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Abstract

Anovel 4H-SiC Multiple Stepped SGT MOSFET (MSGT-MOSFET) is presented and investigated
utilizing TCAD simulations in this paper. We have quantitatively studied the characteristics of the
device through simulation modeling and physical model calculations, and comparatively analyzed the
performance and application prospects of this novel device. The gate-to-drain capacitance (C4q) and
gate-to-drain charge (Qgq) of the MSGT-MOSFET are significantly reduced in comparison with the
double trench MOSFET (DT-MOSFET) and the conventional SGT MOSFET (CSGT-MOSFET), due
to the reduction of the overlapping area of the split gate (SG) structure and drift region. Therefore, the
obtained high frequency figure of merit (HF-FOM) defined as [R,,, X Cgq] reduced by 23.9%
compared with DT-MOSFET and CSGT-MOSFET. And the HF-FOM [R,, X Qgq] for the MSGT-
MOSEFET significantly decreased by 71% and 50%, respectively, compared to that of the DT-MOSFET
and CSGT-MOSFET. Furthermore, the switchingloss is also simulated and calculated. And the total
switchingloss of the proposed MSGT-MOSEFET realizes 42.9% and 21.7% reduction in comparison
with the DT-MOSFET and CSGT-MOSFET. The overall enhanced performances suggest that the
MSGT-MOSEFET is an excellent choice for high frequency power electronic applications.

1. Introduction

4H-SiC MOSFETs are an attractive power semiconductor device in electronic systems for its high power rating,
fast switching speed, and low drive power consumption [ 1-5]. Compared to SiC planar MOSFETs, SiC trench
MOSFETs are more popular in the industry for their better tradeoff between on-resistance and breakdown
voltage [6—9]. The most advanced 4H-SiC trench MOSFETs in the industry today are Infineon’s asymmetric
trench MOSFETs and Rohm’s double trench MOSFET's [10—12]. Double trench MOSFETs (DT-MOSFET) are
more favored because of their greater design flexibility and lack of process limitations for high-energy ion
implantation [13—16]. Therefore, 4H-SiC DT-MOSFETs are one of the best power switching devices due to their
extremely low on-resistance (Ron), high breakdown voltage (BV) and fast switching speed, etc [17, 18].

In order to reduce the power dissipation in high frequency and high power applications, the Cgd of the
MOSFET must be minimized because the power dissipation originates from their charging and discharging
during each switching cycle [19-21]. Based on this, Split Gate Trench (SGT) MOSFETs are becoming key
components for various high efficiency medium to high voltage power applications due to their relatively low
switching losses [22—24]. The SG structure serves as a vertical field plate which optimizes the electric field
distribution of the drift region under the instruction of RESURF theory [25]. The grounded SG electrode isolates
the control gate from the drift region and the drain electrode, which results in a drastic decrease in the Cgq
[26-28]. Hence, the Qgq is reduced and better switching performance is assured. Conventional SGT MOSFET's
(CSGT-MOSFET) can reduce C,q and Q,q to some extent [29, 30]. But in fact, it is far from bringing the
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Figure 1. Cross-sectional view of the 4H-SiC (a) DT-MOSFET, (b) CSGT-MOSFET and (c) MSGT-MOSFET.

advantages of SG to full play. Besides, it makes an unsatisfactory compromise between static performance and
switching losses.

This paper proposes a novel 4H-SiC Multiple Stepped SGT MOSFET (MSGT-MOSFET). In the MSGT
-MOSEFET, the SG structure is designed into a multi-step shape, which can achieve ultralow Coq and Qgq. And it
achieves low values for the high frequency figure of merit, defined as [R,,, X Cgq] and [Ro, X Qgql. The SG
structure was optimized by Sentaurus TCAD simulation, and the number of steps was also optimized.
Moreover, the switching loss of the DT-MOSFET, CSGT-MOSFET and MSGT-MOSEFET is discussed in this

paper.

2. Device structure and mechanism

Figure 1 shows the cross-sectional cell view of the 4H-SiC DT-MOSFET, CSGT-MOSFET and MSGT-
MOSEFET. In the three SiC MOSFETSs under study, a grounded P-shield region is employed to protect the gate
oxide from the high electric field. The gate and source double trench technology could reduce the trench mesa
without much reliance on special processes and enhance its performance. The three SiC MOSFETs under study
arerated for 1.2 kV and have the same cell pitch for a fair comparison. The cell’s detailed parameters are listed in
table 1. For the CSGT-MOSFET, the L, Lsand L, are the distance from the SG to the gate, the side wall of the
oxide trench and the oxide bottom of the trench, respectively. And the initial value of all three is set to 0.05 pm.
As for the MSGT-MOSEFET, the N is the number of steps in the SG structure. The width and height of each step
are consistent, which can be calculated by the L,,, L, L, and N.

Figure 1 also illustrates the Cyq distribution of the three SiC MOSFETs. In figure 1(a), the Cyq of DT-
MOSEFET can be demonstrated as Cgq = Cgq1 + Cggo. For the CSGT-MOSFET in figure 1(b), the SGactsasa
shielding region between the gate and drain, and the Cgqis Cgq = (Cg_s1 + (Cas1 + Cas2) M 1[3,31]. As for the
MSGT-MOSFET in figure 1(c), the composition of Cgq is the same as that of CSGT-MOSFET. But the only
difference is that C4,; and Cg,, change dynamically with the number of steps in the SG structure.

In this paper, Sentaurus TCAD tools are used to perform the device simulations and the compact model
simulations. Standard SiC physical models are used in the simulation, including Fermi statistics, Shockley-Read-
Hallre and Auger recombination, Okuto and GradQuasiFermi avalanche, incomplete dopant ionization,
anisotropic material properties, and nonlocal tunneling [ 16, 32]. The bandgap models are OldSlotboom and
NoFermi. Mobility models with doping dependence, high field saturation, and Enormal (IALMob) are also
taken into consideration. The fixed charge concentration along the SiC/SiO, interfaceis 1 x 10" cm™>[33].
Other parameters of the material and models are adapted according to calibrated work in [ 16, 32, 34]. Besides,
we also calibrated with the [4] as shown in figure 2. From this figure, the IV curves calibrated according to the
structural simulation of [4] perfectly fit the data in the literature. It can also be found that the current of our
proposed CSGT-MOSFET at Vg = 10 V is much higher than that of [4]. It should be noted that although the
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Figure 2. The IV output characteristics of the CSGT-MOSFET, the reference and the simulation based on the reference.

Table 1. Simulation parameters of 4H-SiC MOSFET structure.

Symbol Structure parameter Value Unit
Ns Substrate doping concentration 1.0 x 10" cm?
Td Drift thickness 10.0 pm
Nd Drift doping concentration 8.0 x 10" cm?
Wg Gate trench half width 0.5 m
Ws Source trench half width 0.3 pm
Dt Trench depth 1.5 pm
Dg Gate depth 1.0 pm
Nn N+ doping concentration 1.0 x 10" cm?
Ln N+ length 0.6 pm
Dn N+ depth 0.3 pm
Np P-well doping concentration 1.0 x 107 cm”?
Dp P-well depth 0.5 pm
Ds P-shield depth 0.3 m
To Gate oxide thickness 0.05 pm
We Cell pitch half width 1.4 pm

calibration procedure was carried out, the simulation results are not fully representative of the actual results due
to the influence of simulation accuracy and model bias. Therefore, it could be taken as a more general case study.

3. Simulation results and discussion

In order to optimize the HF-FOM [R,;, X Cgq] and [R,, X Qqq] of the proposed MSGT-MOSFET, it is necessary
to first optimize L, Lyand L, of the SG structure in the CSGT-MOSFET, and then bring the optimal values of the
three into the SG of the MSGT-MOSFET. Finally, the step number N; of SG is optimized to obtain the device

with the best performance.

Figure 3 shows the influence of L, on Cgq and Qgq. And the Cyq is extracting at V4, =800 V, V=0 Vand
f=1Mhz. As L, increases from 0.05 yzm to 0.4 pm, C4q and Qgq remain basically unchanged, which indicates
that L, has little effect on the high frequency performance of the device. This is also verified in [3, 31, 35], since L,,
mainly affects the gate-to-source capacitance and has little effect on the gate-to-drain capacitance, and thus has
little effect on Qgq4. To increase the comparability of the CSGT-MOSFET and the DT-MOSFET, as well as

improve the flexibility of the Lb optimization, L, was set to 0.05 ;sm for subsequent optimization.

Figure 4(a) shows the dependences of Cgq on I, and L for the CSGT-MOSFET. The Cgq slowly decreases
with the increase in L, and L, the reason is that the thickness of the oxide layer increases, and both the flat plate
capacitance Cg4,; and Cys,, decrease, resulting in a reduction of the total gate-to-drain capacitance. The decrease

3
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Figure 3. The effect of L, on (a) Cgd,sp and (b) gate voltage for the CSGT-MOSFET.
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Figure 4. The dependence of (a) Cgd,sp and (b) Qgd,sp on Lb and Ls for the CSGT-MOSFET.

of Cgdin figure 4(a) is consistent with the literature [3, 23]. Due to the decrease in Cgy, the device’s turn-on speed
increases; thus, its Miller platform will become shorter, eventually leading to the reduction of Qgq. And this is the
reason why Q.4 also decreases with the increase of L, and L, in figure 4(b).

Figure 5 shows the relationship between HF-FOM [R,,, X Cgq], HF-FOM [R,, X Qgq4] and Baliga’s figure of
merit (BFOM[BV?/Ron,sp]) [36, 37] at different L, and L, respectively. In figure 5(a), when Ly s set to 0.05 um,
both the HF-FOM and BFOM decrease as L, increases. And when Ly, is 0.15 pm, there is only a slight decrease in
HEF-FOM with the increase of L, and the overall change is not significant; however, BFOM will continue to
decrease with increasing Ls, as shown in figure 5(b). Therefore, in order to determine the optimal parameters of
the SG structure, the HF-FOM and BFOM of the device need a compromise. Because with the increase of L, and
L;, the oxide layer at the bottom and side of the SG structure becomes thicker, which will strengthen the
depletion region and narrow the current path, leading to an increase in R,,,. This is confirmed by the current
distribution of the device in the on-state in figure 6. When L, = 0.15 ggm and Ly = 0.15 ym in figure 6(b), the on-
resistance of the CSGT-MOSFET is 16.3% (from 1.47 mQ-cm” to 1.71 m€2 cm?®) larger than the initial value (L,
=0.05 pm and Ly =0.05 pm). By fully considering the high frequency characteristics and low frequency
characteristics of the CSGT-MOSFET, the BFOM is still maintained at a high level while ensuring a low value of
HF-FOM. Finally, the specific parameters of the SG structure were determined with L, = 0.05 ym, L, = 0.15 ym
and Ly=0.15 pym.

The thickness of the oxide layer on the top, bottom and side walls of the SG structure of the proposed MSGT-
MOSEFET is determined, and the remaining SG structure is constructed in a multiple stepped shape. For a

4
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Figure 5. The HF-FOM [R,, X Cg4l, HF-FOM [R,, X Qgq] and BFOM as a function of (a) L, and (b) L, for the CSGT-MOSFET.
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L, =0.15 gm, Li=0.15 pm.
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Figure 7. The effect of Ns on (a) Cgq,sp and Qg sp and (b) HF-FOM [Ryy X Cgal, HF-FOM [Ryy X Qgql and BEOM for the MSGT-
MOSFET.

determined number of steps N, the height and width of the steps are divided equally. Increase N from 1 to 10
and observe its effect on Cgq and Qgq, as shown in figure 7. An increase in N will lead to a decrease in Cg4,; and
Cas2> Which in turn decreases Cgq and Qgq. From the two slowly falling curves in figure 7(a), we can deduce that
when Njis infinite, the multiple stepped SG structure becomes triangular, and the capacitance and gate charge of
the device could reach the minimum limit value at this time. However, etching a perfect triangle in a one-
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Figure 8. On-state depletion boundary and current density of the MSGT-MOSFET with (a) N; = 3, (b) Ny = 10.
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Figure 9. The HF-FOM [R,, X Cgq] and HF-FOM [Ry, X Qgq] of the DT-MOSFET, CSGT-MOSFET and MSGT-MOSFET.

micron-wide trench is a great challenge for the current manufacturing process. By calculation, the curves of HF-
FOM and BFOM of the MSGT-MOSEFET with Ns are shown in figure 7(b). Unlike the slight decrease in

figure 5(b), the magnitude of the HF-FOM decrease with Ny is larger because both the Cyq and Qg4 decrease
significantly, while the increase in on-state resistance R, is slight. It can also be found from this figure that the
decline of both HF-FOM and BFOM becomes slower when N is greater than 3, from which it can also be
inferred that N = 3 is a better result. From figure 8, it can be found that the current paths of Ny =3 and Ny =10
are basically the same, and the R, of Ny = 10 is only increased by 4% (from 2.01 m§-cm? t0 2.09 m§2 cm?).

To obtain the optimal device performance, a compromise between the high and low frequency
characteristics of the MSGT-MOSEFET is needed again. On the other hand, as the number of steps of the device
increases with N, the width and height of each step of the device become narrower, which requires higher
precision in the fabrication process. Besides, the formation of each step requires at least one polysilicon etch-
back and one oxide layer etch-back. Therefore, the more steps there are, the more complex the manufacturing
process will be, and its cost will increase dramatically. After comprehensive consideration, Ng = 3 is the optimal
result, where the HF-FOM of the MSGT-MOSFET is lower and the BFOM is higher, while the manufacturing
process is less complicated and the cost is relatively low. Once N is determined, since the height and width of
each step are equal, the specific structure of the multiple stepped split gate structure can be obtained by a simple
calculation. And the MSGT-MOSFET studied in subsequent simulations are all 3-step SGT-MOSFET.

Figure 9 shows the comparison of the HF-FOM [R,, X Cgq]and [Rq,, X Qgq] for the DT-MOSFET, CSGT-
MOSEFET and MSGT-MOSEFET. The proposed MSGT-MOSFET has the best high frequency characteristics
among the three devices. And the HF-FOM [R,,, X Cgq] for the MSGT-MOSFET is 23.9% (from 445.29 mQ-pF
and 444.82 mQ-pF to 338.73 mQ2-pF) lower than that of both the DT-MOSFET and CSGT-MOSFET. The
calculated HF-FOM [R,,, X Qgq] of the MSGT-MOSFET is 71% (from 574.68 m{2-nC to 166.55 m2-nC) and
50% (from 332.35 m{2-nC to 166.55 m£2-nC) lower than that of the DT-MOSFET and CSGT-MOSFET,
respectively.
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Figure 10. (a) Switching waveform, (b) double pulse test circuit configuration and (c) switchingloss of the DT-MOSFET, CSG-
MOSFET and MSGT-MOSFET.

The switching waveforms of the three 4H-SiC MOSFETs are further simulated, as shown in figure 10(a).
Thereis a current spike when the device is turned on due to the reverse recovery current. Both the turn-on time
and turn-off time of the MSGT-MOSFET are shorter than the DT-MOSFET and CSGT-MOSFET. And the
switching loss of the proposed MSGT-MOSFET is greatly reduced due to the smaller Cgg and Qgg. As shown in
figure 10(c), the MSGT-MOSFET realizes a 42.9% (from 1485.77 ;1] cm™ > to 847.88 1] cm™ %) and 21.7% (from
1084.09 1] cm™ > to 847.88 ] cm ™ %) reduction in the switching loss compared with the DT-MOSFET and
CSGT-MOSEFET, indicating the great superiority to enhance the system frequency in power conversion
applications. Table 2 summarizes the key parameters of the DT-MOSFET, CSGT-MOSFET and MSGT-
MOSEET for a clear presentation.

Considering the feasibility of the proposed MSGT-MOSFET, one available fabrication process is given in
figure 11. First, the P-well and N+ can be formed by implantation before trench etching, while the P-shield
implantation under the source trench and the sidewall is carried out after source trench etching [see
figure 11(a)]. Then, the fabrication of the split gate structure was started, which is the most challenging step of
the manufacturing process. The oxide layer and polysilicon are deposited in the gate trench, and then the first
etch-back of the polysilicon and the first etch-back of the oxide layer are carried out successively to form the first
step [see figure 11(b)]. Repeat the previous step for the second etch-back of the polysilicon and the second etch-
back of the oxide layer to form the second step [see figure 11(c)]. Repeat the previous step again for the third
etch-back of the polysilicon and oxide layer, and then polysilicon deposition and etch-back to form a 3-step split
gate structure [see figure 11(d)]. After the split gate structure is fabricated, the remaining step is compatible with
that of the double trench MOSFET. Gate oxidation, polysilicon deposition, and polysilicon etch-back are
performed [see figure 11(e)]. Finally, the substrate is thinned and metallized to form the gate, source and drain
[see figure 11(f)].
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Figure 11. (a) P-well and N+ formation, gate and source trench etching, and p-shield region formation. (b) Gate trench oxidation,
polysilicon deposition, and first etch-back of polysilicon and oxide. (c) Second etch-back of polysilicon and oxide. (d) Third etch-back
of polysilicon and oxide, and polysilicon deposition and etching. (e) Gate trench oxidation, polysilicon deposition, and etch-back. (f)

Metallization.

Table 2. Performance comparison.

Parameter DT CSGT MSGT Unit

Vth 4.86 4.86 4.88 \'

Ronp 147 1.47 2.01 mQ-cm?

BV 1403.68 1401.38 1392.37 v

Cgd,sp 302.92 302.6 168.52 pFem ™2

Qqdysp 390.94 226.09 82.86 nCem 2

BFOM 1340.35 1335.96 964.52 MW cm ™2

HF-FOM, [R[,,, X 445.29 444.82 338.73 m§)-pF
ng]

HF—FOM[RM X 574.68 332.35 166.55 m-nC
di]

E,, 1130 729.03 557.15 u cm ™2

Eyf 355.77 355.06 270.73 yJem 2

E;o: 1485.77 1084.09 847.88 9] cm ™2

4. Conclusion

A novel 4H-SiC multiple stepped SGT MOSFET is proposed in this paper. The thickness of the oxide layer at the
top, bottom and side of the SG structure and the number of steps were optimized using Sentaurus TCAD
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simulation. And the optimal structural parameters were finally obtained: L, = 0.05 pm, L, = 0.15 pm, L
=0.15 pmand Ny = 3. The proposed MSGT-MOSFET has reduced HF-FOM [R,,, X Cgq] by 23.9%, and HF-
FOM [R,,, X Qgq] by 71% and 50% compared with that of the DT-MOSFET and CSGT-MOSFET, respectively
due to the significantly decreased Cgq and Qgq. Furthermore, the total switchinglosses including turn-on and
turn-off processes are reduced by 42.9% and 21.7% compared with the DT-MOSFET and CSGT-MOSFET,
which makes the AIMSGT-MOSFET an excellent choice for high frequency and high power applications, such as
on-board charger (OBC), power converters, inverters, etc.
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