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Numerical Study on Collapse of a Cavitating Cloud of Bubbles

S. van Loo
University of Twente

H.W.M. Hoeijmakers

SUMMARY

One of the major causes of wear on ship hydrofoils is cavi-
tation. Clouds of interacting bubbles behave nonlinearly and
can experience very sudden changes in void fraction. These
nonlinear collapsing mechanisms can result in a coherent col-
lapse of bubble clouds which have great damage potential.
In this study the model, proposed by Wang and Brennen [1999],
has been implemented. This model employs the fully nonlinear
continuum mixture equations coupled with the Rayleigh-Plesset
equation. The set of equations is solved using a Lagrangian
integral method. The sensitivity of the results for parameters
such as the initial void fraction of the cloud, initial cloud size as
well as characteristics of the imposed pressure perturbation, has
been investigated. Based on results of a RANS method for the
flow around a hydrofoil with shedding sheet cavities, an
equivalent cavitated cloud and corresponding pressure pertur-
bation has been determined that serves as input for the bubble
cloud method.

INTRODUCTION

Cavitation is in a physical sense not fundamentally different
from boiling. In a boiling process, vapor forms in a fluid be-
cause the temperature of the fluid is raised to the saturated
vapor/liquid temperature. This results in a phase change from
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Figure 1: Typical phase diagram. Figure from Brennen [1995]
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liquid to vapor

In figure 1 a typical phase diagram is shown on the left. When a
liquid is heated the saturated vapor/liquid line is passed at a
certain point where the liquid will become vapor.When one
considers a liquid, it can be seen that when the pressure is
lowered, the same saturated vapor/liquid line is passed. This
process in which a phase change results from the lowering of
pressure is called cavitation. On the right of figure 1 a line of
constant temperature (isotherm) is plotted in the pressure speci-
fic volume plot. Since the density of vapor is much lower than
that of liquid an expansion will take place when the pressure is
dropped below the saturated vapor pressure, point B in the
graph, and vapor is formed. Only if enough nucleation sites are
available the isotherm will go straight from point B to C, where
all the liquid is now vapor and the pressure can drop further in
the vapor phase. If no or a small number of nucleation sites are
available, pressure could be lowered below the saturated vapor
pressure, according to the theoretical isotherm BD. The loca-
tion of first rupture is the weakest spot in the fluid. The process
in which a microscopic void starts to grow to a macroscopic
bubble is called inception. Inception happens at weak places in
a liquid, called nucleation sites. If these nucleation sites are mi-
croscopic voids that are available in the fluid due to thermal
effects, we speak of homogeneous nucleation. However, it is
more likely that weak spots appear at solid boundaries within
the flow regime. In this case we speak of heterogeneous nuclea-
tion. Another possible nucleation site is a microscopic bubble
that contains contaminant gas.

A pressure decrease may occur for two reasons. The overall
pressure is decreased or the fluid accelerates. In an incompres-
sible inviscid, steady flow, an increase in flow velocity de-
creases the pressure in the flow field. Examples are the flow
over ship propellers and through pump impellers. To describe
the relationship between overall pressure, the flow velocity and
the likelihood of cavitation, the cavitation number is defined as:

Proceedings of the Eighth International Symposium on Cavitation (CAV 2012)
Edited by Claus-Dieter OHL, Evert KLASEBOER, Siew Wan OHL, Shi Wei GONG and Boo Cheong KHOO.

Copyright © 2012 Research Publishing Services. All rights reserved.

ISBN: 978-981-07-2826-7 :: doi:10.3850/978-981-07-2826-7_187

227



Proceedings of the Eighth International Symposium on Cavitation (CAV 2012)

- pol— p\,(zTo)
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Here p,andT;, are the reference pressure and temperature, res-

@)

pectively, for example in the far-field, and U  is the correspond-
ing reference velocity. The quantity p‘,(T) is the partial pres-

sure of the vapor and 0, is the liquid density. From the cavita-

tion number it can be seen that if the cavitation number is suffi-
ciently large, inception will not occur. This happens if the refer-

ence pressure P, is sufficiently large or the reference velo-

city U, is sufficiently low. Also, if the reference pressure is low

or the reference velocity is high the cavitation number will be
low, which results in a flow that is more likely to cavitate. The
particular value of O for which nucleation first starts to occur is
called the nucleation cavitation number. The dynamics of indi-
vidual cavitation bubbles is described by the Rayleigh-Plesset
equation. This equation, for a bubble moving with the velocity
field, in its simplest form first derived by Rayleigh in 1917, re-
lates bubble pressure p to bubble radius R, bubble wall velocity
DR/Dt and bubble wall acceleration D*R/Dr* 1t reads for a
spherical bubbly iso-thermal flow:

7 2§ R* R
L )i (O Ty
? (R3k e p.UGR, R* R) )
,(DRY DR 1 DR, 1
2| = | +R=F+4v, —
Dt Dt R Dt U

Here R, is a reference bubble size. D/Dt denotes the substantial
derivative, k is the polytropic constant of the contaminant (isen-

tropically behaving) gas inside the bubble and vV, = {; /p,is

the kinematic viscosity of the liquid, with £, the dynamic vis-

cosity of the liquid. Furthermore, C, is the pressure coefficient,
defined as:

_P— P
S » 7

2 FLYo
Here S is the surface tension, which can be expressed in terms
of the Weber number We as:

WC o= pLU§RO
S

The derivation of Eq. (2) can be found in many text books.
Not only nucleation and cavitation is a field of active research,
but also bubble disappearance or collapse. Once cavitation
bubbles are formed in a region of low pressure, the cavitation
bubble will be convected with the flow and may enter into a
high pressure region. This will result in a bubble that implodes,
or collapses. Bubble collapses are a major cause of erosion on
hydrodynamic surfaces. A collapsing bubble radiates strong
pressure waves which cause highly localized and transient
stresses. Repeated collapses cause local fatigue and subsequent
erosion of the material. Entire clouds of bubbles can collapse
coherently. For instance in case of a ship propeller, a sheet cavi-
ty on the leading edge of the hydrofoil sheds clouds of cavita-

(€))

p

(C))
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tion bubbles. Further downstream but still above the blade of
the propeller the cloud may collapse. In a cloud, interacting
bubbles can cause the collapse to be more violent than the ef-
fect of the individual collapsing bubbles. As a result of the high
pressure peaks appearing when bubbles collapse, noise is pro-
duced. The radiated acoustic pressure of a bubble can, accord-
ing to Dowling and Ffowcs Williams [1983], be written as:

_p AV

“ 4xr dr’

Here r is the distance from the source to the point of measure-
ment and V is the volume of the collapsing cavity. From this
equation it can be seen that noise is created by the volumetric
acceleration of the void. This acceleration is largest when the
volumetric velocity dV/dr of the void changes from negative to
positive sign, and thus when the void volume V is smallest. So
this is when the collapse/rebound is the most violent.

)

Cavitation phenomena are an area of active research, both ex-
perimentally and numerically. In experiments details of the
cavitation features are captured using new recording techniques
like high-speed cameras and Particle Image Velocimetry. On
the numerical side, computers are getting more and more po-
werful enabling more extensive computations. This makes
RANS computations of the entire cavitating flow field possible.
From the viewpoint of the maritime industry it is most impor-
tant to find a way to accurately predict cavitation aggressive-
ness and its potential erosive power. Thus a method is required
that predicts periodic or steady cavitation close to the surface of
ship propellers, pump impellers, etc. for which damage from
cavitation is to be expected. When and where cavitation is to be
expected can be computed numerically with the aid of RANS
computations. However, a RANS method is not able to accurat-
ely predict the final stage of collapse. It is in this stage that the
highest pressures are to be expected. It is the aim of the present
study is to provide details of the cloud collapse. This is meant
to be achieved with the aid of the model proposed by Wang and
Brennen [1999] to provide information that RANS computa-
tions cannot produce. Then, it could possibly be used as a post-
processor for results of RANS numerical simulations. This will
provide more detailed information of the aggressiveness of the
collapsing cavity.

Therefore the objectives of the present study are: (i) Obtain so-
lutions of the model proposed by Wang and Brennen [1999].

(ii) Perform a sensitivity study in order to be able to recognize
situations in which cavity cluster collapses are most aggressive.
(iii) Explore the possibilities for using the implementation as a
post-processor for results of RANS numerical simulations, with
the purpose of providing details of the cloud cavity collapse.

MODEL CAVITATING CLOUD OF BUBBLES

The model investigated in this paper describes the nonline-
ar collapsing behavior of a spherical cloud of bubbles. Accor-
ding to Hansson & Morch [1980] and Mérch [1982]) the col-
lapse involves inward moving shock waves that are enhanced.
This indicates the necessity for a model that does not ignore the
nonlinear effects in the cloud and should be able to predict the
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radiated acoustic energy, and the potential damaging power of a
cavitating cloud. The model investigated therefore retains the
nonlinear terms in the governing equations.

Consider a spherical cloud of bubbles as depicted in figure 2. It
is assumed that the dependent variables depend on r and 7 only.
The liquid surrounding the cloud is assumed incompressible.
The radius of the cloud is denoted by A(f), the radial coordinate
with r, the individual bubble radius with R(r; r) and the bubble
population per unit liquid volume with 7. It is assumed that

7~ SPHERICAL CLOUD

/ BOUNDARY
B 4
~0 O.° o
Feeh noo%g oY
10,0°89 ) A\

0.00°0,CL A S\

PURE LKQUID -
L BUBBLY MIXTURE

{POPULATION = n PER
UNIT LIGUID VOLUME)

Figure 2: Schematic of a spherical cloud of spherical bubbles.
Figure from Wang and Brennen [1999].

coalescence and break-up of the bubbles inside the cloud do not
occur and that the bubble distribution is piecewise uniform ini-
tially. Also it is assumed that there is no mass transfer through
the boundaries of the bubbles. This means that # remains con-
stant and piecewise uniform distributed. Furthermore the
bubbles are assumed to be spherical at all times and contain li-
quid vapor as well as contaminant gas.

At 1 =0, the cloud is in equilibrium with the surrounding liquid.

Then a pressure perturbation Cp (t)is imposed on the pure

liquid at infinity and we investigate the reaction of the cloud to
this pressure perturbation.

Governing equations
It is assumed that the density of the liquid p, is sufficiently

high and the vapor fraction « is sufficiently low to neglect the
density of the vapor, i.e. the mixture density becomes:

p=op,+(l-a)p, =(1-a)p, (6)
In equation (6) « is the fraction of vapor in a unit volume. The
volume of an individual bubble is V, = %ﬂ'RS. Then the pro-

duct 1V, is the fraction of volume taken up by the bubbles in a
unit liquid volume. Noting that the total volume is the liquid

volume plus the bubble volume, i.e. equalsV, (1+77V,) we
can write for the void fraction:

nv,

o=—- i)
1+7nV, o
The mixture density then becomes:
P
~(l-a)p, =—F1— 8
p=(1-a)p, TV, ®)

Substitution of Eq. (8) in the continuity equation for the mix-
ture density gives, for the case of spherical symmetry:

229

_i ,.2”)_ 12”’7R2 %
r? or 3+4znR® Dt
Here u is the radial velocity and D/Dt =0 /0t + ud /or .

&)

For the radial component of the momentum equation, neglect-
ing volumetric force fields and viscous stresses, gives:
Du _ dp
Dt or
Substituting the expression fro the mixture density, Eq. (8) and
the expression for the pressure coefficient, Eq. (3), yields:
aoC
ﬂ=—%(3+47n]R3)U§—" (10)
Dt or
The Rayleigh-Plesset equation, Eq. (2), relates the local pres-
sure to the evolution of the radius of the bubble in time. The
equation is derived from the momentum equation and a force
balance at the edge of a bubble. It is assumed that there is no
mass transfer through the bubble boundary, so the content of
the bubble does not change. Also, since the bubble is spherical
one can make use of spherical symmetry. Note that the equation
is derived for a single bubble, making use of a kinematic
boundary condition at the edge of the bubble. This will have as
a consequence that one should be careful using this equation in
calculations in cases for which bubble-bubble interactions are
important. Also note that temperature effects are neglected. Fi-
nally, it is assumed that the bubble remains spherical at all
times.

The variables used in the analysis are non-dimensionalized
using the initial bubble size R, and the free-stream velocity U _,
i.e.

R=RIR,;F=r/Ry;ii =ulU,; H=nR>; 7 = 1tU/R,,

Substituting this in the governing equations, and subsequently
dropping the hat, yields:

? .5 127nR*> DR
) =——— 11
2o =34 4k Dr e
Du " 5 8C
—=—13+4mR")—L 11b
Dt o ek or L
, 2 ,

loR*-)-1C +—(R*-RY)=
>0( ) =35, We( )

(11c)

Dt* ReR Dt
where We is the Weber number, see Eq. (4) and Re is the
Reynolds number:

3(DR)Z D*R 4 1 DR
B, | YO
Dt

Re =™ Yol (12)
H

There are three main causes of damping: effects due to liquid
viscosity £, ; effects due to fluid compressibility through a-

coustic radiation £/, ; and effects due to thermal conductivi-
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ty 4, see Chapman and Plesset [1971]. These three compo-

nents are captured in one effective viscosity which is written as:
Hg =Hy,+ 1+ 1y

The effective viscosity /£, will be used in the Rayleigh-Plesset

equation to account for the damping mechanisms.
To analyze the equation further, Eq. (11c) is expressed in terms
of the bubble-wall acceleration:

2 2
b f:_%l(%j +i( -3k )
Dt R\ Dt 2R a3)
+L(R—3k_R—1)_ii2E_i i
RWe Re R* Dt 2R

From Eq. (13) it is seen that a negative pressure coefficient (p <
D) Will result in a positive bubble acceleration, thus growth of
the bubble. Note that there are two R™* terms, both positive to
the acceleration. When R << 1, which occurs during bubble col-
lapse, these terms will become very large. For instance, when R
reaches a value of 0.01, R¥* = 250%10° for k = 1:4. So in the
collapse phase these terms become dominant. Thus, a low value
of the bubble radius during collapse results in a very high posi-
tive bubble acceleration, and thus a severe rebound.

The Rayleigh-Plesset equation describes the evolution of a
single bubble. It does not account for local pressure perturba-
tions experienced by the bubble due to the collapse and re-
bound of its neighbors. Important parameter in this case is the
initial void fraction. The higher the initial void fraction, the
closer the bubbles will be to each other, the higher these effects.
In the literature (see [Rubinstein, 1985] and [Seo et al., 2010])
it is shown that these effects are of the order of the void frac-
tion. This is a limitation of the model. In the literature there are
corrections to the Rayleigh-Plesset equation that make the
equation useful up to initial void fraction of O(13%). The local
void fraction can, however, be much higher than the initial void
fraction. Because the number of bubbles per unit volume liquid
is constant, the number of bubbles does not change over time.
This means that the error due to bubble interactions is depen-
dent on the initial void fraction, and not the local void fraction.
Therefore, one should be careful using initial void fraction
much higher than 1%.

Boundary conditions

To solve the three governing equations, Eqs. (11a, b and c), for
the three unknown quantities C,(r, 1), R(r, 1) and u(r, 1) appro-
priate boundary and initial conditions are required.

For spherically symmetric, incompressible, irrotational flow
outside the cloud (r > A(¢)) we can write for the radial velocity
can be expressed, dimension-full) as:

20 vin 0 = 4" Ou(A@.) 19
m.
or in terms of the velocity potential:

=20
¢(1,f)— 4717

Bernoulli’s relation for this flow reads:

u(r,t) =

as)
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9 4
ar+2

w+2=c@)
Pr
Upon substitution of Egs. (14) and (15), and evaluating C(¥) at
infinity:
1d
——z(AZu) +1u® +1USC, =1U;C, (1) forr 2 A
rdt ’
Then evaluating this expression at the boundary of the cloud it
follows, in dimensionless form:

2 d
Cpa(D)=C, () +———(A2(1,) — 10}

(16)
A(t) dt
PADN =Py

wheret, = u(A(f),f)and C, ,(t) =

1 2

2P.Uq
Eq. (16) gives the pressure at the boundary of the cloud that is
compatible with the imposed pressure C, _, () at infinity.

At the center of the cloud there can be no radial motion because
of the spherical symmetry of the problem. So the boundary
condition is:
1(0,1) =0 a7

Egs. (16) and (17) are the boundary conditions required for
Eqs. (11a) and (11b) for the pressure and velocity inside the
clouds. Eq. (11c) for the radius of the bubbles inside the cloud
requires just initial conditions.

Initial conditions
For the continuity equation, Eq. (11a) and the momentum equa-
tion, Eq. (11b) the initial conditions are, for 0< r <A(0):

u(r,0)=0 (18a)
C,(r,0)=0 (18b)
For the bubble radius the initial conditions are:

R(r,0)=1 (19a)
DR
—(r,0)=0 19b
D (r,0) (19b)
D’R

r,0)=0 19¢)

Imposed pressure field at infinity

In Eq (16) the pressure perturbation C, () determines
the way in which the cloud will evolve. It is the parameter that
can be used to simulate the situation in an experimental setting,

or the result of a specific RANS numerical simulation. The
pressure perturbation is defined as follows:

Coul) = 1C, [1—cos2xt/t;)]

for O< t <fg, and zero otherwise, see figure 3.

(20)

p,min

For this specific shape two parameters are important: the mini-
mum pressure Cp,,i,; and the period of the pressure perturbation
t. It is noted that when the minimum pressure decreases or the
period increases, the response of the cloud will be more severe.
To couple this to a cloud passing over an object, the following
is noted.
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Normalized pressure perturbaton, -c,,_nyc,,w
)
°
o

05 1 .5 2
Normalzed non-dmensional Eme. t1,

Figure 3: Imposed pressure perturbation C, ®

The time it would take the cloud to travel with velocity U, past
a body of length D would be t = D/U,. Substituting this in the
expression for dimensionless time yields the order of magni-
tude of # = D/Ry. Thus when comparing results of this model
to experiments, one can calculate the dimensionless period of
the pressure perturbation. The minimum pressure coefficient
depends on the case considered.

Numerical approach

In the method of Wang & Brennen [1999] the governing
equations are solved in a Lagrangian formulation. In this for-
mulation the local coordinate » moves in time and its value is a
function of its initial position ry, so r = 1(r,f). The details of the
derivation of the equation for the spatial coordinate is given in
Wang & Brennen, as well as in van Loo (2011). The resulting
expression is:

3 "

P 0) = ——— [B+4mR (& nIEdE @
3+4mn |

Differentiation of this Lagrangian coordinate with respect to

time gives the radial component of the velocity:

_m Teapee g9
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The momentum equation in the Lagrangian formulation is
found to be:

u(ry,t) =

—6 Ajg(f,r;cl,)+r(:b,r)uz(;b,f)

C.(n.0)= 2d
el 3+4my (1, 1) &'
+C, () +28(Ay, D) 1(Ay, 1) =1 (Ag, 1)
23)
where
cyo 12m %, 9 2 49
86, = - OJ[ZR(;,rxa[ RE&0)* =~ == R0

+3oR(R™({, 1) -1 —3R(,0C, (L,1) +é(R"3"(§’, N-D1*d¢

(24)
The initial conditions translate into:

u(r,0)=0;C,(7,0) =0

231

DR
R(1,0)=1 ;E(ib,O) =0

There are four functions to be determined: r(ro; 1), u(ro; 1,
Cy(ro; 1) and R(rg; 1). The equation for C, is implicit and needs
to be solved iteratively. Finally R is calculated, using an appro-
priate time integration from the Rayleigh-Plesset equation.

The numerical procedure used is similar to the one used by
Wang and Brennen [1999]. It employs an explicit Euler time
integration technique to obtain the bubble wall velocity from
the bubble wall acceleration, and the Heun technique to obtain
the bubble wall radius. The procedure is discussed below.
1. From initial and boundary conditions, or from previous time
step, the following set of data is available:
R(ro; 1), (8106)R(rg; 1) and (D40 R(rg; 1)
2. Using an explicit Euler time integration technique, we find
(00N R(ro; 1+A1)= (BIONR(ro; N+ AH(E*1OF)R(ro; 1)

For the bubble radius we find using Heun’s method:

R(ro; t+A1)= R(ro; D)+ Y2At[(0/00)R(ro; 1)+ (0/100)R(ro; t+A1)]
3. The fractional change of R is checked and if it is too large the
time step At is adjusted and step 2 is repeated. When the frac-
tional change of R is within limits, one is able to integrate equa-
tions (21) and (22) to find: r(ry; t+Ar) and u(ry; t+Ar)
4. One is now able to iterate equation (23) to find C,(ry; t+Ar).
The final step is to use the Rayleigh-Plesset equation (13) to
find: (840r%) R(ry; t+AD).
All quantities are now known at the new time step. One can re-
peat this sequence of steps for a new time step until time has
progressed to the desired time.

The integrals in Egs. (21)-(24) are evaluated using the midpoint
(trapezoidal) rule.

In the time stepping procedure the bubble radius is com-
puted as indicated above. Then the new bubble radius is com-
pared to the one obtained in the previous time step. When the
radius is within limits the computation may proceed. If the
maximum fractional change is out of limits, the time step is
halved and the bubble radius at the new time is re-calculated.
Again it is checked. When the bubble collapsed and is in its re-
bound, the magnitude of the bubble wall acceleration decreases
and a very small time step is now slowing down the computa-
tion unnecessarily. The time step needs to be increased again.
When the fractional change of the bubble radius is within cer-
tain limits, say no more than 1%, the time step is doubled. After
this adjustment, the bubble radius needs to be re-calculated and
re-checked.

RESULTS

The values of the parameters that are kept fixed for all simula-
tions the following ones of Wang & Brennen [1999]

Ry = 100 pm; Uy = 10 m/s; S = 0.0728 N/m; p; = 1000 kg/m®
and ug = 0.035 Pas. This gives for the Reynolds number: Re =
28.57, and for the Weber number: We = 137.4.

For the cavitation number, two values are used: 6 = 0.4 and 6 =
0.45. In this section a dimensionless cloud radius of Ay = 100 is
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used. The parameters that are varied are the pressure perturba-
tion period 7 and the initial void fraction . The pressure per-
turbation period will be varied between values ranging from
250 to 1000. For the initial void fraction «q the range is 0.01%
up to 5%. In the Rayleigh-Plesset equation due to bubble-
bubble interaction is of the order ag. This is to be kept in mind
for the higher initial void fractions.
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Figure 4: Solution of the Rayleigh-Plesset equation for a single
bubble subjected to a decrease in ambient pressure followed by
a subsequent ambient pressure recovery for fo= 500, Cpmin = -
0.5,0=0.4,Re =28.57, We = 137 4.

Single bubble

Figure 4 shows the solution of the Rayleigh-Plesset equation
for a single bubble subjected to a temporary drop in ambient
pressure as shown in the same figure. A solution for a single
bubble is obtained by excluding the continuum mixture equa-
tions and just solve for the Rayleigh-Plesset equation. The be-
havior of a single bubble in the far-field, as shown in Figure 4,
serves as a reference for comparison with the behavior of indi-
vidual bubbles in a cavitating/collapsing cloud.

Bubble cloud

Figure 5 shows the result for a bubble cloud subjected to a pres-
sure perturbation of the type shown in figure 3 for a specific
choice of the two parameters: fg and Cpip.
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Figure 5: Bubble radius at different locations in the cloud sub-
jected to a pressure perturbation shown in figure 3 for t= 1000,
a=0.1%, 6=0.4, Cpin=-0.7, Re = 28.57, We = 137.4, Ap =
100.

In figure 5 the bubble radius is plotted for a situation 7 = 1000
and ag = 0:1%. Shown is the bubble radius at different radii of
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the cloud as function of time. It is seen that the bubbles at the
cloud boundary attain the largest bubble radii. This happens
when the pressure perturbation is completely recovered, thus
after t; = 1000. After this recovery, the collapse process starts.
Note that the bubbles near the cloud boundary grow to a much
larger size than the most inner bubbles. This is a phenomenon
generally seen in cloud cavitation simulations. The large differ-
ence between growth rate of inner and outer bubbles is a func-
tion of the initial void fraction, and therefore can be related to
bubble-bubble interaction effects. Simulations for higher and
lower void fractions show that the stronger the bubble interac-
tion, the smaller the difference in growth rate

Bubble interaction effects render the results of the simulations
invalid if they are too strong. Therefore the ‘cloud interaction
parameter’ is used, defined as:
A
B=a0-d)— (25)
R,
From this it can be seen that a high initial void fraction a

yields high bubble interactive effects (with a maximum at ¢y =
0:5), but also the cloud radius Ay increases f.

[303) Ao=30 Ap=100  A4x=300
o1 .o 1.4 G0
.15 .84 0.60 0,01

1% 801 499.99 801,400

5% 12,75 A75.00 427500

Table 1. Cloud interaction parameter for various ¢ and Ap

As is shown in table 1 the B value for figure 5 is intermediate at
a value of approximately 10.

Figure 5 shows that the collapse process starts near the middle
of the cloud radius, near ry = 0.6A,. For later times the center
the collapse heads in both directions, toward the center of the
cloud and towards the cloud boundary.
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Figure 6: Bubble radius R and pressure coefficient C, as func-
tion of radial coordinate r at time 7 = 1325.4 in Fig. 5.

Figure 6 shows the bubble radius distribution as function of lo-
cation in the cloud, some time after the first bubble collapse,
i.e. for dimensionless time ¢ = 1325:4. It can be clearly seen
that there is a collapse front traveling in the directions indicated
by the arrows. In the collapse front traveling towards the cloud
boundary, some secondary collapses and rebounds are observed
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as well. Also included in figure 6 is the pressure coefficient. It
is noticed that a pressure peak results from the small bubble ra-
dius near r = 87. This pressure peak is broad, in the sense that
neighboring bubbles experience an elevated pressure as well.
The Rayleigh-Plesset Eq. (13) shows the influence on the
bubble wall acceleration of the neighboring bubbles. The right
most neighbor that is going to collapse next experiences a
higher negative acceleration due to the elevated pressure. The
left most neighbor that is rebounding also experiences a nega-
tive acceleration due to the elevated pressure, and thus slowing
the rebound and decreasing the maximum rebound radius.
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Figure 7: Dimensionless radial coordinate r plotted against di-
mensionless time t, for g = 1000, ¢ = 5%, 6 = 0.4 and C,,, = -
0.7. Re =28.57, We = 137.4, A; = 100

The location of the bubbles, is shown in figure 7, where r is
plotted time for various values of rq, for ag = 5%, t; = 1000, o =
0.4 and C,, = -0.7. Clearly at the cloud boundary, a large ex-
pansion of the cloud takes place. After the pressure perturbation
recovery the cloud shrinks. The cloud collapses only to a size
comparable to its initial size, i.e. prior to the pressure perturba-
tion. It should be noted, however, that inside the cloud, local
void fractions reach very low values, as was seen in Figs. 5 and
6.
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Figure 8: Dimensionless radial velocity u versus dimensionless
time ¢ for various values of ry, for 1 = 1000, ¢y = 5%, ¢ = 0.4
and Cp,;,=-0.7. Re = 28.57, We = 137.4, A, = 100

The mixture radial velocity inside the cloud, presented in Fig. 8
shows that the growth of the bubbles causes a small radial ve-
locity in positive r-direction. A collapsing bubble, however,
causes a considerable higher inward velocity. As the bubble
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collapses more violently, the change in velocity becomes faster
and the negative velocities become even more negative. A dis-
continuity appears when the inward traveling front reaches the
center of the cloud. Here the velocity changes sign.

One of the most interesting aspects of cloud cavitation for prac-
tical reasons is the noise and damage potential. Therefore, the
radiated acoustic pressure in the far field has been calculated
from the cloud's volumetric accelerations. The expression used
follows from Eq. (5) with V the volume of the cloud. In dimen-

sionless form we obtain ( p, = (/D) p,/Lp,U):

2
@)= dA(f) 2 d tj(f)] 26)

Here is a macro length scale corresponding to a typical length
scale like the chord length of a hydrofoil. A typical result is
shown in Fig. 9.
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Figure 9: Cloud radius and far-field radiated acoustic pressure

for 15 = 200, ap = 0.8%, 0 = 0.4 and C,,,;, = -0.7. Re = 28.57,

We = 137.4, Ap = 100

In this figure the far-field radiated acoustic noise p,(f) is plotted
as well as the cloud radius A(r). It is clear that the largest peak
occurs when the cloud radius is minimum, thus at the first
cloud collapse. The peaks of the secondary collapses are much
lower and after some time the cloud starts oscillating in its
eigenfrequency.

Verification

The model as implemented in the present study behaves
fairly similar to the one presented in the literature. There is a
good agreement of the bubble radius as function of time. The
maximum bubble radius and the time of collapse are very
similar. As clouds collapse a collapse front is formed, some-
times moving inward, sometimes moving outward and some-
times moving in both directions. The general effect is that when
this front progresses the collapses get more severe, reaching
their most violent point at one of the ends of the domain. In
cases for which this collapse is most violent the rebound
behavior found in the present study does not correspond to the
one found in the literature. When the collapse process starts, the
rebounds are very similar, but after some time the bubbles grow
to a much larger size than found in corresponding cases in liter-
ature, see van Loo (2011).
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Figure 10: Bubble radius at different locations in the cloud Figure 11: Radial coordinate r versus dimensionless time ¢, for
subjected to pressure perturbation (Fig. 3) with 7= 1000, Cpx tg = 1000, Cppiy = -0.7, 6 = 0.4, Re = 28.57, We = 137.4, Ay =
=-0.7.0=0.4, Re = 28.57, We = 137.4, Ao = 100. Initial void 100. Initial void fraction, &, = 0.02% (top), 0.1% (center) and
fraction, a,= 5% (top), 0.1% (center) and 0.02% (bottom) 5% (bottom)
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Discussion

Consider Fig. 10 which shows the bubble radius as function
of time for the same cavitation number, and the same pressure
perturbation period and amplitude but for three different initial
void fractions, 0.02%, 0.1% and 5% (note that this corresponds
to cloud interaction parameter S of. O(1), O(10) and O(100),
respectively). As discussed above the bubbles near the cloud
boundary have a higher growth rate than the inner bubbles. For
each of the initial void fractions this 'shielding' effect is observ-
ed. However, for low initial void fractions the growth rate of
the outer bubbles is much larger than for high void fractions.
This is due to bubble-bubble effects. For high initial void frac-
tions, bubbles are more closely packed, and thus interact
stronger. Bubbles are slowed down in their growing process be-
cause their neighbor is in the way. This is not the case for the
growth of the cloud radius. The cloud grows to roughly the
same size for each of the initial void fractions considered, and
appears to depend mainly on the pressure perturbation period
tg, not so much on initial void fraction «,.

Fig. 11 shows the motion of the Lagrangian nodes at different
initial locations 7y in the cloud for initial void fractions ¢, of
5%, 0:1% and 0:02%. The difference in bubble interactive ef-
fects is very clear. For the lower initial void fractions the
boundary bubbles grow to very large size while the inner part
of the cloud is more or less stationary. For the high initial void
fraction this is not the case. The mixture in the entire cloud
moves outward as the cloud reacts to the pressure perturbation.
After growth, the cloud collapses coherently. Also the rebounds
are more coherent and larger than for the other two cases.

To inspect the behavior of the cloud boundary in more detail
consider Fig. 12. In this figure the cloud boundaries for the
three cases of Figs. 10 and 11 are shown. It is seen that the
higher the initial void fraction, the earlier the cavitation starts
and the later the collapse starts. Also the cloud reaches a larger
maximum radius for higher initial void fractions. The cloud
with the intermediate void fraction has the smallest rebound.
This is because the inward and outward traveling collapse
fronts cancel each other. Also, the secondary rebound period is
considerably longer for higher initial void fractions. Bubbles ef-
fectively influence the frequency of the cloud as the cloud re-
bound frequency is considerably lower than that of an individu-
al bubble.
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Figure 12: Cloud radius A(f) as function of time. tg = 1000,
Comin=-0.7, 0 = 0.4. Re = 28.57, We = 137.4, Ag = 100 Initial
void fraction, ¢,= 0.02%, 0.1% and 5%
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For high initial void fractions the collapse process starts near
the cloud boundary (due to the momentum of the growth of the
outer bubbles, these can keep on growing and collapse slightly
later) and then the collapse process moves inward. The shield-
ing effects cause the outer bubbles to grow faster. However, it
also keeps the inner bubbles from 'feeling' the ambient pressure
recovery and therefore these bubbles keep growing even if the
collapse process has already started. When the collapse front
moves inward, it experiences a strong increase in local pressure
peak. For a low initial void fraction the collapse process starts
in the interior of the cloud. Again, the shielding effect makes
that the outer bubbles have a much larger growth rate than the
inner bubbles. The outer bubbles build up enough momentum
to keep on growing even if the ambient pressure is recovered.
Therefore the collapse starts in the center of the cloud. A col-
lapse front is again noticed to be present, this time traveling
outward. The focusing of pressure peaks is much smaller how-
ever, which can be seen in the rebound behavior. The rebounds
are much smaller and are damped very quickly following cloud
collapse.

The case of the intermediate initial void fraction shows a com-
bination of the characteristics observed for the high and low
initial void fractions. The collapse starts somewhere in the
middle of the cloud and a collapse front travels both inward and
outward (see Fig. 6). The inward moving front experiences
some pressure focusing, however, this appears to cancel the
outward moving front. The cloud collapse is the least severe of
all cases.

COUPLING TO RESULTS OF RANS METHOD

At present RANS methods have not yet developed to the
point that they can predict cavitation erosion. Predicting ero-
sion demands accurate knowledge of radiated pressure waves
from collapsing cavities or cavity clusters. These pressure
waves are radiated in very short periods of time. RANS meth-
ods employ time-averaging. Thus the smallest time-scales are
not represented. In this way, unless very small time steps are
taken, RANS methods might not resolve the actual pressure
peaks. Also predicting the details of a cloud collapse are com-
putationally demanding. Bubble interaction effects and result-
ing shock waves are computationally costly. These effects that
inherently influence the radiated acoustic pressures are not re-
presented in RANS methods. The present model does take into
account the small time scales. Time steps of 1 femtosecond are
not uncommon. Also bubble interaction effects are taken into
account and the resulting complex cloud collapse phenomena
are represented. This gives the possibility to be able to recog-
nize situations for which violent and potentially dangerous
cloud collapses are to be expected. Also a quantitative estimate
of radiated acoustic pressure results from the present model.
Therefore a combination of both methods would give a more
complete prediction of radiated pressures. It should be noted
that the model of this study does not take into account the pre-
sence of a solid wall in the vicinity of the collapsing cavity
cluster. However, from the literature (see Isselin et al. [1998]) it
is known that a wall that is positioned closely to a collapsing
cavity, decreases the radiated pressure waves. So it can be ex-
pected that the present model overestimates radiated pressure
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waves. It should also be mentioned that yet another model is
needed, namely for modeling the reaction of the material of the
solid wall, however, this is beyond the scope of the present
study.

In order to explore the possibilities of coupling the present mo-
del to a RANS method an example case is studied. The case is
considered of a NACA0015 hydrofoil at 8 deg angle of attack.
The chord length of the hydrofoil is ¢ = 0.6m, the free stream
velocity is Uy = 17.71m/s and the cavitation number is ¢ = 1.43.
Results of a RANS method (FRESCO) are found in Fig. 13.
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Figure 13: Dev‘f.:lopment of a cloud cavity in time on a
NACAOQ015 hydrofoil at an angle of attack of 8 deg. Re =10M,
o=143.
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In Fig. 13, the colors represent the pressure coefficient, red for
high pressure and blue for low pressure. In the blue region,
where the pressure is low, the black contour lines are lines of
constant void fraction. The outer contour line in Fig. 13a repre-
sents a void fraction of 5% and the step to the next line is 5%.
Thus in the middle of the cloud the maximum void fraction is
35%. In Fig. 13b, 0.2 milliseconds later, two inner contour lines
have disappeared and the maximum void fraction is 25%. The
cloud is collapsing and the local void fractions decrease. The
lowest pressure in the cloud is C,,;, = -1.43. Figure 13d shows
the situation just before the cloud disappears. The total time be-
tween first and last sub-figure is 0.45 milliseconds. This corres-
ponds to a non-dimensional time of 79.70 (non-dimensiona-
lized with velocity 17.71 m/s and initial bubble radius Ry =
100um). In the next time step, the cloud has vanishes; after a
non-dimensional time of 92.97 (0.53 milliseconds). The pres-
sure coefficient at that moment is C, = -1:275.

Cavitation equilibrium cloud

The model requires the computation to start from an equilibri-
um situation. Therefore it the first task is to create a cavitated
cloud with a mean void fraction comparable to the cloud in the
RANS computations. It is chosen to create a cloud with a mean
void fraction of 25%, since the cloud from RANS has the high
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void fraction of 35% only in a small part in the middle. From
the equation for the void fraction (see Eq. (7)) it follows:
4,13
SR
— 1_77% 27
+ninR
so that
7= 3 «
47R* 1 -
Since the bubble distribution # is constant, the right-hand side
is evaluated for the initial time, for which R = 1. This gives:

n= 2%
47 1-«a,
Substituting the equation for # in the one for a, yields:
a(l-a,
3: ( 0) (28)
o,(1-)

Here <R> represents an expression for the mean bubble radius
of the equilibrium cloud as a function of local void fraction and
the initial void fraction. Now one can compute the mean bubble
radius in the cloud in order to create a cloud with a void frac-
tion of 25%. However, the initial void fraction is still not
known. Note that the bubble radius is also a function of pres-
sure. Therefore it is necessary to consider the equation for the
pressure coefficient. Assuming that the system is in equilibrium
one can write for the pressure coefficient equation (see Eq.
(23)):

d -6 d 0
—C (1,1) = u(ry,t)—r(,,H) =0
ar ’ 3+47nR>(1,t) ot or,
This shows that the pressure is constant over the entire cloud.
The pressure must thus be equal to the pressure at the boundary.
The boundary condition reads, see Eq. (16):

_ 2 d . -
Cp(AO,t)—Cp’m(t)+r(A0’t) P (A Du(4,01 =1 (A )

For an equilibrium situation one finds:
C, (0= C,.(0

A cloud in equilibrium has a constant pressure which is equal to
the ambient pressure. From this one can conclude that <R> =
R.,, where R,, is the value of the radii of the bubbles in a cavi-
tated cloud in equilibrium. The Rayleigh-Plesset equation gives
the relationship between pressure and bubble radius. For an
equilibrium situation the time derivatives are absent and one
finds from Eq. (13):

%(R;jk 4 V—%(jo" ~ R %cp_m =0(29)

q

The bubble radius is thus a function of cavitation number,
Weber number and ambient pressure, but the initial void frac-
tion does not appear in this expression. Assuming that the am-
bient pressure coefficient equals the negative of the cavitation
number (G, = -0), the relation between bubble radius and ca-
vitation number is plotted in Fig. 14. Since the cavitation
number and pressure coefficient are known, the equilibrium
bubble radius can be computed. For the current case for which
o =143, 50 C,, = -1.43, the corresponding equilibrium bubble
radius is R,, = 3.39. Now there is only one unknown: the initial
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void fraction. This can be computed from Eq. (28) and is for a
cloud with a mean void fraction of 25%: ay = 0.84%. So if an
ambient pressure decrease is imposed to a cloud of nuclei with
ap = 0.84%, in which the ambient pressure will stay at C,, = -
1.43, for a flow with ¢ = 1:43 the bubble radii in the cloud will
eventually all become equal to R,, = 3.39. This cloud has a
mean void fraction of 25%. This will be the equilibrium cloud
used in the comparison with the cloud from the RANS solution.
The relationship between equilibrium bubble radius, initial void
fraction and mean cloud void fraction is given in table 2.
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Figure 14: Relation between bubble radius in a cavitated cloud

in equilibrium and cavitation number. Note that this relation is

independent of initial void fraction. C,., = -0

Ry ao=1% oap=0.1% ao=0.01%

1 | 0.1 0.01
2 75 0.79 0.08
3 214 2.6 0.2
4 39.2 6 0.6
5 55.8 111 1.2
6 68.5 178 21
7 7.6 255 33

Table 2: Mean void fraction in cloud as function of mean
bubble radius for three different initial void fractions. Values in
percentages

To obtain the cloud prescribed above, the ambient pressure is
decreased slowly using a ramp-up function up to the time it
reaches the desired value of C,. = -1.43. Subsequently this
value is kept fixed until the cloud is stationary. The result of
this simulation is shown in Fig. 15. It is observed that after suf-
ficient time has passed, the bubbles oscillate coherently and the
oscillations are no longer decreasing in amplitude, i.e. the cloud
is oscillating in its natural frequency.

However, the amplitude of the oscillation is not zero, but
assumed small enough that the cloud may be assumed to be in
“semi-equilibrium'. This cloud is the initial condition for the
collapse computation.

Equilibrium cloud collapse

The cloud constructed above is subjected to an ambient pres-
sure recovery. This recovery should match the pressure coeffi-
cient development of the RANS method. For this example two
cases are computed. In one case, the pressure recovery is speci-
fied as a cosine back to zero, in a non-dimensional time of 500.
In the second case the ambient pressure is brought from -1.43
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to -1.275 in a non-dimensional time of 92.97 and then stays at
that value, see Fig. 16.
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Figure 15: Bubbles (different rp) in a cloud evolving to an equi-

librium situation. o = 1.43, ¢y = 0.84% and C,,,= -1.43.
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Figure 16: The 2 ambient pressure recovery cases

The results are shown in Fig. 17 for the bubble radii different
locations in the cloud. The results are given for the same time
domain, starting at the end time in the computation for the equi-
librium cloud. The non-dimensional time that passes is 600 for
both imposed pressure recovery functions. It should also be
mentioned that the cloud starts with a radius of A = 110.22,
which corresponds to a mean void fraction of oy = 25.94%, 1
percent higher than computed, due to the small oscillations of
the semi-equilibrium cloud, see Fig. 15. Looking at the results,
two apparent differences are noticed. The first is the time be-
tween first and second rebound (cloud frequency). The ambient
pressure recovery from C,., = -1.43 to 0, over a relatively long
time, results in a cloud that collapses around the same time as
for the short and partial pressure recovery from C,,, = -1. 43 to
-1.275. Following this phase, the rebound frequency for the
first case is much higher because of the higher ambient pres-
sure. Also notice the maximum rebound radius of both bubbles
and cloud itself. For the short and partial pressure recovery,
bubbles rebound to higher values because the ambient pressure
is still low.
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Figure 17: Bubble radii in a cloud of cavitated bubbles in equi-
librium subjected to an ambient pressure recovery.

Top: slow recovery from C,.,=-1.43 to 0 (solid line in Fig. 16).
Bottom: fast but partial recovery from C,., = -1.43 to -1.275
(dashed line in Fig. 16). ay = 0.84%, Ag = 100, 0 = 1.43.

The cloud radius and radiated acoustic pressure are presented in
Fig. 18. Indeed, the cloud rebounds to a larger size for the case
for which the ambient pressure recovery is only partial. Fur-
thermore, the radiated acoustic pressures are considerably
higher for the case for which the ambient pressure recovers to
zero. Also in this case, higher peaks are attenuated longer, even
with the higher rebound frequency. The definition of the cloud
interaction parameter £ (Eq. (25)) indicates that the cloud radi-
us has a large influence on its behavior. The present results are
for a cloud radius of Ag = 100. From Fig. 13 it is estimated that,
in comparison with the chord of 0.06m, the cloud is 0.01m in
diameter. This corresponds to a non-dimensional cloud radius
of Ag = 55. This yields f = 25 compared to # = 83.3 used in the
computation. One should thus expect smaller bubble interactive
effects than the results show.
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Figure 18: Cloud radius and far-field acoustic pressure in a

cloud of cavitated bubbles in equilibrium subjected to an ambi-
ent pressure recovery.

Top: slow recovery from C,,=-1.43 to 0 (solid line in Fig. 16).
Bottom: fast but partial recovery from C,,, = -1.43 to -1.275
(dashed line in Fig. 16). ag = 0.84%, Ap = 100, 0 = 1.43.
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Discussion

It appears possible to couple bubble cloud method with the
RANS method, however, some considerations have to be taken
into account.

- A procedure has been developed to construct a cloud to match
a shed cloud computed using a RANS method. Since the
bubble cloud method is formulated in Lagrangian coordinates,
it considers a cloud that is convected with the free stream
velocity.

- The cloud interaction parameter § corresponding to the result
of the RANS method is not equal to the one of the bubble cloud
method, due to the difference in cloud radius. The present
bubble cloud method yields too strong bubble interaction ef-
fects. This parameter should have matched better.

- The initial void fraction determined for the bubble cloud
method should match the void fraction of the RANS method
upstream of the cloud. The initial void fraction is the only
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parameter that can be varied to achieve a cloud with the desired
mean void fraction. Therefore, the initial void fraction of the
RANS results should match that of the present model, not the
other way around.

- For quantitative values of the radiated acoustic noise the pre-
sence of a wall in the vicinity of a collapsing bubble cluster
should be accounted for. The presence of the wall is expected to
have reduced the radiated pressures. Experiments should con-
firm the found values

CONCLUSION

Results of the bubble cloud method have been obtained for
ranges of various model parameters. It is concluded that the re-
sults are very dependent on the cloud interaction parameter f.
This parameter contains three other parameters: initial void
fraction «, initial cloud radius Ay and initial bubble radius Ry,
The latter dimensionless initial bubble radius is defined to be
equal to unity. Initial void fraction ¢« and initial cloud radius A,
have been varied. The resulting f varies over three orders of
magnitude, which results in physically different behavior. For
of O(1) an radially outward traveling collapse front is formed.
For f of O(10) two collapse fronts are formed, starting some-
where inside the cloud, traveling both inward and outward.
These fronts tend to cancel each others pressure peaks and are
the least violent. For still larger §, O(100), an inward traveling
collapse front is formed that is observed to have a strong focus-
ing effect towards the center of the cloud. This type of collapse
is the most violent. A large cloud interaction parameter f is
achieved for a relatively high initial void fraction: «y = O(1%)
or higher, or for large cloud initial radius.

The pressure perturbation period is another important param-
eter. The longer a cloud is subjected to a low pressure, the more
time the cloud has to cavitate, and the larger it can grow. Larger
bubbles collapse more violently, and therefore the pressure per-
turbation period has a direct relation to the severity of the col-
lapse. The precise function of time of the pressure perturbation
does not appear to have a significant influence.

A cloud subjected to a sudden decrease in ambient pressure fol-
lowed by a slow recovery, cavitates in a bigger volume than a
cloud subjected to a slow decrease in ambient pressure and a
sudden recovery.

Variations in Weber number or Reynolds number are found to
have a small influence on the results. Decreasing the Reynolds
number by slowing down the flow or adding damping in the ef-
fective viscosity ug results in the bubbles and the cloud grow-
ing to smaller sizes and tend to damp quickly after collapse.

It has proven to be possible to make a quantitative comparison
between results of the bubble cloud method and results of a
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RANS method. A procedure has been developed to construct a
cloud that is comparable to the vapor cloud shed from a sheet
cavity and traveling downstream over a hydrofoil as obtained in
a RANS computation. This equivalent cloud is then subjected
to an ambient pressure recovery, which leads to a cloud col-
lapse.

Since the initial void fraction and initial cloud radius have a
large effect on the collapsing process, in the bubble cloud meth-
od these two parameters should match the corresponding ones
of the RANS method
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