabie Xo can be either a measured state 
(full information state feedback) or a predicted state 
(partial information state feedback) or the measured 
output (general dynamic output feedback). 
The input parametrization problem is to find a suit­
able subspace Ur with a lower dimension than the 
full space JRnu P such that the solution to the re­
duced order optimization problem 

inf J(Q,U,xo) (10) 
UEUnUr 

provides good con trol for all pos si bie measurements 
Xo· 
A possible way to quantify good control is by mak­
ing the reduced problem deviate as little as possible 
from the original problem. A pos si bie way to choose 
a space UT of dimension p is then by sol ving 

min V(Up ) (11) 
U",dim(U,,)::;p 

where V(·) reflects the deviation of the reduced or­
der problem to the full order problem. Possible cost 
functions are 

• minimize the worst-case deviation in value of 
the cost function 

V1(Up ) = 

sup ( min J(U, xo) - min J(U, xo)) 
xoEX UEunU" UEU 

(12) 

where the measurement Xo varies over some set 
X. 

• minimize the worst-case deviation between the 
optimal input trajectories 

V2 (Up ) = 

sup Ilarg min J(u,xo)-argminJ(u,xo)11 
xoEX uEunu" UEU ~ 

(13) 
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where this deviation is measured in some norm 
11,11,· 

• minimize the worst-case difference between the 
first samples of the optimal input trajectories 

%(Up ) = 
sup II[Inu 0 .. ·O](U;(Up,xo) - U*(xo))II, 

xoEX 

(14) 

with U*(Up,xo) = arg min J(U,xo) and 
uEunu" 

U*(xo) = argmin J(U,xo). This function 
UEU 

seems suitable because only the first sample of 
the input trajectory is actually applied in a re­
ceding horizon strategy. 

The optimization problems discussed above are re­
lated to n-width problems (Pinkus, 1985) where an 
optimal n-dimensional subspace is calculated by an 
optimization of a cost function with a free variabie 
that is a set of a certain dimension. Unfortunately, 
the problems stated above are as such untractable. 
This is mainly because the cost functions must be 
evaluated for all pos si bie sets of active constraints 
which is combinatorial in size. Therefore, only in 
specific cases a sol ut ion can be found. 
The first case in which a solution can be found to 
the problems stated above is the unconstrained case. 
In this case the optimal control profiles are gener­
ated by a time-varying state feedback which can be 
calculated a priori. The only thing that cannot be 
computed a priori is the state with which the op­
timization problem is initialized. This simple ob­
servation is reflected in the following lemma for the 
linear quadratic cost function from (4). 

Lemma 3.1 Consider the quadratic cost function 
given by (4) with finite horizon Pand let there be 
no constraints. Then, the subspace 

Ur = im{H-1g} 

with H E JRPnuxPnu,g E JRpnuxn given in (4) is a 

solution of (11) with any of the co st functions (12), 
(13) or (14) and X = JRn. 

Proof: The lemma follows from the well known re­
sult that the unconstrained solution to (4) is given 
by U(xo) = H-lgxO' 0 

Apparently if one wants to find the unconstrained 
optimum for all possible initialisations xo, a search 
over an n-dimensional subspace is sufficient instead 
of a Pnu-dimensional one. 
Theorem 3.1 holds for a finite horizon criterion but a 
similar simple result also holds for the infinite hori­
zon case. 



Lemma 3.2 Consider the quadratic cost function 
given by (4) with infinite horizon P = 00 and let 
there be no constraints. Then, the subspace 

[ 

F(A ~ BF) 1 
Ur = im{ F(A ~ BF)2 } C 1~[0, 00), (15) 

with {A, B} state space matrices given in (1) and 
F the LQ-optimal state feedback given by F = 
(BT X B + Q2) -1 B T X A with X the unique nonneg­
ative definite solution of the Algebraic Riccati Equa­
tion 

is a solution of (11) with any of the cost functions 
(12), (13) or (14) and X = lRn . 

Proof: The unconstrained solution to the problem 
(4) with infinite horizons is the LQ optimal control 
profile given by 

u(t, xo) = F(A - BF)txo, t = 0,1,2, ... 

which directly shows the result. o 

The lemma above indicates that an efficient input 
parametrization for infinite horizon model predic­
tive control is generated by a dynamical system 
{F,A - BF}. With this parametrization the in­
finite dimensional optimization problem is reduced 
to a finite dimensional optimization problem with a 
number of free variables that is equal to the model 
order. 

4 Model predictive control with in-
put parametrization 

In this section it is described how the input 
parametrization for infinite receding horizon control 
discussed in the previous section can be aplied in an 
efficient model predictive control algorithm. The 
properties of this algorithm are investigated where 
special attention is paid to nominal performance and 
constrained closed-Ioop stability. 

4.1 Infinite horizon model predictive con­
trol 

If input and state constraints are incorporated in in­
finite receding horizon control, a finite parametriza­
tion of the input space is needed to obtain a finite 
dimensional constrained optimization problem. In 
the introduction several approaches to this problem 
that can be found in the literature are discussed. In 

73 

this section the parametrization of lemma 3.1 is ap­
plied to obtain an alternative parametrization. The 
closed-Ioop behaviour of the resulting controller is 
equivalent to LQ optimal state feedback control if 
no contraints are active. This is obtained with only 
n degrees of freedom in the optimization problem, 
where n is the model order. This controller and 
some of its properties is given in the following propo­
sition. 

Proposition 4.1 Let a linear discrete-time system 
be given by (1) subject to input and state constraints 
(2). Let the receding horizon controller cost function 
be given by (3) with P = 00 and let Xo be either 
the measured state vector (full information case) or 
a prediction thereof (parlial information case). Let 
the input over the infinite horizon be parametrized 
as u(t, (}) = F(A - BF)t(} and let 

- [ A - BF 0] - [ VRF 0 ] 
A = BF A and C = 0 .j7JC

z
· 

Then 

1. the optimal control input u* (0) is given by 
u* (0) = F(}* with (}* the solution to the finite 
dimensional quadratic programming problem 

min [(}T x~] Y [ (} ] 
OElRn Xo 

(16) 

subject to: KuF(A - BF)t(} < ku and 

[0 K,,]At[:o] <k",t=O,I, ... ,Ne 

where Ne is the constraint horizon that is cho­
sen such that ajter this time instant no con­
straints are active and Y is the solution of the 
Lyapunov equation 

2. if no constraints are active this controller is 
equivalent to LQ control with state feedback F. 

Proof: The input and state trajectories over the 
infinite horizon are given by 

Substituting this in the cost function yields 

The matrix in this expression can be calculated with 
the Lyapunov equation in statement 1. Statement 



2 can be proven by the fact that the unconstrained 
optimal solution is given by () = -Xo which is the 
state measurement or prediction. From the descrip­
tion (17) it follows that this yields a state feedback 
control with state feedback F which is LQ-optimal. 

o 

As described in the proposition the quadratic 
programming problem is either initialized with a 
state measurement or a state estimate. The lat ter 
is more likely because usually measurement of all 
the state variables is too costly or even impossible. 
It is well known in liter at ure that an LQ optimal 
state feedback combined with a Kalman filter gives 
an LQG controller (Anderson and Moore (1989) 
and Kwakernaak and Sivan (1972)). This dynamic 
output feedback controller is an optimal controller 
with respect to white noise disturbances on the 
outputs and states with known covariance matrices. 
With the approach discussed in this section the 
optimization problem can be built up by sol ving 
one Rlccati equation for the solution of the LQ 
control problem and a Lyapunov equation to 
specify the cost function. This can be done quickly 
because good software tools are available for sol ving 
Riccati and Lyapunov equations, also for large scale 
problems. Therefore, the procedure is flexible 
for on-line changes in the internal model, the 
parametrization and the controller cost function. 
This flexibility of the proposed method can be 
a favourable property for constrained control of 
nonlinear systems with switching linear predictive 
controllers such as nonlinear quadratic dynamic 
matrix control (NLQDMC, Garcia and Morari 
(1989)). 
Another property is that the tuning of the proposed 
algorithm is simple. A standard LQG control design 
is needed. The only additional choice that has to 
be made is the number of samples in the fut ure 
over which the constraints are evaluated. This is 
given by the constraint horizon Ne which must 
be chosen such that possible constraint activation 
can be detected sufficiently long in advance. The 
parameter Ne is no tuning variable for nominal 
unconstrained performance as it has no influence 
on the closed-loop performance. The contraints 
horizon can also be chosen automatically as in 
Rawlings and Muske (1993). 

4.2 Nominal stability under constraints 

In this section constrained stability properties are 
analyzed of the controller des cri bed in the previous 
section. In the next proposition it is proven that un­
der mild conditions the controller provides a stable 
closed loop, also if constraints are active. 
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Proposition 4.2 The predictive control strategy 
given in proposition 4.1 is globally asymptotically 
stable i! and only i! the optimization problem (16) 
is Jeasible 

Proof: First consider the full information case. 
Global time index is denoted with tand the local 
time index within the optimization is denoted with 
k. Let the input trajectory u;(k) = -F(A-BF)k(); 
be a feasible but possibly not optimal solution at 
time t. Let the corresponding cost be given by J(t). 
The first sample of this trajectory is applied as cur­
rent input u(t) = F()*. This yields a state x(t) which 
is equal to the predicted state if no disturbances are 
present and the model and plant are equal. Then 
a feasible trajectory for t + 1 is given by ut+1 (k) = 
-F(A-BF)k()t+1 with ()t+1 = (A-BF)()t as this is 
equivalent with the previous trajectory without the 
first sample. Denote the corresponding cost func­
tion with J (t + 1). This performance cost level need 
not be optimal therefore it holds that 

Because Q1, Q2 2: 0 the sequence J(t) is non increas­
ing. It is bounded from below by zero and therefore 
J(t) converges to zero, hence x(t), u(t) also converge 
to zero. Therefore the nonlinear state feedback is 
stabilizing. Due to the separation principle this sta­
bilizing state feedback combined with a stabie ob­
server yields a stabilizing dynamic output feedback 
(Zheng and Morari, 1995). 0 

The proposition implies that also in the presence 
of constraints the closed loop system remains sta­
bIe if and only if the optimization problem is feasi­
bIe. Feasibility can only be lost if hard state (out­
put) constraints are used: only then is it possible 
that there is no input trajectory in the set of fea­
sible input trajectories that renders the state (out­
put) inside the feasible set of states (outputs). In 
Scokaert and Rawlings (1996a) it is described how 
the problem of feasibility can be avoided. Often ap­
plied methods are constraint softening (Zheng and 
Morari, 1995) or discarding constraints that are not 
crucial until the problem becomes feasible (Froisy, 
1994). In both cases the proposed algorithm is also 
stabilizing in the presence of constraints. 

5 Systematic reduction of the com-
plexity 

In this section it is described how the complexity of 
the on-line optimization of the observer-based state 
feedback described in the previous section can be re­
duced while keeping track of the performance loss. 



This is done by choosing the parametrization of in­
put in terms of a linear combination of profiles that 
have the largest contribution to the cost function. 
If the complexity must be reduced, it is possible to 
base the system-based input parametrization on a 
reduced order model i.e. 

where {Ar, Br} are state-space matrices for the re­
duced order system and Fr is the LQ-optimal state 
feedback for this reduced order model. 
The model reduction algorithm that is applied 
should be such that the reduced order basis func­
tions have the largest contribution to the cost func­
tion and the functions that are discarded have the 
smallest. For LQG control this can be done with 
LQG-balanced reduction Jonckheere and Silverman 
(1983). With this reduction technique first a sim­
ilarity transformation is applied on the state space 
system that provides a coordinate system in which 
each state is equally well controllabie with an LQ­
controller as it can estimated with a Kalman filter. 
This similarity transformation is obtained by forcing 
the solution of the control discrete algebraic Riccati 
equation (CDARE) and the filter discrete algebraic 
Riccati equation (FDARE) to be equal and diago­
na!. These equations are given respectively by 

x = ATXA-ATXB(BTXB+I)-lBTXA 

+CTC (19) 

Y AYAT - AYCT(CXCT + I)-lCYAT 

+BTB. (20) 

In Jonckheere and Silverman (1983) it is proven 
that there exists such a similarity transformation 
in the continuous-time case. The same transforma­
tion holds for the discrete time case as is discussed 
in the next proposition. 

Proposition 5.1 (Jonckheere and Silverman, 
1983) Let a linear time-invariant discrete-time 
system be given by (1) and let the positive definite 
solutions to the Riccati equations (19) ,(20) be 
P, Q > O. Let T be given by 

T- 1 = RTU'L,-~ 

with a Cholesky decomposition R* R = Y and the 
eigenvalue decomposition RX R * = U'L,2 U· where 
U*U = I and'L, = diag{al, . . . ,an}. 
Then the tmnsJormed system {A, iJ, C} 
{T AT-1 , TB, CT-1 } satisfies the to the Ric­
cati equations (19) and (20) with 
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Pro of: The proof follows fr om the fact that the so­
lutions to the Riccati equations for the transformed 
system are given by 

x = TXT* = I;-!U* RPR*UI;-! = I; 
Y = (T*)-lYT- 1 = I;!U*(R*)-1(R*R)R-1UI;! = I; 

For a full pro of see Jonckheere and Silverman 
(1983). 0 

The states that have a "small" corresponding value 
on the diagonal of 'L" are both "easy" to filter and 
have a low contribution to the controller cost func­
tion. These can be discarded if the order of the 
controller is to be reduced. The states that have a 
"large" corresponding value on the diagonal of 'L" 
are both "difficult" to filter and are essential states 
to con trol and must certainly be accounted for in 
a reduced order controller. The diagonal elements 
are invariants for linear systems and can be used to 
decide on the reduction order in a similar manner as 
Hankel singular values are used in balanced reduc­
tion. In this way optimization complexity can be 
traded-off against nominal performance in a more 
quantitative way. 
Let the model in LQG-balanced form be given by 
{A, B, C, D} and the reduction order is given by nr. 
Then the resulting reduced order model can simply 
be obtained by 

Ar [Inr OlA[In r OlT, Br = [Inr OlB, 

Cr C[Inr OlT , Dr = D. 

Then the reduced order input parametrization can 
be constructed with (18). The input parametriza­
tion based on the reduced order model is again gen­
erated by a stabie dynamic system because the LQ­
optimal state feedback is guaranteed to be stabiliz­
ing. Due to this fact and stability of the system 
it can be proven that for any reduction order the 
receding horizon controller is stabie also in the con­
strained case. This is given in the next corollary. 

Corollary 5.2 The predictive control strategy given 
in proposition 4.1 with input parametrization gener­
ated by a stabie dynamic system {Cp, Ap} Jollowing 

is globally asymptotically stabie ij and only ij the 
optimization problem (16) is Jeasible. 

Proof: Along identicallines as the proof of proposi­
tion (4.1) only with {Cp, A p} instead of {F, A-BF}. 

o 



Note that this theorem implies that constrained 
closed-loop stability with the proposed controller is 
preserved if the input is parametrized with any sta­
bIe system. However, the model that is applied for 
the prediction is still equal to the plant. 

6 Simulation example 

In this section two simulation examples are given 
to demonstrate the properties of the proposed ap­
proach, denoted with M PCip , compared to model 
predictive control with a finite prediction and con­
trol horizon, denoted with M PC. The first simula­
tion example is a scalar system where a large num­
ber of free variables is needed with a conventional 
pulse parametrization to obtain satisfactory perfor­
mance while with the proposed algorithm only a few. 
The second example is multivariable and is used to 
show the possibilities of the reduction method of 
section 5. 

Simulation example 1 

The first system that is considered is a highly oscilla­
tory nonminimum-phase system given by the trans­
fer function 

G(z) = -5.7980z3 + 19.5128z2 
- 21.6452z + 7.9547 

Z4 - 3.0228z33.8630z2 - 2.6426z + 0.8084 

The open-loop step response is given in figure 1. 

10r---'---'---'---'---'---'---'---'---'--, 
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lime 

Fig. 1: Step response of the plant 

If conventional MPC is applied to th is system it is 
necessary to take a prediction horizon that is long 
enough to incorporate at least one full period, i.e. 
P=100. Also the choice of the control horizon is 
critical for this system. A control horizon which 
is equal to the prediction horizon gives good per­
formance. However, decreasing the degrees of free­
dom easily gives bad performance as can be seen 
from figure 6. Reduction of the control horizon upto 
M=75 is possible without considerable loss of per­
formance, further reduction gives bad performance 
due to the slow oscillation. Due to the long predic­
tion and control horizon the computational burden 
is large for MPC. With the approach presented in 
this article, M PCip , the number of degrees of free­
dom is equal to the model order, i.e. n=4. This 
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yields a controlled performance, depicted in figure 6, 
that is practically identical to the fully parametrized 
controller only at a much lower computational cost. 
Also if constraints are active M PCip performs bet­
ter than conventional MPC with the same number 
of degrees of freedom as can be seen fr om figure 6. 
It performs slightly less than the fully parametrized 
MPC but at a much lower computational burden. 

outpul 
1.5,----.,----...,..---...,----, 

Input 
0.4,----.,----...,..-----,------, 

0.3 

2 
time 

Fig. 2: Closed-Ioop step response conventional MPC 
with M=P=100 (solid) and P=100,M=4 (dash dot­
ted) and M PCip (dashed) with 4 degrees of freedom 
which coincides with the solid line. 

OutptJ1 Input 
1.5 0.3,-----.,..----,-----,------, 

0.5 

-0.5 

-1 
0 2 3 

time 

Fig. 3: Constrained closed-loop step response 
conventional MPC with M=P=100 (solid) and 
P=100,M=4 (dash dotted) and M PCip (dashed) 
with 4 degrees of freedom. 

To give an indication of the computational load, 
on a Pentium 233 MHz computer the simulation 
of 200 time samples cost 511.83 seconds for fully 
parametrized conventional MPC and only 10.885 
seconds for M PCip . To illustrate the idea of using 
basis functions to build up the space of allowable in­
put trajectories, the four basis functions are plotted 
in figure 2. 

211 0.1r-! 411 °D 
_~t=j o.o:~ _:t==j -o~: 

o 50 100 0 50 100 0 50 100 0 50 100 

Fig. 2: Four basis functions used in M PCip . 

Simulation example 2 

The second system that is considered is a 4 input 4 
output subsystem of the nonlinear simulation model 



of a fluidized bed catalytic cracking unit (FCCU) 
given in McFarlane et al. (1993). A detailed flow­
sheet of the process can be found in that article. 
The fluidized catalytic cracking (FCC) process is 
used to crack a blend of oil products with a high 
boiling point into lighter and more valuable compo­
nents such as gasoline. The overall economic per­
formance of an oil refinery largely depends on the 
economie operation of the FCC unit (Tatrai et al., 
1994). Therefore accurate modelling and control of 
this process is important. 
The four inputs are the fresh feed F3 , the slurry 
recycle F4 , reactor/regenerator differential pressure 
L:l.P and lift air blower setpoint Vlift. The four 
outputs are the regenerator temperature Treg , re­
actor temperature Tr , the oxygen concentration in 
the stack gas outlet of the regenerator CO2 and the 
reactor stand-pipe levelisp" The system has large 
interaction, a combination of fast and slow dynam­
ical phenomena and it is nonlinear. A linear model 
of this system is obtained that has order 8 that is 
accurate around the working condition. 
Model predietive control with the proposed input 
parametrizations from lemma 3.1 and 3.2 are ap­
plied. In both cases the number of degrees of free­
dom is 8. To detect constraint activation well in 
advance the constraint horizon is chosen Ne = 100, 
whieh large because oÏ the slow dynamies in the sys­
tem. For comparison a model predietive controller 
is designed with a pulse parametrization with the 
same number of degrees of freedom, i.e. M = 2. 
The prediction horizon is taken to be P = 100. 
Both controllers are tuned with tuning parameters 
Q = J, R = J. In this comparison the complexity 
of the online optimization for M PCip and M PC is 
identieal. The unconstrained closed-loop behaviour 
is tested by a step signaion the reference of the first 
output. The simulation result is depicted in figure 
6. 

1 I~~--+---~--~~~~~~~~~~~~ 
I 
I 
I 

~0.5 I 

o 

o 0.5 

Fig. 4: Controlled output Treg on a step on the ref­
erence signalof 2° C. The applied controllers, with 
the same number of degrees of freedom, are M PC 
(dashed), M PCip with infinite prediction horizon 
(solid) and with finite horizon (dashdotted). 

For this example the M PCip-controller is better 
able to deal with the combination of fast and slow 
dynamics than MPC with a pulse parametrization 
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Fig. 5: Left: LQG invariants of the model. Middle: 
the controlled output Treg on a step on the refer­
ence signalof 2° Ci unreduced M PCip of order 10 
(solid), reduced to order 5 (dashed) and reduced to 
order 4 (dash dotted). Right: MPC with the in­
put parametrization proposed in this paper, reduced 
to 5 degrees of freedom (solid) and MPC with con­
ventional parametrization with 5 degrees of freedom 
(dashed). 

with the same number of degrees of freedom. This 
is because the lat ter has a higher overshoot as weU 
as undershoot. 
The procedure of section 5 is applied to assess 
whether the complexity can be reduced without sig­
nificant loss of performance. For this purpose the 
LQG invariants of the model are determined. These 
are plotted in figure 6. 

From this figure it can be seen that upto order 5 the 
LQG invariants are larger or equal than one and 
are significantly smaller for higher orders. There­
fore the input parametrization can be reduced to 
order 5 without considerable loss in closed-loop per­
formance. The closed-loop step response for the full 
order and reduced order sitution is also given in fig­
ure 6. This figure indicates that the loss in perfor­
mance is indeed small. FUrther reduction to order 
4 shows a large loss in performance which is in ac­
cordance with the LQG invariants. Hence, these in­
variants give a good indication of the smallest num­
ber of free variables that is needed to obtain good 
unconstrained performance. In figure 6 also a com­
parison is made with M PCip and M PC with the 
same number of degrees of freedom. From this is 
becomes clear that the loss of unconstrained peror­
mance of the former is much smaller than for the 
latter parametrization. 
Constraints on the input and state variables can 
be accounted for but may have a large influence 
on the closed-loop performance because the input 
parametrization is based on unconstrained consid­
erations. It is a topic of current research to choose 
the basis functions such that more robustness for 
active constraints can be obtained. 



7 Conclusions 

In this article it is investigated how, alternative to 
e.g. the standard pulse or blocking mechanisms, 
other input parametrizations can be used to ob­
tain high performance model predictive control with 
only a small amount of free variables. An effici~nt 
parametrization is obtained using the observatlOn 
that the class of all solutions to a finite or infinite 
horizon LQ control problem can be parametrized 
with a number of free parameters that is equal to 
the model order, without loss of unconstrained per­
formance. 
The algortihms are efficient and relatively easy to 
tune because only the horizon over which the con­
straints are accounted for needs to be chosen and 
no control horizon. Furthermore, the choice for the 
prediction horizon has no influence on the uncon­
strained performance therefore only a standard LQ 
design procedure is needed. It is also shown that 
the infinite receding horizon controller with the pro­
posed parametrization provides closed-loop stabil­
ity, also if constraints are active. 
For an infinite horizon LQ cost function a system­
atic way is discussed to further reduce the number 
of free variables in such a way that the 10ss in per­
formance can be assessed a priori. This reduction 
procedure utilizes an LQG-balanced realization of 
the model to select the basis functions that have 
the largest influence on the value of the cost func­
tion. The smallest number of basis functions that is 
needed to obtain approximately the unreduced per­
formance can conveniently be read from the LQG in­
variants of the model. The closed-loop system with 
the infinite horizon controller with the reduced or­
der parametrization is also shown to be stabIe in 
both the constrained and unconstrained case. 
In the present algorithm the choice of the basis is 
independent of the constraints. Hence, the more 
the constraints play a role in the control problem, 
the more performance is lost compared to a free 
parametrization. It is therefore a topic of current re­
search to choose the basis functions such that more 
robustness of the parametrization for active con­
straints is obtained. 

References 

Anderson, B. and J. Moore (1989). Optimal Control, 
Linear Quadratic Methods. Prentice-Hall Inc., 
Englewood Cliffs, NJ. 

Cutier, C. and B. Ramaker (1980) . Dynamic matrix 
control, a computer algorithm. Proc. Joint Auto­
matic Control Conf., paper WP5-B. 

Froisy, J. (1994). Model predictive control: past, 
present and future . ISA Transactions, 22, 235-
243. 

78 

Garcia, C. and M. Morari (1989). Model predictive 
control: theory and practice, a survey. Automat­
ica, 25, 335-348. 

Jonckheere, E. and L. Silverman (1983). A new set 
of invariants for linear systems, application to 
reduced order compensator design. IEEE Trans. 
Autom. Control, AC-28, 953-964. 

Kwakernaak, H. and R. Sivan (1972). Linear Opti­
mal Control Systems. Wiley-Intersc., New Vork. 

Kwon, W. and D. Byun (1989). Receding horizon 
tracking control as a predictive control and its sta­
bility properties. Int. J. Control, 50, 1807-1824. 

Lee, J., Y. Chikkula and Z. Yu (1995). Improving 
computational efficiency of model predictive con­
trol algorithms using wavelet transformation. Int. 
J. Control, 61, 859-883. 

Mc Farlane, R., R. Reineman, J. Bartee and C. 
Georgakis (1993). Dynamic simulator for a model 
IV fluid catalytic cracking unit. Computers Chem. 
Engng., 17, 275-300. 

Morari, M. and J, Lee (1997). Model predictive con­
trol: past, present and future. Proc. PSE'97 ES­
CAPE Symposium, Trondheim, Norway, pp. 1-12. 

Pinkus, A. (1985). n- Widths in Approximation The­
ory Springer Verlag, Berlin. 

Rawli~gs, J. and K. Muske (1993). The stability 
of constrained receding horizon control. IEEE 
Trans. Autom. Control, AC-38, 1512-1516. 

Richalet, J . (1993). Industrial applications of model 
based predictive control. Automatica, 29, 1251-
1274. 

Richalet, J .. S.E. Ata-Doss, C. Aber, H. Kuntze, A. 
Jacubasch and W. Schill (1987). Predictive func­
tional control, application to fast and accurate 
robots. Proc. 10th IFAC World Congress, Mu­
nich, Germany. 

Ricker, N., T. Subrahmanian and T. Sim (1988). 
Case studies of model predictive control in pulp 
and paper production. In: T.J. McAvoy et al. 
(Eds.), Proc. IFAC Workshop on Model Based 
Process Control, p. 13, Pergamon Press, Oxford. 

Scokaert, P. and J. Rawlings (1996). Infinite horizon 
linear quadratic control with constraints. Proc. 
13th IFAC World Congress, San Francisco, CA, 
USA, pp. 109-114. 

Scokaert, P. and J. Rawlings (1996). On infeasibil­
ities in model predictive control. In: Chemical 
Process Control V, Assessment and new direc­
tions lor research, Tahoe City, CA, USA. 

Tatrai, F ., P. Lant, P. Lee, I. Cameron and R. 
Newell (1994). Model reduction for regulatory 
control: an FCCU case study. Trans. IChem, 72, 
Part A, 402-407. 

Zheng, A. and M. Morari (1995). Stability of model 
predictive control with mixed constraints. IEEE 
Trans. Autom. Control, AC-40, 1818-1823. 



©Delft University Press Selected Topics in Identification, Modelling and Control 
Vol. 11, December 1998 

Dynamic modeling and feedback control of a 
piezo-based milli-actuator 

R.A. de Callafon~, D.H.F. Harper§, R.E. Skelton and F.E. Talke" 

University of California, San Diego 
Dept. of Applied Mechanics and Engineering Sciences 
9500 Gilman Drive, La Jolla, CA 92093-0411, U.S.A. 
E-mail: callafon@ames.ucsd.edu 

Abstract. In magnetic disk drive actuators, the application of piezo electric material 
can be used to refine and accomplish track following in (extremely) high track density 
magnetic data storage. In this paper the results on the modeling and control of a piezo­
based milli-actuator are presented. The modeling is done on the basis of a least squares 
curve fitting of an estimated frequency response and taking into account uncertainties 
in the modeled resonance modes of the actuator. The design and implementation of a 
robust controller provides a high bandwidth and accurate positioning of the tip of the 
suspension and illustrates the efficiency of the piezo-based milli-actuator. 

Keywords. System identification; piezoelectric; robust control; high track density record­
ing. 

1 Introduction 

An unavoidable trend in magnetic recording is the 
aim to reduce the size or surface on which the mag­
netic media has to be stored. Especially, in magnetic 
disk drives there is an ungoing need to increase the 
storage capacity and areal density of the disk (Gro­
chowski et al., 1993; Grochowski and Hoyt, 1996). 
As aresuit, the track density needs to be increased 
significantly and the data has to be recorded and 
read with extreme precision. 
The areal density is a combination of track density, 
measured in track per inch (TPI) in radial direc­
tion of the disk and bit density, measured in bits 
per inch (BPI) in tangential direction of the disk. 
For future high track density recording applications 
with areal densities of lOGbit/in2 , the track density 
approaches 25kTPI, yielding a track pitch of lp.m 
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and an allowable servo error of O.Ip.m (Miu and Tai, 
1995; Grochowski and Hoyt, 1996) . These position 
requirements go beyond the possibilities of existing 
hard disk drive mechanisms. 
In many of the existing hard disk drive mechanisms, 
a single Voice CoH Motor (VCM) actuator is used to 
perform the positioning of the read/write head over 
the di sc surface. Novel design concepts such as ad­
vances in head and disk design, interface and chan­
nel technologies have allowed the improvement of 
the storage capacity. However, the development of 
a faster and more accurate servo mechanism that is 
able to position the read/write head with increased 
precision is still an active field of research (Cheung 
et al., 1996; Koganezawa et al., 1996; Horsley et al., 
1997). 
Most of the research is directed towards the de­
sign of so-called micro- and milli-actuators. These 
actuators are used in a dual-stage concept, where 
the VCM is used for the gross movements, while a 
second (milli-) actuator is used for the fine move­
ments of the read/write head located at the tip of 
the suspension. In this way, an accurate and high 
bandwidth actuator can be obtained that is believed 



to explore the possibilities for high track density 
recording (Fan et al., 1995). 
The aim of this paper is to present the results on the 
modeling and control of a prototype of a. piezo elec­
tric milli-actuator. The milli-actuator used in this 
paper is based on the principle of two piezoelectric 
stacks that are inserted into the E-block, behind the 
base of the suspension. A schematic picture of this 
principle is depicted in Figure 1. As indicated in 
this figure, the push/pull configuration of the piezo 
stacks is used to achieve a radial displacement of the 
tip of the suspension. The advantage of this pro­
posed design is that it does not modify the shape of 
the suspension itself, thereby eliminating the need 
for suspension redesign. 

I SI OE V1~ II OJ[ READi\NRITE HEAO \ 
~~~~~~~--~ 

r i \ DISK 

E·BLOCK PIEZO STACKS SUSPENSION 

\ 1 j 

2~~ffi 10 I>: 
Fig. 1: Principle for piezo electric milli-actuator 

The outline of the paper is as follows. First, the 
modeling of a prototype for the milli-actuator is 
presented in section 2. The modeling is done by 
curve fitting a measured frequency response and as­
su ming additional uncertainties in the modeled res­
onance modes of the suspension and actuator. In 
section 3, the obtained model with uncertainty is 
used in an Hoo-norm based optimization to design a 
robust feedback controller for the prototype design. 
To illustrate the effectiveness of the feedback con­
trolled milli-actuator, in section 3 also the measured 
closed-loop step responses are presented where the 
milli-actuator and read/write head suspension is ap­
plied to a rotating disk. Finally, the paper is ended 
by the conclusions and future research topics men­
tioned in section 4. 

2 Modeling of milli-actuator 

2.1 Prototype design 

A prototype was built to study the properties of the 
milli-actuator and the read/write head suspension 
in interaction with a rotating hard disk. The proto­
type is used to gather experimental data for model­
ing purposes and to test feedback controllers being 
designed. Compared to the configuration depicted 
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in Figure 1, for the prototype a slightly different de­
sign is used. A picture of the prototype being used 
is depicted in Figure 2. 

Fig. 2: Bottom view of prototype with special e­
block, piezo stacks, wiring and suspension 
of read/write head 

In the prototype design of Figure 2, the connection 
of the suspension to the e-hlock is used as a piv­
oting device. The piezo stacks are attached with 
cyanoacrylate to the bottom of the suspension and 
a special e-block. The special e-block is used in or­
der to accommodate the test platform to support 
the read/write head suspension over a rotating disk, 
whereas the hottom connection of the stacks provide 
easy access to the piezo stacks for experimentation 
purposes. 

DSP 

AID,DIA 
Converter 

Voltage 
Amplifier 

Photonic probe 

Fig. 3: Experimental set up with DSP, milli­
actuator, photonic probe and voltage am­
plifier 

The modeling of the prototype design is done via 
system identification techniques, where measured 
time domain data is used to formulate a dynamical 
model of the the milli-actuator and the read/write 
head sus pension in interaction with a rotating hard 
disk. As indicted in Figure 3, the experimental data 



is obtained by using a photonic probe to measure the 
relative displacement y(t) of the read/write head 10-
cated at the suspension tip. For excitation purposes, 
the piezo stacks are supplied with a random input 
voltage u(t). The generation of the input voltage 
u and the measurement of the relative position y is 
done with a Digital Signal Processor (DSP). 
To illustrate the attainable static displacement at 
the suspension tip with the prototype design, an 
open-loop measured step response is plotted in 
Figure 4. From Figure 4 it can be observed that 
for an 8 Volt input voltage step, an average dis­
placement of approximately 3/-lm is measured at the 
suspension tip. However, the open-loop behavior of 
the milli-actuator exhibits many lightly damped res­
onance modes that need to be modeled and possibly 
controlled in order to achieve the required position 
accuracy of O.I/-lm. 

Fig. 4: Measured tip position y(t) in /-lm (-) to a 
step input u( t) in voltage (- -) 

Since the milli-actuator is a fast responding mechan­
ical system and experiments can be gathered rela­
tively easily, it is advantageous to model the milli­
actuator via a frequency domain based system iden­
tification technique (Pintelon et al., 1994). In such 
a system identification technique, a frequency re­
sponse is measured and used to find a dynamical 
model by curve fitting the obtained frequency re­
sponse. For the piezo based milli-actuator depicted 
in Figure 2, the frequency domain of interest lies be­
tween the 100 Hz and the 10 kHz. For this range, 
a frequency response will be estimated and used to 
construct a dynamical model for the milli-actuator. 

2.2 Frequency response estimation 

The experimental setup depicted in Figure 3 is used 
to measure the frequency response of the milli­
actuator. To obtain a frequency response of the 
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milli-actuator, the input signal u(t), being the in­
put to the piezo stacks is designed as a sum of 300 
sinusoids. Formally, the input u(t) is given as 

N 

u(t) = L aksin(wkt + <Pk), with N = 300 (1) 
k=l 

where the frequency grid n := (Wl,W2," .WN) is 
chosen such that the frequencies Ik = Wk/(27r) are 
distributed approximately logarithmically between 
100 Hz and 9 kHz. 
The amplitude ak in (1) for each sinusoid is kept 
constant and set to 1, while the phase <Pk is chosen 
randomly using a uniform distribution between -7r 

and 7r. In this way, a noisy signal input signal u(t) is 
obtained with a weil defined auto spectrum Suu(w) 
(Ljung, 1987). 
The periodic input signal u(t) is applied to the piezo 
stacks of the milli-actuator and the relative displace­
ment y(t) of the tip of the suspension is measured 
and stored by the DSP. The signals u(t) and y(t) are 
sampled at 20 kHz and used to estimate the cross 
spectrum Syu(jw) using spectral analysis (Priestley, 
1981). 
With the estimated cross spectrum Syu(jw) and 
the auto spectrum Suu(w), the frequency response 
G(jWk) of the milli-actuator can be estimated along 
the frequency grid n via 

An amplitude Bode plot of the estimated frequency 
response G(jWk) has been depicted in Figure 5. 

IG(jWk)1 

> 
---El 10' 

:i. 

Fig. 5: Amplitude bode plot of measured open­
loop frequency response bet ween piezo stack 
voltage and suspension tip displacement 

It can be seen from Figure 5 that the milli-actuator 
exhibits several lightly damped resonance modes. 
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It should be noted that the frequency response de­
picted in Figure 5 is measured while the readjwrite 
head at the tip of the suspension was supported by 
a rotating disk. 

2.3 Least squares curve fitting 

Given the estimated frequency response G(jWk) 
along the frequency grid n = (Wl , W2, . .. W N), the 
aim of the frequency domain identification is to 
find a (discrete time) linear time invariant model 
P of limited complexity that approximates the data 
G(jwk)' This model can be used to characterize 
the natural frequency and damping of the resonance 
modes of the milli-actuator. Additionally, such a 
discrete time model can be used to design a digital 
feedback controller. 
To address the limited complexity, the SISO model 
P to be determined is parametrized in a transfer 
function representation 

P(z,O) = bo + blz-
1 + ... bnz-n 

1 + alz- l + ... anz-n (2) 

where z = eiw denote the z-transform variabie and 

o := lbo bl . .. bnal ... anl 

denotes a real valued parameter of unknown coeffi­
cients in the transfer function representation given 
in (2). Furthermore, it can be seen from (2) that 
the order or complexity of the linear model can be 
specified with the integer value n . 
The approximation of the data G(jWk) by the model 
P(z,O) is addressed by considering the following 
curve fit error 

E(jwk, 0) := [G(jWk) - P(eiWk
, O))W(jWk) (3) 

that needs to be minimized. In (3), W(jWk) de­
notes a scalar weighting function used to influence 
the curve fitting of the frequency response data. 
With the definition of the curve fit error in (3), a 
parameter ê is estimated by sol ving the following 
(non-linear) minimization 

N 

ê = argmjn LE(jWk,O)E*(jWk'O) 
k=l 

where * is used to denote the complex conjugate 
transposed. A computational procedure to address 
this minimization is presented in de Callafon et al. 
(1996) and used in this paper to find a model P(z, ê) 
via a LS curve fitting. 

2.4 Modeling results 

Using the estimated frequency response depicted in 
Figure 5, the LS curve fitting described in the pre­
vious section is used to find a dynamical model of 

the milli-actuator. The order n of the discrete time 
model P(z,O) is set to 10 in order to capture the 
various resonance modes present in the estimated 
frequency response. The weighting W(jwk) in (3) 
is set to the inverse of the data G(jwk) so as to 
mini mi ze a relative curve fit error 

The LS curve fitting procedure of de Callafon et al. 
(1996) is used and the results have been depicted in 
Figure 6. 
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Fig. 6: Bode plot of measured frequency response 
(dotted) and lOth order linear time invari­
ant model (solid) 

It can be observed from Figure 6 that the dominant 
frequency modes have been modeled accurately by 
the estimated model p(z,ê). The model P can be 
used for the design of a servo controller for the milli­
actuator. However, to design a robust controller, 
uncertainties and product variability in the milli­
actuator have to be taken into account. 

2.5 Modeling uncertainties 

To design a robust performing servo controller for 
the milli-actuator, uncertainties in the modeled res­
onance modes of the actuator have to be taken into 
account. In this paper, the uncertainties in the milli­
actuator are modeled by assuming that the nominal 
model P = P(z, ê) is allowed to be perturbed to a 
model P via a unstructured bounded multiplicative 
perturbation Ä (Zhou et al., 1996). In this way, a 
set of models P is found that is given by 

P = {P lP = P(l + Ä), IIWÄlloo < 1} (4) 

where W is stabie and stably invertible frequency 
dependent weighting function. 



In order to pursue the design of a robust controller, 
a choice for the weighting function W in (4) is 
made. The choice for W is based on the assumption 
that the frequency response of the nominal model 
P around the zeros at 1.9 and 5.2 kHz and the two 
resonance modes at 2.5 and 3.5 kHz are allowed to 
vary. With a possible choice for the weighting filter 
W depicted in Figure 7 on the top, the aresuiting 
mplitude Bode plot of the models P within the set P 
of (4) is guaranteed to lie between the dashed lines 
depicted in Figure 7 at the bottom. 
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Fig. 7: Weighting function W (4th order) and am­
plitude Bode plot range of models Pin (4) 

Given the nominal model Pand the multiplicative 
uncertainty with the stabie and stabie invertible fre­
quency dependent weighting function W in (4), a 
robust servo controller for the milli-actuator can be 
designed. 

3 Control of milli-actuator 

3.1 Robust control design 

For the design of a controller, consider the block 
scheme depicted in Figure 8. 

y 

+ 

Yc 

Fig. 8: Feedback controller C design of nominal 
model P with multiplicative uncertainty 
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In Figure 8, the models P within the set P of (4) are 
represented by the nominal model Pand a weighted 
W multiplicative uncertainty~. In case ~ = 0, 
Figure 8 simply represents the feedback connection 
of the nominal model Pand the controller C. In 
that case, the map between col(r2' rd and col(y, u) 
is given by the transfer function matrix T(P, C) 
with 

T(P, C) = [ ~ ] (I + CP)-l [C I] (5) 

where r2 indicates the suspension tip position refer­
ence signal and rl a piezo voltage feedforward signa!. 
For the design of a feedback controller C that ro­
bustly stabilizes the feedback connection depicted 
in Figure 8 for all PEP given in (4), a J.l,-synthesis 
is used (Zhou et al., 1996). For that purpose, the 
block diagram of Figure 8 is rewritten in the stan­
dard plant configuration of Figure 9. 

z 

Fig. 9: Standard plant configuration 

Most of the signals used in Figure 9 can be found 
back in Figure 8. Using the signal wand e to indi­
cate respectively col(r2,rl) and col(y, u) it can be 
seen that G in Figure 9 is gi ven by 

G= [ ~ ~ ~ ~] 
I 0 I I 

-P I -P -P 

(6) 

and consists of the previously determined nomi­
nal model Pand weighting function W . Addi­
tionally, the (performance) signals wand e can 
be weighted to incorporate additional performance 
specifications. 
The standard plant configuration can be used in a J.l,­

synthesis to design a robustly stabilizing or robustly 
performing feedback controller C. Subsequently, the 
designed feedback controller has to be reduced in or­
der to be implementable in a DSP environment. The 
feedback controller C designed with the J.l,-synthesis 
tooibox (Balas et al., 1995) has a McMillan degree 
of 25. This can be reduced to the order of 5 us­
ing a closed-Ioop reduction technique (Wortelboer , 



1993) without significant performance deterioration 
of the designed feedback system. The Bode plot of 
the final design of a 5th order linear discrete time 
controller that can be implemented on the milli­
actuator is depicted in Figure 10. 
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Fig. 10: Bode plot of 5th order robust linear feed­
back controller 

As can be seen from Figure 10, the designed feed­
back controller C has integral action and has a sharp 
role-off at the area where the model uncertainty be­
comes larger. 

3.2 Implementation of control 

The experimental setup depicted in Figure 3 is 
used to implement the designed feedback controller 
on the DSP system using a sample frequency of 
20 kHz. To illustrate the effect of the feedback 
control on the dynamical behavior of the milli­
actuator, first an experimentally obtained closed­
loop frequency response of the milli-actuator is pre­
sented in Figure 11. 
The amplitude Bode plot in Figure 11 represent the 
estimated frequency response of the transfer func­
tion P(I + CP)-lC between suspension tip posi­
tion reference signal T2 and sus pension tip displace­
ment y in Figure 8. Similar as the previously dis­
cussed experiment al results, the frequency response 
is estimated while the suspension is applied to a ro­
tating disk. Compared to the open-loop frequency 
response depicted in Figure 5, it can be seen that 
a significant reduction of the resonance modes has 
been obtained. Furthermore, the milli-actuator is 
able to track signals up to approximately 1.5 kHz. 
The improved control of the flexible resonance 
modes in the suspension with the milli-actuator can 
also be seen from an experimentally obtained closed-

84 

:> -El 10' 
::t 

10" 

Fig. 11: Amplitude bode plot of measured closed­
loop frequency response between suspen­
sion tip position reference and suspension 
tip displacement 

loop step response. To illustrate the attainable 
closed-Ioop controlled static displacement, a closed­
loop step response has been depicted in Figure 12. 
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Fig. 12: Measured tip position y(t) in J.Lm (-) and 
feedback control signal u(t) in voltage (--) 
to a step on suspension tip position refer­
ence signal T2 

Compared to the open-loop step response depicted 
in Figure 4, it can be seen from Figure 12 that in­
deed a significant reduction of the flexible modes 
in the sus pension and the milli-actuator has been 
achieved. Moreover , the milli-actuator is able to 
achieve the position accuracy requirement of O.IJ.Lm 
in the step tests and has a settling time of less than 
lOms. 



4 Conclusions 

In this paper the results on the modeling and con­
trol of a piezo-based milli-actuator are presented. 
The modeling is based on an experimental data and 
uses frequency domain identification techniques to 
curve fit an estimated frequency response. Mod­
eling uncertainties and product variability in the 
milli-actuator are taken into account by assuming 
a weighted multiplicative uncertainty for the nom­
inal model being estimated. For that purpose, a 
frequency dependent weighting function is chosen. 
However, it is worthwhile to develop a systematic 
procedure to estimate the contributions of modeling 
uncertainties in more detail on the basis of experi­
mental data. 
The model and suggested modeling uncertainty are 
used in a robust control design. The order of the 
designed controller is reduced for to address imple­
mentation issues on a DSP. The implementation of 
the feedback controller provides a high bandwidth 
and accurate positioning of the tip of the suspen­
sion and illustrates the efficiency of the piezo-based 
milli-actuator. The piezo stack are not only able 
to move the tip of the sus pension but are also able 
to control the flexibilities in the suspension for in­
creased position performance requirements of the 
read/write head. Although only the control of the 
milli-actuator is addressed in this paper, extension 
to dual-stage control t.hat includes the voiee coil mo­
tor are in line of the work presented in this paper. 
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