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Abstract

Space-weather events have a large impact on Earth. In particular, Coronal Mass Ejections (CME) pose
huge potential dangers to human technology both in orbit and on the surface of the planet, such as dis-
ruptions to power grids, increased radiation doses to astronauts and damage to sensitive components
of satellites. Warnings for space-weather events are currently given by satellites in the vicinity of the
L, point. When a CME passes by that point, the satellites emit a warning that reaches the Earth, on
average, one hour before the CME. This thesis aims at using solar-sail technology to move a satellite
closer to the Sun, detect the CME sooner, and thus increase the warning time.

Solar sails continuously generate thrust by reflecting solar photons off a large and highly reflective
sail membrane. This continuous acceleration can be used to generate Artificial Equilibrium Points
(AEPs) in the Circular Restricted Three-Body Problem (CRTBP) that are displaced away from the five
classical Lagrange points. Like for the classical case, periodic orbits exist around these AEPs, enabling,
for example, CME monitoring in a periodic orbit around an AEP that is located closer to the Sun than
the Sun-Earth L; point from where current satellites detect CMEs. There have been some theoretical
mission designs taking advantage of this possibility, but the increase in warning time is modest for any
near-term sail performance.

This thesis investigates the use of solar-sail technology to travel upstream of the CME and signif-
icantly increase the warning time. The study considers the actual shape of CMEs as a constraint for
the solar-sail trajectory that surfs along invariant manifold-like structures emanating from AEPs and
Lyapunov orbits around sub-L, points, i.e., AEPs sunward of the classical L, point, to travel upstream
of the CME.

As a preliminary solution, two strategies are evaluated. The first strategy considers a series of
heteroclinic connections between different AEPs in the sub-L, region. The second strategy uses a ho-
moclinic connection of a Lyapunov orbit around a sub-L; point. The trajectories aim to travel upstream
along the path of the CME and back to the initial AEP or Lyapunov orbit to guarantee periodicity and,
therefore, CME monitoring for as long as the sail remains operational. The homo- and heteroclinic
connections are sought for by looking for connections between the unstable and stable manifolds em-
anating from the AEPs and Lyapunov orbits. To minimize the discontinuity in states at the linkage of
the unstable and stable manifolds, a genetic algorithm approach is used to optimize the piece-wise
constant attitude of the sail along the manifold trajectories and the location, i.e., which AEP or where
along the Lyapunov orbit, from where the manifolds emanate.

Though the homo- and heteroclinic connections exhibit a discontinuity in the attitude of the sail
at the connection of the unstable and stable manifolds, they provide a good initial guess for further
optimization with a direct pseudospectral method, implemented in the software tool PSOPT. In the
optimal control approach, the attitude of the sail is allowed to vary along the trajectory (instead of the
piece-wise constant sail attitude in the genetic algorithm approach) such that the sail travels as far as
possible upstream of the CME while staying as close as possible to the central axis of the CME.

The genetic algorithm results from both strategies show an improvement in warning time with re-
spect to the warning time achieved by current satellites in the environment of the L; point. Under the
assumptions taken in this research, the trajectories using the homoclinic connections from a Lyapunov
orbit out-perform those that employ heteroclinic connections between AEPs. The best genetic algo-
rithm solution offers an up to 10 times longer warning time than current satellites at L,. This solution
shows a small discontinuity in the states at the linkage of the unstable and stable manifold trajectories
in the order of thousands of kilometers for the position and centimeters per second for the velocity.
However, the discontinuity in the attitude of the sail of approximately 70 degrees renders the trajectory
unfeasible before further optimization. Furthermore, some parts of the trajectory are too far from the
axis of the CME to intercept CMEs approaching the Earth.

Finally, the trajectories obtained with PSOPT show that the sail remains within a defined distance to
the axis of the CME while traveling upstream of the CME due to a control law that modifies the attitude
of the sail at a rate achievable with state of the art technology. This strategy allows a 15 times longer
average warning time compared to the warning time provided by current satellites at the L, point.
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Introduction

Traveling through space without the need of carrying a limited amount of propellant that tightly con-
strains the possibilities of the mission sounds like science fiction. However, solar sails manage to
achieve this as they generate a continuous thrust by reflecting solar photons off a large and highly re-
flective membrane. They can be used to modify the classical Circular Restricted Three-Body Problem
(CRTBP) by including a continuous acceleration in the equations of motion. As such, solar sails al-
low new equilibrium points as well as broad possibilities for maneuvering throughout the solar system.
Although solar-sail technology has been tested in space, these missions were only technology demon-
stration missions. One of the best candidates for the first scientific application of solar-sail technology
is a space-weather warning mission, where a solar sail is placed between the Sun and the Earth to
detect harmful space-weather events such as coronal mass ejections or solar winds before they reach
the Earth [1]. The best example of such a mission was NASA's Sunjammer mission [2], which was
scheduled for launch in January 2015 before it was canceled in October 2014. This thesis aims at
designing a solar-sail mission to increase the warning time for solar storms even beyond the warning
time that Sunjammer would have achieved with the hopes of a new space-weather mission that finally
launches.

1.1. Solar sailing

The existence of solar radiation pressure was theoretically demonstrated by Maxwell in 1862 and its
magnitude was first measured experimentally by Peter Levendew in 1900. Solar radiation pressure is
extremely small, in the order of 9 N/km? at Earth’s distance from the Sun [3]. Nevertheless, sufficiently
large surfaces with a very low mass to area ratio - known as solar sails - can manage to generate
a “free” acceleration to travel through the cosmos. In space, small accelerations take advantage of
the absence of air resistance to build up large velocities for interplanetary missions. The acceleration
acting on a solar sail is mostly directed normal to the surface of the sail regardless of its orientation with
respect to the Sun, as illustrated by the force bubble in Figure 1.1 (left). However, the magnitude of the
acceleration does depend on the orientation: it is maximum when the incident radiation is normal to the
surface and zero when the radiation is parallel to the sail. Furthermore, it is not possible to generate a
solar-sail acceleration with a component towards the Sun.

It took more than fifty years to transition from Levendew’s experiment to actual mission designs
using solar-sail technology. The first real advancements in solar sailing date back to the 1970s thanks
to the appearance of the Space Shuttle with its capacity to take heavy payloads to space and the close
passage of comet Halley predicted for the beginning of the 1980s. This particular comet, with a highly
energetic retrograde orbit, had to be discarded for any possible rendezvous mission using conventional
propulsion systems since the required AV was too large. Solar sailing, on the contrary, provided low
but continuous thrust allowing the build-up of a considerable AV over a mission of some years and by
exploiting close approaches to the Sun.

However, the proposed designs, a solar sail of 800 x 800 m? or a heliogyro with 12 blades of 7.5
km [3] were considered too risky and inappropriate for the first use of this technology. Still, the mission
designs revived the interest in solar sailing and numerous papers were written [3, 4], enhancing the

1



2 1. Introduction

marvelous opportunities of this technology. Furthermore, some campaigns such as the Moon race in
the 1980s or the equivalent Mars race in the 1990s proposed a competition of solar-sail designs to
reach these celestial bodies. More and more projects were envisaged [3, 5-7] and the concept of solar
sailing was again extensively investigated. The problem was that none of these missions went much
further than some theoretical designs and calculations. They were also too ambitious, proposing huge
vehicles with long development times and unknown chances of success that no one dared to invest
money in.

During the last decades, solar sailing has experienced significant development, reaching a readi-
ness level that allowed four successful missions by the date of this publication. The first mission,
IKAROS [8], was developed by JAXA, then NASA's NanoSail-D [9], and finally LightSail-1 and -2,
shown in Figure 1.1 (right), from The Planetary Society [10]. There are also several missions planned
for the near future, such as Near-Earth Asteroid (NEA) Scout from NASA [11] and the Oversize Kite-
craft for Exploration and AstroNautics in the Outer Solar System (OKEANOS) by JAXA [12].

Solar sail

Figure 1.1: (Schematic drawing of solar-sail force bubble (left), edited from [13]. Lightsail-2 artist concept with Earth in the
background (right) [14].

1.2. Space weather

Space weather relates to the activity of the Sun and its effect on Earth [15]. This activity is divided into
Solar Energetic Particles (SEPs), solar flares, Coronal Mass Ejections (CMEs), and high-speed solar
wind.

SEPs are electrically charged particles that travel at relativistic speeds along the magnetic field lines
of the Sun and impact the Earth only if these magnetic field lines intersect those of the Earth. SEPs take
from 20 minutes to several hours to cover the distance between the Sun and the Earth [16]. Solar flares
release flashes of radiation from gamma-rays to radio waves, that will impact the Earth only if they are
formed on the side of the Sun facing the Earth [17]. A. Isavnin defines CMEs as “large-scale explosive
eruptions of magnetized plasma from the Sun into the heliosphere” [18]. CMEs can be ejected in any
direction with varying speeds and cover the distance to the orbit of Earth within hours or days. CMEs
will hit the Earth only under certain conditions and represent the main component of space weather.
Finally, the solar wind is a mixture of ions and electrons that fills the space between the Sun and the
planets. It escapes the Sun’s outer atmosphere and travels up to the outer border of the heliosphere.
High-speed solar wind originates in coronal holes and greatly influences the behavior of CMEs [15, 19].

Each space-weather event results in different effects on Earth. SEPs can be hazardous to satellite
missions, damaging electronics and solar arrays, or blinding star-trackers, and, especially, they endan-
ger astronauts by increasing their radiation doses to the maximum allowed for a lifetime within hours of
the event [16]. Solar flares affect the ionosphere with negative effects upon radio navigation and com-
munications. Furthermore, they can heat the atmosphere so it expands and drags satellites into lower
orbits [17]. Solar winds and CMEs generate temporary disturbances on the Earth’s magnetosphere
when they impact the Earth, which is known as a geomagnetic or solar storm. These storms disrupt
electric power grids and speed up the corrosion process of oil and gas pipelines. Some examples of
these effects are: in September of 1859 a solar storm stopped all telegraph communications within the
United States and Europe and in March 1989, a hydro-electrical power network in Quebec collapsed,
leaving 6 million people in an energy blackout for more than 9 hours [20]. Nowadays, with the increased



1.3. Missions for space-weather forecasting 3

technological dependency of humanity, a strong solar storm may have catastrophic consequences. In
Reference [21], J. P. Eastwood estimates the cost of several CME impact events and the likelihood
of the events: “For a 1-in-10-year sub-storm over western Europe, the direct cost is estimated to be
€9340 million, with estimated international spillover costs in the range of €787—1108 billion”. For a
1-in-100-year event, such as the one in March 1989, the cost will reach the amount of trillions of Euros
[21].

The magnitude of the consequences of these events shows the need to react before they reach
Earth. There are two possibilities: detection and prediction. Prediction works in a similar way as
weather forecasting for Earth’s surface events, using information about future events that may impact
the Earth provided by solar observations. Detection requires in-situ measurements made by satellites
with dedicated payloads placed along the path of the event. Then, the satellites can send a warning for
an event that will impact the Earth, so operators on the Earth will have some time to react and protect
sensitive infrastructure: satellites can turn-off their most sensitive components, astronauts can start
a safety procedure to enter a more shielded area of the station, and power stations can be prepared
for unusual activity [20]. The warning time will be proportional to the distance from Earth at which the
event is detected. Since SEPs and solar flares travel at speeds close to the speed of light, detecting
these events will provide almost no reaction time; the only solution being the observation of the Sun
to predict them [16, 17]. On the other hand, CMEs travel much slower than the speed of light, which
offers the possibility of both observation and detection [18, 22].

1.3. Missions for space-weather forecasting

Numerous NOAA, ESA, and NASA satellites study both the Sun and the Earth to understand the origin
and the effect of solar storms to reduce the consequences on vital space and ground infrastructure.
Some of these satellites orbit the Sun-Earth L; point, such as the Deep Space Climate Observatory
(DSCOVR) (NOAA/NASA, 2015), which gives real-time solar wind observations; WIND (NASA, 2004),
that studies the interaction between the solar wind and the Earth’s iono- and magnetosphere; the Ad-
vanced Composition Explorer (ACE) (NASA, 1997) provides coverage for solar wind and measures the
intensity of SEPs; and the Solar and Heliospheric Observatory (SOHO) (ESA/NASA, 1995), which has
detected more than 7000 CMEs [23]. Other missions like the twin Solar Terrestrial Relations Observa-
tories (STEREO A and B) (NASA, 2006) follow two heliocentric elliptical orbits, one closer to the Sun
and one further from the Sun with respect to Earth’s orbit [24], to collect data from CMEs.

The majority of the current missions for space-weather forecasting orbit in the vicinity of the Sun-
Earth L, point, approximately 1.5 million km closer to the Sun than the Earth. Due to the speed differ-
ence between CMEs and the warning message, the warning time that these missions can provide is
one hour on average. Solar sails can be used to increase the distance from the Earth at which the CME
is detected. When the continuous acceleration from a solar sail is added to the CRTBP, the well-known
five classical Lagrange points [25, 26] become surfaces of artificial equilibria that span around these
classical points [3]. The surface of equilibria in the environment of the L; point intersects the Sun-Earth
line at the so-called sub-L, point, which lies sunwards of the classical point at a distance given by the
efficiency of the solar sail. This sub-L; point has been the target of numerous solar-sail mission designs
to increase the warning time for solar storms over the last two decades. In Reference [1], the author
proposes injecting a sail into a sub-L; point and develops a series of trajectories to achieve periodic
motion around the sub-L; point. Similarly, the Sunjammer mission [2] was a NASA project for increased
solar-storm warning time that aimed at injecting a solar sail in a halo orbit around a sub-L; point. The
launch date was planned for January 2015, but the mission was canceled in October 2014. Finally, in
Reference [27], the authors also planned to inject a solar sail into a halo orbit around a sub-L; point
but assumed that the vehicle is filled with SpaceChips [28], i.e., very small satellites with a high area to
mass ratio offering a behavior similar to solar sails. These SpaceChips would then be deployed from
the main spacecraft to follow the unstable manifold of the periodic orbit towards the Sun. On their jour-
ney along the manifold, they will perform observations of the Sun, greatly increasing the warning time
for CMEs (between 4.5 and 9 hours). The main disadvantage of this mission was the finite quantity of
these small satellites that can be carried and therefore limited mission lifetime.
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1.4. Research goals and questions

The objective of this investigation is:
to increase the warning time for potential CMEs approaching the Earth with respect to current
mission and mission designs by designing a solar-sail trajectory that travels upstream along
the axis of the CME.
The current missions and mission designs detect the CMEs at different points along the Sun-Earth line,
i.e., the classical L, the displaced sub-L; point, or closer to the Sun in the unstable manifold of an orbit
around the sub-L; point. Using the approach proposed in this thesis, the sail will leave the Sun-Earth
line to follow, as closely as possible, the path of CMEs directed towards the Earth. This novel approach
allows the detection of the CME with longer average warning times for similar sail efficiencies than the
previously discussed missions. For this, the invariant manifolds of different artificial equilibrium points
in the environment of the L; point and Lyapunov orbits around a sub-L,; point are exploited to generate
hetero- and homoclinic connections that take the sail closer to the Sun along the path traveled by the
CME.
To achieve this goal, the research should answer the following questions:
A. Is it possible to use heteroclinic connections between different solar-sail artificial equilibrium
points in the sub-L; region to travel upstream of the CME using a piecewise-constant sail at-
titude?

B. Is it possible to use a homoclinic connection of a Lyapunov orbit around a sub-L, point to travel
upstream of the CME using a piecewise-constant sail attitude?

C. Is it feasible to optimize the sail attitude from a piecewise-constant attitude to a continually vari-
able attitude to further increase the warning time for solar storms?

It is expected that the answers to these questions will substantially increase the flexibility to design
a solar-sail mission to adequately warn for Earth-approaching CMEs.

1.5. Report outline

The main content of the thesis is presented as a draft article in Chapter 2. The draft article style of the
American Institute of Aeronautics and Astronautics (AIAA) is chosen due to the relation between the
content of this thesis and their journal. The paper starts with an abstract and an introduction. Then
Section Il shows how to model the shape of CMEs. Section Il explains the dynamics employed for the
study and presents the concept of invariant manifolds. Section IV shows the preliminary results along
invariant manifold-like structures employing a piece-wise constant attitude. Then, in section V, the best
candidate from the options presented in Section |V is optimized with an optimal control solver (PSOPT)
to further increase the warning time and fix the discontinuities from the piece-wise constant attitude
trajectory. Finally, the results are discussed in Section VI and the conclusions presented in Section VII.

After the article draft, in Chapter 3 the research questions are answered in line with the results
presented in the paper and the possibilities to expand the work are discussed. Finally, Appendix A
includes the verification of the simulations used for the research.
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Solar-Sail Surfing Along Invariant Manifolds to Increase the
Warning Time for Solar Storms

Gonzalo Herrero Martinez*
Delft University of Technology, 2629 HS, Delft, The Netherlands

This paper proposes a new mission strategy to detect Coronal Mass Ejections (CMEs) and
greatly increase the warning time for these CMEs. The warning time is proportional to the
distance from the Earth at which the CMEs are detected, where the current warning time of
one hour is achieved by satellites orbiting the Sun-Earth L, point. To date, several mission
designs have taken advantage of solar-sail technology to displace the L; point sunward to a
so-called sub-L; Artificial Equilibrium Point (AEP) and as such place the satellite closer to
the Sun. However, the increase in warning time is modest for any near-term sail efficiency.
We investigate the use of the invariant manifolds emanating from AEPs in the L; region and
Lyapunov orbits around sub-L; points to generate a trajectory that travels upstream of the
CME to increase the distance from the Earth at which the CME is detected and, consequently,
increase the warning time. Initial results are obtained with a genetic-algorithm approach,
where homoclinic connections of a solar-sail Lyapunov orbit provide the largest increase in
warning time. These connections are then used as initial guesses for solving the optimal control
problem with a direct pseudospectral method to reduce the distance to the axis of the CME

and increase the warning time to an average of 15 hours.

I. Introduction

ORONAL Mass Ejections (CMEs) are large-scale explosive eruptions of magnetized plasma from the Sun into the
Cheliosphere [1] and they represent the main contribution to solar storms [2]. The solar wind is a mixture of ions
and electrons that fills the space between the Sun and the planets and greatly influences the behavior of CMEs [2—4].
Solar winds and CMEs generate temporary disturbances on the Earth’s magnetosphere when they impact the Earth,
which is known as a solar storm. If undetected, these storms can result in disastrous consequences such as disruptions in
electric power grids or accelerated corrosion of gas and oil pipelines. In Reference [5], the authors estimate the cost of a

non-detected, 1-in-100-years CME to be in the order of trillions of Euros.
Detection requires in-situ measurements of the CME, for which satellites with dedicated payloads are placed along

its path. Upon detection of the CME, the satellites send a warning to Earth, so that the operators on Earth have time to

*Graduate Student, Department of Astrodynamics and Space Missions, Faculty of Aerospace Engineering, G.J.HerreroMartinez @student.tudelft.nl



react and protect sensitive infrastructure. Numerous NOAA, ESA, and NASA satellites use the Sun-Earth L point as
a vantage point to detect CMEs and solar winds. Some examples include DSCOVR (NOAA/NASA, 2015), WIND
(NASA, 2004), ACE (NASA, 1997), and SOHO (ESA/NASA, 1995) [6]. SOHO by itself has detected more than 7000
CMEs [7]. The warning time is proportional to the distance from Earth at which the CME is detected, so satellites at the
L, point can achieve warning times of approximately one hour [2, 5].

Solar sails can be used to increase the distance from the Earth at which a CME is detected. When the continuous
acceleration from a solar sail is added to the Circular Restricted Three-Body Problem (CRTBP), the well-known five
classical Lagrange points [8, 9] become surfaces of equilibria that span around these classical points [10]. The surface
of equilibria in the environment of the L; point intersects the Sun-Earth line at the so-called sub-L; point, which lies
sunward from the classical point at a distance determined by the efficiency of the solar sail: the more efficient, the closer
to the Sun.

During the last 30 years, solar sailing has experienced significant development, reaching a readiness level that
allowed four successful missions by the date of this publication. The first mission, IKAROS [11], was developed by
JAXA, then NASA’s NanoSail-D [12], and finally LightSail-1 and -2 [13] from The Planetary Society. There are also
several missions planned for the near future, such as Near-Earth Asteroid (NEA) Scout [14] from NASA (launch date to
be determined between 2020-2021) and the Oversize Kite-craft for Exploration and AstroNautics in the Outer Solar
System (OKEANOS) by JAXA (launch date is set for the year 2027) [15].

In the literature, several proposals can be found that use solar sails to design missions that increase the warning
time for CMEs [16—19]. In Reference [16], the author designs a series of trajectories that keep the solar sail in the
environment of a sub-L; point, providing an increased warning time with respect to the aforementioned satellites at
the L point. Similarly, NASA’s Sunjammer mission [17] proposed a halo orbit around a sub-L; point to increase the
warning time. In Reference [18], the authors take advantage of SpaceChips, i.e., very small satellites with a high area to
mass ratio that behave like solar sails [19], by releasing them from a spacecraft in a halo orbit around a sub-L; point
into its associated unstable manifold to travel sunwards along the Sun-Earth line for a limited amount of time. Finally,
the authors of [20-22] study the dynamics of the Sun-Earth system with a solar sail to navigate between Artificial
Equilibrium Points (AEPs). During the motion between these AEPs, the sail gets closer to the Sun than when it would
remain at the AEP itself, again allowing a modest increase in the warning time for CMEs. These mission proposals
always consider the CME traveling along the Sun-Earth line, which works for small distances from the Earth. However,
to greatly increase the warning time, the actual path of CMEs as they travel through the Solar System [1] has to be
considered, as it then becomes possible to design a solar-sail trajectory that truly follows the axis of the CME upstream
of its interplanetary trajectory.

In this paper, we show the design of a periodic trajectory in which the sail travels upstream of the CME axis to

increase the warning time for CMEs. We evaluate the feasibility of two strategies: a trajectory composed of two



heteroclinic connections between two AEPs belonging to the family of AEPs in the sub-L; region and a homoclinic
connection of a Lyapunov orbit around the sub-L; point. Both strategies are optimized with a genetic algorithm to
maximize the warning time and minimize the discontinuity in states at the linkage between the unstable and stable
manifolds of the homo- and heteroclinic connections. Then, the best strategy is used as the initial guess for an optimal
control solver that further optimizes the trajectory to eliminate the linkage error and increase the average warning time
that can be obtained with the trajectory.

After this introduction, Section II shows how to model a CME in the CRTBP. Section III presents the dynamics
of the solar sail in the planar CRTBP. It includes the computation of artificial equilibria, periodic orbits around the
equilibria, and the invariant manifolds emanating from the equilibria and the periodic orbits. Section IV contains the
search for optimal trajectories using a piecewise-constant attitude for the sail using a genetic-algorithm approach. In
Section V, the best solution from Section IV is optimized with an optimal control solver to further increase the warning

time. Then, Section VI discusses the results. Finally, the paper ends with the conclusions in Section VII.

I1. Modelling Coronal Mass Ejections
The path or structure of a Coronal Mass Ejection (CME) can be modeled as a cylinder in equilibrium along the
stream of solar wind radially outflowing from the Sun. The equilibrium is given by a balance between the forces
of hydrodynamic streamlining, Fg, magnetic tension, Fg, and gravity, Fg, as Fg = Fg + Fp [1]. The model is
completed by including some deformations such as front flattening, pancaking, and skewing. Front flattening represents
a compression along the Sun-Earth line, pancaking relates to the non-circular cross-section of the CME and skewing is

caused by a rotation along an axis normal to the plane in which the Sun and the Earth orbit. To model the axis of the
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Fig. 1 Schematic drawing of a solar sail in the PCRTBP.



CME, a Sun-Earth synodic reference frame, C(%, §, Z) is used. The origin is set at the center of mass of the system,
the x-axis lies along the line connecting the Sun and the Earth and points towards the Earth, the z-axis is directed
perpendicular to the plane in which the Sun and the Earth orbit, and the y-axis completes the right-handed reference
frame. This frame rotates at a constant angular velocity w around its z-axis, & = wZ. Figure 1 shows a projection of the

reference frame employed, C (%, ¥, Z), onto the ecliptic plane. The unit of mass is defined as the sum of the masses

of the system m;| + my = 1. Then, with the mass ratio u = m]"fmz = 3.0404 - 107°, the dimensionless masses of the
massive bodies become m; = 1 — u and m, = p. The unit of length is set as the distance between both massive bodies.
Then, the distance from each massive body to the center of mass of the system is u and 1 — y for the Sun and the
Earth, respectively. Finally, the unit of time is chosen such that the orbital period of the Sun and the Earth around their
barycenter is 27, then the angular velocity of the reference frame becomes w = 1.

In this reference frame, the CME axis is defined in polar coordinates (rcy k., ), wWith rear g = O representing the

location of the Sun, and where ¢ is measured in the ecliptic with ¢ = 0 at the Sun-Earth line [1]:

reme (@) = R, cos" (ap) (1)

where R; is the toroidal height of the CME, set as the distance between the Sun and the Earth, n = 0.5 is the front
flattening coefficient, and a = (7/2)/¢nw, Where @p,, = 30° is the angular half-width of the axis. Due to the dynamics
of the Solar System, the CMEs evolve in an anti-clockwise manner, which limits the in-situ observation of incoming
CMEs to the area between the Sun-Earth line and the quarter of the Earth’s orbit immediately trailing the Earth’s
instantaneous position. Therefore, while the axis defined by Eq. (1) spans over the length of the CME, we are only

interested in the fraction of the axis upstream of the Earth, see the dashed blue line in Figure 2.

II1. Dynamics
This study is conducted within the well-known Sun-Earth Planar Circular Restricted Three-Body Problem (PCRTBP)
dynamical framework [8, 9] augmented with a solar sail [10], that defines the motion of a massless particle (the solar
sail) with respect to two massive bodies, the Sun () and the Earth (m,), which orbit in a circular motion around their

barycenter. In this framework, the motion of the solar sail in reference frame C (%, J, Z) is given by [9, 10]:
P20 XF+& X (& XF) =dy+VV, )

where 7 = [x y z]7 is the position of the sail. The terms on the left-hand side of Eq. (2) are the kinematic, coriolis,
and centripetal accelerations. The terms on the right-hand side are the sail acceleration and the gravitational acceleration

exerted by the main bodies. The centripetal acceleration in Eq. (2) can be expressed as the gradient of a scalar potential
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function, V. = —% | x 7)?. Then, the gravitational potential, Vg, can be combined with the centripetal potential into a
new, effective potential, U [9]:

1
U= z(x2+y2)+

1__“+ﬁ 3)
r

r
where 71 = [(u+x) y z]7 is the Sun-sail vectorand 7 = [(x — (1 —x)) y z]7 is the Earth-sail vector. As the
research is conducted within the ecliptic plane, the vector components in the direction normal to this plane will always
be zero, z = 0. Therefore, to ease the notation, the three-dimensional vectors will be expressed only with the two first
coordinates 7 = [x y]”. Finally, for the sail acceleration, we use an ideal-sail model, which assumes pure specular

reflection of the incident photons. With this assumption, the solar-sail acceleration is defined as [10]:

ay = ﬁl ;zﬂ cos?a it = [as,, asy]T 4)
1

where f is the lightness number of the sail, « is the cone angle of the sail, and 7 is the unit vector in the direction
normal to the sail. The lightness number is defined as the ratio between the solar radiation pressure acceleration and the
solar gravitational acceleration of the sail. In 2014, the Sunjammer mission was designed with a lightness number of
B =0.0363 [17]. In Reference [23], the authors suggest lightness numbers up to S = 0.067 as a near-term possibility.
For the study presented in this paper, we have considered a modest lightness number of 5 = 0.04 as the reference value,
which is a realistic value for present and near-term solar-sail missions. The cone angle defines the orientation of the sail

and is measured clockwise as the angle between the normal to the sail 7 and the direction of the incident radiation. It is

defined as: cos = 7 - 7i. The normal vector 7 is obtained by a clockwise rotation of the unit vector in the Sun-sail



direction, 1, around the z-axis over an angle a:

cosa —sina O
n=RoF1 = |sina cosa 0|71 )
0 0 1

Note that several models represent the solar-sail acceleration with higher fidelity than the ideal model used.
The non-ideal behavior of a sail is divided into three categories: attitude control, shape deformations, and optical
imperfections [24]. The non-ideal behavior associated with attitude control mainly requires to reduce the maximum
cone angle to, at least, 85 degrees. The non-ideal shape effects can be simplified with a small reduction in the sail
performance. On the other hand, non-ideal optical effects have a larger impact on the sail behavior. As presented in
Reference [24], a non-ideal model including numerous optical imperfections shows a mismatch in the thrust of up to
10% for cone angles below 60 degrees, while the mismatch increases to more than 100% as the cone angle approaches
90 degrees. The authors suggest a simplified non-ideal model where only 84% of the light is reflected specularly while
the rest is absorbed with no re-emission. Since the current paper covers a preliminary mission design, the only non-ideal
effect considered is a reduction in the maximum cone angle to 80 degrees. The remaining non-ideal effects are left for

future research.

A. Equilibrium Points

The CRTBP, and equivalently the PCRTBP, exhibits five well-studied classical equilibrium points in the xy-plane at
locations where the condition VU = 0 is satisfied [8, 9]. The inclusion of the solar sail modifies the dynamics of the
system such that the five classical points evolve into surfaces of equilibria [10, 25]. These surfaces are determined by
the sail orientation and can be parametrized by the lightness number, 8. Each point within these surfaces is known as an
Artificial Equilibrium Point (AEP). As in the classical problem, the AEPs are located where no acceleration acts on the
spacecraft when it has zero velocity. Substituting these conditions into Eq. (2) shows that the sail acceleration needs to
equal the gradient of the potential at the AEP [25]:

1- A
2” cos’an (6)

n

YU =p

which can only be satisfied if it is parallel to VU. Since 7 is a unit vector, 7i = VU /|VU| yields the appropriate orientation
for the sail. Then, from Eq. (6) and the definition of the cone angle, we can derive an expression that defines the

required lightness number to generate an AEP as a function of the sail position and orientation within the PCRTBP with
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a solar sail as [25]:

p=- r_%ﬂ e )
Fl-n)

Figure 3 shows a contour plot of the required values for the lightness number close to the classical L; and L, points.
In the case where the lightness number equals zero, the surfaces of AEPs are reduced to the classical five equilibrium
points. As the lightness number increases, the surfaces expand around the classical points. We refer to the surfaces
of equilibria in the vicinity of the L; point as the sub-L; region. Furthermore, the intersection of these surfaces of
equilibria with the x-axis will be referred to as the sub-L; points, which are displaced closer to the Sun as the lightness
number increases. The forbidden regions between L and the Earth and farther away from L, appear due to the physical
limitations of the solar sail, as it is not possible to direct the sail acceleration towards the Sun. Mathematically, this

constraint can be expressed as 7 1- i >0or equivalent limits of +£90 degrees in the cone angle. The white areas outside

the forbidden zones require larger lightness numbers than the range shown in Figure 3.



B. Periodic Orbits

The classical equilibrium points allow periodic motion around them that results in different types of orbits, such as
Lyapunov, Lissajous, or halo orbits [8, 9]. The AEPs presented in Section III.A also allow the existence of these kinds
of orbits [10, 25]. For example, displaced halo orbits such as the one considered as a destination for the previously
proposed Sunjammer mission [17].

At any of the equilibrium points, we can find families of orbits that satisfy the conditions for periodic motion [21].
For a given sub-L; point (for a given lightness number), we can obtain the initial conditions of a periodic orbit from a
catalog. In particular, we obtain the initial conditions of a planar Lyapunov orbit around the sub-L; point for 8 = 0.03
from [25].

To obtain periodic orbits from the initial condition in Reference [25], a differential correction scheme [8] is
used, keeping the initial x-coordinate fixed, to slightly adjust the other initial conditions to ensure periodicity for our
implementation. Then, the full family of Lyapunov orbits around the sub-L; point can be obtained with a continuation
scheme [8]: one of the parameters, in our case, the initial value for the x-coordinate, is slightly increased (or decreased)
by a small value & = 107>, and via differential correction, the remaining initial coordinates are modified accordingly [8].
After several iterations, it is possible to obtain a family of orbits of smaller or larger amplitude.

Similarly, we can conduct a continuation in the lightness number by starting from the initial condition of any orbit
within a family of orbits with constant lightness number and increase/decrease the lightness number by a small value
£ =2-107 and apply the differential corrector. It is important to highlight that the value for & has to be small enough
to allow convergence of the differential correction algorithm but not too small to require too many iterations. Figure 4
shows the results of these procedures. Figure 4 (left) shows six Lyapunov orbits for different lightness numbers between
B =0.03 and 8 = 0.04. The orbits shift towards the Sun as the lightness number increases. Instead, Figure 4 (right)
shows a family of Lyapunov orbits around the sub-L; point that has been generated starting from the initial orbit with

B = 0.04 from Figure 4 (left).

C. Invariant Manifolds

The classical L; point and the AEPs in the neighborhood of the sub-L; point are unstable [8, 20]. Similarly, AEPs
and numerous periodic orbits in the CRTBP, as well as in the PCRTBP with a solar sail, are also unstable [8, 25]. A
particle at rest at the equilibrium point or traveling along the unstable orbit that experiences a slight perturbation in
the unstable direction will exponentially divert away from the equilibrium point or orbit. Likewise, a particle with
the appropriate initial conditions will exponentially approach the equilibrium point or periodic orbit along the stable
direction.

The manifolds of a periodic orbit can be constructed by propagating the dynamics defined in Eq. (2) from a

state-vector along the stable or unstable direction. These directions are defined by the stable and unstable eigenvectors of
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the monodromy matrix, which is the state transition matrix evaluated after one period of the orbit. The state transition
matrix, ®(z, fy), approximates how a slight deviation in the state variables propagates along the trajectory, 7. It is

propagated together with the equations of motion with the initial condition ®(#y, zy) = I as [8]:

D(1,10) = AD(1, 1) (3
where A is:
. 0 1 0 1
A=1lavu , %, ol Q= ©)
o7 o ). -0

In the PCRTBP, the monodromy matrix has four eigenvalues: (4, 1/4, 1, 1). The stable eigenvector at the initial point of
the orbit, )73 (Xo), is the eigenvector associated to the eigenvalue smaller than one, while the unstable eigenvector at the
initial point of the orbit, y»” (Xo), is the eigenvector associated to the eigenvalue larger than one. Then, the state transition

matrix can be used to propagate the stable and unstable eigenvectors to any point along the orbit as [8]:

Y E(D) = ®(1,10) Y5 (Ro) 5 YH(E(1) = D(2,10) y*(¥o) (10)

where X(¢) is the state vector along the orbit as a function of time. Finally, the initial conditions of the trajectories along

the manifolds can be described by [8]:

PE)=Ftey’(®) ; X)) =X ey () (11)

where & = 107% is a constant that provides the magnitude of the perturbation. Larger perturbations require less time to



divert away from the periodic orbit but reduce the fidelity of the manifolds [8, 9]. Then, considering both the negative
and positive signs from Eq. (11), two branches of the unstable and stable manifolds can be obtained. By integrating the
initial conditions of the unstable manifold, X (X), forward in time, we generate trajectories shadowing the two branches
of the unstable manifold W**. For the stable manifolds, W**, the same procedure can be applied, but the integration
has to be performed backwards in time. In a similar manner, the invariant manifolds of any equilibrium point can be
computed; only then, the monodromy matrix is substituted by the Jacobian evaluated at the equilibrium point (/Y), ie.,
Fo = XAgp, as defined in Eq. (9). Then, with Eq. (11), but using the state vector at the AEP (X = Xagp), we obtain the
initial conditions of the manifolds, which provide the unstable and stable branches of the manifolds when propagated
forward or backward in time.

A change in the attitude of the solar sail will generate a different manifold-like structure, where the expression
"manifold-like structure" is used because the term "invariant manifold" loses its meaning when the attitude is changed
away from that used to maintain the orbit or the equilibrium point. However, to simplify the reading of the paper, we will
refer to these manifold-like structures simply as manifolds. Figure 5 (left) shows the invariant manifolds of one of the
Lyapunov orbits shown in Figure 4 (right), where the background is set as the shape of a CME as it propagates towards
the Earth. The invariant manifolds for the same cone angle as in the Lyapunov orbit, @ = 0, appear in red (unstable)
and blue (stable). In magenta (unstable) and cyan (stable), we also include the effect of changing the sail attitude in
the propagation of the manifold trajectories. Note that, in order for the unstable and stable manifold trajectories to be
symmetric with respect to the Sun-Earth line, the cone angle needs to be of opposite sign in the unstable and stable
manifolds. Figure 5 (right) shows the invariant manifolds of the family of AEPs associated to the sub-L; point for
B =0.04. In red (unstable) and blue (stable), we show the unstable and stable manifolds for @ = +70°, which bring the
sail closer to the Sun. In magenta and cyan, we show the unstable and stable manifolds for @ = #35°, which take the sail
farther away from the Sun.

The intersection of the stable and unstable manifolds of a periodic orbit around an equilibrium point generates a
family of homoclinic trajectories that connect the periodic orbit with itself, i.e., a particle starts at the periodic orbit,
follows the unstable manifold until the intersection with the stable manifold, to then follow the stable manifold to arrive
again to the periodic orbit. The intersection of the unstable manifold of a periodic orbit with the stable manifold of a
different periodic orbit generates a family of heteroclinic trajectories that connects both periodic orbits [9]. Although
the velocity components are missing in Figure 5, the direction of the velocity can be inferred as tangent to the trajectory.
Therefore, if an unstable and a stable manifold trajectory intersect tangentially there is a great likelihood of the existence
of a homo- or heteroclinic connection. In Figure 5 (left) we can see near-tangential intersections between the magenta
and cyan manifolds at the locations [x ~ 1.02,y ~ +0.22]. In Figure 5 (right) we can detect potential connections
between the red and blue manifolds when they cross the x-axis at the point farthest from the family of AEPs. Similarly,

the best connection (though less tangential than for the previously mentioned cases) between the cyan and magenta
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manifolds in Figure 5 (right) can be found along the x-axis away from the Sun.

IV. Genetic algorithm approach

From Figure 5, we inferred the possibility of homo- and heteroclinic connections between manifolds in the position
domain. In this section, we perform an analysis to search for connections both in the position and velocity domain to
confirm that there is indeed a match between unstable and stable manifold trajectories. In some cases, it is possible to
reduce the dimension of the search space. For example, if one wants to find connections for a certain value of one of the
coordinates, say along the x-axis, then one of the dimensions is already constrained as y = 0. Furthermore, if both
the unstable and stable manifold trajectories are constructed for a zero cone angle, then the energy level will remain
constant along the trajectory and one further dimension can be constrained through the energy conservation equation. In
the problem considered in this paper, we do not want to keep the sail angle equal to zero, as this limits the search space
too much, but we can define a surface of intersection with an auxiliary line as explained later in this section.

As a first approach to demonstrate the existence of connections in the four-dimensional space defined by position
and velocity, we performed a grid search in which we compared the state vectors of the trajectories along the stable
branch with those of the unstable branch for different integration times along both the stable and unstable manifolds.
Then, the integration time that allows the smallest difference between a state vector from a trajectory from each manifold
is defined as the intersection point. The grid search proved to be inefficient and slow, but confirmed the existence of
connections and provided some insight into the optimal values for the variables of the optimization, such as the location
of the intersection or the range of cone angles that will guarantee the existence of connections. However, the procedure
to compute the invariant manifolds with sufficient resolution (amount of starting points along the Lyapunov orbits and

the family of AEPs from which the manifolds emanate), integration times (number of points along the trajectories within
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the manifold), and control (different cone angles) is very costly for a grid search. Therefore, a Genetic Algorithm (GA),

implemented in the MATLAB® function ga.m*, has been used to optimize the problem.

A. Methodology

The objective of the optimization is to generate a periodic trajectory that takes the sail upstream of the CME,
increasing the warning time with respect to a sail at the sub-L; point. As previously mentioned, we consider two types
of trajectories: a trajectory composed of two heteroclinic connections between two AEPs in the sub-L; region and a

homoclinic connection of a Lyapunov orbit around the sub-L; point.

1. Heteroclinic trajectories between AEPs

Fig. 6 Schematic of the heteroclinic trajectory showing the variables of the problem.

The trajectory to-be optimized, presented in Figure 6, starts at a certain AEP, p, within the family of AEPs located
below the x-axis (negative y). The trajectory evolves along the unstable manifold associated to an initial cone angle, a1,

until the intersection with an auxiliary line defined by an angle 6, as:

y=tanf;(x — 1) (12)

The trajectory then follows the stable manifold associated to a different cone angle, a,, which has been integrated

*ga.m - Find minimum of function using genetic algorithm. URL https://www.mathworks.com/help/gads/ga.html last accessed on
06/05/2020 using MATLAB® R2019b
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backward in time starting from another AEP, p,, in the family of AEPs located above the x-axis (positive y) until the
intersection with that same line.

To return to the initial AEP, p, and construct a periodic trajectory that can be repeated over time, the second half of
the trajectory to be optimized starts at p, and follows a trajectory along the unstable manifold associated to a cone angle,

a3, until the intersection with a second auxiliary line given by an angle 6;:

y=tan6,(x — 1.3) (13)

Then, for the solar sail to return to p1, it follows a final trajectory segment along the stable manifold emanating from
p1 associated to the final cone angle, @4, which has been integrated backwards in time until the intersection with that

second auxiliary line. By defining the problem in this way, it can be represented by the following decision vector:

1 p1 TNeqpoints
?TN €qpoints p2 Neapoins
0° ay 30°
-30° (053 0°
< < (14)
135° 01 225°
-30° ;3 0°
0° a4 30°
135° 62 225°
where Neg,, ..., Tefers to the AEP number within the family of AEPs, which is defined by discretizing the continuous

line of AEPs into 2850 points equally spaced along the y-axis between y = 0.24 and y = —0.24. Furthermore, due
to the symmetry of the problem, and from the shape of the manifolds shown in Figure 5 (right) we have limited the
search-space of this index to the upper and lower quarters of the family. The use of an integer (p1, p») to select the
starting and targeted locations allows a discrete representation of the family of AEPs without additional computational
cost to obtain a state vector that satisfies the equilibrium conditions at each step of the GA.

The initial condition to integrate the invariant manifolds after a perturbation +& along the stable/unstable direction
was defined in Eq. (11). This holds for the nominal manifolds, i.e., those in which the sail keeps the same cone angle as
required to maintain the equilibrium. However, for the manifold-like structures of the family of AEPs, a change of angle
provides a perturbation several orders of magnitude larger than that produced by €. Therefore, instead of propagating

the state vector at the AEP plus the perturbation given by Eq. (11), we simply integrate the state vector at the AEP with
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a different attitude forwards and backward in time. Then, the only manifolds that travel towards the Earth are unstable
manifolds associated to positive cone angles and stable manifolds associated with negative cone angles. Therefore, the
cone angle theoretical limits of +90 degrees, as well as the more realistic limit of +80 degrees as defined in Section III,
are too broad. Due to the mirrored symmetry of the problem, the stable manifolds directed towards the Sun can only be
integrated for positive cone angles, while the unstable manifolds only emanate using negative cone angles. Finally,
after trial and error, we have tightened the boundaries of the cone angle to reduce the computation time. All these
considerations lead to the bounds as specified in Eq. (14).

The cost function for this problem, Fj,¢s¢r0, includes two main terms: F o arq for the forwards (first) heteroclinic

connection and Fp ek wara for the backwards (second) heteroclinic connection:

Fhetero = Fforward + Fpackward = Atutl + Fpenaltyl + Atatz + Fpenaltyz (15)

where A;,;, and A;,;, represent the quality of each heteroclinic connection, i.e., the error in position plus the error in

velocity at the intersection, and are equally defined as A,.;,:

Atot,- = Apusi + Aveli
(16)

APUSL' = \/(x”’i - .Xs’i)z + (yu,i - ys’i)z ; Aveli = \/(qu,i - va,i)z + (V)’u,i - v}’s,i)z

where the sub-indexes refer to the unstable (,, ;) and stable (; ;) branches of the manifold for each heteroclinic connection
(i=1andi=2). Fpenairy, and Fpepnairy, are penalty functions to account for the location of the intersection. Fpenairy,
accounts for the location of the intersection of the first heteroclinic connection, giving a larger penalty to the solutions
that do not travel upstream of the CME trajectory. It is computed as the distance between the location along the trajectory
with minimum value for x, x,,;,,, and a location upstream of the CME along the x-axis chosen by trial and error after
several runs of the GA:

Fpenatty, = A(Xmin — 0.85)* (17)

Fpenalry, is used to limit the distance from the Earth along the x-axis traveled during the second heteroclinic connection:
Fpenaltyz = Axpmax — (1 = /1))2 (18)

where X,,,4x is the maximum value for x along the trajectory. Finally, A is a multiplier that is used to determine the
weight of the penalty functions within the cost function at the initial generations of the GA. As the GA progresses and
the solutions are refined, a reduction in the weight allows the GA to focus on the quality of the connection rather than on

the minimum value for x. The progressive weighting has been implemented after several runs of the GA, as it tended to
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show bad quality connections with great variability between different runs. With this modification, the GA increased its

repeatability and the quality of the connections. The multiplier takes the following values:

0.1 it Asor, 21072
A=40.001 if 1072 > Aoy, > 107° 19)

0 if Ao, <1076

The problem defined above has been simulated in MATLAB® for eight different seeds, implemented using the
MATLAB® function rng.m"': rng(1,2,3,...,8), where a maximum number of seed values of eight was consider sufficient
due to the similarity in the shape of the trajectories found. Then, the trajectory with the smallest value for Fjeser0 from
Eq. (15) is selected as the optimal one. For each run, the default settings of the MATLAB® ga.m function have been

used, except for the function tolerance, which was set to 107, and the population size, which was set to 150.

2. Homoclinic trajectories of a Lyapunov orbit

The process to obtain homoclinic solutions of a Lyapunov orbit follows a similar methodology to that defined for the
heteroclinic solution. Figure 7 shows the trajectory to-be optimized, which starts at a location, pi, of a certain Lyapunov
orbit around the sub-L; point. The trajectory evolves along the unstable manifold associated with a cone angle, a1, until
the intersection with an auxiliary line defined by Eq. (12). The trajectory then continues along the stable manifold
associated with another cone angle, @, which has been integrated backward in time from another location, p;, of the
same periodic orbit until the intersection with that same line. With this definition of the problem, it can be represented

by the following decision vector:

1 D1 Norbitpoints
1 P2 Norbitpoints
-30° ay 30°
0° B s L 80° 20)
0 diry 1
0 diry 1
250° 01 270°
1 orbit size f amily

+rng.m - Control random number generator. URL https://www.mathworks.com/help/matlab/ref/rng.html last accessed on 08/05/2020
using MATLAB® R2019b
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where each Lyapunov orbit has been discretized with a resolution of Nopir,,,,;,,,, = 10000 points; orbit is an integer that
refers to the index of the orbit within the family of 100 Lyapunov orbits with different amplitudes as presented in Figure
4 (right), where only one in every five orbits is shown to ease readability; and dir and dir, are logical variables that
refer to the direction in which the manifold is propagated: a zero uses —& and a one uses +& in Eq. (11) to generate the
trajectory along the manifold. While the change in cone angle is a sufficient perturbation to start the integration of the
manifolds for the heteroclinic strategy in Section IV.A.1, the manifolds associated to small values of the cone angle
emanating from a Lyapunov orbit are affected by the sign of £. Finally, the boundaries for the cone angles come from

the defined limits for a solar sail as defined in Section III, plus a reduction in the search-space based on trial and error.

N,

Tbitpoints

PSTR 4

Fig. 7 Schematic of the homoclinic trajectory showing the variables of the problem.

The cost function used to guide the GA to the optimal solution is defined as:

Fromo = Ator + Fpenalty 2n

where the first term, A;,;, is the quality of the connection as defined in Eq. (16). The second term in the cost function

accounts for the location and shape of the trajectory, which is composed of three terms:

1- Xmin

T (Xmin —0.7) (22)

Fpenalty =4
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where the multiplier A follows the same three step definition as defined in Eq. (19), only using different values:

5 if Aoy = 1072
A=430.05 if 102> A, > 1073 (23)

0 if Ay < 1070

The second term represents a ratio between the maximum distance traveled along the x-axis between the sail and the
Earth and the maximum displacement from the x-axis. This term is used to keep the solution close to the x-axis. Here,
the location of the Earth along the x-axis is approximated by 1 instead of 1 — u due to the negligible impact of this
correction. The third term refers to the distance traveled along the x-axis between the minimum value for x, x,,;,, and a
point of reference upstream of the CME. This point has been chosen as x = 0.7 after several runs and analyses of the
results of the GA. The objective of this third term is to guide the solution towards a location upstream of the CME along
the x-axis without reducing the quality of the connections nor completely changing the shape of the solution. This
factor is squared to increase the relative weight of this term and to avoid the possibility of flying away from the sub-L,
point towards the L, region and beyond. Finally, there is a hard constraint that sets the cost function to F' = 100 in case
the trajectory does not intersect the line defined in Eq. (12).

The problem defined above has been simulated in MATLAB®, again for eight different seeds and with the same
settings for the GA as for the heteroclinic solution. Like before, the trajectory with the smallest value for Fj, ., from

Eq. (21) is selected as the optimal one.

B. Results

Figure 8 shows the results of the GA using a solar sail with a lightness number of g = 0.04 for the two discussed
strategies: heteroclinic connections between AEPs (left) and homoclinic connections of a Lyapunov orbit (right). The
background is set as the shape of a CME as it propagates towards the Earth to show the effectiveness of the solutions.
The normal vector of the sail is shown as red arrows along the trajectory. Note that the change in attitude is assumed

instantaneous at the location of the connections.

1. Heteroclinic connections

For the heteroclinic connections, the GA chooses the initial and targeted points very near to the maximum allowed
amplitude for the family of AEPs. For this reason, we show the results of three runs of the GA for different values of the
maximum amplitude to compare the effect of this parameter. This limitation in the maximum amplitude is implemented

by constraining the limits on the variable N, : if we discard the first and last 425 AEPs in the family the amplitude

dpoints *

is reduced to y = +0.17 and discarding the first and last 700 points reduces the amplitude to y = +0.10.
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Fig.8 GA optimized trajectory using heteroclinic connections between AEPs (left) and a homoclinic connection
of a Lyapunov orbit (right) showing the normal vector of the sail along the trajectory.

Table 1 Heteroclinic connections: optimal values for the decision variables and error at the intersections
between the unstable and stable manifolds

Amplitude D1 D2 ay [0 6, [0%] [o73 6> Apos| Avel] Aposz Avelz
[-] [(1  [-] [deg] [deg] [deg] [deg] [deg] [deg] [km] [m/s] [km] [m/s]
0.10 12 1423 381 -3.79 17948 -4.60 4.63 17994 291 0.0017 0.32 0.0011
0.17 57 1978 505 -503 17815 -539 542 179.62 262 0.012 1.53  0.0043
0.24 7 2846 6.71 -6.71 18142 -6.84 6.84 18043 054 0.007 19.16 0.25

Table 1 shows the optimal values for the decision variables for the three different amplitudes as well as the error
in position and velocity for the two intersections of the stable and unstable manifolds. The three trajectories are very
similar, using small values for the cone angle which gradually increases as the maximum allowed amplitude increases.
Since the change in angle is very small, a realistic finite-time control law will not result in a significant change in the
shape of the solution. The position error of up to 19 km represents a good performance considering that the distance
traveled between the initial and targeted AEPs is in the order of 107 km. In a similar way, the error in velocity in the
order of cm/s is sufficiently small compared to the magnitude of the velocity of the sail along the manifolds which is in
the order of km/s.

Each of the three optimized trajectories shown in Figure 8 (left) is made up of four patched trajectories, two for the
first half of the trajectory and another two for the second half. From the four trajectories that define the solution, the first
one lies within the area of interest, the second and the third ones are situated downstream of the CME trajectory, and the
fourth one lies in between the area of interest and an area that will detect CMEs after passing the Earth. Furthermore,
the solution does not accurately follow the axis of the CME. In Section IV.B.3, we will analyze if these trajectories can

still provide an increase in warning time.
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Table2 Homoclinic connections: optimal values for the decision variables and error at the intersection between
the unstable and stable manifolds

D1 )22 | a diry dir (o orbit Apos Ayl
[-] [-] [deg] [deg] [-] [[]  [deg] [-] [km]  [m/s]
2560 6344 -1.140 67.40 0 -1 267.77 56 3234.69 0.39

2. Homoclinic connections

For the solution using a homoclinic connection of a Lyapunov orbit, shown in Figure 8 (right), the sail remains
upstream of the CME trajectory the majority of the time. A small fraction of the trajectory is located farther from the
Sun than the L; providing no advantage in warning time, while another part of the trajectory goes beyond the expected
path of the CME (see the part of the trajectory farthest from the y-axis). Furthermore, the solution does not accurately
follow the axis of the CME.

Table 2 shows the optimal values for the decision variables. The control law for this trajectory is more demanding
than that for the heteroclinic strategy as the instantaneous change in attitude at the connection of the unstable and stable
manifold trajectories is much larger. The position error of 3234 km is still relatively small compared to the distance
traveled, in the order of 107 km, although two orders of magnitude larger than that of the heteroclinic trajectories. The

error in velocity for the homoclinic connection is again in the order of cm/s and therefore sufficiently small.

3. Warning time

The results in the previous two subsections showed that the sail is only located sunward of the L; point for parts of
the homo- and heteroclinic connections. This section investigates if these connections can indeed increase the warning
time with respect to the L; point. Figure 9 shows the ratio of increase in warning time for the sail with respect to a
satellite at the classical L; point. The thick lines in magenta, green, and red show the instantaneous warning time
for the heteroclinic solutions while the horizontal lines show their respective average; the blue lines provide the same
information, but for the homoclinic solution, and the black solid line shows the warning time of a satellite at the sub-L
point. Figure 9 (left) uses the distance traveled along the x-axis to compute the warning time, while Figure 9 (right) uses
the distance traveled along the axis of the CME. In both scenarios, negative ratios refer to a position of the sail that
detects the CME after its impact on Earth; ratios smaller than one refer to worse warning times than those that can be
achieved with current satellites at L;; and ratios smaller than the black solid line show shorter warning time than that of
a sail at the sub-L; point.

In Figure 9 (left), where the distance traveled along the x-axis is taken as reference to compute the increase in
warning time, we see that the three solutions from the heteroclinic strategy and that of the homoclinic one provide a
longer average warning time than a satellite at the L; point. Only the heteroclinic solution with the largest amplitude

(y = £0.24) offers a longer average warning time than the homoclinic solution. Instead, when taking the CME axis as

19



121 301

---------- 0.10 max amplitude (Hetero)
Avg ratio
0.17 max amplitude (Hetero)
Avg ratio

77777 0.24 max amplitude (Hetero)

—-—-— Avg ratio

Homoclinic sol (Homo)

Avg ratio

Sub—L‘ point

ratio [-]
ratio [-]

t [years] t [years]

Fig. 9 Ratio of increase in warning time with respect to a satellite at the classical L point using the distance
travelled along the x-axis (left) or along the axis of the CME (right) to compute the increase.

reference, Figure 9 (right) shows negative values for the ratio of increase in average warning time for the three solutions
of the heteroclinic strategy, with worse results for larger amplitudes. However, at the start and end of these heteroclinic
connections, ratios of increase in warning of up to a factor of 20 (14 and nine for the smaller amplitude solutions) can be
observed. This implies that, by using a constellation of two or three solar sails, it may be possible to greatly increase
the warning time ratio to values near these maximum values. On the other hand, the solution from the homoclinic
strategy shows a significant increase in the average warning time of approximately a factor of 10 by using only a single
spacecraft. In addition, it guarantees a warning time never worse than that of a satellite at the sub-L; point. In this case,
again, a constellation of two or three satellites may be used to further increase the average warning time and guarantee
continuous coverage also during the fraction of the trajectory that is not located within the area of the CME as shown in

Figure 8 (right).

4. Discussion of preliminary results

The results in the previous subsections show a different performance for each strategy. In order to choose the
best strategy for further optimization, this section summarizes the key results for each strategy and draws conclusions
on the trajectory that is selected as the initial guess for the trajectory with a continuously varying cone angle. The
trajectories from the heteroclinic strategy present an error of up to 20 km in position and 0.25 m/s at the connections. In
the homoclinic strategy, the errors are 3234 km for the position and 0.39 m/s for the velocity. Although the error for
the homoclinic connection is larger than that of the heteroclinic connection, both strategies show sufficiently small
relative errors: the distance traveled is approximately 107 km with velocities in the order of km/s at the transition
between manifolds. Regarding the increase in warning time, the homoclinic strategy outperforms the heteroclinic

strategy when the increase in warning time is computed with respect to the CME-axis as can be seen in Figure 9 (right).
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The trajectories from the heteroclinic strategy need a constellation of at least two solar sails to provide a warning time
longer than a satellite at L;. Instead, in the homoclinic strategy, one sail guarantees an average warning time 10 times
longer than a satellite at the sub-L; point, but at least two sails are needed to provide continuous detection of CMEs.
Therefore, we have chosen the trajectory from the homoclinic strategy as the best candidate to increase the warning
time for CMEs. However, the warning time ratio can be increased further with the use of a continuous control law, as

discussed in the following section.

V. Optimal control solver approach
In this section we discuss the methodology to further constrain and optimize the trajectory from Section IV in

PSOPT and analyze its results.

A. Methodology

The limitations of the GA suggest the use of a different tool to improve the results of the study. We have chosen
PSOPT, which is an open-source optimal control solver that uses direct collocation methods. PSOPT has been
successfully used to generate optimal trajectories using homo- and heteroclinic connections within different CRTBPs
such as the Earth-Moon [26] or the Sun-Earth [27, 28] system. To solve the optimal control problem, the time-dependent
variables are approximated by Legendre polynomials at and in between the collocation points, which are spaced
following Legendre-Gauss-Lobato nodes. Then, the finite non-linear programming problem can be solved with PSOPT
default solver, IPOPT, which is an interior point optimizer. For the study, we have used PSOPT Release 2 version?,
working with the Microsoft Visual 2010 compiler.

The optimal control problem to be solved can be described as follows. First, the objective function aims at

maximizing the distance from the Earth at which the CMEs are detected. To this end, two different cost functions are

defined:
N
F1 = inHxHY (24‘)
i=1
y ti—tioy
Fr= ) (xi - K1) T (25)
i=1

where x; is the x-coordinate of the trajectory at node i, Hx and Hy are heaviside functions that encourage the trajectory
to be located in the part of the reference frame where the CME can be detected upstream of the sub-L; point, xgpb-1, 1S
the x-coordinate of the sub-L point, #; and #;_; are the times at the nodes i and i — 1 and 7 is the final time of trajectory,
so the factor (¢; — #;-1)/tf gives a weight to each node based on the length of that segment of the trajectory. Equation

(24) is a direct minimization of the x-coordinate: the smaller the value for x, the closer to the Sun the CME is detected.

*PSOPT Project Home. URL http: //www.psopt.org/ last accessed on 04/05/2020
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On the other hand, Eq. (25) minimizes the distance to the sub-L; point, which is negative for x; values smaller than
Xsub-L, thus maximizing the distance to the sub-L; point.

The trajectory to-be optimized is represented by the following state vector:

=[x y x 3" (26)

where the initial and final states, ¥(#9) = Xo and X(¢) = Xy, belong to the Lyapunov orbit around the sub-L; point, as

will be explained in Section V.A.1. The boundary conditions for the state are:

[05 -03 -05 -05]T <¥<[1.02 005 05 05]” 27)

which are chosen after several trial runs of the optimization software. Initially, the boundaries were set equal to those of
the GA trajectory with a 5% increase. Then, the margins were progressively reduced to guide the solution. Both cost
functions, Eqs. (24,25), allow a smaller value for the upper bound of the x-coordinate. However, the ratio of increase in
warning time becomes smaller and the integration errors grow larger. Furthermore, when the boundary is set below one,
x < 1, convergence is not achieved.

The control of the to-be optimized trajectory is defined by the cone angle of the sail:

u(t) =a (28)

for which the following bounds were imposed:

-60° < u < 60° 29)

The control variable, @, requires the physical constraint of +90°, or the more realistic bounds of +80° as explained in
Section III. However, the control profile of the sail for cone angles larger than 60 degrees showed unrealistic variations
when no limit on the rate of change for the attitude was used. Furthermore, such loose limits on the control law did not
allow convergence using realistic limits on the rate of change of the attitude of the sail.

There are two path constraints that the solution needs to abide by. The first one limits the rate of change of the cone
angle:

—0.148 deg/day < & < 0.148 deg/day (30)

where the limits are set by trial and error to obtain a smooth control profile. The second path constraint limits the

distance of the trajectory to the axis of the CME, measured along the y-axis. The axis, defined in Eq. (1), has been
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modeled as an eighth order polynomial in MATLAB® as ycasx (x). Then, the second path constraint is defined as:
-0.17 <y; —yeme(x) <0.15 31)

where the bounds have been progressively reduced up to the smallest values that still allow convergence.
The initial time is fixed at 7y = 0 and the final time is set free within a broad range around the flight time of the

trajectory optimized by the GA, 2.3 years as shown in Figure 9:
to=0 ; 1.9years <ty < 3.5 years (32)

Finally, we use the solution from the GA as a first guess in PSOPT. The state vector and the cone angle of the GA
solution are interpolated on a set of 50 Lagrange-Gauss-Lobatto nodes. The solution from PSOPT is also defined on 50
nodes, which could not be increased in a mesh refinement approach due to computational limitations. The convergence

tolerance is set to 107 and the maximum number of iterations is 1000.

1. Initial and final conditions

The start- and endpoints of the trajectory are constrained to lie along the Lyapunov orbit chosen by the GA, see
Figure 8. In MATLAB®, this orbit is represented by a discrete number of states, while PSOPT works better with
continuous functions for the variables. We have therefore compared two methods to approximate the orbit with a
continuous function. The first method uses a tenth order polynomial to fit three state variables, [y(x), %(x), y(x)]7, to

the remaining one, x, for the first half of the orbit as:

Xorbit (1) = Xorbit,, (¥) =[x y(x) (x) y(0)]" (33)

where x,,pi; (t) is the actual state in the orbit as a function of time and Xorbitpol is the approximation of the state
using the tenth order polynomial as a function of x. Then, thanks to the symmetry with respect to the Sun-Earth line
([x,y,%,¥] = [x,—y, =X, y]), the second half of the orbit is also parametrized. The second method uses an angular
parameter 0 < y < 2x to parametrize the orbit. Then, the four-state variables are approximated with an eighth order

Fourier expansion as a function of y:

Xorbit (1) ® Xorbityon (V) = [X(¥) ¥(¥) %(¥) YT (34)

where Xo/bit,,,, 1 the approximated state of the orbit using the eight order Fourier series. The errors of the approximation

in km (position) and m/s (velocity) for both methods are shown in Figure 10, where the error for the polynomial fitting
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is only shown for the first half of the orbit. The error of the Fourier fitting is at least two orders of magnitude smaller,
consequently, it is the chosen method. It is important to mention that the amplitude of the orbit is approximately 7 - 10°
km, which means that the relative errors produced by this approximation (smaller than 10 kilometers) are reasonable.
The average size of the error in dimensionless units is in the order of 1078 for both the position and velocity. This value

is used as the margin allowed by PSOPT to satisfy the constraints on the initial (¥ = Xo) and final (¥ = Xy ) conditions as:

10701 1 1 1]T5(f—forbnfuw(7))310’8~[1 IR (35)
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Fig. 10 Errors from approximating the Lyapunov orbit with polynomials (half orbit, left) or Fourier series
(full orbit, right).

2. Re-integration in MATLAB®

The trajectories from PSOPT are represented by the value of the state, control, and time variables at the nodes.
Even for a converged solution, PSOPT only guarantees that the dynamics, the boundaries for the variables, and other
constraints are fulfilled at the nodes. To investigate the validity of the solution in between the nodes, these trajectories
have to be re-integrated in MATLAB® using an interpolation of the control to show any discrepancies with respect to
the result from PSOPT. For the interpolation of the control, we used the interpolating function interp1.m® with the
interpolation method pchip. Other interpolation methods such as linear, makima, and spline were tested, but these
showed worse accuracy for the re-integration.

We consider two types of re-integration. The first re-integration takes the initial conditions from the first node of the
solution and integrates the trajectory until the final time obtained in PSOPT. The difference between the state vector

at the end of the re-integrated trajectory and the final state vector of PSOPT gives an indication of how accurate the

Sinterp.m - 1D data interpolation (table lookup). URL https: //www.mathworks.com/help/matlab/ref/interpl.html last accessed on
06/04/2020 using MATLAB® R2019b
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solution from PSOPT is, i.e., how well the trajectory in between the nodes abides by the constraints defined. The second
method only integrates the trajectory from node to node. Then, the state error at each node is computed as an indication

of the control effort required to fly the trajectory.

B. Results
The trajectory that uses F; as defined in Eq. (24), which minimizes the x-coordinate, will be referred to as PSOPT-1,
while the trajectory using F» from Eq. (25), which minimizes the (negative) distance to the sub-L; point, will be called

PSOPT-2.

|
***** Periodic orbit |
GA solution -
PSOPT-1 trajectory |
— — —PSOPT-1 reintegration !
0 o = Sail normal at the nodes
PSOPT boundary conditions
—-—-— Heaviside limits x
—-—-—Heaviside limits y
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Fig. 11 PSOPT-1 trajectory plotted over the shape of the CME and compared with the GA trajectory.

Figure 11 shows the PSOPT-1 trajectory in magenta and Figure 12 the PSOPT-2 trajectory in cyan, the red arrows
indicate the direction normal to the sail. The solid black lines represent the boundaries on the position coordinates as
defined in Eq. (27). The two heaviside functions that guide the PSOPT-1 trajectory appear as thin dashed-dotted lines.
The solution from the GA used as the initial guess is shown in blue; the red line shows the continuous re-integration
of the trajectory in MATLAB®. At the bottom left of the figures, we show a detailed plot of the trajectories in close
proximity of the Lyapunov orbit. There, we can analyze the departure and arrival locations along the orbit and the
accuracy of the re-integration. It can be seen that the PSOPT-1 trajectory accumulates a smaller error during the
re-integration. Both PSOPT-1 and PSOPT-2 trajectories remain within the path traveled by the CME for the whole

trajectory, which can be compared to the GA trajectory that exits the area of interest and travels farther away from the
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Fig. 12 PSOPT-2 trajectory plotted over the shape of the CME and compared with the GA trajectory

x-axis, providing a worse vantage point for CME monitoring.

The control law for the PSOPT-1 and PSOPT-2 trajectories is plotted in Figure 13. The attitude profile is similar for
both trajectories, with maximum values of approximately +15 and -17 degrees. An analysis of the results in Figure 13
reveals a maximum rate of change for the cone angle smaller than 0.14 deg/day.

Figure 14 shows the ratio of increase in warning time for both trajectories, PSOPT-1 and PSOPT-2, with respect to a
satellite at the classical L; point and compares it with that of the GA trajectory, following a similar approach as the one
used in Figure 9. The magnitudes of the average warning time ratios are shown in the last two columns of Table 3
(the remaining columns of the table will be discussed later on in this section). In Figure 14 (left), we see that the ratio
of increase in warning time by just considering the distance traveled along the x-axis is more uniform for PSOPT-1
and PSOPT-2 trajectories than for the GA trajectory. The PSOPT-1 trajectory shows a smaller average ratio than the
GA trajectory, while the PSOPT-2 trajectory achieves a larger ratio. Figure 14 (right) shows the ratio of increase in
warning time using the distance traveled along the CME-axis. The resulting trajectories after the optimization have a
smaller peak for the ratio in warning time but a longer average warning time, guaranteeing better continuous detection
of potential CMEs impacting the Earth.

In Table 3, we show the error in the re-integration of PSOPT-1 and PSOPT-2 trajectories with respect to the final
node (first two columns) and the average ratio of increase in warning time for each trajectory (third and fourth columns).

The re-integration error is four times smaller for the PSOPT-1 trajectory than for the PSOPT-2 trajectory. The velocity
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Fig. 13 Cone angle profile as a function of time for the PSOPT-1 and PSOPT-2 trajectories.

Table 3 Re-integration error and ratio of increase in warning time with respect to a satellite at L; point for
the PSOPT-1 and PSOPT-2 trajectories.

- . Warning time ratio  Warning time ratio
Position error [km]  Velocity error [m/s]

x-axis [-] CME -axis [-]
PSOPT-1 44289.01 5.39 2.4 12.3
PSOPT-2 157743.56 19.19 2.85 15.1

of the sail along the Lyapunov orbit ranges between 35 and 65 m/s and its amplitude is 7 - 10> km, so the integration
error is acceptable for the PSOPT-1 trajectory, but too large for the PSOPT-2 trajectory.

In Figure 15, we show the error of the re-integration from each node to the next one. The blue lines show the
absolute error of the position in kilometers, with the yellow lines showing a relative measure of this error compared to
the distance traveled. For the velocity, the red lines show the error in m/s and the purple lines, the relative error with
respect to the velocity at the final point. The errors for the PSOPT-1 trajectory are given by the solid lines while the
dashed lines show those errors for the PSOPT-2 trajectory. It can be seen that in this case, the errors are very similar
for both solutions, and the error at arrival into the orbit is sufficiently small: in the order of tens of kilometers for the
position and cm/s for the velocity. The errors along the trajectory reach some peaks of up to tens of thousands of
kilometers and tens of m/s, but the distance traveled between nodes and the velocities at these nodes are in the order of
millions of kilometers and several km/s, meaning very small relative errors as can be seen with the purple and yellow

lines from Figure 15.
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Fig. 14 Ratio of increase in warning time with respect to a satellite at the classical L; point using the distance
travelled along the x-axis (left) and the distance travelled along the axis of the CME (right).
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Fig. 15 Error between nodes for a node-to-node re-integration for the PSOPT-1 trajectory (solid lines) and the
PSOPT-2 trajectory (dashed lines).

VI. Discussion of the results

The PSOPT-1 trajectory achieves a ratio of increase in warning time of 13 compared to a satellite at the classical
L, point while the PSOPT-2 trajectory further increases this ratio to 15. However, the PSOPT-1 trajectory shows
better fidelity to the dynamics of the system, achieving an accumulated error during the re-integration of one order of
magnitude smaller. Both PSOPT trajectories provide effective warning for the full trajectory with a larger ratio than
the trajectory optimized by the GA, which has a ratio of increase in warning time of 10 and showed some parts of the
trajectory spent outside the path traveled by the CME.

Regarding the quality of the connection, the GA solution showed a position error of 3000 km and 0.4 m/s, see

Table 2, at the connection between each half of the trajectory. The relative velocities and the vast distance traveled
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translates this error into a very small relative error. In the case of the trajectories optimized by PSOPT, the trajectories
are continuous until the re-insertion in the Lyapunov orbit, with an error smaller than the tolerance set, 1076, However,
the trajectories from PSOPT show a re-integration error when the initial condition is propagated in MATLAB®. This
re-integration error is approximately 45,000 km and 5 m/s for the PSOPT-1 trajectory and 160,000 km and 19 m/s for
the PSOPT-2 trajectory. This re-integration error is relatively large for the PSOPT-2 trajectory, as the final state of the
trajectory is the re-insertion into a Lyapunov orbit with an amplitude of 700,000 km and velocities ranging between 35
and 65 m/s. However, the re-integration error between nodes is similar for both trajectories, with small values between
0.001% and 1%.

The control profile of the trajectory optimized by the GA showed a large discontinuity at the intersection. Table 2
shows a required change in the cone angle of approximately 68° that needs to be performed instantaneously to guarantee
the feasibility of the solution from the GA. On the contrary, the trajectories optimized by PSOPT have feasible control
profiles which are shown in Figure 13. The small control effort from the solution and the relatively small re-integration
errors in between nodes, see Figure 15, is expected to allow the development of some trajectory control that will correct
for the small drift in between nodes. Therefore, PSOPT-2 is the best solution with the need for some sort of active

trajectory control to adjust for the re-integration errors.

VII. Conclusions

This paper has shown the feasibility of using solar sails with a state-of-the-art lightness number, 8 = 0.04, to travel
upstream of the path of Coronal Mass Ejections (CMEs) directed towards the Earth to increase the warning time for
CME:s with respect to satellites at the L point. For this purpose, two strategies have been evaluated and deemed feasible.
The first strategy follows a series of two heteroclinic connections between two Artificial Equilibrium Points (AEPs)
belonging to the family of AEPs in the sub-L; region, i.e., the region including AEPs sunward of the classical L point.
The AEPs used in this trajectory are nearly symmetrical with respect to the Sun-Earth line, which suggests the use of at
least two solar sails to guarantee continuous coverage for CMEs directed towards the Earth, i.e., due to the rotation
of the Sun-Earth system, the CMEs always travels towards the Earth in the same half of the ecliptic defined by the
Sun-Earth line. The second strategy uses a homoclinic connection of a Lyapunov orbit around the sub-L; point to travel
upstream of the CME. This second trajectory always remains in the half of the ecliptic in which the CME travels, but it
also requires at least two solar sails for continuous coverage as parts of the trajectory are outside the path of the CME.
Both strategies have been optimized with a genetic algorithm to increase the warning time for CMEs. The genetic
algorithm selects the best starting AEPs along the family of AEPs or the location within the Lyapunov orbit and the
piece-wise constant attitude of the sail along each manifold. The results of the optimization show better performance for
the homoclinic strategy, increasing the warning time ratio compared to satellites at L.; approximately by a factor of

10. Although the warning time is increased, the trajectory shows a discontinuity in the controls and the states at the
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transition between the unstable and stable manifolds.

The trajectory following a homoclinic connection of a Lyapunov orbit around the sub-L; point is used as an initial
guess in an optimal control problem to generate a continuous trajectory with a smaller average distance to the axis
of the CME that further increases the warning time. The optimal control problem is solved for two slightly different
cost functions. The first one aims to minimize the distance to the Sun along the Sun-Earth line, while the second one
maximizes the distance between the sub-L; point and the sail also along the Sun-Earth line. The trajectory using the
first cost function achieves an average ratio of increase in warning time of 12.3 with respect to satellites at L; with a
sufficiently small re-integration error in the order of 40.000 km and 5 m/s. On the other hand, the trajectory using the
second cost function achieves a larger average warning time ratio of 15.1 but develops a larger re-integration error in the
order of 150.000 km and 19 m/s. Both trajectories use similar control laws where the attitude of the sail never exceeds
+20 deg with a rate of change smaller than 0.15 deg/day. The low-effort control law leaves a large margin in the sail
controllability to design some sort of trajectory control to correct the re-integration error between nodes. Then, the
trajectory using the second cost function can be used to provide continuous CME monitoring with a 15 times longer

warning time than what is currently obtained with satellites in the environment of the L; point.
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Conclusions and Recommendations

This thesis aimed at increasing the warning time for incoming Coronal Mass Ejections (CMEs). Warn-
ings for Earth-approaching CMEs are currently provided by in-situ observations with satellites at the
Sun-Earth L, point. As the warning time is proportional to the distance to the Earth at which the CME
is detected, this thesis used solar-sail propulsion to move away from the neighborhood of the L, point
and travel upstream of the CMEs to detect CMEs sooner and thereby increase the warning time.

Several solar-sail trajectories that periodically travel upstream of the CME while remaining as close
as possible to the axis of the CME were designed in this thesis. The trajectories are developed for a
solar sail with a lightness number of g = 0.04 in the planar circular restricted three-body problem using
two main strategies. The first strategy followed a series of two heteroclinic connections between two
Artificial Equilibrium Points (AEPs) belonging to the family of AEPs in the sub-L, region, i.e., the region
including AEPs sunward of the classical L, point. The second strategy used a homoclinic connection
of a Lyapunov orbit around the sub-L; point to travel upstream of the CME. Both strategies have been
optimized with a Genetic Algorithm (GA) to select the best starting AEP along the family of AEPs or
the location within the Lyapunov orbit as well as the piece-wise constant attitude of the sail along the
unstable and stable manifold to increase the warning time for CMEs. The results of the optimization
showed better performance for the homoclinic strategy, increasing the warning time ratio compared to
satellites at L; by approximately a factor of 10. Although the warning time is increased, the trajectory
shows a discontinuity in the controls and the states at the transition between manifolds.

The trajectory optimized with the GA following a homoclinic connection of a Lyapunov orbit around
the sub-L; point was used as an initial guess in an optimal control problem to generate a continuous
trajectory with a smaller average distance to the axis of the CME that further increases the warning
time. The optimal control problem is solved for two slightly different cost functions. The first one aims
at minimizing the sail distance to the Sun along the Sun-Earth line, while the second one maximizes
the distance between the sub-L,; point and the sail also along the Sun-Earth line. Both trajectories use
similar control laws where the attitude of the sail never exceeds + 17 deg, with a rate of change smaller
than 0.14 deg/day. The trajectory using the first cost function achieves an average ratio of increase in
warning time of 12.3 with respect to satellites at L, while the trajectory using the second cost function
further improves the warning time to a ratio of 15.1.

In Section 3.1, the research questions of Section 1.4 are directly answered in line with the results
presented throughout the paper in Chapter 2. Then, in Section 3.2 the limitations of the research are
explained to guide further investigations that could potentially improve the results.

3.1. Conclusions

The answers to the research questions formulated in Section 1.4 are presented based on the results
obtained throughout this thesis work.

A. Is it possible to use heteroclinic connections between different solar-sail artificial equilibrium points
in the sub-L, region to travel upstream of the CME using a piecewise-constant sail attitude?
The short answer to this question is “yes”. This thesis presents three similar trajectories that use
two heteroclinic connections between two different AEPs of the family of AEPs in the sub-L, region
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that, for some fractions of the trajectory, take the sail upstream of the CME along its path towards
the Earth. The trajectories have been optimized to increase the average warning time for CMEs and
to reduce the discontinuity in the states at the transition between the unstable and stable manifolds
of each heteroclinic connection using a Genetic Algorithm (GA) approach implemented in MATLAB.

The GA uses as decision variables the initial and final AEPs within the family of AEPs in the
sub-L, region, the piece-wise constant attitude of the sail along the unstable and stable manifolds,
and two other angles that define the location for the transition between the unstable and stable
manifolds. With this definition of the problem, the GA selected the AEPs with the largest separation
from the Sun-Earth line along a line normal to it. Three different values for the maximum distance
between the AEPs and the Sun-Earth line of 0.10, 0.17, and 0.24, dimensionless with the Sun-Earth
distance, have been used to properly analyze these connections. The optimized trajectories did not
improve the average warning time with respect to a satellite at L, as only one half of the trajectory
develops upstream of the CME path towards the Earth. However, the instantaneous warning time
ratio is nearly constant at the peak values (ratios up to 20, 14, and nine with respect to a satellite
at the L; point depending on the maximum amplitude of the family of AEPSs) to rapidly decay below
one. These results suggest that a constellation of at least two solar sails may provide continuous
coverage with better average warning times than the existing missions in the environment of the L,
point.

Finally, regarding the feasibility of the trajectories, the discontinuities at the connections of the
unstable and stable manifolds need to be addressed. The error in the states at the intersection
between manifolds is sufficiently small to guarantee a smooth transition: the position error increases
with the maximum amplitude of the family of AEPs allowed for the trajectory up to a value of 19 km
which is sufficiently small compared to the 107 km traveled between the AEPs. The velocity error
is in the order of cm/s while the velocity of the sail reaches velocities in the order of km/s. The
discontinuity in the attitude of the sail is inherent due to the approach of using a piecewise-constant
cone angle along each manifold. The optimal cone angles found by the genetic algorithm are nearly
symmetrical along the Sun-Earth line with values that increase with the maximum amplitude allowed
for the family of AEPs up to a maximum of 7 degrees. Since an instantaneous attitude change of
nearly 14 degrees is impossible for a real sail, some sort of trajectory control will be required to
smoothly transition from one manifold to the next one.

. Is it possible to use a homoclinic connection of a periodic orbit around a sub-L, point to travel up-
stream of the CME using a piecewise-constant sail attitude?

The short answer is, again, “yes”. This thesis has demonstrated the existence of trajectories that
follow homoclinic connections of a planar Lyapunov orbit around a sub-L; point that take the sail
upstream of the CME while maintaining a relatively small distance to the axis of the CME for the
majority of its duration. As for the heteroclinic strategy, a GA has been used to increase the average
warning time attainable with this trajectory as well as to reduce the discontinuity at the transition
between the unstable and stable manifolds. The decision variables are the starting and final points
within the orbit, the amplitude of the Lyapunov orbit used, the piece-wise constant attitude of the sail
used along the stable and unstable manifolds, and an auxiliary angle to define the location of the
transition between the unstable and stable manifolds.

The optimized trajectory achieves an average warning time 10 times longer than existing satellites
in the environment of the L, point. However, some parts of the trajectory are spent outside the path
traveled by the CME. As for the trajectory using heteroclinic connections of AEPs, a constellation
of at least two satellites may guarantee continuous coverage while further increasing the average
warning time.

Regarding the feasibility of the trajectory, the discontinuities in the state and the controls are
larger than those obtained for the heteroclinic approach discussed in the previous question. The
discontinuity in the states for the position domain is two orders of magnitude larger than that of the
heteroclinic connection, with an error of approximately 3000 km. This position error is still sufficiently
small compared to the distance traveled by the sail in the order of 107 km. In the velocity domain,
the error is very similar to that of the heteroclinic connection, in the order of cm/s compared to the
velocity of the sail in the order of km/s. Finally, the attitude change required to use this connection
is almost 70 degrees. To compensate for this unrealistic attitude change, a progressive transition of
the sail angle will be needed, but this control law may affect the shape of the trajectory.
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C. Is it feasible to optimize the sail attitude from a piecewise-constant attitude to a continually variable
attitude to further increase the warning time for solar storms?
As a short answer, yes it is. The results from the two strategies using a piece-wise constant attitude
for the sail demonstrate the existence of trajectories that periodically travel upstream of the path
of CMEs towards the Earth. The trajectory following a homoclinic connection of a Lyapunov orbit
around a sub-L; point showed the best results in terms of average warning time. However, the
discontinuity in the states and especially in the cone angle at the transition between the unstable
and stable manifold suggests the use of a continuously varying control law to improve the results.
Using a pseudo-spectral optimizator called PSOPT, an optimal control problem with two slightly
different definitions for the cost function has been developed to further increase the warning time.
The first cost function aims at minimizing the average distance to the Sun along the Sun-Earth line,
while the second cost function maximizes the distance to the sub-L; point also along the Sun-Earth
line. Furthermore, a path constraint is used to limit the maximum distance between the trajectory
and the axis of the CME.

The optimized trajectories for both cost functions showed similar control profiles, with maximum
cone angles of +17 degrees and a maximum rate of change for the cone angle of 0.14 deg/day,
much smaller than what can be attained with state-of-the-art technology. The trajectory maximizing
the distance to the sub-L; point obtained the largest increase in warning time ratio with a factor
of 15.1, while the minimization of the distance to the Sun provided a factor of 12. Finally, the so-
lution from PSOPT was re-integrated in MATLAB using a continuous control law by interpolating
the values given by PSOPT at the nodes. The trajectory obtained with the minimization of the dis-
tance to the Sun achieved the smallest re-integration error of approximately 44,000 km and 5 m/s,
while the trajectory obtained with the maximization of the distance to the sub-L; point accumulated
a re-integration error of approximately 160,000 km and 19 m/s. These errors are relatively large
compared to the final state of the trajectory which lies along a Lyapunov orbit with an amplitude of
700,000 km and velocities ranging between 30 and 60 m/s. Nevertheless, the accumulated error
between each node and the next ranges between 0.001% and 1% of the distance traveled or the
velocity at the end of the node. This small relative error added to the relatively simple control law
suggests the possibility of using some sort of trajectory control to correct for the small drift between
nodes.

In conclusion, a trajectory that can be used to increase the warning time for incoming CMEs has
been developed by using a solar sail to travel upstream of the axis of CMEs directed towards the Earth.

3.2. Recommendations

As in every piece of research, it is impossible to investigate everything. It is necessary to set a limit
to make the study feasible with the available resources. In the case concerning this project, the main
constraint is time. This limitation justifies certain decisions to simplify the problem that will be potential
candidates to expand the research in the future for better results.

|. Re-integration error

One of the problems of the final trajectory presented in the paper is the error in the re-integration of
the trajectory. This error is inevitable due to the nature of the optimization used to solve the optimal
control problem. PSOPT uses direct collocation methods, which only satisfy the dynamics at the
nodes and interpolates the time-dependent variables in between them. In contrast, the numerical
integration implemented in the ode45.m’ function within MATLAB® satisfies the dynamics along the
trajectory. This discrepancy generates a certain error at the end of the trajectory that can be reduced
in two different ways. The simplest possibility, in terms of human effort, is to use a more powerful
computer to run the same optimization problem with a finer grid of nodes. In this way, there will be
more nodes at which the dynamics are satisfied and the accumulated error along the trajectory will
be smaller. The second possibility to deal with the re-integration error is the design of some sort of
trajectory control to reduce the error between nodes. Although this may prove to be relatively simple,
it was beyond the scope of the thesis.

Il. Extension to the three dimensional problem

Tode45.m - Solve nonstiff differential equations - medium order method. URL https://www.mathworks.com/help/
matlab/ref/ode45.html ® last accessed in 29/04/2020 using MATLAB R2019b
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CMEs are three-dimensional torus-like structures with a near-circular cross-section around an axis
that lies in the ecliptic plane. One of the advantages of solar sailing is that they generate the pos-
sibility of maintaining orbits that are displaced away from the ecliptic plane. In this thesis, the study
is limited to the ecliptic plane. This reduction to a 2D problem limits the maneuverability of the sail
to just the angle between the incident radiation and the normal to the sail, the cone angle (). It
is expected that an extension to the three-dimensional problem will allow a more optimal design of
the trajectory that manages to further reduce the average distance to the CME axis by traveling out-
side of the ecliptic plane. However, the search for connections then becomes more complex as the
search for connections between manifolds would require a match of six coordinates instead of four
and the GA would include an extra variable for the second angle that defines the attitude of the sail.

lll. Non-ideal sail properties

The study is conducted in the planar CRTBP with an ideal solar sail acceleration model. Apart from
the extension to the 3D problem, several non-ideal modifications can be included in the sail model
to represent its acceleration with higher fidelity. The non-ideal behavior of a sail is divided into three
categories: attitude control, shape deformations, and optical imperfections, where the non-ideal-
optical effects have the largest impact on the acceleration [29]. A further study should consider
whether the trajectory is feasible just with the addition of some trajectory control or if the problem
needs to be re-optimized to account for the change in the dynamics of the sail.

IV. Increased fidelity for the dynamics
This thesis has used the PCRTBP as the dynamical framework for the research, which can be ex-
panded to the spatial CRTBP to improve the results as mentioned in a previous recommendation.
Nevertheless, the dynamical system can be further expanded to a higher fidelity one using a devia-
tion from the CRTBP such as the Elliptical Restricted Three-Body Problem (ERTBP) or even further,
ephemeris coordinates for the main bodies.

The inclusion of higher fidelity dynamics, such as the eccentricity from the ERTBP, not only will
affect the shape of the invariant manifolds and, thus, the shape of the developed trajectories, but it
will make the system non-autonomous. The time needs to be included in the equations of motion
through the true anomaly. Then, any periodic solution must have a period which is an integer multiple
of the period of the perturbation, in this case, the period of the Sun-Earth orbit: one year.

V. Different approach for heteroclinic connections strategy

Additional runs of the GA algorithm with a different approach for the heteroclinic strategy have already
shown promising results (not shown in the draft article). One of the disadvantages of the trajectories
using the series of heteroclinic connections was the need to use at least two solar sails to guarantee
continuous monitoring for CMEs, as half of the trajectory developed downstream of the path traveled
by CMEs towards the Earth. Reducing the search-space for the AEPs to limit their maximum distance
downstream of the CME was deemed feasible. Figure 3.1 shows the result of a preliminary run of
the GA with an asymmetrical amplitude along the axis normal to the Sun-Earth line for the family of
AEPs, where only a small fraction of the resulting trajectory lies downstream of the CME path, which
is set as the background of the image.

Figure 3.1 is plotted in a synodic reference frame, centered at the barycenter of the Sun and the
Earth with the x-axis along the Sun-Earth line and the y-axis normal to the x-axis within the ecliptic
plane. The background is set as the path of a CME approaching the Earth to show the effectiveness
of the resulting trajectory.
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Figure 3.1: Preliminary results illustrating the direction of further research using heteroclinic connections with a modified ap-
proach.






Verification and Validation

This appendix includes the tests and comparisons used to gain trust in the methodology and imple-
mentation during the research. The similarities with results found in the literature, the small numerical
errors, and the repeatability of the results are sufficient proof to verify and validate the procedures and
the results.

A.1. Verification

A.1.1. Dynamical system model

The CRTBP has been extensively studied in the literature [25, 26], which is more than enough proof of
its validity. Although the solar sail CRTBP is more recent and has less literature, it has been sufficiently
studied to verify it [3, 30]. The dynamical system is modelled with Eq. 2 in Chapter 2. This second-order
differential vectorial equation can be expanded to a system of four first-order differential equations as:

X = v,
}7=Uy
Uy = 20y, — Uy + ay
vy =2v, + U, +a,

(A1)

The dynamical system can be verified by generating surfaces of equilibria. In Reference [31] the authors
show the intersection of the 3D surfaces of equilibria with the ecliptic in the environment of the L, and
L, points. Figure A.1 uses the surfaces of equilibria from the reference paper as the background
image, then the same surfaces of equilibria computed in this thesis are shown in grey dotted lines. It is
important to note the change in the x-axis with respect to Figure 3 from the paper in Chapter 2 as the
authors of [31] define the axis as negative towards the secondary body, as opposed to the reference
frame defined in this thesis. The accuracy of the result is enough to verify the dynamics.

A.1.2. Periodic orbits

The periodic Lyapunov orbits used as initial conditions for the homoclinic connections are presented in
Figure 4 in Chapter 2. As the dynamics of the system have already been verified, demonstrating the
periodicity of the orbits is enough to verify them. Figure A.2 shows the norm of the error between the
first and the last point of the orbit. The size of the error is always smaller than 107! and the smallest
amplitude of the orbits is 1073, Therefore, the periodicity of the orbits is considered verified.

A.1.3. Invariant manifolds

The invariant manifolds associated with the family of equilibrium points can be computed using the
eigenvalues and associated eigenvectors of the linearized dynamics at the equilibrium point. These
linearized dynamics are given by the Jacobian of the flow field computed as [26, 32]:

0 I
A= <6VU Oas)

- + == 20
or oar

0 1
where Q=[_1 0] (A.2)
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Figure A.1: Intersection of the surfaces of equilibria generated by adding a solar sail to the CRTBP and the ecliptic plane for
different lightness numbers (B in this thesis, b in this plot as used by the original authors). Edited from [31] to verify the dynamics

of this thesis.
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Figure A.3: Error in the eigenvalues from the Monodromy matrix. Norm of the unity eigenvalues minus one (left) and difference
between a non-unity eigenvalue and the inverse of its reciprocal one (right).

Since the dynamics are already verified, it is only necessary to confirm that the derivatives of the
potential, U, and the solar sail acceleration, a, are properly computed. This process is performed with
the help of Maple® ', computing the symbolic derivatives of both the potential and the sail acceleration,
which are then written into MATLAB®. The eigenvectors and eigenvalues are computed using the
MATLAB® function eig.m?. Since these programs are extensively verified, it is possible to confirm that
the manifolds associated with the equilibrium points are also verified.

For the invariant manifolds of the periodic orbit, the eigenvalues and eigenvectors of the monodromy
matrix are used. The monodromy matrix is the state transition matrix evaluated after one period of the
orbit. The monodromy matrix of periodic orbits in the planar CRTBP has four eigenvalues: (1, 1/44,
1, 1) [25]. Then, the family of periodic orbits around the sub-L; for § = 0.04 as presented in Figure 4 in
Chapter 2 also needs to satisfy this condition. From the four eigenvalues of each monodromy matrix,
the two that are closest to one are selected, 1, and 1,. Since some of them show small complex
components,the difference between the complex magnitude and one is plotted (|A;| — 1, with i = a, b)
in Figure A.3 (left). The two remaining eigenvalues have to be reciprocal. To confirm it, |1, — 1/44] is
plotted in Figure A.3 (right) The size of the errors in the unit eigenvalues in the order of 107° and in the
reciprocity of the two other eigenvalues of 1078 verify this results.

A.1.4. Genetic Algorithm

The optimization with constant cone angle along the manifolds is performed using the MATLAB® func-
tion ga.m®. This function has been extensively used and is, therefore, verified. However, the opti-
mization needs to be properly designed. To verify it, the GA is run at least eight times for the same
configuration with different seeds using the function rmg.m*: rg(1,2,3,...,8). Then, the results of each
run are compared to see if they converge to a similar solution. Figure A.4 shows the eight runs for each
of the three amplitudes in the search for heteroclinic connections (left) and the eight runs for the search
of homoclinic connections (right). For the heteroclinic connections, it can be seen that the runs are
very similar to each other, except for one run in between the middle and smallest amplitude. However,
the shape of the solution is constant and the optimization can be verified. In the case of the homoclinic
connections, again, seven of the connections are very similar to each other with one of them showing
some variations. It is important to mention that the most optimal solution (the minimum value for the
cost function as defined in the paper) is not the odd case. It can be seen that each solution uses differ-

"Maple® - interactive Computer Algebra System, version 2018. https://www.maplesoft.com/products/maple/
students/ last accessed 09/03/2020

2eig.m - Eigenvalues and eigenvectors. URL https://www.mathworks.com/help/matlab/ref/eig.html lastaccessed
24/04/2020 using MATLAB® R2019b

3ga.m - Find minimum of function using genetic algorithm. URL https://www.mathworks.com/help/gads/ga.html last
accessed 06/05/2020 using MATLAB® R2019b

4rng.m - Control random number generator. URL https://www.mathworks.com/help/matlab/ref/rng.html last ac-
cessed 08/05/2020 using MATLAB® R2019b


https://www.maplesoft.com/products/maple/students/
https://www.maplesoft.com/products/maple/students/
https://www.mathworks.com/help/matlab/ref/eig.html
https://www.mathworks.com/help/gads/ga.html
https://www.mathworks.com/help/matlab/ref/rng.html
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Figure A.4: Set of solution for different amplitudes for heteroclinic connections between equilibria (left) and homoclinic connec-
tions from a periodic orbit (right) for eight different seeds.

ent initial orbits, but the position within them is very similar along the solutions, which means that the
code converges to the same solution but the initial orbit is not so relevant to the shape of the trajectory.
Results can be considered verified.

A.1.5. Pseudo-Spectral Optimization

The optimization in MATLAB® is complemented with further optimization using PSOPT®. This tool is
written in C++ and the dynamics have to be translated there. Although the process has been carefully
performed, to verify the results, the potential function U is evaluated at the nodes. The difference
between the potential evaluated at the nodes in MATLAB® and in PSOPT is smaller than the numerical
errors, which guarantees an appropriate translation of the dynamics.

Then, to verify the results of PSOPT, the error at re-integration in MATLAB® is considered. This error
is presented in Figure 15 and Table 3 in the paper. Although the error is not negligible, it is sufficiently
small considering the different natures of the two programs and the scarce number of nodes for the
optimization.

A.2. Validation

Finally, it is important to address how good is the local minimum obtained in the optimization. This
procedure is, in general, a complex task. Regarding the optimization with the genetic algorithm, sev-
eral cost functions have been studied and showed worse results than those presented in the paper.
Although the solution cannot be guaranteed as the global minimum, it is the lowest minimum among nu-
merous tests. Furthermore, as the genetic algorithm is used as an initial guess for further optimization
with a considerably different approach, it is possible to say that a good local minimum, i.e., a trajectory
that already provides a better warning time than those used a reference, is a sufficiently good result.

For the final solution obtained with PSOPT, the paper only presents the best two trajectories among
numerous tested candidates. Again, this can only show that the solution is the best local minimum ob-
tained so far, but cannot guarantee that the solution is the global minimum. The presented solution
offered an average warning time up to 15 times longer than what satellites at the L; point can currently
achieve. The target of this thesis was to increase the warning time beyond the existing mission propos-
als. In the literature, the are no missions that can increase the average warning by more than a factor
of two using near-term sail performances as in this thesis. Therefore, the designed trajectory can be
considered validated, as it fulfills the expected outcome of the thesis.

5PSOPT Project Home. URL http://www.psopt.org/ last accessed 04/05/2020


http://www.psopt.org/
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