
 
 

Delft University of Technology

Combining Bayesian Networks and Fishbone Diagrams to Distinguish between Intentional
Attacks and Accidental Technical Failures

Chockalingam, Saba; Pieters, Wolter; Teixeira, Andre M. H.; Khakzad, N.; van Gelder, Pieter

DOI
10.1007/978-3-030-15465-3_3
Publication date
2019
Document Version
Accepted author manuscript
Published in
Graphical Models for Security - 5th International Workshop, GraMSec 2018, Revised Selected Papers

Citation (APA)
Chockalingam, S., Pieters, W., Teixeira, A. M. H., Khakzad, N., & van Gelder, P. (2019). Combining
Bayesian Networks and Fishbone Diagrams to Distinguish between Intentional Attacks and Accidental
Technical Failures. In D. Pym, B. Fila, & G. Cybenko (Eds.), Graphical Models for Security - 5th
International Workshop, GraMSec 2018, Revised Selected Papers: Graphical Models for Security (pp. 31-
50). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics); Vol. 11086 LNCS). Springer. https://doi.org/10.1007/978-3-030-15465-3_3
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/978-3-030-15465-3_3
https://doi.org/10.1007/978-3-030-15465-3_3


Combining Bayesian Networks and Fishbone
Diagrams to Distinguish between Intentional
Attacks and Accidental Technical Failures

Sabarathinam Chockalingam1(�), Wolter Pieters1, André Teixeira2,
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Abstract. Because of modern societies’ dependence on industrial con-
trol systems, adequate response to system failures is essential. In order
to take appropriate measures, it is crucial for operators to be able to
distinguish between intentional attacks and accidental technical failures.
However, adequate decision support for this matter is lacking. In this
paper, we use Bayesian Networks (BNs) to distinguish between intentional
attacks and accidental technical failures, based on contributory factors
and observations (or test results). To facilitate knowledge elicitation, we
use extended fishbone diagrams for discussions with experts, and then
translate those into the BN formalism. We demonstrate the methodology
using an example in a case study from the water management domain.
Keywords: Bayesian network · Fishbone diagram · Intentional attack ·
Safety · Security · Technical failure

1 Introduction

Today’s society depends on the seamless operation of Critical Infrastructures
(CIs) in different sectors such as energy, transportation, and water management,
which is essential to the success of modern economies. Over the years, CIs have
heavily relied on Industrial Control Systems (ICS) to ensure efficient operations,
which are responsible for monitoring and steering industrial processes as, among
others, water treatment and distribution, and flood control.

Modern ICS no longer operates in isolation, but uses other networks to
facilitate and improve business processes [1]. For instance, ICS uses internet
to facilitate remote access to vendors and support personnel. This increased
connectivity, however, makes ICS more vulnerable to cyber-attacks. The German
steel mill incident is a typical example of a cyber-attack in which adversaries
made use of corporate network to enter into the ICS network [2]. As an initial step,
the adversaries used both the targeted email and social engineering techniques
to acquire credentials for the corporate network. Once they acquired credentials



for the corporate network, they worked their way into the plant’s control system
network and caused damage to the blast furnace.

It is essential to distinguish between (intentional) attacks and (accidental)
technical failures that would lead to abnormal behavior in a component of the
ICS and take suitable measures. However, there are challenges to achieve these
goals. One particularly important challenge is that the abnormal behavior in a
component of the ICS due to attacks is often initially diagnosed as a technical
failure [3]. This could be due to the imbalance in the frequency of attacks and
technical failures. On the other hand, this could be based on one of the myths
of ICS security: “our facility is not a target” [4]. In most cases, the initiation
of response strategy aimed at technical failures would be ineffective in case of a
targeted attack, and may lead to further complications. For instance, replacing
a sensor that is sending incorrect measurement data with a new sensor would
be a suitable response strategy to technical failure of a sensor. However, this
may not be an appropriate response strategy to an attack on the sensor as it
would not block the corresponding attack vector. Furthermore, the initiation of
inappropriate response strategies would delay the recovery of the system from
adversaries and might lead to harmful consequences. Noticeably, there is a lack
of decision support to distinguish between attacks and technical failures.

Bayesian Networks (BNs) can be potentially used to tackle the challenge of
distinguishing attacks and technical failures as they enable diagnostic reasoning,
which could help to identify the most likely cause of an event based on certain
symptoms (or effects) [5]. The diagnostic inference capability of BN has been
widely employed in real-world applications especially in medical diagnosis [6], and
fault diagnosis [7]. However, BNs are difficult to interpret for ICS domain experts
and are therefore unsuitable for extracting the necessary knowledge. Conversely,
fishbone diagrams are easy-to-use for brainstorming with experts [8], but lack
essential capacities for diagnostic inference. Therefore, fishbone diagrams can be
potentially combined with BNs to suit the purposes of present challenge. This
research aims to provide decision support for distinguishing between attacks and
technical failures by addressing the research question: “How could we combine
Bayesian Networks and Fishbone Diagrams to find out whether an abnormal
behavior in a component of the ICS is due to (intentional) attack or (accidental)
technical failure or neither?”. The research objectives are:

• RO1. To develop a framework for constructing BN models for determining
the major cause of an abnormal behavior in a component of the ICS.

• RO2. To leverage fishbone diagrams for knowledge elicitation within our BN
framework, and demonstrate the application of the developed methodology
via a case study.

The scope of our BN framework development is the choice of appropriate
types of variables and relationships between the determined variables. Firstly, we
identify appropriate types of variables from existing diagnostic BN models in other
domains and adapt them to the purposes of the present study (i.e., distinguishing
attacks and technical failures); accordingly, the relationships between the selected
variables should be established. Furthermore, we provide a systematic method



for incorporating fishbone diagrams within our BN framework to effectively elicit
knowledge from different sources.

The remainder of this paper is structured as follows: Section 2 provides an
essential foundation of diagnostic BNs and previous related work, followed by
an overview of the state-of-the-art regarding fishbone diagrams in Section 3. In
Section 4, we illustrate the different layers and components of ICS and describe
the case study in the water management domain that is used to demonstrate
our proposed methodology. In Section 5, our BN framework is developed with
appropriate types of variables and the relationships between these variables
are established. Furthermore, we demonstrate the application of the developed
methodology to a case study in the water management domain in Section 5.
Section 6 presents the conclusions and future work directions.

2 Diagnostic Bayesian Networks

This section explains diagnostic BNs with an example, and reviews existing
diagnostic BNs in different domains. BNs belong to the family of probabilistic
graphical models [9]. BNs consist of a qualitative and a quantitative part [10]. The
qualitative part is a directed acyclic graph consisting of nodes and edges. Each
node represents a random variable, while the edges between the nodes represent
the conditional dependencies among the random variables. The quantitative
part takes the form of a priori marginal and conditional probabilities so as
to quantify the dependencies between connected nodes. An example of a BN
model, representing the causal relationships between the risk factor “Smoking”,
the diseases “Bronchitis” and “Lung Cancer”, and the symptoms “Shortness of
Breath” and “Fatigue”, is shown in Figure 1(a).

When more evidence or information becomes available for some variables in the
BN, the probabilities of other variables in the BN could be updated. This is called
probability propagation, inference, or belief updating [5]. In the example shown in
Figure 1(b), the physician provides the evidence (via observation or supposition)
for the symptoms “Shortness of Breath = False” and “Fatigue = True”. Based
on such evidence, the BN computes the posterior (updated) probabilities of the
other nodes using Bayes theorem. The BN in Figure 1(b) determines that the
absence of shortness of breath and the presence of fatigue are more likely due
to lung cancer than bronchitis. In this case, we had evidence for symptoms (or
effects) and inferred the most likely cause. This is called diagnostic or bottom-up
reasoning. BNs also support three other types of reasoning: (i) Predictive or
top-down: reasoning from causes to symptoms, (ii) Intercausal: reasoning about
mutual causes of a common effect, and (iii) Combined: combination of different
types of the above-mentioned reasoning [5].

BN models have widely been used for diagnostic analysis in different domains
including agriculture [11], cyber security [12–15], health care [16–22], and trans-
portation [23–25]. Chen et al. [11] proposed a two-layer BN for maize disease
diagnosis. In their model, the upper layer consists of diseases and the lower layer
consists of symptoms. However, their BN model did not take into account other



variables like risk factors. In this case, it could be difficult to diagnose a particular
disease among other potential diseases with the same symptoms.

Pecchia et al. [12] developed a two-layer näıve BN model for detecting compro-
mised users in shared computing infrastructures. In their model, the upper layer
consists of a hypothesis variable “the user is compromised” while the lower layer
consists of information variables. When more evidence or information becomes
available for the information variables, this BN would help to diagnose whether
the user has been compromised. In contrast to the BN model developed by Chen
et al. [11], the upper layer consists of only one variable.

(a) (b)

Fig. 1. (a) A Typical BN Model for Disease Diagnosis. (b) Updated Probabilities
Given Observed Symptoms (Evidence).

Onísko et al. [16] proposed a three-layer BN for multiple-disorder diagnosis. In
their model, the upper layer consists of risk factors, the middle layer consists of
disorders, and the lower layer consists of symptoms and test results. In contrast
to the BN models developed by Chen et al. [11] and Pecchia et al. [12], their BN
model takes into account risk factors. Curiac et al. [17] also proposed a similar
three-layer BN model for psychiatric disease diagnosis.

Huang et al. [23] proposed a four-layer BN for fault diagnosis of vehicle
infotainment system. In their work, the upper layer consists of root causes,
the middle layer consists of intermediate nodes which are usually the group



or category of the root causes, and two lower layers being distinguished with
different colours. One of the lower layers consists of observations (or test results)
while the other consists of a symptom. In contrast to the BN models proposed by
Onísko et al. [16] and Curiac et al. [17], their BN model did not take into account
risk factors. On the other hand, their BN model considered observations (or
test results) and symptom as separate layers. The observations (or test results)
nodes could better help the diagnostic technicians who were not familiar with
the list of diagnostic tests to be performed for diagnosing a particular root cause
in the BN. The accuracy of posterior probabilities of non-evidenced variables
in the BN would be improved as the observations (or test results) would make
more evidence or information available based on the results of diagnostic tests
performed.

Huang et al. [23] defined symptom as the failure symptom reported by the
customer such as “no-sound”, “no-display” in their vehicle infotainment system.
In addition, they defined observations as any information useful for allocating the
root causes such as those mentioned in the customer’s reports or the outcomes of
tests performed by diagnostic technicians. However, there is no clear distinction
between the information from customer’s reports that could be used to determine
the observation nodes and a symptom node in the BN construction.

3 Fishbone Diagrams

This section explains fishbone diagrams, and highlights their application in
both safety and security. Fishbone diagrams help to systematically identify and
organise the possible contributing factors (or sub-causes) of a particular problem
[8, 26–29]. Figure 2 shows the generic structure of a fishbone diagram, consisting
of a problem and its possible contributing factors (or sub-causes) sorted and
related under different categories. Each category represents the major cause of the
problem. The categories used in the fishbone diagram depend on the classification
scheme used for that application. In general, the arrows in the fishbone diagram
represent the causal relation between the causes and the problem (effect). The
major advantages of fishbone diagram include: (i) fishbone diagrams are easily
adaptable based on the discussions during brainstorming sessions [8], (ii) fishbone
diagram encourages and guides data collection by showing where knowledge is
lacking [8, 26], (iii) fishbone diagram structure stimulates group participation [8,
26], (iv) fishbone diagram structure helps to stay focused on the content of the
problem during brainstorming sessions [8].

Fishbone diagrams are used in security and safety applications [30–33]. Asllani
et al. [30] used fishbone diagrams to identify possible contributory factors of
network failure/intrusions, and used six different categories to sort and relate
contributory factors. For instance, they considered the problem as “Network
Failure/Intrusions” and one of the potential contributory factors as “Antivirus
Update” under the category “Processes”. This implies that not updating antivirus
could contribute to network failure/intrusions. Zhao et al. [31] used fishbone
diagrams to illustrate possible contributory factors of tower crane accidents



under five different categories. Luca et al. [32] used fishbone diagrams to illustrate
possible contributory factors of noisy functioning of an automotive flue gas system
under four different categories. Zhu et al. [33] used fishbone diagrams to illustrate
possible contributory factors of crude oil vapors explosion in the drain under six
different categories.

Fig. 2. Generic Fishbone Diagram Structure

4 Industrial Control Systems

In this section, we illustrate the three different layers and major components in
each layer of ICS. Furthermore, we provide an overview of a case study in the
water management domain.

4.1 ICS Architecture

Domain knowledge on ICS is the starting point for the development and appli-
cation of our BN framework. A typical ICS consists of three layers: (i) Field
instrumentation layer, (ii) Process control layer, and (iii) Supervisory control
layer [34], bound together by network infrastructure, as shown in Figure 3.

The field instrumentation layer consists of sensors (Si) and actuators (Ai),
while the process control layer consists of Programmable Logic Controllers
(PLCs)/Remote Terminal Units (RTUs). Typically, PLCs have wired communica-
tion capabilities whereas RTUs have wired or wireless communication capabilities.
The PLC/RTU receives measurement data from sensors, and controls the physical
systems through actuators [35]. The supervisory control layer consists of historian
databases, software application servers, Human-Machine Interface (HMI), and
workstation. The historian databases and software application servers enable
the efficient operation of the ICS. The low-level components are configured and
monitored with the help of workstation and HMI, respectively [35].



Fig. 3. Typical ICS Architecture and Layers

4.2 Case Study Overview

This case study overview is based on a site visit to a floodgate in the Netherlands.
Some critical information has purposely been anonymised for security concerns.
Figure 4 schematises a floodgate being primarily operated by Supervisory Control
and Data Acquisition (SCADA) system along with an operations centre.

Figure 5 illustrates the SCADA architecture of the floodgate. The sensor (S1)
(which is located near the floodgate) is used to measure the water level. There
is also a water level scale which is visible to the operator from the operations
centre. The sensor measurements are then sent to the PLC. If the water level
reaches the higher limit, PLC would send an alarm notification to the operator
through the HMI, and the operator would need to close the floodgate in this case.
The HMI would also provide information like the water level and the current
state of the floodgate (open/close). The actuator opens/closes the floodgate. The
data transmission used in this case is wired. Electricity is the only energy source
in the operations centre.



Fig. 4. Physical Layout of the Floodgate

Fig. 5. SCADA Architecture of the Floodgate

5 Development and Application of the Methodology

In this section, we describe our framework with the type of variables and their
relationships. Furthermore, we use an illustrative case of a floodgate in the
Netherlands to explain how we combine BN and fishbone diagram to distinguish
between (intentional) attacks and (accidental) technical failures.

5.1 Framework for Distinguishing Attacks and Technical Failures

The developed BN framework is grounded in BN models used for diagnostic pur-
poses in different domains [12, 16, 17, 23]. Studying the aforementioned diagnostic
BN models in Section 2, we adopted and customised a set of variables to develop



our BN framework. The type of variables which we adopted are: (i) risk factors
[16, 17], (ii) hypothesis [12], and (iii) observations (or test results) [23].

Pecchia et al. [12] used a hypothesis variable in their BN model as a classifier
node to classify whether the user is compromised or not in shared computing
infrastructures. We adopted the notion of a classifier node from Pecchia et al.
[12] as it is the basis to the purposes of the present study. However, we defined it
as the problem variable as it is an abnormal behavior in a component of the ICS
(observable problem) in our work. For instance, the sensor (S1) sends incorrect
water level measurements. The purpose of the hypothesis variable in Pecchia et
al. is to determine whether the user is compromised or not in sharing computing
infrastructures, whereas in our work it is used to determine the major cause
of the problem. An abnormal behavior in the technological components could
be mainly caused by intentional attacks, accidental technical failures, human
errors, or natural disasters [36]. However, the main objective of our study is
to distinguish between attacks and technical failures. Therefore, we considered
intentional attack and accidental technical failure as major causes of the problem.
In addition, we introduced a category “others” in case the major cause of the
problem is neither intentional attack nor accidental technical failure. For instance,
the sensor (S1) is misplaced in a different location by an operator. In this case,
the major cause of the problem is human error and would thus be determined as
“others”.

Onísko et al. [16] and Curiac et al. [17] defined risk factors as the factors that
would increase the likelihood of a disease. We, accordingly, adopted the term risk
factors, and defined them as contributory factors since they contribute to the ma-
jor cause of the problem in our work. For instance, “weak physical access-control”
could contribute to the sensor (S1) sending incorrect water level measurements
due to an attack. Furthermore, there might be common contributory factors to
different major causes of the problem. For instance, “outdated technology” could
contribute to both the sensor (S1) sending incorrect water level measurements
due to an attack and a technical failure.

In general, observations (or test results) play an important role in diagnostics.
Huang et al. [23] defined observations as any information useful for allocating the
root causes such as those mentioned in the customer’s reports or the outcomes
of tests performed by diagnostic technicians. We defined observations (or test
results) as any information useful for determining the major cause of the problem
based on the outcomes of tests. For instance, the outcome of the test “whether
the sensor (S1) sends correct water level measurements after cleaning the sensor
(S1)?” would provide an additional information to determine the major cause
(accidental technical failure) of the problem accurately. The observation (or
test results) variables can be elicited from different sources such as experts,
product manuals, and previous incident reports. For instance, the global water
level sensor WL400 product manual lists troubleshooting tests for incorrect
water level measurements due to (accidental) technical failures [37]. One of the
troubleshooting tests listed in the product manual is to clean the sensor following
the maintenance instructions and check whether the sensor sends correct water



level measurements. Figure 6 shows the BN structure to build BN models for
determining the major cause of an abnormal behavior in a component of the
ICS, representing the causal relationship between the contributory factors, the
problem, and the observations (or test results).

Fig. 6. BN Structure to Determine the Major Cause of an Abnormal Behavior
in a Component of the ICS

5.2 Combining Bayesian Networks and Fishbone Diagrams

Knowledge elicitation plays an important role to construct BN model especially
with the appropriate variables for the considered problem [38, 39]. There are
challenges to solely rely on BN for knowledge elicitation. For instance, BN is not
easy-to-use for brainstorming with domain experts as it could be time-consuming
to explain the notion of BN and also to change its structure instantly based on
discussions during brainstorming sessions. Notably, expert knowledge is one of
the predominant data sources utilised to build BN structure with appropriate
variables especially in domains where there is a limited availability of data like
cyber security [40]. Therefore, our framework would be incomplete without an
effective method for knowledge elicitation.

In our work, fishbone diagram is used as the foundation to develop an effective
method for knowledge elicitation especially based on their advantages stated
in Section 3. Furthermore, there are additional benefits in the use of fishbone
diagram in our work. We would mainly rely on experts from two different domains
in addition to other sources for knowledge elicitation to construct BN models: (i)
security, dealing with intentional attacks, and (ii) safety, dealing with accidental



technical failures. In case we start building a BN model directly without utilising
the fishbone diagram to elicit data from experts, it would be difficult to visualise
which contributory factors and observations (or test results) corresponds to each
major cause of the problem. This could make it difficult for the experts especially
during brainstorming sessions. The fishbone diagram structure shows the potential
to tackle this challenge. In some cases, there might be common contributory
factors. For instance, “outdated technology” is a common contributory factor to
two major causes of the problem (i.e., “outdated technology” could contribute
to the sensor (S1) sending incorrect water level measurements due to both
“intentional attack” and “accidental technical failure”). If we start building a BN
model directly without utilising the fishbone diagram to elicit data from experts,
this could lead to duplication of common contributory factors using different
terminologies in the BN.

In addition, BN structure is not easily changeable especially with a large
number of contributory factors and observations (or test results) elicited from
experts during brainstorming sessions. The fishbone diagram structure makes it
easier to refine/update a large number of contributory factors and observations
(or test results) instantly based on discussions during brainstorming sessions with
experts. It would also help to visualise contributory factors and observations (or
test results) from other sources such as literature and previous incidents. Finally,
we can convert the constructed fishbone diagram into a corresponding BN model
after the completion of knowledge elicitation to constitute the quantitative part
of the corresponding BN model.

5.3 Extended Fishbone Diagrams and Translated BNs

We considered the example problem “sensor (S1) sends incorrect water level mea-
surements” as it could develop more complex situations in the case of floodgate.
In case the floodgate closes when it should not based on the incorrect water level
measurements sent by the sensor (S1), it would lead to severe economic damage,
for instance, by delaying cargo ships. On the other hand, in case the floodgate
opens when it should not due to incorrect water level measurements sent by the
sensor (S1), it would lead to flooding.

Figure 7 shows a fishbone diagram based on the example mentioned above. We
considered “sensor (S1) sends incorrect water level measurements” as the problem.
Furthermore, we considered two major causes of the problem: intentional attack
and accidental technical failure as mentioned earlier. These major causes of the
problem would be the categories in our fishbone diagram. Finally, we mapped
the appropriate contributory factors under each category. In this case, “outdated
technology” is the common contributory factor that could contribute to sensor
(S1) sending incorrect water level measurements due to intentional attack and
accidental technical failure. In this case, we listed “weak physical access-control”
as one of the contributory factors in the category of intentional attack. This is
because weak physical access-control could contribute to sensor (S1) sending
incorrect water level measurements due to an intentional attack.



Fig. 7. Fishbone Diagram Example

Noticeably, fishbone diagrams do not consist of observations (or test results),
which need to be elicited in our work. However, we could extend the fishbone
diagram to incorporate observations (or test results) as shown in Figure 8. This
would allow us to elicit complete information needed to construct BN models
especially with the three different types of variables and cause-effect relationships
in our BN framework. The extended fishbone diagram is shown in Figure 8
with an additional component: observations (or test results). The arrows in the
fishbone diagram represent the causal relationship. The categories stated on
the left side of the problem in the fishbone diagram are the major causes of
the problem. Therefore, these categories has the arrows directing towards the
problem which represent the causal relationship between the causes and the
problem. However, the categories stated on the right side of the problem are
used for reference to elicit observations (or test results) that would be useful
for determining the particular major cause of the problem. Figure 9 shows the
extended version of our fishbone diagram example with observations (or test
results).

Fig. 8. Extended Fishbone Diagram Structure



Fig. 9. Extended Fishbone Diagram Example

Extended fishbone diagrams might look similar to qualitative bowtie diagrams,
but, they are different. The observations (or test results) on the right side of
the problem node in the extended fishbone diagram help distinguish between
different events (intentional attack and accidental technical failure), Whereas
bowtie diagrams are aimed at representing the possible consequences of a fixed
event. Furthermore, qualitative bowties [41] consider recovery measures/reactive
controls on the right side of the problem node. This is not relevant to our
application, based we focus on diagnostics. On the other hand, extended fishbone
diagrams consider preventive controls/barriers implicitly on the left side of the
problem node, as part of the contributory factors. For instance, “weak physical
access-control for the sensor” is one of the contributory factors. The evidence
supplied by the operator in the BN for this node would depend on the preventive
controls/barriers that are in place. In case there are physical access-control
measures implemented in that specific application, the operator would supply
the evidence as ‘No’ for this node in the BN.

Once the fishbone diagram is developed, it should be translated to a BN
based on the following steps:

i. The considered problem in the fishbone diagram is mapped to the problem
variable in the middle layer of the BN as shown in Figure 10.

ii. The categories used in the fishbone diagram would be states of the problem
variable in our BN. In addition to these states, there would be an additional
state “Others” in our BN. As mentioned in Section 5.1, this would be
determined in case the major cause of the problem is neither intentional
attack nor accidental technical failure.

iii. The elicited contributory factors in the fishbone diagram are mapped to the
contributory factor variables in the upper layer of the BN as shown in Figure
10. The contributory factors that correspond to both intentional attack and
accidental technical failure in the fishbone diagram would be treated as a
single contributory factor in the BN. For instance, “outdated technology” in
our example would be treated as a single contributory factor in BN as shown
in Figure 10. However, the contributory factors that correspond to both



intentional attack and accidental technical failure would be reflected through
the conditional probabilities of “sensor (S1) sends incorrect water level
measurements”. We considered the contributory factors as binary discrete
variables based on their features. However, continuous variables could also
have been used. We utilised the states “Yes” and “No” for our contributory
factors as shown in Figure 10.

iv. The elicited observations (or test results) in the fishbone diagram are mapped
to the observations (or test results) in the lower layer of the BN as shown in
Figure 10. We considered the observations (or test results) as binary discrete
variables based on their characteristics. We employed the states “Yes” and
“No” for our observations (or test results) as shown in Figure 10.

Fig. 10. Translated BN from Fishbone Diagram Example

Once the fishbone diagram is translated to a corresponding BN model, the
quantitative part of the BN should be populated. Due to limited data availability,
expert knowledge is the predominant data source used to populate CPTs of
BNs in cyber security [40]. In our work, we did not investigate whether fishbone
diagrams could be used as a means to elicit probabilities from experts as our
main objective is to elicit appropriate variables in the construction of the BN
structure for the considered problem.



Fig. 11. Translated BN with Updated Probabilities Based on the Evidence



However, it is important to investigate whether fishbone diagrams could be
used to elicit CPTs from experts in the future. The translated BN with illustrative
priori marginal and conditional probabilities, representing the causal relationships
between the contributory factors, the problem, and the observations (or test
results), is shown in Figure 11.

Once the quantitative part of the BN is populated, the BN could be used in
practice for different scenarios and their probabilities could be updated based
on evidences obtained. In the example shown in Figure 11, we provided the
evidence for the contributory factors “Weak Physical Access Control = Yes”,
“Outdated Technology = Yes”, “Poor Maintenance = No” and “Sensor without
Self-diagnostic Function = No”, and observation (or test result) “Abnormalities in
the other locations = Yes”. Based on such evidence, the BN computes the posterior
(updated) probabilities of the other nodes. The BN in Figure 11 determines that
the problem “Sensor (S1) sends incorrect water level measurements” is most
likely due to (intentional) attack based on the evidence provided.

6 Conclusions and Future Work

Adequate decision support for distinguishing intentional attacks and accidental
technical failures is missing. In this paper, we customised and utilised three
different types of variables from existing diagnostic BN models in a BN framework
to construct BN models for distinguishing intentional attacks and accidental
technical failures. In our BN framework, the upper layer consists of contributory
factors, the middle layer consists of a problem variable and the lower layer consists
of observations (or test results). Furthermore, we extended and combined fishbone
diagram with our BN framework to support knowledge elicitation from different
sources. The important characteristics of our framework include: (i) it serves as a
basis to provide decision support for responding to safety and security problems
arise in the components of ICS, (ii) While determining the most likely cause of
an abnormal behavior in a component of the ICS, it helps to consider both the
contributory factors and observations (or test results) associated with it, and (iii)
it facilitates knowledge elicitation especially from experts and its integration in
BNs. Finally, we demonstrated the use of the developed methodology with an
example problem “sensor (S1) sends incorrect water level measurements” based
on a case study in water management domain.

This work belongs to the broader theme of “Integrated safety and security”.
There are several studies within the sub-theme of “Integrated safety and security
risk assessment” [42]. However, this work is associated with the sub-theme of
“Integrated safety and security diagnostics”, which mainly deals with the problem
of distinguishing intentional attacks and accidental technical failures.

In the future, it would be useful to investigate whether fishbone diagrams
could be used to elicit CPTs. The developed methodology would not be directly
applicable when several problems arise at the same time. Therefore, it is important
to address how fishbone diagrams could be used to elicit knowledge for those
cases in the future and how it could be translated to a corresponding BN.



Furthermore, we aim to evaluate our methodology based on applications in the
water management domain.
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