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15

Extended calculi and powers of operators

In this chapter we address two strongly interwoven topics: How to verify the
boundedness of the H∞-calculus of an operator and how to represent and
estimate its fractional powers. For concrete operators such as the Laplace
operator or elliptic partial differential operators, the fractional domain spaces
can often be identified with certain function spaces considered in Chapter 14
and the imaginary powers of the operator are related to singular integral and
pseudo-differential operators treated in Chapters 11 and 13.

Throughout this chapter, unless otherwise stated, we let A be a sectorial
operator on a Banach space X. We work over the complex scalar field.

15.1 Extended calculi

In Chapter 10 we have introduced the Dunford calculus

f 7→ f(A),

defined for functions f ∈ H1(Σσ), the space of holomorphic functions on
Σσ that are integrable with respect to the measure dz

z (in the sense of (15.1)
below). We performed a detailed study of the class of operators whose Dunford
calculus, when restricted to H1(Σσ)∩H∞(Σσ) extends to a functional calculus
for functions in H∞(Σσ).

In the present section we extend the Dunford calculus of a sectorial op-
erator A to holomorphic functions f of polynomial growth on Σσ. Although
the operators f(A) in this calculus are generally unbounded, the mapping
f 7→ f(A) still shares many properties with bounded functional calculi. This
extended calculus includes all functions in H∞(Σσ), and it agrees with the
H∞(Σσ)-calculus of A when this operator has a bounded H∞(Σσ)-calculus.
In the next section, it will enable us to define the fractional powers Aα in
terms of the holomorphic functions zα. Sectorial operators A whose imag-
inary powers Ait are bounded are of special interest in view of their close
relationship with a variety of topics studied in these volumes.
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420 15 Extended calculi and powers of operators

We briefly recall some notation and terminology introduced in Volume II
that will be used throughout this chapter. For 0 < σ < π we denote by

Σσ := {z ∈ C \ {0} : | arg(z)| < σ}

the open sector of angle σ in the complex plane; the argument is taken in
the interval (−π, π). A linear operator (A,D(A)) is sectorial if there exists
σ ∈ (0, π) such that the spectrum σ(A) is contained in Σσ and

Mσ,A := sup
z∈{Σσ

‖zR(z,A)‖ <∞.

Here, for z ∈ %(A), the resolvent set of A, R(z,A) := (z − A)−1 denotes the
resolvent of A. In this situation we say that A is σ-sectorial with constant
Mσ,A. The infimum of all σ ∈ (0, π) such that A is σ-sectorial is called the
angle of sectoriality of A and is denoted by ω(A).

By H1(Σσ) we denote the Banach space of all holomorphic functions f :
Σσ → C for which

‖f‖H1(Σσ) := sup
|ν|<σ

‖t 7→ f(eiνt)‖L1(R+,
dt
t ) <∞. (15.1)

Our objective in this section is to extend the Dunford calculus f 7→ f(A)
to larger classes of functions. This is achieved in two steps: in Subsection
15.1.a we adjoin the constant-one function and the function (1+ z)−1. Among
other things, this allows us to treat bounded rational functions as well as
bounded functions such as exp(−z). This calculus provides the starting point
for Subsections 15.1.b and 15.1.c, where we extend the calculus to a class of
unbounded functions whose growth at the origin and at infinite is controlled by
a regularising function. Among other things this, extended Dunford calculus
will allow us to define fractional powers of A.

15.1.a The primary calculus

Our first aim is to extend the Dunford calculus f 7→ f(A) of a sectorial
operator A to a slightly larger class of functions f for which one still obtains
bounded operators, while preserving the multiplicativity of the calculus.

Definition 15.1.1. For 0 < σ < π we define E(Σσ) to be the vector space of
holomorphic functions f : Σσ → C of the form

f(z) = f0(z) +
a

1 + z
+ b,

where f0 ∈ H1(Σσ) ∩H∞(Σσ) and a, b ∈ C.

We could, more generally, allow functions f0 ∈ H1(Σσ) here, but not much
is gained by doing so because any such function belongs to H∞(Σν) for all
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0 < ν < σ (see Proposition H.1.3). This additional generality would in fact
cause some inconvenience in the statement of the multiplicativity rule (Propo-
sition 15.1.4), where one would be forced to switch to slightly smaller angles.
A further advantage of the present definition is that E(Σσ) is contained in
H∞(Σσ) as a linear subspace.

Lemma 15.1.2. A bounded holomorphic function f : Σσ → C belongs to
E(Σσ) if and only if it has integrable limits at 0 and ∞, by which we mean
that there exist constants c0, c∞ ∈ C such that f−c0 and f−c∞ are integrable
with respect to dz

z near 0 and ∞, respectively, in the sense that

sup
|ν|<σ

‖t 7→ f(eiνt)− c0‖L1((0,1), dtt ) <∞

and
sup
|ν|<σ

‖t 7→ f(eiνt)− c∞‖L1((1,∞), dtt ) <∞.

Proof. If f = E(Σσ) is of the form f(z) = f0(z) + a
1+z + b one may take

c0 = a+ b and c∞ = b. In the converse direction, if the bounded holomorphic
function f : Σσ → C has integrable limits c0 and c∞ at 0 and∞, respectively,
then f0(z) := f(z)− c0−c∞

1+z − c∞ belongs to H1(Σσ) ∩H∞(Σσ). �

The following functions belong to E(Σσ):

z 7→ zm

(1 + z)n
for 0 < σ < π and integers n > m > 0;

z 7→ exp(−ζz) for 0 < σ < 1
2π and ζ ∈ Σ 1

2π−σ
.

For the first this follows by multiplicativity (proved in Proposition15.1.4 be-
low) and the fact that z 7→ (1+z)−1 and z 7→ z(1+z)−1 = 1−(1+z)−1 belong
to E(Σσ). For the second this follows by noting that both exp(−ζz)−(1+ζz)−1

and (1 + ζz)−1 − (1 + z)−1 are in H1(Σσ) ∩H∞(Σσ). Another example will
be encountered in the proof of Theorem 15.2.8.

Definition 15.1.3 (Primary calculus). Let A be a sectorial operator on a
Banach space X and let ω(A) < σ < π. For functions f ∈ E(Σσ) the bounded
operator f(A) ∈ L (X) is defined by

f(A) := f0(A) + a(I +A)−1 + bI,

where
f(z) = f0(z) +

a

1 + z
+ b

with f0 ∈ H1(Σσ) ∩ H∞(Σσ) and a, b ∈ C, and with f0(A) defined through
the Dunford calculus.
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Since the constants a and b are uniquely determined by f this is well defined.
For functions in f ∈ H1(Σσ) ∩ H∞(Σσ) the primary calculus of a sectorial
operator A agrees with the Dunford calculus. If A has a bounded H∞(Σσ)-
calculus and D(A) ∩ R(A) is dense in X, then for functions f ∈ E(Σσ) the
definitions of f(A) through the primary calculus agrees with that through the
H∞-calculus; this is because in the H∞-calculus we have 1

1+z (A) = (I+A)−1

and 1(A) = I by Theorem 10.2.13.

Proposition 15.1.4. Let A be a sectorial operator on a Banach space X and
let ω(A) < σ < π. For all f, g ∈ E(Σσ) we have fg ∈ E(Σσ) and

(fg)(A) = f(A)g(A).

Proof. Let f, g ∈ E(Σσ) be represented as in Definition 15.1.1. It is clear
that the product f0g0 belongs to H1(Σσ)∩H∞(Σσ) and that the product of
z 7→ (1 + z)−1 with a function in H1(Σσ)∩H∞(Σσ) is in H1(Σσ)∩H∞(Σσ)
again. Finally,

1

1 + z
· 1

1 + z
=

1

1 + z
− z

(1 + z)2

and the right-hand side is in E(Σσ). This proves that fg ∈ E(Σσ).
We have f0g0 ∈ H1(Σσ)∩H∞(Σσ), and the multiplicativity of the Dunford

calculus gives
f0(A)g0(A) = (f0g0)(A).

Also, with φ(z) = 1/(1 + z) and ζ(z) = z/(1 + z2),

φ(A)2 = (I +A)−2 = φ(A)− ζ(A) = (φ− ζ)(A) = φ2(A),

where we used Proposition 10.2.3 to see that ζ(A) = A(I + A)−2 in the
Dunford calculus and hence in the primary calculus. Thus it remains to check
that φ(A)f0(A) = (φf0)(A). This follows by applying the resolvent identity
and Cauchy’s theorem to the contour integral representation of the Dunford
calculus:

φ(A)f0(A) =
1

2πi

∫
Γ

f0(z)(I +A)−1R(z,A) dz

=
1

2πi

∫
Γ

f0(z)

1 + z
[R(z,A)−R(−1, A)] dz

=
1

2πi

∫
Γ

f0(z)

1 + z
R(z,A) dz

= (φf0)(A).

This completes the proof. �

Example 15.1.5 (Bounded rational functions). As a first application let us
prove that if A is sectorial, then for all integers m > n > 0 we have
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zm

(1 + z)n
(A) = Am(I +A)−n,

noting that z 7→ zm

(1+z)n belongs to E(Σσ) for all 0 < σ < π.

By Proposition 15.1.4,

zm

(1 + z)n
(A) =

( z

1 + z
(A)
)m( 1

1 + z
(A)
)n−m

= (A(I +A)−1)m(I +A)m−n = Am(I +A)−n,

where we used that

z

1 + z
(A) = 1(A)− 1

1 + z
(A) = I − (I +A)−1 = A(I +A)−1.

Example 15.1.6 (Exponential functions). In this example we assume that A is
sectorial with ω(A) < 1

2π. For ω(A) < σ < 1
2π and ζ ∈ Σ 1

2π−σ
define

exp(−ζA) := exp(−ζz)(A),

noting that z 7→ exp(−ζz) belongs to E(Σσ).
By Proposition 15.1.4,

exp(−ζ1A) exp(−ζ2A) = exp(−(ζ1 + ζ2)z)(A).

Furthermore, for all x ∈ X and n > 1 we have exp(−ζA)x ∈ D(An) and

(zn exp(−ζz))(A)x = An exp(−ζA)x.

To see this denote the left-hand side by g(A). By Proposition 15.1.4 and
Example 15.1.5,

(I +A)−ng(A) =
1

(1 + z)n
(A)g(A) =

( zn

(1 + z)n
exp(−ζz)

)
(A)

=
zn

(1 + z)n
(A) exp(−ζz)(A) = An(I +A)−n exp(−ζz)(A),

from which the claim follows.

The preceding example connects with semigroup theory through Proposition
10.2.7 in Volume II which can be restated in the present language of primary
calculus as follows.

Theorem 15.1.7. Let A be a densely defined sectorial operator on X with
angle ω(A) < 1

2π, and let ω(A) < σ < 1
2π. Then the bounded holomorphic C0-

semigroup (S(z))z∈Σ 1
2
π−σ

generated by −A is given by the primary calculus

through
S(z) = exp(−zA), z ∈ Σ 1

2π−σ
,

where exp(−zA) = exp(−z ·)(A) as in the preceding example.
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15.1.b The extended Dunford calculus

Throughout this section, A is a sectorial operator on a Banach space X and
we fix ω(A) < σ < π. We proceed to define an extension of the primary
calculus f 7→ f(A) for suitable unbounded functions f . The idea is to use
a regularising function % to “tame” the growth of f near the origin and at
infinity. The resulting operators f(A) are unbounded in general, but they
nevertheless enjoy various good properties. For functions f ∈ H∞(Σσ) and
%(z) = z/(1+z)2 the construction proposed in the definition has already been
used in Volume II (see (10.14)).

Definition 15.1.8 (Regularisers, extended Dunford calculus). Let A
be a sectorial operator on a Banach space X and let ω(A) < σ < π. Let
f : Σσ → C be holomorphic. A function % ∈ E(Σσ) is called a regulariser on
Σσ for the pair (f,A) if the following two conditions are met:

• %f ∈ E(Σσ);
• the operator %(A) defined by the primary calculus is injective.

We say that (f,A) is Σσ-regularisable if such a regulariser exists, and in that
case we define

D(f(A)) :=
{
x ∈ X : (%f)(A)x ∈ R(%(A))

}
,

f(A)x := %(A)−1(%f)(A)x, x ∈ D(f(A)).

The mapping f 7→ f(A) is referred to as the extended calculus!Dunford of A.

If % is a Σσ-regulariser for the pair (f,A), then so is ρ% for any ρ ∈ H1(Σσ)∩
H∞(Σσ) such that ρ(A) is injective. Since ρ% ∈ H1(Σσ)∩H∞(Σσ), this shows
that regularisers may be assumed to lie in H1(Σσ) ∩H∞(Σσ) whenever this
is convenient.

In what follows we omit the prefix ‘Σσ-’ whenever the choice of the angle
σ is clear from the context.

A trivial consequence of the first assertion in Proposition 15.1.4 is that if
% ∈ E(Σσ), then for every function f ∈ E(Σσ) we have %f ∈ E(Σσ). If %(A)
is injective, Proposition 15.1.4 implies that for all f ∈ E(Σσ) the definitions
of f(A) in Definitions 15.1.3 and 15.1.8 agree.

The following proposition shows that the definition of the operator f(A)
is independent of the regulariser.

Proposition 15.1.9 (Well-definedness). Let A be a sectorial operator on
a Banach space X and let ω(A) < σ < π. Let f : Σσ∨τ → C be holomorphic,
where σ, τ ∈ (ω(A), π). If % ∈ E(Σσ) and ϑ ∈ E(Στ ) are regularisers for
(f,A), then{

x ∈ X : (%f)(A)x ∈ R(%(A))
}

=
{
x ∈ X : (ϑf)(A)x ∈ R(ϑ(A))

}
and, for all x ∈ X belonging to this common set,

%(A)−1(%f)(A)x = ϑ(A)−1(ϑf)(A)x.
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Proof. Replacing σ and τ by σ ∧ τ we may assume that σ = τ . Denote the
domains defined in the statement of the lemma by D%(f(A)) and Dϑ(f(A)). If
x ∈ D%(f(A)), then (%f)(A)x = %(A)y for some y ∈ X. By Proposition 15.1.4
we have ϑ%f ∈ E(Σσ) and

%(A)(ϑf)(A)x = (ϑ%f)(A)x = ϑ(A)(%f)(A)x = ϑ(A)%(A)y = %(A)ϑ(A)y,

and therefore (ϑf)(A)x = ϑ(A)y by the injectivity of %(A). This shows that
(ϑf)(A)x ∈ R(ϑ(A)), so x ∈ Dϑ(f(A)), and

ϑ(A)−1(ϑf)(A)x = y = %(A)−1(%f)(A)x.

Interchanging the roles of % and ϑ, one also sees that if x ∈ Dϑ(f(A)), then
x ∈ D%(f(A)). This concludes the proof. �

The following observation is an immediate consequence of Proposition 15.1.4.

Lemma 15.1.10. Let A be a sectorial operator on a Banach space X and let
ω(A) < σ < π. If f, g : Σσ → C are holomorphic functions and % ∈ E(Σσ)
and ϑ ∈ E(Σσ) are regularisers for (f,A) and (g,A), respectively, then %ϑ is
a regulariser for both (f,A) and (g,A).

Proposition 15.1.11. Let A be a sectorial operator on a Banach space X
and let ω(A) < σ < π. Let f : Σσ → C be a holomorphic function such that
the pair (f,A) is regularisable.

(1) the operator f(A) is closed;
(2) if % ∈ E(Σσ) regularises (f,A), then R(%(A)) ⊆ D(f(A)) and

f(A)x = (%f)(A)%(A)−1x, x ∈ R(%(A)).

Proof. (1): Let xn ∈ D(f(A)) satisfy xn → x and f(A)xn → y in X
as n → ∞. Then (%f)(A)xn → (%f)(A)x since (%f)(A) is bounded, and
%(A)−1[(%f)(A)xn] = f(A)xn → y by the definition of f(A). The closedness of
%(A)−1 implies (%f)(A)x ∈ D(%(A)−1) = R(%(A)) and %(A)−1[(%f)(A)x] = y.
By the definition of D(f(A)), this means that x ∈ D(f(A)) and f(A)x = y.
This proves the closedness of f(A).

(2): For x ∈ R(%(A)), say x = %(A)y, we have

(%f)(A)x = (%f)(A)%(A)y = %(A)(%f)(A)y ∈ R(%(A)).

Therefore x ∈ D(f(A)) and

f(A)x = %(A)−1(%f)(A)x = (%f)(A)y = (%f)(A)%(A)−1x.

�

Proposition 15.1.12. Let A be a sectorial operator on a Banach space X
and let ω(A) < σ < π. Let f, g : Σσ → C be holomorphic functions such that
the pairs (f,A) and (g,A) are regularisable.
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(1) for all a, b ∈ C the pair (af + bg,A) is regularisable, and for all x ∈
D(f(A)) ∩ D(g(A)) we have x ∈ D((af + bg)(A)) and

(af + bg)(A)x = af(A)x+ bg(A)x.

(2) the pair (fg,A) is regularisable and

D(f(A)g(A)) = D(g(A)) ∩ D((fg)(A)),

and for all x ∈ X belonging to the common set we have

(fg)(A)x = f(A)g(A)x.

In particular, f(A)g(A)x is closable. If g(A) is bounded, then

(fg)(A) = f(A)g(A)

with equal domains.
(3) if f is zero-free and the pair (1/f,A) is regularisable, then f(A) is injective

and ( 1

f

)
(A) = f(A)−1

with equality of domains. In particular, if A is injective and if we set
inv(z) := 1/z, then (inv, A) is regularisable and

inv(A) = A−1.

Proof. By Lemma 15.1.10 we may select a function % ∈ E(Σσ) that regularises
both (f,A) and (g,A) (in parts (1) and (2)), respectively both (f,A) and
(1/f,A) (in part (3)).

(1): It is clear that if %f, %g ∈ E(Σσ), then %(af + bg) ∈ E(Σσ). The
assumption x ∈ D(f(A))∩D(g(A)) implies that (%f)(A)x and (%g)(A)x belong
to R(%(A)) and therefore we have (%(af + bg))(A)x ∈ R(%(A)). Hence x ∈
D((af + bg)(A)) and

(af + bg)(A)x = %(A)−1(%(af + bg))(A)x

= a%(A)−1(%f)(A)x+ b%(A)−1(%g)(A)x = af(A)x+ bg(A)x.

(2): By assumption we have %f, %g ∈ E(Σσ). By Proposition 15.1.4 we
also have %2fg ∈ E(Σσ). By multiplicativity we have %2(A) = (%(A))2, so
%2(A) is injective. It follows that the operator (fg)(A) is well defined in the
extended Dunford calculus.

Let x ∈ D(g(A)) ∩ D((fg)(A)). Then, by the definition of g(A)x, multi-
plicativity, and the definition of (fg)(A)x,

(%f)(A)g(A)x = (%f)(A)%(A)−1(%g)(A)x

= %(A)−1(%f)(A)(%g)(A)x
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= %(A)−1(%2fg)(A)x

= %(A)%(A)−2(%2fg)(A)x

= %(A)(fg)(A)x.

This shows that (%f)(A)g(A)x ∈ R(%(A)) and therefore g(A)x ∈ D(f(A)),
i.e., x ∈ D(f(A)g(A)), and

(fg)(A)x = %(A)−1(%f)(A)g(A)x = f(A)g(A)x.

In the converse direction, let x ∈ D(f(A)g(A)). Then x ∈ D(g(A)) and
g(A)x ∈ D(f(A)), so (%f)(A)g(A)x ∈ R(%(A)), say (%f)(A)g(A)x = %(A)y.
Then,

(%2fg)(A)x = (%f)(A)(%g)(A)x = %(A)(%f)(A)g(A)x = %(A)2y = %2(A)y.

This shows that (%2fg)(A)x belongs to R(%2(A)), so x ∈ D((fg)(A)) by Propo-
sition 15.1.9 and

(fg)(A)x = %2(A)−1(%2fg)(A)x = y = %(A)−1(%f)(A)g(A)x = f(A)g(A)x.

By part (1) of Proposition 15.1.11 the operator (fg)(A) is closed, and the
above argument shows that it extends f(A)g(A), so f(A)g(A) is closable.

(3): Noting that D((1/f)f)(A) = D(1(A)) = D(I) = X, it follows from
part (2) that if x ∈ D(f(A)), then x ∈ D((1/f)(A)f(A)) and (1/f)(A)f(A)x =
x. Reversing the roles of f and 1/f we also obtain that if x ∈ D((1/f)(A)),
then (1/f)(A)x ∈ D(f(A)) and f(A)(1/f)(A)x = x.

The second assertion follows by considering, e.g., the regulariser %(z) =
z/(1 + z). �

As a consequence of what has been shown in the course of the proof of part
(2), and by applying (2) with f and g interchanged, we find that f(A) and
g(A) commute in the following sense: we have

f(A)g(A)x = g(A)f(A)x = (fg)(A)x

for x ∈ D(f(A)) ∩ D(g(A)) ∩ D(fg(A)).
We continue with a characterisation of the domain of f(A) which, in view

of later applications, we formulate in two versions. For integers n > 1 we write

rn(z) :=
n

n+ z
, ζn(z) :=

n

n+ z
− 1

1 + nz
.

These functions belong to E(Σσ).

Proposition 15.1.13. Let A be a sectorial operator on a Banach space X
and let ω(A) < σ < π. Let f : Σσ → C be a holomorphic function, and fix an
integer k > 1.
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(1) If D(A) is dense in X and rknf ∈ E(Σσ), then D(Ak) is densely contained
in D(f(A)), we have

D(f(A)) =
{
x ∈ X : lim

n→∞
(rknf)(A)x exists in X

}
,

and, for all x ∈ D(f(A)),

f(A)x = lim
n→∞

(rknf)(A)x.

(2) If D(A) ∩ R(A) is dense in X and ζknf ∈ E(Σσ), then D(Ak) ∩ R(Ak) is
densely contained in D(f(A)), we have

D(f(A)) =
{
x ∈ X : lim

n→∞
(ζknf)(A)x exists in X

}
,

and, for all x ∈ D(f(A)),

f(A)x = lim
n→∞

(ζknf)(A)x.

In either case, f(A) is densely defined.

Proof. (1): Let %(z) := r1(z) = (1 + z)−1. Then %k = rkn ∈ E(Σσ) and
D(Ak) = R(%k(A)), so the inclusion R(%k(A)) ⊆ D(f(A)) of Proposition
15.1.11 implies that D(Ak) ⊆ D(f(A)).

Let x ∈ D(f(A)) and set xn := rkn(A)x. Then xn ∈ D(Ak) ⊆ D(f(A)),
and by Proposition 10.1.7 we have limn→∞ xn = x (here we use that D(A) is
dense) and

lim
n→∞

f(A)xn = lim
n→∞

f(A)rkn(A)x = lim
n→∞

rkn(A)f(A)x = f(A)x,

where the middle identity follows from the second part of Proposition 15.1.11,
observing that rkn is a regulariser for (f,A). This shows that D(Ak) is dense
in D(f(A)).

If x ∈ D(f(A)), multiplicativity and the fact that %krknf ∈ E(Σσ) imply

rkn(A)f(A)x = %k(A)−1rkn(A)(%f)(A)x

= %k(A)−1(%rknf)(A)x = (rknf)(A)x.

Therefore limn→∞(rknf)(A)x exists and equals f(A)x.
Conversely, suppose that x ∈ X is such that limn→∞(rknf)(A)x =: y exists.

Put zn := rkn(A)(%kf)(A)x. Then zn ∈ D(Ak), so zn ∈ R(%k(A)). Moreover
zn → (%kf)(A)x, and, by multiplicativity,

%k(A)−1zn = %k(A)−1rkn(A)(%kf)(A)x

= %k(A)−1(%krknf)(A)x = (rknf)(A)x→ y.

Since %k(A)−1 is closed it follows that (%kf)(A)x belongs to D(%k(A)−1) =
R(%k(A)), and therefore x ∈ D(f(A)).

(2): This is proved in the same way as (1), replacing the use of rn and
Proposition 10.1.7 by ζn and Proposition 10.2.6. �
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The following result improves Proposition 15.1.12(2) under an additional as-
sumption.

Proposition 15.1.14. Let A be a sectorial operator on a Banach space X
and let ω(A) < σ < π. Let f, g : Σσ → C be holomorphic functions such that
the pairs (f,A) and (g,A) are regularisable. Then f(A)g(A) is closable and

f(A)g(A) = (fg)(A)

in each of the following two cases:

(1) D(A) is dense in X, and f and g are bounded near 0 and have at most
polynomial growth near ∞;

(2) D(A) ∩ R(A) is dense in X, and f and g have at most polynomial growth
near 0 and ∞.

Proof. The closability of f(A)g(A) has already been proved in Proposition
15.1.12. We prove (1); the proof of (2) is entirely similar.

With % := r1 as in the previous proof, the growth assumption implies
that for large enough k > 1 the functions %kf , %kg, and %2kfg belong to
E(Σσ). Moreover, D(Ak) = R(%k(A)). The domain D(A2k) equals R(%2k(A)),
which in turn is contained in D((fg)(A)) by Proposition 15.1.11 applied
with %2k and fg. We also have D(A2k) ⊆ D(Ak) ⊆ D(g(A)), and hence
D(A2k) ⊆ D(f(A)g(A)) by Proposition 15.1.12. Moreover, since D(A) is dense
in X, D(A2k) is dense in D((fg)(A)) by Proposition 15.1.13. It follows that
D(f(A)g(A)) is dense in D((fg)(A)). �

Theorem 15.1.15 (Composition). Let A be a sectorial operator on a Ba-
nach space X and let ω(A) < σ < π. Let f : Σσ → C be a holomorphic
function such that the pair (f,A) is regularisable, and assume that

f(Σσ) ⊆ Στ

for some 0 < τ < π. Suppose furthermore that f(A) is sectorial with
ω(f(A)) < τ . If g : Στ → C is a holomorphic function such that the pairs
(g, f(A)) and (g ◦ f,A) are regularisable, then

g(f(A)) = (g ◦ f)(A)

holds under either one of the following additional assumptions:

(i) g ∈ E(Στ );
(ii) (g, f(A)) admits a regulariser ϕ ∈ E(Στ ) such that ϕ ◦ f ∈ E(Σσ).

The proof depends on the following lemma.

Lemma 15.1.16. Let A be a sectorial operator on a Banach space X and let
ω(A) < σ < π. Let f : Σσ → C be a holomorphic function such that
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f(Σσ) ⊆ Στ

for some 0 < τ < π. If % ∈ E(Σσ) be a regulariser for (f,A) and λ 6∈ Στ ,
then it is a regulariser for ((λ− f)−1, A) as well, and

1

λ− f(z)
(A) = R(λ, f(A)).

Proof. By assumption, %f ∈ E(Σσ) and %(A) is injective. By Lemma 15.1.2,
% and %f have integrable limits at 0 and at ∞, say c0, c∞ and d0, d∞, re-
spectively. Putting fλ := 1/(λ− f), we wish to show that %fλ has integrable
limits at 0 and at ∞; another application of Lemma 15.1.2 then implies that
this function belongs to E(Σσ), so % regularises (fλ, A). The identity in the
statement of the lemma then follows from Proposition 15.1.12(3).

If c∞ = 0, then |f(·) − λ| > δ1 := dist(λ,Στ ) > 0 implies that %(·)
λ−f(·) has

integrable limit 0 at ∞. Suppose next that c∞ 6= 0. We claim that d∞/c∞ ∈
Στ . Indeed, otherwise we had∣∣∣f(·)− d∞

c∞

∣∣∣ > δ2 := dist(d∞/c∞, Στ ) > 0. (15.2)

Since both %f and d∞
c∞
% have integrable limit d∞ at ∞, the identity

%f = %(f − d∞
c∞

) +
d∞
c∞

%

implies that %(f − d∞
c∞

) has integrable limit 0 at ∞. But then (15.2) would
imply that % has integrable limit 0 at ∞, contradicting the assumption that
this integrable limit satisfies c∞ 6= 0. This proves the claim.

With δ := min{δ1, δ2} it now follows from∣∣∣ %(z)

λ− f(z)
− c2∞
c∞λ− d∞

∣∣∣
6
∣∣∣ %(z)

λ− f(z)
− c∞%(z)

c∞λ− d∞

∣∣∣+
∣∣∣c∞(%(z)− c∞)

c∞λ− d∞

∣∣∣
=
∣∣∣c∞(%(z)f(z)− d∞)− d∞(%(z)− c∞)

(λ− f(z))(c∞λ− d∞)

∣∣∣+
∣∣∣c∞(%(z)− c∞)

c∞λ− d∞

∣∣∣
6

1

c∞δ2

(
|c∞||%(z)f(z)− d∞|+ |d∞||%(z)− c∞|

)
+

1

δ
|%(z)− c∞|

that %fλ = %(·)
λ−f(·) has integrable limit

c2∞
c∞λ−d∞ at ∞.

Replacing c∞ and d∞ by c0 and d0, in the same way one sees that %fλ has

integrable limit 0 at 0 if c0 = 0, and integrable limit
c20

c0λ−d0 at 0 if c0 6= 0. �

Proof of Theorem 15.1.15. We begin with the proof of the theorem under the
additional assumption made in (i), namely, that g ∈ E(Στ ).
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Step 1 – For g = 1 the theorem is trivial since 1 ◦ f = 1 and 1(f(A)) =
(1 ◦ f)(A) = I. For g(z) = 1/(1 + z) we have g(f(A)) = (I + f(A))−1 and
(g ◦ f)(A) = (1 + f(z))−1(A) = (I + f(A))−1, the former by Definition 15.1.3
applied to f(A) and the latter by Lemma 15.1.16.

Step 2 – We now consider a general g ∈ E(Στ ), and write g = g0 +
a/(1 + z) + b with a, b ∈ C and g0 ∈ H1(Στ ) ∩ H∞(Στ ). Let % ∈ E(Σσ)
be a regulariser for (f,A). By Lemma 15.1.10 we may assume that % also
regularises (g ◦ f,A), and by the observation after Definition 15.1.8 we may
also assume that % ∈ H1(Σσ) ∩ H∞(Σσ). As the proof of Lemma 15.1.16
shows, % also regularises ( 1

λ−f(·) , A) for λ 6∈ Στ .

Fix ω(A) < µ < σ and ω(f(A)) < ν < τ . By the Dunford calculus of f(A),
the operator g0(f(A)) is bounded and for all x ∈ X we have

g0(f(A))x =
1

2πi

∫
∂Σν

g0(z)R(z, f(A))x dz.

If z ∈ ∂Σν , then by Lemma 15.1.16 for all x ∈ X we have

R(z, f(A))x =
1

z − f(·)
(A)x. (15.3)

Using (15.3) and multiplicativity of the primary calculus of A, Fubini’s
theorem, the Cauchy integral theorem, and keeping in mind that % ∈ H1(Σσ)∩
H∞(Σσ), we obtain

%(A)g0(f(A))x =
1

2πi

∫
∂Σν

g0(λ)%(A)R(λ, f(A))x dλ

=
1

2πi

∫
∂Σν

g0(λ)
%(·)

λ− f(·)
(A)x dλ

=
( 1

2πi

)2
∫
∂Σν

g0(λ)
(∫

∂Σµ

%(z)

λ− f(z)
R(z,A)x dz

)
dλ

=
( 1

2πi

)2
∫
∂Σµ

%(z)
(∫

∂Σν

g0(λ)

λ− f(z)
dλ
)
R(z,A)x dz

=
1

2πi

∫
∂Σµ

%(z)g0(f(z))R(z,A)x dz

= (% · (g0 ◦ f))(A)x.

Setting h0(z) := a/(1 + z) + b, by Step 1 we also have h0(f(A)) = (h0 ◦ f)(A)
and therefore, by Proposition 15.1.4,

%(A)h0(f(A))x = (% · (h0 ◦ f))(A)x, x ∈ X.

Adding up, we obtain

%(A)g(f(A))x = (% · (g ◦ f))(A)x, x ∈ X,
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the operator g(f(A)) being defined by the primary functional calculus of f(A).
Since % regularises (g ◦ f,A), this implies that every x ∈ X belongs to D((g ◦
f)(A)) and

g(f(A))x = (g ◦ f)(A)x, x ∈ X.

This proves that g(f(A)) = (g ◦ f)(A), and both operators are bounded. This
concludes the proof under the assumption made (i).

For the proof of the theorem under the assumption made in (i), let ϕ ∈
E(Στ ) be a regulariser for the pair (g, f(A)) such that ϕ ◦ f ∈ E(Στ ), and let
ρ be a regulariser for (g ◦ f,A).

We claim that under these circumstances, ρ · (ϕ ◦ f) regularises (g ◦ f,A).
To this end we must show:

• ρ · (ϕ ◦ f) · (g ◦ f) ∈ E(Σσ);
• (ρ · (ϕ ◦ f))(A) is injective.

The first assertion follows from ρ · (g ◦f) ∈ E(Σσ) (since ρ be a regulariser for
(g ◦ f,A)) and ϕ ◦ f ∈ E(Στ ) (by assumption). For the second assertion we
use the multiplicativity rule of Proposition 15.1.12 (noting that (ϕ ◦ f)(A) =
ϕ(f(A)) by the result of Step 2 and the fact that ϕ ∈ E(Στ )) to see that

(ρ · (ϕ ◦ f))(A) = ρ(A)(ϕ ◦ f)(A) = ρ(A)ϕ(f(A)).

The right-hand side is the composition of two injective operators; this is be-
cause ρ is a regulariser for (g ◦ f,A) and ϕ is a regulariser for (g, f(A)). This
proves the claim.

In the following computation, in (i) we use the definition of a regulariser,
in (ii) we apply the result of Step 2 to ϕg ∈ E(Στ ), noting that ϕg satis-
fies the conditions of the theorem since g does, (iii) follows from Proposition
15.1.12, noting that ((ϕg) ◦ f))(A) = (ϕg)(f(A)) is a bounded operator since
ϕg ∈ E(Στ ), (iv) is a simple rewriting, (v) follows from the definition of a
regulariser, noting that ρ · (ϕ◦f) regularises (g ◦f,A), (vi) follows by another
application of Proposition 15.1.12, and (vii) uses the result of Step 2 once
again:

ρ(A)ϕ(f(A))g(f(A))
(i)
= ρ(A)(ϕg)(f(A))

(ii)
= ρ(A)((ϕg) ◦ f)(A)

(iii)
= (ρ · ((ϕg) ◦ f))(A)

(iv)
= (ρ · (ϕ ◦ f) · (g ◦ f))(A)

(v)
= (ρ · (ϕ ◦ f))(A)(g ◦ f)(A)

(vi)
= ρ(A)(ϕ ◦ f)(A)(g ◦ f)(A)

(vii)
= ρ(A)ϕ(f(A))(g ◦ f)(A).
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The identity g(f(A)) = (g ◦ f)(A) follows from this since both ρ(A) and
ϕ(f(A)) are injective. �

Our next aim is to relate the extended Dunford calculus with the H∞-calculus.

Theorem 15.1.17 (Boundedness of the extended Dunford calculus).
Let A be a sectorial operator on X with D(A) ∩ R(A) dense in X, and let
ω(A) < σ < π. Then for all functions f ∈ H∞(Σσ) the pair (f,A) is regular-
isable and the following assertions are equivalent:

(1) the operator f(A) defined through the extended Dunford calculus is bounded
for all f ∈ H∞(Σσ);

(2) the operator A has bounded H∞(Σσ)-calculus.

In this situation the operators f(A) defined through the extended Dunford
calculus and the H∞-calculus agree.

Proof. By Proposition 10.1.8, the density of D(A) ∩ R(A) implies that A is
injective. As a consequence, for every f ∈ H∞(Σσ) the function ζ(z) = z/(1+
z)2 is a regulariser for the pair (f,A).

(1)⇒(2): By the boundedness of f(A) and the closedness of ζ(A)−1, the
identity f(A) = ζ(A)−1(ζf)(A) (note that D(f(A)) = X) implies that f 7→
f(A) is closed as a linear map from H∞(Σσ) to L (X), and therefore bounded,
by the closed graph theorem. Denoting its norm by M , it follows that

‖f(A)‖ 6M‖f‖∞

for all f ∈ H∞(Σσ). In particular, this bound holds for all f ∈ H1(Σσ) ∩
H∞(Σσ). For such functions the extended Dunford calculus agrees with the
Dunford calculus, and therefore the estimate tells us that A has a bounded
H∞(Σσ)-calculus.

(2)⇒(1): If x ∈ D(A)∩R(A), then x ∈ R(ζ(A)), say x = ζ(A)y. For the op-
erator f(A) defined through the H∞-calculus we have, by the multiplicativity
of the H∞-calculus,

f(A)x = ζ(A)f(A)y = (ζf)(A)y,

where the operator on the right-hand side is again defined by the H∞-calculus.
We can also define the operator (ζf)(A) through the primary calculus, and
these two definitions agree (they agree for functions in H1(Σσ) ∩ H∞(Σσ)
and for the functions (1 + z)−1 and 1). It follows that

f(A)y = ζ(A)−1(ζf)(A)y.

Since D(A) ∩ R(A) is dense in X, this implies that f(A) = ζ(A)−1(ζf)(A).
The operator on the right-hand side equals the operator f(A) defined through
the extended Dunford calculus, which is therefore bounded. �
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We finish this section with a perturbation result that will be useful in connec-
tion with bounded imaginary powers (see the proof of Lemma 15.3.8).

Theorem 15.1.18. Let A be a densely defined sectorial operator on a Banach
space X and let ω(A) < σ < π. Let f ∈ H∞(Σσ) be given. If the operator
f(A), defined through the extended Dunford calculus of A is bounded, then
also the operator f(A + I), defined through the extended Dunford calculus of
A+ I, is bounded and we have

‖f(A+ I)‖ 6 (1 +Mσ,A)2(‖f(A)‖+ Cσ‖f‖H∞(Σσ)),

where Cσ is a constant depending only on σ and Mσ,A is the sectoriality
constant of A at angle σ.

Proof. Note that ω(A + I) 6 ω(A) and fix ω(A) < ν < σ. The injectivity of
A+ I implies that the function ζ(z) = z/(z+ 1)2 is a regulariser for (f,A+ I)
for any f ∈ H∞(Σσ). Since D(A+ I) = D(A) and R(A+ I) = X, the second
part of Proposition 15.1.13 implies that f(A+ I) is densely defined.

By the extended Dunford calculus of A + I, for all x ∈ D(f(A + I)) we
have

f(A+ I)x = (ζ(A+ I))−1 1

2πi

∫
∂Σν

ζ(z)f(z)R(z,A+ I)x dz.

We have 1/ζ(z) = z + 2 + z−1, and this easily implies (ζ(A + I))−1 = (A +
I) + 2I + (A+ I)−1. Now,∥∥∥(2I + (A+ I)−1)

1

2πi

∫
∂Σν

ζ(z)f(z)R(z,A+ I)x dz
∥∥∥

6 (2 +Mν,A)Mν,A+I‖x‖
( 1

2π

∫
∂Σν

1

|z + 1|2
|dz|

)
‖f‖H∞(Σσ)

and, noting that R(z,A+ I) = R(z,A) +R(z,A+ I)R(z,A) by the resolvent
identity,∥∥∥(A+ I)

1

2πi

∫
∂Σν

ζ(z)f(z)R(z,A+ I)x dz
∥∥∥

6
∥∥∥(A+ I)

1

2πi

∫
∂Σν

ζ(z)f(z)R(z,A)x dz
∥∥∥

+
∥∥∥ 1

2πi

∫
∂Σν

ζ(z)f(z)(A+ I)R(z,A+ I)R(z,A)x dz
∥∥∥

6 ‖(A+ I)ζ(A)‖‖f(A)‖‖x‖

+ (1 +Mν,A+I)Mν,A‖x‖
( 1

2π

∫
∂Σν

1

|z + 1|2
|dz|

)
‖f‖H∞(Σσ).

Since ‖Aζ(A+ I)‖ = ‖(A+ I)A(A+ I)−2‖ 6Mν,A and Mν,A+I 6Mν,A, this
proves the estimate
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‖f(A+ I)x‖ 6 (1 +Mν,A)2‖f(A)‖+ Cν(1 +Mν,A)2‖f‖H∞(Σσ)‖x‖

for x ∈ D(f(A+ I)), with Cν = 1
π

∫
∂Σν

1
|z+1|2 |dz|. Since D(f(A+ I)) is dense,

this estimate extends to arbitrary x ∈ X. To conclude the proof we let ν ↑ σ
and note that Mν,A → Mσ,A by an easy estimate based on the resolvent
identity. �

15.1.c Extended calculus via compensation

For functions f ∈ H∞(Σσ) and regulariser %(z) := ζ(z) = z/(1 + z)2 there is
different approach to the extended Dunford calculus via the Cauchy integral
formula, which we outline presently.

Let A be a sectorial operator and let f ∈ H∞(Σσ). For ω(A) < τ < σ′ < σ,
µ ∈ Σσ′ \Στ , and x ∈ D(A) ∩ R(A) define

f(A)x := f(µ)x+
1

2πi

∫
∂Σσ′

f(z)
(
R(z,A)− 1

z − µ

)
x dz. (15.4)

Let us check that the integrand converges absolutely. Since x ∈ D(A) ∩ R(A)
we may pick y ∈ D(A) with Ay = x. Then∥∥∥R(z,A)x− x

z − µ

∥∥∥ =
∥∥∥ (A− µ)R(z,A)x

z − µ

∥∥∥ 6 ‖R(z,A)‖
|z − µ|

(‖Ax‖+ µ‖x‖),

which is of the order O(|z|−2) as |z| → ∞ along ∂Στ . Also,∥∥∥R(z,A)x− x

z − µ

∥∥∥ =
∥∥∥R(z,A)Ay − x

z − µ

∥∥∥ 6 ‖R(z,A)Ay‖+
‖x‖
|z − µ|

which is of the order O(1) as |z| → 0 along ∂Στ , noting that ‖R(z,A)Ay‖ =
‖R(z,A)[(A − z) + z]y‖ 6 (1 + ‖zR(z,A)‖)‖y‖. This establishes the claim.
By an application of Cauchy’s theorem, f(A) is independent of µ ∈ Στ \Στ ′ .
Since the integrand is an integrable R(A)-valued function, we see that

f(A)x ∈ R(A), x ∈ D(A) ∩ R(A).

Note that if f ∈ H1(Σσ)∩H∞(Σσ), the above definition of f(A)x agrees with
(10.7).

We will now check that the definition of f(A)x by (15.4) agrees with the
one via Definition 15.1.1 for the regulariser %(z) = ζ(z) = z/(1+ z)2. Suppose
that x ∈ D(A) ∩ R(A), say x = ζ(A)y. Starting from the latter definition we
have

f(A)x = (fζ)(A)y =
1

2πi

∫
∂Στ

zf(z)

(1 + z)2
R(z,A)y dz.

Fix ω(A) < τ ′ < τ and µ ∈ Στ \ Στ ′ . To check that (15.4) agrees with
Definition 15.1.1 we must show that
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f(µ)A(I +A)−2y

=
1

2πi

∫
∂Στ

f(z)

z − µ

[z(z − µ)

(1 + z)2
R(z,A)y −

(
(z − µ)R(z,A)− I

)
x
]

dz.

By Cauchy’s formula, the right-hand side integral evaluates to

=
[
f(z)

(z(z − µ)

(1 + z)2
R(z,A)y −

(
(z − µ)R(z,A)− I

)
x
)]∣∣∣

z=µ
= f(µ)x,

as was to be proved. We have thus proved:

Proposition 15.1.19. Let A be a sectorial operator on a Banach space X,
let ω(A) < τ ′ < τ < σ < π. Let f ∈ H∞(Σσ). For all µ ∈ Στ \ Στ ′ and
x ∈ D(A) ∩ R(A) the integral

f(A)x := f(µ)x+
1

2πi

∫
∂Στ

f(z)
(
R(z,A)− 1

z − µ

)
x dz

converges absolutely and we have f(A)x = (fζ)(A)y, in agreement with the
definition of f(A)x through the extended Dunford calculus.

The attentive reader will have noticed that we already used this procedure in
Proposition 10.2.7.

15.2 Fractional powers

In this section, we will apply the extended Dunford calculus to introduce
the fractional powers Aα of a sectorial operator A. Particular instances of
fractional powers such as (−∆)1/2, the square root of the negative Laplacian,
appear all over in Analysis. On a theoretical level, domains of fractional powers
encode useful smoothness properties of the elements in their domains, and
correspond to (or are closely connected with) interpolation scales between
the domain D(A) and the underlying Banach space X. For example, if the
imaginary powers Ait, t ∈ R, are bounded operators, then for all 0 < α < 1 the
fractional domain D(Aα) equals the complex interpolation space [X,D(A)]α
as a subspace of X, and as a Banach space up to equivalent norms. As we
have seen in Chapter 4, for the negative Laplacian A = −∆ on X = Lp(Rd),
the latter can be identified as the Bessel potential space H2α,p(Rd).

After introducing fractional powers, we establish several basic algebraic
properties and prove several useful representation formulas. In the next sec-
tion, we then take a closer look at the class of sectorial operators whose
imaginary powers are bounded, and prove a number of non-trivial theorems
connecting this property with (R-, γ-)sectoriality and boundedness of the
H∞-calculus.
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15.2.a Definition and basic properties

In what follows, unless otherwise stated we let A be a sectorial operator acting
in a Banach space X. When additional assumptions are needed, they will
always be stated explicitly.

For α ∈ C it is natural to try to define the fractional power Aα by applying
the extended Dunford calculus to the function

fα(z) := zα := eα log z,

where we use the branch of the logarithm that is holomorphic in C \ (−∞, 0].
Let 0 < |ν| < σ < π. For z = reiν with r > 0 we have

|fα(z)| = |rα| |eiνα| 6 |z|<αeσ|=α|.

For all integers m,n ∈ N, the function

%m,n(z) := zm(1 + z)−m−n

belongs to E(Σσ), and

• if <α > 0, then %m,nfα ∈ E(Σσ) for all integers m > 0, n > <α;
• if <α = 0, then %m,nfα ∈ E(Σσ) for all integers m,n > 1;
• if <α < 0, then %m,nfα ∈ E(Σσ) for all integers m > |<α|, n > 0.

The operator %m,n(A) = Am(I + A)−m−n (cf. Example 15.1.5) is injective if
m = 0 or A is injective (or both). This shows:

Proposition 15.2.1. Let A be a sectorial operator on a Banach space X. The
pair (fα, A) is regularisable in each of the following two cases:

• <α > 0
• <α 6 0 and A is injective.

In the first case %0,n(z) = (1 + z)−n with n > <α is a regulariser; in the
second case %n,n(z) = zn(1 + z)−2n with n > |<α| is a regulariser.

In view of these considerations the extended Dunford calculus allows us to
make the following definition.

Definition 15.2.2 (Fractional powers). Let A be a sectorial operator on a
Banach space X. For α ∈ C we define

Aα := fα(A), α ∈ C,

in each of the following two cases:

• <α > 0
• <α 6 0 and A is injective.
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These operators are closed. Moreover, if <λ > 0 and D(A) is dense, then Aα

is densely defined; if <α 6 0 and D(A)∩R(A) is dense, then A is injective and
Aα is densely defined. Using the results of Section 10.1.b, These assertions
follow from Proposition 15.1.11, the domain identifications D(An) = R(%0,n)
and D(An)∩R(An) = R(%n,n), and the fact that D(An) is dense if D(A) dense,
respectively D(An) ∩ R(An) is dense in X if D(A) ∩ R(A) is dense in X.

We begin our study of fractional powers with a consistency check.

Proposition 15.2.3. Let A be a sectorial operator on a Banach space X. For
all n = 0, 1, 2, . . . and fn(z) = zn we have

fn(A) = An with equal domains. (15.5)

If in addition A is injective, this identity extends to all n ∈ Z.

Proof. For n = 0 this reduces to the identity 1(A) = I. For n > 1, consider the
function %n(z) = (1+z)−n and let x ∈ D(An) = R(%n(A)), say x = (I+A)−ny.
Then

fn(A)x = %n(A)−1(%nfn)(A)x = Anx,

where we used that %n(A) = (I + A)−n in the primary calculus, and that
(%nfn)(A) = zn

(1+z)n (A) = An(I + A)−n in the primary calculus. This proves

that An ⊆ fn(A). In the converse direction, if x ∈ D(fn(A)), then

An(I +A)−nx = (%nfn)(A)x ∈ R(%n(A)) = D(An),

forcing x ∈ D(An). This completes the proof of (15.5) for n > 1. For n =
−1,−2, . . . the result follows by applying Proposition 15.1.12(3). �

From the definition of the extended Dunford calculus we immediately deduce
the following result.

Proposition 15.2.4. Let A be a sectorial operator on a Banach space X, and
fix an integer k > 1.

(1) For all x ∈ D(Ak) the function z 7→ Azx is well defined and holomorphic
on {0 < <z < k}.

(2) If A is injective, then for all x ∈ D(Ak) ∩ R(Ak) the function z 7→ Azx is
well defined and holomorphic on {−k < <z < k}.

Theorem 15.2.5. Let A be a sectorial operator on a Banach space X, and
let α, α1, α2 ∈ C.

(1) If A is injective and α ∈ C, then Aα is injective and

A−α = (Aα)−1 = (A−1)α with equality of domains.

(2) If <α1 > <α2 > 0, then

D(Aα1) ⊆ D(Aα2) and R(Aα2) ⊇ R(Aα1),
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(3) If A is injective and <α1 < <α2 < 0, then

D(Aα1) ⊇ D(Aα2) and R(Aα1) ⊆ R(Aα2).

(4) If <α1 > 0 and <α2 > 0, then

Aα1+α2 = Aα1Aα2 with equality of domains.

(5) If A is injective and <α1 < 0 and <α2 < 0, then

Aα1+α2 = Aα1Aα2 with equality of domains.

Proof. (1): The injectivity of Aα and the identity A−α = (Aα)−1 follow from
Proposition 15.1.12(3). The identity A−α = (A−1)α follows from Theorem
15.1.15, noting that A−1 is sectorial with the same angle as A.

(2): We consider the regulariser %k(z) = (1 + z)−k, for which we have
R(%k(A)) = D(Ak).

Let x ∈ D(Aα1) and fix an integer k > max{<α2,<α1−<α2}. In order to
prove that x ∈ D(Aα2) we must show that ((1 + z)−kzα2)(A)x ∈ D(Ak).

Since 2k > <α1, by the definition of D(Aα1) we have ((1+z)−2kzα1)(A)x ∈
D(A2k). Using the multiplicativity of the Dunford calculus, this implies that

Ak(I +A)−2k((1 + z)−kzα2)(A)x =
zk+α2

(1 + z)3k
(A)x

=
zk−(α1−α2)

(1 + z)k
(A)

zα1

(1 + z)2k
(A)x

belongs to D(A2k). It follows that (I + A)−2k((1 + z)−kzα2)(A)x ∈ D(A3k)
and ((1 + z)−kzα2)(A)x ∈ D(Ak) as desired. The opposite inclusion of the
ranges follows from part (4) proved below.

(3): If A is injective and <α1 < <α2 < 0 we can apply parts (2) and (1)
with β1 = −α1 and β2 = α, noting that D(Aαj ) = D(A−βj ) = R(Aβj ) and
R(Aαj ) = R(A−βj ) = D(Aβj ).

(4): Let <α1 > 0 and <α2 > 0. Proposition 15.1.12 implies that Aα1Aα2x =
Aα1+α2x for all x ∈ D(Aα1Aα2) = D(Aα2) ∩ D(Aα1+α2). It remains to prove
that D(Aα1+α2) ⊆ D(Aα2). But this follows from part (2).

(5): This follows from (1) and (4) by taking inverses. �

Proposition 15.2.6. Let A be a sectorial operator on a Banach space X. Let
c ∈ C \ {0} satisfy |arg c| < π − ω(A). Then:

(1) the operator cA is sectorial with angle ω(cA) 6 ω(A) + | arg(c)|, and for
all ω(A) < σ < π − | arg c| we have Mσ+| arg c|,cA 6Mσ,A;

(2) for all α ∈ C, and assuming A to be injective if <α 6 0, we have

(cA)α = cαAα with equality of domains.
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Proof. Since (λ−cA)−1 = c−1(c−1λ−A)−1, the condition | arg(c)| < π−ω(A)
guarantees that cA is sectorial with ω(cA) 6 ω(A) + |arg c|. Also, for ω(A) <
σ < π − | arg c| and λ ∈ {Σσ+| arg c| we have c−1λ ∈ {Σσ and

‖λR(λ, cA)‖ = ‖c−1λR(c−1λ,A)‖ 6Mσ,A,

which gives the bound Mσ+| arg c|,cA 6Mσ,A.
Choose ω > ω(A) such that ω + |arg c| < π. Fix α ∈ C. Then, for x ∈ X

and k > |<α|,

(ρkfα)(cA)x =
1

2πi

∫
∂Σω+| arg c|

ρk(z)zαR(z, cA)x dz

with fα(z) = zα, and ρk(z) := %0,k(z) = (1 + z)−k if <α > 0 and ρk(z) :=
%k,k(z) = zk/(1 + z)2k if <α 6 0. By Cauchy’s theorem we can deform the
path in the above integral to Γ = c ·∂Σω and obtain, by a change of variables,

(ρkfα)(cA)x =
1

2πi

∫
Γ

ρk(z)zαc−1R(c−1z,A)x dz

= cα
1

2πi

∫
∂Σω

ρk(cz)zαR(z,A)x dz = cα(ρkn(c ·)fα)(A)x.

(15.6)

If x ∈ D(fα(A)), then (ρk(c ·)fα)(A)x ∈ R(A) (by the definition of D(fα(A)),
since ρk(c ·) is a regulariser for (fα, A)), and (15.6) implies that (ρkfα)(cA)x ∈
R(A) = R(cA). But this implies that x ∈ D(fα(cA)) (by the definition of
D(fα(cA)), since ρk is a regulariser for (fα, cA)). This gives the inclusion
D(fα(A)) ⊆ D(fα(cA)). The same argument in reverse direction gives the
inclusion D(fα(cA)) ⊆ D(fα(A)). Moreover, for any x in this common domain,

fα(cA)x = (ρk(cA))−1(ρkfα)(cA)x,

cαfα(A)x = cα(ρk(c ·)(A))−1(ρk(c ·)fα)(A)x = (ρk(c ·)(A))−1(ρkfα)(cA)x,

the last identity being a consequence of (15.6). Since the right-hand sides are
obviously equal, this gives the result. �

Theorem 15.2.7. Let A be a sectorial operator on a Banach space X. If
0 < α < π/ω(A), then Aα is sectorial, we have

ω(Aα) = αω(A),

and for all β ∈ C we have

(Aα)β = Aαβ with equality of domains.

If A is R-sectorial and 0 < |α| < π/ωR(A), then Aα is R-sectorial and

ωR(Aα) = αωR(A).
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Proof. The proof proceeds in a number of steps.

Step 1 – First consider an arbitrary α > 0. In this step we will prove that
for all µ 6∈ Σαω(A) we have µ ∈ %(Aα) and

µR(µ,Aα) = −|µ|1/αR(−|µ|1/α, A) + ψτ (|µ|−1/αA),

where τ = arg µ and

ψτ (z) =
eiτz + zα

(eiτ − zα)(1 + z)
.

Note that ψτ ∈ H1(Σσ) for all σ < |τ |/α.
A straightforward calculation shows

µ

µ− zα
− |µ|1/α

|µ|1/α + z
=

µz + |µ|1/αzα

(µ− zα)(|µ|1/α + z)
= ψτ (|µ|−1/αz).

Hence
1

µ− zα
=

1

µ

( |µ|1/α

|µ|1/α + z
+ ψτ (|µ|−1/αz)

)
.

Proposition 15.1.12 implies that ( 1
µ−(·)α )(A) is indeed the inverse of (µ −

(·)α)(A) = µ−Aα. Thus µ ∈ %(Aα) and

R(µ,Aα) =
1

µ

( |µ|1/α

|µ|1/α + z
+ ψτ (|µ|−1/αz)

)
(A)

=
1

µ

(
− |µ|1/αR(−|µ|1/α, A) + ψτ (|µ|−1/αA)

) (15.7)

using that if λ ∈ {Σσ, then 1
λ−· (A)x = R(λ,A)x, and observing that

ψτ (|µ|−1/αA) is well defined and bounded by the Dunford calculus of A.

Step 2 – Now let 0 < α < π/ω(A). We will prove that the operator Aα is
sectorial, with ω(Aα) 6 αω(A).

By Step 1, for τ > αω(A) we have µ ∈ %(A) if | arg µ| > τ . Furthermore,
for σ ∈ (ω(A), τ/α) have

ψτ (|µ|−1/αA) =
1

2πi

∫
∂Σσ

ψτ (|µ|−1/αz)
dz

z

=
1

2πi

∫
∂Σσ

ψτ (z)
dz

z
.

Hence we may estimate

‖ψτ (|µ|−1/αA)‖ 6 Mσ,A

2π

∫
∂Σσ

|ψτ (z)| |dz|
|z|

.

Therefore by (15.7) the sectoriality of A implies the sectoriality of Aα with
ω(Aα) 6 αω(A).
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Step 3 – Having proved that Aα is sectorial, the identity (Aα)β = Aαβ

follows from the composition rule of Theorem 15.1.15.
Since π/ω(A) > 1 we have 0 < 1/α < π/(αω(A)) 6 π/ω(Aα). Hence

we may apply the inequality of the angles of sectoriality of Step 2 to Aα to
obtain ω(A) = ω((Aα)1/α) 6 (1/α)ω(Aα), the equality A = (Aα)1/α being a
consequence what we just proved. In combination with Step 2, this proves the
equality ω(Aα) = αω(A).

Step 4 – Using Proposition 10.3.2, the final assertion is proved in the same
way. �

The next theorem shows that α 7→ ‖Aαx‖ satisfies a useful log–convexity
property.

Theorem 15.2.8 (Interpolation estimate). Let A be a sectorial operator
on a Banach space X. Let α, β, γ ∈ C satisfy

0 < <α < <γ < <β or 0 = α < <γ < <β

and let θ ∈ (0, 1) be such that <γ = (1− θ)<α+ θ<β. Then

D(Aα) ∩ D(Aβ) ⊆ D(Aγ),

and for all x ∈ D(Aα) ∩ D(Aβ) and ω(A) < σ < π we have

‖Aγx‖ 6 C

θ(1− θ)
‖Aαx‖1−θ‖Aβx‖θ,

where C is a constant depending only on <β −<α, σ, and A.

Proof. Let m be the smallest integer strictly greater than <β − <α. We will
use the auxiliary function ψ(z) = czm(1 + z)−2m, where c is chosen so that∫∞

0
ψ(s) ds

s = 1. Then the functions

g(z) :=

∫ 1

0

ψ(sz)
ds

s
and h(z) :=

∫ ∞
1

ψ(sz)
ds

s

are well defined for all z ∈ C and satisfy

g(z) + h(z) =

∫ ∞
0

ψ(sz)
ds

s
=

∫ ∞
0

ψ(s)
ds

s
= 1.

We claim that g, h ∈ E(Σσ). Indeed, we have

|g(z)| 6
∫ 1

0

|ψ(sz)| ds
s
6 Cσ,m|z|m

∫ 1

0

sm
ds

s
=
|z|m

m
,

|h(z)| 6
∫ ∞

1

|ψ(sz)| ds
s
6 Cσ,m|z|−m

∫ 1

0

s−m
ds

s
=
|z|−m

m
.
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It follows that g an h have integrable limits 0 at 0 and ∞ in the sense of
Lemma 15.1.2, respectively. From g = 1 − h and h = 1 − g we see that g an
h have integrable limits 1 at ∞ and 0, respectively. Therefore Lemma 15.1.2
implies the claim.

For all t > 0, it follows from the claim that

g(tA) + h(tA) = I (15.8)

in the primary calculus of the sectorial operator tA.
Now let x ∈ D(Aα) ∩ D(Aβ). Then x ∈ D(Aγ) and (15.8) implies

Aγx = g(tA)Aγx+ h(tA)Aγx. (15.9)

The functions g̃(z) = zγ−βg(z) and h̃(z) = zγ−αh(z) belong to E(Σσ); this

follows from the choice of m and redoing the above computation for g̃ and h̃.
We have

g(tA)Aγx = g̃(tA)(tA)β−γAγx = tβ−γ g̃(tA)Aβx.

Here, the first identity can be justified by viewing g̃(t ·) as a regulariser for
(zβ−γ , tA) and noting that Aγx ∈ D(Aβ−γ); the second identity follows by
first applying Proposition 15.2.6 and then Theorem 15.2.5. Similarly we have

h(tA)Aγx = tα−γ h̃(tA)Aαx.

From (15.9) it now follows that

Aγx = tβ−γ g̃(tA)Aβx+ tα−γ h̃(tA)Aαx.

Therefore,

‖Aγx‖ 6 t<β−<γ‖g̃(tA)‖‖Aβx‖+ t<α−<γ‖h̃(tA)‖‖Aαx‖
6 C

(
t<β−<γ‖Aβx‖+ t<α−<γ‖‖Aαx‖

)
,

where the constant C only depends on <β−<α, σ, and A; we used that from
the definition of the primary calculus for it follows that supt>0 ‖f(tA)‖ 6 C <

∞ for f ∈ {g̃, h̃}, using by (10.9) and the sectoriality of A.
Optimising the choice of t > 0, we arrive at the estimate

‖Aγx‖ 6 C

[( θ

1− θ

)1−θ
+
(1− θ

θ

)θ]
‖Aαx‖1−θ‖Aβx‖θ.

Since the term in the square brackets is bounded above by 1/(θ(1− θ)), this
gives the second estimate. �

Remark 15.2.9. It is tempting to believe that

g(A)x =

∫ 1

0

ψ(sA)x
ds

s
and h(A)x =

∫ ∞
1

ψ(sA)x
ds

s
,
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but these integrals may fail to converges at 0 (the first) and ∞ (the second).
Calderón’s reproducing formula (Proposition 10.2.5) guarantees their conver-
gence (as improper integrals) for elements x ∈ D(A) ∩ R(A) if z 7→ ψ(z)
belongs to H1(Σσ), and for x ∈ D(A) ∩ R(A) if z 7→ ψ(z) log z belongs to
∈ H1(Σσ). The above proof does not depend on these matters; all we needed
there were bounds on the operators g(A) and h(A) that follow directly from
the definitions of these operators through the extended Dunford calculus.

Corollary 15.2.10. Let A be a sectorial operator on a Banach space X with
0 ∈ %(A). Then for all <α > 0 the operator A−α is bounded. Moreover, for
0 < <α < n we have

‖A−α‖ 6 CMσ,A

<α
n (1− <αn )

‖A−1‖<α,

where C is a universal constant.

Proof. Let 0 < <α < n. By Theorem 15.2.5 and 15.2.8, applied with θ =
1−<α/n, for all x ∈ X we have

‖A−αx‖ = ‖An−α(A−nx)‖ 6 CMσ,A

<α
n (1− <αn )

‖A−nx‖<α/n‖x‖1−<α/n

6
CMσ,A

<α
n (1− <αn )

‖A−1‖<α‖x‖,

where C is a universal constant. It follows that A−α is bounded and satisfies
the bound in the statement of the corollary. �

Proposition 15.2.11. Let A be a sectorial operator on a Banach space X;
when considering Aα for <α 6 0 we assume A to be injective. If A has a
bounded H∞-calculus and 0 < |α| < π/ωH∞(A), then Aα has a bounded H∞-
calculus and ωH∞(Aα) = αωH∞(A).

Proof. This follows directly from the identity f(A)x = g(Aα)x for x ∈ D(A)∩
R(A) and f ∈ H∞(Σσ), with g ∈ H∞(Σ|α|σ) given by f(z) = g(zα). �

If A is sectorial, then A+ε is sectorial and boundedly invertible. We conclude
this section a some useful result that applies in this situation.

Proposition 15.2.12. Let A be a sectorial operator on a Banach space X. If
D(A) ∩ R(A) is dense in X, then for all α > 0 and ε > 0 we have D(Aα) =
D((ε+A)α) with equivalent graph norms.

Proof. The result is clear for α = 1, 2, . . . . Next let α ∈ (0, 1). The functions

f(z) :=
(ε+ z)α

ε+ zα
− 1, g(z) =

ε+ zα

(ε+ z)α
− 1
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belong to H1(Σσ) for all 0 < σ < π. For x ∈ D(Ak) ∩ R(Ak) with k large
enough, Proposition 15.1.12 gives

f(A)x = (ε+A)α(ε+Aα)−1x− x, g(A)x = (ε+Aα)(ε+A)−α)x− x.

Since f(A) and g(A) are bounded, these identities imply D(Aα) = D((ε+A)α).
The equivalence of the norms follows from the open mapping theorem.

If β = α + n with n ∈ N and α ∈ (0, 1) then D((ε + A)β) ⊆ D((ε + A)n)
by Theorem 15.2.5. Thus we obtain

D((ε+A)β) = D((ε+A)n(ε+A)α)

= {x ∈ D((ε+A)n) : (ε+A)αx ∈ D((ε+A)n)}
= {x ∈ D(An) : (ε+A)αx ∈ D(An)}
= {x ∈ D(An) : Aαx ∈ D(An)}
= D(AnAα) = D(Aβ).

Equivalence of norms now follows easily. �

15.2.b Representation formulas

The aim of this section is to prove various integral representations for the
fractional powers of sectorial operators.

Theorem 15.2.13 (Balakrishnan). Let A be a sectorial operator on a Ba-
nach space X and let ω(A) < σ < π. For all 0 < <α < 1 and x ∈ D(A) we
have

Aαx =
1

2πi

∫
∂Σσ

zα−1R(z,A)Ax dz =
sinπα

π

∫ ∞
0

tα−1(t+A)−1Ax dt.

If in addition A is densely defined and ω(A) < 1
2π, then for all x ∈ D(A) we

have

Aαx =
1

Γ (1− α)

∫ ∞
0

s−αS(t)Ax dt,

where (S(t))t>0 is the bounded analytic C0-semigroup generated by −A.

Note that limz↓0R(z,A)Ax = 0 for x ∈ D(A) by Proposition 10.1.7, so the first
integral is absolutely convergent. By the same reasoning the second integral is
absolutely convergent. The absolute convergence of the third integral follows
near t = 0 from the fact that x ∈ D(A), and near t = ∞ from the bound
‖S(t)Ax‖ 6 Ct−1‖x‖ (see Theorem G.5.3).

Integrating by parts and using with the identity −αΓ (−α) = Γ (1 − α),
the third identity in Balakrishnan’s theorem may equivalently be presented
as
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Aαx =
1

Γ (−α)

∫ ∞
0

t−α−1(S(t)x− x) dt, x ∈ D(A).

The absolute convergence of this integral follows from the bound ‖S(t)x−x‖ =
O(t) as t ↓ 0 for x ∈ D(A).

Proof. For all ε > 0 the function z 7→ zα

z+ε belongs to H1(Σσ)∩H∞(Σσ) and

therefore the operator ( zα

z+ε )(A) can be defined by the Dunford calculus and
is bounded. Fix x ∈ D(A). Then x ∈ D(Aα), and therefore by multiplicativity
of the extended Dunford calculus (Proposition 15.1.12),

Aαx =
( zα

z + ε

)
(A)(ε+A)x.

Similarly, ( zα

z + ε

)
(A)x =

( zα

(z + ε)(z + 1)

)
(A)(I +A)x.

Combining these identities, we compute

Aαx = ε
( zα

(z + ε)(z + 1)

)
(A)(I +A)x+

( zα

z + ε

)
(A)Ax

=
ε

2πi

∫
∂Σσ

zα

(z + ε)(z + 1)
R(z,A)(I +A)x dz

+
1

2πi

∫
∂Σσ

zα

z + ε
R(z,A)Ax dz

= (I) + (II).

Noting that z 7→ zα−1R(z,A)Ax is integrable along ∂Σσ, the term (I) tends
to 0 as ε ↓ 0 by dominated convergence. Also,

(II) =
1

2πi

∫
∂Σσ

z

z + ε
zα−1R(z,A)Ax dz → 1

2πi

∫
∂Σσ

zα−1R(z,A)Ax dz

as ε ↓ 0 by dominated convergence. This proves the first identity.
Turning to the second identity, write ∂Σσ = Γσ ∪ Γ−σ where Γ±σ =

{re±iσ ∈ C : r > 0}. It follows from Cauchy’s theorem that

Aαx =
1

2πi

∫
∂Σσ

zα−1R(z,A)Ax dz

=
1

2πi

∫
Γσ

zα−1R(z,A)Ax dz

+
1

2πi

∫
Γ−σ

zα−1R(z,A)Ax dz

= − 1

2πi

∫ ∞
0

(reiσ)α−1R(reiσ, A)Axeiσ dr
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+
1

2πi

∫ ∞
0

(re−iσ)α−1R(re−iσ, A)Axe−iσ dr

→ 1

2πi

∫ ∞
0

rα−1(e−iπ(α−1) − eiπ(α−1))R(−r,A)Ax dr (as σ → π)

=
sinαπ

π

∫ ∞
0

rα−1(r +A)−1Ax dr.

The minus sign in the third identity comes from the fact that Γσ is downwards
oriented. The convergence is a consequence of the dominated convergence
theorem.

To prove the third formula we use the identity just proved together with
the Laplace transform representation of the resolvent (Proposition G.4.1) to
get

Aαx =
sinπα

π

∫ ∞
0

tα−1

∫ ∞
0

e−tsS(s)Ax ds dt

=
sinπα

π

∫ ∞
0

(∫ ∞
0

tα−1e−ts dt
)
S(s)Ax ds

=
1

Γ (1− α)

∫ ∞
0

s−αS(s)Ax ds,

where we used the identity sinπα
π = 1

Γ (1−α)Γ (α) . �

From this theorem it is rather easy to re-deduce a special case of Theorem
15.2.8 as follows. Let 0 < α < 1. Let M > 0 be such that ‖(t+A)−1‖ 6M/t
for all t > 0. By Theorem 15.2.13, for all x ∈ D(A) we have

‖Aαx‖ 6
∣∣∣ sinπα

π

∣∣∣ ∫ ∞
0

tα−1‖(t+A)−1Ax‖ dt

6
∣∣∣ sinπα

π

∣∣∣ ∫ ρ

0

tα−1‖(t+A)−1A‖‖x‖ dt

+
∣∣∣ sinπα

π

∣∣∣ ∫ ∞
ρ

tα−1‖(t+A)−1‖‖Ax‖ dt

6
∣∣∣ sinπα
πα

∣∣∣(1 +M)ρα‖x‖+
sinπα

π(1− α)

∣∣∣Mρα−1‖Ax‖

with absolute convergence of all integrals. Up to this point we have assumed
that x ∈ D(A). The estimate extends to general x ∈ D(Aα) by approximation
as in the proof of that theorem. The estimate of Theorem 15.2.8 is obtained
by optimising over ρ as in the proof of the theorem.

Corollary 15.2.14. Let A be a sectorial operator on a Banach space X and
let ω(A) < σ < π. Let 0 < α < 1 and λ ∈ {Σσ.

(1) The operator AαR(λ,A) is bounded and
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‖AαR(λ,A)‖ 6 CαMσ,A(Mσ,A + 1)|λ|α−1,

where Cα = sin(πα)
πα

1
1−α .

(2) If, in addition, A is densely defined and ω(A) < 1
2π, and (S(t))t>0 denotes

the bounded analytic C0-semigroup generated by −A, then for all t > 0 the
operator AαS(t) is bounded and

‖AαS(t)‖ 6 CαMAt
−α,

where Cα = 1
Γ (1−α)

∫∞
0
τ−α(1 + τ)−1‖x‖ dτ and MA = supt>0 t‖AS(t)‖.

From Theorem G.5.3 we recall that supt>0 t‖AS(t)‖ <∞.

Proof. For the first assertion, fix λ ∈ {Σσ. The boundedness of AαR(λ,A)
is evident from the inclusion D(A) ⊆ D(Aα). For all x ∈ D(A), by Theorem
15.2.13 we have

AαR(λ,A)x =
sin(πα)

π

∫ ∞
0

tα−1(t+A)−1R(λ,A)Ax dt.

We split the integral on the right into two parts and estimate them separately.
First, writing A = (A+ t)− t,∥∥∥ ∫ |λ|

0

tα−1(t+A)−1R(λ,A)Ax dt
∥∥∥ 6 ∫ |λ|

0

tα−1‖[I − t(t+A)−1]R(λ,A)x‖ dt

6 |λ|−1

∫ |λ|
0

tα−1(1 +M)‖λR(λ,A)x‖ dt

6
M(M + 1)

α
|λ|α−1‖x‖.

Similarly, but now writing A = (A− λ) + λ,∥∥∥ ∫ ∞
|λ|

tα−1(t+A)−1R(λ,A)Ax dt
∥∥∥ 6 (1 +M)‖x‖

∫ ∞
|λ|

tα−2‖t(t+A)−1‖ dt

6
M(M + 1)

1− α
|λ|α−1‖x‖.

Turning to the second assertion, by analyticity the operators S(t) map
X into D(A) and supt>0 t‖AS(t)‖ < ∞. The boundedness of the operators
AαS(t) follows from the boundedness of AS(t) and the inclusion D(A) ⊆
D(Aα). To prove the estimate, note that for all x ∈ X we have

AαS(t)x =
1

Γ (1− α)

∫ ∞
0

s−αAS(t+ s)x ds,

so, for t > 0,
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‖AαS(t)x‖ 6 C

Γ (1− α)

∫ ∞
0

s−α(t+ s)−1‖x‖ ds

=
Ct−α

Γ (1− α)

∫ ∞
0

τ−α(1 + τ)−1‖x‖ dτ.

�

As a corollary to Theorem 15.2.13 we have the following representation for-
mula for the negative fractional powers of A.

Corollary 15.2.15. Let A be an injective sectorial operator on a Banach
space X and let ω(A) < σ < π. For all 0 < <α < 1 and x ∈ R(A) we
have

A−αx =
1

2πi

∫
∂Σσ

z−αR(z,A)x dz =
sinπα

π

∫ ∞
0

t−α(t+A)−1x dt.

If, in addition, A is densely defined and ω(A) < 1
2π, and if (S(t))t>0 denotes

the bounded analytic C0-semigroup generated by −A, then for all x ∈ R(A)
we have

A−αx =
1

Γ (α)

∫ ∞
0

t−αS(t)x dt.

Note that if x = Ay with y ∈ D(A), then R(z,A)x = −y + zR(z,A)y, so the
first integral is absolutely convergent. In the same way it is checked that the
second integral is absolutely convergent. From ‖S(t)x‖ = ‖AS(t)y‖ = O(1/t)
as t → ∞ (by Theorem G.5.3) we see that the third integral is absolutely
convergent.

Proof. Writing x = Ay with y ∈ D(A) we have A−αx = A1−αy, and Theorem
15.2.13 gives

A−αx = A1−αy =
1

2πi

∫
∂Σσ

z−αR(z,A)Ay dz =
1

2πi

∫
∂Σσ

z−αR(z,A)x dz.

The second identity is proved in the same way. The third follows from the
second by following the lines of the proof of Theorem 15.2.13. �

When A boundedly invertible, the identities in the corollary hold for arbitrary
x ∈ X. If in addition A is densely defined, the result extends to arbitrary
<α > 0 as follows:

Theorem 15.2.16. Let A be a densely defined sectorial operator on a Banach
space X with 0 ∈ %(A), and let ω(A) < σ < π. Then for all <α > 0 we have

A−αx =
1

2πi

∫
∂(Σσ\Bε)

z−αR(z,A)x dz, x ∈ X,

with Bε := {z ∈ C : |z| < ε}, where ε > 0 is so small that Bε ⊆ %(A).
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Proof. First let x ∈ D(Ak) with k > <α and set y = ζ(A)−kx = (I +
A)2kA−kx, where ζ(z) = z/(z + 1)2. The integral

Tαx :=
1

2πi

∫
∂(Σσ\Bε)

z−αR(z,A)x dz

is absolutely convergent and defines a bounded operator Tα. We may now
repeat the proof of the multiplicativity of the Dunford calculus (Theorem
10.2.2) to obtain, with ω(A) < ν < σ,

Tαx = (Tα ◦ ζk(A))y = Tα ◦
1

2πi

∫
∂(Σν\Bε/2)

ζ(z)kR(z,A)y dz

=
1

2πi

∫
∂(Σν\Bε/2)

z−αζ(z)kR(z,A)y dz

=
1

2πi

∫
∂Σν

z−αζ(z)kR(z,A)y dz.

In the last step, the assumption k > |<λ| was used to justify the change of
contour by Cauchy’s theorem. By the definition of A−αx via the extended
Dunford calculus, the right hand side equals A−αx. This proves the first iden-
tity for x ∈ D(Ak). Using the second part of Proposition 15.1.13, the general
case follows from it by approximation, noting that Tα is a bounded operator
on X. �

Theorem 15.2.17. Let −A be the generator of a bounded C0-semigroup
(S(t))t>0 on X. Then A is densely defined and sectorial of angle ω(A) 6 1

2π,
for all 0 < α < 1 the operator Aα is densely defined and sectorial of angle
ω(Aα) 6 1

2πα, and the bounded analytic C0-semigroup generated by −Aα is
given by

Sα(t)x =

∫ ∞
0

fα,t(s)S(s)x ds, t > 0, x ∈ X,

where, for t > 0,

fα,t(s) :=
1

2πi

∫ c+i∞

c−i∞
esz−tz

α

dz, s > 0,

is a non-negative function which is independent of c > 0 and satisfies∫ ∞
0

fα,t(s) ds = 1.

Proof. By generalities from semigroup theorem (see Section G.2), the assump-
tions imply that A is densely defined and sectorial with ω(A) 6 1

2π. By
Proposition 15.2.7, Aα is densely defined and sectorial of angle 1

2πα and con-
sequently −Aα generates a bounded analytic C0-semigroup by Theorem G.5.2.
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By Example 15.1.6 we furthermore have Sα(t) = et(A
α), where et(z) = e−tz.

Hence by the composition rule of Theorem 15.1.15 we have

Sα(t) = gα,t(A),

where gα,t(z) = e−tz
α

.
Let 1

2π < ν < σ < min{ 1
2π/α, π}. By the Phillips calculus (Proposition

10.7.2(2)),

Sα(t)(A)x =

∫ ∞
0

fα,t(s)S(s)x ds, x ∈ X,

where fα,t ∈ L1(R+) is given (with Bε = {z ∈ C : |z| = ε}) by

fα,t(s) = − 1

2πi

∫
∂(Σν\Bε)

esz−tz
α

dz

= − 1

2πi

∫
∂Σν

esz−tz
α

dz =
1

2πi

∫ c+i∞

c−i∞
esz−tz

α

dz

for c > 0. The second and third identity follow from Cauchy’s formula, the
use of which is justified by noting that for z = reiσu with u > 0 we have

|esz−tz
α

| = exp(sr cosσ − t<eα(ln r+iσ))

= exp(sr cosσ − trα cos(ασ)),

from which it follows that z 7→ esz−tz
α

is integrable along ∂Σν . In its stated
form, Proposition 10.7.2(2) requires gα,t = e−tz

α

to be in H1(Σσ), which is
not the case. The reader may check, however, that the proof still works in
the present situation if we replace integration over ∂Σν by integration over
∂(Σν \Bε). For λ > 0 we have∫ ∞

0

e−λsfα,t(s) ds =
1

2πi

∫ c+i∞

c−i∞

∫ ∞
0

e−λsesz−tz
α

ds dz

= − 1

2πi

∫ c+i∞

c−i∞

e−tz
α

z − λ
dz = e−tλ

α

.

(15.10)

Using the non-negativity of fα,t, upon passing to the limit λ ↓ 0 gives∫∞
0
fα,t(s) ds = 1.
Finally, the fact that fα,t is non-negative follows from (15.10), the fact

that λ 7→ e−tλ
α

is completely monotone and the Post–Widder real inversion
theorem for the Laplace transform. We refer the reader to the Notes for further
details. �

We finish with two examples.

Example 15.2.18 (Fractional derivatives). For 1 < p < ∞, the operator A =
d/dt with domain D(A) = {f ∈ W 1,p(0, T ;X) : f(0) = 0} is sectorial on
Lp(0, T ;X) of angle 1

2π and for all <α > 0 and f ∈ Lp(0, T ;X) we have
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A−αf(x) =
1

Γ (α)

∫ x

0

(x− y)α−1f(y) dy for almost all x ∈ R.

The operators A−α are called the (Liouville) fractional derivatives. In partic-
ular,

A−1f(x) =

∫ x

0

f(y) dy

The operator V := A−1 is called the Volterra operator. These formulas are
special cases of Theorem 15.2.16 once we note that −A is the generator of the
C0-semigroup on Lp(0, T ;X) given by

S(t)f(s) =

{
f(s− t), s ∈ [0, T ], s > t,

0, otherwise.

To see that the generator of this semigroup is indeed −A, let us denote the
generator by B for the moment. It is clear that Y := {f ∈ C1([0, T ];X) :
f(0) = 0} is contained in D(B) and Bf = −f ′ = −Af for all f ∈ Y . Since Y
is also invariant under the semigroup, Y is dense in D(B) by Lemma G.2.4.
But A is a closed operator and Y is also dense in D(A), and therefore B = −A
with equal domains.

Example 15.2.19 (Poisson semigroup). Let A be the Laplace operator on
Lp(Rd;X), where 1 6 p <∞ is fixed and X is a Banach space. This operator
has been introduced in Section 5.5 by declaring

D(A) := H2,p(Rd;X),

Af := ∆f, f ∈ D(A),

where H2,p(Rd;X) is the Banach space of all f ∈ Lp(Rd;X) admitting a
weak Laplacian ∆f in Lp(Rd;X) (see (5.44)). As was noted in Lemma 5.5.5,
C∞c (Rd;X) is dense in D(A), and consequently A can be equivalently defined
as the closure of the operator f 7→ ∆f acting in C∞c (Rd;X), where ∆f is
now defined in terms of the classical second order derivatives of f . For UMD
spaces X and exponents 1 < p <∞, Proposition 5.5.4 shows that

H2,p(Rd;X) = W 2,p(Rd;X),

and Theorem 5.6.11 establishes a Fourier analytic characterisation of these
spaces as the Banach space of all tempered distributions u ∈ S ′(Rd;X) such
that the tempered distribution

((1 + 4π2| · |2)û)
̂

belongs to Lp(Rd;X).
Let us now return to the general situation where 1 6 p < ∞ and X is

a general Banach space. From this point on, we will simply write ∆ for the
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Laplace operator in Lp(Rd;X). As was shown in Example G.5.6, −∆ is the
generator of a C0-semigroup of contractions (H(t))t>0 on Lp(Rd;X), the heat
semigroup, given by H(0) = I and

H(t)f := kt ∗ f, t > 0,

where kt(x) = (4πt)−d/2e−|x|
2/(4t) is the heat kernel. It was shown in the same

example that this semigroup extends analytically to {z ∈ C : <z > 0} by the
formula

H(z)f = kz ∗ f, <z > 0,

and that this extension is uniformly bounded and strongly continuous on
every sector Σω with 0 < ω < 1

2π. As a consequence, −∆ is a densely defined
sectorial operator of angle ω(∆) = 0.

By Theorem 15.2.17, the operator (−∆)1/2 is densely defined and sectorial
of angle 0 and generates a bounded analytic C0-semigroup (P (z))z∈Σω for
every 0 < ω < 1

2π on Lp(Rd;X), the so-called Poisson semigroup. By Theorem

15.1.7, in the primary calculus of (−∆)1/2 this semigroup is given by

P (z)f = exp(−z∆1/2), z ∈ Σω, f ∈ Lp(Rd;X).

An explicit representation is obtained from Theorem 15.2.17, from which it
follows that

P (t)f =

∫ ∞
0

kt(s)H(s)x ds, t > 0, f ∈ Lp(Rd;X),

where, for t > 0,

kt(s) :=
1

2πi

∫ c+i∞

c−i∞
esz−tz

1/2

dz, s > 0.

is a non-negative function which is independent of c > 0 and satisfies∫ ∞
0

fα,t(s) ds = 1.

We wish to prove here that

P (t)f = pt ∗ f, t > 0,

where

pt(x) =
Γ ( 1

2 (d+ 1))

π
1
2 (d+1)

t

(t2 + |x|2)
1
2 (d+1)

is the Poisson kernel. For d = 1 it takes the simpler form

pt(x) =
1

π

t

t2 + x2
.
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By Theorem 15.2.5 we have ((−∆)1/2)2f = −∆f for f ∈ D(∆) and there-
fore, by the composition rule of Theorem 15.1.15,

exp(t(−∆)1/2)f = φt(∆)f, f ∈ D(∆),

with φt(z) = e−tz
1/2

. It follows from Proposition 15.1.13 that, for f ∈ D(∆),

P (t)f = φt(∆)f = lim
n→∞

φt(∆)ψn(∆)f,

where
ψn(z) =

n

n+ z
, n > 1.

The remainder of the proof will be devoted to proving the identity

φt(∆)φn(∆)f = pt ∗ ψn(∆)f. (15.11)

These functions are regularisers for (exp(−t ·), ∆). Once this has been shown
the identity

P (t)f = pt ∗ f, f ∈ Lp(Rd;X),

follows from Proposition 10.1.7 by passing to the limit n→∞ in (15.11).
Fixing f ∈ D(∆) ∩ R(∆) and t > 0. Below we will show that

e−tz
1/2

=

∫ ∞
0

te−t
2/4s

2π1/2s3/2
e−zs ds. (15.12)

Assuming this identity for the moment, by Fubini’s theorem and Example
15.1.6 we have

φt(∆)ψn(∆)f = (φtψn)(∆)f

=
1

2πi

∫
∂Σσ

e−tz
1/2

ψn(z)R(z,∆)f dz

=
1

2πi

∫
∂Σσ

∫ ∞
0

te−t
2/4s

2π1/2s3/2
e−zsψn(z)R(z,∆)f ds dz

=

∫ ∞
0

te−t
2/4s

2π1/2s3/2

1

2πi

∫
∂Σσ

e−zsψn(z)R(z,∆)f dz ds

=

∫ ∞
0

te−t
2/4s

2π1/2s3/2
exp(−s∆)ψn(∆)f ds.

(15.13)

On the other hand,

pt(x)
(∗)
=

1

(4π)
1
2 (d+1)

t

(t2 + |x|2)
1
2 (d+1)

∫ ∞
0

s−
1
2 (d+1)e−1/4s ds

s

=
t

(4π)
1
2 (d+1)

∫ ∞
0

s−
1
2 (d+3)e−(t2+|x|2)/4s ds



15.2 Fractional powers 455

=

∫ ∞
0

te−t
2/4s

2π1/2s3/2
kt(x) ds,

where ks(x) = (4πs)−d/2e−|x|
2/4s denotes the heat kernel associated with ∆

and (∗) follows from∫ ∞
0

s−
1
2 (d+1)e−1/4s ds

s
= 4

1
2 (d+1)

∫ ∞
0

u
1
2 (d+1)e−u

du

u
= 4

1
2 (d+1)Γ (

1

2
(d+ 1)).

Now Fubini’s theorem implies

pt ∗ ψn(∆)f

=

∫ ∞
−∞

∫ ∞
0

te−t
2/4s

(4π)1/2s3/2
ks(· − y)

1

2πi

∫
∂Σσ

ψn(z)R(z,∆)f(y) ds dz dy

=

∫ ∞
0

te−t
2/4s

2π1/2s3/2

1

2πi

∫
∂Σσ

ψn(z)

∫ ∞
−∞

ks(· − y)R(z,∆)f(y) dy dz ds

=

∫ ∞
0

te−t
2/4s

2π1/2s3/2

1

2πi

∫
∂Σσ

ψn(z) exp(−s∆)R(z,∆)f dz ds

=

∫ ∞
0

te−t
2/4s

2π1/2s3/2
exp(−s∆)ψn(∆)f ds.

(15.14)

The identity (15.11) is obtained by combining (15.13) and (15.14).
It remains to prove (15.12). First, the substitution u = c/t gives∫ ∞

0

e−( ct−t)
2

dt =

∫ ∞
0

c

u2
e−( cu−u)2 du.

Renaming the second integration variable and adding the two formulas, the
substitution s = c

u − u gives∫ ∞
0

c

u2
e−( cu−u)2 du =

1

2

∫ ∞
0

(
1 +

c

u2

)
e−( cu−u)2 du =

1

2

∫ ∞
−∞

e−s
2

ds =
1

2
π1/2.

We will apply this identity with c = 1
2 tz

1/2. Completing squares and changing
variables twice, we obtain

etz
1/2

∫ ∞
0

te−t
2/4s

s3/2
e−zs ds =

∫ ∞
0

t

s
e−(t/2

√
s−z1/2

√
s)2 ds

2
√
s

=

∫ ∞
0

t

u2
e−(t/2u−z1/2u)2 du = π1/2,

and this is the formula (15.12) we wanted to prove.



456 15 Extended calculi and powers of operators

15.3 Bounded imaginary powers

A special role is played by sectorial operators whose purely imaginary frac-
tional powers Ait are bounded. As their definition requires that D(A) ∩ R(A)
be dense it will be convenient to introduce the following terminology.

Definition 15.3.1 (Standard sectorial operators). A standard sectorial
operator is a sectorial operator A with the property that D(A)∩R(A) is dense
in X.

The following proposition recalls some results proved in Proposition 10.1.8.

Proposition 15.3.2. Let A be a sectorial operator on a Banach space X.
Then:

(1) if A is standard, then A is injective;
(2) A is standard if and only if it is densely defined and has dense range;
(3) if X is reflexive, the following assertions are equivalent:

(i) A is standard sectorial;
(ii) A is injective;

(iii) A has dense range.

In view of (1), the fractional powers Aα of a standard sectorial operator A
are well defined for all α ∈ C, and all results from the previous section are
applicable to A.

In applications, standardness is hardly a restrictive assumption. In most
situations the Banach space will be reflexive and even UMD, and in such
spaces for a sectorial operator A we have the direct sum decomposition

X = N(A)⊕ R(A).

By (2), the part of A in R(A) is standard sectorial, and the part of A in N(A)
is identically zero.

Example 15.3.3 (Standardness of the Laplacian on Lp(Rd;X)). Let us con-
sider the Laplace operator ∆ on Lp(Rd;X), where 1 < p < ∞ and X is a
UMD space, with domain D(∆) = H2,p(R;X). It is shown in Example 10.1.5
that −∆ is sectorial of angle 0 on Lp(Rd;X) for all 1 6 p < 1, and standard
sectorial if and only if 1 < p <∞.

For standard sectorial operators A on a Banach space X, the next diagram
summarises the main results of this section.
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γ-bounded
H∞-calculus

γ-BIP with
ωγ−BIP(A) < π

bounded
H∞-calculus

BIP with
ωBIP(A) < π

γ-sectorial
almost
γ-sectorial

(2)
(3)

(4)

(6) (7)

(8)

(5)

(1)

The implications (1), (2), (4), (5), and (8) are trivial. The implication (3)
follows from Theorem 15.3.21, where it is also shown that equivalence holds
when X has Pisier’s contraction property. The implications (1)–(5) are equiv-
alence when X is a Hilbert space. The implication (6) follows from Theorem
15.3.19, and the implication (7) is Theorem 15.3.16.

15.3.a Definition and basic properties

For t ∈ R consider the function

ft(z) := zit := exp(it log z),

where we use the branch of the logarithm that is holomorphic on C \ (−∞, 0].
From |ft(z)| = exp(−t arg(z)) it follows that ft ∈ H∞(Σσ) for each 0 < σ < π
and

‖ft‖H∞(Σσ) 6 exp(σ|t|).

Thus if A is a standard sectorial operator with a bounded H∞(Σσ)-calculus,
the operators

Ait := ft(A)

are well defined as bounded operators on X. Some examples of operators with
bounded imaginary powers will be discussed in Subsection 15.3.h.

When A is merely standard sectorial, we may use the extended Dunford
calculus to define the operators Ait, t ∈ R, as closed and densely defined
operators in X. This suggests the following definition.

Definition 15.3.4 (BIP). A linear operator A acting in a Banach space X
is said to have bounded imaginary powers (briefly, A has bounded imaginary
powers) if A is standard sectorial and the operators Ait are bounded for all
t ∈ R.

Examples of operators with bounded imaginary powers will be given in Section
15.3.h.



458 15 Extended calculi and powers of operators

Proposition 15.3.5. If A has bounded imaginary powers, then the family
(Ait)t∈R is a C0-group.

Proof. It is evident from the definition through the extended Dunford calculus
that t 7→ Aitx is strongly measurable for all x ∈ X. We have already seen that
Ai0x = 1(A)x = x for all x ∈ D(A)∩R(A), so Ai0 = I. The identity AisAitx =
Ai(s+t)x follows from Proposition 15.1.12. Proposition G.2.7 implies that t 7→
Aitx is continuous for all x ∈ X. �

When A has bounded imaginary powers, then by the above result and the
general theory of C0-(semi)groups, there exist constants M > 1 and ω ∈ R
such that

‖Ait‖ 6Meω|t|.

This allows us to define the abscissa

ωBIP(A) := inf
{
ω ∈ R : sup

t∈R
e−ω|t|‖Ait‖ <∞

}
.

We have the following improvement of Corollary 15.2.10 in the presence
of bounded imaginary powers. The point of the estimate in part (1) is that
boundedness of the imaginary powers permits us to obtain an estimate that
is uniform all the way up the imaginary axis.

Proposition 15.3.6. If A has bounded imaginary powers and 0 ∈ %(A), and
if ‖Ait‖ 6Me−ω|t| for all t ∈ R, then:

(1) the operator A−z is bounded for every <z > 0, and

‖A−z‖ 6 CAMeω|=z|‖A−1‖<z, <z > 0,

where CA depends only on MA := supt>0(1 + t)‖(t+A)−1‖ and ‖A−1‖;
(2) for all <z1 > 0 and <z2 > 0 we have A−z1A−z2 = A−(z1+z2);
(3) for all x ∈ X the mapping z 7→ A−zx is continuous on {<z > 0} and

holomorphic on {<z > 0}.

Proof. (1) and (2): By assumption for all t ∈ R the operators Ait are bounded,
and for <z > 0 the operators A−z are bounded by Corollary 15.2.10. For <z1 >
0 and <z2 > 0 the identity A−z1A−z2 = A−(z1+z2) follows from Proposition
15.1.12, noting that all operators occurring in this identity are bounded.

We next prove the norm estimate. We begin by noting that

C ′A := sup
s∈[0,1]

‖A−s‖ <∞

by Corollary 15.2.15, with a constant CA depending only on the constant MA

(which is finite since A is boundedly invertible).
By writing z = s + it with s ∈ [0, 1], it follows from the identity A−z =

A−sA−it that
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sup
06<z61

‖A−z‖ 6 C ′A sup
t∈R
‖A−it‖ 6 C ′AMe−ω|t| 6 CAMe−ω|t|‖A−1‖<z,

where CA = C ′A/max{1, ‖A‖−1}. This gives the desired bound in (1) for
0 6 <z 6 1.

For z = z′+n with n > 1 and 0 6 <z′ < 1, the estimate in (1) now follows
from

‖A−z‖ = ‖A−z
′−n‖ 6 ‖A−z

′
‖‖A−n‖ 6 CAM−ω|t|‖A−1‖<z

′
‖A−1‖n

= CAM
−ω|t|‖A−1‖<z.

(3): Fix an arbitrary integer k > 1 and fix an element x ∈ D(Ak)∩R(Ak).
We have already seen that z 7→ A−zx is holomorphic on {|<z| < k}; in
particular z 7→ A−zx is continuous on {0 6 <z < k}. The holomorphy on
{|<z| < k} and continuity on {0 6 <z < k} of z 7→ A−zx for general x ∈ X
follows by approximation xn → x with xn ∈ D(Ak) ∩ R(Ak), noting that the
above norm estimate implies that the convergence A−zxn → A−zx is locally
uniform on {0 6 <z < k}. �

15.3.b Identification of fractional domain spaces

An important justification for studying boundedness of imaginary powers
comes from Theorem 15.3.9 below, which states that boundedness of the
imaginary powers implies the coincidence of the fractional power scale and
the complex interpolation scale. For the proof of this result we need some
lemmas. The first extends the relation AαAβ = Aα+β , which has been proved
so for only for α, β satisfying <α · <β > 0.

Lemma 15.3.7. If A has bounded imaginary powers, then for all α ∈ C and
t ∈ R we have

AαAit = AitAα = Aα+it

with equality of domains.

Proof. Since Ait is bounded it is clear that D(Aα) = D(AitAα). From Propo-
sition 15.1.12(2) we already know the inclusion D(AitAα) ⊆ D(Aα+it) with
AitAαx = Aα+itx for all x ∈ D(AitAα), as well as the equality D(AitAα) =
D(Aα+it)∩D(Aα). Combining these results, we obtain AitAα = Aα with equal
domains. �

The second lemma considers bounded imaginary powers for shifted operators:

Lemma 15.3.8. If A has bounded imaginary powers, then A+ ε has bounded
imaginary powers for all ε > 0. If ‖Ait‖ 6Meω|t| and ω(A) < σ < π, then

‖(A+ ε)it‖ 6M ′e(ω∨σ)|t|,

for some constant M ′ independent of ε > 0.
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Proof. It is immediate from Theorem 15.1.18 applied to ε−1A that A+ ε has
bounded imaginary powers. By Proposition 15.2.6 we have (ε−1A)it = ε−itAit

and (A+ ε)it = εit(ε−1A+ I)it with equal domains in both cases. Hence, by
the estimates provided by Theorem 15.1.18 and Proposition 15.2.6, for any
fixed ω(A) < σ < π we have

‖(A+ ε)it‖ = ‖(ε−1A+ I)it‖
6 (1 +Mσ,ε−1A)2(‖Ait‖+ Cσ‖z 7→ zit‖H∞(Σσ))

6 (1 +Mσ,A)2(Meω|t| + Cσe
σ|t|).

�

Theorem 15.3.9 (Fractional powers through complex interpolation).
If A has bounded imaginary powers, then for all α > 0 and 0 < θ < 1,

D(Aαθ) = [X,D(Aα)]θ with equivalent norms.

Proof. By Proposition 15.2.12 and Lemma 15.3.8 we may replace A by A+ I
if necessary, and thereby assume without loss of generality that 0 ∈ %(A).
This allows us to use the results of Proposition 15.3.6.

Choose M > 1 and ω ∈ R such that ‖Ait‖ 6 Meω|t| for all t ∈ R. We
begin by proving the inclusion D(Aαθ) ⊆ [X,D(Aα)]θ. Fix 0 < θ < 1 and
x ∈ D(Aαθ), and put

f(z) := e(z−θ)2A−αzAαθx, z ∈ S,

where S = {z ∈ C : 0 < <z < 1} is the unit strip in the complex plane.
Then f is holomorphic as an X-valued function on S and satisfies f(θ) = x.
Moreover, by Proposition 15.3.6, f is continuous and uniformly bounded on S.
Using the notation introduced in Appendix C, to prove that x ∈ [X,D(Aα)]θ
we must check that f ∈H (X,D(Aα)). For this it remains to be checked that
t 7→ f(it) belongs to Cb(R;X) and t 7→ f(1+it) belongs to Cb(R;D(Aα)). The
former follows from what has already been said, and for the latter we write
‖f(1 + it)‖D(Aα) = ‖f(1 + it)‖ + ‖Aαf(1 + it)‖. Again by what has already
been said, the function t 7→ f(1 + it) belongs to Cb(R;X). The second term
can be estimated as follows:

‖Aαf(1 + it)‖ = ‖e(1+it−θ)2AαA−α(1+it)Aαθx‖

= ‖e(1+it−θ)2A−iαtAαθx‖ 6 e(1−θ)2−t2Meαω|t|‖Aαθx‖,

and this is a bounded function of t ∈ R. Here we used Lemma 15.3.7, which
implies that D(Aα) = D(A−α(1+it)) and A−α(1+it)y = A−αAity for y ∈ X.

To prove the reverse inclusion [X,D(Aα)]θ ⊆ D(Aαθ) we will use the results
and notation of Appendix C. Fix x ∈ [X,D(Aα)]θ and let f ∈ H (X,D(Aα))
satisfy f(θ) = x. By Corollary C.2.8 there is a sequence of functions fn ∈
H0(X,D(Aα);D(Aα)) such that fn(θ) =: xn → x in [X,D(Aα)]θ.
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Since D(Aα) ⊆ D(Aαz) for z ∈ S and fn takes values in D(Aα) we may
define

gn(z) := e(z−θ)2Aαzfn(z), z ∈ S.

With respect to the norm of X, each function gn is bounded on S. By the
three lines lemma,

‖xn‖ = ‖fn(θ)‖ 6 max
{

sup
t∈R
‖fn(it)‖, sup

t∈R
‖fn(1 + it)‖

}
,

‖Aαθxn‖ = ‖gn(θ)‖ 6 max
{

sup
t∈R
‖gn(it)‖, sup

t∈R
‖gn(1 + it)‖

}
.

Moreover, for all t ∈ R,

‖gn(it)‖ 6 eθ
2−t2‖Aiαtfn(it)‖ 6 eθ

2−t2Meαω|t|‖fn(it)‖,

‖gn(1 + it)‖ 6 e(1−θ)2−t2‖AiαtAαfn(1 + it)‖

6 eθ
2−t2Meαω|t|‖fn(1 + it)‖D(Aα).

Here we used Lemma 15.3.7, which implies that D(Aα) = D(Aα+iαt) and
Aα+iαty = AiαtAαy for y ∈ D(Aα).

It follows from these estimates that ‖xn‖ . ‖fn‖H (X,X) 6 ‖fn‖H (X,D(Aα))

and ‖Aαθxn‖ . ‖fn‖H (X,D(Aα)), and therefore ‖xn‖D(Aαθ) . ‖fn‖H (X,D(Aα)).
Replacing xn by xn − xm in the above argument, we find that the se-
quence (xn)n>1 is Cauchy in D(Aαθ) and therefore converges to a limit. Since
xn → x in X, this limit must be x. This proves that x ∈ D(Aαθ) and that
‖x‖D(Aαθ) . ‖f‖H (X,D(Aα)). Taking the infimum with respect to f it follows
that ‖x‖D(Aαθ) . ‖x‖[X,D(Aα)]θ . �

This theorem self-improves in an obvious manner. Upon replacing X by D(Aβ)
and using that D(Aγ) = D(Aγ+it) we arrive at the following more general
result.

Corollary 15.3.10. If A has bounded imaginary powers, then for all α, β ∈ C
with 0 6 α < β <∞ we have

D(A(1−θ)α+θβ) = [D(Aα),D(Aβ)]θ

with equivalent norms.

Let us revisit the Laplace operator ∆ on Lp(Rd;X), where 1 < p < ∞ and
X is a UMD space, with domain D(∆) = H2,p(R;X). It was already noted
above that −∆ is standard sectorial of angle 0 on Lp(Rd;X) for all 1 6 p <
1, and by Theorem 10.2.25 it has a bounded H∞-calculus of angle 0. As a
consequence, −∆ has bounded imaginary powers. Applying Theorem 15.3.9,
for all 0 < θ < 1 we obtain

D((−∆)θ) = [Lp(Rd;X), H2,p(Rd;X)]θ with equivalent norms.
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In Chapter 5 we have proved Seeley’s theorem (Theorem 5.6.9), from which
it follows that if X is a UMD space and 1 < p <∞, then for all 0 < θ < 1 we
have

[Lp(Rd;X), H2,p(Rd;X)]θ = H2θ,p(Rd;X) with equivalent norms.

Thus we obtain the following result.

Theorem 15.3.11 (Laplacian on Lp(Rd;X)). Consider the Laplace oper-
ator ∆ on Lp(Rd;X), where 1 < p <∞ and X is a UMD space, with domain
D(∆) = H2,p(R;X). Then for all 0 < θ < 1 we have

D((−∆)θ) = H2θ,p(Rd;X) with equivalent norms.

15.3.c Connections with sectoriality

It is part of the definition that an operator with bounded imaginary powers
is standard sectorial, but there is no obvious a priori relation between the
abscissa ωBIP(A) and the angle of sectoriality ω(A). The main result of this
section is the following result, which says that ω(A) 6 ωBIP(A). Moreover, if
X is a UMD space, then A is R-sectorial of angle ωR(A) 6 ωBIP(A).

Theorem 15.3.12 (Clément–Prüss). Let A be an operator with bounded
imaginary powers on a Banach space X, and assume that ωBIP(A) < π.

(1) A is sectorial of angle ω(A) 6 ωBIP(A).
(2) If X is a UMD space, then A is R-sectorial of angle ωR(A) 6 ωBIP(A).

The key lemma is the following representation formula. It expresses the re-
solvent of A in terms of the imaginary powers Ait, and a such it provides the
key insight behind the Clément–Prüss theorem.

Lemma 15.3.13 (Prüss–Sohr). Let A be an operator with bounded imagi-
nary powers on a Banach space X, and assume that ωBIP(A) < π. Let λ = reiθ

with r > 0 and |θ| < π − ωBIP(A). Then for all x ∈ D(A) ∩ R(A) we have

(I + λA)−1x =
1

2
x+

1

2πi
p.v.

∫ ∞
−∞

π

sinh(πt)
λ−itA−itx dt,

the convergence of the principal value integral on the right-hand side being
part of the assertion. Furthermore, for all 0 < s < 1,

λsAs(1 + λA)−1x =
1

2

∫
R

1

sin(π(s− it))
λitAitx dt. (15.15)

Proof. We begin with the proof of the first identity. It proceeds in three steps.

Step 1 – First take r = 1 and θ = 0. In this step, for all x ∈ X we will
prove that
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1

2
x+

1

2πi
p.v.

∫ ∞
−∞

π

sinh(πs)
A−isx ds

= lim
c↓0

1

2πi

∫ c+i∞

c−i∞

π

sin(πz)
A−zx dz,

the convergence of the principal value integral being part of the assertion. Note
that the integrals occurring on right-hand side converge absolutely thanks to
the estimates

| sinh(π(c+ it))| = O(eπ|t|) as t→ ±∞

and
‖A−c−itx‖ 6Meω|t|‖A−cx‖, t ∈ R,

for all ωBIP(A) < ω < π, with M > 1 a constant depending on ω.
By Cauchy’s theorem we have

1

2πi

∫ c+i∞

c−i∞

π

sin(πz)
A−zx dz =

1

2πi

∫
Γc

π

sin(πz)
A−zx dz,

where Γc is the (upwards oriented) contour consisting of the union of the two

half-lines Γ
(1)
c = {is : s 6 −c} and Γ

(3)
c = {is : s > c} and the semi-circle

Γ
(2)
c = {ceiϑ : ϑ ∈ [− 1

2π,
1
2π]}. As c ↓ 0, the contributions along the two

half-lines converge to the principal value integral and the contribution along
the semi-circle converges to 1

2x. The latter follows by noting that A−zx → x
as z → 0 in the closed right-half plane, by the continuity of z 7→ A−zx on
that set (see Proposition 15.3.6). Hence

lim
c↓0

1

2πi

∫
Γ

(2)
c

π

sin(πz)
dz = lim

c↓0

1

2π

∫ 1
2π

− 1
2π

πceiϕ

sin(πceiϕ)
dϕ =

1

2

(since sin(πceiϕ) = πceiϕ +O(c3) as c ↓ 0.

Step 2 – In this step we will prove the lemma for r = 1 and θ = 0 with
x ∈ D(A) ∩ R(A), i.e., we show that

(I +A)−1x =
1

2
x+

1

2πi
p.v.

∫ ∞
−∞

π

sinh(πs)
A−isx ds

for all x ∈ D(A)∩R(A). (Note that I+A is boundedly invertible as part of the
definition of bounded imaginary powers, since A is assumed to be standard
sectorial).

Let y := (I +A)x. Then
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1

2
y +

1

2πi
p.v.

∫ ∞
−∞

π

sinh(πs)
A−isy ds

=
1

2
(I +A)x+

1

2πi
p.v.

∫ ∞
−∞

π

sinh(πs)
A−isx ds

+
1

2πi
p.v.

∫ ∞
−∞

π

sinh(πs)
A1−isx ds

=
1

2
(I +A)x+

1

2πi
p.v.

∫
Γc

π

sin(πz)
A−zy dx

+
1

2πi
p.v.

∫
Γc

π

sin(πz)
A1−zy dx.

(15.16)

In view of sin(πz) = − sin(π(1 − z)), after a change of variable in the last
integral the contributions over all four half-lines cancel and we are left with

1

2
(I +A)x+

1

2πi
p.v.

∫
Γ

(2)
c

π

sin(πz)
A−zx dz − 1

2πi
p.v.

∫
Γ̃

(2)
c

π

sin(πz)
A−zx dz,

where Γ̃
(2)
c = {1 − ceiϑ : ϑ ∈ [− 1

2π,
1
2π]}. As c ↓ 0, the first integral tends

to 1
2y and the second to − 1

2Ax. In the limit c ↓ 0 the three terms on the
right-hand side of (15.16) therefore add up to x. This proves the identity

x =
1

2
y +

1

2πi
p.v.

∫ ∞
−∞

π

sinh(πs)
A−isy ds.

Multiplying on both sides with (I +A)−1 gives the desired result.

Step 3 – The general case follows by applying the result of Step 2 to the
operator λA, which by Proposition 15.2.6 has bounded imaginary powers and
satisfies (λA)−is = λ−isA−is. This completes the proof of the first identity.
Using it, and fixing 0 < s < 1, for x ∈ D(A) ∩ R(A) we obtain

λsAs(I + λA)−1x =
1

2
λsAsx+

1

2πi
p.v.

∫ ∞
−∞

π

sinh(πt)
λs−itAs−itx dt

=
1

2
λsAsx− 1

2

∫ ∞−is
−∞−is

1

sin(π(s− it))
λitAitx dt

=
1

2

∫ ∞
−∞

1

sin(π(s− it))
λitAitx dt

by the Cauchy theorem, noting that AsAit = As+it by Theorem 15.2.5 in the
first step. This gives the second identity. �

Remark 15.3.14. A more direct proof of the second identity can be given as
follows. Starting from the identity∫ ∞

−∞

e2πitξ

sin(π(s− it))
dt =

2e2πsξ

1 + e2πξ
, 0 < s < 1, ξ ∈ R, (15.17)
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the substitution z = e2πξ gives∫ ∞
−∞

zit

sin(π(s− it))
dt =

2zs

1 + z
, 0 < s < 1, z ∈ R+. (15.18)

By analytic continuation this extends to all z ∈ C with | arg(z)| < π.
Let λ ∈ C \ {0} as in the statement of the lemma. For x ∈ D(A)∩ R(A) it

follows from Proposition 15.1.19 that Aitx is given by the Bochner integral

Aitx = µitx+
1

2πi

∫
Γν

zit
(
R(z,A)− 1

z − µ

)
x dz,

where ω(A) < | arg µ| < ν. Substituting this identity into the right-hand
side of (15.15), a short computation involving Fubini’s theorem, (15.18), and
Cauchy’s theorem gives the result. At the expense of some additional compu-
tations, instead of invoking Proposition 15.1.19 one may also directly use the
definition for Aitx as given in Definition 15.1.8.

Proof of Theorem 15.3.12. (1): First let λ = reiθ with r > 0 and |θ| <
π − ω(A). By subtraction we obtain the identity

(I + λA)−1x = (I +A)−1x+
1

2πi
p.v.

∫ ∞
−∞

π

sinh(πs)
(λ−is − 1)A−isx ds

for x ∈ D(A2) ∩ R(A2). The crux is that the term λ−is − 1 is of the order
O(|s|) near s = 0 and can therefore be estimated as |λ−is − 1| . |s| ∧ 1.
Similarly, | sinh(s)| . (|s| ∧ 1)eπ|s|. Therefore the principal value integral is
actually absolutely convergent and bounded in x. As a consequence of this,
the identity extends to arbitrary x ∈ X.

The proof is completed by observing that the integral in the right hand
side of the identity

(I + λA)−1x = (I +A)−1x+
1

2πi

∫ ∞
−∞

π

sinh(πs)
(λ−is − 1)A−isx ds

is absolutely convergent for any λ = reiθ with r > 0 and |θ| < π − ωBIP(A).
Indeed, recalling the estimates for λ−is − 1 and sinh(s) mentioned earlier,
choosing ωBIP(A) < ω < π so that |θ| < π − ω we estimate∥∥∥ ∫ ∞

−∞

π

sinh(πs)
(λ−is − 1)A−isx ds

∥∥∥ . ∫
|s|>1

πe−π|s|Mωe
ω|s|‖x‖ ds

with a constant independent of x. The right-hand side defines a holomorphic
extension of the function λ 7→ (I+λA)−1x to the open sector Σπ−ωBIP(A). As a
consequence the spectrum of A must be contained in the closure of ΣωBIP(A).
Finally, the sectoriality estimate on the complement of this closure follows
from the estimate.
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(2): Fix ωBIP(A) < ω < ν < π and choose numbers λn = rne
iθn with

rn > 0 and |θn| < π − ν, as well as vectors xn ∈ X; n = 1, . . . , N . We wish
to show that there exists a constant C, independent of the choices just made,
such that ∥∥∥ N∑

n=1

εn(I + λnA)−1xn

∥∥∥
L2(Ω;X)

6 C
∥∥∥ N∑
n=1

εnxn

∥∥∥
L2(Ω;X)

,

where (εn)Nn=1 is a Rademacher sequence defined on a probability space (Ω,P).
By a simple approximation argument, there is no loss of generality in assuming
that xn ∈ D(A) ∩ R(A) for all n = 1 . . . , N .

Since ω(A) 6 ωBIP(A) by the Clément–Prüss theorem, Lemma 15.3.13
(with λ = 1), the representation formulas of Lemma 15.3.13 hold for λ = reiθ

with r > 0 and |θ| < π − ν, with x ∈ D(A2) ∩ R(A2), and

(I + reiθA)−1x =
1

2
x+

1

2πi

∫ ∞
−∞

ψθ(s)r
−isA−isx ds

+
1

2πi

∫ ∞
−∞

η(s)r−isA−isx ds,

+
1

2πi
p.v.

∫ 1

−1

r−isA−isx
ds

s

=:
1

2
x+ Tr,θx+ Srx+Rrx,

where

ψθ(s) =
π

sinh(πs)
(eθs − 1), η(s) :=

π

sinh(πs)
−

1(−1,1)(s)

s
.

Applying this to λ = λn we obtain∥∥∥ N∑
n=1

εn(I + λnA)−1xn

∥∥∥
L2(Ω;X)

6
1

2

∥∥∥ N∑
n=1

εnxn

∥∥∥
L2(Ω;X)

+
∥∥∥ N∑
n=1

εnTrn,θnxn

∥∥∥
L2(Ω;X)

+
∥∥∥ N∑
n=1

εnSrnxn

∥∥∥
L2(Ω;X)

+
∥∥∥ N∑
n=1

εnRrnxn

∥∥∥
L2(Ω;X)

.

We will estimate the last three expressions separately.
To start with the first, we note that |ψθn(s)| . e(θn−π)|s| 6 e−ν|s|. There-

fore, by the Kahane contraction principle and the bound ‖Ais‖ 6Meω|s|,

∥∥∥ N∑
n=1

εnTrn,θnxn

∥∥∥
L2(Ω;X)

6
1

2π

∫ ∞
−∞

∥∥∥A−is N∑
n=1

εnψθn(s)xn

∥∥∥
L2(Ω;X)

ds
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.
1

2π

∫ ∞
−∞

Meω|s|
∥∥∥ N∑
n=1

εnψθn(s)xn

∥∥∥
L2(Ω;X)

ds

.
1

2π

∫ ∞
−∞

Me(ω−ν)|s|
∥∥∥ N∑
n=1

εnxn

∥∥∥
L2(Ω;X)

ds

= CA,ν

∥∥∥ N∑
n=1

εnxn

∥∥∥
L2(Ω;X)

.

The second term is treated similarly, now using that |η(s)| . e−π|s|:

∥∥∥ N∑
n=1

εnSrnxn

∥∥∥
L2(Ω;X)

6
1

2π

∫ ∞
−∞

∥∥∥A−is N∑
n=1

εnη(s)xn

∥∥∥
L2(Ω;X)

ds

.
1

2π

∫ ∞
−∞

Meω|s|
∥∥∥ N∑
n=1

εnη(s)xn

∥∥∥
L2(Ω;X)

ds

.
1

2π

∫ ∞
−∞

Me(ω−π)|s|
∥∥∥ N∑
n=1

εnxn

∥∥∥
L2(Ω;X)

ds

= C ′A,ν

∥∥∥ N∑
n=1

εnxn

∥∥∥
L2(Ω;X)

.

For estimating the third term we use the UMD property of X through the
boundedness of the Hilbert transform on L2(R;X).

We begin with a preliminary observation. Let us set Un(s) = (rnA)−is =
r−isn A−is for brevity. Then by the Kahane contraction principle, for all s ∈ R
we have∥∥∥ N∑

n=1

εnUn(s)xn

∥∥∥
L2(Ω;X)

6
∥∥∥ N∑
n=1

εnA
−isxn

∥∥∥
L2(Ω;X)

6Meω|s|
∥∥∥ N∑
n=1

εnxn

∥∥∥
L2(Ω;X)

.

(15.19)

Fix 0 < δ < 1 and t ∈ [− 1
2 ,

1
2 ]. Then

N∑
n=1

εn

∫
δ<|s|<1

Un(s)xn
ds

s
=

N∑
n=1

εnUn(t)

∫
δ<|s|<1

Un(s− t)xn
ds

s

=

N∑
n=1

εnUn(t)

∫
|s|>δ

ϕn(t− s) ds

s

−
N∑
n=1

εn

∫ 1+t

1

Un(s)xn
ds

s
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+
N∑
n=1

εn

∫ −1+t

−1

Un(s)xn
ds

s
,

where ϕn(τ) = 1(−1,1)(τ)Un(−τ)xn. Integrating over t ∈ (− 1
2 ,

1
2 ), we obtain

N∑
n=1

εn

∫
δ<|s|<1

Un(s)xn
ds

s
=

N∑
n=1

εn

∫ 1
2

− 1
2

Un(t)

∫
|s|>δ

ϕn(t− s) ds

s
dt

−
N∑
n=1

εn

∫ 1
2

− 1
2

∫ 1+t

1

Un(s)xn
ds

s
dt

+
N∑
n=1

εn

∫ 1
2

− 1
2

∫ −1+t

−1

Un(s)xn
ds

s
dt.

Since X is UMD and φn ∈ L2(R;X), the limit

lim
δ↓0

∫
|s|>δ

ϕn(· − s) ds

s
= lim

δ↓0
R→∞

∫
δ<|s|<R

ϕn(· − s) ds

s

exists in L2(R;X) by Theorem 5.1.1 and equals πHφn, where H is the Hilbert
transform. As a result we obtain

N∑
n=1

εnRrnxn =
N∑
n=1

εnp.v.

∫ 1

−1

Un(s)xn
ds

s

=
N∑
n=1

εn lim
δ↓0

∫
δ<|s|<1

Un(s)xn
ds

s

= π
N∑
n=1

εn

∫ 1
2

− 1
2

Un(t)Hϕn(t) dt

−
N∑
n=1

εn

∫ 1
2

− 1
2

∫ 1+t

1

Un(s)xn
ds

s
dt

+
N∑
n=1

εn

∫ 1
2

− 1
2

∫ −1+t

−1

Un(s)xn
ds

s
dt

=: (I) + (II) + (III).

It remains to estimate the three terms on the right-hand side. For estimating
(I) we use that ‖H‖L (L2(R;X)) 6 2β+

2,Xβ
−
2,X (see Theorem 5.1.13). Applying

the Kahane–Khintchine inequality, this gives

∥∥∥ N∑
n=1

εn

∫ 1/2

−1/2

Un(t)Hϕn(t) dt
∥∥∥
L2(Ω;X)
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h
∥∥∥ N∑
n=1

εn

∫ 1/2

−1/2

Un(t)Hϕn(t) dt
∥∥∥
L1(Ω;X)

=
∥∥∥ ∫ 1/2

−1/2

N∑
n=1

εnUn(t)H[1(−1,1)(·)Un(− · )xn](t) dt
∥∥∥
L1(Ω;X)

6
∫ 1/2

−1/2

∥∥∥ N∑
n=1

εnUn(t)H[1(−1,1)(·)Un(− · )xn](t)
∥∥∥
L1(Ω;X)

dt

6M
∫ 1/2

−1/2

∥∥∥ N∑
n=1

εnH[1(−1,1)(·)Un(− · )xn](t)
∥∥∥
L1(Ω;X)

dt

= M1/2E
∫ 1/2

−1/2

∥∥∥H[1(−1,1)(·)
N∑
n=1

εnUn(− · )xn
]
(t)
∥∥∥ dt

6M1/2E
∥∥∥H[1(−1,1)(·)

N∑
n=1

εnUn(− · )xn
]∥∥∥
L2(R;X)

6 2β+
2,Xβ

−
2,XM1/2E

∥∥∥ N∑
n=1

εn1(−1,1)(·)Un(− · )xn
∥∥∥
L2(R;X)

and, by (15.19),

E
∥∥∥ N∑
n=1

εn1(−1,1)(·)Un(− · )xn
∥∥∥
L2(R;X)

.

= E
∥∥∥ N∑
n=1

εn(·)Un(− · )xn
∥∥∥
L2(−1,1;X)

6
∥∥∥ N∑
n=1

εn(·)Un(− · )xn
∥∥∥
L2(Ω;L2(−1,1;X))

=
∥∥∥ N∑
n=1

εn(·)Un(− · )xn
∥∥∥
L2(−1,1;L2(Ω;X))

6M1/2

∥∥∥ N∑
n=1

εnxn

∥∥∥
L2(−1,1;L2(Ω;X))

= M1/2

∥∥∥ N∑
n=1

εnxn

∥∥∥
L2(Ω;X))

where M1/2 := sup|t|61/2 ‖A−it‖.
To estimate (II) we use (15.19) again:∥∥∥ N∑

n=1

εn

∫ 1/2

−1/2

∫ 1+t

1

Un(s)xn
ds

s
dt
∥∥∥
L2(Ω;X)
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6
∫ 1/2

−1/2

∫ 1+t

1

∥∥∥ N∑
n=1

εnUn(s)xn

∥∥∥
L2(Ω;X)

ds

s
dt

6M2

∫ 1/2

−1/2

∫ 1+t

1

∥∥∥ N∑
n=1

εnxn

∥∥∥
L2(Ω;X)

ds

s
dt

6M2

∥∥∥ N∑
n=1

εnxn

∥∥∥
L2(Ω;X)

where M2 := sup|t|62 ‖A−it‖.
The estimation of (III) is entirely similar. �

15.3.d Connections with almost γ-sectoriality

We have consistently limited our treatment of the H∞-calculus and related
topics to sectorial operators. It is of some interest to consider the wider class
of so-called almost sectorial operators, defined as follows.

Definition 15.3.15 (Almost sectorial operators). Let σ ∈ (0, π). A linear
operator A acting in a Banach space X is called:

(i) σ-almost sectorial if σ(A) ⊆ Σσ and the set{
λAR(λ,A)2 : λ ∈ C \Σσ

}
is uniformly bounded;

(ii) σ-almost γ-sectorial if σ(A) ⊆ Σσ and the set{
λAR(λ,A)2 : λ ∈ C \Σσ

}
is γ-bounded.

The operator A is called almost sectorial, respectively almost γ-sectorial if it
is σ-almost sectorial, respectively σ-almost γ-sectorial, for some σ ∈ (0, π).

Almost R-sectorial operators are defined similarly, replacing γ-boundedness
by R-boundedness.

For an almost sectorial, respectively an almost γ-sectorial operator A, we
define

ω̃(A) := inf
{
σ ∈ (0, π) : A is σ-almost sectorial

}
,

ω̃γ(A) := inf
{
σ ∈ (0, π) : A is σ-almost γ-sectorial

}
.

The identity
λAR(λ,A)2 = [λR(λ,A)]2 − λR(λ,A)

shows that every (γ-)sectorial operator is almost (γ-)sectorial and
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ω̃(A) 6 ω(A), respectively ω̃γ(A) 6 ωγ(A).

The above definitions may appear somewhat ad hoc at first sight, but the
motivation to introduce them is as follows. The operators λR(λ,A) used in
the definition of sectoriality can be represented in the primary calculus of A
as

λR(λ,A) = rλ(A) with Rλ(z) =
λ

λ− z
.

Indeed, the functions rλ belong to the class E(Σσ) introduced in Section
15.1.a as long as 0 < σ < |<λ|. They do not belong to H1(Σσ), however, and
this fact is responsible for some of the technical issues encountered in several
proofs. In contrast, the operators λAR(λ,A)2 used in the definition of almost
sectoriality can be represented in the Dunford calculus of A, for we have

λAR(λ,A)2 = r̃λ(A) with r̃λ(z) =
λz

(λ− z)2
.

Indeed, the functions r̃λ belong to H1(Σσ) for 0 < σ < |<λ|. Further motiva-
tion will be given in the Notes at the end of the chapter.

The following result gives a version of the (second part of) Clément–Prüss
theorem (Theorem 15.3.12) holds without making any assumptions on the Ba-
nach space X. The price to pay is that only almost γ-sectoriality is obtained:

Theorem 15.3.16. Let A be an operator with bounded imaginary powers on
a Banach space X. Then A is almost γ-sectorial of angle ω̃γ(A) 6 ωBIP(A).

Proof. Fix ωBIP(A) < θ′ < θ < π and suppose that λ1, . . . , λn ∈ C are non-
zero and satisfy | arg(λk)| > θ. Note that | arg(µk)| 6 π− θ. Set µk := −1/λk.
Then for all choices x1, . . . , xn ∈ X we have, by Lemma 15.3.13,

E
∥∥∥ n∑
k=1

γkλ
1/2
k A1/2R(λk, A)xk

∥∥∥
= E

∥∥∥ n∑
k=1

γkµ
1/2
k A1/2(1 + µkA)−1xk

∥∥∥
6

1

2

∫
R

1

| sin(π( 1
2 − it))|

E
∥∥∥ n∑
k=1

γkµ
it
kA

itxk

∥∥∥ dt

(∗)
6

1

2

∫
R

e(π−(θ−θ′))|t|

| sin(π( 1
2 − it))|

∥∥e−(π−(θ−θ′))|t|Ait
∥∥( sup

16k6n
|µitk |

)
E
∥∥∥ n∑
k=1

γkxk

∥∥∥ dt

(∗∗)
6

1

2

∫
R

e(π−(θ−θ′))|t|

| sin(π( 1
2 − it))|

dt sup
t∈R

∥∥e−θ′|t|Ait∥∥E∥∥∥ n∑
k=1

γkxk

∥∥∥
= CE

∥∥∥ n∑
k=1

γkxk

∥∥∥,
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where in (∗) we used the contraction principle and in (∗∗) the fact that for
| arg(µ)| 6 π − θ and t ∈ R we have∥∥e−(π−(θ−θ′))|t|Ait

∥∥|µit| = ∥∥e−(π−(θ−θ′))|t|e− arg(µ)tAit
∥∥ 6 ∥∥e−θ′|t|Ait∥∥ 6 C ′,

where C ′ := supt∈R ‖e−θ
′|t|Ait‖ is finite since ωBIP(A) < θ′, and where

C :=
C ′

2

∫
R

e(π−(θ−θ′))|t|

| sin(π( 1
2 − it))|

dt.

We have shown that the family{
λ1/2A1/2R(λ,A) : | arg(λ)| > θ

}
is γ-bounded. Taking squares, it follows that the family{

λAR(λ,A)2 : | arg(λ)| > θ
}

is γ-bounded as well. Moreover we see that ω̃γ(A) 6 θ. This being true for all
ωBIP(A) < θ < π, it follows that ω̃γ(A) 6 ωBIP(A). �

15.3.e Connections with γ-sectoriality

We start with a definition.

Definition 15.3.17 (γ-bounded imaginary powers). An operator A is
said to have γ-bounded imaginary powers (briefly, A has γ-BIP) if it has
bounded imaginary powers and the family

{Ait : |t| 6 1}

is γ-bounded.

If A has γ-bounded imaginary powers, the group property AisAit = Ai(s+t)

combined with Proposition 8.1.20 (or rather, the elementary bound in the
discussion preceding it) implies that set

{e−ω|t|Ait : t ∈ R}

is γ-bounded for large enough ω > 0. Thus it makes sense to define the abscissa

ωγ-BIP(A) := inf
{
ω > 0 : {e−ω|t|Ait : t ∈ R} is γ-bounded

}
.

Replacing γ-boundedness by R-boundedness, we may similarly introduce op-
erators A with R-BIP along with their abscissa ωR-BIP(A) Since finite co-
type implies equivalence of Rademacher sums and Gaussian sums (Corollary
7.2.10), an operator A on a Banach space with finite cotype has R-bounded
imaginary powers if and only A has γ-bounded imaginary powers. As the



15.3 Bounded imaginary powers 473

ensuing proofs will make clear, operators with γ-bounded imaginary powers
can be effectively studied using the continuous square functions introduced in
Section 10.4.b. It is for this reason that our results will be stated for operators
with γ-bounded imaginary powers. The analogous results for operators with
R-bounded imaginary powers automatically follow if the underlying Banach
space has finite cotype.

Proposition 15.3.18. If A has γ-bounded imaginary powers, then ωBIP(A) =
ωγ-BIP(A).

Proof. Let ωBIP(A) < ν < θ. For each n ∈ Z the singleton {Ain} is γ-bounded,
with γ-bound γ({Ain} = ‖Ain‖ 6Meν|n|, where M is a constant independent
of n ∈ Z. By Proposition 8.1.20 (with p = 1 and q =∞), the set

{e−θ|n|Ain : n ∈ Z}

is γ-bounded. Combined with the fact that {Ais : s ∈ [−1, 1]} is γ-bounded,
by Proposition 8.1.19(3) we obtain that ωγ-BIP(A) < θ. �

We have seen in Theorem 15.3.12 that bounded imaginary powers imply sec-
toriality with angle ω(A) 6 ωBIP(A). The next theorem provides the analogue
for γ-bounded imaginary powers.

Theorem 15.3.19. If A has γ-bounded imaginary powers with ωγ-BIP < π,
then A is γ-sectorial with ωγ(A) 6 ωγ-BIP(A).

Proof. The proof proceeds in three steps.

Step 1 – In Steps 2 and 3 we will prove that each of the families of operators

Γs := {tsAs(1 + tA)−1 : t > 0}, where 0 < s <
1

2
,

is γ-bounded, uniformly with respect to the parameter s ∈ (0, 1
2 ). In the

present step we show how the theorem follows from this.
For x ∈ D(A) ∩ R(A) we have

lim
s↓0

tsAs(I + tA)−1x = (I + tA)−1x.

Hence by Fatou’s lemma, for all finite sequences x1, . . . , xn ∈ D(A) ∩ R(A)
and t1, . . . , tn > 0 we have

E
∥∥∥ n∑
k=1

γk(I + tkA)−1xk

∥∥∥2

6 lim inf
s↓0

E
∥∥∥ n∑
k=1

γkt
s
kA

s(I + tkA)−1xk

∥∥∥2

6 CE
∥∥∥ n∑
k=1

γkxk

∥∥∥2

,
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where C is any finite upper bound for the γ-bounds of the families Γs, s ∈
(0, 1

2 ). This proves that the set {(I + tA)−1 : t > 0} is γ-bounded.
Applying this reasoning to operators eiθ with 0 < |θ| < π − ωγ-BIP (and

noting that the identity (e±iθA)it = e∓θAit implies that these operators still
have γ-bounded imaginary powers) and using Proposition 8.5.8 to extrapolate
γ-boundedness from the boundary of a sector to the full sector, it follows that
A is γ-sectorial and ωγ(A) 6 ωγ-BIP(A).

Step 2 – We now turn to the proof of the γ-boundedness of the families Γs
uniformly with respect to s ∈ (0, 1

2 ). We claim that it suffices to prove that
for all f ∈ S (R;X) we have∥∥∥t 7→ ∫

R
ks(t− u)Ai(t−u)f(u) du

∥∥∥
γ(R;X)

6 C‖f‖γ(R;X), (15.20)

where the constant C is independent of 0 < s < 1
2 and

ks(t) :=
1

2 sin(π(s− it))
, t ∈ R.

Indeed, suppose that (15.20) has been proved. By Fubini’s theorem and the
second identity of Lemma 15.3.13, for all ξ ∈ R we have∫

R

∫
R
ks(t− u)Ai(t−u)f(u) e−2πitξ du dt

=

∫
R
ks(t)A

ite−2πitξ dt

∫
R
f(u)e−2πiuξ du = e−2πξsAs(1 + e−2πξA)−1f̂(ξ).

Hence by (15.20) and the fact, observed in Example 9.6.5, that the Fourier
transform extends to an isometry on γ(R;X), we obtain

‖ξ 7→ e−2πsξAs(1 + e−2πξA)−1f̂(ξ)‖γ(R;X) 6 C‖f‖γ(R;X) = C‖f̂‖γ(R;X).

Since the Fourier transform maps S (R;X) onto itself and this space is dense
in γ(R;X), this estimate extends to all strongly measurable function g : S →
X representing an element of γ(R;X) by density. Then converse to the γ-
multiplier theorem (Proposition 9.5.6) implies that Γs is γ-bounded, with
γ-bound at most C.

Step 3 – To complete the proof of the theorem it remains to prove the
bound (15.20) with a uniform constant C independent of s ∈ (0, 1

2 ). We start
with the observation that by (15.18) we have

k̂s(ξ) =
e−sξ

1 + e−ξ
,

which implies that k̂s ∈ L∞(R) uniformly in s ∈ (0, 1
2 ).

Fix s ∈ (0, 1
2 ). For n ∈ Z, set In := [2n − 1, 2n + 1) and define, for

ϕ ∈ Cc(R),
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T (n)
s ϕ(u) :=

∫
R
K(n)
s (u, v)ϕ(v) dv, u ∈ R,

where

K(n)
s (u, v) :=

∑
j∈Z

ks(u− v)1Ij (u)1Ij+n(v).

This sum trivially converges pointwise in (t, v), since each such point is con-
tained in at most one rectangle Ij × Ij+n. We wish to show that the opera-

tor T
(n)
s thus defined extends to a bounded operator on L2(R), uniformly in

s ∈ (0, 1
2 ).

For ϕ ∈ Cc(R) we have, by the disjointness of the intervals Ij , monotone
convergence, and a change of variables,

‖T (n)
s ϕ‖22 =

∫
R

∣∣∣∑
j∈Z

1Ij (u)

∫
R
ks(u− v)1Ij+n(v)ϕ(v) dv

∣∣∣2 du

=

∫
R

∑
j∈Z

1Ij (u)
∣∣∣ ∫

R
ks(u− v)1Ij+n(v)ϕ(v) dv

∣∣∣2 du

6
∑
j∈Z

∫
R

∣∣∣∫
R
ks(u− v)1Ij+n(v)ϕ(v) dv

∣∣∣2 du

=
∑
j∈Z
‖k̂s1̂Ij+nϕ‖22 6

∑
j∈Z
‖1̂Ij+nϕ‖22

=
∑
j∈Z

∫
Ij+n

|ϕ(u)|2 du = ‖ϕ‖22.

This shows that T
(n)
s extends to a bounded operator on L2(R). Moreover,

since

|K(n)
s (u, v)| 6 |ks(u− v)|1{|u−v|>2(|n|−1)}

and

|ks(u)| 6 1

2| sinh(πu)|
. e−π|u|, |u| > 1,

by Young’s inequality we have

‖T (n)
s ‖ 6 ‖K(n)

s ‖1 .
∫
{|u|>2(|n|−1)}

e−π|u| du . e−2π|n|, |n| > 2.

By the γ-extension theorem (Theorem 9.6.1), the operators T
(n)
s extend to

bounded operators on γ(R;X) and

‖T (n)
s ‖L (γ(R:X)) 6 C0 e

−2π|n|.
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for some absolute constant C0 > 0.
Define p : R → Z by p(t) := 2j when t ∈ Ij . Then |p(t) − t| 6 1 for all

t ∈ R. Let ωγ-BIP(A) < θ < π and let C1, C2 > 0 be such that

γ{Ais : s ∈ [−1, 1]} 6 C1, γ{Ais : s ∈ R} 6 C2 e
θ|s|.

We may of course relate these constants, but that would only complicate the
estimate below a bit. Fix a Schwartz function f ∈ S (R;X) and an integer

n ∈ Z. If (u, t) belongs to the support of K
(n)
s , then u ∈ Ij and v ∈ Ij+n for

some j ∈ Z, from which it follows that p(u) = p(v) − 2n. Therefore we may
estimate ∥∥∥u 7→ ∫

R
K(n)
s (u, v)Ai(u−v)f(v) dv

∥∥∥
γ(R;X)

=
∥∥∥u 7→ ∫

R
K(n)
s (u, v)Ai(u−p(u)+p(v)−v−2n)f(u) du

∥∥∥
γ(R;X)

6 C1

∥∥∥u 7→ ∫
R
K(n)
s (u, v)Ai(p(v)−v−2n)f(v) du

∥∥∥
γ(R;X)

6 C0C1 e
−2π|n|∥∥u 7→ Ai(p(u)−u−2n)f(u)

∥∥
γ(R;X)

6 C0C
2
1C2 e

−2(π−θ)|n|‖f‖γ(R;X)

using the γ-multiplier theorem (Theorem 9.5.1) in the second and fourth step.
Since

ks(u− v) =
∑
n∈Z

K(n)
s (u, v), u, v ∈ R,

the bound (15.20) now follows from the triangle inequality. �

15.3.f Connections with boundedness of the H∞-calculus

It has already been observed that standard sectorial operators with a bounded
H∞-calculus have bounded imaginary powers and ωBIP(A) 6 ωH∞(A), the
angle of the H∞-calculus of A (see Definition 10.2.10). The following theorem
gives a more precise version of this result.

Theorem 15.3.20 (Cowling–Doust–McIntosh–Yagi). If A is a standard
sectorial operator with a bounded H∞(Σσ)-calculus for some ω(A) < σ < π,
then A has bounded imaginary powers and

ωBIP(A) = ωH∞(A).

Moreover,
‖Ait‖ 6M∞σ,Aeσ|t|, t ∈ R,

where M∞σ,A is the boundedness constant of the H∞(Σσ)-calculus of A.



15.3 Bounded imaginary powers 477

Proof. It remains to prove the inequality ωH∞(A) 6 ωBIP(A). In view of
the Clément–Prüss theorem (Theorem 15.3.12), which asserts that ω(A) 6
ωBIP(A), it suffices to prove that if ω(A) < µ < ν 6 σ with ‖Ait‖ 6 Meµ|t|

for all t ∈ R, then A has a bounded H∞(Σν)-calculus.
To this end let f ∈ H∞(Σν). We will show that

f(z) =
∑
k∈Z

zikfk(z), z ∈ Σν , (15.21)

for suitable functions fk ∈ H∞(Σσ) satisfying∑
k∈Z

eµ|k|‖fk‖H∞(Σσ) 6 C‖f‖H∞(Σν) (15.22)

with constant C > 0 independent of f . Once this has been shown, we may set

f(A) :=
∑
k∈Z

Aikfk(A),

with convergence in the norm of L (X); here, the operators fk(A) are defined
through the H∞(Σσ)-calculus of A. The bound (15.22) implies that

‖f(A)‖ 6 CM‖f‖∞. (15.23)

To complete the proof that A admits a bounded H∞(Σν)-calculus, we will
show that for f ∈ H1(Σν) ∩H∞(Σν) the operator f(A) thus defined agrees
with the Dunford calculus of A.

Step 1 – In this step we prove everything up to and including (15.23).
Using the change of variables z = ew we transform sectors to horizontal strips
and must show that every g ∈ H∞(Sν) can be expressed as

g(w) =
∑
k∈Z

eikwgk(w), w ∈ Sν ,

where Sθ = {z ∈ C : |=(z)| < θ} and the functions gk ∈ H∞(Sσ) satisfy∑
k∈Z

eµ|k|‖gk‖H∞(Sσ) 6 C‖g‖H∞(Sν).

Let φ ∈ Cc(R) satisfy

(i) 0 6 φ(x) ∈ 1(−1,1)(ξ) for all ξ ∈ R,
(ii)

∑
k∈Z φ(ξ − k) = 1 for all ξ ∈ R,

and set

gk(w) :=

∫
R
φ̂(w − t)g(t)e−ikt dt, w ∈ Sσ.

By the Paley–Wiener theorem, φ̂ is an entire function with sufficient decay
to ensure the convergence of the integral for every w ∈ C. Fixing w ∈ Sσ
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and k ∈ Z, and sing Cauchy’s theorem to shift the path of integration, for
ε ∈ {−1, 1} we may write

gk(w) :=

∫
R
φ̂(w − t− iεν)g(t+ iεν)e−ik(t+iεν) dt, w ∈ Sσ.

Taking ε = − sgn(k) gives the bound

‖gk‖∞ 6 Cσ,νe−ν|k|‖g‖∞, k ∈ Z,

with

Cσ,ν = sup
|y|<σ+ν

∫
R
|φ̂(x+ iy)| dx <∞.

Setting hk(ξ) := φ(ξ − k)ĝ(ξ), a simple calculation gives

ĥk(w) =

∫
R
φ̂(w − t)g(t)e−ik(w−t) dt = eikwgk(w), w ∈ Sσ.

Since
∑
k∈Z hk(ξ) = ĝ(ξ) for all ξ ∈ R, the result follows by taking inverse

Fourier transforms.

Step 2 – It remains to show that for f ∈ H1(Σν) ∩H∞(Σν) the operator
f(A) defined by (15.21) agrees with the Dunford calculus. For this it suffices
to observe that for such functions f , the functions gk constructed in Step 1
belong to H1(Sσ) ∩H∞(Sσ) and

‖gk‖H1(Sσ) 6 Cσ,νe
−ν|k|‖g‖H1(Sν), k ∈ Z,

with Cσ,ν as before. It follows that the sum defining f(A) also converges in
H1(Σν). The required consistency now follows by interchanging summation
and integration, along with the fact that (z 7→ zikfk(z))(A) = Aikfk(A) in the
extended Dunford calculus, hence a posteriori also in the Dunford calculus. �

With Theorem 15.3.19 at our disposal we will now investigate the connection
between the γ-boundedness of the imaginary powers Ait and the boundedness
of the H∞-calculus of A. In preparation of the next result, it is useful to point
out that in some of these results in Chapter 10 the finite cotype assumption
can be dropped if one defines discrete square functions in terms of Gaussian
sums instead of using Rademacher sums. To be explicit, assuming Definition
10.4.1 to have been modified in this way, the finite cotype assumption can be
dropped in the following results:

• Proposition 10.4.15(2). Indeed, the proof uses the finite cotype assumption
only to pass from Gaussian sums to the Rademacher sums used in the
definition of discrete square functions.

• Theorem 10.4.16(1). Indeed, the finite cotype assumption was only used
to apply Proposition 10.4.15(2).
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• Proposition 10.4.20. Indeed, the finite cotype assumption was only used
to apply Proposition 10.4.15(2).

The next theorem establishes the connection between γ-bounded imaginary
powers and boundedness of the H∞-calculus.

Theorem 15.3.21 (Bounded H∞-calculus ⇔ γ-BIP). Let A be stan-
dard sectorial on a Banach space X.

(1) If A has γ-bounded imaginary powers with ωγ-BIP(A) < π, then A has a
bounded H∞-calculus and

ωH∞(A) 6 ωγ-BIP(A).

(2) If A has a bounded H∞-calculus and X has Pisier’s contraction principle,
then A has γ-bounded imaginary powers and

ωγ-BIP(A) 6 ωH∞(A).

Since Pisier’s contraction principle implies finite cotype (Corollary 7.5.13),
a sectorial operator A acting in a Banach space with this property has γ-
bounded imaginary powers if and only A has R-bounded imaginary powers,
and in that case

ωγ-BIP(A) = ωR-BIP(A).

Before turning to the proof of the theorem, we isolate a lemma which
is essentially contained in the proof of Theorem 10.4.16. For the reader’s
convenience we repeat the argument here.

Lemma 15.3.22. Let A be standard sectorial, let ω(A) < σ < π, and suppose
that there is a constant C > 0 such that for all ψ ∈ H1(Σσ) and x∗ ∈
D(A∗) ∩ R(A∗) we have∥∥t 7→ ψ(tA∗)x∗

∥∥
γ(R+,

dt
t ;X∗)

6 C‖ψ‖H1(Σσ)‖x∗‖.

Then for all non-zero φ ∈ H1(Σσ) there is a constant cφ > 0 such that for all
x ∈ D(A) ∩ R(A) we have

‖x‖ 6 2CcφMσ,A

∥∥t 7→ φ(tA)x
∥∥
γ(R+,

dt
t ;X)

.

Note that the assumptions on x, x∗, φ, and ψ imply that t 7→ φ(tA)x ∈
γ(R+,

dt
t ;X) and t 7→ ψ(tA∗)x∗ ∈ γ(R+,

dt
t ;X∗) by Lemma 10.4.14 (which

only assumes sectoriality and can therefore be applied to both A and A∗).

Proof. Fix a non-zero φ ∈ H1(Σσ) and fix an arbitrary ψ ∈ H1(Σσ) such that∫∞
0
φ(t)ψ(t) dt

t = 1. For all x ∈ D(A) ∩ R(A) and x∗ ∈ D(A∗) ∩ R(A∗), from
the reproducing formula of Proposition 10.2.5, the trace duality inequality of
Theorem 9.2.14, and our assumption we obtain
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|〈x, x∗〉| =
∣∣∣ ∫ ∞

0

〈φ(tA)ψ(tA)x, x∗〉 dt

t

∣∣∣
6
∥∥t 7→ φ(tA)x

∥∥
γ(R+,

dt
t ;X)

∥∥t 7→ ψ(tA)∗x∗
∥∥
γ(R+,

dt
t ;X∗)

6 C‖ψ‖H1(Σσ)

∥∥t 7→ φ(tA)x
∥∥
γ(R+,

dt
t ;X)
‖x∗‖,

where we used that ψ(tA)∗ = ψ(tA∗). Taking the supremum over all x∗ ∈
D(A∗)∩R(A∗) of norm 6 1, the result now follows from Lemma 10.2.19, with
cφ = inf{‖ψ‖H1(Σσ) :

∫∞
0
φ(t)ψ(t) dt

t = 1}. �

Proof of Theorem 15.3.21. (1): Fix ωγ-BIP(A) < σ < π. Then the set
{e−σ|t|Ait : t ∈ R} is γ-bounded.

Step 1 – In this step we prove that for all ϑ > σ and x ∈ X the function
t 7→ e−ϑ|t|Aitx belongs to γ(R;X).

By the result of Example 9.4.12 (taking H = C), the function t 7→
e−(ϑ−σ)|t| ⊗ x belongs to γ(R;X) and∥∥t 7→ e−(ϑ−σ)|t| ⊗ x

∥∥
γ(R;X)

= ‖t 7→ e−(ϑ−σ)|t|‖L2(R)‖x‖ h
1

(ϑ− σ)1/2
‖x‖.

Hence by the γ-multiplier theorem (Theorem 9.5.1), t 7→ e−ϑ|t|Aitx belongs
to γ∞(R;X) and∥∥t 7→ e−ϑ|t|Aitx

∥∥
γ∞(R;X)

.
1

(ϑ− σ)1/2
γ({e−σ|t|Ait : t ∈ R}). (15.24)

We claim that the functions t 7→ e−ϑ|t|Aitx actually belong to the closed
subspace γ(R;X) of γ∞(R;X). To prove this, let B be the generator of the C0-
group (Ait)t∈R. For all x ∈ D(B) and all 0 < a < b <∞ and −∞ < a < b < 0
the function t 7→ e−ϑ|t|Aitx belongs to C1([a, b];X), and hence to γ(a, b;X)
by Proposition 9.7.1. Since D(B) is dense in X, the claim now follows from
Corollary 9.5.2.

Step 2 – The formula

a−
1
2 +it =

cosh(πt)

π

∫ ∞
0

u−
1
2 +it(u+ a)−1 du, a > 0, t ∈ R, (15.25)

may be proved by a contour integration argument. Alternatively, it can be
obtained from a standard identity for the Mellin transform of the function
(1 + t)−1 and some substitutions.

Set θ := π − ϑ. By analytic continuation, the identity (15.25) extends to
complex a ∈ C \ (−∞, 0]. For z ∈ Σπ−θ we may substitute a = e−iθz to
obtain, after a bit of algebra,

eθtzit =
cosh(πt)

π
e

1
2 iθ

∫ ∞
0

u−
1
2 +itz1/2(eiθu+ z)−1 du.
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Since ω(A) < π − θ (this is because ω(A) 6 ωBIP(A) = ωγ-BIP(A) by the
Clément–Prüss theorem and Proposition 15.3.18, and ωγ-BIP(A) < ϑ = π − θ
by assumption), we can apply Lemma 10.2.17 (with p = 1) to this identity
and obtain, for all x ∈ X,

eθtAitx =
cosh(πt)

π

∫ ∞
0

e
1
2 iθu−

1
2 +itA1/2(eiθu+A)−1x du

=
cosh(πt)

π

∫ ∞
−∞

eitve
1
2 v+ 1

2 iθA1/2(eiθev +A)−1x dv,

(15.26)

where the second identity results from the substitution u = ev.
By Step 1, the function t 7→ e−ϑ|t|Aitx belongs to γ(R;X). Since cosh(πt) ∼

eπt and π − θ = ϑ, this implies that the function

t 7→ e−θ|t|Aitx

cosh(πt)

belongs to γ(R;X).
By Theorem 9.6.1, the γ-extension of Fourier–Plancherel transform is an

isometry from γ(R;X) onto itself. Dividing both sides of (15.26) by cosh(πt)
and applying this isometry, it follows that the function

v 7→ eπv+ 1
2 iθA1/2(eiθe2πv +A)−1x

belongs to γ(R;X) and

∥∥v 7→ eπv+ 1
2 iθA1/2(eiθe2πv +A)−1x

∥∥
γ(R;X)

h
∥∥∥t 7→ eθt

cosh(πt)
Aitx

∥∥∥
γ(R;X)

h
∥∥t 7→ e−ϑ|t|Aitx

∥∥
γ(R;X)

.A
1

ϑ− σ
‖x‖,

using (15.24) in the last step. Substituting back ev = u and leaving out terms
of modulus one since they do not affect the γ-norms,∥∥u 7→ u1/2A1/2(eiθu+A)−1x

∥∥
γ(R, duu ;X)

.A
1

ϑ− σ
‖x‖.

The term in the norm on the left-hand side is of the form φ(u−1A) with φ(z) =
z1/2(eiθ + z)−1. This function belongs to H1(Σϑ′) for all 0 < ϑ′ < ϑ = π − θ,
and the estimate can be interpreted as giving the square function estimate∥∥t 7→ φ(tA)x

∥∥
γ(R+,

dt
t ;X)

. ‖x‖, x ∈ X.

Note that up to this point we only have used that A is sectorial and has
bounded imaginary powers (the γ-sectoriality assumption will only be used
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towards the end of the proof). Because of this, we can apply the same reason-
ing to the part A� of A∗ in X� := D(A∗). Indeed, this operator is sectorial and
has bounded imaginary powers on X� and (A�)itx∗ = (Ait)∗x∗ for x∗ ∈ X�;
we leave the easy verification as an exercise to the reader. Together with the
identity φ(tA)∗x∗ = φ(tA�)x∗, which is equally easy to verify, this gives the
dual square function estimate∥∥t 7→ φ(tA)∗x∗

∥∥
γ(R+,

dt
t ;X∗)

. ‖x∗‖, x∗ ∈ X� = D(A∗).

Hence by Lemma 15.3.22,

‖x‖ .
∥∥t 7→ φ(tA)x

∥∥
γ(R+,

dt
t ;X)

, x ∈ D(A) ∩ R(A),

with an implied constant independent of x. We may now apply Theorem
10.4.19 (noting that thanks to Theorem 15.3.19 we have ωγ(A) 6 ωγ-BIP(A))
to conclude that A has a bounded H∞(Σϑ′)-calculus for all ωγ-BIP(A) < ϑ′ <
θ. This completes the proof.

(2): Let A have a bounded H∞(Σσ)-calculus for some ω(A) < σ < π,
and let ϑ > σ. Recalling the bound |zit| 6 e|t|| arg(z)|, the R-boundedness (and
hence the γ-boundedness, as the Pisier contraction property implies finite
cotype) of the set {e−θ|t|Ait} follows from Theorem 10.3.4(3). This shows
that A has γ-bounded imaginary powers and ωγ-BIP(A) 6 ϑ. �

15.3.g The Hilbert space case

The last main result of this chapter is the following characterisation of sectorial
operators on Hilbert spaces with bounded imaginary powers.

Theorem 15.3.23. For any standard sectorial operator A on a Hilbert space
H the following assertions are equivalent:

(1) A has a bounded H∞-calculus;
(2) A has bounded imaginary powers.

In this situation we have

ωH∞(A) = ωBIP(A).

If in addition we have 0 ∈ %(A), then the above conditions are equivalent to

(3) D(A1/2) = (H,D(A)) 1
2 ,2

with equivalent norms.

In view of the equivalence of uniform boundedness and γ-boundedness for
families of Hilbert space operators, the equivalence of (1) and (2) is a special
case of the results in the preceding subsection. A version of the equivalence of
these conditions with (3) for general Banach spaces will be discussed in the
Notes at the end of the chapter.
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Proof. It remains to prove the implications (2)⇒(3)⇒(1) under the additional
assumption 0 ∈ %(A). As a preliminary observation we point out that this
assumption implies that we have equivalences of norms

‖x‖D(A1/2) h ‖A1/2x‖ (15.27)

and

‖x‖(H,D(A)) 1
2
,2
h
∥∥λ 7→ λ1/2A(λ+A)−1x

∥∥
L2(R+,

dt
t ;H)

. (15.28)

Indeed, (15.27) follows by writing x = A−1/2A1/2x and using Corollary 15.2.10
to get

‖A1/2x‖ 6 ‖x‖+ ‖A1/2x‖ 6 (‖A−1/2‖+ 1)‖A1/2x‖.
The equivalence (15.28) follows from Proposition K.4.1.

(2)⇒(3): The equality D(A1/2) = (H,D(A)) 1
2 ,2

is an immediate conse-

quence of Peetre’s theorem (Theorem C.4.1), which in the present situation
implies that for each θ ∈ (0, 1) we have

(H,D(A))θ,2 = [H,D(A)]θ with equivalent norms,

and Theorem 15.3.9, which identifies [H,D(A)]1/2 as the fractional domain

space D(A1/2) up to an equivalent norm.

(3)⇒(1): On H define

|||x||| :=
∥∥λ 7→ λ1/2A1/2(λ+A)−1x

∥∥
L2(R+,

dt
t ;H)

.

In view of (15.27) and (15.28) and the assumption in (3), we have the norm
equivalences

|||x||| h ‖A−1/2x‖(H,D(A)) 1
2
,2
h ‖A−1/2x‖D(A1/2) h ‖x‖.

Consequently, ||| · ||| defines an equivalent Hilbertian norm on H. Recalling that
γ(L2(R+

dt
t ), H) = L2(R+,

dt
t ;H) isometrically, the implication now follows

from Theorem 10.4.21. �

15.3.h Examples

It has already been noted that every standard sectorial operator A with a
bounded H∞(Σσ)-calculus for some 0 < σ < π has bounded imaginary pow-
ers. Here we wish to highlight two examples:

Example 15.3.24 (Laplacian). Let 1 < p <∞ and let X be a Banach space. It
was already noted in the discussion preceding Theorem 15.3.11 that if X is a
UMD space, then the negative of the Laplace operator ∆ on Lp(Rd;X) with
domain D(∆) = H2,p(Rd;X) has bounded imaginary powers. In the converse
direction, it was shown in Section 10.5 that if −∆ has bounded imaginary
powers on Lp(Rd;X), then X is a UMD space.
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Example 15.3.25 (First derivative). Let 1 < p < ∞ and let X be a UMD
space.

(1) The operator A = d/dx on Lp(R;X) with domain D(A) = W 1,p(R;X)
has bounded imaginary powers with angle 1

2π.
(2) The operator A = d/dt on Lp(R+;X) with domain D(A) = {f ∈

W 1,p(R+;X) : f(0) = 0} has bounded imaginary powers with angle 1
2π.

(3) The operator A = d/dt on Lp(0, T ;X) with domain D(A) = {f ∈
W 1,p(0, T ;X) : f(0) = 0} has bounded imaginary powers with angle 1

2π
and, more precisely, we have the estimate

‖Ais‖ .T (1 + s2)e
1
2π|s|, s ∈ R.

For the proofs of (1), (2), and the first part of (3) one may observe that in
each of these three cases A is standard sectorial.

In the case (1), −A generates the translation group on Lp(R;X), and in
the other two cases −A is the generator of the C0-semigroup on Lp(I;X)
(with I = R+ resp. (0, T )) given by

S(t)f(s) =

{
f(s− t), s ∈ I, s > t,

0, otherwise.

All three semigroups are contractive and, in the scalar-valued case, positive. It
follows that we can apply the Hieber–Prüss theorem (Theorem 10.7.12), which
gives that each of these operators has a bounded H∞-calculus of angle 1

2π.
It then follows from Theorem 15.3.20 that each of the operators has bounded
imaginary powers.

15.4 Strip type operators

It has already been noted in Volume II that the theories of Hardy spaces over
a sector and a strip large rather similar. This similarity can be lifted to the
operator level by introducing the ‘strip’ version of sectorial operators. Such
operator admit again a Dunford calculus, a primary calculus, and an extended
calculus, and one may ask about the boundedness of their H∞-calculus. Since
this topic is somewhat peripheral to the mainstream of these volumes, we will
not embark on a systematic exploration of strip type operator, but rather
concentrate on the relationship between sectorial operators and strip type
operators. We have already seen several examples, both in Volume II and
the present volume, where the relationship between sectorial operators and
bisectorial operators (the mediating function being z 7→ z2) can be exploited
in the study of sectorial operators. Likewise the connection with strip type
operators (the mediating function being z 7→ ez) can sometimes be exploited.
At the end of this section we demonstrate this by giving a proof of the Dore–
Venni theorem by using the properties of strip type operators.
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15.4.a Nollau’s theorem

For ϑ > 0 let
Sϑ := {z ∈ C : |=z| < ϑ}

be the strip of height ϑ. From Appendix H we recall the definition of the
Hardy space Hp(Sϑ), 1 6 p 6 ∞, as the Banach space of all holomorphic
functions f : Sϑ → C for which the norm

‖f‖Hp(Sϑ) := sup
|y|<ϑ

‖t 7→ f(t+ iy)‖Lp(R)

is finite.

Definition 15.4.1. A linear operator A acting in a Banach space X is said
to be of strip type ω > 0 if σ(A) ⊆ Sω and

sup
z 6∈Sω

(|=z| − ω)‖R(z,A)‖ <∞.

It is said to be of standard strip type ω > 0 if it is strip type ω > 0 and
D(A) ∩ R(A) is dense in X.

The operator A is said to be of (standard) strip type if it is of (standard) strip
type ω for some ω > 0. The number

ωS(A) := inf{ω > 0 : A is of strip type ω}

is called the height of A.

Example 15.4.2. By the easy part of the Hille–Yosida theorem, if iA is the
generator of a C0-group (U(t))t∈R satisfying ‖U(t)‖ 6 Meω|t| for all t ∈ R
and certain M > 1 and ω > 0, then A is of strip type ω.

Theorem 15.4.3 (Nollau). If A is standard sectorial, then log(A) is of
standard strip type with ωS(A) 6 ω(A), and the following Poisson type formula
holds:

R(z, log(A)) = −
∫ ∞

0

1

(z − log t)2 + π2
(t+A)−1 dt, |=z| > π.

Proof. We proceed in two steps.

Step 1 – First we assume in addition that A is bounded and invertible. Let
ω(A) < ν′ < ν < σ < π and fix λ ∈ C with |=λ| > π and µ ∈ Σν \ Σν′ . The
function z 7→ 1/(λ − log z) is holomorphic and bounded on Σσ. Let x ∈ X.
Then by Proposition 15.1.19,

1

λ− log
(A)x
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=
1

λ− log µ
x+

1

2πi

∫
∂Σν

1

λ− log z

(
R(z,A)− 1

z − µ

)
x dz

=
1

λ− log µ
x− 1

2πi

∫ ∞
0

eiν

λ− iν − log t

(
R(teiν , A)− 1

teiν − µ

)
x dt

+
1

2πi

∫ ∞
0

e−iν

λ+ iν − log t

(
R(e−iν , A)− 1

te−iν − µ

)
x dt.

By dominated convergence we may pass to the limit ν → π and obtain

1

λ− log
(A)x

=
1

λ− log µ
x− 1

2πi

∫ ∞
0

1

λ− iπ − log t

(
(t+A)−1 − 1

t+ µ

)
x dt

+
1

2πi

∫ ∞
0

1

λ+ iπ − log t

(
(t+A)−1 − 1

t+ µ

)
x dt

=
1

λ− log µ
x−

∫ ∞
0

1

(λ− log t)2 + π2

(
(t+A)−1 − 1

t+ µ

)
x dt

= −
∫ ∞

0

1

(λ− log t)2 + π2
(t+A)−1x dt,

where we used that∫ ∞
0

1

(λ− log t)2 + π2

1

t+ µ
dt = − lim

ν→π

1

2πi

∫
∂Σν

1

λ− log z

1

z − µ
dz

= − 1

λ− log µ
.

By the multiplicativity of the extended calculus, 1
λ−log (A) is inverse to λ −

log(A). This gives λ ∈ %(log(A)) as well as the identity for the resolvent.
The resolvent estimate follows from the following estimates, where we write
z = x+ iy and set M := supt>0 ‖t(t+A)−1‖:

‖R(z, log(A))‖ 6M
∫ ∞

0

1

|(z − log t)2 + π2|
dt

t

6M
∫ ∞
−∞

1

|(z − s)2 + π2|
ds

= M

∫ ∞
−∞

1

(((x− s)2 − y2 + π2)2 + (2(x− s)y)2)1/2
ds

= M

∫ ∞
−∞

1

((r2 − y2 + π2)2 + 4r2y2)1/2
dr

6M
∫ ∞
−∞

1

r2 + y2 − π2
dr

=
Mπ

(y2 − π2)1/2
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6
Mπ

|y| − π
,

where we used the elementary inequalities

(r2 − y2 + π2)2 + 4r2y2 = r4 + y4 + π4 + 2r2y2 + 2π2r2 − 2π2y2

> r4 + y4 + π4 + 2r2y2 − 2π2r2 − 2π2y2

= (r2 + y2 − π2)2

and (keeping in mind that |y| > π, so 2|y| − π > π)

y2 − π2 > y2 − π(2|y| − π) = (|y| − π)2.

This proves the theorem under the additional assumption that A is bounded
and has bounded inverse.

Step 2 – To deduce the general case, for ε > 0 we consider the operators

Aε = (A+ ε)(I + εA)−1.

For λ > 0 we have

λ+Aε = λ(I + εA)(I + εA)−1 + (A+ ε)(I + εA)−1

= (λ+ ε+ (λε+ 1)A)(I + εA)−1,

and therefore λ+Aε is invertible. For λ > 0 we estimate

‖(λ+Aε)
−1‖ = ‖(I + εA)(λ+ ε+ (λε+ 1)A)−1‖

=
ε

λε+ 1

∥∥∥(
1

ε
+A)(

λ+ ε

λε+ 1
+A)−1

∥∥∥
=

ε

λε+ 1

∥∥∥I + (
1

ε
− λ+ ε

λε+ 1
)(
λ+ ε

λε+ 1
+A)−1

∥∥∥
6

1

λ
+

ε

λε+ 1

(1

ε
− λ+ ε

λε+ 1

)λε+ 1

λ+ ε
MA

=
1

λ
+

1− ε2

(λ+ ε)(λε+ 1)
MA

6
1 +MA

λ
,

where MA = supλ>0 ‖λ(λ+A)−1. It follows that

sup
ε>0

(
sup
λ>0
‖λ(λ+Aε)

−1‖
)
6 1 +MA,

and therefore the operators Aε are uniformly sectorial. In particular the results
of Step 1 apply to Aε, with bounded that are uniform in ε > 0.

Step 3 – Take 0 < ν < π close enough to π so that ∂Σδ is contained in
the resolvent set of each Aε. Noting that R(z,Aε)x→ R(z,A)x uniformly on
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∂Σδ (this follows from uniform sectoriality and similar estimates as above),
we may pass to the limit ε ↓ 0 and obtain

1

λ− log
(A)x =

1

λ− log µ
x+

1

2πi

∫
∂Σν

1

λ− log z

(
R(z,A)− 1

z − µ

)
x dz

= lim
ε↓0

1

λ− log µ
x+

1

2πi

∫
∂Σν

1

λ− log z

(
R(z,Aε)−

1

z − µ

)
x dz

= lim
ε↓0
−
∫ ∞

0

1

(λ− log t)2 + π2
(t+Aε)

−1x dt

= −
∫ ∞

0

1

(λ− log t)2 + π2
(t+A)−1x dt.

Next we show that λ ∈ %(log(A)) and 1
λ−log (A) is a two-sided inverse for

λ−log(A). For x ∈ D(A2)∩R(A2), say x = ζ2(A)y, by the general properties of
the extended Dunford calculus we have 1

λ−log (A)x ∈ D(A)∩R(A) ⊆ D(log(A))
and

(λ− log(A))
1

λ− log
(A)x = ζ(A)(λ− log(A))

ζ

λ− log
(A)y

= (ζ(λ− log))(A)
ζ

λ− log
(A)y

=
(
ζ(λ− log)

ζ

λ− log

)
(A)y

= ζ2(A)y = x

and similarly 1
λ−log (A)(λ − log(A))x = x. By density and closedness, these

identities extend to general x ∈ X and x ∈ D(log(A)), respectively.
Finally, the strip type estimate for A follows from the corresponding esti-

mate for Aε proved above, by letting ε ↓ 0 and using dominated convergence
once more. �

One may set up a Dunford calculus and extended Dunford calculus for strip
type operators in much the same way as we did for sectorial operators as
follows. For an operator A of strip type and f ∈ H1(Sσ), where σ > ωS(A),
the Dunford integral

f(A)x :=
1

2πi

∫
∂Sν

f(z)R(z,A)x dx,

defines a bounded operator f(A) on X. The defining integral converges abso-
lutely and by Cauchy’s theorem it is independent of the choice of ν. Moreover,

‖f(A)‖ 6 lim sup
ν↓ωS(A)

1

2π

C

ν − ω

∫
|=z|=ν

|f(z)| |dz| 6 1

π

C

σ − ωS(A)
‖f‖H1(Sσ).

The elementary properties of the extended Dunford calculus extend to the
strip case.
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15.4.b Monniaux’s theorem

We have seen (Proposition 15.3.5) that if an operator B in a Banach space
X has bounded imaginary powers, then the bounded operators Bit form a
C0-group on X. In this subsection we will show that if X is a UMD space,
then conversely every C0-group on X of growth type less than π with injective
generator is of the form U(t) = Bit for some operator B in X with bounded
imaginary powers:

Theorem 15.4.4 (Monniaux). Let (U(t))t∈R be a C0-group on a UMD
space X satisfying ‖U(t)‖ 6 Meω|t| for all t ∈ R and some M > 1 and
0 6 ω < π. Assume furthermore that its generator iA is injective. Then there
exists an operator B in X with bounded imaginary powers, given by

Bit = U(t), t ∈ R.

Moreover, we have A = log(B) with equal domains.

Intuitively, one has B = eA; the identity Bit = U(t) then corresponds to the
intuition that (eA)it = eitA.

The proof of the theorem relies on several ingredients. The first is the
following lemma.

Lemma 15.4.5. Let (U(t))t∈R be a C0-group on a UMD space X. If, for some
M > 1 and ω ∈ R, we have ‖U(t)‖ 6Meω|t| for all t ∈ R, then for all x ∈ X
the principal value integral

p.v.

∫ 1

−1

U(t)x
dt

t

converges in X and has norm∥∥∥p.v.

∫ 1

−1

U(t)x
dt

t

∥∥∥ 6 6C2~2,X‖x‖,

where ~2,X := ‖H‖L (L2(R;X)), and C := sup|t|62 ‖U(t)‖.

Proof. All we need to do is stripping the Rademacher sums from the esti-
mates in the last part of the proof of Theorem 15.3.12(2). For the reader’s
convenience we include the proof that results from this.

Fix 0 < δ < 1, s ∈ [− 1
2 ,

1
2 ], and x ∈ X. Then∫

δ<|t|<1

U(t)x
dt

t
= U(s)

∫
δ<|t|<1

U(t− s)x ds

s

= U(s)

∫
|t|>δ

ϕx(s− t) dt

t

−
∫ 1+s

1

U(t)x
dt

t
+

∫ −1+s

−1

U(t)x
dt

t
,
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where ϕx(τ) = 1(−1,1)(τ)U(−τ)x. Integrating over [− 1
2 ,

1
2 ], we obtain∫

δ<|t|<1

U(t)x
dt

t
=

∫ 1
2

− 1
2

U(s)

∫
|t|>δ

ϕx(s− t) dt

t
ds

−
∫ 1

2

− 1
2

∫ 1+s

1

U(t)x
dt

t
ds+

∫ 1
2

− 1
2

∫ −1+s

−1

U(t)x
dt

t
ds.

Since X is UMD and φx ∈ L2(R;X), the limit

lim
δ↓0

∫
|t|>δ

ϕx(· − t) dt

t
= lim

δ↓0
R→∞

∫
δ<|t|<R

ϕx(· − t) dt

t

exists in L2(R;X) by Theorem 5.1.1 and equals πHφx, where H denotes the
Hilbert transform. As a result we obtain

p.v.

∫ 1

−1

U(t)x
dt

t
= lim

δ↓0

∫
δ<|t|<1

U(t)x
dt

t

= π

∫ 1
2

− 1
2

U(s)Hϕx(s) ds

−
∫ 1

2

− 1
2

∫ 1+s

1

U(t)x
dt

t
ds+

∫ 1
2

− 1
2

∫ −1+s

−1

U(t)x
dt

t
ds

=: I + II + III.

With constants C := sup|t|62 ‖U(t)‖ and ~2,X := ‖H‖L (L2(R;X)), we have

‖I‖ 6 πC
(∫ 1

2

− 1
2

‖Hϕx(s)‖2 ds
) 1

2

6 πC~2,X‖ϕx‖L2(R;X) 6
√

2πC2~2,X‖x‖.

The other two terms are elementary with

‖II‖ 6
∫ 1

2

− 1
2

C
∣∣∣ ∫ 1+s

1

dt

t

∣∣∣‖x‖ ds 6 C log 2‖x‖,

and III can bounded in exactly the same way. Note that both C > ‖U(0)‖ = 1
and ~2,X > 1, and

√
2π + 2 log 2 < 6. �

We will use this lemma for the second ingredient for the proof of Theorem
15.4.4, a primary calculus for strip type operators. We work under the as-
sumptions of Theorem 15.4.4 and let ω < σ < π. For functions

g ∈ L1
ω(R) =

{
g ∈ L1

loc(R) : t 7→ eω|t|g(t) ∈ L1(R)
}

we define the bounded operator ĝ(A) := Φg(A) by the Phillips calculus (see
Section 10.7.a):



15.4 Strip type operators 491

ĝ(A)x :=

∫ ∞
0

g(t)U(t)x dt, x ∈ X.

Obviously,
‖ĝ(A)‖L (X) 6M‖g‖L1

ω(R),

where ‖g‖L1
ω(R) := ‖t 7→ eω|t|g(t)‖L1(R) and M is in Theorem 15.4.4. The

following lemma enables us to enrich this calculus with certain bounded func-
tions in H∞(Sσ) which have limits for <z → ±∞.

Lemma 15.4.6. The Fourier transform of the distribution

h(t) := p. v.
1

t
1(−1,1)(t)

(
〈h, φ〉 := lim

ε↓0

∫
ε<|t|<1

φ(t)
dt

t
∀φ ∈ S (R)

)
,

equals

ĥ(ξ) =

∫ 1

−1

e−2πitξ dt

t
= 2

∫ 1

0

sin(2πtξ)
dt

t

and its analytic continuation to Sσ satisfies

lim
|=z|<σ
<z→∞

ĥ(z) = ±π.

Proof. The first assertion follows by elementary computation and the second
from the standard improper integral∫ ∞

0

sin t
dt

t
=
π

2

and a change of variables. �

For small ε > 0 let hε(t) := t−11(−1,−ε]∪[ε,1)(t). Applying the Phillips calculus,
we obtain

ĥε(A)x =

∫ 1

−1

hε(t)U(t)x dt

and therefore the principal value integral

ĥ(A)x := p.v.

∫ π

−π
U(t)x

dt

t

exists and satisfies
‖ĥ(A)x‖ 6 6C2~2,X‖x‖

with constants as in Lemma 15.4.5.
Now we are in a position to define our primary calculus:
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Definition 15.4.7 (Primary calculus). Let A be a strip type operator and
let ωS(A) < ω < σ. For functions f : Sσ → C of the form

f = ĝ + aĥ+ b

with a, b ∈ C, g ∈ L1
ω(R), and h as above, we set

f(A) := ĝ(A) + aĥ(A) + bI.

The condition on f is satisfied if f ′ is bounded and there exists an α > 1 such
that

f ′(z) = O(|z|α) as |<z| → ∞. (15.29)

The primary calculus enjoys similar properties as the one for sectorial
operators; in particular it is multiplicative and consistent with the Dunford
calculus. The proof is elementary but a bit tedious and it is therefore left to
the reader.

For every r ∈ R the primary calculus can be applied to A + r in place of
A, noting that i(A+ r) generates the C0-group (eirtU(t))t∈R. It is immediate
from the above constructions that the estimates are uniform with respect to
r, i.e., for all f : Sσ → C of the above form we have

sup
r∈R
‖f(A+ r)‖ <∞. (15.30)

We will now exploit the fact that, for 0 6 |ω| < σ < π, the exponential
function z 7→ ez maps the line =z = ω bijectively onto the ray arg(z) = ω.
Thus, it maps the strip Sσ bijectively onto the sector Σσ. From this, we infer
that if λ ∈ {Σσ, then the function

rλ(z) :=
1

λ− ez
(15.31)

is bounded and holomorphic on Sσ. What is more, this function is of the form
discussed above and therefore rλ(A) is well defined in the primary calculus
(as its derivative satisfies (15.29)).

Remark 15.4.8. In hindsight, one could have introduced the primary calculus
using the functions rλ instead of h. This would restore the symmetry with the
definition of the primary calculus for sectorial operator. Hoever, this would
require an independent construction of the operators rλ(A) = R(λ,B) by
different means.

By the algebraic properties of the functions rλ and the multiplicativity
properties of the calculus, the operators Rλ form a pseudo-resolvent in the
sense of the following proposition.
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Lemma 15.4.9 (Pseudo-resolvents). Let V ⊆ C be a non-empty con-
nected open set and let (Rλ)λ∈V be a family of bounded operators on a Banach
space X satisfying the resolvent identity

Rλ −Rµ = (µ− λ)RλRµ, λ, µ ∈ V.

If Rλ0
is injective for some λ0 ∈ V , then there exists a unique closed operator

B on X such that V ⊆ %(B) and Rλ = (λ−B)−1 for all λ ∈ V .

Proof. The resolvent identity implies that any two Rλ and Rµ commute.
If Rλx = 0, the identity Rλ−Rλ0

= (λ0−λ)Rλ0
Rλ implies that Rλ0

x = 0
and therefore x = 0. It follows that Rλ is injective. If y ∈ R(Rλ0

), there is a
unique x ∈ X such that y = Rλ0

x. Then y = Rλ(I − (λ0 − λ)Rλ0
)x ∈ R(Rλ).

This shows that N := N(Rλ) = {0} and R := R(Rλ) are independent of
λ ∈ V . Hence if y ∈ R, then for all λ ∈ V there is a unique xλ ∈ X such that
y = Rλxλ. Then, by the resolvent identity,

(µ− λ)RλRµy = Rλy −Rµy = RλRµxµ −RµRλxλ = RλRµ(xµ − xλ).

It follows that (µ − λ)y = (xµ − xλ). This implies that µy − xµ = λy − xλ
is independent of λ, µ ∈ V . Denoting this element by By, we obtain a linear
operator B : y 7→ λy − xλ with domain D(B) = R(Rλ0). It satisfies

Rλ(λ−B)y = Rλxλ = y,

so Rλ is a left inverse to λ−B. Applying this to Rλy instead of y we also obtain
Rλ(λ−B)Rλy = Rλy, and the injectivity of Rλ therefore gives (λ−B)Rλy = y,
so Rλ is a right inverse to λ−B. This proves that λ ∈ %(B) and (λ−B)−1 =
Rλ. That B is closed follows from the fact that its resolvent set contains the
non-empty set V . �

This construction gives us a rigorous way to construct the operator eA as the
closed operator B given by the lemma.

Proof of Theorem 15.4.4. By Lemma 15.4.9 there exists a unique closed op-
erator B on X such that Rλ = rλ(A) = (λ− B)−1 for all λ ∈ V := {Σσ. We
note that

λR(λ,B) = (I − λ−1B)−1 = r1(A− log λ),

and therefore (15.30) implies that B is σ-sectorial.
Since sectorial operators on reflexive Banach spaces are densely defined

(see Proposition 10.1.9), the operator B is densely defined. We claim that B
in injective. If λ, µ ∈ {Σσ, then

(λ−B)−1(µ−B)−1B ⊆ fλ,µ(B) with fλ,µ(z) =
ez

(λ− ez)(µ− ez)
.

The operator fλ,µ(B) is injective in view if the identity
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fλ,µ(B) = − 1

λ− ez
(B)

µ−1

µ−1 − e−z
(B).

This proves the claim. As a consequence of Proposition 15.3.2, we obtain that
B is standard sectorial.

The identity Bit = U(t) follows by writing out the definition of Bit in
the extended calculus of B. This results in an expression involving a Dunford
integral containing the resolvent of B. This resolvent can be expressed, via the
definition of the primary calculus, in terms of the Phillips calculus of the C0-
group U . The details are laborious and are left to the reader. From this, and
the general properties of the extended calculus, it follows that A = log(B). �

15.4.c The Dore–Venni theorem

In this section we apply Monniaux’s theorem (Theorem 15.4.4) to prove the
celebrated Dore–Venni theorem on the closedness of sums of closed operators.
We base our proof on the following lemma. It uses the fact that if iG is the
generator of a bounded C0-group, then G is bisectorial of angle 0 (see Example
10.6.3). In what follows we use that the extended Dunford calculus can be
developed also for bisectorial operators. When we cite results from Section
15.1, it is understood that we actually refer to their bisectorial counterparts.
We leave it to the reader to verify that these counterparts do indeed hold.

Lemma 15.4.10. Let (U(t))t∈R and (V (t))t∈R be commuting C0-groups on a
Banach space X with generators −iA and −iB, respectively, such that

‖U(t)‖ 6MAe
ωA|t| and ‖V (t)‖ 6MBe

ωB |t|

for all t ∈ R, where MA,MB > 1 and ωA, ωB > 0 satisfy ωA + ωB 6 π. Let
−iC denote the generator of the C0-group W (t) = U(t)V (t), t ∈ R. Then for
all x ∈ D(eAeB) we have x ∈ D(eC) and

eAeBx = eCx.

Proof. We begin by noting that

‖U(t)‖ 6MAMBe
(ωA+ωB)|t|, t ∈ R.

In what follows we fix ωA + ωB < σ < π.
Fix 0 < ϑ < 1

2π and consider the functions f, g ∈ H1(Σϑ) given by

f(z) =

{
e2z(1 + ez)−3, z ∈ Σ+

ϑ ,

e−z(1 + e−z)−3, z ∈ Σ−ϑ ,

and
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g(z) =

{
ez(1 + ez)−3, z ∈ Σ+

ϑ ,

e−2z(1 + e−z)−3, z ∈ Σ−ϑ .

For G ∈ {A,B,C} the operators f(G) and g(G) are well defined and bounded
in the bisectorial Dunford calculus. Moreover, by (the bisectorial counterpart
of) Proposition 15.1.12 these operators are injective and ez = f(z)/g(z) im-
plies

eG = g(G)−1f(G).

Our aim is to prove that

f(A)f(B)g(C) = g(A)g(B)f(C). (15.32)

Once we have shown this, from f(A)g(B)−1 ⊆ g(B)−1f(A) (this follows by
observing that D(g(B)−1) = R(g(B)) and using that f(A) and g(B) commute,
we obtain

eAeB = g(A)−1f(A)g(B)−1f(B)

⊆ g(A)−1g(B)−1f(A))f(B)

= (g(A)−1g(B)−1g(C)−1)(g(C)f(A))f(B))

= (g(C)−1g(A)−1g(B)−1)(g(A)g(B)f(C))

= (g(C)−1g(A)−1g(B)−1)(g(B)g(A)f(C))

= g(C)−1f(C) = eC ,

using that g(A) and g(B) commute in the penultimate equality.
The proof of (15.32) relies on the properties of the Phillips calculus (see

Section 10.7.a). We recall from Proposition 10.7.2 and Lemma 10.7.3 that if
iG generates a bounded C0-group (W (t))t∈R on X, then for 0 < ϑ < 1

2π and
h ∈ H1(Σbi

ϑ ) one has

h(G)x =

∫ ∞
−∞

φh(t)W (t)x dt, x ∈ X,

where φh ∈ L1(R) is given by

φ̂h(ξ) = h(−2πξ), ξ ∈ R.

Applying this to G ∈ {−A,−B,−C} and h ∈ {f, g}, and keeping in mind
that −iA, −iB, and −iC generate the groups U(t), V (t), and U(t)V (t), re-
spectively, the identity (15.32) takes the form∫

R

∫
R

∫
R
φg(r)φf (t)φf (s)U(t+ r)V (s+ r) dr ds dt

=

∫
R

∫
R

∫
R
φf (r)φg(t)φg(s)U(t+ r)V (s+ r) dr ds dt,
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or equivalently,∫
R

∫
R
φg(r)F (t, s)U(t)V (s) ds dt =

∫
R

∫
R
φg(r)G(t, s)U(t)V (s) ds dt

with

F (t, s) =

∫
R
φg(r)φf (t−r)φf (s−r) dr, G(t, s) =

∫
R
φf (r)φg(t−r)φg(s−r) dr.

Taking Fourier transforms, we obtain

F̂ (x, y) =

∫
R

∫
R
F (t, s)e−2πi(tx+sy) dt ds

=

∫
R

∫
R

∫
R
φg(r)φf (t− r)φf (s− r)e−2πi(tx+sy) dr dt ds

=

∫
R

∫
R

∫
R
φg(r)φf (t− r)φf (s− r)e−2πitxe−2πisye−2πir(x+y) dr dt ds

= φ̂g(x+ y)φ̂f (x)φ̂f (y)

= g(−2π(x+ y))f(−2πx)f(−2πy)

and similarly

Ĝ(x, y) = f(−2π(x+ y))g(−2πx)g(−2πy).

It is evident from the definitions of f and g that the two right-hand sides
are equal. Therefore F = G be the uniqueness of Fourier transforms. This
completes the proof of (15.32). �

Theorem 15.4.11 (Dore–Venni). Suppose that A and B are resolvent
commuting standard sectorial operators on a UMD Banach space X. If both
A and B have bounded imaginary powers with

ωBIP(A) + ωBIP(B) < π,

then there exists a constant K > 0 such that

‖Ax‖+ ‖Bx‖ 6 K‖(A+B)x‖, x ∈ D(A) ∩ D(B).

As a consequence A+B, with its natural domain D(A+B) = D(A) ∩ D(B),
is closed.

Proof. Fix ωBIP(A) + ωBIP(B) < ω < π. Since A and B resolvent commute,
the operators UA(s) = Ais and UB(t) = Bit commute for all s, t ∈ R and
U(t) := AitB−it is a C0-group satisfying ‖U(t)‖ 6 Keω|t| for all t ∈ R and
some K > 1. Hence by Monniaux’s Theorem 15.4.4 we have U(t) = Cit,
t ∈ R, for some standard sectorial operator C having bounded imaginary
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powers. The generators of the C0-groups equal i logA, −i logB, and i logC.
Since I + C is invertible there is a constant M > 0 such that have

‖x‖ 6M‖x+ Cx‖, x ∈ D(C).

By Lemma 15.4.10 applied to i logA and −i logB, for all x ∈ D(AB−1)
we have x ∈ D(C) and AB−1x = Cx. Hence for all x ∈ D(A)∩D(B) we have
Bx ∈ D(AB−1) ⊆ D(C), and therefore

‖Bx‖ 6M‖Bx+ CBx‖ = M‖Bx+Ax‖.

The same argument with the roles of A and B interchanged gives the inequal-
ity

‖Ax‖ 6M‖Bx+ CBx‖ = M‖Bx+Ax‖.

Together, these two inequalities imply the inequality in the statement of the
theorem. This implies the closedness of A+B by a routine argument. �

15.5 The bisectorial H∞-calculus revisited

The bisectorial H∞-calculus has been introduced and studied in Section 10.6.
The purpose of the present section is to study in more detail the spectral
projections associated with the left and right halves of the bisector. These
can be thought of as abstract Riesz projections. The main result is Theorem
15.5.2, which establishes that if A is a standard bisectorial operator with a
bounded H∞(Σbi

σ )-calculus, then A2 is a standard 2σ-sectorial operator and

D((A2)1/2) = D(A),

with equivalence of norms

‖(A2)1/2x‖ h ‖Ax‖.

We use the notation introduced in Section 10.6. Specifically, for 0 < ω <
1
2π we define Σ+

ω := Σω and Σ−ω := −Σω, and denote by

Σbi
ω := Σ+

ω ∪Σ−ω

the bisector of angle ω. Recall that a linear operator A on a Banach space X
is said to be bisectorial if there exists an ω ∈ (0, 1

2π) such that the spectrum

σ(A) is contained in Σbi
ω and

Mbi
ω,A := sup

z∈{Σbi
ω

‖zR(z,A)‖ <∞.

In this situation we say that A is ω-bisectorial. The infimum of all ω ∈ (0, 1
2π)

such that A is ω-bisectorial is called the angle of bisectoriality of A and is
denoted by ωbi(A).
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15.5.a Spectral projections

What distinguishes the theory of bisectorial operators from its sectorial coun-
terpart is the possibility to consider the functions 1Σ+ and 1Σ− , both of which
are bounded and holomorphic as functions on the bisector Σbi = Σ+ ∪ Σ−.
If a bisectorial operator A has a bounded H∞(Σbi)-calculus, the operators
1Σ+(A) and 1Σ−(A) are well defined as bounded operators on D(A) ∩ R(A)
and take the role of “spectral projections” associated with the sectors Σ+

and Σ−. (The reason for writing quotations is that one has to be a bit care-
ful here since 0 may belong to the spectrum of A.) From the multiplicativity
of the H∞-calculus it follows that the operators 1Σ+ and 1Σ− are indeed
projections, and that they are mutually orthogonal in the sense that

1Σ+(A)1Σ−(A) = 1Σ−(A)1Σ+(A) = 0.

The injectivity of A on D(A) ∩ R(A), which follows from Proposition 10.1.8,
will be seen to imply the identity

1Σ−(A) + 1Σ−(A) = I.

The importance of the operators 1Σ+(A) and 1Σ−(A) stems from their anal-
ogy to the Riesz projections; in particular, their difference

1Σ+(A)− 1Σ−(A) =: sgn(A)

may be thought of as an abstract analogue of the Hilbert transform.

Proposition 15.5.1. If A is a bisectorial operator on a Banach space X with
a bounded H∞(Σbi

σ )-calculus for some ωbi(A) < σ < 1
2π, then the operators

P+ := 1Σ+
σ

(A), P− := 1Σ−σ (A),

are well defined as bounded projections on D(A) ∩ R(A). As such they are
mutually orthogonal in the sense that

P+P− = P−P+ = 0,

and complementary in the sense that

P+ + P− = I.

Denoting the parts of A in X+ := R(P+) and X− := R(P−) by A+ and A−

respectively, then both A+ and −A− are sectorial on X+ and X− and have
bounded H∞(Σ+

σ )-calculus on these spaces. We have

σ(A±) ⊆ σ(A) ∩Σ±σ ,

and if D(A) ∩ R(A) is dense we also have

(σ(A) ∩Σ±σ ) \ {0} ⊆ σ(A±) \ {0}.
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There is some abuse of notation in writing X± for the range of P±, as these
operators are projections defined on D(A) ∩ R(A) only, but we do not want
to overburden the notation.

Proof. That the operators P+ and P− are mutually orthogonal projections
on D(A) ∩ R(A) and add up to the identity follows from the general properties
of the H∞-calculus. It is also clear that both projections commute with the
resolvent of A. Thus the spaces X+ and X− are invariant under the resolvent
of A. Denote by A+ and A− the parts of A to X+ and X−. It suffices to
prove that A+ has the asserted properties; the result for A− then follows by
applying it to the bisectorial operator −A.

Step 1a – In this step we prove that σ(A+) ⊆ σ(A) ∩Σ+
σ .

Let us write p+(z) = 1Σ+
σ

(z) (so p+(A)x = P+x) and rµ(z) = (µ − z)−1

for brevity.

The crux of the argument is the observation that if µ ∈ {Σ+
σ , then rµp

+

is a bounded holomorphic function on the bisector Σbi
σ even when µ ∈ Σ−σ .

Therefore the operator (rµp
+)(A) is well defined by the H∞(Σbi

σ )-calculus of
A.

We shall prove next that the restriction of this operator to X+ is a two-

sided inverse of µ − A+. This will show that inclusion σ(A+) ⊆ Σ+
σ . By

general spectral considerations we also have σ(A+) ⊆ σ(A), and together
these inclusions prove

σ(A+) ⊆ σ(A) ∩Σ+
σ .

First we prove that the restriction of (rµp
+)(A) to X+ is a two-sided

inverse of µ − A+ for µ ∈ {Σbi
σ . Fix x ∈ D(A) ∩ R(A). We have rµ(A)x =

R(µ,A)x by the properties of the H∞(Σbi
σ )-calculus. The multiplicativity of

this calculus then implies

(rµp
+)(A)x = rµ(A)p+(A)x = R(µ,A)P+x,

(rµp
+)(A)x = (p+rµ)(A)x = P+R(µ,A)x.

(15.33)

It follows that X+ is invariant under R(µ,A). Multiplying the first identity on
the left and the second on the right by µ−A+ we see (rµp

+)(A) is a two-sided
inverse to µ−A+. It follows that µ ∈ %(A+) and

R(µ,A+) = (rµp
+)(A)|X+ . (15.34)

We now consider the case of a general µ ∈ {Σσ, which will be handled
by the resolvent identity. To this end fix an arbitrary λ ∈ {Σbi

σ . The scalar
identity

1

µ− z
=

1

λ− z
+

λ− µ
(λ− z)(µ− z)

translates, after multiplying with p+(z) and using the additivity and multi-
plicativity of the H∞-calculus, into the identity
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(rµp
+)(A)x = (rλp

+)(A)x+ (λ− µ)(rλp
+)(A)(rµp

+)(A)x, (15.35)

still for x ∈ D(A) ∩ R(A). Among other things it implies that X+ is invariant
under (rµp

+)(A), since we have just proved that (rλp
+)(A) = P+R(µ,A)

maps into X+. By (15.33) and (15.34) (applied with λ in place of µ), the
right-hand side of (15.35) (hence also the left-hand side) belongs to D(A),
and for x ∈ X+ we obtain

(µ−A)(rµp
+)(A)x = (µ− λ)(rµp

+)(A)x+ (λ−A)(rµp
+)(A)x

= (µ− λ)(rµp
+)(A)x+

[
x+ (λ− µ)(rµp

+)(A)x
]

= x.

It follows that (rµp
+)(A)x ∈ D(A+) and (rµp

+)(A) is a right inverse of µ−A+

on X+. Also, using (15.34) (again with λ in place of µ) and the fact that
(rλp

+)(A) and (rµp
+)(A) in (15.35) commute, for x ∈ D(A+) we obtain

(rµp
+)(A)(µ−A+)x = (rµp

+)(A)(µ− λ)x+ (rµp
+)(A)(λ−A+)]x

= (µ− λ)(rµp
+)(A)x+ [x+ (λ− µ)(rµp

+)(A)x] = x,

and therefore (rµp
+)(A) is also a right inverse.

Step 1b – We now prove that if µ 6= 0 belongs to σ(A)∩Σ+
σ and D(A)∩R(A)

is dense, then µ ∈ σ(A+).

To this end let µ ∈ Σ+
σ . Since µ 6= 0, we have µ ∈ {Σ−σ and therefore, by

the version of Step 1a for A−, µ ∈ %(A−). Now if we also had µ ∈ %(A+),
then along the decomposition X = D(A) ∩ R(A) = X+ ⊕ X−, the operator
R(µ,A+)⊕R(µ,A−) would be a two-sided inverse for µ−A and it would follow

that µ ∈ %(A). Hence for µ 6= 0 this proves the inclusion σ(A)∩Σ+
σ ⊆ σ(A+).

Step 2 – We next establish the resolvent bound for A+. The uniform

boundedness of zR(z,A+) on {Σσ
bi

follows from the uniform bounded-
ness of zR(z,A) on this set by taking restrictions. In particular, for any
1
2π < ϑ < π − σ, zR(z,A+) is uniformly bounded on the two rays re±iϑ,
and then the sectorial version of the three lines lemma implies the uniform
boundedness of zR(z,A+) on Σ−ϑ .

Step 3 – The prescription f(A+) := (p+f)(A) defines a bounded linear
multiplicative mapping from H∞(Σ+

σ ) into L (D(A) ∩ R(A)) that agrees with
the Dunford calculus of A+ for functions f ∈ H1(Σ+

σ ) ∩H∞(Σ+
σ ). This im-

mediately implies that A+ has a bounded H∞(Σ+
σ )-calculus. �

15.5.b Sectoriality versus bisectoriality

The next theorem establishes a relationship between a bisectorial operator A
and the square root of the sectorial operator A2. In the proof we shall use the
fact, which can be routinely checked by redoing the arguments of Section 15.1,
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that an extended Dunford calculus can be set up for bisectorial operators and
that it enjoys similar properties as in the sectorial case.

Theorem 15.5.2. If A is a standard bisectorial operator with a bounded
H∞(Σbi

σ )-calculus on a Banach space X, then A2 is a standard 2σ-sectorial
operator and

D((A2)1/2) = D(A).

For all x in this common domain we have

‖(A2)1/2x‖ h ‖Ax‖

with constants independent of x.

Proof. The function a(z) := (z2)1/2 is holomorphic on Σbi
σ and equals z on Σ+

σ

and −z on Σ−σ . Likewise, the function sgn(z) := z/(z2)1/2 is holomorphic on
Σbi
σ and equals 1 on Σ+

σ and −1 on Σ−σ . Thus, sgn(z)a(z) = z for all z ∈ Σbi
σ .

By the multiplicativity of the extended functional calculus (cf. Proposition
15.1.12 for the sectorial case), it follows that, if x ∈ D((A2)1/2), then x ∈ D(A)
and Ax = sgn(A)(A2)1/2x. Taking norms, we find that

‖Ax‖ 6M‖(A2)1/2x‖,

where M is the boundedness constant of the H∞(Σbi
σ )-calculus of A.

In the same way, the identity a(z) = sgn(z)z implies that, if x ∈
D((A2)1/2), then x ∈ D(A) and (A2)1/2x = sgn(A)Ax. Taking norms gives

‖(A2)1/2x‖ 6M‖Ax‖.

�

It is of some interest to interpret this theorem for the Hodge–Dirac oper-
ator D on L2(Rd)⊕ L2(Rd;Cd) of Example 10.6.5,

D =

(
0 ∇∗
∇ 0

)
.

where ∇∗ = −div is the adjoint of ∇. Its square is of the form

D2 =

(
−∆ 0

0 ∗

)
,

where ∗ equals (at least formally) −∇◦div. Taking g(z) = sgn(z) := z/(z2)1/2,
then (at least formally)

g(D) = D(D2)−1/2 =

(
0 −div
∇ 0

)
·
(

(−∆)−1/2 0
0 ∗

)
=

(
0 ∗

∇/(−∆)1/2 0

)
.

Thus we see the Riesz transform

R = ∇(−∆)1/2

appear as an entry in the functional calculus of D.
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15.6 Notes

Section 15.1

The idea to use regularising functions to extend the functional calculus to suit-
able classes of unbounded functions goes back to McIntosh [1986]. A compre-
hensive discussion of extended functional calculi is presented by Haase [2006];
see also Haase [2020]. Our treatment in Sections 15.1 and 15.2 is based on
Haase [2006] and Kunstmann and Weis [2004]. The proof of Theorem 15.1.18
is taken from the former reference.

Section 15.2

The first unified account of the theory of fractional powers was undertaken
by Komatsu in a series of papers starting with Komatsu [1966]. This paper
contains the results presented here and much more. Some earlier works on the
subject are due to Balakrishnan [1960], Hille and Phillips [1957], Kato [1960,
1961], Krasnosel′skĭı and Sobolevskĭı [1959], Phillips [1952], Watanabe [1961],
and Yosida [1960]. Modern accounts include Albrecht, Duong, and McIntosh
[1996], Denk, Hieber, and Prüss [2003], Dore [1999, 2001], Haase [2006], and
Mart́ınez Carracedo and Sanz Alix [2001]. Our treatment barely scratches the
surface of this rich and vast subject, and we have only included the most basic
results needed for the treatment of bounded imaginary powers. Our approach
based on the extended Dunford calculus has the advantage of keeping the
technical details at a minimum, but the price to be paid is that we must make
somewhat restrictive assumptions on the operator A.

Theorem 15.2.8 is from Komatsu [1966], but the proof presented here is
taken from Haase [2006]. Theorem 15.2.13, 15.2.17, and 15.2.16 are due to
Balakrishnan [1960] (see also Yosida [1980]). Some authors take one of the
formulas in the first and third theorem as the definition of the fractional
powers. For further information on the classical approach to fractional powers
via integral representations, we refer the reader to the monographs Butzer
and Berens [1967] and Mart́ınez Carracedo and Sanz Alix [2001]. A complete
proof of the non-negativity of the function fα,t in Theorem 15.2.17 can be
found in Yosida [1980, Proposition IX.11.2].

Section 15.3

A detailed account of the theory of bounded imaginary powers is presented
by Haase [2006]; see also Amann [1995] and Prüss and Simonett [2016].

Example 15.3.25 is from Dore and Venni [1987]. Lemma 15.3.8 is from
Prüss and Sohr [1990], where a different proof based on properties of the
Mellin transform is given. Alternative proofs were obtained subsequently by
Monniaux [1997] and Uiterdijk [1998]. The elementary proof presented here,
based on the perturbation result of Theorem 15.1.18, is taken from Haase
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[2006]. Theorem 15.3.9, identifying domains of fractional powers with complex
interpolation spaces in the presence of bounded imaginary powers, is due to
Seeley [1971]; see Triebel [1978] for references to earlier results in this direction.

Theorem 15.3.12, connecting the angles (R-)sectoriality and bounded
imaginary powers, is due to Prüss and Sohr [1990] (ω(A) 6 ωBIP(A)) and
Clément and Prüss [2001] (ωR(A) 6 ωBIP(A), in a UMD space). The es-
timation of the three terms in the last part of the proof are patterned af-
ter the proof of Lemma 15.4.5, which is taken from Monniaux [1999] and
extends earlier results of Zsidó [1983] and Berkson, Gillespie, and Muhly
[1986a]. Lemma 15.3.13 is from Prüss and Sohr [1990]. In Remark 15.3.14, the
identity (15.17) can be equivalently stated in terms of the Mellin transform;
see, e.g., Titchmarsh [1986]. The two theorems about (almost) γ-sectoriality
and (γ-)bounded imaginary powers, Theorem 15.3.16 (ω̃γ(A) 6 ωBIP(A)) and
its proof, as well as Theorem 15.3.19 (ωγ(A) 6 ωγ-BIP(A)), are taken from
Kalton, Lorist, and Weis [2023]. Theorem 15.3.20 (ωBIP(A) = ωH∞(A)) is
from Cowling, Doust, McIntosh, and Yagi [1996], whose proof we follow. The
result proved in this paper shows that ωH∞(A) = max{ω(A), ωBIP(A)}; as
was noted in the main text, this improves to ωH∞(A) = ωBIP(A) by virtue
of the Clément–Prüss Theorem 15.3.12. A different proof of Theorem 15.3.20,
based on the theory of Euclidean structures, is presented by Kalton, Lorist,
and Weis [2023]. Theorem 15.3.21, on the equivalence of bounded H∞-calculus
and γ-bounded imaginary powers, is taken from Kalton and Weis [2016]. An
alternative proof is presented by Kalton, Lorist, and Weis [2023, Theorem
4.5.6 and Corollary 4.5.7]

An example of a sectorial operator on the space c0 without bounded
imaginary powers was was given by Komatsu [1966]. Hilbert space examples
were constructed subsequently by McIntosh and Yagi [1990] and Baillon and
Clément [1991], where a general way to construct such examples using con-
ditional bases was invented. Venni [1993] showed that, in any Banach space
with a Schauder basis, there are densely defined sectorial operators A for
which some, but not all, imaginary powers are bounded. More precisely, it
can be arranged that Aikπ = I if k is an even integer and Aikπ is unbounded
if k is an odd integer. Hieber [1996] constructed an example of a pseudo-
differential operator acting in Lp(R), 1 < p < ∞, p 6= 2, that is sectorial but
does not admit bounded imaginary powers. Examples of operators in Lp(S),
p 6= 2, with bounded imaginary powers but without a bounded H∞-calculus
can be found in Cowling, Doust, McIntosh, and Yagi [1996]. This reference
also contains the proof of the inequality ωH∞(A) 6 ωBIP(A).

Theorem 15.3.23 is due to McIntosh [1986]. In this connection, it is also
of interest to mention the result of Yagi [1984, Theorem B] that an invertible
sectorial operator A on a Hilbert space has bounded imaginary powers if
D(Aα) = D(A?α) for all α ∈ [0, ε).
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Around almost sectoriality: further results

The next result, a proof of which is given by Kalton, Lorist, and Weis [2023,
Proposition 4.2.4], connects the (almost) γ-sectoriality of A to γ-boundedness
of the associated semigroup.

Proposition 15.6.1. Let A be a sectorial operator on X with ω(A) < 1
2π and

let ω(A) < σ < 1
2π. Then

(i) A is γ-sectorial with ωγ(A) 6 σ if and only if the set{
e−zA : z ∈ Σν

}
is γ-bounded for all 0 < ν < 1

2π − σ;
(ii) A is almost γ-sectorial with ω̃γ(A) 6 σ if and only if the set{

zAe−zA : z ∈ Σν
}

is γ-bounded for all 0 < ν < 1
2π − σ.

For operators A that are diagonal with respect to a Schauder basis, the notion
of γ-almost sectoriality captures a natural property of the basis. In order to
formulate this in the form of a proposition, we first recall that a sequence
(xn)n∈Z in a Banach space X is called a Schauder basis of X if every x ∈ X
has a unique representation of the form x =

∑
n∈Z cnxn. Associated with a

Schauder basis is its sequence of coordinate projections (Pn)n∈Z on X, defined
by

Pn
∑
j∈Z

cjxj := xn, n ∈ Z,

and the sequence of partial sum projections (Sn)n∈N, defined by

Sn
∑
j∈Z

xj :=
n∑

j=−n
xj , n ∈ N,

that is, Sn =
∑n
k=−n Pk. For any Schauder basis, the set of partial sum

projections is uniformly bounded, and by taking differences the same is seen
to be true for the set of coordinate projections.

On a Banach space X with a Schauder basis (xn)n∈Z, we may consider
the diagonal operator A defined by

Axn := 2nxn, xn ∈ Xn, n ∈ Z,

with its natural maximal domain. It was shown in Proposition 10.2.28 that A
is sectorial of angle ω(A) = 0, and that A has a bounded H∞-calculus if and
only if (xn)n∈Z is unconditional. The following result is due to Kalton, Lorist,
and Weis [2023, Proposition 6.1.3].
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Proposition 15.6.2. For the operator A just defined, the following is true:

(1) A is γ-sectorial if and only if the sequence (Sn)n∈N is γ-bounded;
(2) A is almost γ-sectorial if and only if the sequence (Pn)n∈Z is γ-bounded.

We revisit this result in the Notes of Chapter 17 in connection with the prob-
lem of finding examples of sectorial operators that are not R-sectorial.

Around the Hilbert space characterisation: the γ-interpolation method

Theorem 15.3.23 asserts that a standard sectorial operator A on a Hilbert
space H has a bounded H∞-calculus if and only if it has bounded imaginary
powers. This equivalence is nothing but the specialisation to Hilbert spaces of
the equivalence, for any standard sectorial operator A on a Banach space X, of
having a bounded H∞-calculus and having γ-bounded imaginary powers, as
stated in Theorem 15.3.21. The aim of this section is to explain that also the
third equivalence in Theorem 15.3.23 is the specialisation to Hilbert spaces of a
corresponding statement for Banach spaces. Recall that this third equivalence
states, under the additional assumptions that 0 ∈ %(A) and ω(A) < 1

2π,
that bounded H∞-calculus and boundedness of imaginary powers for A are
equivalent to the equality

D(A1/2) = (X,D(A))1/2,2 with equivalent norms. (15.36)

The Banach space version of this equivalence, due to Kalton, Lorist, and Weis
[2023, Corollary 5.3.9], replaces (15.36) with the condition

D(A1/2) = (X,D(A))γ1/2 with equivalent norms,

the interpolation space on the right-hand side being obtained via the so-called
γ-interpolation method which we briefly outline next.

A discrete version of the γ-interpolation method was already considered
by Kalton, Kunstmann, and Weis [2006], where Rademacher variables were
used instead of Gaussian variables. In that paper, the method was used to
study perturbations of the H∞-calculus for various differential operators. The
continuous version of the Gaussian method was introduced by Suárez and
Weis [2006, 2009], where Gaussian interpolation of Bochner spaces Lp(S;X)
and square function spaces γ(S;X), as well as a Gaussian version of ab-
stract Stein interpolation, was studied. An abstract framework covering the
γ-interpolation method, as well as the real and complex interpolation methods,
has been recently developed by Lindemulder and Lorist [2021]. The present
treatment follows the memoir of Kalton, Lorist, and Weis [2023]; theorem
numbers in brackets refer to this memoir. As was pointed out in this refer-
ence, the results in Kalton, Kunstmann, and Weis [2006] and Suárez and Weis
[2006, 2009] were based on a draft version of the memoir.

Let (X0, X1) be an interpolation couple of Banach spaces and let θ ∈ (0, 1).
We call an operator
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T : L2(R) + L2(R, e−2t dt)→ X0 +X1

admissible, and write T ∈ A , if T ∈ γ(L2(R, e−2jt dt), Xj) for j = 0, 1. For
such operators we define

‖T‖A := max
j=0,1

‖Tj‖γ(L2(R,e−2jt dt),Xj),

where Tj denotes the operator T from L2(R, e−2jt dt) into Xj . It is routine to
check that A is complete with respect to this norm.

Denoting eθ : t 7→ eθt, we define (X0, X1)γθ as the space of all x ∈ X0 +X1

for which the quantity

‖x‖(X0,X1)γθ
:= inf

{
‖T‖A : T ∈ A , T (eθ) = x

}
is finite. This space is a quotient space of A , and as such it is a Banach space.
By [Proposition 3.3.2], the set of finite rank operators T is dense in A ; in
particular, we have:

Proposition 15.6.3. X0 ∩X1 is dense in (X0, X1)γθ .

[Proposition 3.3.1] gives the following interpolation result.

Theorem 15.6.4 (γ-interpolation of operators). Suppose that (X0, X1)
and (Y0, Y1) are interpolation couples of Banach spaces. Let S : X0 + X1 →
Y0 + Y1 be a bounded operator such that S(X0) ⊆ Y0 and S(X1) ⊆ Y1. Then
S maps (X0, X1)γθ to (Y0, Y1)γθ boundedly, with norm

‖S‖L ((X0,X1)γθ ,(Y0,Y1)γθ ) 6 ‖S‖1−θL (X0,Y0)‖S‖
θ
L (X1,Y1).

By [Proposition 3.4.1], the norm of (X0, X1)γθ can be equivalently expressed
as follows.

Proposition 15.6.5. Let A• be the set of all strongly measurable functions
f : R+ → X0 ∩X1 such that t 7→ tjf(t) belongs to γ(R+,

dt
t ;Xj) for j = 0, 1.

For f ∈ A•, define

‖f‖A• := max
j=0,1

∥∥t 7→ tjf(t)
∥∥
γ(R+,

dt
t ;Xj)

.

Then for all x ∈ (X0, X1)γθ we have

‖x‖(X0,X1)γθ
= inf

{
‖f‖A• : f ∈ A•,

∫ ∞
0

tθf(t) dt = x
}
,

where the integral converges in the Bochner sense in X0 +X1.

[Theorem 3.4.4] contains the following relationship of the γ-interpolation
method with the real and complex methods.



15.6 Notes 507

Theorem 15.6.6 (Relationship with the real and complex method).
Let (X0, X1) be an interpolation couple of Banach spaces, and let 0 < θ < 1.

(1) If X0 and X1 have type p0, p1 ∈ [1, 2] and cotype q0, q1 ∈ [2,∞] respectively,
then we have the continuous embeddings

(X0, X1)θ,p ↪→ (X0, X1)γθ ↪→ (X0, X1)θ,q

where 1
p = 1−θ

p0
+ θ

p1
and 1

q = 1−θ
q0

+ θ
q1

.

(2) If X0 and X1 have type 2, then we have the continuous embedding

[X0, X1]θ ↪→ (X0, X1)γθ .

If X0 and X1 have cotype 2, then we have the continuous embedding

(X0, X1)γθ ↪→ [X0, X1]θ.

Since a Banach space X is isomorphic to a Hilbert space if and only if X has
type 2 and cotype 2 (by Kwapień’s Theorem 7.3.1), we obtain the corollary
(cf. the Corollary of Peetre’s Theorem C.4.1 for the first equivalence):

Corollary 15.6.7. Let (H0, H1) be an interpolation couple of Hilbert spaces,
and let 0 < θ < 1. Then

(H0, H1)θ,2 = [H0, H1]θ = (H0, H1)γθ

with equivalent norms.

Section 15.4

Much of the theory developed in the first three sections of this chapter has an
analogue for strip type operators. The general theory of this class of operators
is developed in the book of Haase [2006], which also treats their connections
with logarithms of sectorial operators. Analogues of the results of Sections
10.3 and 10.4 are presented by Kalton and Weis [2016].

Theorem 15.4.3, on the strip type property and integral representation of
the logarithm log(A) of a standard sectorial A, is due to Nollau [1969]. Our
proof is a variation of the presentation by Haase [2006]. The converse problem
to Theorem 15.4.3, whether the exponent of a striptal operator is sectorial, is
subtle; we refer to Haase [2006] for a counterexample. Theorem 15.4.4, on the
identification of C0-groups on a UMD space as bounded imaginary powers
of a standard sectorial operator, can be viewed as a partial result in the
positive direction. It was first proved by Monniaux [1999] with a very different
argument based on the notion of analytic generator. The proof presented here
is essentially that of Haase [2009]. Another proof can be found in Haase [2007].

Theorem 15.4.11 about the sum of operators, both of which have bounded
imaginary powers, is due to Dore and Venni [1987] under the slightly stronger
assumption on A and B that they satisfy the resolvent bounds
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‖(t+A)−1‖, ‖(t+B)−1‖ 6 M

1 + t
, t > 0.

In its present form, where it is only assumed that

‖(t+A)−1‖, ‖(t+B)−1‖ 6 M

t
, t > 0,

the result was obtained by Prüss and Sohr [1990]. The original proof of Dore
and Venni [1987] is ingenious and relatively short, and has been sketched in
the Notes of Chapter 5. It depends on a representation formula for (A+B)−1

in terms of fractional powers of A and B. The refinement of these arguments
by Prüss and Sohr [1990], to obtain the more general case, depends on subtle
approximation arguments for operators A with bounded imaginary powers
which, like the proof presented here, use the functional calculus associated
with the C0-group (Ait)t∈R and Mellin transform techniques.

The beautiful proof of the Dore–Venni Theorem 15.4.11 presented here
is due to Haase [2007] and fits well in the mainstream of ideas developed in
this volume. This paper also contains our proof of Theorem 15.4.4, which is
originally due to Monniaux [1999] with a different proof based on the notion
of an analytic generator. Our presentation uses some ideas of Haase [2006,
Section 4.2], where a detailed presentation of the theory of strip type operators
if given. With these methods, the operator B = etA can also be defined using
the extended Dunford calculus.

The importance of the Dore–Venni Theorem 15.4.11 is mostly historical,
and the more recent sum-of-operator theorems proved in the next chapter
have turned out to be more versatile in their usage. It is for this reason that
we have contented ourselves with a somewhat sketchy presentation, leaving a
few tedious details to the reader.

Section 15.5

The results of this section follow Duelli [2005] and Duelli and Weis [2005],
where Theorem 15.5.2 (‖(A2)1/2x‖ h ‖Ax‖) is proved. By the Hieber–Prüss
Theorem 10.7.10, it covers the case where iA generates a bounded C0-group.
A version of Theorem 15.5.2 (with inhomogeneous estimates) for the case that
iA generates a C0-group of exponential growth type ω > 0 is due to Haase
[2007].

The spectral projections P± of Proposition 15.5.1 are studied in more de-
tail by Arendt and Zamboni [2010], Duelli [2005], and Duelli and Weis [2005].
In particular, Arendt and Zamboni [2010] show that, if A is an invertible bi-
sectorial operator and δ > 0 is so small that the closure of the ball B(0, δ)
belongs to the resolvent set of A, then for x ∈ D(A), these projections are
given by

P±x =
1

2πi

∫
∂(Σ±ν \B(0,δ))

R(z,A)Ax
dz

z
,
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where ωbi(A) < ν < σ is arbitrary. The extended Dunford calculus for bisec-
torial operators, in particular the analogue of Proposition 15.1.12, which was
used in the proof of Theorem 15.5.2, has been studied by Duelli [2005].

The Kato square root problem

A long-standing question about fractional powers of operators, and a major
motivation for the development of the theory of H∞-calculus at large, was the
square root problem of Kato [1961]. To present this problem, we recall that a
linear operator A in a Hilbert space H with inner product ( | ) is called

• accretive, if <(Au|u) > 0 for all u ∈ D(A);

• maximal accretive, if an extension Ã ⊇ A is accretive exactly when Ã = A;
• regularly accretive, if A is maximally accretive and there is an associated

sesquilinear form a in H such that <a(v, v) > 0 for all v ∈ D(a), and

(Au|v) = a(u, v) for all u ∈ D(A) ⊆ D(a) and all v ∈ D(a).

For a regularly accretive operator, Kato [1961] defines its real part <A as the
unique maximal accretive operator associated with the sesquilinear form

<a : (u, v) 7→ 1

2
[a(u, v) + a(v, u)]

in the above sense. He then proceeds to show that

D(Aα) = D((A∗)α), if A is maximal accretive and α ∈ [0, 1
2 ),

= D((<A)α), if A is regularly accretive and α ∈ [0, 1
2 ),

and that these identities can fail for α > 1
2 , “but it is not known whether or

not α = 1
2 can be included”. Kato [1961, Remark 1] writes:

This is perhaps not true in general. But the question is open even
when A is regularly accretive. In this case it appears reasonable to
suppose that both D(A

1
2 ) and D((A∗)

1
2 ) coincide with D((<A)

1
2 ) =

D(a), where <A is the real part of A and a is the regular sesquilinear
form which defines A.

As suspected by Kato [1961], a counterexample to the general case of maximal
accretive operators was found shortly after by Lions [1962], but the regularly
accretive case was only disproved a decade later by McIntosh [1972].

What came to be known as Kato’s square root problem was subse-
quently redefined by McIntosh [1982], making the case that, what Kato [1961]
“really had in mind”, was differential operators A = − divB(x)∇, where
B ∈ L∞(Rd;Cd) is such that <(B(x)e|e) > δ > 0 for a.e. x ∈ Rd and all
e ∈ Cd of norm one. For such A, the associated sesquilinear form is

a(u, v) =

∫
Rd

(B(x)∇u(x)|∇v(x)) dx
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with domain D(a) = D(∇) = W 1,2(Rd), and the problem thus takes the form

‖
√
− divB∇u‖L2(Rd)

?h ‖∇u‖L2(Rd;Cd). (15.37)

McIntosh [1982] further suggested that this question was related to Calderón’s
problem about the L2-boundedness of the Cauchy integral on a Lipschitz
graph (discussed in the Notes of Chapter 12). As pointed out by Alan McIn-
tosh in several oral communications with the authors of this book over the
first decade of this century (the quote within the first sentence of this para-
graph is also from this oral source), before his making this connection, Kato’s
question was generally regarded as being a soft one, several levels easier than
the problem of Calderón, which everyone agreed to be hard. Nevertheless,
the connection suggested by McIntosh [1982] turned out to be a fruitful one,
and the combined efforts of Coifman, McIntosh, and Meyer [1982] led to a
proof of both the boundedness of the Cauchy integral and, what turned out
to be equivalent, McIntosh’s reformulation of Kato’s square root problem in
dimension d = 1.

After this, the status of the redefined square root problem increased sub-
stantially, and important progress was made by Coifman, Deng, and Meyer
[1983], Fabes, Jerison, and Kenig [1985], McIntosh [1985], Alexopoulos [1991],
Journé [1991], Auscher and Tchamitchian [1998], and Auscher, Hofmann,
Lewis, and Tchamitchian [2001], but it took two decades from the one-
dimensional result of Coifman, McIntosh, and Meyer [1982] until a complete
solution was achieved by Hofmann, Lacey, and McIntosh [2002] in dimension
d = 2 and then by Auscher, Hofmann, Lacey, McIntosh, and Tchamitchian
[2002] in all dimensions.

While heavily building on ideas and results about functional calculus of
the second-order operator A = − divB∇, the original solution of the square
root problem was not quite a “pure” functional calculus theorem in the sense
that the gradient featuring in (15.37) does not have the form f(A) of objects
in the functional calculus of A. This “issue” was fixed by a new approach
developed by Axelsson, Keith, and McIntosh [2006] which, in contrast to the
sectorial calculus of second-order operators employed by Auscher et al. [2002],
was based on the bi-sectorial calculus of first-order differential operators, and
promoted the relevance of bi-sectorial operators and bi-sectorial H∞-calculus
in subsequent research. Quoting the MathSciNet review of Axelsson et al.
[2006] by Ian Doust, this paper provided “a remarkable consolidation of many
of the ideas that have arisen in the so-called Calderón program”, not only
reproving the square root theorem of Auscher et al. [2002] and several other
results by a unified approach, but also obtaining new geometric applications
to the behaviour of the Hodge–Dirac operator on a Riemannian manifold
under measurable perturbations of the Riemannian metric. In fact, the very
framework of Axelsson et al. [2006] is based on a general notion of perturbed
Hodge–Dirac operators; in the application to the Kato square root problem,
these take the form
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DB :=

(
0 − divB
∇ 0

)
, D(DB) = D(∇)⊕ D(divB)

so that, at least formally,

(D2
B)

1
2 =

(
− divB∇ 0

0 −∇ divB

) 1
2

=

(
(− divB∇)

1
2 0

0 (−∇ divB)
1
2

)
,

D((D2
B)

1
2 ) = D((− divB∇)

1
2 )⊕ D((−∇ divB)

1
2 ).

Hence, if one can establish bounded bi-sectorial H∞-calculus of DB , as Ax-
elsson et al. [2006] do, the Kato conjecture (15.37) will be an immediate con-

sequence of the estimate ‖(D2
B)

1
2u‖ h ‖DBu‖ provided by Theorem 15.5.2.

This first-order approach of Axelsson, Keith, and McIntosh [2006] has been
influential for several subsequent developments. Of particular interest for the
themes of the present volumes is a version of the Kato square root theorem
in Lp(Rd;X). This was obtained by Hytönen, McIntosh, and Portal [2008]
by a Banach space extension of the methods of Axelsson et al. [2006]. In
the language of the original operator A = − divB∇, the result of Hytönen,
McIntosh, and Portal [2008] can be stated as follows:

Theorem 15.6.8. Let X be a UMD space, and suppose that both X and X∗

have the RMF property (Definition 3.6.10). Let B,B−1 ∈ L∞(Rd; L (Cd)),
where B−1(x) := B(x)−1 is the pointwise inverse of the matrix-valued function
B. Let 1 6 p− < p+ 6 ∞, and suppose that A := − divB∇ is sectorial in
Lp(Rd;X) for all p ∈ J := (p−, p+). Then the following are equivalent:

(1) For all p ∈ J , the following four sets are R-bounded in Lp(Rd;X):

Aa,b :=
{

(t
√
−∆)a(I + t2A)−1(t

√
−∆)b : t > 0

}
, a, b ∈ {0, 1}.

(2) For all p ∈ J , A has a bounded H∞-calculus in Lp(Rd;X), and

‖
√
Au‖Lp(Rd;X) h ‖∇u‖Lp(Rd;X)d

Remark 15.6.9. Several remarks concerning Theorem 15.6.8 are in order:

(a) While (2) contains a full analogue of (15.37) in Lp(Rd;X), along with the
boundedH∞-calculus of independent interest, the characterising condition
(1) is less satisfactory than in the scalar-valued case, as it involves non-
trivial R-boundedness properties of operators on Lp(Rd;X). However, note
that the R-boundedness of A0,0 is simply the R-sectoriality of A which,
by Theorem 10.3.4(2), is a general necessary condition for the bounded
H∞-calculus contained in (2). When X = C and p = 2, verifying (1)
from easy-to-check pointwise conditions on B is straightforward operator
theory, and the difficult harmonic analysis enters in passing from (1) to (2).
Curiously, in the Banach space valued generality, the easy part becomes
unavailable but the difficult part may still be pushed through.
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(b) Another shortcoming of Theorem 15.6.8 compared to the scalar-valued L2

case is that, in order to get (2) for a given p, one needs to verify (1) for an
open range of exponents (p−ε, p+ε). However, it was subsequently shown
by Hytönen and McIntosh [2010], and later with a different argument by
Auscher and Stahlhut [2013], that conditions of type (1) self-improve from
one exponent p to a small range around it. This allows one to obtain a
version of Theorem 15.6.8 for a fixed p in place of the range of p as stated.

(c) The RMF property (Definition 3.6.10) and the related Rademacher max-
imal function (Definition 3.6.8) were first introduced by Hytönen, McIn-
tosh, and Portal [2008] for the very needs of running the argument to prove
Theorem 15.6.8, but these notions (or their extensions) have proven to be
useful in other contexts, notably in the study of Banach space valued mul-
tilinear operators by Di Plinio and Ou [2018], Di Plinio, Li, Martikainen,
and Vuorinen [2020b], and Amenta and Uraltsev [2020].

(d) For Lp-estimates related to Kato’s square root problem in the scalar-valued
case, there is an alternative approach based on a generalisation of the
Calderón–Zygmund theory discussed in Chapter 11, extrapolating from
the L2-results of Auscher, Hofmann, Lacey, McIntosh, and Tchamitchian
[2002]. The operators now under consideration are far less regular than
those covered in Chapter 11, and the extrapolation yields their bounded-
ness, in general, only in some subinterval (p−, p+) ⊆ (1,∞) determined by
the details of the operator in question. Based on an extrapolation theory
for “non-integral operators” developed by Blunck and Kunstmann [2003],
a systematic investigation of the maximal ranges of p for various Lp esti-
mates related to the Kato square root problem is carried out by Auscher
[2007].

(e) Yet another approach to the scalar-valued Lp theory is due to Frey, McIn-
tosh, and Portal [2018]. As in the approach of Hytönen, McIntosh, and Por-
tal [2008] and in contrast to that of Auscher [2007], they work directly in
Lp instead of extrapolating from L2; also their “proof shows that the heart
of the harmonic analysis in L2 extends to Lp for all p ∈ (1,∞), while the
restrictions in p come from the operator-theoretic part of the L2 proof”.
A novelty in their approach is using the theory of tent spaces; on the
side of the results, this allows them to dispense with the R-boundedness
assumptions required by Hytönen, McIntosh, and Portal [2008].

Given the focus of these volumes on analysis in Banach spaces, we have
not covered, in the discussion above, the rich literature of extensions and
applications of the machinery of Auscher, Hofmann, Lacey, McIntosh, and
Tchamitchian [2002] and Axelsson, Keith, and McIntosh [2006] in the L2 the-
ory of partial differential operators and equations; for this, we refer the reader
to the numerous papers citing these pioneering contributions. The first-order
approach to the Kato square root problem of Axelsson, Keith, and McIntosh
[2006] has been adapted in Maas and Van Neerven [2009] to the Gaussian set-
ting to prove a nonsymmetric version of the Meyer inequalities in Malliavin
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calculus. This work belongs to a circle of ideas that will be treated in Volume
IV.


	15 Extended calculi and powers of operators
	15.1 Extended calculi
	15.1.a The primary calculus
	15.1.b The extended Dunford calculus
	15.1.c Extended calculus via compensation

	15.2 Fractional powers
	15.2.a De nition and basic properties
	15.2.b Representation formulas

	15.3 Bounded imaginary powers
	15.3.a De nition and basic properties
	15.3.b Identi cation of fractional domain spaces
	15.3.c Connections with sectoriality
	15.3.d Connections with almost γ-sectoriality
	15.3.e Connections with γ-sectoriality
	15.3.f Connections with boundedness of the H1-calculus
	15.3.g The Hilbert space case
	15.3.h Examples

	15.4 Strip type operators
	15.4.a Nollau's theorem
	15.4.b Monniaux's theorem
	15.4.c The Dore–Venni theorem

	15.5 The bisectorial H∞-calculus revisited
	15.5.a Spectral projections
	15.5.b Sectoriality versus bisectoriality

	15.6 Notes
	Section 15.1
	Section 15.2
	Section 15.3
	Section 15.4
	Section 15.5
	The Kato square root problem





