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SUMMARY 
One of tlie major causes of wear on sliip tiydrofoils is cavi­

tation. Clouds of interacting bubbles behave nonlinearly and 
can experience very sudden changes in void fraction. These 
nonlinear collapsing mechanisms can result in a coherent col­
lapse of bubble clouds which have great damage potential. 
In this study the model, proposed by Wang and Brennen [1999], 
has been implemented. This model employs the f u l l y nonlinear 
continuum mixture equations coupled with the Rayleigh-Plesset 
equation. The set of equations is solved using a Lagrangian 
integral method. The sensitivity of the results for parameters 
such as the ini t ia l void fraction of the cloud, initial cloud size as 
well as characteristics o f the imposed pressure perturbation, has 
been investigated. Based on results of a RANS method for the 
f l o w around a hydrofoi l with shedding sheet cavities, an 
equivalent cavitated cloud and corresponding pressure pertur­
bation has been determined that serves as input for the bubble 
cloud method. 

INTRODUCTION 
Cavitation is in a physical sense not fundamentally different 
f r o m boiling. I n a boil ing process, vapor forms in a f l u i d be­
cause the temperature of the f l u i d is raised to the saturated 
vapor/liquid temperature. This results in a phase change f rom 

T V 

Figure 1: Typical phase diagram. Figure f rom Brennen [1995] 

l iquid to vapor 

In figure 1 a typical phase diagram is shown on the left. When a 
l iquid is heated the saturated vapor/hquid line is passed at a 
certain point where the l iquid w i l l become vapor.When one 
considers a l iquid, it can be seen that when the pressure is 
lowered, the same saturated vapor/hquid line is passed. This 
process in which a phase change results f r o m the lowering of 
pressure is called cavitation. On the right of figure 1 a line of 
constant temperature (isotherm) is plotted in the pressure speci­
f ic volume plot. Since the density o f vapor is much lower than 
that of l iquid an expansion w i l l take place when the pressure is 
dropped below the saturated vapor pressure, point B in the 
graph, and vapor is formed. Only i f enough nucleation sites are 
available the isotherm w i l l go straight f r o m point B to C, where 
all the liquid is now vapor and the pressure can drop further in 
the vapor phase. I f no or a small number of nucleation sites are 
available, pressure could be lowered below the saturated vapor 
pressure, according to the theoretical isotherm B D . The loca­
tion of first rupture is the weakest spot in the fluid. The process 
in which a microscopic void starts to grow to a macroscopic 
bubble is called inception. Inception happens at weak places in 
a l iquid, called nucleation sites. I f these nucleation sites are m i ­
croscopic voids that are available in the fluid due to thermal 
effects, we speak o f homogeneous nucleation. However, it is 
more l ikely that weak spots appear at solid boundaries within 
the flow regime. In this case we speak of heterogeneous nuclea­
tion. Another possible nucleation site is a microscopic bubble 
that contains contaminant gas. 

A pressure decrease may occur for two reasons. The overall 
pressure is decreased or the fluid accelerates. In an incompres­
sible inviscid, steady flow, an increase in flow velocity de­
creases the pressure in the flow f i e ld . Examples are the flow 
over ship propellers and through pump impellers. To describe 
the relationship between overall pressure, the flow velocity and 
the likelihood of cavitation, the cavitation number is defined as: 
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\PrUl 
(1) 

Here and are the reference pressure and temperature, res­

pectively, for example in the far-field, and Uis the correspond­

ing reference velocity. The quantity p,.(T) is the partial pres­

sure of the vapor and is the l iquid density From the cavita­

tion number i t can be seen that i f the cavitation number is suf f i ­

ciently large, inception w i l l not occur. This happens i f the refer­

ence pressure Pf, is sufficiently large or the reference velo­

city is sufficiently low. Also, i f the reference pressure is low 

or the reference velocity is high the cavitation number w i l l be 

low, which results in a f l o w that is more l ikely to cavitate. The 

particular value of (7 for which nucleation first starts to occur is 

called the nucleation cavitation number. The dynamics of ind i ­

vidual cavitation bubbles is described by the Rayleigh-Plesset 

equation. This equation, for a bubble moving wi th the velocity 

field, in its simplest f o rm first derived by Rayleigh in 1917, re­

lates bubble pressure p to bubble radius R, bubble wall velocity 

DR/Dl and bubble wall acceleration D^R/Of. It reads for a 

spherical bubbly iso-thermal f l o w : 

DR 

Dty 
+ R-

D^R 

2S C 

1 DR^ 1 
(2) 

+ 4v,-
Dt' R Dt \ . 

Here Ro is a reference bubble size. D/Dt denotes the substantial 

derivative. A: is the polytropic constant of the contaminant (isen-

tropically behaving) gas inside the bubble and = /^^ /yC^ is 

the kinematic viscosity o f the l iquid, w i t h / i , the dynamic vis­

cosity of the l iquid . Furthermore, Cp is the pressure coefficient, 

defined as: 

P-Po 

hPr^l 
(3) 

Here S is the surface tension, which can be expressed in terms 

of the Weber number We as: 

W e = ^ ^ (4) 
S 

The derivation o f Eq. (2) can be found in many text books. 

Not only nucleation and cavitation is a field of active research, 

but also bubble disappearance or collapse. Once cavitation 

bubbles are formed in a region of low pressure, the cavitation 

bubble wi l l be convected wi th the flow and may enter into a 

high pressure region. This w i l l result in a bubble that implodes, 

or collapses. Bubble collapses are a major cause of erosion on 

hydrodynamic surfaces. A collapsing bubble radiates strong 

pressure waves which cause highly locahzed and transient 

stresses. Repeated collapses cause local fatigue and subsequent 

erosion of the material. Entire clouds of bubbles can collapse 

coherently. For instance in case of a ship propeller, a sheet cavi­

ty on the leading edge of the hydrofoil sheds clouds of cavita­

tion bubbles. Further downstream but still above the blade of 

the propeller the cloud may collapse. In a cloud, interacting 

bubbles can cause the collapse to be more violent than the ef­

fect of the individual collapsing bubbles. As a result o f the high 

pressure peaks appearing when bubbles collapse, noise is pro­

duced. The radiated acoustic pressure of a bubble can, accord­

ing to Dowhng and Ffowcs Will iams [1983], be written as: 

(5) 
Anr dt' 

Here r is the distance f r o m the source to the point o f measure­

ment and V is the volume of the collapsing cavity. From this 

equation it can be seen that noise is created by the volumetric 

acceleration of the void. This acceleration is largest when the 

volumetric velocity dVidt of the void changes f rom negative to 

positive sign, and thus when the void volume V is smallest. So 

this is when the collapse/rebound is the most violent. 

Cavitation phenomena are an area of active research, both ex­

perimentally and numerically. In experiments details of the 

cavitation features are captured using new recording techniques 

like high-speed cameras and Particle Image Velocimetry. On 

the numerical side, computers are getting more and more po­

werful enabling more extensive computations. This makes 

RANS computations o f the entire cavitating flow field possible. 

From the viewpoint of the maritime industry i t is most impor­

tant to f ind a way to accurately predict cavitation aggressive­

ness and its potential erosive power. Thus a method is required 

that predicts periodic or steady cavitation close to the surface of 

ship propellers, pump impellers, etc. for which damage f rom 

cavitation is to be expected. When and where cavitation is to be 

expected can be computed numerically wi th the aid of RANS 

computations. However, a RANS method is not able to accurat­

ely predict the final stage of collapse. It is in this stage that the 

highest pressures are to be expected. I t is the aim of the present 

study is to provide details of the cloud collapse. This is meant 

to be achieved wi th the aid of the model proposed by Wang and 

Brennen [1999] to provide information that RANS computa­

tions cannot produce. Then, it could possibly be used as a post­

processor for results o f RANS numerical simulations. This w i l l 

provide more detailed information o f the aggressiveness of the 

collapsing cavity. 

Therefore the objectives of the present study are: (i) Obtain so­

lutions of the model proposed by Wang and Brennen [1999]. 

( i i ) Perform a sensitivity study in order to be able to recognize 

situations in which cavity cluster collapses are most aggressive. 

( i i i ) Explore the possibilities for using the implementation as a 

post-processor for results of RANS numerical simulations, wi th 

the purpose of providing details of the cloud cavity collapse. 

MODEL CAVITATING CLOUD OF B U B B L E S 
The model investigated in this paper describes the nonline­

ar collapsing behavior of a spherical cloud of bubbles. Accor­

ding to Hansson & M ö r c h [1980] and Mörch [1982]) the col­

lapse involves inward moving shock waves that are enhanced. 

This indicates the necessity for a model that does not ignore the 

nonlinear effects in the cloud and should be able to predict the 
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radiated acoustic energy, and tlie potential damaging power of a 

cavitating cloud. The model investigated therefore retains the 

nonUnear terms in the governing equations. 

Consider a spherical cloud of bubbles as depicted in figure 2. It 

is assumed that the dependent variables depend on r and t only. 

The liquid sun-ounding the cloud is assumed incompressible. 

The radius o f the cloud is denoted by A(t), the radial coordinate 

wi th ;-, the individual bubble radius with R{n f ) and the bubble 

population per unit l iquid volume wi th I t is assumed that 

PURE LOUID 

'• euBSLY t-VXtUHE 
(POPUl ATlQfJ = n PER 

U'ilT LIQUfD VOlUM£) 

Figure 2: Schematic o f a spherical cloud of spherical bubbles. 

Figure f rom Wang and Brennen [1999]. 

coalescence and break-up o f the bubbles inside the cloud do not 

occur and that the bubble distribution is piecewise uni form in i ­

tially. Also it is assumed that there is no mass transfer through 

the boundaries of the bubbles. This means that i] remains con­

stant and piecewise uniform distributed. Furthermore the 

bubbles are assumed to be spherical at all times and contain l i ­

quid vapor as well as contaminant gas. 

At ^ = 0, the cloud is in equilibrium wi th the suiTounding l iquid. 

Then a pressure perturbation C^ (t) is imposed on the pure 

l iquid at infini ty and we investigate the reaction of the cloud to 

this pressure perturbation. 

Governing equations 

I t is assumed that the density of the liquid is sufficiently 

high and the vapor fraction a is sufficiently low to neglect the 

density of the vapor, i.e. the mixture density becomes: 

p = ap^. + (l-a)p^^{\-a)Pi^ (6) 
In equation (6) a is the fraction o f vapor in a unit volume. The 

volume of an individual bubble is Vj, =^7rR^. Then the pro­

duct is the fraction o f volume taken up by the bubbles in a 

unit l iquid volume. Not ing that the total volume is the l iquid 

volume plus the bubble volume, i.e. equals (1-b T/Vj,) we 

can write for the void fraction: 

, _ 

The mixture density then becomes: 

PL 

a-- (7) 

yC7 = ( ! - « ) / ? , (8) 

Substitution of Eq. (8) in the continuity equation for the mix­

ture density gives, for the case of spherical symmetry: 

llwriR- DR 
(9) 

3 + 4m]R' Dt 

Here ;(is the radial velocity and DIDt = d Idt + lid I dr . 

For the radial component of the momentum equation, neglect­

ing volumetric force fields and viscous stresses, gives: 

Du dp 
O = —— 
^ Dt dr 

Substituting the expression f ro the mixture density, Eq. (8) and 

the expression for the pressure coefficient, Eq. (3), yields: 

Du , , 9 C „ 
-l(^3 + 4;,fjR^)U'^^ (10) 

Dt dr 
The Rayleigh-Plesset equation, Eq. (2), relates the local pres­

sure to the evolution of the radius of the bubble in time. The 

equation is derived f r o m the momentum equation and a force 

balance at the edge of a bubble. I t is assumed that there is no 

mass transfer through the bubble boundary, so the content o f 

the bubble does not change. Also, since the bubble is spherical 

one can make use of spherical symmetry. Note that the equation 

is derived for a single bubble, making use of a kinematic 

boundary condition at the edge of the bubble. This w i l l have as 

a consequence that one should be careful using this equation in 

calculations in cases for which bubble-bubble interactions are 

important. Also note that temperature effects are neglected. F i ­

nally, i t is assumed that the bubble remains spherical at all 

times. 

The variables used in the analysis are non-dimensionalized 

using the init ial bubble size Rg and the free-stream velocity , 

i.e.: 

R = RIRo] f = rlRf,; ü = uHJg\f} = r]Rl; t = tUJR^, 

Substituting this in the governing equations, and subsequently 

dropping the hat, yields: 

1 3 , 2 , l27!:nR'- DR 
— — ( ' • « ) = -
r~ dr 

Du 

Dt 

3 + 47r/]R' Dt 

dc 
-X(3 + 47rnR')—^ 

^cTiR-"" -1 ) - + ( i?" ' ' -R-')-
W e 

(11a) 

( l i b ) 

(11c) 
' d r ) ^ ^ D^R ^ 4 I DR 

yDt J Dt^ Re 7? Dt 
where We is the Weber number, see Eq, (4) and Re is the 

Reynolds number: 

Re = ^ ^ (12) 

ML 

There are three main causes of damping: effects due to l iquid 

viscosity p^ ; effects due to f l u i d compressibility through a¬

coustic radiation / / ^ ; and effects due to thermal conductivi-
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t y / / j - , see Chapman and Plesset [1971]. These three compo­

nents are captured in one effective viscosity which is written as: 

ME=ML+UI+MA 

The effective viscosity / / ^ w i l l be used in the Rayleigh-Plesset 

equation to account for the damping mechanisms. 

To analyze the equation further, Eq. (1 Ic) is expressed in terms 

of the bubble-wall acceleration: 

•1) 
(13) 

2 _ _ 3 A n - l ^ 4 1 Di? 1 

D^R 

Dt' 

+ -

DR 

yDt 
^ - i R -

2R 

Re R' Dt 2R ' R W e 
From Eq. (13) it is seen that a negative pressure coefficient {p < 

p „ ) w i l l result in a positive bubble acceleration, thus growth of 

the bubble. Note that there are two Z?"'* terms, both positive to 

the acceleration. When R « \ , which occurs during bubble col­

lapse, these terms w i l l become very large. For instance, when R 

reaches a value of 0.01, R '^'' ~ 250x10* for li = 1:4. So in the 

collapse phase these terms become dominant. Thus, a low value 

of the bubble radius during collapse results in a very high posi­

tive bubble acceleration, and thus a severe rebound. 

The Rayleigh-Plesset equation describes the evolution of a 

single bubble. It does not account for local pressure perturba­

tions experienced by the bubble due to the collapse and re­

bound of its neighbors. Important parameter in this case is the 

init ial void fraction. The higher the initial void fraction, the 

closer the bubbles w i l l be to each other, the higher these effects. 

I n the literature (see [Rubinstein, 1985] and [Seo et al., 2010]) 

it is shown that these effects are of the order of the void frac­

tion. This is a limitation o f the model. In the literature there are 

con'ections to the Rayleigh-Plesset equation that make the 

equation useful up to ini t ial void fraction of 0(13%). The local 

void fraction can, however, be much higher than the initial void 

fraction. Because the number of bubbles per unit volume l iquid 

is constant, the number o f bubbles does not change over time. 

This means that the error due to bubble interactions is depen­

dent on the initial void fraction, and not the local void fraction. 

Therefore, one should be careful using initial void fraction 

much higher than 1%. 

Boundary conditions 

To solve the three governing equations, Eqs. (11a, b and c), fo r 

the three unknown quantities Cp(r, 0, R{r, t) and u{r, t) appro­

priate boundary and init ial conditions are required. 

For spherically symmetric, incompressible, irrotational f l o w 

outside the cloud (r > /4(f)) we can write for the radial velocity 

can be expressed, dimension-full) as: 

u{r,t) = 
Q{t) 

Am-' 
i th Q(t) = A7iA\t)u{A{t),t) (14) 

or in terms o f the velocity potential: 

6 ( 0 
^(r,t) = -

4m-
(15) 

Bernoulli 's relation for this f l o w reads: 

9 f PL 

Upon substitution of Eqs. (14) and (15), and evaluating C(t) at 

inf in i ty : 

ld_ 

rdt 
Then evaluating this expression at the boundary of the cloud it 

fol lows, in dimensionless form: 

A{t) dt 

where//,, = » ( A ( 0 , 0 and C p^ ( r ) 

(16) 

p(A{t),t)-p, 

\p,ul 
Eq. (16) gives the pressure at the boundary of the cloud that is 

compatible with the imposed pressure C ^ ^ ( / ) at inf ini ty . 

A t the center o f the cloud there can be no radial motion because 

of the spherical symmetry of the problem. So the boundary 

condition is: 

//(0,r) = 0 (17) 
Eqs. (16) and (17) are the boundary conditions required for 

Eqs. ( U a ) and ( U b ) for the pressure and velocity inside the 

clouds. Eq. ( U c ) fo r the radius of the bubbles inside the cloud 

requires just ini t ial conditions. 

Initial conditions 

For the continuity equation, Eq. ( U a ) and the momentum equa­

tion, Eq. ( U b ) the initial conditions are, for 0< r <A(0) : 

//(/•,0) = 0 (18a) 

C / / - , 0 ) = 0 (18b) 

For the bubble radius the initial conditions are: 

/?(?-,0) = l (19a) 

DR 

Dt 

D'R 

Dt' 

0- ,o) = o 

(/•,0) = 0 

(19b) 

(19c) 

Imposed pressure field at infinity 

In Eq (16) the pressure perturbation „ ( f ) determines 

the way in which the cloud w i l l evolve. I t is the parameter that 

can be used to simulate the situation in an experimental setting, 

or the result of a specific RANS numerical simulation. The 

pressure perturbation is defined as follows: 

r C _ J l - c o s ( 2 ; r f / r , ) ] 

for 0< / Kin, and zero otherwise, see figure 3. 

(20) 

For this specific shape two parameters are important: the mini ­

mum pressure C;̂ „„„ and the period of the pressure perturbation 

to- I t is noted that when the minimum pressure decreases or the 

period increases, the response o f the cloud w i l l be more severe. 

To couple this to a cloud passing over an object, the fo l lowing 

is noted. 
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rjomalïtd ncfi-dmens«nal tm*. 11. 

Figure 3: Imposed pressure perturbation ^ ( t ) 

The time i t would take the cloud to travel with velocity Uq past 

a body of length D would be / = D/Uq. Substituting this in the 

expression for dimensionless time yields the order of magni­

tude of lo = D/Rq. Thus when comparing results of this model 

to experiments, one can calculate the dimensionless period of 

the pressure perturbation. The minimum pressure coefficient 

depends on the case considered. 

Numerical approach 
In the method of Wang & Brennen [1999] the governing 

equations are solved in a Lagrangian formulation. In this for­

mulation the local coordinate r moves in time and its value is a 

function of its initial position ;•(,, so r = r(ro,t). The details of the 

derivation of the equation for the spatial coordinate is given in 

Wang & Brennen, as well as in van Loo (2011). The resulting 

expression is: 

r'Ohd) = } [ 3 + 4mnR\^M'd<^ (21) 

Differentiation of this Lagrangian coordinate wi th respect to 

time gives the radial component of the velocity: 

I27vr] 

{3 + 47rny(ro,t)i 
'fR\^,t)^R(^,t)d^ 

at 

(22) 

The momentum equation in the Lagrangian formulation is 
found to be: 

'VI 

CSlh,t): 
3 + 4;r/7, 

g(4,t;C^) + iir„t)ii\r„t) 

r\>h,t) 
fd^ 

+ CpJt) + 2g(A„t)/r(AQ,t)-u\A^,t) 

(23) 
where 

+ joRiR-'' (CO-D- iRiC< t)Cp ( f , r) + {R'-''(.C, 0 - DK'dC 
We 

The initial conditions translate into: 

H ( r o , 0 ) = 0 ; C / / o , 0 ) = 0 

(24) 

/?(/o,0) = 1 ; — (/•„ ,0) = 0 

There are four functions to be determined: r{ro; t), /((/"o; t), 
Cpiro, t) and R{ro, t). The equation for Cp is implici t and needs 

to be solved iteratively. Finally R is calculated, using an appro­

priate time integration f r o m the Rayleigh-Plesset equation. 

The numerical procedure used is similar to the one used by 

Wang and Brennen [1999]. It employs an explicit Euler time 

integration technique to obtain the bubble wall velocity f r o m 

the bubble wall acceleration, and the Heun technique to obtain 

the bubble wall radius. The procedure is discussed below. 

1. From init ial and boundary conditions, or f rom previous time 

step, the fo l lowing set of data is available: 

R{ro\ t), (dldt)R{ro, t) and {d^ldf)R(ro, t) 
2. Using an explicit Euler time integration technique, we f ind 

(d/dOROo, l+At)= {8l8t)R{ro, t)+At{^ldy)R(ro, t) 

For the bubble radius we f ind using Heun's method: 

R(ro, t+At)= ROo, t)+ V2Al[(8/dt)R(r„; t)+ (d/dl)R(ro, t+M)] 
3. The fractional change of R is checked and i f it is too large the 

time step Af is adjusted and step 2 is repeated. When the frac­

tional change of R is wi thin limits, one is able to integrate equa­

tions (21) and (22) to f ind : ;-(;o; l+At) and (/(/oi f + A f ) 

4. One is now able to iterate equation (23) to f ind CpOv, t+At). 
The final step is to use the Rayleigh-Plesset equation (13) to 

f ind : (d^/dt') ROo; t+At). 

A l l quantities are now known at the new time step. One can re­

peat this sequence of steps for a new time step unti l time has 

progressed to the desired time. 

The integrals in Eqs. (21)-(24) are evaluated using the midpoint 
(trapezoidal) rule. 

In the time stepping procedure the bubble radius is com­

puted as indicated above. Then the new bubble radius is com­

pared to the one obtained in the previous time step. When the 

radius is wi thin l imits the computation may proceed. I f the 

maximum fractional change is out of l imits, the time step is 

halved and the bubble radius at the new time is re-calculated. 

Again i t is checked. When the bubble collapsed and is in its re­

bound, the magnitude o f the bubble wall acceleration decreases 

and a very small time step is now slowing down the computa­

tion unnecessarily. The time step needs to be increased again. 

When the fractional change of the bubble radius is wi th in cer­

tain l imits , say no more than 1 %, the time step is doubled. After 

this adjustment, the bubble radius needs to be re-calculated and 

re-checked. 

R E S U L T S 
The values of the parameters that are kept f ixed for all simula­

tions the fo l lowing ones of Wang & Brennen [1999] 

Ro = 100 pm; Uo = 10 m/s; S = 0.0728 N/m; p,^ = 1000 kg/m^ 
and PE = 0.035 Pas. This gives for the Reynolds number: Re = 

28.57, and for the Weber number: We = 137.4. 

For the cavitation number, two values are used: a = 0.4 and a = 
0.45. In this section a dimensionless cloud radius of Ao = 100 is 
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used. The parameters that are varied are the pressure perturha-

tion period fc and the init ial void fraction OQ- The pressure per­

turbation period w i l l be varied between values ranging f r o m 

250 to 1000. For the initial void fraction «o the range is 0 .01% 

up to 5%. In the Rayleigh-Plesset equation due to bubble-

bubble interaction is of the order a». This is to be kept in mind 

for the higher initial void fractions. 

Figure 4: Solution of the Rayleigh-Plesset equation for a single 

bubble subjected to a decrease in ambient pressure fol lowed by 

a subsequent ambient pressure recovery for ta = 500, Cpmm = -

0.5, a = 0.4, Re = 28.57, We = 137.4. 

Single bubble 

Figure 4 shows the solution of the Rayleigh-Plesset equation 

for a single bubble subjected to a temporary drop in ambient 

pressure as shown in the same figure. A solution for a single 

bubble is obtained by excluding the continuum mixture equa­

tions and just solve for the Rayleigh-Plesset equation. The be­

havior of a single bubble in the far-f ield, as shown in Figure 4, 

serves as a reference for comparison wi th the behavior of indi­

vidual bubbles in a cavitating/collapsing cloud. 

Bubble cloud 

Figure 5 shows the result for a bubble cloud subjected to a pres­

sure perturbation o f the type shown in figure 3 for a specific 

choice o f the two parameters: to and Cp„„„. 
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Figure 5: Bubble radius at different locations in the cloud sub­

jected to a pressure perturbation shown in figure 3 fo r fo= 1000, 

«„= 0.1 %, a = 0.4, Cp,„;„ = -0.7, Re = 28.57, We = 137.4, Ao = 

100. 

In figure 5 the bubble radius is plotted for a situation tc = 1000 

and «0 = 0 :1%. Shown is the bubble radius at different radii o f 

the cloud as function o f time. It is seen that the bubbles at the 

cloud boundary attain the largest bubble radii. This happens 

when the pressure perturbation is completely recovered, thus 

after to = 1000. After this recovery, the collapse process starts. 

Note that the bubbles near the cloud boundary grow to a much 

larger size than the most inner bubbles. This is a phenomenon 

generally seen in cloud cavitation simulations. The large d i f fer ­

ence between growth rate of inner and outer bubbles is a func­

tion of the ini t ia l void fraction, and therefore can be related to 

bubble-bubble interaction effects. Simulations for higher and 

lower void fractions show that the stronger the bubble interac­

tion, the smaller the difference in growth rate 

Bubble interaction effects render the results of the simulations 

invahd i f they are too strong. Therefore the 'cloud interaction 

parameter' is used, defined as: 

Rl 
(25) 

From this it can be seen that a high initial void fraction «o 

yields high bubble interactive effects (with a maximum at «o = 

0:5), but also the cloud radius Ao increases p. 

f a -V;, 3(1 .i; , ton 

().urj;- U.ü!) tl.iMJ 

ii.i'.- n.so 9.Ö9 89.01 
t% 6.91 'J9.93 S91.fi(l 

5% 42.73 .•17.-,.{i!l •t27ü.(Xl 

Table 1. Cloud interaction parameter for various ao and Ao 

As is shown in table 1 the (3 value for figure 5 is intermediate at 

a value o f approximately 10. 

Figure 5 shows that the collapse process starts near the middle 

of the cloud radius, near ro = O.6A0. For later times the center 

the collapse heads in both directions, toward the center o f the 

cloud and towards the cloud boundary. 

- Preasi-re CosTcisnt 

0 20 40 00 flO 10Q 120 140 
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Figure 6: Bubble radius R and pressure coefficient Cp as func­

tion of radial coordinate ;• at time 1 = 1325.4 in Fig. 5. 

Figure 6 shows the bubble radius distribution as function o f l o ­

cation in the cloud, some time after the first bubble collapse, 

i.e. for dimensionless time t = 1325:4. I t can be clearly seen 

that there is a collapse front travehng in the directions indicated 

by the arrows. In the collapse front traveling towards the cloud 

boundary, some secondary collapses and rebounds are observed 
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as well . Also included in figure 6 is the pressure coefficient. It 

is noticed that a pressure peak results f r o m the small bubble ra­

dius near r = 87. This pressure peak is broad, in the sense that 

neighboring bubbles experience an elevated pressure as wel l . 

The Rayleigh-Plesset Eq. (13) shows the influence on the 

bubble wall acceleration of the neighboring bubbles. The right 

most neighbor that is going to collapse next experiences a 

higher negative acceleration due to the elevated pressure. The 

left most neighbor that is rebounding also experiences a nega­

tive acceleration due to the elevated pressure, and thus slowing 

the rebound and decreasing the maximum rebound radius. 
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Figure 7: Dimensionless radial coordinate /• plotted against d i ­

mensionless time /, for tc - 1000, ao = 5%,a--

0.7. Re = 28.57, We =137.4, A o = 100 

0.4 andC„„„„=-

The location of the bubbles, is shown in figure 7, where r is 

plotted time for various values of ;o, for «o = 5%, ?c = 1000, a = 
0.4 and C ,̂,,,-,, = -0.7. Clearly at the cloud boundary, a large ex­

pansion of the cloud takes place. After the pressure perturbation 

recovery the cloud shrinks. The cloud collapses only to a size 

comparable to its initial size, i.e. prior to the pressure perturba­

tion. I t should be noted, however, that inside the cloud, local 

void fractions reach very low values, as was seen in Figs. 5 and 

6. 

J - 0 . 5 

z - ! . ! 

0 2 0 0 4 C 0 eCO 8 C 0 1 0 0 0 I 2 0 C 1 4 » ICOO UOO 2JO0 

Figure 8: Dimensionless radial velocity ii versus dimensionless 

time t for various values of /Q, for tc = 1000, «o = 5%, a = 0.4 

and Cp„„„ = -0.7. Re = 28.57, We = 137.4, Ao = 100 

The mixture radial velocity inside the cloud, presented in Fig. 8 

shows that the growth of the bubbles causes a small radial ve­

locity in positive /--direction. A collapsing bubble, however, 

causes a considerable higher inward velocity. As the bubble 

collapses more violently, the change in velocity becomes faster 

and the negative velocities become even more negative. A dis­

continuity appears when the inward traveling front reaches the 

center of the cloud. Here the velocity changes sign. 

One of the most interesting aspects of cloud cavitation for prac­

tical reasons is the noise and damage potential. Therefore, the 

radiated acoustic pressure in the far f ie ld has been calculated 

f r o m the cloud's volumetric accelerations. The expression used 

fol lows f rom Eq, (5) with V the volume of the cloud. In dimen­

sionless fo rm we obtain ( = (r/D)pJ-^p,U^): 

2R„ dA{t) 
Y + A{t) dt' ^ 

(26) 

Here is a macro length scale corresponding to a typical length 

scale like the chord length of a hydrofoi l . A typical result is 

shown in Fig. 9. 
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Figure 9: Cloud radius and far-f ield radiated acoustic pressure 

for to = 200, « 0 = 0.8%, o = 0.4 and Cp,„,„ = -0.7. Re = 28.57, 

We = 137.4, A o = 100 

In this figure the far-f ield radiated acoustic noise ^ „ ( 0 is plotted 

as wel l as the cloud radius A{t). I t is clear that the largest peak 

occurs when the cloud radius is minimum, thus at the first 

cloud collapse. The peaks of the secondary collapses are much 

lower and after some time the cloud starts oscillating in its 

eigenfrequency. 

Verification 
The model as implemented in the present study behaves 

fair ly similar to the one presented in the literature. There is a 

good agreement o f the bubble radius as function of time. The 

maximum bubble radius and the time of collapse are very 

similar. As clouds collapse a cohapse front is formed, some­

times moving inward, sometimes moving outward and some­

times moving in both directions. The general effect is that when 

this front progresses the collapses get more severe, reaching 

their most violent point at one of the ends of the domain. In 

cases for which this collapse is most violent the rebound 

behavior found in the present study does not correspond to the 

one found in the literature. When the collapse process starts, the 

rebounds are very similar, but after some time the bubbles grow 

to a much larger size than found in corresponding cases in hter-

ature, see van Loo (2011). 
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Figure 10: Bubble radius at different locations in tbe cloud 
subjected to pressure perturbation (Fig. 3) with ta= 1000, Cp,,,,-,, 
= -0.7, 0 - = 0.4, Re = 28.57, We = 137.4, Ao = 100, Initial void 
fraction, a„= 5% (top), 0 .1% (center) and 0,02% (bottom) 
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Figure 11: Radial coordinate r versus dimensionless time t, f o r 

ta = 1000, C„„„„ = -0,7, o = 0.4, Re = 28.57, We = 137.4, Ao = 

100. Initial void fraction, «o 

5% (bottom) 

0.02% (top), 0 .1% (center) and 
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Discussion 

Consider Fig. 10 which shows the bubble radius as function 

of time for the same cavitation number, and the same pressure 

perturbation period and amplitude but for three different initial 

void fractions, 0.02%, 0 . 1 % and 5% (note that this corresponds 

to cloud interaction parameter p of, 0 (1) , 0(10) and O(IOO), 

respectively). As discussed above the bubbles near the cloud 

boundary have a higher growth rate than the inner bubbles. For 

each of the init ial void fractions this 'shielding' effect is observ­

ed. However, for low init ial void fractions the growth rate of 

the outer bubbles is much larger than for high void fractions. 

This is due to bubble-bubble effects. For high initial void frac­

tions, bubbles are more closely packed, and thus interact 

stronger. Bubbles are slowed down in their growing process be­

cause their neighbor is in the way. This is not the case for the 

growth of the cloud radius. The cloud grows to roughly the 

same size for each of the initial void fractions considered, and 

appears to depend mainly on the pressure perturbation period 

tc, not so much on initial void fraction 

Fig. 11 shows the motion of the Lagrangian nodes at different 

initial locations JQ in the cloud for initial void fractions «„ of 

5%, 0 : 1 % and 0:02%. The difference in bubble interactive ef­

fects is very clear. For the lower initial void fractions the 

boundary bubbles grow to very large size while the inner part 

of the cloud is more or less stationary. For the high init ial void 

fraction this is not the case. The mixture in the entire cloud 

moves outward as the cloud reacts to the pressure perturbation. 

After growth, the cloud collapses coherently. Also the rebounds 

are more coherent and larger than for the other two cases. 

To inspect the behavior of the cloud boundary in more detail 

consider Fig. 12. In this figure the cloud boundaries for the 

three cases o f Figs. 10 and 11 are shown. It is seen that the 

higher the init ial void fraction, the earlier the cavitation starts 

and the later the collapse starts. Also the cloud reaches a larger 

maximum radius for higher initial void fractions. The cloud 

with the intermediate void fraction has the smallest rebound. 

This is because the inward and outward traveling collapse 

fronts cancel each other. Also, the secondary rebound period is 

considerably longer for higher initial void fractions. Bubbles ef­

fectively influence the frequency of the cloud as the cloud re­

bound frequency is considerably lower than that of an individu­

al bubble. 
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Figure 12: Cloud radius A{t) as function of time, tc = 1000, 

Cp,„i„ = -0.7, a = 0.4. Re = 28.57, We = 137.4, AQ = 100 Init ial 

void fraction, «„= 0.02%, 0 , 1 % and 5% 

For high initial void fractions the collapse process starts near 

the cloud boundary (due to the momentum o f the growth of the 

outer bubbles, these can keep on growing and collapse .slightly 

later) and then the collapse process moves inward. The shield­

ing effects cause the outer bubbles to grow faster. However, i t 

also keeps the inner bubbles f rom 'feeling' the ambient pressure 

recovery and therefore these bubbles keep growing even i f the 

collapse process has already started. When the collapse front 

moves inward, i t experiences a strong increase in local pressure 

peak. For a low init ial void fraction the collapse process starts 

in the interior of the cloud. Again, the shielding effect makes 

that the outer bubbles have a much larger growth rate than the 

inner bubbles. The outer bubbles build up enough momentum 

to keep on growing even i f the ambient pressure is recovered. 

Therefore the collapse starts in the center of the cloud. A col­

lapse front is again noticed to be present, this time traveling 

outward. The focusing of pressure peaks is much smaller how­

ever, which can be seen in the rebound behavior. The rebounds 

are much smaller and are damped very quickly fo l lowing cloud 

coUapse. 

The case of the intermediate initial void fraction shows a com­

bination of the characteristics observed for the high and low 

init ial void fractions. The collapse starts somewhere in the 

middle of the cloud and a collapse front travels both inward and 

outward (see Fig. 6). The inward moving front experiences 

some pressure focusing, however, this appears to cancel the 

outward moving front. The cloud collapse is the least severe o f 

all cases. 

C O U P L I N G T O R E S U L T S O F R A N S M E T H O D 
At present RANS methods have not yet developed to the 

point that they can predict cavitation erosion. Predicting ero­

sion demands accurate knowledge of radiated pressure waves 

f r o m collapsing cavities or cavity clusters. These pressure 

waves are radiated in very short periods of time. RANS meth­

ods employ time-averaging. Thus the smallest time-scales are 

not represented. In this way, unless very small time steps are 

taken, RANS methods might not resolve the actual pressure 

peaks. Also predicting the details of a cloud collapse are com­

putationally demanding. Bubble interaction effects and result­

ing shock waves are computationally costly. These effects that 

inherently influence the radiated acoustic pressures are not re­

presented in RANS methods. The present model does take into 

account the small time scales. Time steps of 1 femtosecond are 

not uncommon. Also bubble interaction effects are taken into 

account and the resulting complex cloud collapse phenomena 

are represented. This gives the possibility to be able to recog­

nize situations for which violent and potentially dangerous 

cloud collapses are to be expected. Also a quantitative estimate 

of radiated acoustic pressure results f r o m the present model. 

Therefore a combination o f both methods would give a more 

complete prediction of radiated pressures. It should be noted 

that the model of this study does not take into account the pre­

sence o f a solid wall in the vicinity of the collapsing cavity 

cluster. However, f r o m the literature (see Isselin et al. [1998]) it 

is known that a wall that is positioned closely to a collapsing 

cavity, decreases the radiated pressure waves. So it can be ex­

pected that the present model overestimates radiated pressure 
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waves. I t should also be mentioned that yet another model is 

needed, namely for modeling the reaction of the material of the 

solid wall , however, this is beyond the scope of the present 

study. 

In order to explore the possibilities o f couphng the present mo­
del to a RANS method an example case is studied. The case is 
considered of a NACAOO 15 hydrofoil at 8 deg angle of attack. 
The chord length of the hydrofoil is c = 0.6m, the free stream 
velocity is Uo = 17.71m/s and the cavitation number is o = 1.43. 
Results o f a RANS method (FRESCO) are found in Fig. 13. 

Figure 13: Development of a cloud cavity in time on a 

NACA0015 hydrofoi l at an angle of attack of 8 deg. Re = 1 0 M , 

a= 1.43. 

In Fig. 13, the colors represent the pressure coefficient, red for 
high pressure and blue for low pressure. I n the blue region, 
where the pressure is low, the black contour lines are lines of 
constant void fraction. The outer contour hne in Fig. 13a repre­
sents a void fraction of 5% and the step to the next line is 5%. 
Thus in the middle o f the cloud the maximum void fraction is 
35%. In Fig. 13b, 0.2 milliseconds later, two inner contour lines 
have disappeared and the maximum void fraction is 25%. The 
cloud is collapsing and the local void fractions decrease. The 
lowest pressure in the cloud is Cp„„„ = -1.43. Figure 13d shows 
the situation just before the cloud disappears. The total time be­
tween first and last sub-figure is 0.45 milliseconds. This corres­
ponds to a non-dimensional time o f 79.70 (non-dimensiona­
lized with velocity 17.71 m/s and initial bubble radius RQ = 
100pm). In the next time step, the cloud has vanishes; after a 
non-dimensional time o f 92.97 (0.53 milUseconds). The pres­
sure coefficient at that moment is Cp = -1:275. 

Cavitation equilibrium cloud 
The model requires the computation to start f r o m an equilibri­
um situation. Therefore i t the first task is to create a cavitated 
cloud with a mean void fraction comparable to the cloud in the 
RANS computations. It is chosen to create a cloud wi th a mean 
void fraction of 25%, since the cloud f rom RANS has the high 

void fraction of 35% only in a small part in the middle. From 

the equation for the void fraction (see Eq. (7)) it fohows: 

a-

so that 

7] = -
a 

(27) 

ATTR' \ - a 
Since the bubble distribution ;/ is constant, the right-hand side 
is evaluated for the init ial time, for which R=\. This gives: 

7 = 

(28) 

Substituting the equation for ;/ in the one for a, yields 

ao{\-a) 
Here <R> represents an expression for the mean bubble radius 
of the equilibrium cloud as a function of local void fraction and 
the initial void fraction. Now one can compute the mean bubble 
radius in the cloud in order to create a cloud wi th a void frac­
tion of 25%. However, the init ial void fraction is still not 
known. Note that the bubble radius is also a function of pres­
sure. Therefore i t is necessary to consider the equation for the 
pressure coefficient. Assuming that the system is in equil ibrium 
one can write for the pressure coefficient equation (see Eq. 
(23)): 

• 0 
dr 3 + 47irjR\ra,t)dt 

This shows that the pressure is constant over the entire cloud. 

The pressure must thus be equal to the pressure at the boundary. 

The boundary condition reads, see Eq. (16): 

CpiA,d) = CpAt) + -^^^V-\A,-tMAo-t)]-i'\A.t) 

r(Aod)dt 

For an equilibrium situation one finds: 

A cloud in equilibrium has a constant pressure which is equal to 
the ambient pressure. From this one can conclude that <R> = 

where is the value of the radii of the bubbles in a cavi­
tated cloud in equilibrium. The Rayleigh-Plesset equation gives 
the relationship between pressure and bubble radius. For an 
equilibrium situation the time derivatives are absent and one 
finds f r o m Eq. (13): 

(7 2 , „ _ - i i . — u 1 
)--Cp,^= 0(29) 

The bubble radius is thus a function of cavitation number, 
Weber number and ambient pressure, but the ini t ial void frac­
tion does not appear in this expression. Assuming that the am­
bient pressure coefficient equals the negative of the cavitation 
number {Cp_„ = -a), the relation between bubble radius and ca­
vitation number is plotted in Fig. 14. Since the cavitation 
number and pressure coefficient are known, the equil ibrium 
bubble radius can be computed. For the current case for which 
a = 1.43, so Cp,„ = -1.43, the corresponding equil ibrium bubble 
radius is Re„ = 3.39. Now there is only one unknown: the initial 
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void fraction. Tliis can be computed f rom Eq. (28) and is for a 

cloud with a mean void fraction of 25%: «o = 0.84%. So i f an 

ambient pressure decrease is imposed to a cloud of nuclei with 

« 0 = 0.84%, in which the ambient pressure w i l l stay at Cp„ = -

1.43, for a f l o w with tr = 1:43 the bubble radii in the cloud w i l l 

eventually ah become equal to = 3.39. This cloud has a 

mean void fraction o f 25%. This w i l l be the equilibrium cloud 

used in the comparison with the cloud f rom the RANS solution. 

The relationship between equilibrium bubble radius, initial void 

fraction and mean cloud void fraction is given in table 2. 
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Figure 14: Relation between bubble radius in a cavitated cloud 

in equilibrium and cavitation number. Note that this relation is 

independent of initial void fraction. Cp „ = -a 

cio=l'X ai,=0.1% f.o=0.()l"/ 

! 1 0.1 O.OI 
•1 7.5 0.79 o.os 
3 21.4 2.G 0.2 
1 39.2 ft li.ft 

& 5.5.8 11.1 1.2 
i: GS.5 17.S 2.1 
7 77.0 25.5 3.3 

Table 2: Mean void fraction in cloud as function of mean 

bubble radius for three different initial void fractions. Values in 

percentages 

To obtain the cloud prescribed above, the ambient pressure is 

decreased slowly using a ramp-up function up to the time i t 

reaches the desired value of Cp_„ = -1.43. Subsequently this 

value is kept f ixed until the cloud is stationary. The result of 

this simulation is shown in Fig. 15. It is observed that after suf­

ficient time has passed, the bubbles oscillate coherently and the 

oscillations are no longer decreasing in amphtude, i.e. the cloud 

is oscillating in its natural frequency. 

However, the amplitude o f the oscillation is not zero, but 

assumed small enough that the cloud may be assumed to be in 

'semi-equilibrium'. This cloud is the initial condition for the 

collapse computation. 

Equil ibrium cloud collapse 

The cloud constructed above is subjected to an ambient pres­

sure recovery. This recovery should match the pressure coeff i ­

cient development of the RANS method. For this example two 

cases are computed. In one case, the pressure recovery is speci­

f ied as a cosine back to zero, in a non-dimensional time of 500. 

In the second case the ambient pressure is brought f r o m -1.43 

to -1.275 in a non-dimensional time o f 92.97 and then stays at 

that value, see Fig. 16, 

12, , , , , , 

0 2 4 6 6 10 
Non-tlin-*nsiofia! time. 1 ^ 

Figure 15: Bubbles (different TQ) in a cloud evolving to an equi­

l ibr ium situation, a= 1,43, «o = 0.84% and Cp,„= -1.43. 
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Figure 16: The 2 ambient pressure recovery cases 

The results are shown in Fig. 17 for the bubble radii different 

locations in the cloud. The results are given for the same time 

domain, starting at the end time in the computation for the equi­

l ibrium cloud. The non-dimensional time that passes is 600 for 

both imposed pressure recovery functions. I t should also be 

mentioned that the cloud starts wi th a radius of A = 110,22, 

which corresponds to a mean void fraction of «o = 25.94%, 1 

percent higher than computed, due to the small oscillations of 

the semi-equilibrium cloud, see Fig. 15, Looking at the results, 

two apparent differences are noticed. The first is the time be­

tween first and second rebound (cloud frequency). The ambient 

pressure recovery f r o m Cp„ = -1.43 to 0, over a relatively long 

time, results in a cloud that collapses around the same time as 

for the short and partial pressure recovery f r o m Cp,„ = - 1 . 43 to 

-1.275. Following this phase, the rebound frequency for the 

first case is much higher because of the higher ambient pres­

sure. Also notice the maximum rebound radius of both bubbles 

and cloud itself. For the short and partial pressure recovery, 

bubbles rebound to higher values because the ambient pressure 

is still low. 
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Figure 17: Bubble radii in a cloud of cavitated bubbles in equi­

l ibr ium subjected to an ambient pressure recovery. 

Top: slow recovery f rom C p „ = -1,43 to 0 (solid line in Fig, 16). 

Bottom: fast but partial recovery f r o m Cp,„ = -1.43 to -1.275 

(dashed line in Fig. 16). «o = 0,84%, Ao = 100, r 7 = 1.43, 

The cloud radius and radiated acoustic pressure are presented in 

Fig. 18, Indeed, the cloud rebounds to a larger size for the case 

for which the ambient pressure recovery is only partial. Fur­

thermore, the radiated acoustic pressures are considerably 

higher for the case for which the ambient pressure recovers to 

zero. Also in this case, higher peaks are attenuated longer, even 

with the higher rebound frequency. The definit ion of the cloud 

interaction parameter fS (Eq. (25)) indicates that the cloud radi­

us has a large influence on its behavior. The present results are 

for a cloud radius o f Ao = 100. From Fig. 13 it is estimated that, 

i n comparison wi th the chord of 0.06m, the cloud is 0.01m in 

diameter. This corresponds to a non-dimensional cloud radius 

of Ao = 55. This yields ^ = 25 compared to /S = 83.3 used in the 

computation. One should thus expect smaller bubble interactive 

effects than the results show. 
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Figure 18: Cloud radius and far-f ield acoustic pressure in a 

cloud of cavitated bubbles in equilibrium subjected to an ambi­

ent pressure recovery. 

Top: slow recovery f r o m Cp,„ = -1,43 to 0 (solid line in Fig. 16). 

Bottom: fast but partial recovery f r o m Cp„, = -1.43 to -1.275 

(dashed hne in Fig. 16). ao = 0,84%, Ao = 100, a = 1,43. 

Discussion 
It appears possible to couple bubble cloud method with the 

RANS method, however, some considerations have to be taken 

into account, 

- A procedure has been developed to construct a cloud to match 

a shed cloud computed using a RANS method. Since the 

bubble cloud method is formulated i n Lagrangian coordinates, 

it considers a cloud that is convected wi th the free stream 

velocity, 

- The cloud interaction parameter /I corresponding to the result 

of the RANS method is not equal to the one of the bubble cloud 

method, due to the difference in cloud radius. The present 

bubble cloud method yields too strong bubble interaction ef­

fects. This parameter should have matched better. 

- The initial vo id fraction determined for the bubble cloud 

method should match the void fraction of the RANS method 

upstream of the cloud. The init ial void fraction is the only 
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parameter that can be varied to achieve a cloud wi th the desired 

mean void fraction. Therefore, the initial void fraction of the 

RANS results should match that of the present model, not the 

other way around. 

- For quantitative values of the radiated acoustic noise the pre­

sence o f a wall in the vicinity of a collapsing bubble cluster 

should be accounted for. The presence of the wal l is expected to 

have reduced the radiated pressures. Experiments should con­

f i r m the found values 

CONCLUSION 
Results of the bubble cloud method have been obtained for 

ranges of various model parameters. I t is concluded that the re­

sults are very dependent on the cloud interaction parameter jB. 
This parameter contains three other parameters: initial vo id 

fraction UQ, initial cloud radius Ao and initial bubble radius RQ. 

The latter dimensionless initial bubble radius is defined to be 

equal to unity. Initial void fraction «o and ini t ial cloud radius Ao 

have been varied. The resulting /? varies over three orders o f 

magnitude, which results in physically different behavior. For P 
of 0 ( 1 ) an radially outward traveling collapse front is formed. 

For /i o f 0(10) two collapse fronts are formed, starting some­

where inside the cloud, traveling both inward and outward. 

These fronts tend to cancel each others pressure peaks and are 

the least violent. For still larger O(IOO), an inward traveling 

collapse front is formed that is observed to have a strong focus­

ing effect towards the center of the cloud. This type of collapse 

is the most violent. A large cloud interaction parameter /I is 

achieved for a relatively high initial void fraction: a.o = 0 ( 1 % ) 

or higher, or for large cloud initial radius. 

The pressure perturbation period is another important param­

eter. The longer a cloud is subjected to a low pressure, the more 

time the cloud has to cavitate, and the larger i t can grow. Larger 

bubbles collapse more violently, and therefore the pressure per­

turbation period has a direct relation to the severity of the col­

lapse. The precise function of time of the pressure perturbation 

does not appear to have a significant influence. 

A cloud subjected to a sudden decrease in ambient pressure f o l ­

lowed by a slow recovery, cavitates in a bigger volume than a 

cloud subjected to a slow decrease in ambient pressure and a 

sudden recovery. 

Variations in Weber number or Reynolds number are found to 

have a small influence on the results. Decreasing the Reynolds 

number by slowing down the f low or adding damping in the ef­

fective viscosity yUg results in the bubbles and the cloud grow­

ing to smaller sizes and tend to damp quickly after collapse. 

It has proven to be possible to make a quantitative comparison 

between results of the bubble cloud method and resuhs of a 

RANS method. A procedure has been developed to construct a 

cloud that is comparable to the vapor cloud shed f rom a sheet 

cavity and traveling downstream over a hydrofoil as obtained in 

a RANS computation. This equivalent cloud is then subjected 

to an ambient pressure recovery, which leads to a cloud col­

lapse. 

Since the initial void fraction and initial cloud radius have a 

large effect on the collapsing process, in the bubble cloud meth­

od these two parameters should match the corresponding ones 

of the RANS method 
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