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Preface
I have always been amazed by Space. The books of Isaac Asimov were, in part, what helped me
decide to choose the Space Exploration track from the Aerospace Engineering Master in TU Delft. I
dream of the possibility of conquering space, becoming a multiworld civilization. Although this goal
might not be feasible in my lifetime, I want to contribute to it. Solar sailing is a propellantless form of
propulsion that harvests the energy of the Sun. Currently, It is considered for missions within our solar
system and beyond. This thesis aims to design a near term mission using solar sails to protect the
Earth for incoming coronal mass ejections from the Sun. Although this mission is still far from exploring
other worlds, I consider it as a small step towards human expansion in the solar system.

I want to particularly thank Jeannette, my supervisor. Not only have you provided excellent tech
nical advice and guidance during this thesis, but also you have given me all the flexibility I needed. I
especially appreciate the opportunity you gave me to conduct my MSc thesis from Spain, alternating
between Skype and presential meetings every two weeks. Finally, I thank you for your understanding
when I started to work fulltime at a company and needed to extend the project as a parttime thesis.

Gonzalo Herrero Martínez
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Abstract
Spaceweather events have a large impact on Earth. In particular, Coronal Mass Ejections (CME) pose
huge potential dangers to human technology both in orbit and on the surface of the planet, such as dis
ruptions to power grids, increased radiation doses to astronauts and damage to sensitive components
of satellites. Warnings for spaceweather events are currently given by satellites in the vicinity of the
L1 point. When a CME passes by that point, the satellites emit a warning that reaches the Earth, on
average, one hour before the CME. This thesis aims at using solarsail technology to move a satellite
closer to the Sun, detect the CME sooner, and thus increase the warning time.

Solar sails continuously generate thrust by reflecting solar photons off a large and highly reflective
sail membrane. This continuous acceleration can be used to generate Artificial Equilibrium Points
(AEPs) in the Circular Restricted ThreeBody Problem (CRTBP) that are displaced away from the five
classical Lagrange points. Like for the classical case, periodic orbits exist around these AEPs, enabling,
for example, CME monitoring in a periodic orbit around an AEP that is located closer to the Sun than
the SunEarth L1 point from where current satellites detect CMEs. There have been some theoretical
mission designs taking advantage of this possibility, but the increase in warning time is modest for any
nearterm sail performance.

This thesis investigates the use of solarsail technology to travel upstream of the CME and signif
icantly increase the warning time. The study considers the actual shape of CMEs as a constraint for
the solarsail trajectory that surfs along invariant manifoldlike structures emanating from AEPs and
Lyapunov orbits around subL1 points, i.e., AEPs sunward of the classical L1 point, to travel upstream
of the CME.

As a preliminary solution, two strategies are evaluated. The first strategy considers a series of
heteroclinic connections between different AEPs in the subL1 region. The second strategy uses a ho
moclinic connection of a Lyapunov orbit around a subL1 point. The trajectories aim to travel upstream
along the path of the CME and back to the initial AEP or Lyapunov orbit to guarantee periodicity and,
therefore, CME monitoring for as long as the sail remains operational. The homo and heteroclinic
connections are sought for by looking for connections between the unstable and stable manifolds em
anating from the AEPs and Lyapunov orbits. To minimize the discontinuity in states at the linkage of
the unstable and stable manifolds, a genetic algorithm approach is used to optimize the piecewise
constant attitude of the sail along the manifold trajectories and the location, i.e., which AEP or where
along the Lyapunov orbit, from where the manifolds emanate.

Though the homo and heteroclinic connections exhibit a discontinuity in the attitude of the sail
at the connection of the unstable and stable manifolds, they provide a good initial guess for further
optimization with a direct pseudospectral method, implemented in the software tool PSOPT. In the
optimal control approach, the attitude of the sail is allowed to vary along the trajectory (instead of the
piecewise constant sail attitude in the genetic algorithm approach) such that the sail travels as far as
possible upstream of the CME while staying as close as possible to the central axis of the CME.

The genetic algorithm results from both strategies show an improvement in warning time with re
spect to the warning time achieved by current satellites in the environment of the L1 point. Under the
assumptions taken in this research, the trajectories using the homoclinic connections from a Lyapunov
orbit outperform those that employ heteroclinic connections between AEPs. The best genetic algo
rithm solution offers an up to 10 times longer warning time than current satellites at L1. This solution
shows a small discontinuity in the states at the linkage of the unstable and stable manifold trajectories
in the order of thousands of kilometers for the position and centimeters per second for the velocity.
However, the discontinuity in the attitude of the sail of approximately 70 degrees renders the trajectory
unfeasible before further optimization. Furthermore, some parts of the trajectory are too far from the
axis of the CME to intercept CMEs approaching the Earth.

Finally, the trajectories obtained with PSOPT show that the sail remains within a defined distance to
the axis of the CME while traveling upstream of the CME due to a control law that modifies the attitude
of the sail at a rate achievable with state of the art technology. This strategy allows a 15 times longer
average warning time compared to the warning time provided by current satellites at the L1 point.
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1
Introduction

Traveling through space without the need of carrying a limited amount of propellant that tightly con
strains the possibilities of the mission sounds like science fiction. However, solar sails manage to
achieve this as they generate a continuous thrust by reflecting solar photons off a large and highly re
flective membrane. They can be used to modify the classical Circular Restricted ThreeBody Problem
(CRTBP) by including a continuous acceleration in the equations of motion. As such, solar sails al
low new equilibrium points as well as broad possibilities for maneuvering throughout the solar system.
Although solarsail technology has been tested in space, these missions were only technology demon
stration missions. One of the best candidates for the first scientific application of solarsail technology
is a spaceweather warning mission, where a solar sail is placed between the Sun and the Earth to
detect harmful spaceweather events such as coronal mass ejections or solar winds before they reach
the Earth [1]. The best example of such a mission was NASA’s Sunjammer mission [2], which was
scheduled for launch in January 2015 before it was canceled in October 2014. This thesis aims at
designing a solarsail mission to increase the warning time for solar storms even beyond the warning
time that Sunjammer would have achieved with the hopes of a new spaceweather mission that finally
launches.

1.1. Solar sailing
The existence of solar radiation pressure was theoretically demonstrated by Maxwell in 1862 and its
magnitude was first measured experimentally by Peter Levendew in 1900. Solar radiation pressure is
extremely small, in the order of 9 N/km2 at Earth’s distance from the Sun [3]. Nevertheless, sufficiently
large surfaces with a very low mass to area ratio  known as solar sails  can manage to generate
a “free” acceleration to travel through the cosmos. In space, small accelerations take advantage of
the absence of air resistance to build up large velocities for interplanetary missions. The acceleration
acting on a solar sail is mostly directed normal to the surface of the sail regardless of its orientation with
respect to the Sun, as illustrated by the force bubble in Figure 1.1 (left). However, the magnitude of the
acceleration does depend on the orientation: it is maximum when the incident radiation is normal to the
surface and zero when the radiation is parallel to the sail. Furthermore, it is not possible to generate a
solarsail acceleration with a component towards the Sun.

It took more than fifty years to transition from Levendew’s experiment to actual mission designs
using solarsail technology. The first real advancements in solar sailing date back to the 1970s thanks
to the appearance of the Space Shuttle with its capacity to take heavy payloads to space and the close
passage of comet Halley predicted for the beginning of the 1980s. This particular comet, with a highly
energetic retrograde orbit, had to be discarded for any possible rendezvous mission using conventional
propulsion systems since the required ΔV was too large. Solar sailing, on the contrary, provided low
but continuous thrust allowing the buildup of a considerable ΔV over a mission of some years and by
exploiting close approaches to the Sun.

However, the proposed designs, a solar sail of 800 x 800 m2 or a heliogyro with 12 blades of 7.5
km [3] were considered too risky and inappropriate for the first use of this technology. Still, the mission
designs revived the interest in solar sailing and numerous papers were written [3, 4], enhancing the
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2 1. Introduction

marvelous opportunities of this technology. Furthermore, some campaigns such as the Moon race in
the 1980s or the equivalent Mars race in the 1990s proposed a competition of solarsail designs to
reach these celestial bodies. More and more projects were envisaged [3, 5–7] and the concept of solar
sailing was again extensively investigated. The problem was that none of these missions went much
further than some theoretical designs and calculations. They were also too ambitious, proposing huge
vehicles with long development times and unknown chances of success that no one dared to invest
money in.

During the last decades, solar sailing has experienced significant development, reaching a readi
ness level that allowed four successful missions by the date of this publication. The first mission,
IKAROS [8], was developed by JAXA, then NASA’s NanoSailD [9], and finally LightSail1 and 2,
shown in Figure 1.1 (right), from The Planetary Society [10]. There are also several missions planned
for the near future, such as NearEarth Asteroid (NEA) Scout from NASA [11] and the Oversize Kite
craft for Exploration and AstroNautics in the Outer Solar System (OKEANOS) by JAXA [12].

Figure 1.1: (Schematic drawing of solarsail force bubble (left), edited from [13]. Lightsail2 artist concept with Earth in the
background (right) [14].

1.2. Space weather
Space weather relates to the activity of the Sun and its effect on Earth [15]. This activity is divided into
Solar Energetic Particles (SEPs), solar flares, Coronal Mass Ejections (CMEs), and highspeed solar
wind.

SEPs are electrically charged particles that travel at relativistic speeds along the magnetic field lines
of the Sun and impact the Earth only if these magnetic field lines intersect those of the Earth. SEPs take
from 20 minutes to several hours to cover the distance between the Sun and the Earth [16]. Solar flares
release flashes of radiation from gammarays to radio waves, that will impact the Earth only if they are
formed on the side of the Sun facing the Earth [17]. A. Isavnin defines CMEs as “largescale explosive
eruptions of magnetized plasma from the Sun into the heliosphere” [18]. CMEs can be ejected in any
direction with varying speeds and cover the distance to the orbit of Earth within hours or days. CMEs
will hit the Earth only under certain conditions and represent the main component of space weather.
Finally, the solar wind is a mixture of ions and electrons that fills the space between the Sun and the
planets. It escapes the Sun’s outer atmosphere and travels up to the outer border of the heliosphere.
Highspeed solar wind originates in coronal holes and greatly influences the behavior of CMEs [15, 19].

Each spaceweather event results in different effects on Earth. SEPs can be hazardous to satellite
missions, damaging electronics and solar arrays, or blinding startrackers, and, especially, they endan
ger astronauts by increasing their radiation doses to the maximum allowed for a lifetime within hours of
the event [16]. Solar flares affect the ionosphere with negative effects upon radio navigation and com
munications. Furthermore, they can heat the atmosphere so it expands and drags satellites into lower
orbits [17]. Solar winds and CMEs generate temporary disturbances on the Earth’s magnetosphere
when they impact the Earth, which is known as a geomagnetic or solar storm. These storms disrupt
electric power grids and speed up the corrosion process of oil and gas pipelines. Some examples of
these effects are: in September of 1859 a solar storm stopped all telegraph communications within the
United States and Europe and in March 1989, a hydroelectrical power network in Quebec collapsed,
leaving 6 million people in an energy blackout for more than 9 hours [20]. Nowadays, with the increased
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technological dependency of humanity, a strong solar storm may have catastrophic consequences. In
Reference [21], J. P. Eastwood estimates the cost of several CME impact events and the likelihood
of the events: “For a 1in10year substorm over western Europe, the direct cost is estimated to be
€9340 million, with estimated international spillover costs in the range of €787−1108 billion”. For a
1in100year event, such as the one in March 1989, the cost will reach the amount of trillions of Euros
[21].

The magnitude of the consequences of these events shows the need to react before they reach
Earth. There are two possibilities: detection and prediction. Prediction works in a similar way as
weather forecasting for Earth’s surface events, using information about future events that may impact
the Earth provided by solar observations. Detection requires insitu measurements made by satellites
with dedicated payloads placed along the path of the event. Then, the satellites can send a warning for
an event that will impact the Earth, so operators on the Earth will have some time to react and protect
sensitive infrastructure: satellites can turnoff their most sensitive components, astronauts can start
a safety procedure to enter a more shielded area of the station, and power stations can be prepared
for unusual activity [20]. The warning time will be proportional to the distance from Earth at which the
event is detected. Since SEPs and solar flares travel at speeds close to the speed of light, detecting
these events will provide almost no reaction time; the only solution being the observation of the Sun
to predict them [16, 17]. On the other hand, CMEs travel much slower than the speed of light, which
offers the possibility of both observation and detection [18, 22].

1.3. Missions for spaceweather forecasting
Numerous NOAA, ESA, and NASA satellites study both the Sun and the Earth to understand the origin
and the effect of solar storms to reduce the consequences on vital space and ground infrastructure.
Some of these satellites orbit the SunEarth L1 point, such as the Deep Space Climate Observatory
(DSCOVR) (NOAA/NASA, 2015), which gives realtime solar wind observations; WIND (NASA, 2004),
that studies the interaction between the solar wind and the Earth’s iono and magnetosphere; the Ad
vanced Composition Explorer (ACE) (NASA, 1997) provides coverage for solar wind and measures the
intensity of SEPs; and the Solar and Heliospheric Observatory (SOHO) (ESA/NASA, 1995), which has
detected more than 7000 CMEs [23]. Other missions like the twin Solar Terrestrial Relations Observa
tories (STEREO A and B) (NASA, 2006) follow two heliocentric elliptical orbits, one closer to the Sun
and one further from the Sun with respect to Earth’s orbit [24], to collect data from CMEs.

The majority of the current missions for spaceweather forecasting orbit in the vicinity of the Sun
Earth L1 point, approximately 1.5 million km closer to the Sun than the Earth. Due to the speed differ
ence between CMEs and the warning message, the warning time that these missions can provide is
one hour on average. Solar sails can be used to increase the distance from the Earth at which the CME
is detected. When the continuous acceleration from a solar sail is added to the CRTBP, the wellknown
five classical Lagrange points [25, 26] become surfaces of artificial equilibria that span around these
classical points [3]. The surface of equilibria in the environment of the L1 point intersects the SunEarth
line at the socalled subL1 point, which lies sunwards of the classical point at a distance given by the
efficiency of the solar sail. This subL1 point has been the target of numerous solarsail mission designs
to increase the warning time for solar storms over the last two decades. In Reference [1], the author
proposes injecting a sail into a subL1 point and develops a series of trajectories to achieve periodic
motion around the subL1 point. Similarly, the Sunjammer mission [2] was a NASA project for increased
solarstorm warning time that aimed at injecting a solar sail in a halo orbit around a subL1 point. The
launch date was planned for January 2015, but the mission was canceled in October 2014. Finally, in
Reference [27], the authors also planned to inject a solar sail into a halo orbit around a subL1 point
but assumed that the vehicle is filled with SpaceChips [28], i.e., very small satellites with a high area to
mass ratio offering a behavior similar to solar sails. These SpaceChips would then be deployed from
the main spacecraft to follow the unstable manifold of the periodic orbit towards the Sun. On their jour
ney along the manifold, they will perform observations of the Sun, greatly increasing the warning time
for CMEs (between 4.5 and 9 hours). The main disadvantage of this mission was the finite quantity of
these small satellites that can be carried and therefore limited mission lifetime.
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1.4. Research goals and questions
The objective of this investigation is:
to increase the warning time for potential CMEs approaching the Earth with respect to current
mission and mission designs by designing a solarsail trajectory that travels upstream along
the axis of the CME.
The current missions and mission designs detect the CMEs at different points along the SunEarth line,
i.e., the classical L1, the displaced subL1 point, or closer to the Sun in the unstable manifold of an orbit
around the subL1 point. Using the approach proposed in this thesis, the sail will leave the SunEarth
line to follow, as closely as possible, the path of CMEs directed towards the Earth. This novel approach
allows the detection of the CME with longer average warning times for similar sail efficiencies than the
previously discussed missions. For this, the invariant manifolds of different artificial equilibrium points
in the environment of the L1 point and Lyapunov orbits around a subL1 point are exploited to generate
hetero and homoclinic connections that take the sail closer to the Sun along the path traveled by the
CME.

To achieve this goal, the research should answer the following questions:
A. Is it possible to use heteroclinic connections between different solarsail artificial equilibrium

points in the subL1 region to travel upstream of the CME using a piecewiseconstant sail at
titude?

B. Is it possible to use a homoclinic connection of a Lyapunov orbit around a subL1 point to travel
upstream of the CME using a piecewiseconstant sail attitude?

C. Is it feasible to optimize the sail attitude from a piecewiseconstant attitude to a continually vari
able attitude to further increase the warning time for solar storms?

It is expected that the answers to these questions will substantially increase the flexibility to design
a solarsail mission to adequately warn for Earthapproaching CMEs.

1.5. Report outline
The main content of the thesis is presented as a draft article in Chapter 2. The draft article style of the
American Institute of Aeronautics and Astronautics (AIAA) is chosen due to the relation between the
content of this thesis and their journal. The paper starts with an abstract and an introduction. Then
Section II shows how to model the shape of CMEs. Section III explains the dynamics employed for the
study and presents the concept of invariant manifolds. Section IV shows the preliminary results along
invariant manifoldlike structures employing a piecewise constant attitude. Then, in section V, the best
candidate from the options presented in Section IV is optimized with an optimal control solver (PSOPT)
to further increase the warning time and fix the discontinuities from the piecewise constant attitude
trajectory. Finally, the results are discussed in Section VI and the conclusions presented in Section VII.

After the article draft, in Chapter 3 the research questions are answered in line with the results
presented in the paper and the possibilities to expand the work are discussed. Finally, Appendix A
includes the verification of the simulations used for the research.
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Solar-Sail Surfing Along Invariant Manifolds to Increase the
Warning Time for Solar Storms

Gonzalo Herrero Martinez∗

Delft University of Technology, 2629 HS, Delft, The Netherlands

This paper proposes a new mission strategy to detect Coronal Mass Ejections (CMEs) and

greatly increase the warning time for these CMEs. The warning time is proportional to the

distance from the Earth at which the CMEs are detected, where the current warning time of

one hour is achieved by satellites orbiting the Sun-Earth L1 point. To date, several mission

designs have taken advantage of solar-sail technology to displace the L1 point sunward to a

so-called sub-L1 Artificial Equilibrium Point (AEP) and as such place the satellite closer to

the Sun. However, the increase in warning time is modest for any near-term sail efficiency.

We investigate the use of the invariant manifolds emanating from AEPs in the L1 region and

Lyapunov orbits around sub-L1 points to generate a trajectory that travels upstream of the

CME to increase the distance from the Earth at which the CME is detected and, consequently,

increase the warning time. Initial results are obtained with a genetic-algorithm approach,

where homoclinic connections of a solar-sail Lyapunov orbit provide the largest increase in

warning time. These connections are then used as initial guesses for solving the optimal control

problem with a direct pseudospectral method to reduce the distance to the axis of the CME

and increase the warning time to an average of 15 hours.

I. Introduction

CoronalMass Ejections (CMEs) are large-scale explosive eruptions of magnetized plasma from the Sun into the

heliosphere [1] and they represent the main contribution to solar storms [2]. The solar wind is a mixture of ions

and electrons that fills the space between the Sun and the planets and greatly influences the behavior of CMEs [2–4].

Solar winds and CMEs generate temporary disturbances on the Earth’s magnetosphere when they impact the Earth,

which is known as a solar storm. If undetected, these storms can result in disastrous consequences such as disruptions in

electric power grids or accelerated corrosion of gas and oil pipelines. In Reference [5], the authors estimate the cost of a

non-detected, 1-in-100-years CME to be in the order of trillions of Euros.

Detection requires in-situ measurements of the CME, for which satellites with dedicated payloads are placed along

its path. Upon detection of the CME, the satellites send a warning to Earth, so that the operators on Earth have time to
∗Graduate Student, Department of Astrodynamics and SpaceMissions, Faculty of Aerospace Engineering, G.J.HerreroMartinez@student.tudelft.nl



react and protect sensitive infrastructure. Numerous NOAA, ESA, and NASA satellites use the Sun-Earth L1 point as

a vantage point to detect CMEs and solar winds. Some examples include DSCOVR (NOAA/NASA, 2015), WIND

(NASA, 2004), ACE (NASA, 1997), and SOHO (ESA/NASA, 1995) [6]. SOHO by itself has detected more than 7000

CMEs [7]. The warning time is proportional to the distance from Earth at which the CME is detected, so satellites at the

L1 point can achieve warning times of approximately one hour [2, 5].

Solar sails can be used to increase the distance from the Earth at which a CME is detected. When the continuous

acceleration from a solar sail is added to the Circular Restricted Three-Body Problem (CRTBP), the well-known five

classical Lagrange points [8, 9] become surfaces of equilibria that span around these classical points [10]. The surface

of equilibria in the environment of the L1 point intersects the Sun-Earth line at the so-called sub-L1 point, which lies

sunward from the classical point at a distance determined by the efficiency of the solar sail: the more efficient, the closer

to the Sun.

During the last 30 years, solar sailing has experienced significant development, reaching a readiness level that

allowed four successful missions by the date of this publication. The first mission, IKAROS [11], was developed by

JAXA, then NASA’s NanoSail-D [12], and finally LightSail-1 and -2 [13] from The Planetary Society. There are also

several missions planned for the near future, such as Near-Earth Asteroid (NEA) Scout [14] from NASA (launch date to

be determined between 2020-2021) and the Oversize Kite-craft for Exploration and AstroNautics in the Outer Solar

System (OKEANOS) by JAXA (launch date is set for the year 2027) [15].

In the literature, several proposals can be found that use solar sails to design missions that increase the warning

time for CMEs [16–19]. In Reference [16], the author designs a series of trajectories that keep the solar sail in the

environment of a sub-L1 point, providing an increased warning time with respect to the aforementioned satellites at

the L1 point. Similarly, NASA’s Sunjammer mission [17] proposed a halo orbit around a sub-L1 point to increase the

warning time. In Reference [18], the authors take advantage of SpaceChips, i.e., very small satellites with a high area to

mass ratio that behave like solar sails [19], by releasing them from a spacecraft in a halo orbit around a sub-L1 point

into its associated unstable manifold to travel sunwards along the Sun-Earth line for a limited amount of time. Finally,

the authors of [20–22] study the dynamics of the Sun-Earth system with a solar sail to navigate between Artificial

Equilibrium Points (AEPs). During the motion between these AEPs, the sail gets closer to the Sun than when it would

remain at the AEP itself, again allowing a modest increase in the warning time for CMEs. These mission proposals

always consider the CME traveling along the Sun-Earth line, which works for small distances from the Earth. However,

to greatly increase the warning time, the actual path of CMEs as they travel through the Solar System [1] has to be

considered, as it then becomes possible to design a solar-sail trajectory that truly follows the axis of the CME upstream

of its interplanetary trajectory.

In this paper, we show the design of a periodic trajectory in which the sail travels upstream of the CME axis to

increase the warning time for CMEs. We evaluate the feasibility of two strategies: a trajectory composed of two
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heteroclinic connections between two AEPs belonging to the family of AEPs in the sub-L1 region and a homoclinic

connection of a Lyapunov orbit around the sub-L1 point. Both strategies are optimized with a genetic algorithm to

maximize the warning time and minimize the discontinuity in states at the linkage between the unstable and stable

manifolds of the homo- and heteroclinic connections. Then, the best strategy is used as the initial guess for an optimal

control solver that further optimizes the trajectory to eliminate the linkage error and increase the average warning time

that can be obtained with the trajectory.

After this introduction, Section II shows how to model a CME in the CRTBP. Section III presents the dynamics

of the solar sail in the planar CRTBP. It includes the computation of artificial equilibria, periodic orbits around the

equilibria, and the invariant manifolds emanating from the equilibria and the periodic orbits. Section IV contains the

search for optimal trajectories using a piecewise-constant attitude for the sail using a genetic-algorithm approach. In

Section V, the best solution from Section IV is optimized with an optimal control solver to further increase the warning

time. Then, Section VI discusses the results. Finally, the paper ends with the conclusions in Section VII.

II. Modelling Coronal Mass Ejections
The path or structure of a Coronal Mass Ejection (CME) can be modeled as a cylinder in equilibrium along the

stream of solar wind radially outflowing from the Sun. The equilibrium is given by a balance between the forces

of hydrodynamic streamlining, �� , magnetic tension, ��, and gravity, �� , as �� = �� + �� [1]. The model is

completed by including some deformations such as front flattening, pancaking, and skewing. Front flattening represents

a compression along the Sun-Earth line, pancaking relates to the non-circular cross-section of the CME and skewing is

caused by a rotation along an axis normal to the plane in which the Sun and the Earth orbit. To model the axis of the
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Fig. 1 Schematic drawing of a solar sail in the PCRTBP.

3



CME, a Sun-Earth synodic reference frame, � (Ĝ, Ĥ, Î) is used. The origin is set at the center of mass of the system,

the G-axis lies along the line connecting the Sun and the Earth and points towards the Earth, the I-axis is directed

perpendicular to the plane in which the Sun and the Earth orbit, and the H-axis completes the right-handed reference

frame. This frame rotates at a constant angular velocity l around its I-axis, ®l = lÎ. Figure 1 shows a projection of the

reference frame employed, � (Ĝ, Ĥ, Î), onto the ecliptic plane. The unit of mass is defined as the sum of the masses

of the system <1 + <2 = 1. Then, with the mass ratio ` = <2
<1+<2

= 3.0404 · 10−6, the dimensionless masses of the

massive bodies become <1 = 1 − ` and <2 = `. The unit of length is set as the distance between both massive bodies.

Then, the distance from each massive body to the center of mass of the system is ` and 1 − ` for the Sun and the

Earth, respectively. Finally, the unit of time is chosen such that the orbital period of the Sun and the Earth around their

barycenter is 2c, then the angular velocity of the reference frame becomes l = 1.

In this reference frame, the CME axis is defined in polar coordinates (A�"� , i), with A�"� = 0 representing the

location of the Sun, and where i is measured in the ecliptic with i = 0 at the Sun-Earth line [1]:

A�"� (i) = 'C cos= (0i) (1)

where 'C is the toroidal height of the CME, set as the distance between the Sun and the Earth, = = 0.5 is the front

flattening coefficient, and 0 = (c/2)/iℎF , where iℎF = 30◦ is the angular half-width of the axis. Due to the dynamics

of the Solar System, the CMEs evolve in an anti-clockwise manner, which limits the in-situ observation of incoming

CMEs to the area between the Sun-Earth line and the quarter of the Earth’s orbit immediately trailing the Earth’s

instantaneous position. Therefore, while the axis defined by Eq. (1) spans over the length of the CME, we are only

interested in the fraction of the axis upstream of the Earth, see the dashed blue line in Figure 2.

III. Dynamics
This study is conducted within the well-known Sun-Earth Planar Circular Restricted Three-Body Problem (PCRTBP)

dynamical framework [8, 9] augmented with a solar sail [10], that defines the motion of a massless particle (the solar

sail) with respect to two massive bodies, the Sun (<1) and the Earth (<2), which orbit in a circular motion around their

barycenter. In this framework, the motion of the solar sail in reference frame � (Ĝ, Ĥ, Î) is given by [9, 10]:

¥®A + 2 ®l × ¤®A + ®l × ( ®l × ®A) = ®0B + ∇+6 (2)

where ®A = [G H I]) is the position of the sail. The terms on the left-hand side of Eq. (2) are the kinematic, coriolis,

and centripetal accelerations. The terms on the right-hand side are the sail acceleration and the gravitational acceleration

exerted by the main bodies. The centripetal acceleration in Eq. (2) can be expressed as the gradient of a scalar potential
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function, +2 = − 1
2 | | ®l × ®A | |

2. Then, the gravitational potential, +6, can be combined with the centripetal potential into a

new, effective potential,* [9]:

* =
1
2
(G2 + H2) + 1 − `

A1
+ `
A2

(3)

where ®A1 = [(` + G) H I]) is the Sun-sail vector and ®A2 = [(G − (1 − `)) H I]) is the Earth-sail vector. As the

research is conducted within the ecliptic plane, the vector components in the direction normal to this plane will always

be zero, I = 0. Therefore, to ease the notation, the three-dimensional vectors will be expressed only with the two first

coordinates ®A = [G H]) . Finally, for the sail acceleration, we use an ideal-sail model, which assumes pure specular

reflection of the incident photons. With this assumption, the solar-sail acceleration is defined as [10]:

®0B = V
1 − `
A2

1
cos2 U ®̂= = [0BG , 0BH ]) (4)

where V is the lightness number of the sail, U is the cone angle of the sail, and ®̂= is the unit vector in the direction

normal to the sail. The lightness number is defined as the ratio between the solar radiation pressure acceleration and the

solar gravitational acceleration of the sail. In 2014, the Sunjammer mission was designed with a lightness number of

V = 0.0363 [17]. In Reference [23], the authors suggest lightness numbers up to V = 0.067 as a near-term possibility.

For the study presented in this paper, we have considered a modest lightness number of V = 0.04 as the reference value,

which is a realistic value for present and near-term solar-sail missions. The cone angle defines the orientation of the sail

and is measured clockwise as the angle between the normal to the sail ®̂= and the direction of the incident radiation. It is

defined as: cosU = ®̂A1 · ®̂=. The normal vector ®̂= is obtained by a clockwise rotation of the unit vector in the Sun-sail
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direction, ®̂A1, around the I-axis over an angle U:

®̂= = ®'U ®̂A1 =



cosU − sinU 0

sinU cosU 0

0 0 1


®̂A1 (5)

Note that several models represent the solar-sail acceleration with higher fidelity than the ideal model used.

The non-ideal behavior of a sail is divided into three categories: attitude control, shape deformations, and optical

imperfections [24]. The non-ideal behavior associated with attitude control mainly requires to reduce the maximum

cone angle to, at least, 85 degrees. The non-ideal shape effects can be simplified with a small reduction in the sail

performance. On the other hand, non-ideal optical effects have a larger impact on the sail behavior. As presented in

Reference [24], a non-ideal model including numerous optical imperfections shows a mismatch in the thrust of up to

10% for cone angles below 60 degrees, while the mismatch increases to more than 100% as the cone angle approaches

90 degrees. The authors suggest a simplified non-ideal model where only 84% of the light is reflected specularly while

the rest is absorbed with no re-emission. Since the current paper covers a preliminary mission design, the only non-ideal

effect considered is a reduction in the maximum cone angle to 80 degrees. The remaining non-ideal effects are left for

future research.

A. Equilibrium Points

The CRTBP, and equivalently the PCRTBP, exhibits five well-studied classical equilibrium points in the GH-plane at

locations where the condition ∇* = 0̄ is satisfied [8, 9]. The inclusion of the solar sail modifies the dynamics of the

system such that the five classical points evolve into surfaces of equilibria [10, 25]. These surfaces are determined by

the sail orientation and can be parametrized by the lightness number, V. Each point within these surfaces is known as an

Artificial Equilibrium Point (AEP). As in the classical problem, the AEPs are located where no acceleration acts on the

spacecraft when it has zero velocity. Substituting these conditions into Eq. (2) shows that the sail acceleration needs to

equal the gradient of the potential at the AEP [25]:

∇* = V
1 − `
A2

1
cos2 U ®̂= (6)

which can only be satisfied if ®̂= is parallel to ∇*. Since ®̂= is a unit vector, ®̂= = ∇*/|∇* | yields the appropriate orientation

for the sail. Then, from Eq. (6) and the definition of the cone angle, we can derive an expression that defines the

required lightness number to generate an AEP as a function of the sail position and orientation within the PCRTBP with
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a solar sail as [25]:

V =
A2

1
1 − `

∇* · ®̂=
( ®̂A1 · ®̂=)2

(7)

Figure 3 shows a contour plot of the required values for the lightness number close to the classical L1 and L2 points.

In the case where the lightness number equals zero, the surfaces of AEPs are reduced to the classical five equilibrium

points. As the lightness number increases, the surfaces expand around the classical points. We refer to the surfaces

of equilibria in the vicinity of the L1 point as the sub-L1 region. Furthermore, the intersection of these surfaces of

equilibria with the G-axis will be referred to as the sub-L1 points, which are displaced closer to the Sun as the lightness

number increases. The forbidden regions between L1 and the Earth and farther away from L2 appear due to the physical

limitations of the solar sail, as it is not possible to direct the sail acceleration towards the Sun. Mathematically, this

constraint can be expressed as ®̂A1 · ®̂= ≥ 0 or equivalent limits of ±90 degrees in the cone angle. The white areas outside

the forbidden zones require larger lightness numbers than the range shown in Figure 3.
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B. Periodic Orbits

The classical equilibrium points allow periodic motion around them that results in different types of orbits, such as

Lyapunov, Lissajous, or halo orbits [8, 9]. The AEPs presented in Section III.A also allow the existence of these kinds

of orbits [10, 25]. For example, displaced halo orbits such as the one considered as a destination for the previously

proposed Sunjammer mission [17].

At any of the equilibrium points, we can find families of orbits that satisfy the conditions for periodic motion [21].

For a given sub-L1 point (for a given lightness number), we can obtain the initial conditions of a periodic orbit from a

catalog. In particular, we obtain the initial conditions of a planar Lyapunov orbit around the sub-L1 point for V = 0.03

from [25].

To obtain periodic orbits from the initial condition in Reference [25], a differential correction scheme [8] is

used, keeping the initial G-coordinate fixed, to slightly adjust the other initial conditions to ensure periodicity for our

implementation. Then, the full family of Lyapunov orbits around the sub-L1 point can be obtained with a continuation

scheme [8]: one of the parameters, in our case, the initial value for the G-coordinate, is slightly increased (or decreased)

by a small value Y = 10−5, and via differential correction, the remaining initial coordinates are modified accordingly [8].

After several iterations, it is possible to obtain a family of orbits of smaller or larger amplitude.

Similarly, we can conduct a continuation in the lightness number by starting from the initial condition of any orbit

within a family of orbits with constant lightness number and increase/decrease the lightness number by a small value

Y = 2 · 10−5 and apply the differential corrector. It is important to highlight that the value for Y has to be small enough

to allow convergence of the differential correction algorithm but not too small to require too many iterations. Figure 4

shows the results of these procedures. Figure 4 (left) shows six Lyapunov orbits for different lightness numbers between

V = 0.03 and V = 0.04. The orbits shift towards the Sun as the lightness number increases. Instead, Figure 4 (right)

shows a family of Lyapunov orbits around the sub-L1 point that has been generated starting from the initial orbit with

V = 0.04 from Figure 4 (left).

C. Invariant Manifolds

The classical L1 point and the AEPs in the neighborhood of the sub-L1 point are unstable [8, 20]. Similarly, AEPs

and numerous periodic orbits in the CRTBP, as well as in the PCRTBP with a solar sail, are also unstable [8, 25]. A

particle at rest at the equilibrium point or traveling along the unstable orbit that experiences a slight perturbation in

the unstable direction will exponentially divert away from the equilibrium point or orbit. Likewise, a particle with

the appropriate initial conditions will exponentially approach the equilibrium point or periodic orbit along the stable

direction.

The manifolds of a periodic orbit can be constructed by propagating the dynamics defined in Eq. (2) from a

state-vector along the stable or unstable direction. These directions are defined by the stable and unstable eigenvectors of
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the monodromy matrix, which is the state transition matrix evaluated after one period of the orbit. The state transition

matrix, Φ(C, C0), approximates how a slight deviation in the state variables propagates along the trajectory, ®A0. It is

propagated together with the equations of motion with the initial condition Φ(C0, C0) = � as [8]:

¤Φ(C, C0) = ®�Φ(C, C0) (8)

where ®� is:

®� =


0 I(

m∇*
m®A +

m ®0B
m®A

) ����
®A0

2Ω

 ; Ω =


0 1

−1 0

 (9)

In the PCRTBP, the monodromy matrix has four eigenvalues: (_, 1/_, 1, 1). The stable eigenvector at the initial point of

the orbit, ®HB (®G0), is the eigenvector associated to the eigenvalue smaller than one, while the unstable eigenvector at the

initial point of the orbit, ®HD (®G0), is the eigenvector associated to the eigenvalue larger than one. Then, the state transition

matrix can be used to propagate the stable and unstable eigenvectors to any point along the orbit as [8]:

®HB (®G(C)) = Φ(C, C0) ®HB (®G0) ; ®HD (®G(C)) = Φ(C, C0) ®HD (®G0) (10)

where ®G(C) is the state vector along the orbit as a function of time. Finally, the initial conditions of the trajectories along

the manifolds can be described by [8]:

®GB (®G) = ®G ± Y ®HB (®G) ; ®GD (®G) = ®G ± Y ®HD (®G) (11)

where Y = 10−6 is a constant that provides the magnitude of the perturbation. Larger perturbations require less time to
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divert away from the periodic orbit but reduce the fidelity of the manifolds [8, 9]. Then, considering both the negative

and positive signs from Eq. (11), two branches of the unstable and stable manifolds can be obtained. By integrating the

initial conditions of the unstable manifold, ®GD (®G), forward in time, we generate trajectories shadowing the two branches

of the unstable manifold,D±. For the stable manifolds,, B±, the same procedure can be applied, but the integration

has to be performed backwards in time. In a similar manner, the invariant manifolds of any equilibrium point can be

computed; only then, the monodromy matrix is substituted by the Jacobian evaluated at the equilibrium point ( ®�), i.e.,

®A0 = ®G��% , as defined in Eq. (9). Then, with Eq. (11), but using the state vector at the AEP (®G = ®G��%), we obtain the

initial conditions of the manifolds, which provide the unstable and stable branches of the manifolds when propagated

forward or backward in time.

A change in the attitude of the solar sail will generate a different manifold-like structure, where the expression

"manifold-like structure" is used because the term "invariant manifold" loses its meaning when the attitude is changed

away from that used to maintain the orbit or the equilibrium point. However, to simplify the reading of the paper, we will

refer to these manifold-like structures simply as manifolds. Figure 5 (left) shows the invariant manifolds of one of the

Lyapunov orbits shown in Figure 4 (right), where the background is set as the shape of a CME as it propagates towards

the Earth. The invariant manifolds for the same cone angle as in the Lyapunov orbit, U = 0, appear in red (unstable)

and blue (stable). In magenta (unstable) and cyan (stable), we also include the effect of changing the sail attitude in

the propagation of the manifold trajectories. Note that, in order for the unstable and stable manifold trajectories to be

symmetric with respect to the Sun-Earth line, the cone angle needs to be of opposite sign in the unstable and stable

manifolds. Figure 5 (right) shows the invariant manifolds of the family of AEPs associated to the sub-L1 point for

V = 0.04. In red (unstable) and blue (stable), we show the unstable and stable manifolds for U = ±70◦, which bring the

sail closer to the Sun. In magenta and cyan, we show the unstable and stable manifolds for U = ∓35◦, which take the sail

farther away from the Sun.

The intersection of the stable and unstable manifolds of a periodic orbit around an equilibrium point generates a

family of homoclinic trajectories that connect the periodic orbit with itself, i.e., a particle starts at the periodic orbit,

follows the unstable manifold until the intersection with the stable manifold, to then follow the stable manifold to arrive

again to the periodic orbit. The intersection of the unstable manifold of a periodic orbit with the stable manifold of a

different periodic orbit generates a family of heteroclinic trajectories that connects both periodic orbits [9]. Although

the velocity components are missing in Figure 5, the direction of the velocity can be inferred as tangent to the trajectory.

Therefore, if an unstable and a stable manifold trajectory intersect tangentially there is a great likelihood of the existence

of a homo- or heteroclinic connection. In Figure 5 (left) we can see near-tangential intersections between the magenta

and cyan manifolds at the locations [G ≈ 1.02, H ≈ ±0.22]. In Figure 5 (right) we can detect potential connections

between the red and blue manifolds when they cross the G-axis at the point farthest from the family of AEPs. Similarly,

the best connection (though less tangential than for the previously mentioned cases) between the cyan and magenta
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Fig. 5 Invariant manifolds of a Lyapunov orbit (left) and the sub-L1 point (right) for V = 0.04. Red and
magenta lines represent the unstable manifold branches while blue and cyan lines represent the stable ones.

manifolds in Figure 5 (right) can be found along the G-axis away from the Sun.

IV. Genetic algorithm approach
From Figure 5, we inferred the possibility of homo- and heteroclinic connections between manifolds in the position

domain. In this section, we perform an analysis to search for connections both in the position and velocity domain to

confirm that there is indeed a match between unstable and stable manifold trajectories. In some cases, it is possible to

reduce the dimension of the search space. For example, if one wants to find connections for a certain value of one of the

coordinates, say along the G-axis, then one of the dimensions is already constrained as H = 0. Furthermore, if both

the unstable and stable manifold trajectories are constructed for a zero cone angle, then the energy level will remain

constant along the trajectory and one further dimension can be constrained through the energy conservation equation. In

the problem considered in this paper, we do not want to keep the sail angle equal to zero, as this limits the search space

too much, but we can define a surface of intersection with an auxiliary line as explained later in this section.

As a first approach to demonstrate the existence of connections in the four-dimensional space defined by position

and velocity, we performed a grid search in which we compared the state vectors of the trajectories along the stable

branch with those of the unstable branch for different integration times along both the stable and unstable manifolds.

Then, the integration time that allows the smallest difference between a state vector from a trajectory from each manifold

is defined as the intersection point. The grid search proved to be inefficient and slow, but confirmed the existence of

connections and provided some insight into the optimal values for the variables of the optimization, such as the location

of the intersection or the range of cone angles that will guarantee the existence of connections. However, the procedure

to compute the invariant manifolds with sufficient resolution (amount of starting points along the Lyapunov orbits and

the family of AEPs from which the manifolds emanate), integration times (number of points along the trajectories within
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the manifold), and control (different cone angles) is very costly for a grid search. Therefore, a Genetic Algorithm (GA),

implemented in the MATLAB® function ga.m∗, has been used to optimize the problem.

A. Methodology

The objective of the optimization is to generate a periodic trajectory that takes the sail upstream of the CME,

increasing the warning time with respect to a sail at the sub-L1 point. As previously mentioned, we consider two types

of trajectories: a trajectory composed of two heteroclinic connections between two AEPs in the sub-L1 region and a

homoclinic connection of a Lyapunov orbit around the sub-L1 point.

1. Heteroclinic trajectories between AEPs
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Fig. 6 Schematic of the heteroclinic trajectory showing the variables of the problem.

The trajectory to-be optimized, presented in Figure 6, starts at a certain AEP, ?1, within the family of AEPs located

below the G-axis (negative H). The trajectory evolves along the unstable manifold associated to an initial cone angle, U1,

until the intersection with an auxiliary line defined by an angle \1 as:

H = tan \1 (G − 1) (12)

The trajectory then follows the stable manifold associated to a different cone angle, U2, which has been integrated
∗ga.m - Find minimum of function using genetic algorithm. URL https://www.mathworks.com/help/gads/ga.html last accessed on

06/05/2020 using MATLAB® R2019b
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backward in time starting from another AEP, ?2, in the family of AEPs located above the G-axis (positive H) until the

intersection with that same line.

To return to the initial AEP, ?1, and construct a periodic trajectory that can be repeated over time, the second half of

the trajectory to be optimized starts at ?2 and follows a trajectory along the unstable manifold associated to a cone angle,

U3, until the intersection with a second auxiliary line given by an angle \2:

H = tan \2 (G − 1.3) (13)

Then, for the solar sail to return to ?1, it follows a final trajectory segment along the stable manifold emanating from

?1 associated to the final cone angle, U4, which has been integrated backwards in time until the intersection with that

second auxiliary line. By defining the problem in this way, it can be represented by the following decision vector:
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(14)

where #4@?>8=CB refers to the AEP number within the family of AEPs, which is defined by discretizing the continuous

line of AEPs into 2850 points equally spaced along the H-axis between H = 0.24 and H = −0.24. Furthermore, due

to the symmetry of the problem, and from the shape of the manifolds shown in Figure 5 (right) we have limited the

search-space of this index to the upper and lower quarters of the family. The use of an integer (?1, ?2) to select the

starting and targeted locations allows a discrete representation of the family of AEPs without additional computational

cost to obtain a state vector that satisfies the equilibrium conditions at each step of the GA.

The initial condition to integrate the invariant manifolds after a perturbation ±Y along the stable/unstable direction

was defined in Eq. (11). This holds for the nominal manifolds, i.e., those in which the sail keeps the same cone angle as

required to maintain the equilibrium. However, for the manifold-like structures of the family of AEPs, a change of angle

provides a perturbation several orders of magnitude larger than that produced by Y. Therefore, instead of propagating

the state vector at the AEP plus the perturbation given by Eq. (11), we simply integrate the state vector at the AEP with
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a different attitude forwards and backward in time. Then, the only manifolds that travel towards the Earth are unstable

manifolds associated to positive cone angles and stable manifolds associated with negative cone angles. Therefore, the

cone angle theoretical limits of ±90 degrees, as well as the more realistic limit of ±80 degrees as defined in Section III,

are too broad. Due to the mirrored symmetry of the problem, the stable manifolds directed towards the Sun can only be

integrated for positive cone angles, while the unstable manifolds only emanate using negative cone angles. Finally,

after trial and error, we have tightened the boundaries of the cone angle to reduce the computation time. All these

considerations lead to the bounds as specified in Eq. (14).

The cost function for this problem, �ℎ4C4A>, includes two main terms: � 5 >AF0A3 for the forwards (first) heteroclinic

connection and �102:F0A3 for the backwards (second) heteroclinic connection:

�ℎ4C4A> = � 5 >AF0A3 + �102:F0A3 = ΔC>C1 + �?4=0;C H1 + ΔC>C2 + �?4=0;C H2 (15)

where ΔC>C1 and ΔC>C2 represent the quality of each heteroclinic connection, i.e., the error in position plus the error in

velocity at the intersection, and are equally defined as ΔC>C8 :

ΔC>C8 = Δ?>B8 + ΔE4;8

Δ?>B8 =

√
(GD,8 − GB,8)2 + (HD,8 − HB,8)2 ; ΔE4;8 =

√
(EGD,8 − EGB,8 )2 + (EHD,8 − EHB,8 )2

(16)

where the sub-indexes refer to the unstable (D,8) and stable (B,8) branches of the manifold for each heteroclinic connection

(8 = 1 and 8 = 2). �?4=0;C H1 and �?4=0;C H2 are penalty functions to account for the location of the intersection. �?4=0;C H1

accounts for the location of the intersection of the first heteroclinic connection, giving a larger penalty to the solutions

that do not travel upstream of the CME trajectory. It is computed as the distance between the location along the trajectory

with minimum value for G, G<8=, and a location upstream of the CME along the G-axis chosen by trial and error after

several runs of the GA:

�?4=0;C H1 = _(G<8= − 0.85)2 (17)

�?4=0;C H2 is used to limit the distance from the Earth along the G-axis traveled during the second heteroclinic connection:

�?4=0;C H2 = _(G<0G − (1 − `))2 (18)

where G<0G is the maximum value for G along the trajectory. Finally, _ is a multiplier that is used to determine the

weight of the penalty functions within the cost function at the initial generations of the GA. As the GA progresses and

the solutions are refined, a reduction in the weight allows the GA to focus on the quality of the connection rather than on

the minimum value for G. The progressive weighting has been implemented after several runs of the GA, as it tended to
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show bad quality connections with great variability between different runs. With this modification, the GA increased its

repeatability and the quality of the connections. The multiplier takes the following values:

_ =



0.1 if ΔC>C8 ≥ 10−2

0.001 if 10−2 ≥ ΔC>C8 ≥ 10−6

0 if ΔC>C8 ≤ 10−6

(19)

The problem defined above has been simulated in MATLAB® for eight different seeds, implemented using the

MATLAB® function A=6.<†: A=6(1,2,3,...,8), where a maximum number of seed values of eight was consider sufficient

due to the similarity in the shape of the trajectories found. Then, the trajectory with the smallest value for �ℎ4C4A> from

Eq. (15) is selected as the optimal one. For each run, the default settings of the MATLAB® ga.m function have been

used, except for the function tolerance, which was set to 10−6, and the population size, which was set to 150.

2. Homoclinic trajectories of a Lyapunov orbit

The process to obtain homoclinic solutions of a Lyapunov orbit follows a similar methodology to that defined for the

heteroclinic solution. Figure 7 shows the trajectory to-be optimized, which starts at a location, ?1, of a certain Lyapunov

orbit around the sub-L1 point. The trajectory evolves along the unstable manifold associated with a cone angle, U1, until

the intersection with an auxiliary line defined by Eq. (12). The trajectory then continues along the stable manifold

associated with another cone angle, U2, which has been integrated backward in time from another location, ?2, of the

same periodic orbit until the intersection with that same line. With this definition of the problem, it can be represented

by the following decision vector: ©«

1

1

−30◦

0◦

0

0

250◦

1

ª®®®®®®®®®®®®®®®®®®®®®®®®®®®¬

≤

©«

?1

?2

U1

U2

38A1

38A2

\1

>A18C

ª®®®®®®®®®®®®®®®®®®®®®®®®®®®¬

≤

©«

#>A18C?>8=CB

#>A18C?>8=CB

30◦

80◦

1

1

270◦

B8I4 5 0<8;H

ª®®®®®®®®®®®®®®®®®®®®®®®®®®®¬

(20)

†rng.m - Control random number generator. URL https://www.mathworks.com/help/matlab/ref/rng.html last accessed on 08/05/2020
using MATLAB® R2019b
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where each Lyapunov orbit has been discretized with a resolution of #>A18C?>8=CB = 10000 points; >A18C is an integer that

refers to the index of the orbit within the family of 100 Lyapunov orbits with different amplitudes as presented in Figure

4 (right), where only one in every five orbits is shown to ease readability; and 38A1 and 38A2 are logical variables that

refer to the direction in which the manifold is propagated: a zero uses −Y and a one uses +Y in Eq. (11) to generate the

trajectory along the manifold. While the change in cone angle is a sufficient perturbation to start the integration of the

manifolds for the heteroclinic strategy in Section IV.A.1, the manifolds associated to small values of the cone angle

emanating from a Lyapunov orbit are affected by the sign of Y. Finally, the boundaries for the cone angles come from

the defined limits for a solar sail as defined in Section III, plus a reduction in the search-space based on trial and error.
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𝑁𝑜𝑟𝑏𝑖𝑡𝑝𝑜𝑖𝑛𝑡𝑠

𝛼1

𝑥𝑢

𝑝2

𝑝1
Sun

Earth

Fig. 7 Schematic of the homoclinic trajectory showing the variables of the problem.

The cost function used to guide the GA to the optimal solution is defined as:

�ℎ><> = ΔC>C + �?4=0;C H (21)

where the first term, ΔC>C , is the quality of the connection as defined in Eq. (16). The second term in the cost function

accounts for the location and shape of the trajectory, which is composed of three terms:

�?4=0;C H = _
1 − G<8=
|H<8= |

(G<8= − 0.7)2 (22)
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where the multiplier _ follows the same three step definition as defined in Eq. (19), only using different values:

_ =



5 if ΔC>C ≥ 10−2

0.05 if 10−2 ≥ ΔC>C ≥ 10−5

0 if ΔC>C ≤ 10−5

(23)

The second term represents a ratio between the maximum distance traveled along the G-axis between the sail and the

Earth and the maximum displacement from the G-axis. This term is used to keep the solution close to the G-axis. Here,

the location of the Earth along the G-axis is approximated by 1 instead of 1 − ` due to the negligible impact of this

correction. The third term refers to the distance traveled along the G-axis between the minimum value for G, G<8=, and a

point of reference upstream of the CME. This point has been chosen as G = 0.7 after several runs and analyses of the

results of the GA. The objective of this third term is to guide the solution towards a location upstream of the CME along

the G-axis without reducing the quality of the connections nor completely changing the shape of the solution. This

factor is squared to increase the relative weight of this term and to avoid the possibility of flying away from the sub-L1

point towards the L2 region and beyond. Finally, there is a hard constraint that sets the cost function to � = 100 in case

the trajectory does not intersect the line defined in Eq. (12).

The problem defined above has been simulated in MATLAB®, again for eight different seeds and with the same

settings for the GA as for the heteroclinic solution. Like before, the trajectory with the smallest value for �ℎ><> from

Eq. (21) is selected as the optimal one.

B. Results

Figure 8 shows the results of the GA using a solar sail with a lightness number of V = 0.04 for the two discussed

strategies: heteroclinic connections between AEPs (left) and homoclinic connections of a Lyapunov orbit (right). The

background is set as the shape of a CME as it propagates towards the Earth to show the effectiveness of the solutions.

The normal vector of the sail is shown as red arrows along the trajectory. Note that the change in attitude is assumed

instantaneous at the location of the connections.

1. Heteroclinic connections

For the heteroclinic connections, the GA chooses the initial and targeted points very near to the maximum allowed

amplitude for the family of AEPs. For this reason, we show the results of three runs of the GA for different values of the

maximum amplitude to compare the effect of this parameter. This limitation in the maximum amplitude is implemented

by constraining the limits on the variable #4@?>8=CB : if we discard the first and last 425 AEPs in the family the amplitude

is reduced to H = ±0.17 and discarding the first and last 700 points reduces the amplitude to H = ±0.10.
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Fig. 8 GA optimized trajectory using heteroclinic connections betweenAEPs (left) and a homoclinic connection
of a Lyapunov orbit (right) showing the normal vector of the sail along the trajectory.

Table 1 Heteroclinic connections: optimal values for the decision variables and error at the intersections
between the unstable and stable manifolds

Amplitude
[-]

?1

[-]
?2

[-]
U1

[deg]
U2

[deg]
\1

[deg]
U3

[deg]
U4

[deg]
\2

[deg]
Δ?>B1

[km]
ΔE4;1

[m/s]
Δ?>B2

[km]
ΔE4;2

[m/s]
0.10 12 1423 3.81 -3.79 179.48 -4.60 4.63 179.94 2.91 0.0017 0.32 0.0011
0.17 57 1978 5.05 -5.03 178.15 -5.39 5.42 179.62 2.62 0.012 1.53 0.0043
0.24 7 2846 6.71 -6.71 181.42 -6.84 6.84 180.43 0.54 0.007 19.16 0.25

Table 1 shows the optimal values for the decision variables for the three different amplitudes as well as the error

in position and velocity for the two intersections of the stable and unstable manifolds. The three trajectories are very

similar, using small values for the cone angle which gradually increases as the maximum allowed amplitude increases.

Since the change in angle is very small, a realistic finite-time control law will not result in a significant change in the

shape of the solution. The position error of up to 19 km represents a good performance considering that the distance

traveled between the initial and targeted AEPs is in the order of 107 km. In a similar way, the error in velocity in the

order of cm/s is sufficiently small compared to the magnitude of the velocity of the sail along the manifolds which is in

the order of km/s.

Each of the three optimized trajectories shown in Figure 8 (left) is made up of four patched trajectories, two for the

first half of the trajectory and another two for the second half. From the four trajectories that define the solution, the first

one lies within the area of interest, the second and the third ones are situated downstream of the CME trajectory, and the

fourth one lies in between the area of interest and an area that will detect CMEs after passing the Earth. Furthermore,

the solution does not accurately follow the axis of the CME. In Section IV.B.3, we will analyze if these trajectories can

still provide an increase in warning time.

18



Table 2 Homoclinic connections: optimal values for the decision variables and error at the intersection between
the unstable and stable manifolds

?1

[-]
?2

[-]
U1

[deg]
U2

[deg]
38A1

[-]
38A2

[-]
\1

[deg]
>A18C

[-]
Δ?>B

[km]
ΔE4;

[m/s]
2560 6344 -1.140 67.40 0 -1 267.77 56 3234.69 0.39

2. Homoclinic connections

For the solution using a homoclinic connection of a Lyapunov orbit, shown in Figure 8 (right), the sail remains

upstream of the CME trajectory the majority of the time. A small fraction of the trajectory is located farther from the

Sun than the L1 providing no advantage in warning time, while another part of the trajectory goes beyond the expected

path of the CME (see the part of the trajectory farthest from the H-axis). Furthermore, the solution does not accurately

follow the axis of the CME.

Table 2 shows the optimal values for the decision variables. The control law for this trajectory is more demanding

than that for the heteroclinic strategy as the instantaneous change in attitude at the connection of the unstable and stable

manifold trajectories is much larger. The position error of 3234 km is still relatively small compared to the distance

traveled, in the order of 107 km, although two orders of magnitude larger than that of the heteroclinic trajectories. The

error in velocity for the homoclinic connection is again in the order of cm/s and therefore sufficiently small.

3. Warning time

The results in the previous two subsections showed that the sail is only located sunward of the L1 point for parts of

the homo- and heteroclinic connections. This section investigates if these connections can indeed increase the warning

time with respect to the L1 point. Figure 9 shows the ratio of increase in warning time for the sail with respect to a

satellite at the classical L1 point. The thick lines in magenta, green, and red show the instantaneous warning time

for the heteroclinic solutions while the horizontal lines show their respective average; the blue lines provide the same

information, but for the homoclinic solution, and the black solid line shows the warning time of a satellite at the sub-L1

point. Figure 9 (left) uses the distance traveled along the G-axis to compute the warning time, while Figure 9 (right) uses

the distance traveled along the axis of the CME. In both scenarios, negative ratios refer to a position of the sail that

detects the CME after its impact on Earth; ratios smaller than one refer to worse warning times than those that can be

achieved with current satellites at L1; and ratios smaller than the black solid line show shorter warning time than that of

a sail at the sub-L1 point.

In Figure 9 (left), where the distance traveled along the x-axis is taken as reference to compute the increase in

warning time, we see that the three solutions from the heteroclinic strategy and that of the homoclinic one provide a

longer average warning time than a satellite at the L1 point. Only the heteroclinic solution with the largest amplitude

(H = ±0.24) offers a longer average warning time than the homoclinic solution. Instead, when taking the CME axis as
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Fig. 9 Ratio of increase in warning time with respect to a satellite at the classical L1 point using the distance
travelled along the G-axis (left) or along the axis of the CME (right) to compute the increase.

reference, Figure 9 (right) shows negative values for the ratio of increase in average warning time for the three solutions

of the heteroclinic strategy, with worse results for larger amplitudes. However, at the start and end of these heteroclinic

connections, ratios of increase in warning of up to a factor of 20 (14 and nine for the smaller amplitude solutions) can be

observed. This implies that, by using a constellation of two or three solar sails, it may be possible to greatly increase

the warning time ratio to values near these maximum values. On the other hand, the solution from the homoclinic

strategy shows a significant increase in the average warning time of approximately a factor of 10 by using only a single

spacecraft. In addition, it guarantees a warning time never worse than that of a satellite at the sub-L1 point. In this case,

again, a constellation of two or three satellites may be used to further increase the average warning time and guarantee

continuous coverage also during the fraction of the trajectory that is not located within the area of the CME as shown in

Figure 8 (right).

4. Discussion of preliminary results

The results in the previous subsections show a different performance for each strategy. In order to choose the

best strategy for further optimization, this section summarizes the key results for each strategy and draws conclusions

on the trajectory that is selected as the initial guess for the trajectory with a continuously varying cone angle. The

trajectories from the heteroclinic strategy present an error of up to 20 km in position and 0.25 m/s at the connections. In

the homoclinic strategy, the errors are 3234 km for the position and 0.39 m/s for the velocity. Although the error for

the homoclinic connection is larger than that of the heteroclinic connection, both strategies show sufficiently small

relative errors: the distance traveled is approximately 107 km with velocities in the order of km/s at the transition

between manifolds. Regarding the increase in warning time, the homoclinic strategy outperforms the heteroclinic

strategy when the increase in warning time is computed with respect to the CME-axis as can be seen in Figure 9 (right).
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The trajectories from the heteroclinic strategy need a constellation of at least two solar sails to provide a warning time

longer than a satellite at L1. Instead, in the homoclinic strategy, one sail guarantees an average warning time 10 times

longer than a satellite at the sub-L1 point, but at least two sails are needed to provide continuous detection of CMEs.

Therefore, we have chosen the trajectory from the homoclinic strategy as the best candidate to increase the warning

time for CMEs. However, the warning time ratio can be increased further with the use of a continuous control law, as

discussed in the following section.

V. Optimal control solver approach
In this section we discuss the methodology to further constrain and optimize the trajectory from Section IV in

PSOPT and analyze its results.

A. Methodology

The limitations of the GA suggest the use of a different tool to improve the results of the study. We have chosen

PSOPT, which is an open-source optimal control solver that uses direct collocation methods. PSOPT has been

successfully used to generate optimal trajectories using homo- and heteroclinic connections within different CRTBPs

such as the Earth-Moon [26] or the Sun-Earth [27, 28] system. To solve the optimal control problem, the time-dependent

variables are approximated by Legendre polynomials at and in between the collocation points, which are spaced

following Legendre-Gauss-Lobato nodes. Then, the finite non-linear programming problem can be solved with PSOPT

default solver, IPOPT, which is an interior point optimizer. For the study, we have used PSOPT Release 2 version‡,

working with the Microsoft Visual 2010 compiler.

The optimal control problem to be solved can be described as follows. First, the objective function aims at

maximizing the distance from the Earth at which the CMEs are detected. To this end, two different cost functions are

defined:

�1 =

#∑
8=1

G8�-�. (24)

�2 =

#∑
8=1
(G8 − Gsub-L1 )

C8 − C8−1
C 5

(25)

where G8 is the G-coordinate of the trajectory at node 8, �- and �. are heaviside functions that encourage the trajectory

to be located in the part of the reference frame where the CME can be detected upstream of the sub-L1 point, Gsub-L1 is

the G-coordinate of the sub-L1 point, C8 and C8−1 are the times at the nodes 8 and 8 − 1 and C 5 is the final time of trajectory,

so the factor (C8 − C8−1)/C 5 gives a weight to each node based on the length of that segment of the trajectory. Equation

(24) is a direct minimization of the G-coordinate: the smaller the value for G, the closer to the Sun the CME is detected.
‡PSOPT Project Home. URL http://www.psopt.org/ last accessed on 04/05/2020
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On the other hand, Eq. (25) minimizes the distance to the sub-L1 point, which is negative for G8 values smaller than

Gsub-L1 thus maximizing the distance to the sub-L1 point.

The trajectory to-be optimized is represented by the following state vector:

®G(C) = [G H ¤G ¤H]) (26)

where the initial and final states, ®G(C0) = ®G0 and ®G(C 5 ) = ®G 5 , belong to the Lyapunov orbit around the sub-L1 point, as

will be explained in Section V.A.1. The boundary conditions for the state are:

[0.5 − 0.3 − 0.5 − 0.5]) ≤ ®G ≤ [1.02 0.05 0.5 0.5]) (27)

which are chosen after several trial runs of the optimization software. Initially, the boundaries were set equal to those of

the GA trajectory with a 5% increase. Then, the margins were progressively reduced to guide the solution. Both cost

functions, Eqs. (24,25), allow a smaller value for the upper bound of the G-coordinate. However, the ratio of increase in

warning time becomes smaller and the integration errors grow larger. Furthermore, when the boundary is set below one,

G ≤ 1, convergence is not achieved.

The control of the to-be optimized trajectory is defined by the cone angle of the sail:

D(C) = U (28)

for which the following bounds were imposed:

− 60◦ ≤ D ≤ 60◦ (29)

The control variable, U, requires the physical constraint of ±90◦, or the more realistic bounds of ±80◦ as explained in

Section III. However, the control profile of the sail for cone angles larger than 60 degrees showed unrealistic variations

when no limit on the rate of change for the attitude was used. Furthermore, such loose limits on the control law did not

allow convergence using realistic limits on the rate of change of the attitude of the sail.

There are two path constraints that the solution needs to abide by. The first one limits the rate of change of the cone

angle:

− 0.148 deg/day ≤ ¤U ≤ 0.148 deg/day (30)

where the limits are set by trial and error to obtain a smooth control profile. The second path constraint limits the

distance of the trajectory to the axis of the CME, measured along the H-axis. The axis, defined in Eq. (1), has been
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modeled as an eighth order polynomial in MATLAB® as H�"� (G). Then, the second path constraint is defined as:

− 0.17 ≤ H8 − H�"� (G8) ≤ 0.15 (31)

where the bounds have been progressively reduced up to the smallest values that still allow convergence.

The initial time is fixed at C0 = 0 and the final time is set free within a broad range around the flight time of the

trajectory optimized by the GA, 2.3 years as shown in Figure 9:

C0 = 0 ; 1.9 years ≤ C 5 ≤ 3.5 years (32)

Finally, we use the solution from the GA as a first guess in PSOPT. The state vector and the cone angle of the GA

solution are interpolated on a set of 50 Lagrange-Gauss-Lobatto nodes. The solution from PSOPT is also defined on 50

nodes, which could not be increased in a mesh refinement approach due to computational limitations. The convergence

tolerance is set to 10−6 and the maximum number of iterations is 1000.

1. Initial and final conditions

The start- and endpoints of the trajectory are constrained to lie along the Lyapunov orbit chosen by the GA, see

Figure 8. In MATLAB®, this orbit is represented by a discrete number of states, while PSOPT works better with

continuous functions for the variables. We have therefore compared two methods to approximate the orbit with a

continuous function. The first method uses a tenth order polynomial to fit three state variables, [H(G), ¤G(G), ¤H(G)]) , to

the remaining one, G, for the first half of the orbit as:

G>A18C (C) ≈ G>A18C?>; (G) = [G H(G) ¤G(G) ¤H(G)]) (33)

where G>A18C (C) is the actual state in the orbit as a function of time and G>A18C?>; is the approximation of the state

using the tenth order polynomial as a function of G. Then, thanks to the symmetry with respect to the Sun-Earth line

([G, H, ¤G, ¤H] = [G,−H,−¤G, ¤H]), the second half of the orbit is also parametrized. The second method uses an angular

parameter 0 < W < 2c to parametrize the orbit. Then, the four-state variables are approximated with an eighth order

Fourier expansion as a function of W:

G>A18C (C) ≈ G>A18C 5 >DA (W) = [G(W) H(W) ¤G(W) ¤H(W)]) (34)

where G>A18C 5 >DA is the approximated state of the orbit using the eight order Fourier series. The errors of the approximation

in km (position) and m/s (velocity) for both methods are shown in Figure 10, where the error for the polynomial fitting
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is only shown for the first half of the orbit. The error of the Fourier fitting is at least two orders of magnitude smaller,

consequently, it is the chosen method. It is important to mention that the amplitude of the orbit is approximately 7 · 105

km, which means that the relative errors produced by this approximation (smaller than 10 kilometers) are reasonable.

The average size of the error in dimensionless units is in the order of 10−8 for both the position and velocity. This value

is used as the margin allowed by PSOPT to satisfy the constraints on the initial (®G = ®G0) and final (®G = ®G 5 ) conditions as:

− 10−8 · [1 1 1 1]) ≤
(
®G − ®G>A18C 5 >DA (W)

)
≤ 10−8 · [1 1 1 1]) (35)
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Fig. 10 Errors from approximating the Lyapunov orbit with polynomials (half orbit, left) or Fourier series
(full orbit, right).

2. Re-integration in MATLAB®

The trajectories from PSOPT are represented by the value of the state, control, and time variables at the nodes.

Even for a converged solution, PSOPT only guarantees that the dynamics, the boundaries for the variables, and other

constraints are fulfilled at the nodes. To investigate the validity of the solution in between the nodes, these trajectories

have to be re-integrated in MATLAB® using an interpolation of the control to show any discrepancies with respect to

the result from PSOPT. For the interpolation of the control, we used the interpolating function 8=C4A ?1.<§ with the

interpolation method ?2ℎ8?. Other interpolation methods such as ;8=40A, <0:8<0, and B?;8=4 were tested, but these

showed worse accuracy for the re-integration.

We consider two types of re-integration. The first re-integration takes the initial conditions from the first node of the

solution and integrates the trajectory until the final time obtained in PSOPT. The difference between the state vector

at the end of the re-integrated trajectory and the final state vector of PSOPT gives an indication of how accurate the
§interp.m - 1D data interpolation (table lookup). URL https://www.mathworks.com/help/matlab/ref/interp1.html last accessed on

06/04/2020 using MATLAB® R2019b
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solution from PSOPT is, i.e., how well the trajectory in between the nodes abides by the constraints defined. The second

method only integrates the trajectory from node to node. Then, the state error at each node is computed as an indication

of the control effort required to fly the trajectory.

B. Results

The trajectory that uses �1 as defined in Eq. (24), which minimizes the G-coordinate, will be referred to as PSOPT-1,

while the trajectory using �2 from Eq. (25), which minimizes the (negative) distance to the sub-L1 point, will be called

PSOPT-2.
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Fig. 11 PSOPT-1 trajectory plotted over the shape of the CME and compared with the GA trajectory.

Figure 11 shows the PSOPT-1 trajectory in magenta and Figure 12 the PSOPT-2 trajectory in cyan, the red arrows

indicate the direction normal to the sail. The solid black lines represent the boundaries on the position coordinates as

defined in Eq. (27). The two heaviside functions that guide the PSOPT-1 trajectory appear as thin dashed-dotted lines.

The solution from the GA used as the initial guess is shown in blue; the red line shows the continuous re-integration

of the trajectory in MATLAB®. At the bottom left of the figures, we show a detailed plot of the trajectories in close

proximity of the Lyapunov orbit. There, we can analyze the departure and arrival locations along the orbit and the

accuracy of the re-integration. It can be seen that the PSOPT-1 trajectory accumulates a smaller error during the

re-integration. Both PSOPT-1 and PSOPT-2 trajectories remain within the path traveled by the CME for the whole

trajectory, which can be compared to the GA trajectory that exits the area of interest and travels farther away from the
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Fig. 12 PSOPT-2 trajectory plotted over the shape of the CME and compared with the GA trajectory

G-axis, providing a worse vantage point for CME monitoring.

The control law for the PSOPT-1 and PSOPT-2 trajectories is plotted in Figure 13. The attitude profile is similar for

both trajectories, with maximum values of approximately +15 and -17 degrees. An analysis of the results in Figure 13

reveals a maximum rate of change for the cone angle smaller than 0.14 deg/day.

Figure 14 shows the ratio of increase in warning time for both trajectories, PSOPT-1 and PSOPT-2, with respect to a

satellite at the classical L1 point and compares it with that of the GA trajectory, following a similar approach as the one

used in Figure 9. The magnitudes of the average warning time ratios are shown in the last two columns of Table 3

(the remaining columns of the table will be discussed later on in this section). In Figure 14 (left), we see that the ratio

of increase in warning time by just considering the distance traveled along the G-axis is more uniform for PSOPT-1

and PSOPT-2 trajectories than for the GA trajectory. The PSOPT-1 trajectory shows a smaller average ratio than the

GA trajectory, while the PSOPT-2 trajectory achieves a larger ratio. Figure 14 (right) shows the ratio of increase in

warning time using the distance traveled along the CME-axis. The resulting trajectories after the optimization have a

smaller peak for the ratio in warning time but a longer average warning time, guaranteeing better continuous detection

of potential CMEs impacting the Earth.

In Table 3, we show the error in the re-integration of PSOPT-1 and PSOPT-2 trajectories with respect to the final

node (first two columns) and the average ratio of increase in warning time for each trajectory (third and fourth columns).

The re-integration error is four times smaller for the PSOPT-1 trajectory than for the PSOPT-2 trajectory. The velocity
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Fig. 13 Cone angle profile as a function of time for the PSOPT-1 and PSOPT-2 trajectories.

Table 3 Re-integration error and ratio of increase in warning time with respect to a satellite at L1 point for
the PSOPT-1 and PSOPT-2 trajectories.

Position error [km] Velocity error [m/s]
Warning time ratio

G-axis [-]
Warning time ratio

CME -axis [-]
PSOPT-1 44289.01 5.39 2.4 12.3
PSOPT-2 157743.56 19.19 2.85 15.1

of the sail along the Lyapunov orbit ranges between 35 and 65 m/s and its amplitude is 7 · 105 km, so the integration

error is acceptable for the PSOPT-1 trajectory, but too large for the PSOPT-2 trajectory.

In Figure 15, we show the error of the re-integration from each node to the next one. The blue lines show the

absolute error of the position in kilometers, with the yellow lines showing a relative measure of this error compared to

the distance traveled. For the velocity, the red lines show the error in m/s and the purple lines, the relative error with

respect to the velocity at the final point. The errors for the PSOPT-1 trajectory are given by the solid lines while the

dashed lines show those errors for the PSOPT-2 trajectory. It can be seen that in this case, the errors are very similar

for both solutions, and the error at arrival into the orbit is sufficiently small: in the order of tens of kilometers for the

position and cm/s for the velocity. The errors along the trajectory reach some peaks of up to tens of thousands of

kilometers and tens of m/s, but the distance traveled between nodes and the velocities at these nodes are in the order of

millions of kilometers and several km/s, meaning very small relative errors as can be seen with the purple and yellow

lines from Figure 15.
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Fig. 14 Ratio of increase in warning time with respect to a satellite at the classical L1 point using the distance
travelled along the G-axis (left) and the distance travelled along the axis of the CME (right).
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Fig. 15 Error between nodes for a node-to-node re-integration for the PSOPT-1 trajectory (solid lines) and the
PSOPT-2 trajectory (dashed lines).

VI. Discussion of the results
The PSOPT-1 trajectory achieves a ratio of increase in warning time of 13 compared to a satellite at the classical

L1 point while the PSOPT-2 trajectory further increases this ratio to 15. However, the PSOPT-1 trajectory shows

better fidelity to the dynamics of the system, achieving an accumulated error during the re-integration of one order of

magnitude smaller. Both PSOPT trajectories provide effective warning for the full trajectory with a larger ratio than

the trajectory optimized by the GA, which has a ratio of increase in warning time of 10 and showed some parts of the

trajectory spent outside the path traveled by the CME.

Regarding the quality of the connection, the GA solution showed a position error of 3000 km and 0.4 m/s, see

Table 2, at the connection between each half of the trajectory. The relative velocities and the vast distance traveled
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translates this error into a very small relative error. In the case of the trajectories optimized by PSOPT, the trajectories

are continuous until the re-insertion in the Lyapunov orbit, with an error smaller than the tolerance set, 10−6. However,

the trajectories from PSOPT show a re-integration error when the initial condition is propagated in MATLAB®. This

re-integration error is approximately 45,000 km and 5 m/s for the PSOPT-1 trajectory and 160,000 km and 19 m/s for

the PSOPT-2 trajectory. This re-integration error is relatively large for the PSOPT-2 trajectory, as the final state of the

trajectory is the re-insertion into a Lyapunov orbit with an amplitude of 700,000 km and velocities ranging between 35

and 65 m/s. However, the re-integration error between nodes is similar for both trajectories, with small values between

0.001% and 1%.

The control profile of the trajectory optimized by the GA showed a large discontinuity at the intersection. Table 2

shows a required change in the cone angle of approximately 68° that needs to be performed instantaneously to guarantee

the feasibility of the solution from the GA. On the contrary, the trajectories optimized by PSOPT have feasible control

profiles which are shown in Figure 13. The small control effort from the solution and the relatively small re-integration

errors in between nodes, see Figure 15, is expected to allow the development of some trajectory control that will correct

for the small drift in between nodes. Therefore, PSOPT-2 is the best solution with the need for some sort of active

trajectory control to adjust for the re-integration errors.

VII. Conclusions
This paper has shown the feasibility of using solar sails with a state-of-the-art lightness number, V = 0.04, to travel

upstream of the path of Coronal Mass Ejections (CMEs) directed towards the Earth to increase the warning time for

CMEs with respect to satellites at the L1 point. For this purpose, two strategies have been evaluated and deemed feasible.

The first strategy follows a series of two heteroclinic connections between two Artificial Equilibrium Points (AEPs)

belonging to the family of AEPs in the sub-L1 region, i.e., the region including AEPs sunward of the classical L1 point.

The AEPs used in this trajectory are nearly symmetrical with respect to the Sun-Earth line, which suggests the use of at

least two solar sails to guarantee continuous coverage for CMEs directed towards the Earth, i.e., due to the rotation

of the Sun-Earth system, the CMEs always travels towards the Earth in the same half of the ecliptic defined by the

Sun-Earth line. The second strategy uses a homoclinic connection of a Lyapunov orbit around the sub-L1 point to travel

upstream of the CME. This second trajectory always remains in the half of the ecliptic in which the CME travels, but it

also requires at least two solar sails for continuous coverage as parts of the trajectory are outside the path of the CME.

Both strategies have been optimized with a genetic algorithm to increase the warning time for CMEs. The genetic

algorithm selects the best starting AEPs along the family of AEPs or the location within the Lyapunov orbit and the

piece-wise constant attitude of the sail along each manifold. The results of the optimization show better performance for

the homoclinic strategy, increasing the warning time ratio compared to satellites at L1 approximately by a factor of

10. Although the warning time is increased, the trajectory shows a discontinuity in the controls and the states at the
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transition between the unstable and stable manifolds.

The trajectory following a homoclinic connection of a Lyapunov orbit around the sub-L1 point is used as an initial

guess in an optimal control problem to generate a continuous trajectory with a smaller average distance to the axis

of the CME that further increases the warning time. The optimal control problem is solved for two slightly different

cost functions. The first one aims to minimize the distance to the Sun along the Sun-Earth line, while the second one

maximizes the distance between the sub-L1 point and the sail also along the Sun-Earth line. The trajectory using the

first cost function achieves an average ratio of increase in warning time of 12.3 with respect to satellites at L1 with a

sufficiently small re-integration error in the order of 40.000 km and 5 m/s. On the other hand, the trajectory using the

second cost function achieves a larger average warning time ratio of 15.1 but develops a larger re-integration error in the

order of 150.000 km and 19 m/s. Both trajectories use similar control laws where the attitude of the sail never exceeds

±20 deg with a rate of change smaller than 0.15 deg/day. The low-effort control law leaves a large margin in the sail

controllability to design some sort of trajectory control to correct the re-integration error between nodes. Then, the

trajectory using the second cost function can be used to provide continuous CME monitoring with a 15 times longer

warning time than what is currently obtained with satellites in the environment of the L1 point.
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3
Conclusions and Recommendations

This thesis aimed at increasing the warning time for incoming Coronal Mass Ejections (CMEs). Warn
ings for Earthapproaching CMEs are currently provided by insitu observations with satellites at the
SunEarth L1 point. As the warning time is proportional to the distance to the Earth at which the CME
is detected, this thesis used solarsail propulsion to move away from the neighborhood of the L1 point
and travel upstream of the CMEs to detect CMEs sooner and thereby increase the warning time.

Several solarsail trajectories that periodically travel upstream of the CME while remaining as close
as possible to the axis of the CME were designed in this thesis. The trajectories are developed for a
solar sail with a lightness number of 𝛽 = 0.04 in the planar circular restricted threebody problem using
two main strategies. The first strategy followed a series of two heteroclinic connections between two
Artificial Equilibrium Points (AEPs) belonging to the family of AEPs in the subL1 region, i.e., the region
including AEPs sunward of the classical L1 point. The second strategy used a homoclinic connection
of a Lyapunov orbit around the subL1 point to travel upstream of the CME. Both strategies have been
optimized with a Genetic Algorithm (GA) to select the best starting AEP along the family of AEPs or
the location within the Lyapunov orbit as well as the piecewise constant attitude of the sail along the
unstable and stable manifold to increase the warning time for CMEs. The results of the optimization
showed better performance for the homoclinic strategy, increasing the warning time ratio compared to
satellites at L1 by approximately a factor of 10. Although the warning time is increased, the trajectory
shows a discontinuity in the controls and the states at the transition between manifolds.

The trajectory optimized with the GA following a homoclinic connection of a Lyapunov orbit around
the subL1 point was used as an initial guess in an optimal control problem to generate a continuous
trajectory with a smaller average distance to the axis of the CME that further increases the warning
time. The optimal control problem is solved for two slightly different cost functions. The first one aims
at minimizing the sail distance to the Sun along the SunEarth line, while the second one maximizes
the distance between the subL1 point and the sail also along the SunEarth line. Both trajectories use
similar control laws where the attitude of the sail never exceeds ± 17 deg, with a rate of change smaller
than 0.14 deg/day. The trajectory using the first cost function achieves an average ratio of increase in
warning time of 12.3 with respect to satellites at L1 while the trajectory using the second cost function
further improves the warning time to a ratio of 15.1.

In Section 3.1, the research questions of Section 1.4 are directly answered in line with the results
presented throughout the paper in Chapter 2. Then, in Section 3.2 the limitations of the research are
explained to guide further investigations that could potentially improve the results.

3.1. Conclusions
The answers to the research questions formulated in Section 1.4 are presented based on the results
obtained throughout this thesis work.
A. Is it possible to use heteroclinic connections between different solarsail artificial equilibrium points

in the subL1 region to travel upstream of the CME using a piecewiseconstant sail attitude?
The short answer to this question is “yes”. This thesis presents three similar trajectories that use
two heteroclinic connections between two different AEPs of the family of AEPs in the subL1 region
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that, for some fractions of the trajectory, take the sail upstream of the CME along its path towards
the Earth. The trajectories have been optimized to increase the average warning time for CMEs and
to reduce the discontinuity in the states at the transition between the unstable and stable manifolds
of each heteroclinic connection using a Genetic Algorithm (GA) approach implemented in MATLAB.

The GA uses as decision variables the initial and final AEPs within the family of AEPs in the
subL1 region, the piecewise constant attitude of the sail along the unstable and stable manifolds,
and two other angles that define the location for the transition between the unstable and stable
manifolds. With this definition of the problem, the GA selected the AEPs with the largest separation
from the SunEarth line along a line normal to it. Three different values for the maximum distance
between the AEPs and the SunEarth line of 0.10, 0.17, and 0.24, dimensionless with the SunEarth
distance, have been used to properly analyze these connections. The optimized trajectories did not
improve the average warning time with respect to a satellite at L1, as only one half of the trajectory
develops upstream of the CME path towards the Earth. However, the instantaneous warning time
ratio is nearly constant at the peak values (ratios up to 20, 14, and nine with respect to a satellite
at the L1 point depending on the maximum amplitude of the family of AEPs) to rapidly decay below
one. These results suggest that a constellation of at least two solar sails may provide continuous
coverage with better average warning times than the existing missions in the environment of the L1
point.

Finally, regarding the feasibility of the trajectories, the discontinuities at the connections of the
unstable and stable manifolds need to be addressed. The error in the states at the intersection
between manifolds is sufficiently small to guarantee a smooth transition: the position error increases
with the maximum amplitude of the family of AEPs allowed for the trajectory up to a value of 19 km
which is sufficiently small compared to the 107 km traveled between the AEPs. The velocity error
is in the order of cm/s while the velocity of the sail reaches velocities in the order of km/s. The
discontinuity in the attitude of the sail is inherent due to the approach of using a piecewiseconstant
cone angle along each manifold. The optimal cone angles found by the genetic algorithm are nearly
symmetrical along the SunEarth line with values that increase with the maximum amplitude allowed
for the family of AEPs up to a maximum of 7 degrees. Since an instantaneous attitude change of
nearly 14 degrees is impossible for a real sail, some sort of trajectory control will be required to
smoothly transition from one manifold to the next one.

B. Is it possible to use a homoclinic connection of a periodic orbit around a subL1 point to travel up
stream of the CME using a piecewiseconstant sail attitude?
The short answer is, again, “yes”. This thesis has demonstrated the existence of trajectories that
follow homoclinic connections of a planar Lyapunov orbit around a subL1 point that take the sail
upstream of the CME while maintaining a relatively small distance to the axis of the CME for the
majority of its duration. As for the heteroclinic strategy, a GA has been used to increase the average
warning time attainable with this trajectory as well as to reduce the discontinuity at the transition
between the unstable and stable manifolds. The decision variables are the starting and final points
within the orbit, the amplitude of the Lyapunov orbit used, the piecewise constant attitude of the sail
used along the stable and unstable manifolds, and an auxiliary angle to define the location of the
transition between the unstable and stable manifolds.

The optimized trajectory achieves an averagewarning time 10 times longer than existing satellites
in the environment of the L1 point. However, some parts of the trajectory are spent outside the path
traveled by the CME. As for the trajectory using heteroclinic connections of AEPs, a constellation
of at least two satellites may guarantee continuous coverage while further increasing the average
warning time.

Regarding the feasibility of the trajectory, the discontinuities in the state and the controls are
larger than those obtained for the heteroclinic approach discussed in the previous question. The
discontinuity in the states for the position domain is two orders of magnitude larger than that of the
heteroclinic connection, with an error of approximately 3000 km. This position error is still sufficiently
small compared to the distance traveled by the sail in the order of 107 km. In the velocity domain,
the error is very similar to that of the heteroclinic connection, in the order of cm/s compared to the
velocity of the sail in the order of km/s. Finally, the attitude change required to use this connection
is almost 70 degrees. To compensate for this unrealistic attitude change, a progressive transition of
the sail angle will be needed, but this control law may affect the shape of the trajectory.
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C. Is it feasible to optimize the sail attitude from a piecewiseconstant attitude to a continually variable
attitude to further increase the warning time for solar storms?
As a short answer, yes it is. The results from the two strategies using a piecewise constant attitude
for the sail demonstrate the existence of trajectories that periodically travel upstream of the path
of CMEs towards the Earth. The trajectory following a homoclinic connection of a Lyapunov orbit
around a subL1 point showed the best results in terms of average warning time. However, the
discontinuity in the states and especially in the cone angle at the transition between the unstable
and stable manifold suggests the use of a continuously varying control law to improve the results.
Using a pseudospectral optimizator called PSOPT, an optimal control problem with two slightly
different definitions for the cost function has been developed to further increase the warning time.
The first cost function aims at minimizing the average distance to the Sun along the SunEarth line,
while the second cost function maximizes the distance to the subL1 point also along the SunEarth
line. Furthermore, a path constraint is used to limit the maximum distance between the trajectory
and the axis of the CME.

The optimized trajectories for both cost functions showed similar control profiles, with maximum
cone angles of ±17 degrees and a maximum rate of change for the cone angle of 0.14 deg/day,
much smaller than what can be attained with stateoftheart technology. The trajectory maximizing
the distance to the subL1 point obtained the largest increase in warning time ratio with a factor
of 15.1, while the minimization of the distance to the Sun provided a factor of 12. Finally, the so
lution from PSOPT was reintegrated in MATLAB using a continuous control law by interpolating
the values given by PSOPT at the nodes. The trajectory obtained with the minimization of the dis
tance to the Sun achieved the smallest reintegration error of approximately 44,000 km and 5 m/s,
while the trajectory obtained with the maximization of the distance to the subL1 point accumulated
a reintegration error of approximately 160,000 km and 19 m/s. These errors are relatively large
compared to the final state of the trajectory which lies along a Lyapunov orbit with an amplitude of
700,000 km and velocities ranging between 30 and 60 m/s. Nevertheless, the accumulated error
between each node and the next ranges between 0.001% and 1% of the distance traveled or the
velocity at the end of the node. This small relative error added to the relatively simple control law
suggests the possibility of using some sort of trajectory control to correct for the small drift between
nodes.
In conclusion, a trajectory that can be used to increase the warning time for incoming CMEs has

been developed by using a solar sail to travel upstream of the axis of CMEs directed towards the Earth.

3.2. Recommendations
As in every piece of research, it is impossible to investigate everything. It is necessary to set a limit
to make the study feasible with the available resources. In the case concerning this project, the main
constraint is time. This limitation justifies certain decisions to simplify the problem that will be potential
candidates to expand the research in the future for better results.
I. Reintegration error
One of the problems of the final trajectory presented in the paper is the error in the reintegration of
the trajectory. This error is inevitable due to the nature of the optimization used to solve the optimal
control problem. PSOPT uses direct collocation methods, which only satisfy the dynamics at the
nodes and interpolates the timedependent variables in between them. In contrast, the numerical
integration implemented in the ode45.m1 function within MATLAB® satisfies the dynamics along the
trajectory. This discrepancy generates a certain error at the end of the trajectory that can be reduced
in two different ways. The simplest possibility, in terms of human effort, is to use a more powerful
computer to run the same optimization problem with a finer grid of nodes. In this way, there will be
more nodes at which the dynamics are satisfied and the accumulated error along the trajectory will
be smaller. The second possibility to deal with the reintegration error is the design of some sort of
trajectory control to reduce the error between nodes. Although this may prove to be relatively simple,
it was beyond the scope of the thesis.

II. Extension to the three dimensional problem
1ode45.m  Solve nonstiff differential equations  medium order method. URL https://www.mathworks.com/help/
matlab/ref/ode45.html ® last accessed in 29/04/2020 using MATLAB R2019b

https://www.mathworks.com/help/matlab/ref/ode45.html
https://www.mathworks.com/help/matlab/ref/ode45.html
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CMEs are threedimensional toruslike structures with a nearcircular crosssection around an axis
that lies in the ecliptic plane. One of the advantages of solar sailing is that they generate the pos
sibility of maintaining orbits that are displaced away from the ecliptic plane. In this thesis, the study
is limited to the ecliptic plane. This reduction to a 2D problem limits the maneuverability of the sail
to just the angle between the incident radiation and the normal to the sail, the cone angle (𝛼). It
is expected that an extension to the threedimensional problem will allow a more optimal design of
the trajectory that manages to further reduce the average distance to the CME axis by traveling out
side of the ecliptic plane. However, the search for connections then becomes more complex as the
search for connections between manifolds would require a match of six coordinates instead of four
and the GA would include an extra variable for the second angle that defines the attitude of the sail.

III. Nonideal sail properties
The study is conducted in the planar CRTBP with an ideal solar sail acceleration model. Apart from
the extension to the 3D problem, several nonideal modifications can be included in the sail model
to represent its acceleration with higher fidelity. The nonideal behavior of a sail is divided into three
categories: attitude control, shape deformations, and optical imperfections, where the nonideal
optical effects have the largest impact on the acceleration [29]. A further study should consider
whether the trajectory is feasible just with the addition of some trajectory control or if the problem
needs to be reoptimized to account for the change in the dynamics of the sail.

IV. Increased fidelity for the dynamics
This thesis has used the PCRTBP as the dynamical framework for the research, which can be ex
panded to the spatial CRTBP to improve the results as mentioned in a previous recommendation.
Nevertheless, the dynamical system can be further expanded to a higher fidelity one using a devia
tion from the CRTBP such as the Elliptical Restricted ThreeBody Problem (ERTBP) or even further,
ephemeris coordinates for the main bodies.

The inclusion of higher fidelity dynamics, such as the eccentricity from the ERTBP, not only will
affect the shape of the invariant manifolds and, thus, the shape of the developed trajectories, but it
will make the system nonautonomous. The time needs to be included in the equations of motion
through the true anomaly. Then, any periodic solutionmust have a period which is an integer multiple
of the period of the perturbation, in this case, the period of the SunEarth orbit: one year.

V. Different approach for heteroclinic connections strategy
Additional runs of theGA algorithmwith a different approach for the heteroclinic strategy have already
shown promising results (not shown in the draft article). One of the disadvantages of the trajectories
using the series of heteroclinic connections was the need to use at least two solar sails to guarantee
continuous monitoring for CMEs, as half of the trajectory developed downstream of the path traveled
by CMEs towards the Earth. Reducing the searchspace for the AEPs to limit their maximum distance
downstream of the CME was deemed feasible. Figure 3.1 shows the result of a preliminary run of
the GA with an asymmetrical amplitude along the axis normal to the SunEarth line for the family of
AEPs, where only a small fraction of the resulting trajectory lies downstream of the CME path, which
is set as the background of the image.

Figure 3.1 is plotted in a synodic reference frame, centered at the barycenter of the Sun and the
Earth with the 𝑥axis along the SunEarth line and the 𝑦axis normal to the 𝑥axis within the ecliptic
plane. The background is set as the path of a CME approaching the Earth to show the effectiveness
of the resulting trajectory.
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A
Verification and Validation

This appendix includes the tests and comparisons used to gain trust in the methodology and imple
mentation during the research. The similarities with results found in the literature, the small numerical
errors, and the repeatability of the results are sufficient proof to verify and validate the procedures and
the results.

A.1. Verification
A.1.1. Dynamical system model
The CRTBP has been extensively studied in the literature [25, 26], which is more than enough proof of
its validity. Although the solar sail CRTBP is more recent and has less literature, it has been sufficiently
studied to verify it [3, 30]. The dynamical system is modelled with Eq. 2 in Chapter 2. This secondorder
differential vectorial equation can be expanded to a system of four firstorder differential equations as:

⎧⎪
⎨⎪⎩

�̇� = 𝑣𝑥
�̇� = 𝑣𝑦
̇𝑣𝑥 = 2𝑣𝑦 − 𝑈𝑥 + 𝑎𝑥
̇𝑣𝑦 = 2𝑣𝑥 + 𝑈𝑦 + 𝑎𝑦

(A.1)

The dynamical system can be verified by generating surfaces of equilibria. In Reference [31] the authors
show the intersection of the 3D surfaces of equilibria with the ecliptic in the environment of the L1 and
L2 points. Figure A.1 uses the surfaces of equilibria from the reference paper as the background
image, then the same surfaces of equilibria computed in this thesis are shown in grey dotted lines. It is
important to note the change in the 𝑥axis with respect to Figure 3 from the paper in Chapter 2 as the
authors of [31] define the axis as negative towards the secondary body, as opposed to the reference
frame defined in this thesis. The accuracy of the result is enough to verify the dynamics.

A.1.2. Periodic orbits
The periodic Lyapunov orbits used as initial conditions for the homoclinic connections are presented in
Figure 4 in Chapter 2. As the dynamics of the system have already been verified, demonstrating the
periodicity of the orbits is enough to verify them. Figure A.2 shows the norm of the error between the
first and the last point of the orbit. The size of the error is always smaller than 10−11 and the smallest
amplitude of the orbits is 10−3. Therefore, the periodicity of the orbits is considered verified.

A.1.3. Invariant manifolds
The invariant manifolds associated with the family of equilibrium points can be computed using the
eigenvalues and associated eigenvectors of the linearized dynamics at the equilibrium point. These
linearized dynamics are given by the Jacobian of the flow field computed as [26, 32]:

𝐴 = [
0 I

(𝜕∇𝑈𝜕𝑟 + 𝜕𝑎𝑠𝜕𝑟 ) |𝑟0
2Ω] where Ω = [ 0 1

−1 0] (A.2)
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Figure A.1: Intersection of the surfaces of equilibria generated by adding a solar sail to the CRTBP and the ecliptic plane for
different lightness numbers (𝛽 in this thesis, b in this plot as used by the original authors). Edited from [31] to verify the dynamics
of this thesis.

Figure A.2: Error in periodicity for the planar orbits used in the thesis, measured as the difference in the initial and final state
vectors.
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Figure A.3: Error in the eigenvalues from the Monodromy matrix. Norm of the unity eigenvalues minus one (left) and difference
between a nonunity eigenvalue and the inverse of its reciprocal one (right).

Since the dynamics are already verified, it is only necessary to confirm that the derivatives of the
potential, 𝑈, and the solar sail acceleration, 𝑎𝑠, are properly computed. This process is performed with
the help of Maple® 1, computing the symbolic derivatives of both the potential and the sail acceleration,
which are then written into MATLAB®. The eigenvectors and eigenvalues are computed using the
MATLAB® function eig.m2. Since these programs are extensively verified, it is possible to confirm that
the manifolds associated with the equilibrium points are also verified.

For the invariant manifolds of the periodic orbit, the eigenvalues and eigenvectors of the monodromy
matrix are used. The monodromy matrix is the state transition matrix evaluated after one period of the
orbit. The monodromy matrix of periodic orbits in the planar CRTBP has four eigenvalues: (𝜆1, 1/𝜆1,
1, 1) [25]. Then, the family of periodic orbits around the subL1 for 𝛽 = 0.04 as presented in Figure 4 in
Chapter 2 also needs to satisfy this condition. From the four eigenvalues of each monodromy matrix,
the two that are closest to one are selected, 𝜆𝑎 and 𝜆𝑏. Since some of them show small complex
components,the difference between the complex magnitude and one is plotted (|𝜆𝑖| − 1, with 𝑖 = 𝑎, 𝑏)
in Figure A.3 (left). The two remaining eigenvalues have to be reciprocal. To confirm it, |𝜆𝑐 − 1/𝜆𝑑| is
plotted in Figure A.3 (right) The size of the errors in the unit eigenvalues in the order of 10−6 and in the
reciprocity of the two other eigenvalues of 10−8 verify this results.

A.1.4. Genetic Algorithm
The optimization with constant cone angle along the manifolds is performed using the MATLAB® func
tion ga.m3. This function has been extensively used and is, therefore, verified. However, the opti
mization needs to be properly designed. To verify it, the GA is run at least eight times for the same
configuration with different seeds using the function rng.m4: rng(1,2,3,...,8). Then, the results of each
run are compared to see if they converge to a similar solution. Figure A.4 shows the eight runs for each
of the three amplitudes in the search for heteroclinic connections (left) and the eight runs for the search
of homoclinic connections (right). For the heteroclinic connections, it can be seen that the runs are
very similar to each other, except for one run in between the middle and smallest amplitude. However,
the shape of the solution is constant and the optimization can be verified. In the case of the homoclinic
connections, again, seven of the connections are very similar to each other with one of them showing
some variations. It is important to mention that the most optimal solution (the minimum value for the
cost function as defined in the paper) is not the odd case. It can be seen that each solution uses differ
1Maple®  interactive Computer Algebra System, version 2018. https://www.maplesoft.com/products/maple/
students/ last accessed 09/03/2020

2eig.m  Eigenvalues and eigenvectors. URL https://www.mathworks.com/help/matlab/ref/eig.html last accessed
24/04/2020 using MATLAB® R2019b

3ga.m  Find minimum of function using genetic algorithm. URL https://www.mathworks.com/help/gads/ga.html last
accessed 06/05/2020 using MATLAB® R2019b

4rng.m  Control random number generator. URL https://www.mathworks.com/help/matlab/ref/rng.html last ac
cessed 08/05/2020 using MATLAB® R2019b

https://www.maplesoft.com/products/maple/students/
https://www.maplesoft.com/products/maple/students/
https://www.mathworks.com/help/matlab/ref/eig.html
https://www.mathworks.com/help/gads/ga.html
https://www.mathworks.com/help/matlab/ref/rng.html
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Figure A.4: Set of solution for different amplitudes for heteroclinic connections between equilibria (left) and homoclinic connec
tions from a periodic orbit (right) for eight different seeds.

ent initial orbits, but the position within them is very similar along the solutions, which means that the
code converges to the same solution but the initial orbit is not so relevant to the shape of the trajectory.
Results can be considered verified.

A.1.5. PseudoSpectral Optimization
The optimization in MATLAB® is complemented with further optimization using PSOPT5. This tool is
written in C++ and the dynamics have to be translated there. Although the process has been carefully
performed, to verify the results, the potential function 𝑈 is evaluated at the nodes. The difference
between the potential evaluated at the nodes in MATLAB® and in PSOPT is smaller than the numerical
errors, which guarantees an appropriate translation of the dynamics.

Then, to verify the results of PSOPT, the error at reintegration in MATLAB® is considered. This error
is presented in Figure 15 and Table 3 in the paper. Although the error is not negligible, it is sufficiently
small considering the different natures of the two programs and the scarce number of nodes for the
optimization.

A.2. Validation
Finally, it is important to address how good is the local minimum obtained in the optimization. This
procedure is, in general, a complex task. Regarding the optimization with the genetic algorithm, sev
eral cost functions have been studied and showed worse results than those presented in the paper.
Although the solution cannot be guaranteed as the global minimum, it is the lowest minimum among nu
merous tests. Furthermore, as the genetic algorithm is used as an initial guess for further optimization
with a considerably different approach, it is possible to say that a good local minimum, i.e., a trajectory
that already provides a better warning time than those used a reference, is a sufficiently good result.

For the final solution obtained with PSOPT, the paper only presents the best two trajectories among
numerous tested candidates. Again, this can only show that the solution is the best local minimum ob
tained so far, but cannot guarantee that the solution is the global minimum. The presented solution
offered an average warning time up to 15 times longer than what satellites at the L1 point can currently
achieve. The target of this thesis was to increase the warning time beyond the existing mission propos
als. In the literature, the are no missions that can increase the average warning by more than a factor
of two using nearterm sail performances as in this thesis. Therefore, the designed trajectory can be
considered validated, as it fulfills the expected outcome of the thesis.

5PSOPT Project Home. URL http://www.psopt.org/ last accessed 04/05/2020

http://www.psopt.org/
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