
 
 

Delft University of Technology

An evaluation of MPM, GIMP and CMPM in geotechnical problems considering large
deformations

Gonzalez Acosta, Leon; Vardon, Phil; Hicks, Michael

Publication date
2017
Document Version
Accepted author manuscript
Published in
Proceedings of the 15th International Conference of the International Association for Computer Methods
and Advances in Geomechanics

Citation (APA)
Gonzalez Acosta, L., Vardon, P., & Hicks, M. (2017). An evaluation of MPM, GIMP and CMPM in
geotechnical problems considering large deformations. In Proceedings of the 15th International Conference
of the International Association for Computer Methods and Advances in Geomechanics : 19-23 October
2017, Wuhan, China
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.



15th IACMAG   www. 15iacmag.org 

19-23 October 2017, Wuhan, China 

 

 
An evaluation of MPM, GIMP and CMPM in geotechnical problems 

considering large deformations 
 

L. Gonzalez Acosta
a
*, P.J. Vardon

a
 and M.A. Hicks

a 

a 
Geo-Engineering Section, Delft University of Technology, the Netherlands 

* J.L.GonzalezAcosta-1@tudelft.nl 
 

Abstract 
 

Stress oscillations are a common phenomenon in the material point method (MPM), since this 
numerical method typically uses regular finite element (FE) shape functions to map variables from 
surrounding nodes to material points and vice versa, independently of the locations of the material 
points within an element. In integration this leads to a quadrature rule error and, in strain and stress 
calculations, derivatives of typical FE shape functions are discontinuous across element boundaries 
and do not give accurate results away from Gauss point locations within elements. In geotechnical 
analysis, the constitutive behaviour is generally stress-dependent, and therefore stress oscillations can 
cause severe inaccuracies in the calculated mechanical behaviour, including the development of 
wrong elasto-plastic quantities. Several attempts to improve stress recovery and reduce quadrature 
errors have been developed, but seldom has a full comparison between methods been made. In this 
paper, benchmark small scale and slope stability problems have been examined in order to compare 
the relative performance of the classic material point method (MPM), the generalized interpolation 
material point (GIMP) method and the new compound material point method (CMPM). 

 
Keywords: CMPM, GIMP, Material Point Method, Slope Stability, Softening, Stress Oscillation. 
 
1. Introduction 

 
The material point method (MPM) [1-2] has proven to be a valid numerical technique to simulate 

geotechnical behaviour, especially when simple constitutive models are used, since these models are 
related with variables less sensitive to stress oscillations, as in the case of the Von Mises criterion. In 
reality, the use of complex constitutive models is often needed to ensure the correct evolution of the 
mechanical behavior of the soil, and therefore the issue of stress oscillations should be addressed.  

The generalized interpolation material point (GIMP) method [3] was created to overcome errors 
caused by the use of regular finite element (FE) shape functions in MPM. In this method, FE shape 
functions are replaced by C

1
 shape functions, ensuring continuity in stresses when material points 

cross inter-element boundaries. As well as GIMP, the compound material point method (CMPM) [4] 
was developed to reduce the fluctuation in stresses caused by the ill-posed material point locations. 
CMPM uses C

n
 shape functions, and the evaluation of strains at each material point comes from the 

interpolation of displacements from all nodes of the element in question and the neighbouring 
elements, instead of using only nodes inside a support domain as in GIMP.  

In the first section of this paper, the theory of MPM, GIMP and CMPM are outlined, followed by 
the analysis of a benchmark problem to demonstrate how stresses oscillate using these techniques. A 
vertical cutting problem is then analyzed, to visualise how each method predicts the stresses 
developed during slope failure. 
 
2. Theoretical formulation 
 

Since MPM shares similarities with the FEM continuum mechanics framework [5-6], the weak 
form of momentum conservation is, as typical in FEM, given as  

 

  


 udAudVudVudV s
τbσa  (1) 

where  is the material density, a is the acceleration, u is the virtual displacement, V is the body 
volume,  is the Cauchy stress, b are the body forces, 

s
 are the prescribed tractions,  is the traction 

boundary, and  is the solution domain. Since the domain is represented as points of mass, the total 
mass in the domain can be computed as [7] 
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pn
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where mp is the mass of the point p, np is the number of points in the domain, and x is the position of 
any point. Substituting Eq. (2) into Eq. (1) gives 
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Using the Galerkin method, the virtual displacement is approximated as 

     



nn

1v

pvvp Nuu )(xx   (4) 

where Nv is the shape function, subscript v denotes grid node v, nn is the number of nodes in the 
element, and xp is the material point position in the element. Substituting Eq. (4) into Eq. (3) and 
following standard FE procedures [8], leads to 

   



pppp n

1p

pvpp

n

1p
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n

1p
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1p
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s  (5) 

It is evident that conservation of momentum is achieved by using shape functions (terms 1, 3 and 4 
in Eq. (5)) and shape functions derivatives (term 2 in Eq. (5)). This leads to a variational 
inconsistency, which becomes more important during material point element crossing, due to term 2 
being discontinuous between elements when using C

0
 shape functions. In general, MPM is limited to 

linear (C
0
) shape functions, since the use of quadratic elements can lead to errors when negative parts 

of the shape functions are used, in particular in the mass matrix. In addition, for implicit formulations, 
during the calculation of the stiffness matrix the non-Gaussian position of the material point in the 
numerical integration can cause some terms of the strain-displacement matrix to become negative, 
leading to an unrealistic element deformation. 

It has been proposed to reduce the imbalance caused by the use of C
0
 shape functions by using 

modified linear shape functions, so that they become C
1
 shape functions, improving the spatial 

integration [9-10]. This approach is used in GIMP, where the original FE shape functions and their 
gradients are replaced by a set of continuous shape functions and shape function gradients with a 
nonlocal support, diminishing the imbalance cause by local FE shape functions and eliminating 
element crossing noise. If a regular grid is used, considering 2 points per element for the initial 
condition and avoiding distortion of the material point domain, GIMP shape functions can be 
computed, for example for 1D elements, as [11] 
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where  is the local coordinate. Fig. 1 shows the GIMP shape function given by Eq. (6). 
 

 
Fig. 1. GIMP shape function support domain. 
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CMPM uses C
n
 shape functions to calculate the strains and stresses, by increasing the solution 

domain using nodes from the current and neighbouring elements, leading to a smooth distribution 
within an element. CMPM does not eliminate element crossing noise, but it reduces oscillations 
caused by discontinuous stresses and lower order shape function derivatives, leading to a smaller 
stress discontinuity between elements. Fig. 2 shows two possible positions for a material point 
(labeled mp) in the domain; in a boundary element and in a centre element. To interpolate strains in a 
1D element, the boundary and centre shape functions (Ni

b
 and Ni

c
 respectively) are computed as [12] 
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Fig. 2. Shape functions for (a) a boundary element, and (b) a centre element. 
 

It is important to emphasise that CMPM shape functions are only used to evaluate strains, and that 
regular FE shape functions are still used to compute the governing equation matrices.  

In the following sections, implicit and an explicit codes are used to solve benchmark and slope 
stability problems (respectively). Note that stress oscillations caused by quadrature errors and shape 
function discontinuities occur in both these methods (implicit and explicit), but in the implicit method 
extra oscillations are observed due to the stiffness matrix integration.  

 
3. Stress oscillation in MPM, GIMP and CMPM 

 
An illustration of stress oscillations using MPM, GIMP and CMPM is presented in this section. An 

axisymmetric analysis of a thick-walled hollow cylinder has been carried out using 4 noded 
quadrilateral elements. Radial displacement is applied incrementally at the inner boundary (r = ri) and 
the outer boundary is completely fixed (r = re), as shown in Fig. 3. The cylinder is assumed to be 
linear elastic, with E = 25000 kPa and v = 0.3. The solution is obtained using a quasi-static implicit 
code. 

 
 

Fig. 3. Thick-walled cylinder under internal pressure. 

(a) (b) 
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Differences between MPM, GIMP and CMPM stress oscillations are shown in Fig. 4, in which a 
displacement of 1.5 cm has been applied in a single step and the stress computed across the domain. 

 

 
Fig. 4. Radial stress oscillation using MPM, GIMP and CMPM. 

 
Fig. 4 shows that radial stresses computed using GIMP and CMPM are closer to the analytical 

solution, whereas MPM stresses oscillate more. It is also evident that the CMPM solution oscillates 
significantly less than that for GIMP, although the GIMP solution is continuous across element 
boundaries. However, the GIMP solution is incomplete at the domain boundaries, since interpolation 
using ghost nodes was not implemented in this example. Since an implicit code is used, stiffness 
matrices are used to solve the equation of motion. Following a similar approach as in FEM, the 
stiffness matrix is computed as 

  



pS

1p

ppm VWDBBK
T  (9) 

where Sp is the number of material points within an element, B is the strain-displacement matrix, D is 
the elastic stress-strain matrix, Wp are the material point integration weightings, initially selected to 
have a value of 1, and Vp are the material point volumes. As can be seen in Eq. (9), the element 
stiffness matrix is a function of the number of material points inside an element, leading to a variation 
of the element stiffness during element crossing and thereby to the oscillation of stresses. An 
alternative weighting value is here proposed to be a function of both the element volume and the 
volume of the material points within the element: 

 





pe

1p

p

p

V

V
W  (10) 

where V is the element volume and ep is the number of material points in the element. In Fig. 5, the 
deviatoric stress (q) of a single material point (mp-a from Fig. 3) is plotted for 50 steps, each of 1.5 
cm. As can be seen in Fig. 5a, stress oscillation is observed using all methods, but GIMP and CMPM 
follow the analytical solution more closely. It is also noticeable that, during element crossing, a jump 
in the stresses occurs. The effect of using the modified weighting value is shown in Fig. 5b. The 
results inprove considerably, due to stiffness in the domain being more evenly distributed. 
 

 

  

Fig. 5. mp-a deviatoric stress using (a) regular stiffness matrix, and (b) modified stiffness matrix. 

(a) (b) 
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4. Geotechnical application 
 

To demonstrate the use of MPM, GIMP and CMPM in geotechnical problems, a vertical cutting 
stability problem has been analyzed, using a Von Mises constitutive model incorporating post-peak 
softening as described in [13]. Fig. 6 shows the initial geometry of the problem, characterized by a 
height of 1 m and a width of 2 m. The material is an elasto-plastic strain-softening soil, with elastic 
parameters E = 400 kPa and v = 0.35. The peak and residual cohesions are 6 kPa and 1 kPa 
respectively, and the softening modulus is -25 kPa. In the domain, the left vertical boundary is fixed 
to prevent material point displacement in the horizontal direction, and the bottom boundary is fixed to 
prevent material point displacement in the vertical direction. The slope is loaded by gravity and the 
failure occurs due to its self weight. An explicit form of the code is used to solve the problem.  

 

  
 

Fig. 6. Sketch of the initial material point locations and background mesh. 
 
4.1 Results 
 

The results after 10 cm of horizontal displacement at the toe are shown in Fig. 7. As can be seen, 
the stresses oscillate the most when using MPM, whereas GIMP and CMPM show a smoother 
development of the stresses and plastic strains around the developing band. During the earlier steps in 
the analysis, CMPM shows the smoothest results, but, since regular FE shape functions are used to 
perform the numerical integration, the CMPM accuracy decreases after several mesh crossings occur. 
Nevertheless, CMPM results are better than MPM because the imbalance caused by element crossing 
is attenuated by the use of non-local support (i.e. nodes outside the element). After large deformation, 
GIMP exhibits the smoothest results since the stresses are continuous. The plastic deformations 
shown are consistent between GIMP and CMPM, but more diffuse with MPM. 

 

   
 

   
 

   
 

Fig. 7. Horizontal stress, shear stress and accumulated plastic strain contours with MPM, GIMP 
and CMPM. 

2m 

1m 

MPM GIMP CMPM 
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5. Conclusions 

 
This paper has investigated the imbalance caused by the use of regular FE shape functions to solve 

the governing equation in MPM, leading to the well-known stress oscillation problem. The use of 
CMPM and GIMP improves the accuracy of the results, since C

1
,
 
derivative continuous, shape 

functions are used to interpolate material point strains, reducing the oscillation caused by quadrature 
rule errors and element-crossing issues. It has been shown that CMPM can be used in implicit and 
explicit codes, and is able to compute more accurate stresses than MPM and GIMP. However, the 
accuracy of CMPM is only higher than GIMP until a certain point. This is because CMPM uses 
regular FE shape functions to compute internal and external loads, and this leads to oscillations when 
element crossing occurs. At this point, GIMP offers better results. 

The additional oscillations caused by the stiffness matrix integration in implicit codes was also 
demonstrated. Since the stiffness of an element is governed by the number of material points within 
an element and the material point weighting value, during element crossing an irregular stiffness 
distribution over the domain is obtained, causing jumps in stresses. It has been shown that this 
problem can be reduced by the use of a modified weighting value that is a function of the initial 
element volume and the sum of the material point volumes inside the current element, leading to a 
smoother stiffness distribution. 
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