>
S K\).\C &&D

2 o (G
&//
TR 30%

THE DYNAMIC RESPONSE OF TYRES
TO BRAKE TORQUE VARIATIONS
AND ROAD UNEVENNESSES






THE DYNAMIC RESPONSE OF TYRES
TO BRAKE TORQUE VARIATIONS
AND ROAD UNEVENNESSES

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,
op gezag van de Rector Magnificus Prof. ir. K.F. Wakker
in het openbaar te verdedigen
ten overstaan van een commissie,
door het College voor Promoties aangewezen
op maandag 16 maart 1998 te 13:30 uur

door

Peter Willem Anton ZEGELAAR

werktuigkundig ingenieur
geboren te Sliedrecht



Dit proefschrift is goedgekeurd door de promotor:

Prof. dr. ir. H.B. Pacejka

Samenstelling promotiecommissie:

Rector Magnificus,

Prof. dr. ir. H.B. Pacejka,

Prof. dr. ir. E. van der Giessen,
Prof. dr. ir. A.A.A. Molenaar,
Prof. dr. ir. J.A. Mulder,

Prof. dr. R.S. Sharp,

Dr. ir. A.Th. van Zanten,

Prof. ir. C.P. Keizer,

Delft University of Technology
Mekelweg 2

2628 CD Delft

The Netherlands

ISBN 90-370-0166-1

Technische Universiteit Delft, voorzitter
Technische Universiteit Delft, promotor
Technische Universiteit Delft
Technische Universiteit Delft
Technische Universiteit Delft

Cranfield University, Engeland

Robert Bosch GmbH, Duitsland
Technische Universiteit Delft, reserve

Copyright © by Peter W.A. Zegelaar, 1998.

All rights reserved. No part of the material protected by this copyright may be reproduced or
utilised in any form by any means, electronic or mechanical, including photocopying, recording or
by any information storage and retrieval system, without the prior written permission of the

author.

The author makes no warranty that the methods, calculations and data in this book are free from
error. The application of the methods and results are at the user's risk and the author disclaims
all liability for damages, whether direct, incidental or consequential, arising from such application

or from any other use of this book.

Printed in Delft, the Netherlands




Stellingen
behorende bij het proefschrift

“The Dynamic Response of Tyres
to Brake Torque Variations and Road Unevennesses”

‘De aanstoting van een band door korte wegdekoneffenheden kan worden
weergegeven met behulp van drie effectieve inputs welke gemeten worden bij
zeer lage snelheid: de effectieve wegdekhoogte, de effectieve wegdekhelling en
de variaties van de effectieve rolstraal (dit proefschrift).

Het flexibele-ring-model kan gebruikt worden om de quasi-statische
responsies van de band rollend over korte wegdekoneffenheden te bepalen
indien de niet-lineariteiten van de zijwangstijfheden ingevoerd worden in dit
model (dit proefschrift).

Het starre-ring-model waarin de gordel van de band gemodelleerd wordt als
een starre ring afgesteund op de zijwangstijfheden geeft een realistische
beschrijving van het dynamisch gedrag van de band in het frequentiegebied
0-80 Hz (dit proefschrift).

De eerste orde differentiaalvergelijking met de relaxatielengte als parameter
kan ook worden gebruikt voor zeer lage rijsnelheden indien de
bandvervorming of de slip als toestandsvariabele wordt gebruikt en de
slipsnelheid als ingangsvariabele (dit proefschrift).

De invloed van een relaxatielengte-systeem op het gedrag van de band wordt
sterk bepaald door de gekozen randvoorwaarden van het wiel: de stuurhoek
als ingangsvariabele voor het dwarsgedrag en het remmoment als
ingangsvariabele voor het langsgedrag (dit proefschrift).

De uitdrukking voor de relaxatielengte voor het langsgedrag van de band
(langsslipstijfheid gedeeld door langsstijfheid) is overeenkomstig aan de uit-
drukking voor de relaxatielengte voor het dwarsgedrag (dwarsslipstijfheid
gedeeld door dwarsstijtheid) (dit proefschrift).



10.

11.

12.

13.

14.

Experimenteel onderzoek is essentieel voor de ontwikkeling van een
realistisch bandmodel. Tevens moeten de experimentele condities zo gekozen
worden dat ze zo goed mogelijk overeenkomen met de condities waarvoor het
model ontwikkeld wordt.

Het onderzoek naar comfort (trillingen en geluid) van voertuigen op een
slechte weg en het ontwerp van regelsystemen zoals ABS en VDC met behulp
van computersimulaties vergen een geschikt dynamisch bandmodel.

Gezien het feit dat op de Nederlandse wegen nauwelijks loslopend vee
voorkomt, moeten voertuigaccessoires zoals ‘bull-bars’ verboden worden
omdat deze in geval van een aanrijding de overige verkeersdeelnemers
onnodig schade en letsel kunnen toebrengen.

Het gebruik van verkeersdrempels om de gemiddelde snelheid van voertuigen
te verlagen is vanuit het milieu-oogpunt een verkeerde methode.

Om te kunnen promoveren op een voertuigdynamisch onderzoek is het bezit
van een motorvoertuig geen noodzakelijke voorwaarde.

Bij de discussie over het gebruik van de randen van de nacht voor het
vliegverkeer, wordt vaak ten onrechte voorbijgegaan aan het ongemak voor
reizigers die of middeu iu de nacht thuiskomen of midden in de nacht thuis

moeten vertrekken.

Geavanceerde computeranimaties vergroten de betrouwbaarheid van een
weersvoorspelling niet.

Het proefschrift van een AIO mag geen levenswerk zijn.
(Prof.dr W.A. Wagenaar, Mare, 29 januari 1998)

Delft, 16 maart 1998 Peter W.A. Zegelaar
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otation

Symbol Unit

a [m]

A [m?]
A [rad]
A, [m?]
a, (m]

b [m]

B [rad]
b, [m]
b [m]

C

C. [N}
C, [N/m}
C, [N/m]
¢ [-

¢ [N/m]
Cho [Nm/rad]

Chy [N/mz]

Description

half the contact length

area of the cross-section of the ring

height of the basic functions for effective plane angle
total area of the contact patch

modal displacements of tyre ring

half the contact width

effective plane angle

modal displacements of tyre ring

width of the tyre ring

damping matrix

longitudinal slip stiffness

longitudinal tyre stiffness

vertical tyre stiffness

coefficient of the contact ellipsoid
translational sidewall stiffness

rotational sidewall stiffness

tangential sidewall stiffness per unit of length



Notation

Chw [N/m?] radial sidewall stiffness per unit of length
o [N/m?] longitudinal tread element stiffness per unit of length
oy (N/m] longitudinal stiffness of tread in the contact patch
C, [m] modal displacements of tyre ring
d, [m] modal displacements of tyre ring
E (-] error
E [N/m?] modules of elasticity
EA [N] extensional stiffness tyre ring
EI [Nm?] bending stiffness tyre ring
f [Hz] frequency
f. (-] rolling resistance coefficient
F, [N] pre-tension of tyre ring
G [N/m?* shear modules of elasticity
H frequency response function
H [m] height of the basic functions for effective plane height
h, [m] height of the tyre sidewall
I, kg m?] moment of inertia of part of tyre that moves with rim
1, (kg m?] moment of inertia of part of tyre that moves with tyre ring
] -] complex variable
K stiffness matrix
k,, [Ns/m] translational sidewall damping coefficient
ko [Nsm/rad] rotational sidewall damping coefficient
ky, [Ns/m?]  tangential sidewall damping per unit of length
R [Ns/m?] radial sidewall damping per unit of length
l, {m] arc length of the tyre sidewall
M mass matrix
my, kgl mass of part of tyre that moves with tyre ring
m [-] number of modes
n [ number of points
P [N/m? tyre inflation pressure
P, [N/m?] average vertical pressure in the contact patch
Q transformation matrix from fixed to rotating coordinate
system
q, coefficients polynomial half the contact length as function of
vertical load
qpv [s/Jm] coefficients decrease in sidewall stiffness with velocity
Qpox [1/m]) coefficients decrease in radial deflection with longitudinal

deflection

10




Notation

95

sz
Qe

qtr)t

=2
=

W W

=
<

<c§ﬁ~%

=

NkRggx<m<:

(N/m?]

[N/m?2]
[N/m?]
[N/m?]
[N]
[m]
[m]
fm]
[m]
[m]
[m]

[m]
[s]
[m]
[m]
[m/s]
[m/s]
[m/s]
[m]
fm]
[m]
{m]
(m]

coefficients polynomial rolling resistance coefficient as
function of velocity

coefficients vertical force as function of vertical deflection
coefficients tread element damping as function of velocity
coefficients polynomial effective rolling radius as function of
vertical load

total external pressure distribution per unit of length
coefficients velocity dependency vertical tyre stiffness
tangential pressure distribution (force per unit of length)
radial pressure distribution (force per unit of length)
longitudinal pressure distribution (force per unit of length)
vertical pressure distribution (force per unit of length)
radius of the test drum

increase tyre radius with velocity

radius of the free tyre

effective rolling radius

loaded tyre radius

radius of the tyre sidewall

position in the contact patch relative to the centre of the
contact patch

auto spectral density function

cross spectral density function

thickness of the tyre sidewall

time

longitudinal deformation

tangential displacement

rolling velocity

longitudinal slip velocity

longitudinal velocity

effective plane height

radial displacement

displacement in the longitudinal direction

displacement in the lateral direction

displacement in the vertical direction



Notation

Symbol Unit

Description

g, [m] horizontal shift vertical force in contact zone

€, [m] vertical shift horizontal force in contact zone

r [-] coherence function

n |m/N] load dependency of the effective rolling radius

n [N/m] modal force acting on the tyre ring

0} [rad] angle of rotation about the wheel axis

K (-] practical slip

X -1 relative damping

A -] transition point sliding region of the brush model
Mos [m] width of the basic functions

Mimp [m] shift of the basic functions

A [m] offset of the basic functions

w mean value

n -1 friction coefficient

0 [-1 tyre parameter of the brush model

0 [rad] angle of rotation about the wheel axis

pA kg/m] mass density of tyre ring

P, [m] longitudinal tyre deformation

P, [m] vertical tyre deformation

c standard deviation

c {m} relaxation length

T [s] time interval, time constant

o {rad/s] frequency

(9] {rad/s] rotational velocity

& {N/m] modal force acting on the tyre ring

- [-] theoretical longitudinal slip

Indices:

a axle, rim or suspension n mode number

b tyre belt or tyre sidewall 0 rotation about y-axis
c contact patch r rolling

e effective r residual

e external s slip

i internal T tangential direction
i at point i x in x direction

l loaded z in z direction

N normal direction 0 undeformed, static value

12




General Infroduction

1.1 The pneumadatic tyre

The pneumatic tyre forms a vital component of a road vehicle as it interacts with
the road in order to produce the forces necessary for support and movement of the
vehicle. A thorough understanding of the behaviour of the pneumatic tyre is an
essential aspect of analysing the dynamics of vehicles.

The forces and moments generated in the tyre are the result of tyre
deflections due to the interaction between wheel and road. Tyre vibrations arise
through road irregularities, wheel axle motions, and tyre non-uniformities. The
complex tyre structure with its compliance and inertia may give rise to isolation
from these irregularities in certain frequency ranges but also to magnification at
other frequencies.

In the longitudinal direction the force variations arise through road
irregularities, which are transmitted to the wheel axle and through the wheel
suspension to the car body and steering wheel. Fluctuations in the wheel angular
speed due to braking and driving will also generate longitudinal force variations.
The cornering force acts in the lateral direction; road irregularities and wheel
vertical and steering oscillations have a large influence on the force generated.
The vertical oscillations induced by road and tyre irregularities are transmitted

13



Chapter 1

to the axle and further to the vehicle. The variations in normal load of the tyre
have an important, often adverse, effect on the generation of horizontal shear
forces.

The behaviour of the pneumatic tyre is related to its complex construction, it
can be seen as a visco-elastic torus composed of high-tensile-strength cords and
rubber. Figure 1.1 shows the construction of a radial-ply tyre which is the typical
construction of modern automobile tyres. The radial-ply tyre (in short radial tyre)
is characterised by parallel cords running directly across the tyre from one bead
to the other. These cords are referred to as the carcass plies. Directional stability
of the tyre is supplied by the enclosed pressurised air acting on the sidewalls of
the carcass and by a stiff belt of fabric or steel that runs around the
circumference of the tyre. The direction of the parallel plies of the belt is
relatively close to the circumferential: typically 20°.

belt plies ~.—— T tread
. .. ~~~~- sidewall
inner lining. rubber

carcass plies
(running at a

filler . radial angle)

rim _

| |
T weau

Figure 1.1: Construction of a radial-ply tyre.

The relatively soft carcass provides the radial tyre with a soft ride and the stiff
belt provides the radial tyre with good cornering properties by keeping the tread
flat on the road despite horizontal deflections of the tyre. The function of the
tread is to establish and maintain contact between the tyre and the road. The key
factor for the generation of horizontal forces in the contact zone is the adhesion
between tread and road. The remaining components of the tyre are the steel-
cable beads which firmly anchor the assembly to the rim.

14




General Introduction

1.2 Tyre modelling for vehicle dynamic analysis

Understanding of tyre properties is essential to the proper design of vehicle
components such as wheel suspensions, steering and braking systems. For this
purpose, different kinds of mathematical models of the behaviour of the
pneumatic tyre are used in vehicle dynamic simulations. We may distinguish
theoretical models based on the physics of the tyre construction, and empirical
models which are based on experimental data. Combinations of both approaches
are also used in the development of the tyre models.

To understand the force generation of the tyre, it is useful to introduce the
concept of slip of a rolling tyre, which is connected with the difference between
the actual wheel velocity and the wheel velocity at free rolling. Free rolling is the
situation in which the tyre is neither braked nor driven. The relationship that
depicts the generated horizontal force as function of the slip in steady-state
conditions is called the steady-state slip characteristic or the stationary slip
characteristic. At small values of slip, the horizontal forces depend mainly on the
elastic deformation of tyre. At very small values of slip the generated horizontal
force is proportional to the slip, and the ratio is called the slip stiffness. At higher
levels of slip the horizontal forces are limited by the friction between tyre and
road. The strongly non-linear slip characteristics determine to a great extent the
behaviour of vehicles manoeuvring at high levels of lateral acceleration
[2,41,45,92 99].

Physical tyre models based on detailed modelling of the tyre can provide
accurate results only by excessive consumption of computer resources and
calculation time. Hence, at present, these kinds of models are not suitable for
vehicle dynamic studies {22,84,99]. The empirical models, on the other hand, are
much faster in calculation as these models represent measured tyre data in a
rather compact form [87,88].

Steady-state tyre models will lose their validity when the motion of the wheel
shows variations in time as the horizontal tyre deformation does not
instantaneously follow slip variations. To build up a horizontal deflection the tyre
has to travel a certain distance. The distance travelled needed to reach 63% of the
steady-state deflection after a step change is generally designated relaxation
length and is approximately independent of the running speed of the tyre.

Figure 1.2a shows the typical response of the horizontal force F to a step
change in the slip as function of the travelled distance x. Figure 1.2b shows the
step response of the tyre as function of the time ¢. The time constant T of this

15



Chapter 1

transient response is defined as the relaxation length ¢ divided by the velocity V
and decreases with the velocity:

T=— (1.1)

/

< O ~——» x [m] - T —> ¢ [s]

(a) response in distance domain (b) response in time domain
Figure 1.2: A first order response in both the distance and the time domains.

It is important to include the relaxation length when studying vehicle
manoeuvres with a relatively fast steering input such as lane changes [100].
Furthermore, the relaxation length plays an important role in the ‘shimmy’
phenomenon. Shimmy is a self-excited vibration ot the steerable wheels about the
steering axis, which may occur in the front wheels of a road vehicle [80] or in the
landing gear of a taxiing aircraft [14,18]. To accurately represent the weave and
wobble modes of single track vehicles (i.e. motorcycles) it is essential to include
the relaxation length [73,102]. The relaxation length increases with increasing
vertical load and decreases with increasing slip. This non-constant relaxation
iength has an adverse eifect on the generation of horizontal forces during
variations in vertical load while cornering [86,106,107].

The relaxation length approach, however, is satisfactory only for low
frequencies, as the inertia properties of the tyre cannot be neglected at higher
frequencies. Furthermore, the influences of the inertia forces become more
important at higher velocities [67]. The dynamic properties of tyres play an
important role in the design of control algorithms like Anti-lock Brake Systems
(ABS) or Vehicle Dynamics Control systems (vDC). For instance, the rapid brake
pressure variations during ABS operation cause oscillations of the tyre-wheel
system. Adequate dynamic tyre models are needed to design and evaluate the
control systems [121,122], or to analyse the operation of ABS on uneven roads
[44].
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General Intfroduction

A fairly new area of interest is the development of tyre models for driving
simulators. In these simulators the human-vehicle interaction is investigated
rather than the behaviour of the vehicle itself. The requirements for a driving
simulator are that it should have realistic behaviour and the ‘real time’
simulations. One aspect of the realistic behaviour is that the driving simulator
needs to be able to stop and to start again. This requirement puts additional
stress on the tyre model, as most simulations encounter numerical problems at
low speeds because the speed appears in the denominator of the expressions of
slip [11,117].

To study ride and comfort of vehicles in the low and intermediate frequency
range (0-50 Hz) the tyre may be represented by its vertical compliance only, while
the damping is usually neglected. Such simple tyre models are used for the
development of passive and actively controlled vehicle suspensions [48).

The investigation of noise, vibration and harshness (NVH) requires a more
detailed tyre model. An overview is given in the state-of-the-art paper of
Willumeit and Bohm [118]. An elegant model to study the in-plane vibrational
properties of tyres is the flexible ring model introduced by Tielking [109]. Gong
used such a model to study the vibration transmission properties of tyres in the
frequency range 0-250 Hz [33]. At higher frequencies (200-1000 Hz) the tread
pattern produces airborne noise [89].

The last category of tyre models is represented by models that give a detailed
description of the tyre structure. The tyre structure is very complex as the tyre is
a multi-layered, non-uniform, anisotropic, cord—rubber composite [22]. These
physical models are based on powerful finite element computer codes. Ridha and
Theves give an overview [94] of the mechanics of tyres, in which they focus on
durability, wear, noise, rolling resistance, vibrations and adhesion of a rolling
and slipping tyre. These kinds of models, which suit the tyre engineer rather
than the vehicle engineer, are beyond the scope of the research presented.

1.3 Objectives and scope

The research presented in this thesis forms part of a project carried out at the
Vehicle Research Laboratory of the Delft University of Technology and the TNO
Road-Vehicles Research Institute. The project is called SWIFT, which stands for
Short Wavelength Intermediate Frequency Tyre model. This project is supported
by an International industrial consortium: Audi AG, BMW AG, Continental AG,
Ford GmbH, Goodyear Technical Center Luxembourg, ITT Automotive Europe
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Chapter 1

GmbH, Mercedes-Benz AG, PSA Peugeot-Citroén, Robert Bosch GmbH. The

objectives of this research project are the development and implementation of a

mathematical model of a pneumatic tyre that is well suited for vehicle

simulations even under extreme manoeuvring conditions. The requirements for

the model development are:

+ A compact relatively fast tyre model, as it has to be used for vehicle dynamic
simulations.

e Accurate representation of measured stationary slip characteristics.

« High and low velocities, including starting to roll from stand-still.

o Medium frequency range (f < 50 Hz).

+ Short wavelengths (A > 0.2 m).

« Uneven roads with relatively short and sharp unevennesses.

In this thesis the development of the tyre model for in-plane dynamics will be

discussed, the model for the out-of-plane tyre dynamics is being developed by

Maurice [65] while TNO is responsible for the professional software development

of the model. The tyre in-plane dynamics refer to tyre vibrations in the wheel

plane. The wheel plane is the central plane of the tyre normal to the axis of

rotation, see Figure 1.3. The tyre stands on the road plane and the contact patch

is defined as the interface between tyre and road.

wheel plane | .z A vertical

N
Figure 1.3: The coordinate system used.

A right-handed Cartesian coordinate system (x,y,2) oriented according to 1SO 8855
is used. The x-axis is oriented along the intersection line of the wheel plane and
the road plane with the positive direction forwards. The z-axis is perpendicular to
the road plane with the positive direction upwards. The y-axis is perpendicular to
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the wheel plane, its direction is chosen to make the axis system orthogonal and
right-handed. This convention produces a positive vertical force for a loaded tyre.
In addition, if the tyre rolls in positive x direction, the rotational velocity about
the y-axis is positive as well, traction forces are oriented in the positive x
direction and braking forces are negative.

Tyre in-plane dynamics are referred to as vibrations in the longitudinal and
the vertical directions and rotational vibrations about the wheel-axis. From the
geometrical point of view, the tyre is assumed to be symmetrical with respect to
the wheel plane. Tyre in-plane dynamics may also be referred to as symmetrical
tyre behaviour, while tyre out-of-plane dynamics may be referred to as anti-

symmetrical behaviour [83].
Domains used for the analysis of tyre behaviour

The responses of the tyre will be analysed in both the time domain and the
frequency domain. The frequency domain is most suitable for estimating
frequency response functions and natural frequencies of the tyre. The time
domain will be used for analysing the non-linear tyre responses. The Fourier
transformation is used to transform the signals between the time domain and the
frequency domain.

The transient tyre response is characterised by the relaxation length which is
approximately independent of the velocity. Therefore, the tyre transient
responses will be studied in the travelled distance domain. Analogously, the
responses in the frequency domain can be transformed into responses in the road-
frequency domain. Figure 1.4 presents the transformations between the various

domains.
i) . . f
[ . Fourier Transformation
‘ time . frequency
domain domain
x=Vt fr=f/V
o=Vt wp =w/V
| travelled X | Fourier Tr , {—_ fr
1‘ distance ourier Transformation road frequency
domain | domain

Figure 1.4: The domains used in the analysis.
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The road frequency f5 can be expressed in terms of the time frequency f:
fr=1 (1.2)

The road irregularities can be expressed in terms of wavelength. The wavelength
A of the excitation is defined as:

1_V (1.3)

fe
The tyre used as reference for the model development

In this thesis many aspects of one tyre are investigated rather than one aspect of
many tyres because we focus on the model development rather than on
comparing the performance of several tyres. The model developed in this thesis is
considered to be a general model for the in-plane tyre behaviour even though this
model has been validated for one tyre only. It is expected that the basic structure
of the model will not have to be changed to represent different types of tyres.

The tyre used in this research is a standard passenger car tyre with the
dimensions 205/60R15 91V, where (cf. 193] and Figure 1.5):
205 = section width of the tyre in millimetres.
60 = aspect ratio: the ratio between the section height and section width in %.
R = construction of the tyre: radial tyre.
15 = diameter of the rim in inches.
91 =load index: the maximum nominal wheel load is 6030 N.
V = speed rating: the maximum velocity is 240 km/h.

T 1

| |
outer { section
diameter ‘height

\
*

| rim diameter

Figure 1.5: The tyre cross-section.
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Experimental setup

The experiments were carried out on the rotating drum test stand in the Vehicle
Research Laboratory of the Delft University of Technology. The wheel with the
tyre is mounted in a rig on top of the rotating drum that represents the road
surface. The experimental conditions are:

» Constant inflation pressure of 2.2 bar for a cold tyre.

« Three constant axle heights corresponding to 2000, 4000, 6000 N vertical load
for & non-rotating tyre. Due to the constant axle height the vertical force grows
with increasing velocity.

» Five constant drum velocities: 25, 39, 59, 92 and 143 km/h.

* Relative new tyre with little or no wear.

Appendix A presents the experimental configurations.

1.4 OQutline of the thesis

Rather than modelling the complex tyre structure in all its details, the most
important dynamic properties of the tyre will be taken into account in a
mathematical model of the tyre. Such an approach will lead to a relatively
compact tyre model. The typical structure of the radial tyre is a stiff belt mounted
on a relatively soft carcass. The development of the model is based on the
assumption that the belt remains rigid in the frequency range considered.
Accordingly, the tyre belt is modelled as s rigid ring suspended on the rim by
means of springs and dampers representing the carcass which contains
pressurised air. A contact model is added to the ring dynamics to generate the
forces between tyre and road. The complete model will be called the rigid ring
model.

Figure 1.6 presents a schematic outline of this thesis. The central chapter of
this thesis is Chapter 7: the development of the rigid ring tyre model. To be able
to develop this model some detailed theoretical and experimental studies of the
tyre behaviour are presented in Chapters 2 through 6. The goal of these
preliminary chapters is to gain insight into certain aspects of the behaviour of the
tyre and the results of these chapters are used as building blocks for the rigid
ring model. The rigid ring model is validated for various situations in the
Chapters 8 through 11.
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Building blocks Model development Validation
Chapter 2 P ‘ Chapter 8]
Static tyre properties Modal analysis of

tyre vibrations
-Ch—apter 3 / C-l;apter 9
Stationary slip Dynamic tyre responses

characteristics

Chapter 4 ' Chapter 7

The rolling tyre as a Development of the

{ to brake torque variations

Chapter 10
Dynamic tyre responses

geometric filter l\ rigid ring tyre model to road unevennesses
Chapter 5 /l Chapter 11
Transient response \ Dynamic tyre responses

of physical model \

rChapter 6 /\
i Transient response

! of pragmatic model

‘ to axle height oscillations

‘ Chapter 12

Conclusions and
recommendations

Figure 1.6: Structure of the development and the validation of the rigid ring tyre
model.

Chapter 2 presents the basic tyre properties which are needed for the model

development like the vertical and longitudinal tyre stiffnesses, the inertia
properties of the tyre and the dimensions of the contact patch. The force
generation of a rolling tyre under steady-state conditions is presented in
Chapter 3.

The excitation of tyres by short wavelength unevennesses is discussed in
Chapter 4. The rolling tyre acts as a geometric filter and smoothens the sharp
edges of these short wavelength unevennesses. The rigid ring model cannot be
used directly on such irregularities because the interface of this model with the
road is represented by a single point only. This problem is approached in an
empirical way: the tyre is rolled over the obstacle at very low velocity and these
quasi-static tyre responses are transformed into an effective road surface. The
effective road surface is used as input to the rigid ring model rather than the
actual shape of the obstacle concerned.

Chapters 5 and 6 present the transient response of the tyre. Chapter 5
approaches this problem from a physical point of view where the tread is
modelled as individual elements. Chapter 6 approaches the problem
pragmatically: the tyre transient response is represented by a first order
differential equation based on the relaxation length concept.
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After all sub-models and building blocks have been developed, the rigid ring
model is developed in Chapter 7. The modes of vibration of a non-rotating tyre
are validated in Chapter 8. Unfortunately, the experimental modal analysis
technique used did not allow the validation of the modes of a rotating tyre.
Instead, the natural frequencies of the rolling tyre were validated in Chapter 9,
10 and 11.

The tyre in-plane dynamics are generally excited by road unevennesses,
longitudinal and vertical axle motions, brake torque fluctuations and tyre non-
uniformities. The tyre model will be validated for three of the five possible
excitations: Chapter 9 presents the tyre responses to brake torque variations;
Chapter 10 presents the tyre responses to uneven roads; and Chapter 11 presents
the tyre responses to axle height oscillations.

In the experimental investigations, tyre non-uniformities were not
considered. We may refer to an earlier study on this type of tyre responses [82].
The longitudinal axle motions are also not used as excitation of the tyre because
no facilities were available. The responses to such an excitation do not provide
information additional to that provided by brake torque variations because the
longitudinal and rotational tyre dynamics are coupled.

The mechanical properties of a pneumatic tyre are rather complex and non-
linear: the stiffness and damping depend on the amplitude and frequency of
excitation and on the tyre temperature. Therefore, it is very important that
excitation of the tyre for the validation of the model and parameter estimation is
realistic. Thus, the excitations of the tyre during the experiments have to be
comparable to the excitations of the tyre operating on a vehicle. Most of the
dynamic parameters will be obtained from measured frequency response
functions of the tyre responses to brake torque variations presented in Chapter 9.
The parameters related to the vertical tyre dynamics will be obtained from cleat
excitations in Chapter 10.

The rigid ring model has been validated for a number of severe conditions.
Chapter 9 presents the tyre responses to large brake torque variations like
successive steps in brake torque, braking to stand-still and braking with wheel
lock. In Chapter 10 the tyre model is validated for short wavelength road
unevennesses. The effective road surface assessed in Chapter 4, is used as
excitation of the model rather than the actual road surface. Chapter 10 shows
that the effective inputs can also be used at higher velocities and during braking.

It is well known that axle height oscillations during cornering have an
adverse effect on the generation of lateral forces [86,106,107]. Chapter 11
presents responses of a tyre subjected to a constant brake torque during axle
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height oscillations. The tyre model is validated for large and small variations of
the axle height. Very severe conditions were also considered including axle height
oscillations where the vertical force decreases to such an extent that wheel lock
occurs and the case in which the tyre loses contact with the road.

Finally, the most important conclusions of this study are presented in
Chapter 12. The parameters of the tyre and how these values were determined
will also be discussed. Recommendations for further development of the model
are mentioned. In the Appendices detailed information on the experimental

configurations is given.
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2.1 Introduction

This chapter presents basic tyre properties which are needed for the development
of the dynamic tyre models in the subsequent chapters. Section 2.2 presents the
dimensions of the contact patch which are important for the generation of shear
forces in the tyre-road interface.

Sections 2.3 and 2.4 present the total vertical and longitudinal tyre
stiffnesses. These stiffnesses are related to overall tyre deflection due to axle and
rim displacements. In the subsequent chapters more elaborate tyre models are
used in which the total tyre stiffness is represented by a number of stiffnesses in
series. The tyre stiffnesses play an important role in the tyre dynamics. First, the
tyre natural frequencies are related to the tyre stiffnesses, and second, the tyre
transient responses are related to the tyre stiffnesses as the tyre needs some
distance travelled to build up the horizontal deflections.

Section 2.5 presents the masses and moments of inertia of the tyre. Although,
the moment of inertia is not a static tyre propriety as it is related to tyre
dynamics it is nevertheless presented in this chapter. This is because of the fact
that this property was obtained from static measurements of the tyre dimensions
and mass density of the tyre.
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2.2 Contact patch dimensions

If the tyre is loaded on the road the tyre is flattened near the tyre contact zone
and a finite contact length arises. The size of the contact patch increases with
increasing load. The dimensions of the contact patch are important for the
generation of shear forces in the contact zone. See for instance the brush model
which is introduced in Section 3.3.

The dimensions of the contact patch were measured by pressing the tyre on
carbon paper. These measurements showed that the shape of the contact patch
changes from an oval shape at very low values of vertical load to a more
rectangular shape at higher values of vertical load. To represent the measured
shape of the contact area, an ellipsoid shape is proposed:

x (4 y <
4= =1 2.1
)l w

in which a, denotes half the contact length, b, half the contact width, x and y the
envelope of the contact area and ¢ the power of the ellipsoid. The shape factor ¢
provides a smooth transition between the oval and the rectangular shape as
shown schematically in Figure 2.1.

i i
5| -
i longitudinal
& direction
- - >
: x
/ |
a b
R <. >
\

y v lateral direction
Figure 2.1: The general shape of the contact area.

The expression for the total area A, which cannot be calculated analytically for
c # 2, reads:

x=a,

A= | 9b, -§/1- (x/a,) dx (2.2)

x=—0,

26




Static Tyre Properties

The effective contact area (a,, b,) is defined as a rectangle with the same area and
the same length/width proportion:

dab, =4, ==t (2.3)
e b, b

e [+

The dimensions of the contact area have been measured both on a flat road
surface as on the 2.5 meter diameter drum for four vertical loads and the results
are presented in Tables 2.1a and 2.1b. The contact patch on the drum is
relatively shorter and wider and more rectangular than the contact patch on the
flat road.

Table 2.1a: Dimensions of the contact area on a flat road.

vertical actual contact patch eff. contact patch total contact

load length width power  length width area  pressure
F,IN] a, [mm] b [mm] c -] a,[mm] b,[mm] A_ lem®] p, (bar]
2000 43.0 59.5 2.18 38.7 53.5 82.8 2.41
4000 67.0 72.1 2.19 60.3 65.0 1566.7 2.55
6000 84.0 74.8 2.85 78.5 69.9 219.2 2.74
8000 100.5 76.9 3.48 95.7 73.2 280.3 2.85

Table 2.1b: Dimensions of the contact area on a 2.5 meter diameter drum.

vertical actual contact patch eff. contact patch total contact
load length  width power length  width area  pressure
F INl @,[mm] b, [mm] c[-] a,lmm] b, [mm] A, [em® p, [bar]
1157 30.8 54.7 2.22 217.8 49.3 54.8 2.11
2000 37.2 62.4 2.42 34.0 57.1 77.7 2.57
4000 57.2 74.6 2.62 53.0 69.0 146.1 2.74
6000 73.2 79.3 3.13 69.0 74.9 206.7 2.90

The x and y coordinates of the carbon contact prints were measured directly. The
coefficients of the analytical shape (Eq. 2.1) were fitted using a least square error
method. The total contact area and the effective contact length and width were
calculated from the coefficients of the analytical shape. The contact pressure p, is
defined as the vertical load divided by the total area of the contact patch,
including the gaps due to the tread pattern:
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L 2.4
p A (2.4)

C
The width of the contact area will not be used as parameter in this thesis. The

contact length measured for four vertical loads is represented by a polynomial as
function of the square root of the vertical load F:

a = quJF? +quiF, 2.5)

where g, and q,, denote the coefficients of the polynomial.

Figure 2.2 shows the measured contact lengths (Table 2.1) and the fitted
contact lengths (Eq. 2.5) for the tyre standing on the flat road and the tyre
standing on the drum. In the subsequent chapters the effective contact length
will be used. Therefore the effective contact length will be referred to as the
contact length.

(a) on flat surface (b)on 2.5 m drum
- 1 T measured
100 . half the contact
length [mm]
80+ o 0o effective
. x x x actual
60
fitted
40 i half the contact
length [mm)]
20 -— effective
0 L L | 0 ) —— actual
0 2000 4000 6000 8000 0 2000 4000 6000 8000

vertical load F, [N} vertical load F, [N]
Figure 2.2: The measured and fitted half contact length as function of the

""" 7

vertical load.

2.3 Vertical tyre stiffnesses

The vertical tyre force vs. vertical deflection is an important tyre characteristic:

« The vertical tyre stiffness influences the natural frequencies of the vertical
vibrations of the tyre.

« The tyre is excited by road unevennesses through the vertical tyre stiffness.

« The dynamic experiments, presented in Chapters 9 and 10, were performed at
constant axle heights. The sensors used for these experiments cannot measure
the static components of the forces accurately. Thus, to evaluate the results of
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the dynamic experiments the vertical load at constant axle height has to be
derived from separate alternative measurements.

Four methods were used to measure the vertical tyre stiffness:

Static stiffness of a non-rotating tyre on both the 2.5 m drum and the flat road
surface: by measuring the settling value of the vertical force after very slowly
increasing the deflection.

Dynamic stiffness of both a non-rotating and a rotating tyre obtained from
small amplitudes of random axle height vibrations around four average
vertical loads (2000, 4000, 6000, 8000 N) and at six velocities (0, 25, 39, 59, 92,
143 km/h).

Dynamic stiffness of both a non-rotating and a rotating tyre obtained from
large sinusoidal axle height motions (F, = 500-9000 N) at three low
frequencies (3%, 1, 1 Hz) and six velocities (0, 25, 39, 59, 92, 143 km/h).

Force vs. deflection characteristics of a rotating tyre: the vertical force obtained
from stationary rolling at four constant axle heights and five velocities (25, 39,

59, 92, 143 km/h).

The static experiments of a non-rotating tyre were performed on a flat surface

and on the 2.5 meter drum. The vertical deflection was increased very slowly to
several selected levels and the vertical force was measured at these deflections
after the tyre had settled. To eliminate the effect of hysteresis forces, the tyre
deflection was slowly decreased to the previous levels, and the force was
measured again. The measured vertical force was fitted with a second order
polynomial as function of the vertical deflection. Table 2.2 presents the vertical
tyre stiffness C,, which was obtained from differentiating the polynomials with
respect to the vertical tyre deflection p,, at different levels of the vertical load.
Figure 2.3 presents the resulting load vs. deflection characteristic.

Table 2.2: The static vertical tyre stiffnesses obtained from the static

deformation of a non-rolling tyre.

vertical measured on flat road measured on 2.5 m drum
load F, deflection p_, stiffness C, deflection p,, stiffness C,
[N] [mm] [N/m] [mm)] [N/m]

0 0.00 163400 0.00 158000
2000 11.23 192700 11.90 178300
4000 20.96 218200 22.57 196500
6000 29.68 240900 32.33 213200
8000 37.64 261700 41.38 228700

29



Chapter 2

10000 — —— 1 T —— on 2.5 m drum
Z on flat surface
= 8000+
k:\l
8 6000
=
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= 4000
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deflection p,q [mm]
Figure 2.3: The measured static vertical force of a standing tyre as function of
the static deflection.

The measured static stiffness on the drum at low values of vertical load is only
4% smaller than the measured stiffness on the flat road. This difference increases
to 14% at 8000 N. The influence of the drum radius can be approximated by [83]:

173
CZ curue R
.curved :[ ] (2.6)
Cz,ﬂat R+ )
where C, ., and C, far denote the vertical tyre stiffness on the curved road and

the flat road, respectively, R denotes the drum radius (1.25 m) and r, denotes the
tyre free radius (0.31 m). According to expression (2.6) the vertical stiffness on
the drum should be 7% lower than the stiffness on the road.

The results of the dynamic stiffness experiments are presented in Tables
2.3a, b and ¢. The experiments were carried out using the measurement tower
equipped with a strain gauged measuring hub. In this test stand the tyre rotates
on a 2.5 m drum and the vertical axle motion is controlled by a hydraulic
cylinder. For more details see Appendix A.2.

Table 2.3a presents the vertical tyre stiffness obtained from small random
axle height oscillations with a standard deviation of 0.15 mm which is equivalent
to 40 N vertical load variations. These experiments were carried out at four
average vertical loads (2000, 4000, 6000, 8000 N) and at six velocities (0, 25, 39,
59, 92, 143 km/h). The vertical tyre stiffness was estimated from the measured
Frequency Response Function (FRF) of vertical force measured in the hub with
respect to the axle height variation in the frequency range 0-30 Hz. In this
relatively low frequency range the FRF is mainly determined by the vertical tyre
stiffness and the mass of the relevant moving part of the tyre test stand including
the wheel with the tyre.
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Table 2.3a: The measured dynamic vertical tyre stiffnesses on the 2.5 m drum
obtained from small random axle height oscillations.

velocity vertical tyre stiffness [N/m] at vertical load
V [km/h] F,=2000N F,=4000 N F,=6000 N F,=8000 N
-0 289000 - 318000 324000 338000
25 205000 215000 229000 235000
39 207000 217000 230000 243000
59 197000 207000 221000 231000
92 199000 207000 221000 238000
143 204000 210000 225000 231000

Table 2.3a shows that the vertical stiffness of a non-rotating tyre is much higher
than the stiffness of a rotating tyre. To emphasise this difference the row
representing zero velocity is shaded. The measured vertical stiffness increases
with the vertical load.

Table 2.3b presents the measured vertical tyre stiffness obtained from large
sinusoidal variations in axle height. The sinusoidal variation in axle height
corresponds to a variation of vertical load from 500 to 9000 N. The experiments
were carried out at three low frequencies (5%, +, 1 Hz) and six velocities (0, 25, 39,
59, 92, 143 km/h). The stiffnesses at each velocity were obtained by
differentiating the fitted load vs. deflection characteristics at the load indicated.

Table 2.3b: The measured dynamic vertical tyre stiffnesses on the 2.5 m drum
obtained from large sinusoidal axle height oscillations.

velocity vertical tyre stiffness [N/m] at vertical load
V |km/h] F,=2000 N F,=4000 N F_=6000 N F,=8000 N
0 196000 211000 224000 237000
25 194000 202000 211000 219000
39 198000 207000 215000 223000
59 200000 208000 216000 224000
92 203000 212000 220000 228000
143 207000 216000 225000 233000

The difference between the vertical stiffness obtained from the random
experiments (Table 2.3a) and sinusoidal experiments (Table 2.3b) for a non-
rotating tyre is very large: up to 50%. The differences in stiffness for a rotating
tyre is much smaller: 5-8% at low velocity, 2-3% at high velocity.
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The dynamic experiments to validate the rigid ring model are presented in
Chapters 9 and 10. These dynamic experiments were carried out at constant axle
heights corresponding to 2000, 4000, 6000 N vertical load for a non-rotating tyre.
The dynamic experiments were carried out on the cleat and brake test stand (see
Appendix A.1). The piezo electric force transducers used in this test stand could
only measure variations in the forces accurately and not the static components.
Therefore, the stationary vertical force at constant axle height was measured
separately with the tyre measurement tower. Table 2.3c presents the measured
vertical force at stationary rolling conditions at four axle heights and six
velocities. The four constant axle heights correspond to 0, 11.90, 22.57 and 32.33
mm vertical tyre deflections p_, for a non-rotating tyre. These values correspond
to 0, 2000, 4000 and 6000 N vertical load for a non-rotating tyre as shown in
Table 2.2.

Table 2.3¢c: The measured vertical force obtained from stationary rolling on 2.5 m

drum.
velocity vertical force [N} at constant axle height

V [km/h] Po=000mm p,=11.90mm p,=22.57 mm p,,=32.33 mm

0 0 2000 4000 6000

25 20 2211 4235 6240

39 63 2246 4312 6374

59 58 2273 4361 6520

92 94 2342 4518 6753

143 329 2593 4871 7243

The dynamic stiffness measurements presented in Tables 2.3a, b and ¢ show that

the vertical tyre stiffness is not constant:

e The vertical load vs. deflection characteristic is progressive [26]. It may be
represented by a second order polynomial. Then the vertical stiffness increases
linearly with vertical load.

« The vertical stiffness increases approximately linearly with the velocity
[22,26].

« The offset in the vertical load vs. defection curve increases proportionally with
the square of the velocity: the tyre radius grows due to the centrifugal force
acting on it [26].
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The following expressions are used to represent the vertical force as function of
the deflection at given rotational wheel velocity Q:

Fo=(1+ qu’QD{szz(sz + A’)Z +qpi(pao + A’)} (2.7a)
Ar = gy 822 (2.7b)

where g, and q,,; denote the coefficients of the second order polynomial of the
vertical force as function of the vertical deflection, g, controls the increase of the
radius Ar and ¢y, controls the increase of the tyre stiffness with the wheel
velocity. The total vertical deflection of the tyre p, equals the deflection p,; at zero
velocity plus the growth of the tyre radius Ar due to the rotational wheel velocity
Q. The values of the parameters are presented in According to Dixon [22] the
increase of the vertical tyre stiffness with speed is approximately 0.4% per m/s.
Our measurements showed a lower value.

Figure 2.4 shows the resulting characteristics according to expression (2.7).
Figure 2.4a shows the tyre load as {unction of the total tyre deflection p,. Figure
2.4b shows the increase of the tyre radius with the velocity.

(a) vertical tyre stiftness . (b) tyre radius
10000, ‘ : p——  EL5: - : -
_ ! — V =143 km/h E
& 8000 — V = 92km/h 5 /
< . —— V= 59kmh  Z p L ) |
g 6000 -—— V = 25km/h 2 = /
= : 7 gf /
§ 4000 (é 05 // |
b =
§ 2000 =
| @ .
()I B E, 0 — i |
0 10 20 30 40 0 50 100 150
vertical deflection p, [mm] velocity V [km/h]

Figure 2.4: (a) The variation in vertical load with total deflection during rolling

at various velocities, (b) the tyre growth with the velocity.

Table 2.4a presents the vertical tyre stiffnesses obtained from expression (2.7b),
and Table 2.4b presents the vertical load as function of the velocity at constant
axle heights. The values presented in Table 2.4b are used in Chapters 9 and 10
as vertical load at constant axle height. The parameters were obtained from the
measured vertical force at stationary rolling (cf. Tables 2.3c). The fitted
stiffnesses (Table 2.4a) of a rolling tyre correspond well to the stiffnesses obtained
from the large axle height oscillations (Table 2.3b) and reasonably well to
stiffnesses obtained from the small random axle height oscillations (Table 2.3a).
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The fitted parameters were obtained from the experiments with a rolling tyre
only. Consequently, there is a considerable difference between the fitted and
measured stiffnesses and vertical loads for a non-rotating tyre.

Table 2.4a: The fitted vertical tyre stiffness on the 2.5 m drum.

velocity vertical tyre stiffness [N/m] at constant vertical load
V [km/h] F,=2000 N F,=4000 N F,=6000N F,=8000N
0 184000 196Q00 208000 219000
25 187000 200000 211000 222000
39 189000 202000 213000 224000
59 192000 205000 216000 227000
92 197000 209000 221000 232000
143 204000 216000 228000 239000

Table 2.4b: The fitied vertical force on 2.5 m drum.

velocity vertical force [N] at constant axle height

V [km/h] Po=0.00mm p,=11.90mm p,=22.57 mm p, =32.33 mm

0 0 2115 4153 6133

25 7 2166 4246 6268

39 17 2202 4307 6352

59 40 2264 4404 6483

92 100 2388 4588 6726

143 249 2642 4939 7169

2.4 Longitudinal tyre stiffnesses

The longitudinal tyre stiffness is an important parameter for the longitudinal
dynamic behaviour of the tyre. It is well known that the lateral relaxation length
can be obtained by dividing the cornering stiffness by the lateral tyre stiffness
[63,115]. In this thesis we will see that a similar relationship holds for the
longitudinal direction. The longitudinal stiffness may be used to obtain the
longitudinal relaxation length.

In contrast to vertical tyre stiffness, the longitudinal tyre stiffness can only
be measured directly for a non-rotating tyre. The longitudinal tyre stiffness can
be obtained by either applying a longitudinal displacement of the rim, or by
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applying a rotation of the rim while the tyre is loaded on the road. In total four
different tangential stiffnesses may be identified:

» Longitudinal force due to longitudinal rim displacement: Cpy.

» Longitudinal force due to rim rotation: Cp, . '

+ Torque about the wheel axis due to longitudinal rim displacement: Cyoe

» Torque about the wheel axis due to rim rotation: Cirer

The displacement or rotation of the rim was increased very slowly and the force
and moment were measured after the tyre had settled. To eliminate the effect of
tyre hysteresis the displacement and rotation were increased to a maximum
value, decreased to a negative value and increased to zero. The stiffnesses were
approximated by dividing the force and moment by the displacement or rotation
of the rim. Only the small values of displacements and rotations were used, so
linearity is assumed to hold. The measured stiffnesses are presented in Tables
2.5a and 2.5b. Figure 2.5 presents the stiffnesses as function of the vertical load.

Table 2.5a: The measured tangential stiffnesses on a flat surface obtained from
the static deformation of a non-rolling tyre.

vertical load stiffness from displacement rim stiffness from rotation rim
F_[N] Cyo. IN/m] Cyr, [Nm/m] Cpy IN/radl  C,,, [Nm/rad]
2000 195127! x? 69537 21216
4000 198200! x? 78090 21735
6000 206844! x2 78595 21862
8000 1887881 2 77955 21547

"V was not measured accurately, ®’ could not be measured.

Table 2.5b: The measured tangential stiffnesses on the 2.5 m drum obtained from
the static deformation of a non-rolling tyre.

vertical load stiffness from displacement rim stiffness from rotation rim
F, [N] Cp IN/m] Cyr. [INm/m] Cp e IN/rad] Cyzo [Nm/rad]
2000 231077 72297 72986 22405
4000 244567 74689 77062 23277
6000 237211 71343 79278 23818
8000 271796 80821 83017 24681
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Figure 2.5: The measured tangential stiffnesses obtained from the static
deformation of a non-rolling tyre.

The measured stiffness (Cp ) representing the force due to rim rotation, appeared
to be approximately equal to the stiffness (C,,,) representing the torque due to
rim displacement. Furthermore, the ratio between measured torques and
meagured forces appeared to be close to the tyre radius. Figure 2.6 presents a
modei for representing the tangential iyre siiiinesses: a longitudinal spring in the

contact zone. Section 3.6 goes further into this matter.

longitudinal

spring road surface

Figure 2.6: Model to represent the tyre tangential stiffness.
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Static Tyre Properties

Chapter 9 presents the dynamic tyre responses to brake torque variations. The
value of the longitudinal tyre stiffness estimated from the corresponding
experiments lies between 350000 and 400000 N/m. This value is much larger
than the values presented in Table 2.5. As in the case of the vertical tyre
stiffnesses, the measured longitudinal stiffnesses of a non-rotating tyre cannot be
used for a rolling tyre.

2.5 Inertia properties of the tyre

The dynamic properties of the tyre are largely determined by the inertia and
stiffness properties of the tyre. The mass of both the tyre and rim were measured
directly. The moments of inertia about the wheel axis (y-axis) were measured
indirectly by measuring the natural frequency of the wheel rotating about the
wheel axis, constrained by a known additional rotational spring. This method
was used to assess the moment of inertia of the wheel (i.e. tyre plus rim) and of
the rim. The moment of inertia of the tyre was obtained from the difference
between these two values. The results of these measurements are presented in
the first three rows of Table 2.6.

The objective of the research presented in this thesis is the development of
the rigid ring tyre model. In this model, which will be introduced in Chapter 7,
the tyre tread-band is represented by a rigid ring suspended on springs
representing the tyre sidewalls and pressurised air. Consequently, the mass and
moment of inertia of the tyre has to be subdivided into a part that moves together
with the rigid ring and a part that moves together with the rim.

To enable this, the tyre is divided into five components: two beads, two
sidewalls and one tread-band, see Figure 2.7. Obviously, the two beads move
together with the rim, and the tread-band moves together with the rigid ring.
The sidewall connects the tread-band with the beads. The mass of the sidewall is
divided into two pieces: the inner half of the sidewall is assumed to move together
with the rim while the outer half of the sidewall is assumed to move together
with the rigid ring.

To estimate the masses and moments of inertia of the five tyre components,
the tyre was cut into five pieces. The mass and dimensions of each piece were
measured carefully. The moment of inertia about the wheel axis of each piece was
calculated by assuming that each piece could be represented by a homogeneous
cylinder. The measured mass and calculated moment of inertia of each
component are given in the middle rows of Table 2.6. The difference between the
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measured and calculated moment of inertia of the total tyre is 8%. The last rows
present the mass and moment of inertia of the part of the tyre that moves
together with the rim and the part that moves together with the rigid ring. These
values will be used in the tyre models.

total tyre sidewall tread-band

P

Lo £

Figure 2.7: Decomposition of the tyre into five components.

Table 2.6: The masses and moments of inertia about the y-axis of the tyre.

component measured moment of inertia measured mass
tyre and rim 1.048 kgm® 17.7 kg
rim 0.367 kgm? 8.4 kg
tyre 0.681 kgm? 9.3 kg
component of tyre calculated moment of inertia measured mass
one tread-band 0.532 kgm? 5.7 kg
two sidewalls (outer half) 0.104 kgm? 1.4 kg
two sidewalls (inner half) 0.061 kgm? 1.2 kg
two beads 0.039 kgm? 1.0 kg
component of tyre calculated moment of inertia calculated mass
part that moves with rim 0.100 kgm? 2.2 kg
part that moves with belt 0.636 kgm? 7.1 kg

38



Stationary Slip Characteristics

3.1 Introduction

The objective of the research presented in this thesis is the development of a
mathematical model of the tyre that can be used in vehicle simulations. In this
chapter the shear force generated by tyres under steady-state conditions is
discussed as this is one of the most important aspects affecting the low frequency
vehicle responses [2,41,45,92,99].

A driving or braking torque applied to a wheel will accelerate or decelerate
the wheel. Longitudinal forces are developed in the tyre-road contact zone due to
the difference in circumferential and forward velocity of the wheel. The difference
between these velocitics is defined as the slip velocity of the wheel. The slip of the
wheel is defined as the ratio of the slip velocity and the forward speed of the
wheel centre. The relationship which depicts the horizontal force generated as
function of the slip in steady-state conditions is called the steady-state or
stationary slip characteristic of the tyre.

Figure 3.1 presents a typical slip characteristic: the longitudinal force as
function of the longitudinal slip. With the sign convention used, the slip and the
force are negative for braking and positive for traction. The slip stiffness C, is
defined as the slope of the slip characteristics. At very small values of slip the
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horizontal force generated is proportional to the slip and the ratio is defined as
the slip stiffness at free rolling denoted by C,,. At larger levels of slip the
horizontal force smoothly transits from the linear range to saturation at the peak.
The peak value of the longitudinal force is limited by the coefficient of friction p
between tyre and road. Beyond the peak the friction force diminishes until the
wheel locks. On dry road, the resulting force at wheel lock (sliding value) is
approximately 70-80% of the peak value [119]. On wet and icy roads this ratio
may become smaller.

—longitudinal :
force wheel
A slip

A\ stiffness C,
v

peak sliding |
:value value !

slip stiffness
at free rolling C | ‘
v v Yo
-—» —longitudinal slip
Figure 3.1: A typical stationary longitudinal slip characteristic.

There is a wide range of models that describe the steady-state shear force
generation of tyres [84]. The approaches used for the model development can be
theoretical (based on physics of the tyre construction) or empirical (based on
experimentally obtained data). The physical models may contain a detailed
representation of the tyre structure and the interaction between tyre and road.
Detailed physical medels are not suitable for studies of vehicle dynam

L praiy SaUQi 1

ehicle dynamics hecause
accurate resuits can only be provided at excessive consumption of computer
resources and calculation time [22,84,99].

In Section 3.3 the brush model is introduced. Although, this model is
physically based, it is sufficiently simple that an analytical solution can be given.
This solution has a qualitatively reasonable correspondence with experimentally
found tyre characteristics. In Chapters 4 and 5 a discrete brush model will also be
used for the analysis of the tyre transient response. In the discrete model the
tread elements are handled as individual elements which may adhere to the road
surface or slide. This type of model is appropriate for time simulations as these
elements can be followed during a passage through the contact patch.

Section 3.4 presents the Magic Formula [87,88] which is an empirical tyre
model. The Magic Formula represents the measured tyre data in a rather
compact form by fitting the measured data with basic mathematical expressions.
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Stationary Slip Characteristics

The last two sections of this chapter present the rolling resistance of a rolling tyre
and the effective and loaded radii of a rolling tyre.

3.2 Definition of slip variables

Figure 3.2 shows a side view of a tyre during braking. The slip point S is
introduced. This imaginary point is attached to the wheel rim. In a free rolling
condition, the point S is the centre of the rotation of the wheel body. The slip
point S is normally located slightly below the road surface. The distance of point
S to the wheel centre is defined as the effective rolling radius »,. By definition,
the speed of rolling V| is cqual to the product of the angular wheel velocity Q and

the effective rolling radius:

V. =10 3.1)

The longitudinal slip velocity V. of point S is defined as the difference between
the forward velocity of the wheel centre V_ and the rolling velocity of the wheel
v,

‘/sx = Vﬁcv‘/r =V, -Qr,

x &

(3.2)

As the lateral dynamics of the tyre are not considered in this thesis, we do not
have to discriminate between the longitudinal and the lateral directions.
Therefore, the adverb longitudinal is superfluous and the longitudinal slip
velocity will be called the slip velocity.

road surface

Figure 3.2: Kinematics of rolling.

During free rolling (no driving or braking torque), the longitudinal slip velocity
equals zero. During braking, the rotational velocity is smaller than the forward

velocity and point S moves forward with the slip velocity V.. The practical
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longitudinal slip k is obtained by dividing the slip velocity by the forward velocity
of the wheel centre:

V.
K=——= (3.3)
\%

X

A minus sign is added to make the slip stiffness a positive quantity. The
theoretical slip {_, which is a more convenient definition for theoretical analysis,
is defined by:

\%

= 5K 3.4
- v (3.4)

The relation between the theoretical and practical slip quantities is:

K Ce
Ce = ) -
1+x 1-¢,

(3.5)

For small values of slip, linear tyre characteristics may suffice and the difference
between the two slip definitions vanishes:

G, =K (3.6)

At low levels of longitudinal slip also the force vs. slip relationship may be
represented by a linear function containing a coefficient C,, known as the siip
stiffness:

F. =C, % (3.7)

For the chosen sign convention the slip velocity is positive during braking and the
force and the slip are negative. At large levels of slip, the relationship (3.7) no
longer holds as the increase longitudinal force is not proportional to the
increasing slip, and the maximum level of the force is limited by the friction
between tyre and road. The subsequent two sections will introduce two models
representing the non-linear relationship between force and slip: the brush model
and the Magic Formula model.

3.3 The brush model

The brush model belongs to the group of physical tyre models. This category of
models is based on a description, possibly detailed, of the tyre structure and of
the interaction of the tread with the ground. Usually, these models can only be
solved by using computers. The brush model, however, is a simple physical model
which has an analytical solution.
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The brush model, depicted in Figure 3.3, is an idealised representation of the
tyre in the region of contact. The model consists of a row of elastic cylinders
radially attached to a circular belt. The belt is assumed to be deformed only
through the action of the vertical wheel load in the direction normal to the road.
The contact length is finite and in the case of a frictionless contact surface
(undeformed cylinders) the cylinders are assumed to be oriented normal to both
the road and the flat portion of the belt. In the presence of friction the cylinders
will deform longitudinally when the wheel deviates from the free rolling state.
The deformation of the cylinders (tread elements) in the adhesion range is easily
established by considering the displacements of both ends of the cylinder. That is
the base point where the element is attached to the belt and the tip which
contacts the road surface. The base points move (relative to the wheel axis)
starting at the front edge of the contact patch and leaving the contact zone at the
rear edge of the contact patch.

tyre rolling
tread band velocity
tyre rear edge front edge
sidewall ~ |77 contact patch contact patch
a a
- mn = »4._._...___’
. tread elements <
road surface / %L S /&
d///////11i m N
front edge of e
h t ontact patch : =
contact-patch  contact'léngth [contact pate e
(a) tyre model (b) brush element deformation

Figure 3.3: Tread elements attached to the tyre tread-band.

In the adhesion region the longitudinal deformation « at the position s in the
contact patch is directly related to the longitudinal slip:

u= (a-s): K =(a—s)§1:—(a~—s)v""x (3.8)
1+x v,

where a denotes half the contact length. In the case of vanishing sliding, which
will occur for infinitely small slip, expression (3.8) holds for the entire region of
contact and the practical and theorctical slips arc equal to each other. After the
introduction of the stiffnesses c., of the tread elements per unit of length the
following expression for the longitudinal force F_is obtained:

43



Chapter 3

a

F.=c, Ju(x)dx = 2c,‘,pa2Cx = ZCCPGZK 3.9

X

The slip stiffness C,,, at free rolling reads:

C = 2¢,,a* (3.10)

ep

To investigate the tyre at high values of slip, sliding of the tread elements is
introduced. Sliding will occur as soon as the deformation exceeds the frictional
force. To determine the frictional force the vertical pressure distribution must be
known. For the sake of simplification, a parabolic pressure distribution is
assumed. This yields the following expression for the vertical force per unit of
length ¢,:

2 2 _ o2
)l

4qa a a

By assuming dry friction and introducing the coefficient of friction u, the

maximum longitudinal force per unit of length reads:

qx,max

For the sake of abbreviation the tyre parameter 6 is introduced:
¢, a’

2 (3.13)
W,

Joa

6=

|

The distance from the lcading cdge to the point where the transition from
adhesion to sliding region occurs equals 2aA and is determined by the non-
dimensional quantity A:

A=1-0.—
1+x

=1-96- (3.14)

-

From these equations the slip {_, can be calculated at which total sliding starts
(A= 0):

1
Gt =55 (3.15)
Now the force function can easily be derived:
F, =pF{30C,| - 300" 16C. [ Jsan(C,) i /<, 3.16)
Ft = “‘sz Sgn(Qx) if lgrl > Qx,sl
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Stationary Slip Characteristics

Figure 3.4 illustrates the influences of the parameters F,, p and ¢, on the shape
of the characteristics. Half the contact length @ is not considered to be an
independent parameter (¢f. Eq. 2.5). The vertical load influences the peak level of
the friction force. It also influences the slip stiffness through the contact length a.
The vertical load has a small influence on the value of slip at which sliding starts
(¢f. Eq. 3.13 and 3.15) since the ratio F,/a* changes only slightly with the vertical
load.

5000

4000~

£3000 |

/Tver.tic.a-l load F, / frlLtl()n coefficient H tread stiffness Cq.)...

' 2000 i

i
|
|
!

)/ |—s000IN] ) L25 -] | 30 108 [N/m2]
ool ——4000(N] L) ——1.001-] L —— 20 10° [N/m?]|.
g 3000 [N] | 0.75 [-] -—-15 10° [N/m?|
0 S - S P i H
0 10 20 0 10 20 0 10 20
~longitudinal slip [%] —longitudinal slip [%] -longitudinal slip [%]

Figure 3.4: The influence of the parameters on the shape of the brush model
characteristic. Nominal values F,=4000 N, c =20 10°N/m?, u=I.
In the case of a non-rotating tyre, the tyre acts like a spring instead of a damper,
as the force generated by the tyre is proportional to the displacement instead of
the velocity. For this situation, the deformation of the tread elements is uniform.
The total stiffness in the x direction of all the tread elements present in the
contact patch is indicated with ¢,
F.‘T = cl'.\',x K C(f.‘(f = 2ac(']7 (3-17)

The slip characteristics of the brush model (Eq. 3.16) are used for the
development of the pragmatic transient tyre model (Chapter 6), for the
development of the rigid ring model (Chapter 7) and for the validation of the rigid
ring model (Chapters 9, 10 and 11). The main advantage of the use of brush
model characteristics is that a few parameters arc needed (tread elements
stiffness, contact length and friction coefficient). The disadvantage is that the
brush model characteristics do not give very accurate representations of
measured slip characteristics. The simple brush model, in particular, does not
have a decreasing characteristic at high levels of slip.
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The discrete version of the brush model is used as a possible tyre-road
interface slip model of the flexible ring tyre model (Chapters 4 and 8) and is used
to study the tyre transient responses (Chapter 5).

3.4 The Magic Formula model

The Magic Formula forms the heart of an empirical tyre model. Such models are
based on the mathematical representation of measured tyre data, rather than
modelling the tyre structure itself. Empirical tyre models are usually used in full
vehicle simulations. The tyre forms only a part of the entire simulation model
and the computational load of that part in the model should be fairly low.

The development of the Magic Formula started in the mid-eighties and since
then several versions have been developed [6,7,85]. In these models the combined
slip situation was modelled from a physical view point. Bayle et al. changed the
combined slip calculation technique into a simpler empirical method [10] which is
now adopted in the most recent version of the Magic Formula tyre model [87,88].
All versions show the same basic form for the pure slip characteristics: a sine of
an arctangent. The Magic Formula for longitudinal slip reads:

r n L

F.=D sinlC arctan{ B(x+Sp) + E(arctan(B(x+Sp)) - B(K+SH))}] +Sy (3.18)

where F_ stands for the longitudinal force and k denotes the longitudinal slip. The
coefficients B, C, D and E together with the offsets S;; and S, characterise the
shape of the slip characteristics. Each coefficient represents a specific aspect of
the slip characteristic: the shape factor C influences the overall shape of the
characteristic, the peak factor [) influences the maximum value of the
characteristic, the curvature factor E influences the characteristic around the
peak value, and the slip stiffness K (= BCD) influences the slip stiffness at low
values of slip. Figure 3.5 illustrates the influences of the coefficients on the shape
of the characteristic.

The coefficients of the Magic Formula depend on the vertical load.
Dimensionless parameters p are introduced to describe this influence:

« shape factor C=po1-Ae (3.19a)
« peak factor D=y F, (3.19b)
o friction coefficient p=(pp,+ ppedf,) A, (3.19¢)

curvature factor  E = (pg,+Pgodf,+Ppsdf?)-{1- pgysgn(x+Sy)}- Ay (3.19d)
slip stiffness K = F, - (pg1+ Prodf.) exp(~pgsdf.) Ak (3.19e)
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K

« stiffness factor B=— 3.19
cD (3.190)

» horizontal shift Sy =(py, + pp.df.) Ay (3.19g)

« vertical shift Sy = F,-(pyy + pyadf) v -, (3.19h)

The relative offset df, of the vertical load is introduced in Equations (3.19):
df, = (F, - F,,)/F.o (3.20)

Furthermore, this equation introduces six scaling factors A, k“, A Mg Ay Ay to
scale the formula without changing the parameter values. In this way the
influence of several important factors can be investigated easily.

In the most recent version of Magic Formula [87,88] all coefficients and
parameters have subscripts to discriminate between the characteristics of
longitudinal force, lateral force or self aligning torque. In this thesis only the
longitudinal tyre behaviour is considered and the subscripts to discriminate
between the characteristics have been omitted.

The main advantage and disadvantage of the Magic Formula are opposite to
the advantage and disadvantage of the brush model: The Magic Formula gives an
accurate representation of measured data but needs more parameters.

T T [ T T T
5000 - 4 = |
4000? _
£:3000 L ]
br 2000 - shape factor C [-] T peak factor D [N] |
| ——— 16 | 5000
1000 — 14 - b ——— 4000
1.2 ! - 3000
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’ —— 0.5 | 75000
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Figure 3.5: The influence of the coefficients on the shape of the Magic Formula
characteristic. Nominal values: C=1.4, D =4000, E =0, K=100000,
Sy=0,Sy=0.
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3.5 Measured slip characteristics

Figures 3.6 and 3.7 present a comparison of the measured stationary slip
characteristics with both the brush model and the Magic Formula. The
measurements were performed on the rotating drum test stand (cf. Appendix A)
at three constant axle heights at a drum velocity of 92 km/h.

measured: o F,=2000N ——— F,=4000N ——— F,=6000N
brush model: — — — - F,=2000N - — — - F,=4000N - - — - F,=6000N
6000 ———— . .

0 5 10 5 20 25
—longitudinal slip {, 1%]

Figure 3.6: The measured slip characteristics on the 2.5 m drum and the brush
model representation (V=92 km/h).

measured: —— F,=2000N —— F,=4000N ——— F,=6000N
Magic Formula: F,=2000N - — —-F,=4000N - - — - F,=6000N
6000 - : T
B
Z.5000 -
F.h:‘
84000 - -
=L T ———— = o o o e e e e —
&
F3000
g
£
22000+ S -
B
E
<1000 .
0 |
15 20 25

~longitudinal slip {, (%]

Figure 3.7: The measured slip characteristics on the 2.5 m drum and the Magic
Formula representation (V=92 km/h).
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The measurements do not show a clear peak in the characteristics, as the
longitudinal force generated at wheel lock is only slightly smaller than the
maximum value of longitudinal force. The relatively flat slip characteristic makes
it possible that the brush model can be used in the entire slip region.
Nevertheless, the quality of the fit of the Magic Formula is better than that of the
brush model.

The slip characteristics have also been measured on the road with the Tyre
Test Trailer of the Vehicle Research Laboratory of the Delft University of
Technology. The measurements were performed at a velocity of 60 km/h on two
different road surfaces: an asphalt road and a concrete road. The slip stiffnesses
and friction coefficients obtained by fitting the measured data with the brush
model are presented in Table 3.1, and the values obtained from fitting the Magic
Formula are presented in Table 3.2.

Table 3.1:  Slip stiffnesses C, and peak friction coefficients |\ obtained from
fitting the measured slip characteristics with the brush model.

Vertical load On steel drum On asphalt road On concrete road
V =92 km/h V =60 km/h V =60 km/h
F,[N] C, [N] u [ C o [N] u -] C [N] u -1
2000 53000  1.013 43000  1.209 35000 1.158
4000 119000 0.972 98000 1.184 79000  1.167
6000 196000  0.931 171000 1.165 135000 1.160

Table 3.2: Slip stiffnesses C_and peak friction coefficients | obtained from
fitting the measured slip characteristics with the Magic Formula.

Vertical load On steel drum On asphalt road On concrete road
V=92 km/h V =60 km/h V =60 km/h
F, [N] Co [N] u -] C., [N] u -] C, IN] p-l
2000 54000 1.006 38000 1.228 34000 1.146
4000 124000  0.973 86000 1.210 76000  1.149
6000 208000  0.939 145000 1.191 128000 1.152

The difference between the slip stiffness on the three road surfaces (steel drum,
asphalt road and concrete road) is rather big: the slip stiffness on the drum is
much bigger than the slip stiffness on the road. The tyre-road friction on the road
is slightly bigger than the friction on the steel drum. The shape of the
characteristics measured on the road differs from those derived from the drum
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measurements: the peak in the road measurements is much more pronounced as
the friction coefficient at wheel lock is only 70% of the friction coefficient at the
peak. Accordingly, the shape factor C of the Magic Formula increases from 1.1 for
the drum measurements to 1.65 for the road measurements. The fast decaying
characteristic after the peak means that the brush model cannot represent the
road measurements accurately.

3.6 Rolling resistance

The rolling resistance of tyres results in dissipation of energy in the tyre due to
the continuous deformations near the contact zone [19]. At low and medium
velocities, the rolling resistance is approximately constant and is a direct result of
the damping in the tyre, especially the damping of the tread compound. Tread
compounds with little damping will decrease the rolling resistance. But the
rolling resistance is directly related to the brake performance on wet roads: a 10%
decrease of rolling resistance results in a 10% increase of the brake distance on
wet roads [93].

Experiments show that the rolling resistance force F, is proportional to the
vertical force F, [19,71]:

F.=fF, (3.21)

The rolling resistance coefficient £, is introduced. This coefficient can be expressed
as a polynomial in the forward velocity V [71]:

fr =qp0 + 4V +q5,V* (3.22)

where the coefficients g, and g, controi the siight increase in the roiiing
resistance force with the velocity, and the coefficient g, controls the fast increase
of the rolling resistance at high velocities that is caused by the phenomenon
known as standing waves. For a given tyre in a particular operating condition, a
threshold speed exists (approximately 150-200 km/h) above which the standing
waves in the tyre can be observed. Standing waves are formed because the tyre
tread does not recover immediately from distortion originating from tyre
deflection after it leaves the contact patch, and the residual deformation initiates
a wave. The formation of the standing wave greatly increases energy loss,
resulting in a high rolling resistance and considerable heat generation that could
lead to tyre failure. This places an upper limit on the safe operating speed of
tyres.
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3.7 Tyre radii
Tyre radii of a non-rotating tyre

Besides the loaded tyre radius r,, which can be obtained from the vertical tyre
deflection, and the effective rolling radius r,, introduced in Section 3.2, a third
tyre radius plays an important role in the tyre dynamics: the brake lever arm r,.
The brake lever arm is defined as the ratio of the applied constant brake torque
M, and the longitudinal force F,. Consequently, the point of application of F, lies
a distance r, below the wheel centre. This section will show that this radius can
be approximated by the effective rolling radius. When the wheel load approaches
zero, all these radii will reduce to the free unloaded radius 7.

Figure 3.8 presents three methods for representing the forces acting in the
contact zone on the tyre. The figure shows the forces during braking and the
additional subscript ¢ is used to designate the forces in the contact zone. Figure
3.8a depicts the pressure distributions in the contact patch from which the
reaction forces at the rim can be calculated directly: the longitudinal pressure
distribution g, acts on the loaded radius r, and the non-symmetrical vertical
pressure distribution ¢, will give an additional torque about the wheel axis. This
approach, however, can only be used if the pressure distributions are known, thus
with a detailed physical tyre model.

If the pressure distributions are not known, the torque at the rim has to be
calculated from the positions of the resulting forces in the contact zone. In many
studies the positions of the line of action of these forces are chosen such that the
vertical force acts in the centre of the contact zone below the wheel centre and the
longitudinal force acts in the ground plane at the loaded radius. In these studies
the influence of the non-symmetrical pressure distribution is neglected. To
complete the description, the total rolling resistance moment -M,, acting about
the transverse axis through the contact centre, should be added (cf. e.g. [44]). Its
magnitude changes with F.

Figures 3.8b and ¢ show two alternative solutions. In Figure 3.8b the non-
symmetrical vertical pressure distribution is represented by a longitudinal shift

g, of the vertical force. Then the torque M, at the rim becomes:
M, =-nF, —¢F, (3.23)

xT cz

The additional torque may also be represented by a vertical shift e, of the
longitudinal force (Figure 3.8c), then:
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M.‘)’ = —rlF:",x - EzE:x = _(rl + EZ)EI (3.24)

From the equation above the brake lever arm r, is defined as:

p=ntg, (3.25)

(a) pressure distributions (b) shift of vertical force (¢) shift of longitudinal force
Figure 3.8: Three models for representing the forces between tyre and road.

Another way to calculate the force at the rim is to use the power balance of the
tyre. The torque at the rim M propels the wheel which rotates at a velocity Q.
The slip velocity of the wheel in the contact zone is V. Thus, the point of
application of the longitudinal force F, which acts in the contact zone moves
forward with the same speed V. At free rolling, this speed (according to its
definition) becomes zero. However, at free rolling power is still dissipated through
rolling resistance: F_f,Q0. From the power balance considerations (depicted in
Figure 3.9) the following relationship appears to hold (M, is drive torque at the
rim and F, is traction force):

My = _rchx _F'czfr (326)

The force F_, acts effectively at an arm r, on the wheel rim (i.e. in point S of
Figure 3.2). The remaining rolling resistance moment F,f, acts about this points
S on the wheel rim body in a negative direction.

Propulsion T T T Traction

WO e P £V,

Rolling .
resistance / \ Slip
F.fQ F. V.

“ex Vsx

Figure 3.9: The power balance of the tyre.
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Summing up, according to the power balance considerations: if the effective
rolling radius is used to transform rotational velocity of the wheel Q to a slip
velocity in the contact patch (¢f Eq. 3.2) then the same radius has to be used to
transform the force in the contact patch to a torque acting on the rim (c¢f. Eq.
3.26).

The idea is substantiated with measurements. Figure 3.10 shows the effective
rolling radius r,, the loaded tyre radius r;, and the brake lever arm r, as functions
of the vertical load for a non-rotating tyre. The effective rolling radius and the
load radius are represented by the polynomials. This figure shows that the brake
lever arm can be approximated by the effective rolling radius.

on flat surface on 2.5 m drum

effective
7 rolling
radius (mm]

loaded
tyre
radius [mm]

310

300

290

4 o o o brake
lever
. arm [mm]

i ‘ 1 : 270 - : J
0 2000 4000 6000 8000 O 2000 4000 6000 8000
vertical load F, [N] vertical load F, [N}

280

Figure 3.10: The tyre radii as function of the vertical load at zero velocity.

The loaded tyre radius was obtained from the experiments set up to assess the
vertical stiffness of a non-rotating tyre, see Section 2.3. The brake lever arm was
obtained from the experiments also meant to measure the tangential stiffnesses
of a non-rotating tyre, see Section 2.4. The effective rolling radius was obtained
from tests in which the tyre is rolled at a very low velocity. The result is found by
dividing the total distance travelled by the total angle of rotation covered. The
measured effective rolling radius was fitted with a third order polynomial in the
square root of the vertical force in the contact zone:

Te = Qre3 E'?; t dres vV F‘(z + Gre1 v Fcz + Qre0 + Ar (327)

where Ar represents the velocity influence on the effective rolling radius, which is
zero for a non-rotating tyre. The velocity influence of the effective rolling radius is
assumed to be equal to the velocity influence of the loaded tyre radius
(cf. Eq. 2.7b).
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Tyre radii of a rotating tyre

The effective rolling radius is defined as the ratio of the forward velocity of the
wheel and the rotational velocity of the wheel (¢f. Eq. 3.1). The influence of the
vertical load on the effective rolling radius is rather small as indicated in
Figure 3.10: approximately 1% in the vertical load range 2000-8000 N. To
measure these variations accurately, it is necessary to use very accurate and
linear sensors. Unfortunately, the available sensors were not sufficiently
accurate, so another method was used. The variations in forces at free rolling are
related to tyre non-uniformities. In other words, the frequencies of these force
variations are multiples of the rotational velocities of the tyre. Hence, we can
estimate the rotational velocity of the wheel from these force wvariations.
Furthermore, if the measurement time is long enough, the frequencies related to
the tyre non-uniformities can be estimated accurately.

Figure 3.11a shows the measured effective rolling radius and the fitted radius
according to Equation (3.27) at constant axle height, as a function of the velocity.
The fitted radius is a rather good representation of the directly measured radius.
The velocity has two influences on the effective rolling radius: First, the free tyre
radius r, increases owing to the centrifugal force (cf. expression 2.7b). It is
assumed that the increase of the effective rolling radius is equal to the increase of
the tyre free radius. Second, the vertical load increases owing to the increasing
vertical tyre stiffness (cf. expression 2.7a).

(a) effective rolling radius r, [mm] (b) brake lever arm r,, [mm]
210 ‘ 310 o ! fitted radius
; N —— F,y=4000N
306 306F w7 U~ __ - - 9] —— F,=6000N
3044 3041 S
b e o =~ 7 measured radius
302, 32p - " ¢ - F,=2000N
s\ T -
300° 3007 ~ - -~ "1 - F,=4000N
| NP 6 — F,=6000N
298 : ! ~ 298 ! '
0 50 100 150 0 50 100 150
velocity V [km/h] velocity V [km/h]

Figure 3.11: The tyre radii as function of the velocity at three constant axle
heights on the 2.5 m drum. Note: F , holds at zero velocity.

The brake lever arm of a rolling tyre was obtained from dynamic brake
experiments: the frequency response functions of the longitudinal reaction force
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on the wheel with respect to the applied brake torque which are presented in
Section 9.2. The brake lever arm is equal to the estimated amplitude at frequency
zero. In Figure 3.11b the estimated brake lever arm is compared with the fitted
effective rolling radius. This figure shows that the brake lever arm can be
approximated by the effective rolling radius. It should be noted that the results
presented in Figure 3.11b were obtained at small levels and variations of brake
torque: the average brake torque was 120 Nm, and the standard deviation was
22 Nm.

Figure 3.12 presents the brake lever arm as function of average brake force
F_. These results were also obtained from the frequency response functions
presented in Section 9.2. Figure 3.12 shows that the variations in the estimated
brake lever arm are relatively big. But it should be noted that the experimental
conditions were severe: small variations in brake torque around an average
value. The average value could be nearly as large as the torque needed for wheel
lock. Even for these conditions the brake lever arm may be approximated by the
effective rolling radius. It should be noted that at low values of vertical load and
large levels of brake torque the brake lever arm approaches the tyre free radius
(312 mm).

brake lever arm r;, [mm]

312 T o T fitted radius
310 p e - F,,=2000 N
308 . + —— F,,=4000N
306 o N 4 —— F,;=6000N
3041 T A
s02k S~ 27" /@' measured radius
200 = z 1 & — F,y=2000N
e N LT | =~ F,=4000N
298 N & — F,=6000N
29l — 1 O/J | [ 20

0 0.2 0.4 0.6 0.8 1

F./F, -]

Figure 3.12: The brake lever arm as function of the average brake force at three
constant axle heights and a velocity of 25 km/h on the 2.5 m drum.

In conclusion, the above considerations show that the point of application of the
longitudinal force may be approximated by the effective rolling radius. In this
way, together with the remaining rolling resistance moment F_f,, the earlier
mentioned total rolling resistance -M,, can be very well accommodated. The
measurements show that the brake lever arm is approximately equal to the
effective rolling radius, and that the differences between the brake lever arm and
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the loaded tyre radius are much larger (¢f. Figure 3.10). Therefore, in this
research point S located at a distance equal to the effective rolling radius below
the wheel centre will be used as point of application of the longitudinal force.
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The Rolling Tyre as a Geometric Filter over Short
Wavelength Road Unevennesses

4.1 Introduction

The excitation of the tyre by short wavelength road unevennesses (e.g. cleats) is
very complex. The tyre, which acts as a geometric filter due to its finite
dimensions, smoothens the sharp edges of the unevennesses. If we would like to
simulate the tyre dynamics on uneven roads we should take into account this
effect. In other words, before we develop and validate the rigid ring tyre model in
Chapters 7 through 11 we will study the excitation of the tyre by short
wavelength road unevennesses in this Chapter.

Figure 4.1 presents the phenomena of the tyre rolling over short wavelength
road unevennesses. The length of short wavelength irregularities is small in
comparison to the length of the contact patch. Discrete irregularities such as
steps also fit into this definition. If the tyre rolls over a discrete obstacle, the tyre
will always hit the obstacle before the centre of the axle is above the obstacle as
indicated in Figure 4.1a. This makes the influence of the discrete obstacle longer
than the length of the obstacle. Furthermore, the tyre partially or wholly
envelopes (or swallows) small irregularities [49], see Figure 4.1b. Both effects
result in a filtering of the irregularities: the response at the axle is much
smoother than the shape of the actual road surface, see Figure 4.1c.

57



Chapter 4

filtered
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Figure 4.1: The phenomena of the tyre rolling on discrete road unevennesses.
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There are several models which can simulate the enveloping properties of tyres

on uneven roads. Figure 4.2 presents an overview of tyre models for rolling over

obstacles. This overview is partially based on the overview given by Badalamenti
and Doyle [5]. Both Captain [16] and Kisilowski [562] used several models to study
the enveloping properties of these models.

. Single-point contact model. The most extensively used model is the single-
point contact model [5]. This model is generally represented by a spring and
damper in parallel. This approximation is valid for long wavelengths (longer
than 3 meter) and gradual slope (smaller than 5%) surface irregularities [49].
This model can be used on surfaces with random unevennesses generated by
filtered white noise. Rolling over discrete obstacles (e.g. cleats) gives too high
accelerations of the tyre with a point contact model.

« Roller contact model. The roller contact model consists of a rigid wheel
rolling over the obstacles and one spring and damper. There is only one contact
point, neglecting the special cases of road geometry where the rigid wheel has
more than one contact point with the road. The contact point is not restricted
to lie directly beneath the wheel axle. Small wavelength bumps are filtered out
by this model and its representation is much better than the single-point
contact model [5,36). Misun used the roller contact model to study the stresses
in driving systems in a vehicle operating on an uneven road surface [69,70].

. Fixed footprint model. This model uses an linearly distributed stiffness and
damping in the contact area. In this model the road irregularities in the
footprint area are averaged, giving a smoother and more realistic excitation of
the tyre than the point contact model.

« Radial spring model. The radial spring model is an improvement on the
rigid wheel model. The tyre is not modelled as a rolling rigid body, but as a
radially deformable body. The radial spring model uses circumferentially
distributed independent linear spring elements. A model with linear stiffnesses
has a limited range through which it is able to predict forces. A model with
non-linear degressive radial springs is able to show the typical dip in vertical
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force while rolling over cleats. Badalamenti et al. [5] enhanced the radial
spring model. They made the force generated in the radial springs depend on
the deformation of adjacent springs as well.

» Flexible ring model. The flexible ring model involves the tread-band, which
is modelled as a deformable beam, and radially and tangentially distributed
sidewall stiffnesses. Owing to the bending of the tread-band the vertical
stiffness in the centre of the contact patch is lower than the stiffness at the
edges of the contact patch. Even without the non-linear sidewall stiffnesses
this model is able to show the typical dip in the vertical force while rolling over
cleats. The toroidal membrane tyre model [49] is also classified as a flexible
ring model. Captain [16] and Kisilowski [562] named the flexible ring model the
adaptive foolprint model as the deflection of the flexible carcass provides the
model with an adaptive footprint.

+ Finite elements models (FEM). These models are based on detailed
description of the tyre structure. The FEM models are very powerful and they
can be used directly to calculate the dynamic forces of the tyre rolling over
obstacles at high velocities [24,25,46,75,78]. Apart from the study presented by
Mousseau [74], elaborate investigations of the quasi-static tyre enveloping
properties of FEM models are often omitted.

1 Q!

point contact roller contact fixed footprint radial spring  flexible ring  finite element
Figure 4.2: Tyre models used for rolling over obstacles. Tyre-road interface

v,

models.

The research on tyre excitation caused by road irregularities was started in the
60s by Hey [38], Gough [34], and Lippmann et al. [61,62]. At that time Hey stated
that little was known about the forces generated between tyre and road during
the rolling over obstacles [38]. In his PhD Thesis he used a smooth obstacle shape
of 55 c¢cm length and 1 or 2 ¢cm height to ensure uninterrupted contact between
tyre and road. He simulated the tyre response by using a rigid wheel model.
Gough [34] investigated the tyre rolling over short wavelength obstacles
experimentally. He indicated that a tyre rolling over obstacles shows three
responses: (1) variations in the vertical force, (2) variations in the longitudinal
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force and (3) variations in the rotational velocity. The variations in the rotational

velocity generate additional longitudinal forces which develop quite considerable

magnitude at high speeds [34].

Lippmann et al. [61,62] studied the responses of truck and passenger car
tyres to sharp obstacles like cleats and steps. They showed experimentally that
an almost linear relationship exists between tyre force variation and obstacle
height. Therefore, the superposition principle which is based on (a series of) step
responses could be used to calculate the responses of any obstacle. More than 20
years later Bandel and Monguzzi disputed the linearity of the tyre rolling over
different obstacles [8]. On the other hand, they showed that the response due to a
single obstacle could be decomposed into two separate identical responses. These
separate identical responses will be referred as basic functions in this Chapter.

Table 4.1 presents a chronological survey of the literature on the enveloping
properties of tyres. A survey of the dynamic tyre responses on short wavelength
obstacles will be presented in Table 10.1. The following items of interest are
considered in Table 4.1:

« Tyre type. Most researchers used passenger car or truck tyres. In the 60s the
research was focused on the differences between radial ply and bias ply tyres
[34]. Kilner studied the dynamic responses of an aircraft tyre for simulations to
predict aircraft dynamics in response to runway roughness [49].

o Velocity. The velocity is an important factor. At low velocity the tyre response
involves only its enveloping and elastic properties. At high velocity the
response is a result of a combination of these properties and tyre dynamics.

« Direction response. Usually only the responses of the longitudinal and
vertical reaction forces on the axle are measured. Only Gough measured the
variations in rotational velocity [34]. He stated that these variations are very
important at high velocity.

« Basic curves. The measurements of the enveloping properties of tyres is time
consuming. The concept of basic functions is used to estimate the enveloping
properties for situations which have not been measured: a different shape of
the obstacle, or a different velocity. Lippmann et al. calculated the enveloping
response of an arbitrary road geometry by superposing the responses of a
series of positive and negative step changes [61,62]. Bandel et al. [8] used the
measured response at low velocity as a basic function for the excitation of the
tyre at high velocity. Oldenettel et al. measured the vertical response at low
velocity (2 km/h) and determined the response function between the high and
the low velocity excitation {79].
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* Enveloping models. Several models were used to simulate the enveloping

properties of tyres. These models are depicted in Figure 4.2.

» Measurement. The tyre responses were measured with obstacles either
attached to a test drum or to a flat road surface.

Table 4.1: Literature survey on the enveloping properties of tyres.
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The main goal of the research presented in this thesis is the development of the
rigid ring tyre model described in Chapter 7. This is a compact model to ensure
relatively fast vehicle simulations. The tyre-road interface of the rigid ring model
is governed by a single-point only. This means that this model does not directly
show the enveloping properties of the tyre on short wavelength irregularities as
presented in Figure 4.1. In other words, the short wavelength irregularities
cannot serve directly as inputs for simulations with the rigid ring tyre model. So,
for this model the quasi-static responses of the real tyre on the actual road
surface should be used as inputs. These quasi-static responses are transferred
into an effective road surface: the effective plane height, the effective road plane
angle and the effective rolling radius variation. This approach results in quasi-
static responses of the model on the effective road surface that are identical to
quasi-static responses of the real tyre on the real road surface.

This chapter presents the transformation of the actual road surface into the
effective road surface. The transformation is called the geometric filtering effect
of the rolling tyre. First the quasi-static responses of the tyre are investigated
using the flexible ring model. Section 4.2 presents the equations of motion of this
model, and Section 4.3 presents the simulation model. To balance the internal
and external forces acting on the flexible ring the deformation of the tyre
sidewalls is solved iteratively.

The static properties of the flexible ring model (deformations and stiffnesses)
are validated in Section 4.4. The enveloping properties are validated in the
subsequent section. In this section the simulated responses are compared to the
measured low velocity responses. During the measurements, the horizontal and
vertical axle motions were constrained to Pr reclude unwanted Suspensmn
resonances. The flexible ring model is validated for three obstacle shapes: a
trapezoid cleat, a positive step, and a negative step.

Section 4.6 derives the effective road surface from the quasi-static
simulations or measurements. Finally, Section 4.7 discusses the general
properties of a geometric filter. With this filter any road surface can be
transformed into an effective road surface.

The dynamic tyre responses of the rigid ring model using the effective road
surface as input are presented in Chapter 10.
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4.2 The flexible ring model

This section presents the equations of motion of the flexible ring tyre model. This
flexible ring model is used to calculate the quasi-static excitation of the tyre by
short wavelength obstacles. The model and equations are based on the research
presented in the PhD Thesis of S. Gong [32]. Although the flexible ring model is
most suitable for investigations into high frequency dynamics it may also be used
statically to calculate the tyre deflections.

This flexible ring model consists of a deformable circular beam representing
the tread-band, and radially and tangentially distributed stiffnesses representing
the tyre sidewalls and pressurised air. The equations of motion of the rotating
ring on an elastic foundation were derived from Hamilton's principle [32]. For
that, the expressions of the energy components (strain, kinetic and elastic energy)
and the expressions of the virtual work of the external forces were used. The
governing equations were found by integrating over the entire circumference of
the ring.

The flexible ring model is also used in Chapter 8 for the modal analysis of
tyre in-plane vibrations.

Equations of motion of the free tyre

For the quasi-static analysis of the enveloping properties of tyres only the static
equations of the flexible ring model are necessary. To obtain a model describing
only the static deformations of the tyre belt and sidewalls, all derivatives in the
equations have to be set to zero.

The flexible ring model, shown in Figure 4.3, involves a circular ring
representing the tyre tread-band; a rigid body representing the rim;
circumferentially distributed radial and tangential springs representing the tyre
sidewall and pressurised air in the tyre. The rim has three degrees of freedom in
the plane of the wheel: the vertical and horizontal displacements and the rotation
about the axis perpendicular to the wheel plane. Two coordinate systems will be
used: a fixed Cartesian coordinate system (x,z) and a rotating coordinate system

(x",2").
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rim tangential sidewall stiffness

tyre ring radial sidewall stiffness

Figure 4.3: The flexible ring tyre model.

The equations of motion of the flexible ring tyre model are based on the PhD
Thesis of S. Gong [32]. However, the coordinate systems used in the present
thesis are slightly different: the definitions of the orientation of the rotational
velocity Q, the tangential displacement v, and the rotation about the y-axis are
opposite to those given in [32]. Figure 4.4 shows the coordinate system used here.

zh 4%

— O Undeformed but
rotated situation

—— A After axle displacement

—— B After tyre ring deformation

[ \

X, T —— X

e x*

Figure 4.4: The tyre ring and the deformation and the coordinate system used.

The equation of motion of the flexible tyre ring model, according to the coordinate
system introduced in Figure 4.4 read [32]:
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where ¢_, and ¢, are the external distributed forces acting on the ring in the
tangential and radial directions; ¥, and F,, are the external forces acting on the
rim; M, is the external torque acting on the rim; v, and w, are the tangential
and radial displacements of the ring element; x, and z, are the horizontal and
vertical rim displacements and 6, is the small deviation of the angular
displacement of the rim on top of the displacement due to steady speed of rotation
Q. The parameters of the flexible ring model are:

» bending stiffness of the ring: EI
« pre-tension of the ring: F,

« tangential sidewall stiffness: Cp
« radial sidewall stiffness: Cpo
« radius of the ring: r

e width of the ring: bg

« tyre inflation pressure: Po

» mass of the rim: m,
+ moment of inertia of the rim: 1

The pre-tension force F, depends on the inflation pressure and the centrifugal

force acting on the ring:
F, = pobgr + pAr2Q? (4.2)

The equations of the tyre ring model can be simplified with the introduction of
the in-extensibility assumption, which means that the circumferential length of
the middle surface of the ring is constant during the deformation [32]. This
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assumption is usually valid for rings with high extensional stiffness, which is the
case for radial tyres. If it is assumed that the tyre tread-band is in-extensible in
the circumferential direction, the following relation between the radial and
tangential displacements applies:

)
w, = —% 4.3)

The flexible ring model will be used to simulate the quasi-static response of the
tyre rolling over road unevennesses, so, the rotational velocity in Equations (4.1)
and (4.2) is set to zero as are the derivatives of all variables. The resulting
equations that describe the static deformation of the flexible ring model read:

_EI (azvb 9%, a%b] , Pobr (a%b . a4u,,)+

2 4 3 2 4
99 08 2 90 r \d0° 96 (4.42)
Uy —70,) — Cpyy aﬁ +(Cpy + Coup )%, SINO + 2, cOSO) = q,, + Yo
062 06
T (Cpy +Cpup )Xo + 7 J[wa b cos + ¢, vpsin G)de =F, (4.4b)
0
T +Cou )20 J‘( qm 8+ ¢y, v, co8 OJdG F, (4.4c)
0
2n
2me,, 10, = r? [ ¢,,0,d0 = M, (4.4d)

0

The Modal Expansion Method is used to simplify the analysis [32]. The basic idea
behind the modal expansion method is that the response of a linear system to any
external excitation force can be expressed as a weighited summation of the
natural mode shapes of the system. The mode shapes of a system are usually
time independent while the weight factors are space independent. According to
the modal expansion method, the tangential and radial displacements of the ring
can be expressed as follows:

0,t)= Y a,(t)cosn®+b,(t)sinnd (4.5a)
n=0

w,(0,¢ ZRa sinn® — nb,(t)cosnd (4.5b)

n=0

where a, (¢), and b,(t) are the generalised modal displacements. Substituting
Equations (4.5) into (4.4); multiplying the resulting equations by cos(n8) and
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sin(nB); and integrating these equations over 2n yields the equations for the
generalised modal displacements:

t
a,(t) = Sa® (n=0,1,2,3,..) (4.6a)
bn
At
b, (t) = n({’( ) (m=0,1,23,.) (4.6b)
“bn
where n denotes the mode number. The generalised modal forces ., and Nent)
read:
2n dq 2n q
Eeo=2] (w ) , b= %J(qw jcosnede (n=123,.)  (4.7a)
0 dé 0
2n
MNeo = 0 > Nen = IIJ-(qcu )Sln n6do ()'L = 17273" ) (47b)
0
the modal stiffnesses C, are:
C,, = [Ef(nz - 1) + Mjnz(n2 - 1) + ey, + 1%y, (4.8)
r r
and the reaction forces at the axle and reaction torque at the rim read:
F,. = 1r(Ch, + Cpup )% + T(Chy + Cou )by (4.9a)
Fuz = TU'(C;)U + Chm)zn + TCI'(CbU T Cpyy )(1,1 (4.9b)

M,, =2nr’c, 0, - 2nr’c,,a, (4.9¢)

a

Tyre-road interface

If the tyre is loaded on the road surface, deformations of the tyre occur and a
finite contact length arises. In the contact patch the deformations of the tyre ring
are prescribed by the (first assumedly) flat road surface. The relations between
the tyre sidewall deformation (radial and tangential displacements of the tread-
band) and the contact forces (radial and tangential pressures) are governed by
the equations of motion. If the contact forces are known, the tyre tread-band
displacements can be obtained by solving the equations of motion.

In reality, the contact forces are not known because they depend on the tread-
band displacements. In a typical tyre-road contact problem, the tyre deflections
are the ones that need to be determined. Therefore, an additional set of relations
between the tyre tread-band displacements and the contact forces is needed to
solve the tyre-road contact problem. To serve this purpose, a small modification
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to the physical model of the tyre is made to take into account the flexibility of the
tyre tread rubber, i.e. an extra component is added to the model: radial and
tangential springs distributed along the outer surface of the ring circumference.
{32, 120]. The height of these new tread elements in the model is assumed to be
zero. The modified ring model is shown in Figure 4.5.

rim tangential sidewall stiffness
tyre ring radial sidewall stiffness

) tangential tread stiffness
road surface a /3 /3 radial tread stiffness

Figure 4.5: The modified flexible tyre ring model.

Tangential and radial contact pressure distributions ¢, and g, arise only if the
radial tread element deformation is positive:

9ov = Cav(vr - vh) y Gew = ccw(wr - wb) if (wr - wb) >0 (4.10a)
q., =0 y Qo =0 if (w, —w,)<0 (4.10b)

where ¢, and c,, denote the tangential and radial distributed tread element
stiffness per unit length, and v, and w, denote the position of the point conlacting
the road surface.

Non-linear tyre sidewall spring characteristics

It is well known, that the forces in the tyre sidewalls depend non-linearly on the
tyre deflection. This effect should be taken into account for accurate predictions of
the enveloping properties of radial tyres [1]. Figure 4.5 shows the tyre cross
section. The tyre sidewall is assumed to behave as an in-extensible membrane.
Furthermore, the internal air pressure p, is assumed to be constant during the
tyre deflection. This is an acceptable assumption for automobile tyres [83].
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tread

~—— belt plies
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O
Figure 4.6: The carcass cross seczft';;n:_~ -
The arc length /_ of the tyre sidewall is assumed to be constant:
Ly =210, (4.11)

where r_ is the radius of the tyre sidewall and ¢, half the angle which covers the
tyre sidewall arc. The relationship between this angle and the height 4_ reads:

h, h
sinQ, = ——=—=0, (4.12)
mo, 9 7 P,

8 8

According to Rotta the radial stiffness ¢,, and tangential stiffness c,, read as
function of the parameter ¢, [12]:

cos@, + @, sin@, . _@er 1
bv —

. 3 (1] (413)
SIn @, — @, coS P, A tan @,

Cow = Do

The following sidewall geometry parameters have been measured: the radius of
the tyre, the radius of the tyre sidewall arc and the thickness ¢ of the sidewall.
The total length of the sidewall arc was estimated as it is difficult to determine
where the arc begins and ends, and also it was impossible to measure the shear
modulus of the sidewall rubber G. The values of the estimated parameters were
used to optimise the static behaviour of the model with respect to measurements.
The sidewall geometry parameters are given in Table 4.2.

The stiffness characteristics based on the sidewall geometry have been
compared with the directly measured sidewall stiffnesses. For this experiment
the tyre was placed inside a drum with a radius slightly larger than the free
radius of the tyre. The gap between the tyre and the inside of the drum was filled
with an epoxy resin forcing the tyre tread-band to retain its circular shape.
Forces and torques were applied to the drum and the deformation of the tyre was
measured. The experiments were carried out at the nominal inflation pressure
(2.2 bar) and at zero inflation pressure. Two in-plane stiffnesses were measured:
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the overall translational sidewall stiffness ¢, and the overall rotational sidewall
stiffness c,.

Table 4.2: Parameters for the undeformed tyre sidewall at an inflation pressure
of 2.2 bar.

measured Parameters:

symbol value unit description
r 0.300 m tread-band radius
r, 0.054 m radius tyre sidewall arc
t 0.010 m sidewall thickness
Estimated Parameters:
I 0.121 m length of sidewall arc
G 1.6 10° N/m? shear modules of tyre sidewall
Calculated Parameters:
@, 62.3 deg half the angle of tyre sidewall
h, 0.0867 m height of the tyre sidewalls

The overall sidewall stiffnesses ¢, and c,, can be calculated easily from the
distributed sidewall stiffnesses ¢,, and ¢, (¢f. Eq. 7.15). Small variations in the
deflection were used. Therefore, the sidewall stiffnesses c,, and c,, of the
undeflected tyre were employed. Table 4.3 presents the comparison of the
calculated overall sidewall stiffnesses based on the sidewall geometry to the
directly measured sidewall stiffnesses.

In the original version of the flexible ring model the sidewall stiffness
characteristics are described linearly. Therefore, the differences between the
forces showing by the non-linear and linear sidewall representations are added as
forces acting between rim and tyre ring.

Table 4.3: Comparison of the overall measured sidewall stiffnesses and the
calculated sidewall stiffnesses according to the membrane theory.

inflation pressure | symbol measured calculated unit
P, [bar] sidewall stiffness  sidewall stiffness
2.2 Cro 4.26 10* 4.04 10* Nm/rad
2.2 ¢, 1.02 10° 0.95 10° N/m
0.0 Cpo 2.08 10* 1.11 10* Nm/rad
0.0 ¢, 0.25 10° 0.13 10° N/m
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4.3 The simulation model

The flexible ring model is used to simulate the responses of the tyre rolling over
obstacles at very low velocity. The forces generated between the road surface
(with obstacle) and the flexible ring depend on the deformation of the tread
elements. These distributed forces per unit of length of the circumference acting
on the tyre are referred to as the external pressure distribution. During each step
in the enveloping process the deformation of the flexible ring due to the external
pressure distribution is calculated. The distributed forces per unit of length
acting in the tyre sidewalls are referred to as the internal pressure distribution.

To solve the tyre-road contact problem an iteration procedure is used. The
deformation of the tyre ring which balances the internal and the external
pressure distributions has to be determined. Figure 4.7 shows the basic iteration
procedure and the domains used. The radial and tangential deformations of the
flexible ring are calculated from the modal coordinates. The radial and tangential
ring deformations are used to calculate the horizontal and vertical tread element
deformations. The external pressure distributions in the contact patch depend on
the tread element deformations. Now, the horizontal and vertical external
pressure distributions are transformed into radial and tangential pressure
distributions acting on the flexible ring. Finally, the modal forces are calculated
from the radial and tangential pressure distributions.

tangential and radial
pressure distributions

horizontal and vertical dal f §
contact pressure distributions modal torces S
N\ , N
(tread element stiffnesses modal stiffnesses)

horizontal and vertical

tread clement deformations modal deformations

//\

deformations

tangential and radial
ring deformations

Figure 4.7: The basic iteration scheme and the transformations of the forces and
displacements between the various domains.

The iteration procedure is a basically unstable process because the tread element

stiffnesses are much larger than the modal stiffnesses of the flexible ring model.
To obtain a stable iteration the procedure has to be altered: the pressure
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distributions in the tread elements in the current iteration step depend on both
the pressure distributions in the previous iteration step and the tread element
deformations in the current iteration step. Balancing the ratio between these
pressure distributions guarantees the stability of the procedure. The iteration
procedure is terminated if the internal and external pressure distributions have
approached each other sufficiently closely.

We might possibly have employed a continuous description for the forces
generated in the contact patch, but the derivation of analytical results is
cumbersome. Therefore, the displacements in the contact patch will be calculated
for a finite number of contact points n, using a finite number of modes m. The

radial and tangential displacements of the ring at these points read:
vy, ;

m m
Ui = Zancosnei +b,8inn0;, w,; = % = Znansin n®;, —nb,cosnd;, (4.14)
n=0 n=0

where the subscript { denotes the situation at the discrete point at an angular
position 8,. The discrete points are equally spaced along the ring circumference:

0,=—2t i=0,1,2..,n, (4.15)
n(f
The vertical and horizontal displacements of the flexible ring read:
xb,i = _Sinei ‘Uf),i +COS9,- .Ub,i (4.16&)
zp,; =—c080; vy, —8Inb; v, (4.16Db)
The vertical and horizontal forces per unit of length equal the displacements
multiplied by the tread stiffnesses:

{ N

\ I3 \ e \ ~ s a4 -
qcu,i - ccv(xr,i - xb,i) s Qewi = chkzr,i - Zb,t) 11 kzr,i - Zb,i) U 4.1/a)

0 » q(:w,i =0 if (Zr,i - Zb,i) <0 (417b)

qcv,i

where ¢, and c_, are the horizontal and vertical tread stiffnesses per unit of
length, respectively. Since the tread element stiffnesses only play a role in the
contact patch, the names chosen for the stiffnesses are horizontal and vertical
rather than tangential and radial. The radial and tangential forces acting on the
tyre ring read:
Qi = —8in0; - q, ; — 086, -q,,, (4.18a)
Qe = €089, g, —sind,; -q.,; (4.18b)
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As we consider only a finite number of points in the contact patch, rather than a
continuous description, the integrals for the generalised modal forces (Equation
4.7) change into summations of the forces in the discrete points considered:

N, a . n, a ) .
Euo = AOLY (g i+ —200) & = ABLY (g, i+ 2%h) cosnB, (n =1,2,3,...) (4.19a)
i 09 i 08
N, a ] .
N =0 , Moy =A61Y (qcvyi+%) sinn®, (n=123,..) (4.19b)
=1
And the modal deformations read:
A . ) (4.20)
Clm Clm

For optimal results the simulation model has several advanced features. First,
sliding of the tread elements is introduced. This means that the horizontal force
generated in the tread elements depends on the vertical pressure distribution.
Furthermore, the simulations can be performed on a flat road surface or on a
drum. In the latter situation, the vertical coordinate of the drum surface depends
on the longitudinal coordinate owing to the curvature of the drum.

Another aspect of the tyre rolling over road irregularities is free rolling of the
tyre. Free rolling is defined as the situation where no traction or braking torques
are acting on the rim. Unfortunately, the torque at the rim is a reaction resulting
from the motions of the wheel which are used as input to the model. In order to
perform simulations of free rolling, the rim should be rotated over an additional
angle in order to make the resulting torque zero.

Simulations may be performed at constant axle height or constant vertical
load. The first situation is similar to conditions during the measurements. The
second situation is preferable for simulations over large step changes in road
surface height. In that case, the stationary value of the contact length will not
change due to the step change and the responses of the tyre will be due only to
the step change and not to the change in vertical load.

Tread elements are modelled along the entire ring circumference. Each tread
element can get into contact with the road. It is possible to have more than one
contact patch, or in other words the model is able to represent gaps between two
or more individual contact patches. This forms a further extension to the model
application as suggested by Gong [32,51]. He used the front and rear contact
angle only and he solved the tyre road contact problem analytically rather than
the numerically as in this chapter.
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4.4 Vdlidation of the static behaviour of the flexible ring model

The accuracy of the flexible ring model improves if the number of modes and/or
the number of tread elements increases, but conversely, the simulation time
needed is influenced adversely if the number of modes and number of tread
elements increases. Hence, it is important to balance between the accuracy of the
model and the simulation time needed.

The tread-band displacements converge very quickly with the increase in the
mode number n. To obtain reliable results for the tread-band displacements on a
flat road surface fifteen or more modes should be included. The convergence of
the contact pressure is somewhat slower than that of the tread-band
displacements: at least twenty modes should be included. These results
correspond to the results found by Gong [32]. For simulating the enveloping
properties of the tyre thirty modes are used.

The tread elements are not only modelled in the contact patch, but are also
equally spaced along the entire tread-band circumference, see also Figure 4.5,
otherwise tread elements entering or leaving the contact patch have to be
monitored. It is difficult to assess the number of tread elements needed. We have
chosen 800 elements. This means that the number of elements in contact with an
even road surface varies between 27 and 55 in the vertical load range from 2000
to 6000 N. The smallest obstacle used for studying the enveloping properties is 30
mm long, which covers 12 tread elements.

The extensional stiffness of the tyre tread-band is very high (EA = 5.0 10° N).
The in-extensibility assumption was validated by comparing simulations with an
extensible tread-band with simulations with an in-extensible tread-band. There
is no significant difference between the results ot the two modeis. The calculation
time, on the other hand, was much longer for the model with the extensible
tread-band.

The sidewall non-linearity plays an important role in the force generation in
the tyre. The linear model with constant sidewall stiffnesses generates forces
which are 40% too high compared to the measurements.

Figure 4.8 presents a validation of the flexible ring model for a non-rotating
tyre. This figure presents the measured and simulated properties as function of
the vertical tyre deflection for two situations: the tyre standing on a flat road
surface, and the tyre standing on the curved drum surface.

The size of the contact patch is an important factor for the generation of
horizontal forces. With the flexible ring model a simulation was performed at
increasing tyre deflection. Owing to the discrete number of tread elements the
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simulated contact length increases by steps of 2.5 mm. The flexible ring model
represents the measured contact length well. Given the same vertical load, the
measured contact length on the flat road is 14% longer than the measured
contact length on the drum. This difference for the flexible ring model is 10%
only.

Figure 4.8 presents a comparison between the measured vertical load and
vertical stiffness and their simulated values. The vertical reaction force on the
wheel was measured as a function of the vertical tyre deflection. The relationship
between measured deflection and force was fitted with a second order polynomial
as the vertical load increases slightly more than proportionally with the
deflection. The vertical stiffness was found by differentiating this second order
polynomial. The vertical stiffness of the flexible ring model deviates only at high
values of tyre deflection. Both the measured and calculated vertical stiffnesses on
the drum are about 5% smaller than the vertical stiffnesses on a flat road.

The longitudinal stiffnesses of the model has also been validated, see Figure
4.8. Two longitudinal stiffnesses were investigated: the longitudinal force as
function of the longitudinal displacement of the wheel at constant rim angle; and
the longitudinal force as function of the rotational angle of the rim at constant
longitudinal position of the axle. The measurements were carried out at 4 axle
heights. The simulations were conducted at 25 axle heights. If the tyre deflection
approaches zero, the longitudinal tyre stiffnesses will approach zero as well due
to the vanishing contact patch.

Finally, Figure 4.8 presents the effective rolling radius. The measured rolling
radius decreases with vertical load. The simulated rolling radius is almost
constant and about equal to the radius of the ring. The flexible ring model is not
capable of showing the effective rolling radius variations accurately. For that one
needs to model not only the tread element deformation, but the height and the
orientation of the tread elements as well [61]. The influence of tread element
orientation on the effective rolling radius is illustrated in Figure 4.23 in Section
4.17.
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4.5 The tyre rolling over short wavelength obstacles

The enveloping properties of the tyre rolling over obstacles were studied
experimentally on the rotating drum test stand and theoretically with the flexible
ring model. Figure 4.9 depicts the three obstacle shapes used as road
unevennesses: a trapezoid cleat of 10 mm height and a base length of 50 mm and
a top length of 30 mm, a positive step of 15 mm, and a negative step of 15 mm.
Three constant axle heights were used corresponding to 2000, 4000 and 6000 N
vertical load for an undisturbed road surface.

i
: 10 mm 15 mm & 15 mm

L 50 mm
>

obstacle 1: trapezoid cleat obstacle 2: positive step obstacle 3: negative step
Figure 4.9: The three obstacles used: a trapezoid cleat, a positive step, and a
negative step.

During the experiments the wheel axle is fixed in a frame constraining both the
vertical and horizontal motions of the axle. The wheel is able to rotate freely as
no braking or traction torque is applied to the rim. The horizontal and vertical
reaction forces of the tyre are measured at the bearings of the wheel axle. The
rotational velocities of the drum and the wheel are also measured. The rotating
drum test stand is described in detail in Appendix A.

To suppress the influence of the tyre dynamics, the experiments had to be
carried out at very low velocity. Initial experiments showed that even at a
velocity of 3 km/h the influence of tyre dynamics could not be neglected. A special
drum propulsion system was used to carry out the final experiments at 0.2 km/h.
The measured responses were averaged 20 times to reduce the influence of tyre
non-uniformities.

Figure 4.10 presents the measured enveloping responses of the tyre rolling
over the three obstacles at three constant axle heights. This figure presents the
measured vertical force, the measured longitudinal force and the measured
(slightly varying) rotational velocity. The latter variation is represented by the
varying effective rolling radius, which is defined as the ratio between the forward
velocity of the drum V,_ and the rotational velocity of the wheel Q:

r,=—% (4.21)
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Figure 4.10: The measured enveloping response of the tyre at three constant axle
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obstacle 1: trapezoid cleat obstacle 2: positive step  obstacle 3: negative step
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Figure 4.11: The simulated enveloping properties of the tyre at three constant axle
heights.
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During the quasi-static experiments at 0.2 km/h the travelled distances of the
wheel and the drum were measured rather than the velocities. The displacement
signals were differentiated and filtered to obtain the velocities. The cut-off
frequency of the filtering characteristic used was too low, ¢f. the very smooth
measured rolling radius variations in Figure 4.10. Unfortunately, the raw data of
the measurements were deleted, and the filtering effect could not be undone
unless the experiments were carried out once more. New quasi-static experiments
were not carried out because they are very time consuming and would not
provide any significant new data. The only advantage of new data would be a
reduction in the filtering effect of effective rolling radius. In that case, the
measured rolling radius variations will probably correspond better to the
simulated ones.

Figure 4.11 presents the simulated responses of the tyre rolling over the
three obstacles: the variations in vertical force, the variations in longitudinal
force, and the rolling radius variations. The response was simulated statically: for
each longitudinal position in the enveloping process the static equilibrium forces
in the tyre were calculated iteratively. The correspondence between the
measurements and the simulations indicate that we may use the flexible ring
model also for simulating conditions other than the measured conditions (e.g.
another axle height or another obstacle shape).

The measured and simulated step responses (c¢f. Figures 4.10 and 4.11)
correspond well with quasi-static experimental studies of the vertical and
longitudinal forces presented in the literature [61,62,74,110]. Also the force
responses of the tyre rolling over the cleat obstacle correspond well with the
experimental studies presented in the literature [5,8,34,49,61,62,110]. The
measured and simulated effective rolling radius corresponds qualitatively with
the measured cleat response of the wheel rotation with respect to distance
travelled by road presented by Gough [34].

The results presented also correspond well with the simulation results of the
forces presented in the literature: Mousseau et al. [74] used a Finite Element
Model to simulate the tyre rolling over a positive step, and Badalamenti et al. [5]
used a radial spring model to roll the tyre over a cleat obstacle.

It is well known that the vertical stiffness at the edges of the contact patch is
much higher than the stiffness in the centre of the contact patch. This effect
influences the response of the vertical force, especially at high values of vertical
load when the response of the vertical force shows two successive responses: the
front edge of the contact patch rolling over the obstacle and the rear edge rolling
over the obstacle.
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The longitudinal force is negative when the tyre rolls over a positive step, and
this force becomes positive when the tyre rolls over a negative step. The
longitudinal force response also appears to vary asymmetrical when the tyre rolls
over a symmetrical obstacle (e.g. the trapezoid cleat).

The mechanism of the variation in effective rolling radius is harder to
understand. The first influence is the well known dependency of the effective
rolling radius on the vertical load. This influence is rather small: the measured
step responses show that the stationary value of the effective rolling radius
before and after the step changes by 3 to 7 mm. Figure 4.10 shows that the total
variations in effective rolling radius are much larger than the variations due to
the load dependency only. The flexible ring model is not able to represent the
variation of the stationary value of the effective rolling radius accurately (cf.
Figure 4.8).

The spikes in the simulated rolling radius variation are probably due to the
discretisation of the tread elements in the model. The number of elements in
contact with either the road or the obstacle has to be an integer value. This
means that the number of elements may vary by one between two simulation
steps. This influences the forces generated in the tread elements.

4.6 Effective inputs from short wavelength obstacles

The geometry of a road surface with short wavelength irregularities cannot serve
directly as input for a model with a single-point tyre-road interface (like the rigid
ring model of Chapter 7). Davis introduced an equivalent ground plane, which
reflects both the elevation and slope characteristics of the original road geometry
[20]. He obtained this equivalent ground plane from simulations with a radial
spring tyre model.

If we monitor the reaction forces at the axle of an enveloping tyre we may
imagine the tyre rolling piece wise over a flat road surface at a given height and
inclination, as depicted in Figure 4.12. Besides the two inputs introduced by
Davis [20]: the effective height w and the effective angle B of the effective road
surface, a third input is used: the effective rolling radius variation 7,.

The idea behind the introduced e¢ffective road surface is that the quasi-static
responses of a tyre model with a single-point tyre-road interface on an effective
road surface are similar to the quasi-static responses of the real tyre on the real
road. Accordingly, the effective excitation of the tyre will be assessed from the
quasi-static enveloping properties of the tyre. This section shows how the
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effective plane height can be assessed from the measured or simulated response
of the quasi-static vertical force and also how the effective plane angle can be
assessed from the response of the quasi-static longitudinal force. The next section
will show how the third input (the effective rolling radius variation) can be
derived approximately from the other two effective inputs.

(a) effective plane height (b) effective plane angle (c) tyre rolling over an effective surface

Figure 4.12: The definition of the effective road surface.

Figure 4.12a shows the definition of the effective plane height w, which is defined
as the variation in vertical force divided by the vertical tyre stiffness C, (note:
axle vertical position is fixed):
w= Fz — FZO
C

~z

(4.22a)

According to the definition of the effective plane height, the vertical force should
be divided by the current vertical stiffness C,, which is generally non-constant.
However, if we would like to use this input in a linear tyre model, the vertical
force must be divided by a constant vertical stiffness C,:

F -F . .
w=—=2_"-20 (4.22b)

CzO
Figure 4.12b shows the forces of the tyre rolling over the obstacle. It is assumed
that the effective plane is perpendicular to the normal force F,. The angle B of

the effective slope of the road is defined as:

B= —arctan[d—wJ = arctan[(Fx ;FxO) + frlF, — FZO)] (4.23a)

s F

Z z

A correction is made for the influence of the change in rolling resistance force f,.F,
because that is the only tangential force that remains at very low speed of rolling.
As in to the previous effective input, the equations of the effective plane angle can
be linearised: the constant vertical force F,; is used in the division rather than
the varying vertical force F,.
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F,—Fy) . f,(F, “on)] (4.23b)

f =—arctan dw)_ arctan (7,
ds F;O FzO

Figures 4.13 and 4.14 present the two effective inputs obtained from experiments
and the simulation of the tyre rolling at three axle heights over the three
obstacles. These figures indicate that the flexible ring model describes the
enveloping properties of the tyre rather well. Figures 4.13a and 4.14a show the
‘non-linear’ effective inputs according to the definitions of (4.22a) and (4.23a).
These inputs can be used in a non-linear model. Figures 4.13b and 4.14b show
the ‘linear’ effective inputs according to the definitions of (4.22b) and (4.23b).
These inputs can be used in a linearised model.

The differences between the linear and non-linear effective plane heights are
small because the vertical tyre stiffness C, varies only slightly as function of the
vertical load. The differences between the linear and non-linear effective plane
angle are much larger. This is because the vertical load in expression (4.23a)
varies considerably.

One difference between the measurements and the simulation is the
asymmetry in the variation of the plane height w obtained from measurements
for rolling over the trapezoid cleat. This asymmetry is probably caused by
hysteresis of the tyre. Another difference with the measurements is the effective
plane angle B at high levels of vertical load: the measured amplitudes are
somewhat lower than the simulated amplitudes.

The effective excitations of the tyre caused by obstacles depend highly on the
obstacle shape and axle height. Bandel and Monguzzi decomposed the response of
the tyre into basic curves [8]. Accordingly, the effective plane height variation for
a short symmetrical cleat may be obtained by summing two equal but shifted half
sine waves, see Figure 4.15. The height of the half sine wave is denoted by 12H,
the width with %, and the shift of the second sine wave by Aimp- A similar basic
function may be used to represent the effective plane angle. The height is now
denoted with A and the first half sine is different in sign. The basic functions of
the tyre rolling over the positive or negative step are quarters of sine waves as
shown in Figure 4.16.

The summation of the basic functions is identical to a convolution of one basic
function with two impulse functions. The properties of the convolution integral
will be used in Section 10.4 for the study of the frequency content of the
excitation of the tyre by short wavelength obstacles.
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obstacle 1: trapezoid cleat obstacle 2: positive step obstacle 3: negative step
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Figure 4.13a: The non-linear effective road surface obtained from measurements.

obstacle 1: trapezoid cleat obstacle 2: positive step obstacle 3: negative step

'_‘10 T T T ’_‘20 T T T T T "qzoﬁi"'r' 1 1
g g =)

£ o El E =

3 /\ 3 15 315 *
= ) -

= 6~ - = <

B0 10| L |
e 210 210

< 4r / \ = = X

@ BV g g sl N\

< 2+ \'} B o v =

85 0 | — aq:; 0 I L i . g"‘a-"; 0 1 L I
_ 10y T — _15 T T

W wy O o0 A

) | Q Q
= i =z, =
@ [ [S=R [==% . B
iy L -5 2 10

60 B0 b

= =) =

< < 5]

2 2 2 5
E &-10 E

a, a 2,
b= & & 0

®_10 j 1 “’_15 | 1 : o I I

-200 -100 0 100 200 -200 -100 0 100 200 -200 -100 O 100 200
longitudinal position [mm] longitudinal position {mm] longitudinal position [mm)]
— F,,=2000N F,, = 4000 N F,,=6000 N

Figure 4.13b: The linear effective road surface obtained from measurements.
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Figure 4.14a: The non-linear effective road surface obtained from simulations.
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Figure 4.14b: The linear effective road surface obtained from simulations.
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The parameters of the basic functions (shown in Figures 4.15 and 4.16) are
obtained by fitting the effective plan height and the effective plan angle obtained
from either the experiments or the simulations with the flexible ring model. The
width of the basic functions A,, and the heights H and A are approximately
independent of the vertical load. The shift of the basic functions 2,,,, varies with
the vertical load: this shift is slightly smaller than the contact length 2a. With a
vertical load (and thus the contact length) approaching zero, the two basic
functions coincide. At higher levels of vertical load these basic functions are
mutually shifted over approximately the contact length. If the vertical load is
very large, we get the typical response of the tyre on a short symmetrical
obstacle: a response with two maxima rather than a response with one
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maximum. Figure 4.17 presents the influence of the shift of the basic function on
the effective road surface. The bold lines in this figure represent the effective
surface at 2000, 4000 and 6000 N vertical load.
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Figure 4.17: The effective plane height and the effective plane angle as function of
the vertical load and longitudinal position (obstacle 1, 2, and 3).

4.7 Effective rolling radius variations on an effective road surface

The effective road surface is used as input for high velocity simulations with the
rigid ring model in Chapter 10. For these simulations the effective plane height w
is used as vertical excitation of the tyre, and the effective plane angle [ is used as
longitudinal excitation of the tyre. Unfortunately, these two excitations do not
suffice. The variations in the rotational velocity of the tyre during cleat passage
are essential. These variations generate slip velocity variations in the contact
patch, and thus additional longitudinal forces in the contact patch. Hence, it is
very important that these variations of the rotational velocity are modelled
correctly.

The measured and simulated effective rolling radius variations are related to
the responses of the longitudinal force (c¢f. Figures 4.10 and 4.11): when the
longitudinal force is decreasing the effective rolling radius is larger than the
average rolling radius, and when the longitudinal force is increasing, the effective
rolling radius is smaller than the average value. Numerical analysis of the data
showed that the effective rolling radius variation is approximately equal to the
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vertical tyre deformation multiplied by the derivative of the effective plane angle
with respect to wheel angle of revolution (first term of the following equation):

~ _NI =1

=75 %+re(l—cosﬁ)+n(Fz - F,) (4.24)

_—0_ ] 3
i

The second and third contributions in the formula above are relatively small (less
than 5% of the first contribution): the second contribution is due to the slope
itself, the third contribution is the influence of the load dependency on the
effective rolling radius.

In Figure 4.18 the measured effective rolling radius is compared to the rolling
radius variations according to expression (4.24). The major difference is that the
directly measured effective rolling radius was filtered too much. In Figure 4.19
the simulated radius using the flexible ring model is compared to the result of
expression (4.24) with the effective road geometry resulting from flexible ring
model calculations. This expression represents the measured and simulated
effective rolling radius variations rather well.

A disadvantage of Equation (4.24) is that the derivative of the road plane
angle is used for the calculation of the rolling radius variations. For that we need
to differentiate the road plane angle during numerical simulations. This problem
is solved in Section 7.3 by replacing the differentiator by a high-pass filter.

A possible model for representing the effective rolling radius variations

Expression (4.24) showed that the effective rolling radius variations can be
deduced from the other two effective inputs. In this section we will discuss the
background of the contributions represented in expression (4.24). If the tyre rolls
over an uneven road surface we may monitor variations in actual road geometry:
road plane height, road plane angle and road surface curvature. All these
variations will generate rolling radius variations.

It is assumed that the effect of the tyre rolling over a road geometry may be
decomposed into the effect of the road plane height, the effect of the road plane
angle and the effect of the road surface curvature. The latter effect is again
decomposed and thought to be the result of the sum of two mechanisms: rolling
over a rotating curved surface (e.g. drum) and rolling over a flat surface that is
rotated about a transverse axis through the contact centre with equal and
opposite speed of rotation. In that way the total speed of rotation of the road
cancels out as it should be.
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Figure 4.18: Comparison of directly measured effective rolling radius and the
calculated effective rolling radius from effective road geometry.
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Figure 4.19: Comparison of simulated effective rolling radius and the calculated
effective rolling radius from effective road geometry.
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Figure 4.20 presents three of the four mechanisms of effective rolling radius
variations due to the road geometry. The most important mechanism is the
variation of the plane angle at zero road curvature. The second mechanism is the
tyre rolling over a curved road at constant road plane angle. The third
mechanism is the difference in orientation between the horizontal velocity V, and
the velocity tangential to the road surface V,. The fourth mechanism, not shown
in Figure 4.20, is the well-known vertical load dependency of the effective rolling
radius. This influence is rather small compared to the other three mechanisms.

tyre on a curved road mechanism 1 mechanism 2 mechanism 3

T AN

e

rotating_ tyre standing tyre rotating tyre rotating tyre
varying road angle varying road angle zero plane angle constant road angle

varying road curvature zero road curvature constant road curvature zero road curvature
Figure 4.20: The mechanisms of the effective rolling radius variations of the tyre
due to the road geometry.

The influence of the varying road plane angle

The following theoretical considerations are based on the assumption that the
influence of the varying road plane angle of the rolling tyre over a curved road
may be studied with a standing tyre on a varying road plane angle. The variation
of the plane angle is the major contribution to the variations of the effective
rolling radius. Figure 4.21a presents the transformation of the forces from the
road plane frame into a horizontal frame. The road plane angle B is used to
transform the tangential force F . and normal force F,j in the contact patch to a
horizontal force F',, and a vertical force F

Fo | _ C?SB sinf | For (4.25)
F.| |-sinp cosP] Foy
The transpose of the transformation matrix is used to transform the positions in
the contact patch from the horizontal frame to the road plane frame (Fig. 4.21b):
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X, cosp —sinf | x,
Zon sinf  cosB | 2,
where x, and z, denote the horizontal and vertical displacements of the wheel at

point C, and x_, and z_y the tangential and normal displacements of the wheel at
point C.

b

(a) forces acting on the tyre (b) displacements in the contact patch

Figure 4.21: The influence of the road plane angle on the displacements and
forces in the contact patch.

Figure 4.21b shows that a rotation of the road plane about the contact point C
will generate additional tangential velocity variations in point S. If point S lies
beneath the road surface, the road moves backwards relative to point S when the
rotation of the road plane is positive (B>0). Or, the other way around, the
additional velocity of point S due to a positive rotation of the road is positive.
Thus the tangential slip velocity V, ,, in the contact patch (which is defined as the
velocity of point S) becomes:

Vi =V, —Qr, + j—f(a —r) (4.27)

where r,, and r, denote the effective rolling radius and the loaded tyre radius,
respectively. The difference in these radii is the difference between the location of
the contact point C and the centre of wheel rotation S. In our model
considerations we would like to write the contribution of the varying road plane
angle on the slip velocity as an additional rolling radius variation 7, ,,:

Vr,sx = Vx - £2(rc + ;:c,mt) (4.28)
Combining the Equations (4.27) and (4.28) gives:
;:e rot = 7uﬁ (429)
' Q, dt
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The influence of the road plane angle variations at zero velocity on the rotational
wheel angle variations is substantiated through measurements. The experiment
was carried out at a fixed axle position (V, =0, V,=0), resulting in increasing
vertical load at increasing (absolute) road plane angle. The rim could rotate freely
about its spindle axis as no traction or braking force was applied to the rim.
Thus, the tangential slip velocity (V_ ) in the contact patch has to be zero.

Rewriting Equation (4.27) gives the following relationship between the variation
of wheel angle 6, as function of the variation of road plane angle (6,, = dB/dt):

8& _-n (4.30)
00

r

w e

Figure 4.22 presents the measured variation of wheel angle as function of the
road angle, and the variation according to Equation 4.30. Indeed this equation is
able to predict the variation in wheel velocity due to road plane angle variations.
The relationship between road plane angle and wheel angle at constant axle
height is non-linear because the vertical load varies with the road angle as well
influencing both the loaded radius and the effective rolling radius.
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Figure 4.22: The measured and calculated wheel angle as function of the road
angle, at six constant axle heights.

At low values of vertical load the difference between the loaded radius and the

effective rolling radius is rather small and the variations in the wheel angle are
very small and difficult to measure accurately. At approximately 1000 N vertical
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load point S and point C appear to coincide and the variations of wheel angle are
about zero. It is most striking to see that at smaller values of vertical load, the
tyre rotation is opposite to the road plane rotation. At these values of vertical
load the effective rolling radius is smaller than the loaded radius. In other words,
point S lies above the contact point C at low values of vertical load, see also
Figure 4.23b.

The results presented in Figure 4.22 are not surprising. It is basically an
effective rolling radius experiment. The effective rolling radius r, defines the
radius of pure rolling of the tyre rolling with respect to the surface irrespective of
whether the tyre is rotated or the drum is rotated.

Note: the theoretical considerations above explain the variation of the wheel
angle as function of the variation of the angle of the road plane. The theoretical
result was validated by experiments in which the road rotated as rigid body. In
reality, however, the road does not rotate as the tyre moves over a fixed road. To
compensate for this rotation of the road the effect of the curved surface rotating
in opposite direction is added in the subsequent sub-section.

The influence of road curvature

The second contribution to the rolling radius variation depicted in Figure 4.20 is
due to the rotating curved road at constant road plane angle. This situation can
be compared with a tyre rotating on a rotating drum. The curvature of the drum
influences the effective rolling radius. To be able to understand the influence of
the drum curvature we will first discuss the mechanism of the variation of the
effective rolling radius on a flat road.

Figures 4.23a through 4.23c depict a rotating radial tyre on a flat road
surface in three loading conditions. The possible locations of the centre of rotation
are denoted by S. At zero wheel load point S lies at road level and the effective
rolling radius r, of the tyre assumes the free radius of the tyre ;. At low values of
wheel load the effective rolling radius decreases: point S may even lie above the
road surface [82]. At large values of wheel load the effective rolling radius
approaches the radius r, of the nearly in-extensible tread-band.

The variations of effective rolling radius are caused by the orientations of the
tread elements entering the contact patch. At low values of vertical load the tread
elements entering the contact patch are oriented approximately radially. This
means that an additional slip velocity of the belt is needed to rotate the tread
elements in the contact patch. At very large levels of vertical load the tread
elements enter the contact patch almost vertically: only little rotation of the tread
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elements is needed and the effective rolling radius is approximately equal to the
radius of the tread-band.

(a) zero vertical load  (b) small vertical load (c) large vertical load (d) large vertical load and
positive road curvature

S at road level S above road level S below road level S belo‘w road level
Figure 4.23: The position of the centre of rotation.

If the tyre rotates on a drum at high values of vertical load (see Figure 4.23d), the
tread elements entering the contact patch are oriented approximately
perpendicularly to the drum surface. This means that again an additional slip
velocity of the belt (but now negative) is needed to change the orientation of the
tread elements. In conclusion, a positive road curvature will decrease the
effective rolling radius while a negative curvature will increase this radius. The
limit situation is a negative road curvature with a radius equal to the free radius
of the tyre. In that case, the effective rolling radius is equal to the tyre free
radius. Hence, we may derive the following formula for the effective rolling radius

r , on a curved drum surface as function of the effective rolling radius on a

e,ciirved

flat road r, 4, » the free radius of the tyre r, and the curvature radius R, ;:

o (4.31)

r L =F .+l . =T
“e,curved Te,fiai T \"e,fiui G) R

where the radius of the road curvature R__, follows from:

road

l/Rrofzd - dB/dS (432)

This results in the change in effective rolling radius (r, 4, = T

Ve curved = (reO - 7”0)

ry 3B T =10 AP (4.33)
ds Q, dt

We only have one experiment to validate expression (4.31): the difference
between effective rolling radius of the tyre rotating on a flat road and on a drum
with a positive curvature radius of 1.25 meter. Figure 4.24 shows the difference
between the measured effective rolling radius on the drum and the flat road, and
the difference according to expression (4.31). The difference between the
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theoretical calculated radius and the measured radius is rather large, but we
should realise that a 1 mm accuracy requires 0.3 % accuracy in the

measurements.
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Figure 4.24: The decrease in effective rolling radius of the tyre on a 2.5 meter
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drum with respect to the case on a flat road.
The influence of road plane angle

The third contribution to the effective rolling radius variation is the road plane
angle itself. During the experiment we monitored the horizontal velocity V.,
rather than the velocity V. tangential to the effective road plane. The effective
rolling radius 7, is equal to the ratio between the tangential velocity V, and
rotational velocity Q:
r = Vr (4.34)
Q

During the cleat passage we monitored the horizontal velocity V.. So, the ratio V,
and € that we still define as the effective rolling radius now becomes slightly
smaller than the value expected from (4.34):

V. Vi5cosp ,
Testope =5 = TT =r/cosP (4.35)
So that we may write:
iz,s[up:z = reO(l —Cos B) (436)
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The influence of road plane height

The road plane height (and thus the vertical load) is the last contribution to the
effective rolling radius variations considered. As depicted in Figure 4.23 the
effective rolling radius decreases with the vertical load. This influence is
represented by the coefficient 1 (<0). The variation in the effective rolling radius
7, is equal to the coefficient n multiplied by the variation in normal force ﬁcN‘ If
the axle position is fixed, the variation in the normal force is equal to the effective
road plane height w with respect to the original condition multiplied by the
vertical stiffness C:

7 =y =C, 0 (4.37)

The total variation of effective rolling radius

Expression (4.24) is now formed by adding the different effects (cf. Egs 4.29, 4.33,
4.36 and 4.37):

r,= rc,rol + re,curued + re,slope + re,n (4388)

The variation of the effective rolling radius due to the vertical load variations
(7, ,) will be included in the rigid ring tyre model (cf. Section 7.3). Consequently,
the effective rolling radius variations without this contribution will be used as
input to the rigid ring model. The effective rolling radius variations 7, resulting
only from the contact between tyre and road on uneven roads reads:

7 (4.38b)

e,slope

io= 7

] !
e epot 7 e curved !

r.

4.8 Definition of a geometric filter

The key factors for establishing the effective inputs are the basic functions. To
obtain these basic functions for a general road geometry a more general approach
is introduced in this section.

Section 4.6 presented the effective inputs representing the enveloping
properties of the tyre rolling over short wavelength obstacles. These effective
inputs depend on the average vertical load and obstacle shape and could be
decomposed into two shifted basic functions (cf. Figures 4.15 and 4.16). Figure
4.25 presents a model of the tyre-road interface showing the two mechanisms
which contribute to the enveloping properties of tyres. First, the obstacle shape is
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rounded and broadened owing to the finite radius of the tyre. The resulting
characteristic is called the basic curve or basic function. Second, the front edge
and the rear edge of the contact patch moves over this smoothened surface.

The effective plane height is obtained from the average height of the basic
function at the edges of the contact patch. The effective plane angle is obtained
from the difference between the basic functions at both edges. This approach can
only produce the ‘non-linear’ effective plane angle (¢f. Eq 4.22a and 4.23a). The
effective rolling radius variations can be obtained from the other two effective
inputs (cf. expression 4.24).

" _B o basic curve
T .. y .. basic curve ? w ‘__-_:Bﬂ_.,
’ ’ . ximp ] ‘ { Li 7\‘imp ]
A A
D & ‘—‘:’f/ BN
(a) effective input from a trapezoid cleat (b) effective input from a positive step

Figure 4.25: The tyre-road interface model of a tyre rolling over obstacles.

Figure 4.26 shows that the shapes of the basic functions are very similar to the
response of the motion of the centre of a rigid wheel rolling over the obstacle.
Obviously, the height of the basic functions and the rigid wheel responses when
rolling over the step changes are equal to the height of the step. An obvious
difference is the offset of the basic function with respect to the rigid wheel

response.
(a) trape‘zmd clea - (b) pos1t|1ve step (c)negative step height [mm]
; 3{’03 }"os r1g1d
15} G . wheel
“ 7 response
basic
function
) obstacle
0 : L shape
-100 0 100 -100 0 100 -100 0 100
travelled distance travelled distance travelled distance [mm]

Figure 4.26: Comparison of the basic functions with the responses of a rigid
wheel rolling over the obstacles.

Lippmann [61,62] showed that the geometry of any road surface may be
decomposed into a series of step changes. The total quasi-static response to such
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a road surface can be obtained from the quasi-static responses to a step input.
Figure 4.26a shows that this idea also holds for establishing the basic functions:
the basic function of the trapezoid cleat can be composed of the basic functions of
the step changes. The offsets of the basic functions of the positive and negative
step is so large that the height of the basic function of the trapezoid cleat is lower
than height of the cleat itself. If the trapezoid obstacle is longer (probably longer
than 50 mm) the basic function will be as high as the height of the cleat.

Sections 4.5 and 4.6 showed that the flexible ring model gives an accurate
representation of the enveloping properties of the tyre rolling over obstacles at
constant axle height. Accordingly, we will use the flexible ring model to study the
influence of the obstacle shape. If the tyre rolls at constant axle height over a
step change in road elevation the vertical load increase depends on the height of
the step. Unfortunately, this change in vertical load will influence the contact
length, and thus the enveloping properties, since the contact length plays a key
role in the shift of the basic functions. Therefore, the simulations will be
performed at constant vertical load rather than constant axle height and the
effective plane height (for constant F,) is defined as the vertical motion of the
wheel needed to keep the vertical load constant.

Figures 4.27, 4.28 and 4.29 show the properties of the basic functions of the
tyre rolling at three constant vertical loads as a function of the height of the step
change in road elevation. These basic functions were obtained from the simulated
quasi-static responses using the flexible ring model. Figure 4.27 shows the width
Ay of the basic functions. The values of the width are compared with the width of
the response of a rigid wheel. This width can be easily calculated from the tyre
radius and the height of the obstacle. The figure shows a reasonable match
between the width of the basic functions and the width of the rigid wheei
response. Figure 4.28 shows the shift kimp of the basic functions. This figure
shows that the shift is approximately independent of the height of the obstacle
and approximately equal to 80% of the contact length 2a.

The Figures 4.27 and 4.28 show that the shift kimp of the basic functions is
dependent on the vertical load but is independent of the step height. Conversely,
the width A, of the basic functions is less dependent on the vertical load but is
obviously dependent on the step height. Figure 4.29 shows the offset A of the
basic functions. The influence of the vertical load on the offset turns out to be

relatively small.
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Figure 4.29: The offset of the basic functions.
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The analysis presented in this section shows that roughly the basic functions
depend only on the road geometry. The basic functions are very similar to the
motion response of a rigid wheel (= tyre at F,=0). Special attention must be paid
to the representation of the offset of the basic functions with respect to the
response of the rigid wheel. Furthermore, the superposition of the response to a
series of step changes should be studied in more detail as well.

The obtained basic functions of the given road geometry may be applied in a
dynamic simulation model. The effective excitation of this model can be obtained
by rolling a two-point contact model over the basic functions. The distance
between the two points is approximately 80% of the contact length and varies
with the vertical load.
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Physical Transient Tyre Model

5.1 Introduction

In Chapter 4 a brush model was used as the tyre-road interface of the flexible
ring model. In this chapter a brush model is considered again, but now for the
study of the transient tyre behaviour. This model will be called physical tyre
model as it is based on the modelling of the tread in the contact patch as a
number of individual elements. The results of the research presented in this
chapter are applied in the next chapter where the pragmatic tyre model, which is
based on the relaxation length concept, will be developed. The research presented
in this chapter and the following chapter can be regarded as the first steps in the
development of the dynamic tyre model. In this phase the dynamic (inertial)
forces are considered small and will be neglected. However, the slip behaviour at
low velocity and short wavelength variations of slip and vertical load are still
included.

It is well known that the force response of the tyre to various external inputs
is delayed. This phenomenon is typically characterised by the relaxation length of
the tyre. But, short wavelength wheel oscillations and road irregularities require
more detailed contact line considerations [58,87]. This short wavelength condition
implies the consideration of varying slip within a single passage through the
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contact length. One way to model the variation of slip is to consider the tread as a
finite number of elements. However, for linear modelling where no sliding occurs
and where the variations in the input quantities are small, an analytical
approach is preferable.

Sections 5.2 and 5.3 present the analytically obtained Frequency Response
Functions (FRFs) of the brush model: the FRFs to small variations of slip are
presented in Section 5.2; and the FRFs to small variations of vertical load at
constant slip are presented in Section 5.3. It should be noted that the brush
model governs the transient behaviour due to the finite contact length only.
Therefore, the longitudinal compliance of the carcass to which the tread elements
are attached will be introduced. This model with carcass compliance will show an
adequate transient response of the complete tyre.

Section 5.4 presents a simulation model for large variations of slip. In this
model the tread elements are modelled as individual elements which may slide or
adhere to the road surface. This type of model is appropriate for time simulations
as each element can be followed during a passage through the contact patch. In
Chapter 6 the non-linear simulation model will be used as basis for the
evaluation of the non-linear responses of the pragmatic tyre models.

5.2 Analytical response to small variations of slip

This section presents the analytical derivation of the frequency response function
of a brush model to small variations of slip. This approach uses the deformation
of a single tread element as a function of time and position in the contact patch.
The FRF is obtained by integrating the deformation over the entire contact patch
and transforming the results into the Laplace domain. The assumptions in the
model development are:

« constant coefficient of friction.

« rectangular contact patch.

« small variations of slip allowing linearisation of the resulting equations.

The response of the contact model only
Figure 5.1 shows the side view of a tyre during varying braking. The situation
depicted in Figure 5.1 is rather similar to the situation depicted in Figure 3.3.

The difference between these figures is that in this chapter the tyre response to
varying slip is considered while in Chapter 3 the tyre forces at constant slip are
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considered. The longitudinal slip velocity V___ in the contact patch is defined as

c,8x
the difference in the forward velocity in the contact patch V__ and the rolling

X

velocity in the contact patch V. :
A (5.1)

¢,8%

This definition is similar to the definition of the slip velocity V, based on the
velocity of the wheel rim (Eq. 3.2), the additional subscript ¢ in Equation (5.1) is
used to denote that this slip velocity is based on the velocities in the contact zone.
The longitudinal slip k, and theoretical slip {, based on the velocities in the
contact zone are defined:

\%4 V.,
s = C,8% , o — C,S8X (5'2)
=Ty ¢ v

ex cr

For steady-state conditions, the longitudinal deformation of the tread elements u
is proportional to the position s of the element in the contact patch:

ws)= —(a- s)h (5.3)

In the case of vanishing sliding, which will occur at infinitely small slip,
expression (5.3) holds for the entire region of contact.

rear edge front edge
contact patch contact patch
' I
1
< 9 e
; s
- i »
$ /)77* Vo
e SACONN
road surface | xlt-D+a
— 3 v, ' ) x(t)+a N
(a) kinematics of a rolling tyre (b) brush element deformation

Figure 5.1: Side view of a tyre during braking, (a) the kinematics of the rolling
tyre and (b) the deformation of the tread elements.
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In the case of time varying braking, the deformation u of the tread elements
depends on both the time ¢ and the position s of the element in the contact area.
The position of an element in the contact patch reads:

t

a-s= [V, d (5.4)
t—1

During the interval 1 the tread element under consideration has been deformed.

This deformation © equals the integral of the slip velocity over the time interval t:

t
u(t,r) = - [V, ,dt’ (5.5)
i—T
Integrating the deformation along the entire contact length and multiplying the
result by the tread stiffness per unit of length ¢, gives the longitudinal force in
the contact patch F_(¢):
+a
Cep J u(t,s)ds (5.6)

§=-a

FL(1) =

To solve the integral above, we have to express the tread element deformation u«
(Eq. 5.5) as a function of time ¢ and position s. For this the time 1 has to be solved
from Equation (5.4). To simplify the analysis a linearisation is applied: the
variables are written as small variations (denoted by a tilde) on top of constant
values (denoted by an additional subscript 0)

longitudinal force F, =F._, + F'Cx (5.7a)
forward velocity V, =V _, + \7u (5.7b)
rolling velocity ~ V,, =V, +V, (5.7¢)
slip velocity Vw=Viuot Vi (5.7d)
time interval T =1, +1 (5.7e)

We furthermore assume that the average slip is zero:

‘/c,sxO =0 ’ ‘/ch = ‘/nr() ’ F‘xO =0 (58)

[&

Now, the linearised expression of the time interval reads:

(5.9)

And the variations in the longitudinal force can be expressed as:
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+a +a t
F,t)=c, [ultsds=—c, | [AANGEE (5.10)
s=—a s=-a t-(a—s)/V,o
This equation may be solved by transforming it to the Laplace domain:
- +a 1 -
Fopy==c, | ~(1-e )V (p)ds (5.11)
s=-a
where p is the Laplace variable. The following basic Laplace transformations
have been used in the transformation of Equation (5.10):

1
Dyt-0-yO)=(e? -1¥(p), L[y®)==Y(p) (5.12)
p
Solving the integral of equation (5.11) leads to:
F (p)=2c. a —i+h(1—e*ﬂ“/%) V. _(p) (5.13)
(3 p p 2a pg C,8%

The frequency response function is obtained by dividing the left and right
members by the slip velocity and replacing the Laplace variable p by jw:

H ( ) 9 -1 e*J'“)Qﬂ/Vcru -1 (5 14)
w)=2c,a4—+——— .
Fou Ve sx P jo (D2 2(7./VC,.0

The transient behaviour of the tyre depends on the travelled distance rather than
on the time. Therefore, the road frequency o, is introduced:

o, = — (5.15)
ex0
Note that the average forward velocity is assumed to be equal to the average
rolling velocity (Eq. 5.8). The frequency response function reads as a function of
road or spatial frequency o,:
B ZCnpaz Jf -1 o205 _1}

)= + 5.16)
A YA TerE (

Figure 5.2 shows the exact Frequency Response Function (FRF) of the contact
model to slip variations. This FRF is normalised by dividing the expression (5.16)
by -V, / c.,a@”. The parameters used are presented in Table 5.1 at the end of the
present chapter. Owing to the time delay, the analytically obtained FRF is not
suitable for some of the standard linear analysis techniques. The standard
approach for approximating a time delay is by a finite number of first order
systems in series. In this case it was found that the frequency response function
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of the contact model (5.14) could be approximated by a single first order system,
with a time constant a/V,, and a gain of 2c,a”/V,,. The approximated frequency
response function reads as function of the road frequency:

2¢,, a’ -1

Hy y (o)~ —T— ——— (5.17)

V., l1+jo,a

Apparently, the contact patch relaxation length (= space constant) takes the
value a denoting half the contact length. The approximation approaches the exact
values at both ®—0 and w—e. The normalised frequency response function of the
approximation of the contact model is presented in Figure 5.2 as well.

exact solution

©

first order approximation

T

=
1

normalised gain [-]

e
<*)
=
[
@
]
=
=2

90 } . A b - L " - 2 f T \

10 10 10 10

frequency o, [rad/m]
) n CE ) J A B D B B B R A e P Frrxmndr e f o
L1gUuIcC J.4 LE TLUTTILALLOEW LUNE LW LItQr fUILE [TEYUEItLy T EOUILOT [UitLiiUie Uf vive

contact model to slip variations.

Figure 5.3a shows the impulse response of both contact models in the travelled
distance domain. The impulse responses were obtained by inverse Fourier
transformation of Equations (5.16) and (5.17) and normalised by dividing by the
factor —V,.O/cnpaz. Immediately after a slip impulse, all tread elements are
deformed equally. During rolling of the tyre new undeformed elements enter the
contact patch and deformed elements leave the contact patch. Finally at a
travelled distance of 2a after the impulse, all deformed tread elements are
replaced by undeformed ones. The slip impulse response of the approximation is
exponentially decaying. Figure 5.3b presents the step responses which were
obtained by integrating the impulse responses.
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~~~~~~~ — exact solution —— first order approximation
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Figure 5.3: The normalised response to a change in slip velocity of the
longitudinal force of the contact model in the distance domain:
(a) impulse response and (b) step response.

The response of the contact models with carcass flexibility

The carcass flexibility is modelled as a longitudinal spring with stiffness C, in
series with either of the two contact models as shown in Figure 5.4. The slip
velocity in the contact patch V,  equals the wheel slip velocity V_ plus the rate of

change of the carcass deformation:
Lan,

‘fc,St = ‘fsx +(/Tx dt (518)
carcass compliance contact model carcass compliance  contact model
<« — R B e <47 = > " -
— ‘/s\ . »‘/L;sx' — ‘/sx L — V;,sx
i 1 | K
C, ; ; C, ¢

cx V.,

brush model
(a, c,, F,)

cp?

road surface road surface

(a) exact brush model (b) approximated model
Figure 5.4: The carcass compliance in series with both contact models.

Although the models of Figure 5.4 can be used to calculate the frequency
response function directly, we will use the calculated frequency response
functions of the contact models (Eq. 5.16 and 5.17) to eliminate the slip velocity
in the contact patch V_ . Figure 5.5 presents the resulting block diagram. This
approach is advantageous also for more complex systems.
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Tyre model
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Figure 5.5: Block diagram of the tyre response to wheel slip variations including
the effect of carcass compliance.

Figure 5.6 shows the frequency response function of both the exact and the
approximate slip models in series with the longitudinal carcass spring. Clearly,
the first order system in combination with the soft carcass approximates the
exact response much better. It can be seen that the contact model in series with
the carcass spring shows a smaller cut-off frequency, indicated by 1/c. Obviously,
the relatively large oscillations of the exact FRF of the contact model (Figure 5.2)
are filtered by the carcass flexibility.

exact solution —— first order approximation

3

normalised gain {-]

phase [deg]

_90L | PR L P ererve-ee: J

10" 10’ 10
frequency o, [rad/m]

Figure 5.6: The normalised longitudinal force frequency response function of the
overall transient tyre model to wheel slip variations.

108




Physical Transient Tyre Model

Figure 5.4b shows the carcass spring in series with the approximated model. As
indicated in the figure, the frequency response function of this approximation
(Eq. 5.17) may be accomplished by a spring and damper in series: the value of the
damper coefficient equals the slip stiffness divided by the velocity; and the value
of the stiffness equals the total tread element stiffness c,=2ac,,. In the
subsequent chapters the approximated model will be called the relaxation length
model, as its primary property is the relaxation length. The relaxation length o,
of the contact model at full adhesion equals half the contact length a.

The carcass spring in series with the relaxation length contact model will
decrease the total longitudinal stiffness C_, , of the model:

1 1.1 (5.19)
C C, ¢

x,tot

x,tot

[

Accordingly, the relaxation length of the relaxation length contact model plus the
soft carcass will become much larger:

C'O CKO
G, = K0 _ X0 4 (5.20)
¢ C

x,tot x

where 6, denotes the relaxation length of the tyre (carcass + contact model), and
C,, denotes the slip stiffness at free rolling.

Figure 5.7 presents the impulse and step responses of the contact models
with carcass compliance. The soft carcass increases the response length, and
decreases the differences between the exact solution according to the brush model
and the approximation with the first order model.

exact solution
T o T

first order approximation
T T T

%]

- @| — | (b)
4 i
2 © ;
<3 it
el el
2 2
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0 S S RSP O S L 1 —

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
travelled distance x [m] travelled distance x [m]

Figure 5.7: The normalised response to a change in slip velocity of the
longitudinal force of the overall transient model in the distance

domain: (a) impulse response and (b) step response.
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5.3 Analytical response to small variations of vertical load
The response of the contact model only

The brush model is used again to study the non-stationary response of a tyre at a
constant brake slip velocity to a varying vertical force. For the sake of simplicity,
only small values of longitudinal slip are considered. Consequently, all brush
elements in the contact zone adhere to the road surface.

The varying vertical force directly affects the contact length (¢f. Eq 2.5). Only
small variations in vertical load are assumed. Thus we may write half the contact
a as a small variation a(x) on top of the stationary value a,:

a=ay+alx) (5.21)

The contact length a may be written as a function of the travelled distance x(¢)
rather than as a function of the time ¢, because in this analysis the forward
velocity V_, is assumed to be constant. The deformation u of a tread element is
then proportional to the time it has spent in the contact patch.

b
<
%

front edge
contact patch

Qg

rear edge
contact patch -¥.<-

(a) x,s plane (b) tread deformation
Figure 5.8: The brush element deformation as function of travelled distance and
position in contact patch.

A travelled distance (x) versus brush position (s) diagram is most suitable to
study the influence of varying contact length on the longitudinal force. For a
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certain distance travelled x(¢) the longitudinal deformation » has been depicted
as a function of the position coordinate s in Figure 5.8.

The brush element at time ¢ and position s, started at the front edge of the
contact patch at time £—t. The positions of this element during the interval t have
been indicated by the bold line. The longitudinal deformation z can be expressed
as a function of the travelled distance x(¢) or as a function of the position s in the
contact patch:

w0 = ( x(t) — x(t—1) )192 (5.22a)

ulx,t) =( a(x(t-1) - s G, (5.22b)

To calculate the tread deformation it is necessary to solve the time interval t from
Equations (5.22). This time interval will be linearised (cf. Eq. 5.7¢). The interval
T, due to constant slip and constant contact length a, is equal to:

(ap—5) (5.23)
V,’r()

[¢

Ty =

The small variations T in the time interval due to the contact length variations
cannot be neglected. A new small variable & is introduced which is equal to the
travelled distance in the interval T:

E=V3 (5.24)

Furthermore, we rewrite the displacement x at time ¢-t, as function of the
displacement at t and the position in the contact patch s:

w(—10) = 20—tV =26y~ Y (g - s)(1-C,,) (5.25)
crQ

Now, the tread deformations can be expressed as:

ulx,)=( V, 1, + & )I% (5.26a)

wx, V) =( axt-19)-&) - s ), (5.26b)
Rather than solving t from Equations (5.22), the distance & will be solved from
Equations (5.26). If a(x) is small, the distance & is also small. Hence, we may
expand Equation (5.26b) into a Taylor series. Furthermore, Equation (5.25) is
substituted, and the contact length is linearised in &:

alx(t —10) - &) = ay + a(x®) — (ag — $)1-C,)) - E@"(x(t) — (ay — s)(1~ €. (5.27)
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Where @’(x) is the derivative of the contact length variation @(x) with respect to

the travelled distance x. The distance & can be solved by substituting Expression
(5.27) into (5.26):

(Voo +E)— o = ag +(x(t) — (ag-$)1-C,) — & (x(8) ~ (@p=9)1-L,)) s (5.28)

1- (.:cx
Rewriting and linearising gives:
&=~ (1~ L,,)a(x®) - (ag-9)1-L,,) (5.29)

Integrating the tread deformation, obtained by substituting Expression (5.29)
into (5.26b), over the contact length and multiplying by the tread element
stiffness per unit of length ¢, gives the longitudinal force F:

a+a(x) a+a(x)
Fo= [eut,9ds=c,l [(ao—s+a(x®+(s-a)d-L.))ds (5.30)
s=—a-a(x) s=—a—a{x)

Solving the integral gives:

Fr = cofiuaos = 5% + s Alxd) + (s~ ag)(1 - g))](()) (5.31)
Introduced is A(x), which is integral of @(x) with respect to the travelled
distance:

Ax) = [@(x)dx (5.32)
We furthermore simplify:

Ax +a(x)) ~ Ax) +ax) dx) = A) (5.33a)

Alx - 2ag - 80) ~ A(x - 2ap) - 800) - 8x) = Az 2a,) (5.33b)

Substituting the integration limits in (5.31) yields the force F, which includes
both the stationary part:

chO = 2Ccpa§ch (534)
and the variations due to contact length variations:
ch = ZGOCcpa(x) e T W:lz;cjccptmx(g(x) - A(x -{1- ch)za())) (535)

Transforming the equation above into the Laplace domain gives the response
function. This function can be expressed as function of the path frequency o, or
as function of the (time) frequency ®:
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~, 1 — e 0 2ap(1-Le) 1 — e~ 21000/ Verg
HF La T % = 2a0C1)xC(:x 1+ _‘i—_ = zaocl’xc’cx 1+ 'e (536)
g 2jw,a,1-C,.) 2j0a,y/ V..o
Or,
ﬁw‘ F. 1 — e~ 2iway/Vero .
HF,(IZ—%: 0 1+‘e—__ (537)
o a ag 2.](Da0/Vr‘,r0

Figure 5.9 presents the exact FRF according to Equation (5.36). In contrast to the
FRF (o slip variations, the exact FRF to contact length variations approaches 0.5 at
infinitely high frequencies rather than zero. The exact solution may be
approximated again by a first order system with a relaxation length . This
approximated model which is similar to Equation (5.17) represents the exact
solution reasonably well until the cut-off frequency. At higher frequencies, the
first order approximation deviates strongly from the exact solution. Although a
more accurate approximation can be achieved, the first order system will be used
because it is thought to be advantageous to use an approximation for the vertical
force variations that is similar to that used for slip variations.

cxact solution first order approximation

—— =

—
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|
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normalised gain [~]
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frequency o, [rad/m]
Figure 5.9: The normalised longitudinal force frequency response of the brush
model to vertical force variations.

The step and impulse responses to contact length variations are presented in

Figure 5.10. The responses of the approximation follow an exponential function.
The response derived from the exact solution is rather different. After a very
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small step-increase in contact length (Figure 5.10b), the tread element at the rear
edge will remain slightly longer in the contact patch, resulting in a step increase
in the longitudinal force with a normalised magnitude of 0.5. This result is in
agreement with the FRF in which the normalised gain equals 0.5 at (®w — «). New
elements will enter the contact patch slightly earlier, due to the step increase in
contact length. Therefore, these new elements will also have a slightly larger
deformation. After the tyre has rolled over a distance of 2¢ a new stationary
situation is reached as the deformations of all tread elements are based on the
new contact length.

The impulse response is similar to the step response. During the impulse (we
assume full adhesion) the contact length is slightly larger and the force will be
larger as well. After the impulse only the tread element which was at the front
edge during the impulse has obtained a slightly larger deformation, because it
entered the contact patch slightly earlier. This tread element will leave the
contact patch when the tyre has travelled a distance of 2a.

exact solution first order approximation

25 - I T - L T | o 1
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Figure 5.10: The normalised response to a change in vertical load of the
longitudinal force of the contact model in the distance domain:

(a) impulse response and (b) step response.
The response of the contact models with carcass flexibility

As already introduced in Figure 5.4, the carcass flexibility is modelled as a
longitudinal spring with stiffness C, in series with a contact model. The
variations in the longitudinal force will give additional carcass deformations, and
thus additional slip velocity variations in the contact zone. In the analysis only
small variations of the variables are assumed, allowing the contributions of both
contact length variations and contact patch slip variations to be superposed:
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The equation of the carcass deflection (5.18) also holds if the wheel slip velocity
‘Zx is set equal to zero. Figure 5.11 presents the resulting block diagram. The
variations in vertical load will generate contact length variations and thus
longitudinal force variations. Additional slip velocities in the contact patch are

generated through the feedback.

Tyre model

I
[
vertical ' - : T | I
load E;‘ da ' a > - ' E
| OF, ! o 5 N
wheel : + Er,\' 1 Fx= Efr : )
slip v ! v | [ + 1
velocity ! Vs ¢, 5x !
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+ ! | 1
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Carcass compliance
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Figure 5.11: Block diagram of the tyre response to wheel slip variations and
vertical load variations including the effect of carcass compliance.

The FRFs, impulse responses and step responses of the contact models with
carcass compliance with respect to contact length variations are presented in
Figures 5.12 and 5.13. Even though the differences in the frequency domain are
rather large, the time response of the first order model approximates the time
response of the exact solution rather well.
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Figure 5.12: The normalised longitudinal force frequency response functions of

the brush model with carcass flexibility to vertical force variations.
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Figure 5.13: The normalised response to a change in slip velocity of the

longitudinal force of the overall transient model in the distance
domain: (a) impulse response and (b) step response.

5.4 Discretisation of the tread

The analytical response functions, derived in the previous sections, cannot be

used to study the tyre response to large variations in the input quantities.

Therefore, a simulation model will be developed to study these non-linear

responses. The main reason why this discrete brush model was developed is that

transient measurements were not available: it is very difficult not to excite tyre

116




Physical Transient Tyre Model

dynamics during the measurements of longitudinal transient tyre responses. In
Chapter 6, the responses of the discrete brush model are used for the
development and validation of a pragmatic transient tyre model.

In the discrete brush model the tread elements are modelled as individual
elastic elements radially attached to the tyre belt (¢f Figure 5.1). The tread
elements are modelled as (massless) springs that can only deform in tangential
direction. This deformation results from the slip velocity of the tyre in the contact
zone. The maximum deformation of the tread elements is limited by the friction
between the tyre and the road.

Oertel |77] discusses two approaches to develop such a simulation model: the
continuum approach (Euler method), and the modelling of individual contact
elements (Lagrange method). In the Euler description [13,77,121,122] the tread
elements are considered to be fixed to the contact area. The deformation of the
tread elements travels through the contact patch rather than the tread elements
themselves. For this, the deformation is written as partial derivatives with
respect to position and time. With this method the increase in the computation
time is close to the square of the number of tread elements [121].

In the Lagrange description, the tread elements are modelled as a finite
number of elements and they are followed during their passage through the
contact patch. One approach is to model the tread elements on the entire tyre
circumference. During rolling only those elements in contact with the road will
generate forces. The disadvantage of this approach is that a large overhead is
needed as nearly all elements are not in contact with the road. Nevertheless, this
approach is rather popular in the application of finite element models
[24,25,46,74,75,78] as the additional overhead needed to model the tread
elements is relatively small. In Chapter 4 this approach was used to model the
tyre-road interface of the flexible ring model.

In this section the Lagrange description is employed, but the tread elements
are modelled in the contact patch only, thereby reducing the size of the model
considerably. An element that leaves the contact patch at one side is redefined in
the model so that it will enter the contact patch at the opposite side. After a new
element has entered the contact patch, the elements are also renumbered so that
element number one is always the first element in the contact patch.
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The discrete contact model for slip variations

In the discrete simulation model, the deformation of the tyre is considered only at
discrete time intervals and discrete tread element positions in the contact patch.
The number of tread elements is denoted by n and the pitch of the elements is
denoted by Ae(= 2a/n). During rolling over the time interval A¢, the position of the
tread elements in the contact patch increases by As, and the deformation by Au:

As=-V At (5.39a)
Au=—(V, -V )At=-V At (5.39b)
During rolling, both the position s; and the deformation u, of the tread changes:
s;(t+AL) = 5;(¢) + As (5.40a)
w,(t+At) = u,(t) + Au (5.40b)

where the index ¢ denotes the number of a specific tread element in the contact
patch. During forward rolling the tread elements in the contact patch move to the
rear edge and Equations (5.40) hold as long as all tread elements remain in the
contact patch. When tread elements leave the contact patch will depend on the
simulation time step, the number of tread elements and the rotational velocity.

Figure 5.14 shows the position of the elements in the contact patch
schematically. For the sake of simplicity, a model with only 12 elements during
stationary forward rolling and at a very small slip level has been depicted. In this
case the tread deformation increases linearly from the front edge to the rear edge
of the contact patch, resulting in the largest deformation for the last element.

—— extra deformation tread elements
during rolling 1n the interval At

; a ! a
I b
v 11211109 8 7]6
‘ “Au .
| x :
‘ new elements
3 1 !
l ! e l
v b :
u u |- shifted elements ]‘
(elements 1-10 of previous step)

\— old elements

(elements 11 and 12 of previouse step)

(a) the tread deformation at time ¢ (b) the tread deformation at time ¢+A¢
Figure 5.14: The tread element deformation during rolling over an interval At.
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Figure 5.14b gives the situation after rolling a little further. In this case the tyre
has rolled over a length of exactly two tread elements resulting in the elements
11 and 12 leaving the contact patch. At the front edge two new elements have
entered the contact patch and elements 1-10 have travelled partially through the
contact patch. Simultaneously, the deformation u of these elements increases
with Au.

In the simulation model the element numbering is defined to start at the
front edge of the contact patch. This means that the elements have to be
renumbered. Or, in other words, the index i of the elements has to shift. For
example element 1 at ¢ (Figure 5.14a) becomes element 3 at t+A¢ (Figure 5.14b).
If the shift in index is n_ than Equation (5.40) takes the form:

iy, (EHAL) = s;(t) + As (=12, (n—n,) A (ns > O) (5.41a)
Uiy, (E+A1) = u;(8) + Au t=12,---,(n-n,) A (ng20) (5.41b)

where n denotes the total number of tread elements in the contact patch. This
equation gives the position and deformation of the elements which remain in the
conlact patch. If the tyre rolls forward, n, new elements have entered the contact
patch at the front edge. The position of these new elements s, results from the
fact that the tread elements are equally spaced. If constant velocities are
assumed in the time interval Af the deformation u, of the new elements increases
linearly with the positions s;:

5;(t+AL) = 51(t) + As— Ne(n+1-0) =12, n, A (n,>0) (5.42a)

w (t+AL) = %(31 (t+AL) - a) =12, n, A (ng>0) (5.42b)
s

When the tyre rolls backwards (n, is negative) the expressions for the position
and the deformation (Eq. 5.41) hold but the index i of the elements which are
involved in the shift change:

Sivn, (LHAL) = 5;(t) + As i=(1-ny),,n A (ng<0) (5.43a)
Uiy, (E+A) =u, () + Au i=(1-n),,n A (ng<0) (5.43b)

The deformation of the new elements which have entered the contact patch at the
rear edge is given by:

s;(t+At) =5, (t) + As+ Aeln+n,—i) i=(m+n,+1D,,n A (n,<0) (5.44a)
u,(t+At) = %(si(t+At) +a) i=(n+n,+1D,,n A (n,<0) (5.44b)
s
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Note that Equations (5.41) and (5.43) give the deformation of the elements which
remain in the contact patch. The deformation of the new elements which enter
the contact patch at either the front edge or the rear edge are represented by
Equations (5.42) and (5.44).

The discrete contact model for vertical load variations

To simulate the tyre response to vertical load variations, the contact pressure

distribution changes. But even more important are the variations in the contact

length. During a fast increase in vertical load we may have new elements
entering both at the front and rear edges of the contact patch. Three possible
solutions may be employed to vary the contact length of the simulation model:

« The pitch of the elements is kept constant and the number of tread elements
depends on the contact length. This means that the size of the model has to
vary during simulation.

o The number of tread elements in contact with the road is kept constant and
the pitch of these elements varies with the contact length. Interpolation will be
needed as the length and stiffness of the tread elements will vary during
simulation.

« Both the number of elements and the pitch are kept constant. The length of
the contact model is kept constant and set equal to the maximum expected
contact length. Only a part of the elements of this model are in contact with
the road. The deformation of the elements of the model outside the actual

elements. Figure 5.15 shows a model which is longer than the actuai contact
length. The length of the simulation model is equal to the maximum expected

contact length (2¢, ) During rolling in the time interval Az, the tyre rolls over a

max

distance V. At. The increase in half the contact length Aa reads:
Aa = a(t + At) - at) (5.45)

Again the situation presented in Figure 5.14a is used as initial state but the
element numbering of this figure is not used. Now element 1 denotes the first
element of the model rather than the first element in contact with the road. The
total length of the new simulation model is longer than the contact length, see
Figure 5.14a.

Figure 5.15 shows the situation after rolling over the interval Az. During the
interval, the contact length increases by 2x3 elements and the tyre rolls over 2
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elements. These two effects result in five new elements at the front edge and one
new element at the rear edge of the contact patch.

Lax Cmax

alt+At) a(t+At)
al(t)

extra deformation H:!J/Hj =
Au tread elements
during rolling over ™ V At
u interval At L =
new elements L | new elements
at rear edge P at front edge
(=Aa- v At) i shifted elements o (=Aa+ V. At)

Figure 5.15: The tread element deformation during rolling with contact length

variations.

Equations (5.41) and (5.43) hold for the elements which remain in the contact
patch. The deformation of the elements entered at the front edge of the contact

patch reads:
w;(t+AL) = L(&(HAL‘) — alt+At)) (5.46)
s — Aa
and the deformation of the elements entered at the rear edge reads:
W+ A0 = —2E (s (E4AD + alt+AD) (5.47)
s+ Aa

The last step in the calculation process is the check for sliding and adhesion. For
the analytical contact pressure distribution, a parabolic pressure distribution is
assumed. To match the stationary characteristics with the analytically calculated
ones also a parabolic distribution is assumed:

Q.= Zﬁ(az_s‘;) if Cass<a) (5.48)
’ q,;=0 if (s, <-a)v(s; >+a)

Obviously, the vertical pressure distribution is equal to zero outside the contact
zone. The longitudinal deformation u; is now limited by the maximum frictional
force:
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U if |u1| < HQZ,I',/C(W
w, =1 g, fc, if w > ng,/c, (5.49)
_uqzv’:/c(‘r[’ if u; < _“qzj/ccp

The integration of the longitudinal force (Eq. 5.6) becomes a summation:

2ac,, &

F,="—"2%y, (5.50)
no

The influence of carcass flexibility

The analytically calculated frequency response functions showed that a soft
carcass increases the time lag of the transient response. The block diagram of
Figure 5.11 was used to calculate the transient tyre response including the
carcass compliance in the frequency domain. This block diagram cannot be used
for time simulations because of a causality conflict: both the carcass stiffness and
the contact model need a velocity (or displacement) as input and give a
longitudinal force as output. Therefore, an iteration procedure, based on the
model introduced in Figure 5.4a, is applied to balance the forces in the carcass

a cantact modal
ana contact modace:.

The wheel slip velocity V_ is defined as input to the tyre model. Equation
(5.18) can be reformulated such that the increase of the carcass force depends on
the difference of the wheel slip velocity and contact slip velocity multiplied by the
time step At:

F(t+00) = F (0 +C [V, -V, At (5.51)

The key factor in the iteration procedure is to balance the slip velocity in the

contact patch V, . such that the longitudinal force in the carcass equals the

2, 8%
longitudinal force in the discrete contact model. A small increase in the slip
velocity in the contact patch generates an increase in the force in the carcass and
a decrease of the force in the contact patch. Equations (5.49) and (5.50) show that
the additional contact forces can only be generated by contact elements in the
adhesion zone. Multiplying this adhesion length (which does not have to be
uninterrupted) by the tread element stiffness per unit length c,, gives the
equivalent longitudinal stiffness of the contact model in the given operating
condition. With this equivalent stiffness and the carcass stiffness the slip velocity

needed to balance the forces can be calculated easily.
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The responses of the discrete brush model

The discrete brush model cannot be validated by comparison with experimental
results as appropriate measurements are not available. Instead, the analytical
model behaviour is used to check the discrete model. For this, the responses of
the discrete brush model are compared to the analytically calculated FRFs and to
the stationary slip characteristics of the brush model. As a result, it has been
ascertained that:

« The discrete simulation model has the same stationary slip characteristics as
the analytically calculated characteristic (cf. Eq. 3.16).

« The estimated frequency response function of the discrete brush model,
obtained by small variations of either wheel slip or contact length is identical
with the analytically calculated FRFs of Figures 5.6 and 5.12.

o The simulated response to a step change in wheel slip velocity and the
simulated responsc to a step change in contact length are identical with the
analytically calculated responses of Figures 5.7a and 5.13a.

The analytically calculated FRFs showed that the transient tyre responses at
small levels of slip may be approximated by a first order system with a relaxation
length ¢ (Eq. 5.20). It is well known that with increasing slip the relaxation
length decreases [86,106,107]. The discrete simulation model is used to estimate
the relaxation length at high levels of slip. For this the response due to a small
increase in the slip or a small increase in the vertical load is simulated. These
simulated step responses showed that these responses are rather similar to an
exponential function (see also the analytically calculated step responses in
Figures 5.7a and 5.13a). The relaxation length ¢ of such a response can be
estimated by fitting the response with an exponential function:

AF,(x) = AF (1~ &™) (5.52)

where AF_ denotes the transient increase in longitudinal force and AF,, the
steady-state value of the increase of the force. These fitted relaxation lengths of
the responses of the discrete brush model are presented in Figures 5.16 and 5.17
as function of the average longitudinal force, or as function of the average slip.
Figure 5.16 presents the relaxation length of the longitudinal force response to
slip variations and Figure 5.17 presents the relaxation length of the longitudinal
force response to vertical load variations. The fitted relaxation length of the

simulation model in response to slip variations appears to be equal to the
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relaxation length in response to vertical load variations even though the
analytically calculated responses are rather different.

o approximation: — F,=2000N —— F,=4000 N ——— F,=6000N
discrete brush model: ~—-— F,=2000N --- F,=4000N - - - F,=6000N
400 400 e ;
(a) ! (b)
E E
E300 - E300 -
o o
= <
o o
b §200 -
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g s .
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0 2000 4000 6000 0 0.05 0.1
longitudinal force F, [N] longitudinal slip £, [4
Figure 5.16: The relaxation length of the longitudinal force response due to slip
variations.
© approximation: —— F,=2000N —— F,=4000N —— F,=6000N
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Figure 5.17: The relaxation length of the longitudinal force response to vertical
load variations.

The parameters used are presented in Table 5.1. The longitudinal carcass
. half the contact length
a, and the friction coefficient p are independent parameters. The values are based

stiffness C_, the tread element stiffness per unit length ¢

124




Physical Transient Tyre Model

on the identified parameter values of the rigid ring model. The relaxation lengths
at zero slip and slip stiffness at zero slip are calculated values. To simulate the
response to a small increase in contact length the number of tread elements of
the model was chosen large (1000).

Table 5.1: The parameter values used.

description symbol value at  valueat valueat  unit
F,=2000NF,=4000N F,=6000 N

longitudinal carcass stiffness C, 550000 550000 550000 N/m

tread element stiffness Cop 19 10° 19 10° 1910°  N/m?
half the contact length a 0.0355 0.0534 0.0685 m
friction coefficient u 1.0 1.0 1.0 -
relaxation length tyre c, 0.1230 0.2515 0.3944 m
relaxation length contact model o, 0.0355 0.0534 0.0685 m
slip stiffness C, 48000 109000 179000 N

The transient response of the discrete brush model can also be directly
represented by a relaxation length system. For this the Equation (5.20) for the
relaxation length at full adhesion o, is extended for higher slip levels. This
relaxation length o can be approximated by the actual local slip stiffness
C, (=0F,/d(,) divided by the total longitudinal tyre stiffness C,, or as the ratio
between the actual slip stiffness C, and the slip stiffness at free rolling C
multiplied by the relaxation length at free rolling c,:
C, o, JF, C,
e Po =06,
c Ceo 9C, Ceo

x,tot

(5.53)

Note: the relaxation length at free rolling ¢, is defined in Equation (5.20). The
relaxation length according to the approximation is presented in Figures 5.16 and
5.17 as well. These figures show that the approximated model (Eq. 5.53)
represents the transient response of the discrete brush model reasonably well: at
small values of slip the approximated relaxation length (c¢f. Eq. 5.53) is longer
than calculated according to time constant of the discrete brush model. The
previously calculated FRFs of the contact models (Figures 5.2 and 5.9) showed a
similar effect: a first order system with a shorter relaxation length would
represent the exact solution better. The quality of fit between the approximation
and the cxact solution increases by adding the carcass compliance (Figures 5.6
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and 5.12), but nevertheless, a slightly shorter relaxation length of the
approximation would give a better result.

At high value of slip the approximated relaxation length becomes too small.
This relaxation length decreases at increasing slip because the slip stiffness C,

decreases, and the total longitudinal tyre stiffness C is assumed to be

x,tot
constant. In reality, it may be assumed that the longitudinal carcass stiffness C,
is constant, but the equivalent longitudinal tread stiffness decreases at

increasing slip, see Equations (5.49) and (5.50).
Conclusions

The frequency response functions (Figures 5.6 and 5.12) showed that the first
order approximation is an adequate representation of the force generation in the
contact patch. The largest deviation between the exact solution and the
approximation is around the cut-off frequency. The frequency range of the
approximation for slip variations is not limited. This means that this
approximation can be used to simulate the tyre transient response at very high
frequencies and very short wavelengths. The approximation of the FRF to vertical
load variations is valid until the cut-off frequency.

Although the analytically calculated frequency response to slip variations is
very different from the frequency response to vertical load variations, the step
responses are rather similar. Although this is true, the simulations with the
discrete brush showed that the relaxation length for slip variations and the
relaxation length for vertical load variations are identical. Furthermore, the
simulation model showed that the relaxation length decreases with increasing
slip.

Expression (5.53) gives a reasonable approximation of the relaxation length
that was obtained. This cxpression will be used in Chapter 6, where four
pragmatic tyre models based on the first order approximation will be developed.
The responses of these pragmatic models to linear input conditions (small
variations of slip and vertical load) are identical to the responses presented in
this chapter. The non-linear responses, on the other hand, differ considerably:
these differences are the main subject of the study presented in Chapter 6. The
pragmatic tyre models are evaluated by comparing the non-linear responses with
the response of the discrete brush model which was developed in this chapter.
The pragmatic tyre model which gives the best results will be used as contact
model of the rigid ring model in Chapter 7.
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6.1 Introduction

It is well known that the force and moment responses of the tyre to various
external inputs show a lag in time. The fact that tyre deflections have to be built
up to create a force calls for a model that contains carcass compliance [87]. This
phenomenon is typically characterised by the relaxation lengths of the tyre. The
goal of the research presented in this chapter is the development of pragmatic
transient tyre models based on the relaxation length concept. These models are
named pragmatic models as they are based on matching transient tyre responses
with a small set of differential equations rather than extensively modelling of
physical tyre properties.

The pragmatic tyre models are evaluated by comparing the dynamic
responses to the responses of the physical model that was developed in the
previous chapter. The advantages of the pragmatic models over physical models
are thatl the computations are much easier and faster, and that measured slip
characteristics can easily be incorporated.

Four pragmatic tyre models, which are based on the relaxation length
concept, are introduced in Section 6.2. These models differ in the position in the
model where the filtering cffect of the relaxation length system is applied: model
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1 filters the longitudinal force F,; model 2 filters the longitudinal slip { ; model 3
filters the longitudinal deformation u; and model 4, uses a mass-spring system to
represent the transient tyre deformation and a contact patch relaxation length.

The responses of these models in linear conditions (small variations of slip)
are identical with each other. The non-linear responses, on the other hand, differ
considerably: these differences are the subject of the study presented in Section
6.3. The pragmatic model with the optimal properties will be added to the rigid
ring model in Chapter 7. The last section of this chapter discusses the influence of
relaxation length on the in-plane tyre dynamics.

Table 6.1 presents a chronological survey of the literature on pragmatic tyre
modelling, based on the relaxation length concept. These models are used in
vehicle simulations [7,44,98,101], or to study shimmy phenomena [80]. They are
valid for simulations with relatively large wavelengths (> 1.5 m) [88]. The
following items of interest are considered in Table 6.1:

« Pragmatic tyre model. For convenience, these models are classified into four
categories according to the pragmatic models 1-4 of Section 6.2. The tyre
models of the first category (filtering of the forces) is most commonly used for
vehicle simulations. The advantage of model 2, filtering of the slip, is that it
can also be used at zero velocity. The third model: filtering of the deformation,
is based on the stretched string theory [80]. Even though this theory was
developed specifically for the lateral tyre responses it also holds for the
longitudinal tyre responses. The disadvantage of the string theory is that the
numerical stability of this method is not guaranteed for decreasing relaxation
length at large slip levels [88,106,107]. The basis of the fourth model is rather
similar to that of the deflection theory: an additional mass is added in the
contact patch to avoid iterations and to ensure a numerically stable solution of
the tyre deformation.

« Slip conditions. There is a body of published literature which deals with
transients in tyre lateral force build up. Both the transient response of the
lateral force and the transient response of the longitudinal force may be
represented by a relaxation length system. Therefore, we may use the
experience gained in theoretical and experimental work on the transient
lateral force response in this study.

« Investigated responses. The tyre transient models are used to study the
responses of vehicles, for example, to external inputs like road unevennesses or
fluctuating braking. The case of fast vertical load variations at a specific value
of slip challenges the tyre models as the delayed longitudinal or lateral forces
should never become larger than the maximum frictional force (uF,) [100].
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There used to be little interest in the low speed behaviour of tyre models as
there is almost no dynamic response of vehicles at low speeds. The recent
interest in driving simulators, on the other hand, has led into interest in low
speed simulation: a driving simulator needs to be able to start and stop again,

even on a slope [11].

Table 6.1: Literature survey on pragmatic tyre modelling.

reference pragmatic tyre model| slip conditions investigated
1 @ 3 @ responses
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2 8 "
.*2 B = e w B
tp S I~ s 2 g 8
=] Bo [} ‘E =} — 3 o 9 —_—
£ % E 5 |E& % E & £ g
g g £ S|® g g|&5 § § I
£ = £ £|]8 3 5|w § 8 2B
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E 2 € $|8 5 E|E & % B
e &% =~ E|la & 8|5 @w S 5
Pacejka [80] ] ® )
Shapley [101] ] ® [
Pacejka (82] ) o
Takahashi [106,107]) [ ®
Bakker [7] [ e o o | o
van der Jagt [44] o ° ] °
Schieschke [98] ® o ® ® ®
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Wang [114] ) ) °®
Bernard [11] ® ° ) ] ® ®
Gim [31] ® e o o
Pacejka [88] ) e o ®
Higuchi [39,40] ° o ) )

6.2 Pragmatic tyre models based on the relaxation length
concept.

The basic scheme of the pragmatic tyre models used in this chapter is depicted in
Figure 6.1. These models involve a slip definition, a first order filter, and a
stationary slip characteristic. The behaviour of vehicles subjected to low
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frequency inputs is largely determined by the stationary slip characteristics
[2,41,45,92,99]. Consequently, it is important to incorporate the entire slip
characteristic in the pragmatic model and not only the slip stiffness at a given
value of average slip. The input to these models is the slip velocity V_ which is
defined as the difference in forward and rolling velocity of the wheel (Eq. 3.2).
The output of the pragmatic models is the longitudinal force F, generated by the
tyre.

input pragmatic tyre model output
v | » slip definition F
T S’l‘ m » first order filter — d'x TF »
sip veloeity « stationary slip characteristics ongitudinal force

Figure 6.1: Basic scheme of the pragmatic tyre models.

To match the responses of the pragmatic tyre models with the responses of the
discrete brush model, the stationary slip characteristic of the brush model,
depicted in Figure 6.2, is used in this analysis. The parameters used in this
chapter are identical with the parameters used in the previous chapter (see Table
5.1). To study the transient response of the tyre on the road, the brush tyre
characteristics may be replaced by experimentally obtained characteristics.

7000 w ——F_=6000N
— F,=4000N

760001 ~F,=2000N
75000 - :

0 005 01 0.15
longitudinal slip ¢, [-]

Figure 6.2: Stationary slip characteristics according to the brush model.

Chapter 5 showed that the transient response of the tyre to small variations of
slip and vertical load can be approximated by a first order differential equation:
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X:‘Z’—}(XO - X) (6.1)
c

where X, denotes the input, and X the filtered response. This equation will give
the appropriate filter characteristic with a cut-off frequency £, (=|V,|/(62r)). The
relaxation length ¢ decreases with increasing slip. In Section 5.4 the relaxation
length was defined as the ratio between the actual local slip stiffness
C,(=0F,/0C,) and the slip stiffness at free rolling C_, multiplied by the

relaxation length at free rolling o,
- o O L (5.53)

Cro 9Cs Cro

Figure 6.3 presents the tyre relaxation length according to the expression above
as function of the longitudinal force and the longitudinal slip.
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Figure 6.3: The relaxation length as function of the longitudinal force, and as
[unction of the longitudinal slip.

In this chapter the tyre transient response will be discussed on the basis of the
theoretical slip because this slip is used as input to the stationary slip
characteristics used (i.e. according to the brush model). Accordingly, the
rotational velocity V, is used in the first order differential equation (6.1) because
the theoretical slip {, is used for the computation of the local slip stiffness C and
thus for the computation of the relaxation length o.

Appendix B discusses the tyre transient response in combination with the
stationary slip characteristics of the Magic Formula in which the practical slip x
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serves as input. In that case, the same slip (x) will be used for the computations
of the slip stiffness and the relaxation length. To obtain a differential equation
with the same time lag, the rolling velocity V, in the differential equation (6.1)
has to be replaced by the forward velocity V..

Model 1: Filtering the longitudinal force

In the first pragmatic tyre model the horizontal force is filtered. This approach is
most commonly used in vehicle simulations. The calculation scheme reads:

\%
e (6.2a)
C=mp
Gl = fl(Cxin)’ GZ = fZ(Fx’Fz)> = min(0]702) (62b)
Fx,ss = bruSh(Csz’M) (620)
oSl 4 VIF. <[V, F... (6.20)

Figure 6.4 depicts the calculation scheme schematically. First, the longitudinal
slip {_ is obtained by normalising the slip velocity V,, by the rolling velocity V,.
The stationary slip characteristic is used to obtain the steady-state force F,_
filtering this force gives the transient response of the longitudinal force F_.

slip definition slipicharacteristicis differential equation
! \ Fig. 6.2 |
A ' v, Foss F,
NN BN SENPLISPRT N SN
V'r i i | dt :
| /] o

| 6.3b | o [ i 5 ﬁiF?ig. 6.3a
6 = min(0,,6,) 2 i
=] | \

Figure 6.4: The calculation scheme of pragmatic tyre model 1.
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The relaxation length depending on the longitudinal slip (c,) results in a
sufficiently fast response to variations of slip. But, this method leads to large
errors to fast decreasing vertical load and relatively large average slip values:
The delayed longitudinal force might become larger than the maximum friction
force (vertical load multiplied by the friction coefficient). In order to make the
model react faster to decreasing vertical load, a second relaxation length o,,
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which depends on F, is introduced. If the longitudinal force approaches the
maximum friction force, the relaxation length o, will approach zero, resulting in
a fast response of the longitudinal force.

The best simulation results were obtained by using the smallest value of the
two relaxation lengths o, and &, This will give good response to both slip
variations and vertical load variations when compared with discrete model.

The minimum value of the relaxation length used in the differential equation
(6.2d) is limited to 1 cm, to prevent the time constant t (= o/ ‘Vrl) of the differential
equation to become too small. Otherwise, the time step in the numerical integra-
tion routine must also be very small. In the limit case (0=1=0) the differential
equation cannot be integrated with an explicit numerical integration method.

Model 2: Filtering the longitudinal slip

In the second model the longitudinal slip rather than the longitudinal force is
filtered. This method was probably first introduced by Shapley [101]. The
advantage of model 2 over model 1 is that the slip definition (Eq. 6.2a), which
excludes zero velocity simulations, is not used. The second calculation scheme

reads:
C= f(gxan) (633)
Gd—a;x_ + IVr|Cx = —ch (631’))
d¢
gx)min = Cx < Cx,max (63(3)
F, = brush((,,F,,n) (6.3d)

where {  now denotes the transient slip instead of the original definition of
Equation (3.4). Figure 6.5 shows the calculation schematically.

differential equation limiting the transient slip slip characteristics

-

‘ ! o Fig. 6.2
_V._J N /L QAW —>

Figure 6.5: The calculation scheme of pragmatic tyre model 2.
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A variation of slip velocity V,_ will generate through differential equation (6.3b) a
transient slip {, which is used as input to the stationary slip characteristics. The
vertical force only influences the stationary slip characteristics (Eq. 6.3d). This
means that a variation of vertical force at constant slip will generate a direct
(non-delayed) response of the longitudinal force. Therefore, this model cannot be
used for varying vertical load.

The longitudinal slip velocity V. is used directly as input to the differential
equation (Eq. 6.3b). The advantage of this formulation is that this differential
equation is able to handle a zero velocity (V, =0) condition. In that case the
derivative of the slip is proportional to the slip velocity. Or, if we integrate this
equation, the slip (and thus the force) in the contact patch is proportional to the
deformation in the contact patch:

dg V. \%
x-S o o= (6.4)
dt c ‘ J.c

To prevent the transient slip from being integrated to plus or minus infinity, its
value has to be limited. The best value to limit the slip is its value at the start of
full sliding, that is at the F_ peak. The limitation of the transient slip is rather
difficult as it is a state variable and state variables should not be altered during a

gration LT

numerical integra re, the dertvative of the transient slip is

ol

limited instead. The method used is depicted in Figure 6.6.
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(a) slip £,q is between the two limit values (b) slip {,q is outside the two limit values
Figure 6.6: Limiting the derivative of the transient slip (.

At the beginning of an integration step (from time ¢; to ¢,,), the value of the
longitudinal slip is denoted by { . At the end of this integration step, the slip -

should not become larger than the maximum allowed slip (§ ), or smaller than

X, nax

the minimum allowed slip ({_, ). If a first order numerical integration method

X, min

(method of EULER) is used, the maximum and minimum derivatives of the slip
can be calculated easily. Now, the calculated derivative of the slip (from Eq. 6.3b),

134




Pragmatic Transient Tyre Models

is limited by these two values. Using this method the slip at the end of this
integration step will never become larger than { or become smaller than

Cx,min'

During the simulation process the maximum and minimum allowed slip may
vary. The maximum allowed slip may decrease so quickly that the slip {, is
outside the allowed slip range, as depicted in Figure 6.6b. Nevertheless, this
method forces the slip to return to the allowed range.

Figure 6.6 presents the limitation of the slip when a first order numerical
integration method is used. Generally higher order simulation methods which
use more than one function evaluation per time step are used. Then the
expressions for the maximum and minimum allowed slip read:

C_\- e = C.:x,mmc B Cx C'x in = Cx,min B Cx (65)
' g-h ’ q-h
where h denotes the time step and coefficient ¢ denotes a correction factor for the
integration method used. The derivative of the slip {. is limited according to:

(_u lf <ix,min < Cx < éx,max
C._»x = Cx,n’l,ax if Cx > Z.;x,m(u: (6.6)
Cx,min, if Cx < Cx,min

Equations (6.5) and (6.6) represent a constraint to one of the state variables. The
coefficient ¢ chosen is such that the constraint is as stiff as possible allowed by
the integration method and time step. Table 6.2 presents the values of coefficient
g, and the relative error in the constraint equation for three integration methods.
The 4" order RUNGE-KUTTA method is the method used for the numerical
simulations in this thesis. The relative error of the constraint equation of 27%
means that an error made by this constraint is reduced to 27% for each time step.

Table 6.2: The parameters of the constraint equation.

integration method coefficient g [-] error after 1 time step
1% order EULER 1.0000 0 %
2" order HEUN 1.0000 50 %
4" order RUNGE-KUTTA 0.6265 27 %

The method described above is most suitable for a fixed step integration routine.
A variable step integration routine uses the time step % to control the error made
by the integration. A small desired integration error will forced the step size A to
become small. According to the constraint equation, the maximum value of the
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derivative of a state variable is increases with decreasing the time step (¢f. Eq.
6.5). which might not lead to a small (desired) error in the integration.

Model 3: Filtering the longitudinal deformation

The filtering of the longitudinal deformation is based on the stretched string
theory developed for the lateral deflection of the tyre [80]. Even though this
theory was specifically developed for the lateral tyre responses its principle may
also be used for the longitudinal tyre responses. Takahashi ef al. applied the
theory for the analysis of cornering on uneven roads [86,106,107]. He had
difficulties in stabilising the numerical routine. Recently, Higuchi ef al. [39,40]
introduced an adapted approach for the numerical calculations which seems to be

promising.
differential limiting the slip slip
equation deformation definition characteristics
- [ e [ I,
i | | ’\ Fig. 6.2
Vi | du u r u | A \ A

!di+ﬂll=_%x _N } d Cx:i, C"* i _>
| dt (¢ }J/‘ ’ (o}
! | : | o

2|

o

2
A

Figure 6.7: The calculation scheme of pragmatic tyre model 3.

The calculation scheme for this method is presenied in Figure 6.7. The equations
of this method read:

o' =f(u,F,) (6.7a)
L, = i (6.7b)
c
F, = brush(C,,F,,1) (6.7¢)
‘3_”+|Xf_\u -V, (6.7d)
t o '
u,. <ugu (6.7e)

min max

Although the differential equation (6.7d) is very similar to the previously
introduced differential equations (6.2d) and (6.3b), the values of the relaxation
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lengths are different. Therefore the relaxation length used in this scheme is
denoted by an additional prime. According to the string theory [86], the
relaxation length ¢’ can be expressed as:

o = 0o Fe (6.8)

Cro &
where 6, and C,, are the relaxation length and slip stiffness at zero slip,
respectively. Higuchi et al. [39] showed that the time constant of the first order
differential equation (Eq. 6.7d) is not equal to relaxation length ¢’divided by the
velocity V. To obtain this time constant the differential equation is linearised:
the deformation and relaxation length are written as small variations (denoted
by a tilde) on top of constant values (denoted by a subscript 0).

e LA R e S A N
dt o S G

The relaxation length ¢’ depends on both the deformation u and the vertical force
F, (cf. Eq. 6.7a). Thus small variations in the relaxation length can be expressed
as:

5-25,9 5 (6.10)
ou oF

z

We simplify the analysis by assuming that the variations in vertical load are
zero. Using uy =~ 04V,,0/[V,0|, expression (6.9) becomes:

_ V(o0 i - V.sgn(Vio)2-V,. if F =0 (6.11)
dt o Gy u o

In the equations above is the partial derivative of the relaxation length ¢’ with
respect to the deformation u: (d6’/du) is introduced. This derivative is negative if
the deflection u is positive. We now define the actual relaxation length ¢ (without
prime) as the time constant of the linearised system multiplied by the rolling
velocity:

-1
5=1-|V,o| = 0 - (1— “o ?}%J (6.12)

Using uy /04 =~V /|Vie|, Equation (6.11) now takes the form (if F =0,V = V..

42 Vil - Veo iy (6.13)

dd o Vo
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In the further analysis we will omit the subscript O for the constant values in the
notation. The actual relaxation length o is only equal to the relaxation ¢’ if the
longitudinal deformation u is zero. The derivative of the relaxation length ¢’ with
respect to « can be expressed as:

Sa_

o0 oo dh, AL TR o (a1 W R), _1( WE
Ju OF, du oF, du C, oF, L,

x

oF, ¢, OF

x—cx

Using this result yields the expression for the actual relaxation length ¢ (note
that {, =u/o’):

N1 y!
G:G'.(li_a_?_] Cor | B Fe ) oo IF, (6.15)
G’ Ju oF, (., Cyo 9C,

This means that the actual relaxation length ¢ connected with the time constant

] (6.14)

of the differential equation (Eq.6.13) equals the original definition of the
relaxation length (Eq. 5.53). As a consequence we may conclude that the time
constants of the transient responses to slip variations (if Fz = () are equal to each
other, even though the values of the relaxation lengths ¢’ and ¢ in the
differential equations (6.7d) and (6.13) differ.

and the deformation as function of the longitudinal slip. The shape of the latter
curve is similar to the stationary slip characteristics, because the deformation of
the tyre is proportional to the longitudinal force. After the peak in the curves of
Figure 6.8b, the response of the tyre becomes infinitely fast as the time constant
becomes zero. Takahashi et al. reported stability problems during numerical
simulations close to complete sliding 186,107]. He also needed an iteration
procedure to solve the slip, relaxation length, and force from equations (6.7b,c)
and (6.8).

To avoid the instabilities, Higuchi et al. [39] and Takahashi et al. [107}
proposed a correction for the deformation vs. slip characteristic such that the
deformation keeps rising at increasing slip. Recently, Higuchi [40] proposed to
alter the relaxation length vs. deformation characteristic rather than the
deformation vs. slip characteristic. A similar approach is used in this study. The
relaxation length vs. deformation characteristic is replaced by a new formula
which was found by trial and error:

exp(—13M )

HGo

6'=0p —— (6.16)
1+23( /1)

HGq
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Figure 6.8 presents the altered curves as well. The altered curve deviates from
the original characteristics at high levels of slip and deformation. Using this
formula has two advantages: First, the time constant will never become zero; and
second, the relaxation length ¢’ is calculated directly from the deformation u
without using an iteration procedure.

This model can also be used in zero velocity conditions, however, the
longitudinal deformation may become too large. Therefore maximum and
minimum allowed tyre deformations which depend on the maximum and
minimum allowed longitudinal slips are introduced:

7 ’
Upax =0 - z;x.nmx ’ Uppin =0 - Cx,min (617)

The method used to limit the longitudinal deformation is similar to the method of
limiting the longitudinal slip employed in model 2.

original curve: - e F=2000N  ———— F,=4000N ——— F,=6000N
altered curve: - F,=2000N - ---~-- F.=4000N === —- F,=6000N
400 e 20— R
@ | (b)
E = e
E300 £15/ -
o .8
= k5|
to £ o ee=m
2 ~ <
= \ -1
] N g ~
£ ARV 2
: |
~ - =]
I - 1 |~ =~ = - - 0! ! L.
0 5 10 15 20 0 0.05 0.1 0.15 0.2
longitudinal deformation w {mm] longitudinal slip , [-]

Figure 6.8: The relaxation length ¢’ according to the stretched string theory; the
original curve (Eq. 6.8), and the altered curve (Eq. 6.16).

Model 4: Contact model and sidewall flexibility

The fourth model is rather similar to the string theory. To solve the tyre
deformation more easily, an additional mass in the contact patch is added. Both
Pacejka et al. [88], and Gim et al. [31] used this approach to study the tyre
transient responses for pure slip and combined slip conditions. Van der Jagt et al.
applied this method to study of the effects of road unevennesses on ABS operation
[44].
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The disadvantage of the proposed models [31,44,88] is that the slip angle o
and longitudinal slip k of the contact patch are used as input into the stationary
slip characteristics, resulting in models which cannot handle zero velocity
conditions. Therefore, a new pragmatic model is proposed: the carcass
deformation is represented by a mass—spring system, and the transient response
of the tread elements in the contact patch is represented by a slip model similar
to the pragmatic model 2. The equations of pragmatic model 4 read:

- f(ch:Fz) (618&)
F, = brush(C,,, F,,p) (6.18b)
mi+ku+cu="F, {6.18¢)
Vier = Vi T (6.18d)
G, d§(x +| ch - v,sx (6189)
7;(,‘.’,\?,"’1[71 S QL‘X - ch,max (6.18ﬂ

where, the situation in the contact patch is denoted by the subscript c. The
carcass deflection is denoted by u, the carcass stiffness is denoted by c¢. A small
amount of damping is added to avoid extensive vibrations of the mass m. Note: it
is an approximation of the actual acceleration and the frequency of the excitation
should be below the natural frequency of the mass—spring system. The

calculation scheme is shown schematically in Figure 6.9.

differential equation limiting the slip slip characteristics
{ - L/ © Fig.62|
opgtingo ey oy ey 0 B T Ly
[ GRS VY /)
Z \ ‘ ! |/Z—

sidewall deformation

mii+kiu+cu=F, I(

Figure 6.9: The calculation scheme of pragmatic tyre model 4.

The relaxation length o, of the slip model of the contact patch is much shorter
than the total relaxation length ¢ of the tyre. The relaxation length o, decreases
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with increasing slip and is also defined as the ratio between the actual slip
stiffness and the slip stiffness at free rolling multiplied by the relaxation length
of the contact patch model at free rolling o,

G = Gc() an =G C)\‘

c0

“ CKO a(;cx CKO

(6.19)

The slip stiffnesses C, and C,, of the contact patch model are identical to the slip
stiffnesses of the total tyre. The relaxation length o, of the contact model at free
rolling is equal to half the contact length a. Figure 6.10 presents the relaxation
length of the contact patch model as function of force and slip.

F,=2000N —— —— F =4000N —————— F =6000N

80 B T 80 T T O R L |
(a) (b)

DN
(=]

Do
<

relaxation length ¢, [mm]
N
S

0 2000 4000 6000 0 0.05 0.1 0.15
longitudinal force ¥, [N] longitudinal slip €., (-]

Figure 6.10: The relaxation length of the contact model as function of the
longitudinal force, and as function of the longitudinal slip.

The contact model of model 4 is similar to model 2 (slip filtering) with a shorter
relaxation length (o, instead of 6). Accordingly, this contact model can be used at
zero velocity and it does not show a transient response to vertical load variations.
The influence of varying F, in the contact model may be disregarded here because
most of the influence is covered by the introduction of the carcass longitudinal
compliance. A contact model according to model 3 (deformation filtering) would
give more accurate results, especially at varying F,. This approach is not used
because it needs the altered curves for the relaxation length (¢f Eq. 6.16).
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6.3 Discussion of the simulation results of the pragmatic models

The responses of the four pragmatic tyre models, which were introduced in the
previous section are evaluated by comparing them to the responses of the discrete
brush model. This model, which is called physical model, was developed in
Chapter 5. The parameters used are given in Table 5.1. The responses of the
pragmatic models are not compared to transient measurements because it is
difficult to separate experimental longitudinal transient tyre responses from the
dynamic tyre responses. The optimal pragmatic tyre model will be added to the
rigid ring tyre model in Chapter 7. The rigid ring tyre model including the
contact model is validated for various kinds of excitation of the tyre in Chapters 9
through 11.

The models were validated for non-linear conditions: large variations of
longitudinal slip (Figure 6.11), large variations of vertical load and friction
coefficient (Figure 6.12), and with simulations for zero velocity conditions (Figure
6.13). The simulations were performed for three wavelengths (A= 0.25, 1, and 4
metre). The variations at 4 metre wavelength are almost quasi-statically. The
0.25 metre wavelength is very short, approximately as long as the tyre relaxation
length at 4000 N vertical load. To be able to compare the results for various
wavelengths, the travelled distance of the tyre is normalised by the wavelength.
The models were initialised by applying the excitation signal over a length of two
times the relaxation length at free rolling o, plus one wavelength A of the
excitation signal. The responses presented were obtained from simulations over
an additional length of one wavelength.

Table 6.3: The 6 investigated excitations of the tyre.

input vertical friction longitudinal Figure
variation load [N] coefficient [—] slip [%]
F AF, Mo Ap Cro AL,

V variations 4000 0 1.0 0 4.0 3.6 6.11a
V,_ variations 4000 0 1.0 0 4.0 3.6 6.11b
F, variations 4000 3600 1.0 0 4.0 0 6.12a
I variations 8000 0 0.5 0.45 4.0 0 6.12b
x variations 4000 0 1.0 0 x! xJ 6.13a
6 variations 4000 0 1.0 0 x! x1 6.13b

D glip is not defined at zero velocity.
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Table 6.3 shows the conditions during the simulations. The average conditions
are denoted by a subscript 0, and the variations by A. The variations in slip,
vertical load and friction coefficient are 90% of the average value. The amplitudes
of the displacement x or the rim angle 6 at zero velocity are so large that full
sliding occurs.

Figure 6.11 presents the results for large variations of slip velocity. Two
situations were investigated: variation in longitudinal velocity V_ at constant
rolling velocity V,; and variations of V, at constant V. These two situations are
chosen because the rolling velocity appears in the differential equations (Eq. 6.2d,
6.3b, 6.7d, and 6.18e). Nevertheless, the responses to V, variations are similar to
the responses to V, variations. The responses of all four pragmatic models
represent the responses of the physical model well.

Figure 6.12a presents the simulated responses to vertical load variations,
which variations generally result from road undulations or vertical vibrations of
the wheel. The simulated responses are very similar to the measured response of
the lateral force at constant side slip angle and variations of vertical load
[86,106,107,114].

The responses of model 1 to vertical load variations corresponds reasonable
well with the responses of the physical tyre. The relaxation length o, (Eq. 6.2b) of
this model permits the model to react quickly enough during the increase of F,.
The relaxation length o, (Eq. 6.2b) forces the model to react quickly at decreasing
F,. Otherwise the delayed longitudinal force would become larger than the
maximum friction force. Model 2 does not show any transient response to the
variations in vertical load as the load variations influence the longitudinal force
variations directly only through the stationary characteristics (Eq. 6.3d). Model 3
(filtering of the deformation) represents the physical model best. At shorter
wavelengths the longitudinal force approaches the maximum friction force (uF,).
Model 4 reacts slightly too quickly to vertical load variations because the
transient response to load variations is represented by carcass compliance only,
and not by the transient response of the contact slip model. As stated previously,
better results can be achieved by a contact model that filters the longitudinal
deformation in the contact zone rather than the slip in the contact zone.
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(a) V, variations

nllodel 1

1

I;lodel 2

025 /

L

n‘lodel 3

0.25

I

> O

ﬂmdel 4

0.25

0 0.

144

|
2 04 0.6
distance travelled x/A

0.8

physical model
Figure 6.11: The responses of the models to slip variations.
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Figure 6.12: The responses of the model to vertical load or friction coefficient
variations, wavelength h = 0.25, 1, 4 metre. Constant slip (o = 4%.
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Figure 6.13: The responses of the models at zero velocity conditions.
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The tyre responses to friction coefficient variations are presented in Figure 6.12b.
The responses of models 2, 3 and 4 to friction coefficient variation are similar to
the responses of these models to vertical load variations: model 2 does not show a
transient response, and the responses of model 3 and 4 are rather good. It is very
striking to see that the responses of model 1 to friction coefficient variations has
deteriorated with respect to the responses of this model to load variations. The
reason for this deterioration is the chosen condition: constant slip of 4%, constant
vertical load of 8000 N and a varying friction coefficient (u=0.05-0.95). At low
values of the friction coefficient, the constant slip of 4% is already in the full-
sliding range. Consequently, the relaxation length o, (¢/. Eq. 6.2b) becomes very
small and the longitudinal reaction is almost without delay. The responses of
model 1 to vertical load variations will also deteriorate when the constant slip for
the load variations is larger chosen (above 7%). The problem of model 1 is that
without o, the model reacts too slowly with increasing vertical load or friction
coefficient. A model with ¢, on the other hand, reacts too fast at slip values close
to full sliding.

Figure 6.13 presents the tyre response at zero velocity conditions. Figure
6.13a shows the response to a forward and backward displacement of the wheel
axle of a non-rotating wheel. Figure 6.13b shows the forward and backward
rotation of the rim with fixed axle positions. The amplitudes of the axle
displacement and rim rotation are large enough to obtain full sliding.

Model 1 is not able to simulate the zero velocity condition because the
longitudinal slip (Eq. 6.2a) cannot be calculated. Models 2,3 and 4 represent the
zero velocity conditions rather well. The responses of models 2 and 4 are slightly
better than the response of model 3 because the slip vs. deformation
characteristic of model 3 was altered (see Figure 6.8) to ensure numerically stable
integrations.

Figure 6.13 shows that the tyre force is proportional to the displacement until
full sliding occurs. If the wheel motion changes direction the longitudinal force
decreases immediately. The longitudinal forces of the pragmatic models 2,3 and 4
also react immediately to the change in the motion because the longitudinal slips
(Eq. 6.3¢ and 6.18f) and the longitudinal deformation (Eq. 6.7¢) were limited.
Otherwise, the force vs. displacement characteristics would follow the same
characteristics for forward and backward axle displacement. For small wheel
motions (i.e. full sliding does not occur) the limitation is not necessary, and the
force vs. displacement variations follows the same characteristic for forward and
backward axle displacements.
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The results of the study of the optimal pragmatic tyre model are summarised
in Table 6.4. Models 3 and 4 are able to handle all situations, model 1 cannot be
used in zero velocity conditions, and model 2 does not show a transient response
to vertical load and friction coefficient variations. Model 3 has the best overall
performance, but this model has two disadvantages. First, the relaxation length
in the differential equation (Eq. 6.7d) divided by the velocity is not equal to the
time constant of the transient response. This means that time constants obtained
from experiments (cf. Section 9.2) cannot be used directly to represent the
relaxation length of this model. Second, the longitudinal deformation vs.
relaxation length characteristics had to be altered by trial and error to obtain a
numerically stable model.

Table 6.4: The performances of the four pragmatic tyre models.

pragmatic tyre model slip vertical load Zero numerical
variations & friction velocity  consistency
variations conditions
1 Filtering the force + +/— - +
2 Filtering the slip ++ - ++ +
3 Filtering the deformation ++ ++ + +/—
4 Mass-spring system ++ + ++ +

The overall performance of model 4 is slightly poorer than the performance of
model 3. The disadvantage of model 4 is that an additional second order
differential equation is needed to solve the displacement of the mass in the
contact patch.

In Chapter 7 the equations of the dynamic tyre model are developed. In this
model the pragmatic model 4 will be used as a contact model because of the
numerical stability is better than that of model 3. In the dynamic tyre model of
Chapter 7, the tyre tread-band is modelled as a rigid ring and the carcass
deformations are represented by the displacement of the rigid ring. This means
that the additional mass of model 4 can be avoided as the contact model can be
added directly to the ring model.
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6.4 Basic influence of a relaxation system on tyre dynamics

The main effect of longitudinal and lateral carcass flexibilities that may be
modelled using the relaxation length, is the phase lag of the force with respect to
the imposed slip. For the in-plane case, a special effect is observed. This effect
concerns the damping of the first natural mode of vibration of the tyre.

The transient responses of the tyre to slip and load variations could be
approximately represented by a first order differential equation (Eg. 6.1). Such a
differential equation can be represented by a spring and a damper in series. This
system is named a relaxation system, as it represents the relaxation length
behaviour of the tyre.

Figure 6.14 presents the relaxation length models for both the in-plane and
out-of-plane tyre responses. The longitudinal and lateral tyre stiffnesses are
denoted by C, and Cy, and the longitudinal and lateral tyre slip stiffnesses are
denoted by C, and Cp,. Even though for both directions the relaxation length
systems are very similar, the system boundaries may be selected differently: the
motion of the rim is prescribed for the out-of-plane model (steer angle ) while
the torque acting on the rim (drive or brake torque M,) may be prescribed for the
in-plane model. These conditions reflect the typical boundary conditions for the

wheel of a moving vehicle.

Ay

(a) in-plane relaxation length model (b) out-of-plane relaxation length model
Figure 6.14: The differences between in-plane and out-of-plane transient tyre
models.

The difference between boundary conditions for the in-plane and the out-of-plane

model has two effects:

1. As long as wheel lock is avoided, the average value of the longitudinal force F,
multiplied by the tyre radius is always equal to the applied constant brake
torque -M,. Vertical load variations have little influence on the average
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longitudinal force. The lateral force, on the other hand, is influenced strongly
by variations in vertical load at constant slip angle. The adverse effects have
been the subject of several studies [86,107].

2. The relaxation length system has a big influence on the relative damping of
the in-plane modes of vibration of the tyre because the motion of the rim is not
prescribed.

To illustrate the influence of the relaxation length system on the free in-plane

tyre dynamics, two mass spring systems are considered: A ‘normal’

mass—spring—damper system with spring and damper parallel to each other,
depicted in Figure 6.15a, and a ‘mass—relaxation’ system with spring and damper
in series, depicted in Figure 6.15b. The system of Figure 6.15b corresponds to the
situation below or close to the first natural frequency (typically 20-40 Hz) of the
system where the rim and tyre rotate in-phase on the tangential carcass
flexibility between the rim and the contact zone. This mode is defined as the

‘in-phase rotational mode’ in Chapter 8.

The analysis presented in this section is not intended to analyse the in-phase
rotational mode in detail but is used to show the influence of the relaxation
system on the tyre dynamics in terms of natural frequency and damping. The
predicted behaviour appears to correspond with that of the in-plane rigid ring
model of Chapter 7.

(a) normal mass—spring system (b) mass—relaxation system
Figure 6.15: Two mass-spring systems. (a) a normal mass-spring system with the
damper and spring parallel and (b) a relaxation system with the
damper and spring in series.

Both the normal mass—spring system and the mass—relaxation system have three
parameters: the overall longitudinal stiffness of the tyre, the damping coefficient
and an equivalent mass. The stiffness ¢ of the relaxation model results from all
springs of the rigid ring model placed in series:

-1
c= [i + i] (6.20a)
C. ¢

cx
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The damping coefficient £ equals the slip stiffness divided by the velocity.
E=C./V (6.20b)
The mass m of the model equals the modal mass of this mode of vibration. It

involves the moments of inertia of the rim and the tyre ring and the mass of the
tyre ring.

Normal mass-spring system

The equation of motion of the normal mass—spring system reads:
mi+ki+ex=0 (6.21)

where the longitudinal displacement of the mass is denoted by x. The

characteristic equation becomes:
m)X +EkA+c=0 (6.22)

The solutions A, , of the characteristic equation are:

Mg =—K,0,0F ®,0y¥s —1 (6.23)

The natural frequency of the undamped system ®,, and dimensionless damping

coefficient K, are introduced:

9 c k k

W = K, = = (6.24)
o 2mw, 2vme

Mass-relaxation system

In addition to the equation of motion of the mass m, the mass—relaxation system
needs the equation for the force equilibrium between the spring and damper:

mi=clu-x), ki=clx-u) (6.25)
where x denotes the longitudinal displacement of the mass and w denotes the

displacement of the connection point between the spring and the damper. The
characteristic equation of this set of equations becomes:

AmEX? +meh + ke) = 0 (6.26)
This characteristic equation has three solutions:
Ao =~K0,0 @, 0yk;~1, Ay=0 (6.27)
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The frequency w,, and dimensionless damping coefficient x, are introduced

=" k= N (6.28)
m o2Jkm - ke 2k

The natural frequencies of the normal mass—spring system (Eq. 6.24) and
mass—relaxation system (Eq. 6.28) are equal to each other. Conversely, the values
of relative damping are very different: the relative damping of the
mass—relaxation system is inversely proportional to the relative damping of the
normal mass—spring system.

To conclude, the first in-plane mode of vibration of the tyre can be
approximated by the mass-relaxation system of Figure 6.15b. The relative
damping of the mode of vibration is inversely proportional to the damping
coefficient £. From Equation (6.20b) we can see that the relative damping of this
mode of vibration is proportional to the velocity and inversely proportional to the
slip stiffness. Indeed, the measured tyre responses to brake torque variations
(cf. Chapter 9) and to road unevennesses (cf. Chapter 10) do show this effect.
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7.1 Introduction

The study with the physical tyre model in Chapter 5 showed that the longitudinal
force generated in the tyre does not instantaneously follow slip variations. This
phenomenon was characterised in Chapter 6 by the relaxation length. This
approach, however, is valid only for low frequencies as the inertia properties of
the tyre cannot be neglected at higher frequencies.

In this chapter the rigid ring model is developed. This model contains those
modes of vibration of the tyre in which the tyre ring itself remains rigid and
circular. In other words, the tyre ring moves as a rigid body with respect to the
rim. The valid frequency range of this model is limited to frequencies higher than
the first natural frequencies of the tyre, where the natural modes correspond to
the rigid ring modes, but sufficiently below the higher natural frequencies of the
flexible modes of vibration of the ring.

The out-of-plane rigid ring model was first introduced by Pacejka [81] in 1973
and later, following a different concept, by Meier-Diornberg and Strackerjan
167,104]. Gerhard [28] and Werner [29] Fritz employed the latter model
successfully for representing measured tyre responses to axle height, steer angle
and camber angle variations up to 20 Hz. Laermann [56] added a discrete contact

1863



Chapter 7

patch model to the rigid ring dynamics. He studied the effect of load variations at
constant slip angle on the lateral force and the self aligning moment responses.
Oertel [77] used a rigid ring in his study on the influence of different contact
models. Ammon et al. [4] used a rigid ring model in a multi body simulation of the
vehicle motions.

The tyre models for the study of the in-plane vibrations vary in complexity.
The simplest approach, where the tyre-wheel system is represented by one rigid
body (of rim and large part of the tyre) and flexibility of the lower part of the
carcass, is able to represent the lowest natural frequency of the tyre-wheel
system [23,37,44]. The valid frequency range of these tyre models can be
increased by adding the rotational degree of freedom of the tyre belt [72,121,122],
its longitudinal degree of freedom [53], and its vertical degree of freedom
[3,15,105]. These in-plane tyre models are used to study power-hop vibrations in
a power driveline [37,72], dynamic tyre responses on uneven roads [15], and ABS
operations [44,121,122]. It is striking to see that the in-plane flexible ring model,
introduced by Tielking in 1965 [109], is much older than the simpler rigid ring
models.

The in-plane rigid tyre ring model, depicted in Figure 7.1, represents a
pneumatic tyre-wheel system. The model consists of four components: the tyre
tread-band, the tyre sidewalls with pressurised air, the rim, and a contact model.
The rigid ring model is able to represent those modes of the tyre where the shape
of the ring remains circular: the rotation of the ring and a horizontal and vertical
displacement of the ring. Therefore, the tread-band or belt is modelled as a rigid
circular ring with three degrees of freedom: the displacements in longitudinal
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The rim is modelled as a rigid body that can rotate treely about the wheel
axis. The tyre belt and the rim are connected through the third component: the
sidewalls with pressurised air. This component is modelled as a horizontal, a
vertical and a rotational spring and damper. The fourth component is the contact
model. This model represents a vertical residual stiffness and a slip model. This
slip model is based on the pragmatic tyre model 4 developed in Chapter 6.

The rigid ring model only represents the first modes of vibration of the tyre.
The influences of the higher modes (which are called the flexible modes in
Chapter 8) are neglected as we are not interested in higher frequency tyre
dynamics. The influences of the flexible modes on the static deformation of the
tyre cannot be neglected: each individual mode will deform statically and the
deformation of all modes causes flattening of the tyre if it is standing on the road.
To obtain a correct static stiffness of the rigid ring model a residual stiffness
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between the tyre ring and the road surface is introduced. This residual stiffness
accounts for the static deformation of all the higher order flexible modes.

z
rigid tyre ring rim

| longitudinal sidewall

I . .
rotational sidewall 4 e > stiffness and damping

. . t
stiffness and damping vl ) vertical sidewall
r / stiffness and damping
6

vertical residual ‘ slip model

stiffness
road surface

Figure 7.1: The basic tyre model. The tyre is modelled as circular rigid ring,
supported on an elastic foundation. A contact model is added.

It appears that the horizontal and rotational stiffnesses belonging to the first
modes already produce a sufficiently accurate longitudinal tyre stiffness, so that
an additional tangential residual stiffness does not seem to be needed. If for any
reason whatsoever, such a tangential residual stiffness is needed, the additional
flexibility can be easily accomplished by increasing the relaxation length of the
contact model. However, as stated in the previous chapter, the used contact
model reacts directly to vertical load variations. This effect was disregarded as
the relaxation length of the contact model was relatively short in comparison to
the relaxation length of the total tyre. If the relaxation length of the contact
model is increased to represent a tangential residual stiffness, the direct response
of the contact model to vertical load variations can no longer be disregarded. To
solve this problem, the contact model should be replaced by a contact model based
on model 3 of the previous chapter.

Section 7.2 presents the first steps in the development of the rigid ring model:
the dynamics and stability of the freely rotating rigid ring. The tyre-road
interface is added to the model in Section 7.3. Section 7.4 presents the addition of
the last item of the model: the motion of the rim. The linearisation of the rigid
ring model is presented in Section 7.5. These equations are needed to apply
techniques for linear models. The results of previously presented studies will be
used for the model development: the static tyre properties (Chapter 2), the
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stationary slip characteristics (Chapter 3), the tyre-road interface on an uneven
road (Chapter 4), and the transient tyre responses (Chapters 5 and 6).

The present chapter presents only the development of the rigid ring model. In
the subsequent chapters the model is validated by experiments. Section 7.6
presents an overview of the validation of the model and the parameter
assessment. The mode shapes of the model are validated with experimental
modal analysis in Chapter 8. The dynamic behaviour of the rigid ring model is
validated for braking in Chapter 9 and for rolling over road unevenness in
Chapter 10 and finally for axle height variations in Chapter 11.

7.2 The dynamics of a rotating free tyre-wheel system

This section presents the equations of motion and the dynamics of a non-loaded
rotating tyre-wheel system. This system is modelled as a rigid rim and a rigid
tyre ring connected through distributed sidewall stiffnesses. The tyre ring has
three degrees of freedom in the wheel plane: the horizontal and vertical
displacement of the tyre ring and the rotation of the tyre ring about the y-axis.
The three in-plane motions of the rim can still be designated: either as input to
the system, or as additional degrees of freedom of the system.

Equations of motion of a rotating ring on an elastic foundation

Figure 7.2 presents the displacements of a point on the tyre ring in the fixed
coordinate system (x, z) at different stages of the system motion: points O, A and
R The tyre-wheel system rotates at. constant angular speed Q about the wheel
axis and point O is the position of a point on the tyre ring with radius r after this
constant rotation. The angle of this undisturbed rotation is denoted by ¢ (¢ = Q).
Point A is a point on the tyre ring after the displacement of the axle x, and 2z, and
the additional rotation of the rim 6,. The position after the tyre ring
displacements is indicated by B. The horizontal and vertical positions of situation
B are defined by x, and z, and the rotation by 6,.

The positions of the rim and axle are denoted by symbols showing the
subscript a, and the positions of the tyre ring by the subscript 4. In the next
section a contact model is added to the rigid ring model. In the contact model the
subscript ¢ is provided.

The model of the tyre deformation introduced in Figure 7.2 is slightly
different from that of the tyre deformations depicted in Figure 4.4. First of all in
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Chapter 4 the flexible ring model was considered, while in this chapter the rigid
ring model is developed. Secondly, here rim rotation results from two
contributions: the angle ¢ due to constant rotation and the small variation 6,
while in Chapter 4 the total angle of rotation of the rim was represented by the
angle ¢. Thirdly, the variables v, and w, here denote the tangential and radial
components of the deformation of the tyre sidewalls, rather than the tangential
and radial positions of the tyre sidewalls.

z A
~— O Original undisturbed
situation

—— A After displacement
and additional rotation

of the rim

— B After additional
displacement and rotation

of the tyre ring

S > !
Xq Xy

Figure 7.2: The displacement of a point on the tyre ring including the
deformation of the tyre sidewall.

<Y

The tangential v, and radial w, components of the deformation of the tyre
sidewall are equal to the difference between the positions of points A and B:

. Xy — X,
Uy | |cos{o+8,) —sin(p+8,) r 7.1)
= Zp — 2 .
w,| |sin(@+6,) cos(p+8,) 0" ¢
8, -9,
Or:
v, = Q(x; ~ %) (7.2)

where @ denotes the transformation matrix from the fixed to the rotating
coordinate system and the deformations and positions are written as:

Up = [vh wb]T » Xy = [xa 24 B(L]T > Xp = [xb 2p eb]T (73)

The time rate of change of the tyre sidewall deformation reads:
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U, = Q(, — %,) + Qx, — x,) (7.4)
with:

_dQ sin(p+86,) cos(p+6,) O

Q__dt_:($2+ “)1:_COS((P+OQ) —Sin((p+ea) 0:| (7.5)

The distributed tangential and radial foundation stiffness matrix C,, and
damping matrix K, are:

Chy 0 kbv 0
C, = K, = 7.6
bu |: 0 cbw} > bu l: 0 kbw:I ( )

where ¢, and ¢, are the stiffnesses and k,;, and &,,, are the damping coefficients
of the tyre sidewalls per unit of length in tangential and radial directions,
respectively. The internal forces [ b, PET unit of length oriented in the rotating
frame are equal to the stiffness times the deformation plus the damping
coefficients times the deformation velocity:

£y, = Cooty+ Ky, Uy, (7.7)
Figure 7.3 shows the transformation between the rotating and fixed coordinate

system. The forces and moments per unit of length oriented in the global frame
become:

o cos(p+6,) sin(¢p+9,) p
. . b
foe |=|—sin(p+86,) cos(e+6,) {f "-l (7.8)
hu |
[me] L7 N
Whereby the internal torques due to unequal stiffnesses in radial and tangential

direction are neglected. Integrating the distributed force over the entire
circumference of the tyre and substituting expressions (7.4) and (7.7) yields the
total sidewall force I, acting on the belt in the fixed coordinate system:

2n 2n 2n
Fy= [QTCQ(xy—x,)rdo + [QK,Q(x,~%,)rdo + [Q"K,Q(x,—x,)rde  (7.9)
0 0 4}

1 2 3

Solving the first and second integral of Equation (7.9) gives the matrices C, and
K, of the overall sidewall stiffnesses and damping coefficients, respectively:

(e, +Cop) O 0 mr(ky, + ky) O 0
C, = 0 mr(cytey) 0 |, Ky= 0k, +hy) O (7.10)
0 0 2mc,,r? 0 0  2mk,r*
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The third integral of equation (7.9) on the other hand, gives a matrix G, with
off-diagonal elements, providing a coupling between the vertical and the
longitudinal tyre ring displacements:

0 —nr(ky, +ky) O
G, = (0, +Q) nr(ky, +ky,) 0 0 (7.11)
0 0 0

»
X

Figure 7.3: The sidewall forces oriented in the global (fixed) frame and in the
rotating frame.

The equations of motion of the tyre belt motion read:

M3, =-F, = -Cy(x,—x,) - K(x,~1,) - Gy(x,-x,) (7.12)

The mass matrix M, is defined as:

m, O 0
M,=|0 m, O (7.13)
0 0 I,

where m,, I, are the mass and moment of inertia of that part of the tyre that is

by
considered to move together with the tyre ring. Now, the total equations of

motion of the free (non-loaded) rotating tyre ring model read:

mbjéb + k()(xb - xu) + ch(xb - xa) - kh(Q+ ea )(Zb - Z(l) =0 (7.14a)
mb‘éh + kh(zb - 2(1) + Cb(zb *Za) + kh(£2+ea )(xb o xu) =0 (714b)
1,0, + k6, —0, )+ (6, -9,) = 0 (7.14c¢)
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Here the rim motion may be considered as a given time-dependent input to the
tyre system, or this motion may result from the rim equations of motion. The
stiffnesses and damping coefficients of the tyre sidewalls are introduced in the
equations of motion of the tyre belt:

« translational sidewall stiffness: Cp = Tr(Cpy + Cpyp ) (7.15a)
. translational sidewall damping constant: k, = Tr(k,, + ky,,) (7.15b)
« rotational sidewall stiffness: Cpg = 27Cy, T (7.15¢)
« rotational sidewall damping constant: kyy = 2mhy,r? (7.15d)

The dynamic stability of a free rotating tyre ring

The equations of motion of a rotating system can be described in both the
rotating frame and a fixed frame. Both descriptions refer to the same dynamic
system. To study the dynamic stability of the rotating tyre ring the equations of
motion of a simplified system are derived in both the rotating and the fixed
frame.

In general, a damper has a stabilising effect on the dynamic behaviour of a
system. The rotating damper is responsible for the coupling terms (—ky€2z,) and
(kyQx,) in equation (7.14) and might have a destabilising effect. To study the
stability of the rotating tyre the theory of rotor dynamics is applied. Figure 7.4
shows a simplified model of the free rotating tyre: it depicts the horizontal and
vertical displacements of the rotating tyre ring. In this analysis the rotational
degree of freedom of the tyre is neglected (§, = 0) as its influence on the stability

£+ 3 ™ o1
of the rotating system 1

assumed to be small. Furthermore, the translational

o
motions of the rim are set equal to zero.

Figure 7.4: The simplified model used to study the stability of the rotating tyre.
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The simplified tyre model is analogous to the Jeffcott rotor, the standard model
used to study rotor dynamics [30,57]. The Jeffcott rotor, however, is a simplified
model of a high-speed rotor that retains many of the essential characteristics of
rotating systems. The Jeffcott rotor consists of a rotationally symmetrical body,
carried by a flexible symmetrical structure that rotates about a rigidly supported
bearing. The equations of the Jeffcott rotor can be applied directly to the
simplified tyre model.

The equations of motion of the mass m, in the fixed coordinate system (x, z)
result from Equation (7.14) after setting x, z,, 8, and 6, equal to zero:

mbjé,, + khxh + CpXyp — khSZZb =0

(7.16a)
my 2y, + kyzy, + ¢z + Ry, = 0
The equations of motion in the rotating coordinate system (x", z*) read [30]:
mbjé;; + kbxb + (ch - mbﬂz)xz + Zmbﬂzz =0
(7.16b)

s L PAYES E
myz, + k2, + (cb —m,Q )zh —2m, Qx, = 0

Both sets of equations represent the same system. The differences between the
representations are the Coriolis and centrifugal forces in Equation (7.16b) and
the coupling factors £,Q in Equation (7.16a). The solutions A of the characteristic

equation of the equations in the non-rotating frame read:

Ay =—Km, t j\/(l — k% Joof + 2jKwoQ

(7.17a)
e T J\/(l - KZ)(D(Q) — 2jKm,€2
while the solutions A" in the rotating frame become:
Kz = (kg - j) # /(1= k2J0d + 2jx0,Q
(7.17b)

Kys = (kg + Q)+ /(1 - x*)od - 2jxe,Q

The natural frequency of the non-rotating system ®, and the dimensionless
damping coefficient x are introduced:

W =Afcp/my K =1k mye, (7.18)

The relative damping of tyre vibrations is very small, only a few percent. So, the
natural values can be approximated for small values of damping:

Mg = —K(0g + Q) % jo, , Agg = —K(wy - Q)£ joy, (7.19a)

and:
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Nia = —K(0p + Q)T j(0g +Q), Xy3 =Ky — Q) £ j(0, — Q) (7.19b)

Even though the natural values of Equations (7.19) represent the same system
they differ. The frequencies in the rotating system are frequencies relative to the
observer moving together with this rotating coordinate system. Since the velocity
of rotation is Q the frequencies are also shifted by this rotational velocity.
Another effect of the rotation of the system is the distribution of the damping
over the two modes of vibration: the relative damping of A, , becomes larger and
the relative damping of A, ; becomes smaller at increasing (positive) Q. Finally, at
the critical velocity Q,,, the latter mode becomes unstable {30] as the real parts of
A,; and 7&*2)3 become positive. For high negative rotational velocities, the real
parts of A, , and X} ; become positive. The absolute value of the critical rotational

velocity Q ;. equals the tyre natural frequency m,,.

‘crit

In rotor dynamics studies the damping in the rotating system is often termed
the internal damping, in contrast to the damping in a non-rotating frame: the
external damping. In our tyre model the internal damping results from the tyre
sidewall damping (k,) and the external damping results from damping in the
suspension and damping in the contact patch. The derivation of the equations of
a system with external and internal damping is beyond the scope of this thesis.
The interested reader is referred to [30,57]. While the influence of the internal
damping is destabilising above the critical speed, the influence of the external
damping is always stabilising. The external damping will shift the critical speed
to a higher value depending upon the ratio between the internal and external
damping. If there is sufficient external damping, the system will not experience
an unstable motion until it is run at a very high speed [57].

With the parameters used (see Table 7.1 at the end of this Chapter) the
rotating damper causes the free rotating tyre to become unstable above 500 km/h.
If the tyre is loaded on the road the critical velocity may rise up to 1000 km/h due
to the damping influence of the slip model. Fortunately, the tyre concerned has a
speed rating V, with a restricted maximum velocity of 240 km/h, in this velocity
range the model will always be stable. The influence of the rotation in the
permitted velocity range (0-240 km/h) is rather small.

The real limitations of the operating range of tyres are not related to the
destabilising influence of the internal damping. The maximum velocities of tyres
are primarily caused by excessive tyre temperatures due to hysteresis (i.e. rolling
resistance). At very high velocities the rolling resistance may become excessive
due to another dynamic effect: the formation of standing waves that involves
flexible modes of the belt [93]. Finally, the high tensions in the tyre due to
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centrifugal forces may become responsible for another cause of damage to the
tyre.

7.3 The dynamics of the tyre touching the road surface

Two forces are generated at the tyre-road interface: the normal force F ,, to carry
the vehicle weight and the tangential force F,, for traction and braking. The
expressions of the rigid ring dynamics (7.14) if the tyre rolls on a road surface at
a slope denoted by the angle B become:

mbjé() + khx(xb*xu) + Cbx(xh‘xa) - kbz ($2+en)(zb—za) = COS(B)F::T + Sin(B)E:N (7203)
M2, + hys(2—2,) + Cpo(2y=24) + iy (Q40, )2, ) = —sin(B)F, + cos(B)F,y (7.20b)
1,6, + k,,e(éh—é)(,) +¢p0(0,-6,) =-rF,+M, (7.20¢)

As discussed in Section 3.7, the tangential force in the contact patch can be
assumed to act at a distance r, below the wheel centre. Therefore, the effective
rolling radius r, is used in Equation (7.20c¢) to transform the force into a torque
acting on the tyre ring. The rolling resistance is modelled as an additional torque
M, acting from the road on the tyre ring.

Although the freely rotating ring is completely symmetrical (Eq. 7.14), the
expressions of the tyre rotating on the road may be made asymmetrical
(Eq. 7.20): they have different stiffnesses and damping coefficients for vertical
and longitudinal directions. The reason for the possibly introduced asymmetry is
the greater freedom in estimating parameter values for obtaining vertical and
longitudinal tyre dynamics closer to experimental evidence. Nevertheless, it is
thought best to avoid this asymmetry, especially if the rigid ring model is applied
in a multi body simulation code. For these simulations the tyre ring and rim are
both modelled as rotating rigid bodies. This implies that the sidewall springs and
dampers rotate together with the rotating tyre and rim.

The rigid ring model standing on the road has three modes of vibration, as
discussed in Section 8.5: the vertical mode, where the tyre ring moves in vertical
direction, or to be more precise: where the tyre ring moves in the direction normal
to the road. The other two modes are rotational modes: one where the tyre ring
rotates in-phase with the rim, and the other where the tyre ring rotates in anti-
phase with the rim. The natural frequencies of these modes of vibration were
estimated from brake experiments (Chapter 9) and cleat experiments (Chapter
10).
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These experiments showed that the tyre natural frequencies (in the range
0-100 Hz) decrease with the velocity. Other studies report the same dependency
of the measured tyre natural frequencies on velocity [15,53,68,111,112]. Bruni et
al. [15] used cleat experiments to identify the natural tyre frequencies. They
found that the frequencies of the vertical mode, the in-phase rotational mode and
the anti-phase rotational mode decrease with velocity in the investigated velocity
range 20-140 km/h. Kobiki et al. [63] found that the frequency of the anti-phase
rotation dropped from 89 to 84 Hz when the velocity increases from 0 to 40 km/h.
Mills et al. [68] excited the wheel axle longitudinally: the longitudinal frequencies
decreased by 15% in the velocity range 0-60 km/h. Ushijima et al. [111] excited
the tyre by using a hammer and a road obstacle. They found that the frequency of
the vertical mode of vibration decreased by 15% in the velocity range 0-80 km/h.
Finally, Vinesse [112] measured the reaction forces at the hub. He identified the
same three modes of vibration that are presented in Section 8.5. He concluded
that the natural frequencies of the rotating tyre are significantly lower than the
frequencies of the standing tyre. Furthermore, his research showed that the
frequency of the anti-phase rotational mode decreases with the velocity in the
investigated velocity range of 25-55 km/h.

Simulations with the rigid ring model with constant parameters did not show
the decrease in the natural frequencies with the velocity. To obtain this influence,
some parameters of the model have to be made velocity dependent. We decided to
make the sidewall stiffnesses velocity dependent because these stiffnesses have
the largest influence on the tyre natural frequencies. The vertical sidewall
stiffness is much larger than the vertical residual stlffness thus the influence of
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longitudinal and rotational sidewall stiffnesses are much smaller than the
effective tangential stiffness resulting from the slip model. This effective
tangential stiffness in the contact zone appears to be so large that it forces the
centre of rotation of the rotational modes to lie approximately in the contact zone.
Consequently, the frequencies of these rotational modes are hardly influenced by
the actual value of the effective tangential stiffness in the contact zone.

To summarise, the sidewall stiffnesses are made velocity dependent. For this
the variable @), is introduced. This variable @y is a measure for the deformation
velocity of the tyre sidewalls due to the rotation and deformation of the tyre. It is
proportional to the rotational tyre velocity and the total displacement of the tyre
ring relative to the rim.

2 (7.21)

Qv :‘(Q+6a) ’ (xb _xa)z +(Zb _Zn)
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The sidewall stiffnesses are now made dependent on the square root of the
variable @y:

Cox = cbx()(l_ Qbe@) (7.22a)
Coz = C[)z()(l - Qsz\/Q;) (7.22b)
Cyy = 0600(1 - qbvox/@) (7.22¢)

where the additional subscript 0 denotes the sidewall stiffnesses for a non-
rotating tyre, and q,y., ¢y, and q,y, indicate the contributions of the velocity
dependence to the three sidewall stiffnesses. The results presented in Chapter 9
and 10 show that the tyre model with the velocity dependent sidewall stiffnesses

is in agreement with the measurements.
The normal force

If the tyre is loaded on a road surface large deformations of the tyre may occur

near the contact patch and a finite contact length arises. The total deformation of

the tyre is much larger than the displacement of the rigid ring. Therefore, the

vertical residual stiffness ¢,, is introduced to obtain the correct overall vertical

tyre stiffness. The normal force in the contact patch F j is equal to the residual

deformation of the tyre times the residual stiffness. The measurements of the

vertical tyre stiffnesses in Chapter 2 showed some non-linearities of the vertical

tyre stiffness:

« the increase in the total vertical tyre stiffness is slightly more than
proportional to the vertical tyre deflection [26].

o the vertical forces arise only if the tyre deflection is positive.

» the vertical tyre stiffness increases with velocity [22,26].

« the tyre radius increases with increasing velocity due to the centrifugal force
resulting in an increase in the vertical force for a fixed hub [26].

These effects yielded the following expression for the steady-state vertical tyre

force vs. deflection characteristic on a flat road surface:

F,=(1+ Q’Vz’QD{szz(on + Ar)z +qpa(pao + Ar)} (2.7a)
with:
Ar = gy, 2° (2.7b)

Here, gy, is a parameter for the influence of the centrifugal force on the tyre
radius Ar and q,, for the increase in vertical tyre stiffness with velocity; gz, and
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Q.o are the coefficients of the second order polynomial for the vertical force as
function of the vertical tyre deformation p,,.

The residual stiffness in series with the vertical sidewall stiffness c,, (which
decreases with velocity, cf. expression 7.22b) should result in the total vertical
stiffness from expression (2.7). Neglecting the higher order terms, a third order
polynomial is introduced for the vertical force due to the residual tyre deflection:

F‘cN = szrBPEr + q]"zr2p§r tqpr1Per if Pzr >0 (7233)

Fpy=0 if p,. <0 (7.23c)
with:

Ar = gy, Q2 (7.23c)

Por = Z,—Zp+Ar (7.23d)

where z,, denotes the height of the road. On short wavelength unevennesses, the
actual height of the road surface z, should be replaced by the height w of the
effective road surface. The rotational velocity Q of the original expressions (2.7)
has been replaced by the rotational velocity of the rim Q,(= Q+86,). The residual
vertical deformation p,, is introduced. The coefficients ¢, of the residual
polynomial as functions of the coefficients of the total polynomial g,; and the
vertical sidewall stiffness c,, become:

szl(l + QV2|Qa|)
Cpy — szl(l + qVQ‘gzaD

Qrors = Co, (cbz “Qpo T Ayt szZ)(l + QZ2|Q(1|) (724b)

(-~ PO S IR AN AN}
Cbz  dri\t ! Qvepiy))

AFzr2 QFZZ(]' + qVZIQaD
2

(Cbz — 4 (1 + qV2|Qu|))
The last influence on the vertical force to be treated, is that of the horizontal

force. At high levels of brake force and constant axle height, the vertical force
appears to decrease owing to the horizontal displacement of the contact patch.

dFer1 = Coz (7.24a)

qFzr3 = ZCbz (7240)

The tangential deformation p, results from the longitudinal and the rotational
sidewall deformations:

Py = (25 —x,) = 15(68, - 6,) (7.25)

The decrease in actual radial deflection of the residual spring is modelled as a
quadratic function of p,. The expression of the residual radial deflection (7.23d) is
replaced by:
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Pzr =Zw—2b+Ar“QchP§ (7.26)

with g, . the parameter concerned.
The tangential force

Chapter 6 describes four pragmatic tyre models for the longitudinal tyre forces
that were developed and tested. The model with the best overall performance was
model 4 presented in Figure 6.9. The disadvantage of this model was that
additional equations were needed to solve the tyre sidewall deformation. This
disadvantage has now changed into a major advantage: for the rigid ring model
only a slip model for the contact patch is needed as the deformations of the
sidewalls are already represented by the displacements of the rigid ring (Eq.
7.20). The limiting of the slip of the contact model is used here as well.

The transient response of the contact model can be represented by the first
order differential equation for the longitudinal slip {_, in the contact patch:

GUCL‘x + |‘/cr’§cx ==V

¢,8x

(6.18e)

where o, denotes the relaxation length of the contact model, V,, the linear rolling
velocity of the tyre ring, and V. the slip velocity of the belt in the contact zone.
The slip velocity is equal to the difference between the velocity V ;. of the centre of
the ring oriented parallel to the road surface and the linear rolling velocity of the

ring V.
V.=V,

C,8% cT — Yer

V,, = (cos(P), —sin(B)z, ) - , (€2 + 6, (7.27)

where the effective rolling radius r, is represented by a third order polynomial of
the square root of the normal contact force plus the contribution Ar, which is the
increase in tyre radius due to centrifugal forces acting on the tyre ring:

T, = Qre3 V Fg\] + Qre2 V F‘L%V + qrel\llﬂcN + Qre0 + Ar (327)

The tangential force in the contact zone F . results from the stationary slip

characteristic:
Fop = FpG. Foy,n) (7.28)

The slip characteristics used are those of the brush type model (¢f. Eq. 3.16).
Appendix B discusses the changes needed for the application of the Magic
Formula model (cf. Eq. 3.18). The inputs to the stationary slip characteristics are
the slip in the contact zone ¢,
tyre-road friction coefficient [1. The relaxation length G, of the contact model was

the normal force in the contact zone F y, and the
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defined as the ratio between the local slip stiffness C, (= dF,,/d(,,) and the slip

stiffness at free rolling C,, multiplied by the relaxation length ¢, of the contact

patch model at free rolling:
o, _:gﬁ an =G‘0_C'L
CKU a(.’cx CK’O

(6.19)

To ensure numerical stability, the minimum value of this relaxation length has to
be limited. As stated in the introduction of the present chapter, no additional
tangential residual stiffness is needed. Then the relaxation length o, of the
contact model at free rolling equals half the contact length a which can be
expressed as a polynomial of the square root of the normal force in the contact
zone (cf. Eq. 2.5):

a=Qq,2 F‘C%V + a1 E}N (729)

If on the other hand, a tangential residual stiffness is needed, the relaxation
length of the contact model will be longer than half the contact length.

The total relaxation length of the tyre ¢ is not a parameter of the model, but
may rather be considered as a property. Its value results from all the longitudinal
flexibilities of the model, as presented in Figure 7.5. The influence of the
translational (c,,) and rotational (c,,) sidewall stiffnesses is much greater than
the influence the relaxation length o, of the contact model.

relaxation T| P
lengthes 1| /,/;,/_,i,, translational sidewall - __
of the tyre | ) L B compliance [
i ) ";/ 7 o - i rotational sidewail — \\%\\// /

/// - compliance \L%/
f ,’/" :,,.J — l’.‘::L—r——— -~ relaxation length o, \\\i
T "y vertical load of the contact patch e

Figure 7.5: Contributions of the compliances of the rigid ring model to the total
relaxation length of the tyre model.

The relaxation length contact model influences the relative damping of the modes
of vibration strongly. When the rotating velocity V. approaches zero, the relative
damping of a mass-relaxation system (see Section 6.4) becomes zero as well.
Simulations at very low velocity showed that the relative damping of the
simulated response is too low in comparison to measured tyre responses.
Therefore, the original contact model, depicted in Figure 7.6a, is replaced by a
contact model including tread element damping depicted in Figure 7.6b.
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—> VC‘ ox

(a) original contact model (b) contact model with tread element damping

Figure 7.6: Modelling of the damping of the tread elements.

Equation (6.18¢) is replaced by:
‘/cr‘)c..ucx + ’Vv('rlt.ﬁcx = _ch,sx - —kAVLsx (7.30)

Cox

Ry
(" ety

where k. denotes the damping coefficient of the tread elements. The relaxation
length of the model remains ¢, The influence of the tread element damping is
assumed to decrease with the velocity. Furthermore, the tread element damping
is assumed to be proportional to the tread element stiffness. Hence, the ratio
between tread element damping and tread element stiffness c,, is defined as:

ke Got (7.31)

- 1+ qk02|Vcr1

C(:x

The model with tread element damping shows the appropriate relative damping
at very low velocities.

Section 8.5 shows that the rigid ring model including the contact model has
three modes of vibration which can be observed in the measured tyre responses.
However, the fourth mode of the model, the horizontal mode, cannot be observed
in the measurements. The horizontal mode is the mode of the model with the
highest natural frequency (100-140 Hz) and it has very small damping at low
velocities. The relative damping of this mode increases by the introduction of the
tread element damping. The resulting larger relative damping has two positive
effects: first, the unwanted vibrations of the mode are damped rather quickly;
and second, the larger damping puts less restrictions to the step size of the

numerical integration process.
Rolling resistance

The rolling resistance is modelled as an external torque M, acting from the road
on the tyre ring:

M, =—1,f.F,y sgn(Q+0,) (7.32)
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where f, denotes the rolling resistance coefficient. If the rotational tyre ring
velocity changes sign, the rolling resistance torque changes sign as well. Close to
zero rotational velocity expression (7.32) does not predict the appropriate rolling
resistance torque. Rather than using this expression directly, the rolling
resistance torque is modelled as a dry friction torque and expression (7.32)
represents the maximum possible rolling resistance torque. The equations of the
dry friction rolling resistance torque are similar to the equations of the dry
friction brake torque and will be discussed in Section 7.4.

Both the rolling resistance and rotating damper forces (see Section 7.2)
originate from the hysteresis forces in the tyre sidewalls. Nevertheless, the two
effects are dealt with separately in the model: the damping factors (&, k,,, kzq)
are directly connected with the tyre sidewall and are used to obtain the
appropriate relative damping of the modes of vibration (see Chapters 9 and 10);
the rolling resistance moment is assumed to act directly on the ring and is
estimated from the stationary slip characteristics (in Chapter 3).

The tyre-road interface on short wavelength unevenness

The enveloping properties of tyres on short wavelength unevenness were
discussed in Chapter 4. The result of Chapter 4 was that the rather complex tyre-
road interface on these unevennesses could be represented by a single-point
contact model on an effective road surface. The effective road surface could be
represented by the effective plane height w and the effective plane angle B:

_ f(xb —%)\’imp) + f(xb + 217\’1'1711))

(7.33a)
2
(g, + LA, V= Floes = 5 A
B—: f( b T2 me) f( b2 1) (7'33b)
imp
with,
)\’imp = Qbfzaz +qpn@ (7.33¢)

where f is the expression of the basic function which may be given as a look-up
table. The longitudinal shift of these basic functions, denoted by A, ,, is expressed
as a second order polynomial in half the contact length a. The value of %, is
somewhat smaller than 2a. The relatively fast variations in road plane angle B
will generate additional slip velocities in the contact patch (¢f. Eq. 4.24); therefore

expression (7.27) is replaced by:
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V, o = cos(B), —sin()z, —1,(Q +6, ) +p, -‘;—’: (7.34)

with p, defined as the total vertical tyre deformation:
P, = W2, +Ar = @ P2 (7.35)

The effective road plane angle [ depends on the state variables. During
numerical simulations it is not possible to calculate the derivative of a variable.
Rather than differentiating directly, the derivative of  is estimated from a high
pass filter with time constant 1. The frequency response function of the high pass
filter is given by:
jo
1+ jot

H= (7.36)

At low frequencies, the output of this filter is approximately equal to the
derivative of the input. At higher frequencies, the output is limited. The cut-off
frequency of this filter should be higher than the natural frequencies of the
model. Then in the frequency range of the model, the filter will give the
derivative of the input. The estimated derivative {3, of the road plane angle

reads:

Best = (B - Besz)/17 (7.37)

7.4 The rotation wheel and the application of a brake torque

Horizontal x, and vertical z_ rim motions are given as input to the model. The
rotation of the rim about the wheel axis is treated as an additional degree of
freedom to the model:

1,8, + Fo(6, 6, ) + cpo(6,—8,) = M,, (7.38)

y

where [, denotes the moment of inertia of the rim and the rotating parts of the
brake system, and —May denotes the brake torque. This torque is oriented in a
direction opposite to the rim rotational velocity Q +8,. Note that Q represents the
undisturbed speed of revolution of the rim. The brake is modelled as a dry
frictional element, which means that at very large levels of brake torque the
wheel becomes locked. This is rather difficult to model as the rim angle 8, is a
state variable that cannot be removed easily during simulation. Therefore, the
optimal wheel deceleration is calculated to get wheel lock at the end of the time
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step considered. This method is similar to the method introduced in Section 6.2
for limiting the slip of pragmatic model 2.

rotational !
Q 6 [
wheel * “T\\ .
velocity ! i E o ._ea,lock
i
t _>L

i i+1
: time ste
e P

Figure 7.7: The optimal wheel deceleration to get wheel lock.

A=

i+3

o

i+2

The approach is shown graphically in Figure 7.7. At the beginning of an
integration step (from time ¢, to ¢,,,), the rim has the rotational velocity Q+8,.
The optimal acceleration of the wheel éa,lnck can be calculated so that the
rotational rim velocity equals zero (i.e. wheel lock) at the end of this integration
step:

_Q+6,
qg-h

éa,lock = (739)
where h denotes the time step and ¢ denotes a correction factor that depends on
the integration method used. The values of coefficient g are given in Table 6.2.
The brake torque M, needed to obtain wheel lock at the end of the integration
step is given by:

‘May = Ia,yéa,lock + k[;e(ea _eb) + cbo(ea - eb) (740)
Now, we have to check whether the dry friction in the disc brake is able to
generate this lorgue:

May if _Muy‘fric < May < May,frin
Muv = Mﬂv.fr'irr if May > Mn,y fric (741)
; | ) ; \
t_Mny,fri,n if May < _May,fric

7.5 The linearised equations of motion for constraint axie motion

The non-linear rigid ring model developed in the previous sections can be used for
non-linear time simulations. Other techniques, like frequency response function,
modal analysis, require a linearised model. In this section the non-linear
equations of motion will be linearised. The vertical and horizontal axle motions
will be constrained: x, =0, z, =0. This choice is not essential, but this fits the
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experimental conditions on the rotating drum test stand (¢f. Chapter 8, 9 and 10).
The non-linear equations may now be linearised by writing the state variables as
small variations additional to the stationary values which represent the
considered undisturbed state of operation:

Xy, = Xy + X (7.42a)
2, =250 T 2 (7.42b)
8, =6, +6, (7.42¢)
8, =650 + éh (7.424d)
G = Cexo + G (7.42e)

The inputs to the model are considered to be small as well: the road surface is
assumed to be level with small slope variations; and the brake torque is assumed

to vary around an average value:

z, =2y (7.43a)

B =B (7.43b)

M, =M+ M, (7.43¢)
The effective rolling radius becomes:

=rg R, To=mby 47, (7.44)

where 1 represents the load dependency of the effective rolling radius and 7,, the
additional effective rolling radius variation resulting from the road unevennesses
(¢f. Eq. 4.38b). Now, the linearised equations of motion of the tyre-wheel system
from Equations (7.20, 6.18e, 7.27, 7.38) with k&, =k, =k, and c, =c¢,, =¢;,
become:

mb;éb + kb;éb + %, — k22, — kbéazbo = F::T + F;NOB (7.45a)
M5y + kS + Cy3 + kp Q5 + k8,20 = Ty — FupoD (7.45b)
1,8, + kyo (8, —8,) + cyy (B, —B,) = M, (7.45¢)
1,8y — (B, ~8,) — (8, ~8) = =ro B = B + M, (7.45d)
6.0+, = Ry + 100y +FQ (7.45¢)

The linearised normal force variation in the contact patch equals the overall
residual vertical deformation multiplied by the residual vertical stiffness plus a
small contribution &, from the horizontal shift of the contact point:
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ﬁ‘cN = Ccz(gw - Zb) +C. c(ib - reoéb + reoéa) (7.46)

The quadratic term p2 in expression (7.26) has been linearised for small
variations of the tangential deflection around the average value (§, = —2¢p,.p.0)-
The variation in the longitudinal force depends on the variation of slip in the
contact patch and on the variation of the vertical force. The rate of increase in
slip force with increasing vertical load at a given slip is indicated by: &_. The
expression of the variation of the longitudinal force in the contact patch reads:

Fr=Cl.+&Fy (7.47)
Or,

Fp=Cl.+c.bz,~7)+ Cczéxic(fb T2y + ’“eoaa) (7.48)
The rolling resistance torque variation reads:

M"" = Areofrﬁd\l == eOfrcz’z(g.m - Eh) - rf_",‘f"ccz&c(ib - reoéb + rpo’én.) (7‘49)

cy /

where the influence of the variations of the effective rolling radius 7, on the
rolling resistance torque variations is neglected. Furthermore, the influences of
the velocity dependency of the sidewall stiffnesses (Eq. 7.22) and the velocity

dependency of the total vertical tyre stiffness (Eq. 7.23) are small and are
neglected in this analysis. Five parameters have been defined:

Te

n= I effective rolling radius variation with vertical load

C.= ggﬂ slip stiffness at given vertical load and longitudinal slip
UL?(‘X
E, = aFi variation of F,_ with load at vertical load and longitudinal slip
Cpp = dF. vertical residual stiffness
leU
&, = %Z—‘ vertical deflection due to horizontal shift of the contact patch
x(,’
Finally, we introduce the composite parameters:
Qx = C(‘,z&K (7503)
Qy = cc:z(rc()éx + re()fr + nE-TO) (750b)
Q =c.n (7.50¢)
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The contribution due to the composite parameters @'s is rather small. The final
set of linear equations becomes:

mpXy, + RyXy, + ¢y %, — kS22, — k8,2, =

- - ~ - (7.51a)
Qu(Z, —Z,) + QE(X, ~ 1,00, +1,00,) + C.L., + FnoB
m,,?h + k,,?,, + 2, + RS2, +fb60xh0~ = i (7.51b)
Cex(Zy = Zp) +¢,8.(%, = 1,08, +7,08,) = FopoP
1,0, + kg (B, — 8,) + ¢4 (8, ~8,) = M, (7.51c)
1,85 — Fopg (8, —8,) — ¢4y (B, = By) = .

- Q()/(’%’m - Eb) - Q.VE:('(%/? - rL’Oeb + 7‘006(1) - "(.’OCKCC.’L' - Eru‘F(:'I‘O
Grri('.\‘ + 'boggcx = _55[7 + "UO’éb + QC(EIU - E{)) + QQ&((E(J - rfr()‘éb + ’.006(1) + acQ (7518)

The linearised set of equations is used to calculate the modes of vibration in
Chapter 8. In Chapter 9, these equations are used to calculate the frequency
response function to brake torque variations. In Chapter 10, the linearised model
is used to roll over short wavelength unevenness.

7.6 Validation of the model and parameter assessment

This section discusses briefly how the rigid ring model is validated in the
subsequent chapters and how the dynamic parameters of the model are assessed
in these chapters.

Validation of the model

First of all, the mode shapes of the rigid ring model are validated in Chapter 8.
That chapter presents the modes of vibration of a non-rotating tyre which were
assessed experimentally by applying the experimental modal analysis technique.
The modes in the frequency range 0-250 Hz are compared to the modes of the
flexible ring model. The modes in the frequency range 0-100 Hz are used to
validate the rigid ring model. Furthermore, Chapter 8 presents the influence of
various boundary conditions on the modes of the rigid ring model.

Chapters 9, 10 and 11 present the dynamic tyre response to brake torque
variations, road unevennesses and axle height oscillations at constant brake

torque, respectively. The experiments presented in these chapters are used to
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estimate the parameters of the model and to validate the model for a number of
severe conditions.

Chapter 9 shows that the model provides a good representation of the
dynamic tyre response to large brake torque, successive steps in brake torque
(Section 9.3), braking with wheel lock (Section 9.4) and braking to stand-still of
both the tyre and the drum (Section 9.5). The model with the parameters
obtained from the small random variations represents the non-linear tyre
responses to large brake torque variations rather well. A validation of the model
structure shows that the ratio of the slip stiffness and all tangential stiffnesses in
series (sidewall stiffnesses and tread element stiffness) equals the relaxation
length of the total tyre obtained from the experiments.

In Chapter 10 the tyre model is validated rolling over short wavelength road
unevennesses. The effective road surface, assessed in Chapter 4, is used as
excitation of the model rather than the actual road surface. Chapter 10 shows
that the effective inputs can be used, also at higher velocities and during braking.

Chapter 11 presents responses of a tyre subjected to a constant brake torque
during axle height oscillations. The responses of the model during very severe
conditions are rather good: large variations in axle height in which the vertical
force decreases to such an extent that wheel lock occurs, including the case where
the tyre loses contact with the road.

Stationary and basic parameters

The mass of the tyre and the rim were measured directly. The masses and

+1. d1h  dmrran s At move
ur

moments of inertia of the parts of the tyre tha er with the rigid rin

t move together with the rigid ring
or the rim were obtained from cutting the tyre into five pieces and estimating the
mass properties of each piece (cf. Section 2.5). To obtain the total value of I, (the
moment of inertia of the tyre-wheel system that rotates together with the rim)
the moment of inertia of the rotating parts of the tyre test stand should be added
to the moment of inertia of the rim:

« cleat and brake test stand, all rotating parts: 0.57 kg m?

o cleat and brake test stand, the rotating parts except brake system: 0.41 kg m?

o measurement tower, all rotating parts: 0.51 kg m?

The contact length parameters were obtained from contact prints of a non-
rotating tyre (cf. Section 2.2). The relaxation length of the contact patch at free
rolling ¢, is equal to half the contact length. The parameters to represent the
vertical tyre stiffness and tyre radius growth as function of the velocity were
estimated from the stationary rolling experiments at constant axle height
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(cf. Section 2.4). The parameters of the effective rolling radius were obtained from
a rolling experiment at very low velocity (¢f. Section 3.7). These parameters,
together with the growth of the tyre free radius obtained from the vertical tyre
stiffness experiments, can accurately represent the effective rolling radius at
higher velocities.

The parameters of the stationary slip characteristics were obtained from the
slowly increasing brake torque. For the brush model, besides the contact length a
and vertical load F, only two additional parameters are needed: the tread
element stiffness per unit of length Cep and the coefficient of friction y. The tread
element stiffness corresponds well with the estimated slip stiffness from FRFs to
brake torque variations around an average brake torque (cf. Section 9.2). The
friction coefficient, on the other hand, is not constant. Its value depends highly on
operating condition (velocity, tyre temperature, time).

During the experiments with stationary rolling of a non-braked tyre at
constant axle height the (small) longitudinal reaction forces were measured as
well. From these forces the rolling resistance coefficient was estimated. The
resulting value is hardly changing with the velocity in the range 25-143 km/h.
The value of the rolling resistance coefficients is in agreement with the offset of
stationary slip characteristic measured on the road.

Dynamic parameters

It is important that excitation of the tyre for the estimation of the dynamic
parameters (sidewall stiffness and damping coefficients) is realistic since the tyre
stiffness and damping depend on the amplitude and frequency of excitation and
on the tyre temperature. Consequently, the excitations applied on the test stands
have to be comparable to the excitations of the tyre running in a vehicle. It is
assumed that the relatively small random brake torque variations around an
average value of brake torque (¢f. Section 9.2) and the cleat excitations
(¢f. Chapter 10) may be applied for assessing the dynamic parameters. The
linearised tyre rigid ring model (¢f. Eq. 7.51) was used to estimate the tyre
parameters.

The experiments that provided the most accurate method for estimating the
parameters used random brake torque variations. Two kinds of Frequency
Response Functions were used: the FRF of longitudinal force to brake torque
variations and the FRF of longitudinal force to wheel slip variations. Even though
the responses of the rigid ring model represent the measured tyre responses
rather well, the difference in calculated and simulated amplitude of the anti-
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phase rotational mode is so large that an optimisation method based on the
difference between the measured FRFs and calculated FRFs could not be used to
estimate the parameters of the model. Therefore, the parameters were estimated
by using an indirect approach. First, the tyre properties which characterise the
dynamic responses were obtained from the measurements:

« natural frequency of the in-phase rotational mode

« natural frequency of the anti-phase rotational mode

« relative damping of the in-phase rotational mode

« relative damping of the anti-phase rotational mode

o slip stiffness

o total relaxation length of the tyre

Second, the following parameters of the model were estimated from these
properties:

+ translational sidewall stiffness c,

o rotational sidewall stiffness c,q

« translational sidewall damping k&,

« rotational sidewall damping k,

o tread element stiffness per unit of length Cep

First, the parameters were estimated for each operating condition (average brake
torque, velocity and constant axle height). The results showed that the sidewall
stiffnesses decrease with increasing velocity. The coefficients which represent this
influence (cf. Eq. 7.22) were estimated in a second fit where the properties of the
tyre obtained from experiments at all conditions were used. The three coefficients
of this equation are assumed to be equal to each other. The resulting value of the
tread element stiffness ¢, corresponds well to the value obtained from the
stationary slip characteristics.

The tyre sidewall stiffnesses and damping coefficients and the tread element
damping could also be obtained from the cleat experiments. The variation in the
parameter values thus obtained was rather large as auto spectral densities of the
responses were used rather than the frequency response functions. In contrast to
the brake experiments, an optimisation method based on the differences in
simulated spectral densities and measured spectral densities could not be used.

To conclude, the brake experiments were preferred for estimating the
sidewall stiffness and damping coefficients. Nevertheless, it is thought to be very
important to validate the natural frequency of the vertical mode of the model
(with parameters obtained from brake experiments) against the measured
natural frequency obtained from the cleat experiment.
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Table 7.1a: The parameters of the rigid ring tyre model.

description symbol unit
mass of tyre ring my kg
moment of inertia that moves with rim Iay kg m?
moment of inertia that moves with tyre ring I, kg m*
translational sidewall damping ky, Ns/m
rotational sidewall damping kg Nms/rad
translational sidewall stiffness (at Q=0) Cpho N/m
rotational sidewall stiffness (at Q=0) Cpeo Nm/rad
longitudinal tread stiffness per unit of length c. N/m?

Table 7.1b: The parameters of the polynomials and miscellaneous coefficients of
the rigid ring tyre model.

Half contact length a as function of vertical load F, (Eq. 2.5)
7, [M/AN] g, [m/N]

Vertical tyre stiffness C, as function of deflection p, and velocity Q (Eq. 2.7)
Qp,, IN/m] Ty [N/m?] Qv [m/s?] Qe 8]

Rolling resistance coefficient £, as function of the velocity Q (Eq. 3.22)
Tjo -] Gp {s/m] P [s¥m?]

Effective rolling radius r, as function of vertical load F, (Eq. 3.27)
Q0o [ml ¢, /YN Q5 [m/N] Uyes /N
Decrease of tyre sidewall stiffnesses as function of velocity €2 (Eq. 7.22)
v [Vs/vm] pys [Vs/v/m] Dovo [Vs/Jm]

Tread element damping £_, as function of the velocity V., (Eq. 7.31)
Qper 18] Dy [8/m]

Decrease in radial deflection with longitudinal deflection (Eq. 7.26)
4g.. [1/m]

The parameters of the rigid ring model
Table 7.1a lists the parameters of the rigid ring model and Table 7.1b lists the

coefficients of the polynomials used. These tables do no show the values of the

parameters for reasons of confidentialily. The simulations presented in Chapters
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9 through 11 were performed with one set of parameters. No additional changes
in the parameter values were needed to simulate the tyre response at the
different operating conditions. However, there is one exception: braking with
wheel-lock presented in Section 9.4. When the tread element damping is included
in the model, the vibrations of the tyre are strongly damped. A model without the
tread element damping shows the appropriate damping at wheel-lock. Therefore,
the results of the simulations presented in Section 9.4 were performed without
tread element damping (g,,.,=0).

Experiments which cannot be used for estimating the parameters of the rigid
ring model

The tyre stiffnesses obtained from the experiments are very sensitive to the

operating conditions. These stiffnesses cannot be obtained from experiments with

a non-rotating tyre. The stiffnesses which result from experiments in which the

forces are measured after the tyre has settled are too low:

« total vertical tyre stiffness of the tyre standing on the road (cf. Table 2.2).

« total longitudinal tyre stiffnesses of the tyre standing on the road (c¢f. Section
2.4).

o tyre sidewall stiffnesses which were measured directly inside a test drum
(cf. Table 4.3).

The stiffnesses which result from experiments in which the non-rotating tyre is

excited dynamically with relatively large amplitudes are slightly too high:

« total vertical tyre stiffness of the tyre standing on the road, obtained from

+ Tahla 9 2410

sinusoidal axle height varia ¢f. Table 2.32).

The stiffnesses which result from experiments where the non-rotating tyre is

excited dynamically with very small amplitudes are much too high:

« total vertical tyre stiffness of the tyre standing on the road, obtained from
random axle height variations (cf. Table 2.3b).

« tyre sidewall stiffnesses obtained from modal analysis (cf. Table 8.2).
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8.1 Introduction

The rigid ring model, developed in the previous chapter, represents the in-plane
vibrations of tyres in the frequency range 0-80 Hz. These in-plane vibrations are
generally excited by road irregularities, brake torque fluctuations, axle height
oscillations and tyre non-uniformities. The dynamic responses of the rigid ring
model due to these excitations are validated in the laboratory by special
experiments conducted with the cleat and brake test stand and tyre measurement
tower described in Appendix A. In the subsequent chapters the setup and results
of these tests are discussed: Chapter 9 concerns the responses to brake torque
variations; Chapter 10 the responses to road unevenness and Chapter 11 the
responses to axle height oscillations. For the validation of the model the
responses of reaction forces and velocities are measured at the wheel axis. The
modal analysis technique is applied in this chapter to link the natural
frequencies of the tyre-wheel with the accompanying mode shapes.

Section 8.2 presents the experimental modal analysis of a non-rotating tyre
for two boundary conditions: a free (non-loaded) tyre with the horizontal and
vertical positions of the spindle axis fixed and a tyre loaded on the road. The tyre
is excited by a hammer and the responses are measured on the tyre
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circumference in tangential and radial direction with accelerometers. The mode
shapes and the resonance frequencies are assessed from the measured frequency
response functions.

The results of the experimental modal analysis are first compared to the
modes of the flexible ring tyre model, which has been used in Chapter 4 for the
tyre rolling over short wavelength road unevennesses. This model, presented in
the PhD Thesis of Gong [32], describes the deformation of the tyre tread-band
accurately in the frequency range 0-300 Hz. The flexible ring model is used to
obtain more of the insight into differences between the modes of a free tyre and
the modes of a standing tyre. This model is also used to identify modes which
were hard to measure accurately. In particular modes of vibration with little
difference in frequencies are difficult to distinguish and identify in the tests (cf.
modes n=1 and n=2 of the standing tyre in Figure 8.3).

The modes of vibration of the tyre can be classified into rigid modes and
flexible modes. The rigid modes refer to those vibrations of the tyre in which the
tyre tread-band moves as a rigid body supported on springs. The flexible modes,
on the other hand, show deformations of the tyre tread-band.

The last section of this chapter presents the modes of vibration of the rigid
ring tyre model. In this model, developed in the previous chapter, the tyre tread-
band is modelled as a rigid body connected with springs to the rim. The frequency
range of this model is limited to 80 Hz and this model shows only the rigid modes
of the tyre. In that section the rigid ring tyre model is used to study the influence
of vertical load, rotational velocity and brake force on the modes of vibrations.

considered:

¢ Tyre construction. The research on the analysis of tyre vibrations started in
the 60s focusing on the differences between the then standard bias ply tyres
and the new radial tyres [17,68,89,109]. The radial tyre with its stiff con-
struction of the tread-band, has 6-8 modes in the frequency range of 0-300 Hz.
The bias ply tyre, on the other hand, shows only the two lowest modes.

« Rotational velocity. The rotational velocity generates centrifugal and
Coriolis accelerations. The centrifugal force increases the pre-tension in the
tyre tread-band, resulting in higher frequencies of the flexible modes of
vibration. The measured frequencies of the rigid modes, however, are
significantly lower at higher velocities [68,97,111,112,113]. The rotating tyre
complicates the modelling of the tyre system as transformations between the
rotating and fixed coordinate system are needed.
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Table 8.1: Survey of literature on the analysis of tyre in-plane tyre vibrations.

reference tyre | velo- | boundary conditions | model | experiments
type b%ity spindle patch used
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« Spindle boundary conditions. The in-plane tyre resonance frequencies are
highly dependent on the boundary conditions of the contact patch and the
spindle [95]. The most common spindle boundary conditions are: (1) a free
wheel; (2) a pinned wheel: the vertical and horizontal motion of the spindle are
constrained, but the rim may rotate freely about the spindle-axis; (3) a fixed
wheel: the rim is also fixed in rotation and (4) the wheel in an actual vehicle
suspension. The spindle boundary conditions affect only the rigid body modes
of the tyre.

o« Contact patch boundary conditions. The ground contact destroys the
symmetry of the tyre structure and leads to mathematical complications
because the circumferential mode components can no longer be simply
expressed by harmonic functions [103]. This non-symmetry causes the
resonance peaks to split into double peaks [21,42,112,113]. The lowest
resonance frequencies of the double peaks are approximately equal to the
frequencies of the unloaded tyre while the highest frequencies of the double
peaks are a little higher than the frequencies of the free tyre. Some
researchers performed incomplete modal analysis [76]. They did not recognise
the splitting of the resonances and drew the wrong conclusion that all
frequencies of the tyre standing on the road are higher than the frequencies of
the free tyre.

e Theoretical modal analysis. Various models have been used to model the in-
plane vibrations of pneumatic tyres. The Finite Element Models (FEM) describe
the tyre geometry in detail. The influences of non-linearities of the tyre due to
large deformations can be modelled accurately. The constraints due to the
finite contact length can easily be added [95,124]. The disadvantages of FEM
are that it takes a lot of effort to build accurate models and simulations are
time consuming. The ring model introduced by Tielking [109] is an elegant
model. This model uses a circular beam supported on an elastic foundation to
represent the motion of the tread-band of a pneumatic tyre in the plane of the
wheel. Tielking introduced the assumption of in-extensibility of the circular
beam which simplifies the equations. The mode shapes of the ring model are
found by expanding the tread-band deformation in a Fourier series. The third
type of model uses a direct modal representation of the tyre from experimental
data without using a theoretical model. The measurements are represented
directly by the modal parameters of the model [124].

+ Experimental modal analysis. The classic modal analysis is performed by
exciting the tyre with a hammer or a shaker and measuring accelerations at
several points on the tyre circumference. This method can be used for non-
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rotating tyres only. Holography has been used to identify the mode shapes of a
rotating tyre as well. A third method is based on the excitation of the tyre in
the contact patch or at the spindle and measuring the reaction forces at the
spindle. This method shows the natural frequencies of the tyre only and not
the corresponding mode shapes. The last method is the excitation of the tyre by
road unevenness (e.g., cleats) and measuring the force responses at the spindle.
Ushijima [111] used force transducers mounted under the cleat to measure the

excitation forces as well.

8.2 Experimental modal analysis

The basic idea of experimental modal analysis is the excitation of a structure by a
measurable dynamic force and measuring the dynamic responses at several
points of the structure. In this section the Single Input Multiple Output
technique (SIMO) is used: the structure is excited at one point. This technique can
be used to identify structures with little damping and clear mode shapes. The
Frequency Response Functions (FRFs) obtained show the resonance frequencies of
the structure. The mode shapes may be determined from the gains at the
resonance frequencies at several points of the structure.

Experimental setup

The tyre and rim are mounted on a spindle on the cleat and brake test stand
(cf. Appendix A). The wheel can rotate freely about its axis of revolution. The
spindle motions in vertical and horizontal directions have been constrained to
zero. The tyre was tested for two situations: the tyre not in contact with the drum
and the tyre standing on the drum at 4000 N pre-load.

The easiest, fastest and thus most widely used excitation technique for modal
analysis measurement is impact excitation. The system is excited by an impulse
force generated by a hammer hitting the system. Figure 8.1a shows the points
and directions of excitation used: radial on the tyre surface (point 3), tangential
on the tyre surface (points 1 and 3), and tangential on the rim (point 12).

The impact force is measured by piezo electric transducers located at various
points on the tyre circumference. The excitations have been evaluated by the
frequency contents of the inputs signal. For an accurate estimation of the FRFs,
the energy should ideally be distributed uniformly over the frequency range of
interest. Best results were obtained with a plastic tip on top of the hammer and a

185



Chapter 8

small piece of aluminium mounted on the tyre at the point of impact. A relatively
small impulse was used to ensure a linear response of the tyre.

The accelerometers were attached to the tyre surface with heated beeswax,
which is an easy, light and stiff connection. Figure 8.1b shows the positions and
orientations of the accelerometers. The responses in both radial and tangential
directions were measured at ten locations along the tyre circumference. The
responses at point 11 could not be measured: this point lies at the centre of the
contact patch of the loaded tyre; the free tyre could not be lifted clear of the drum
sufficiently to mount an accelerometer at this position.

10

[y
—,
=

¥ oy

(a) points of excitation (b) position accelerometers

Figure 8.1: Experimental setup: (a) the positions and directions of the force
excitations and (b) the positions and orientations of the

accelerometers.

The rim is expected to rotate as a rigid body in the frequency range of interest.
Therefore, the responses of the rim were measured at four points (12-15) only.
Finally, the response was also measured at point (16) on the frame to which the
spindle is attached.

The duration of a single measurement was two seconds at 512 Hz sampling
rate. Each measurement was repeated five times to improve the signal to noise
ratio and to enable the estimation of the coherence functions. Although the
impact excitation technique is known to be the most simple excitation type, it is
very hard to control precisely the intensity and direction of the impacts with
hand-held excitation hammers. So, the estimated coherence functions were used
to evaluate the validity of each measurement.
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The Frequency Response Functions

The total number of measured responses was 30. The estimated FRF H,(®) and
coherence function I'{®) of the i® response are defined by:

(8.1a)

(8.1b)

where Spy (@), Sy x,(®) and Spp(w) are the averaged cross spectral density, the
auto spectral density of the i'" response and the auto spectral density of the
excitation force, respectively. Figure 8.2 shows the estimated frequency response
function at the radial driving point (3) for the two boundary conditions. The FRF
for the free tyre clearly shows five resonances in the frequency range 100-250 Hz.
The natural frequencies are determined from the positions of peaks and the
degrce of damping is estimated from the width of the peaks. The gain of the
resonance can be found from the height of the peak. It is interesting to observe
that the boundary condition in the contact patch of the standing tyre leads to
doubling of the number of resonance peaks, and the height of the peaks varies

considerably.

g gain [m/s?/N ]

L . T [

free tyre

standing tyre

G SR I LA A Wt N
2 2% 3 3% 4 4% 5 5% 6
L S I b S - —__
0 50 100 150 200 250

frequency [Hz]
Figure 8.2: Measured frequency response functions in radial direction at point 3
due to a radial excitation at point 3 for two boundary conditions.
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Estimating the mode shapes

Figure 8.2 shows the frequency response function measured at the radial driving
point. Thirty FRFs were measured which showed the same resonance frequencies
with different gains. The mode shapes are related to these gains. Furthermore,
four sets of experiments were performed with four different points of excitation.

The sharp peaks in the measured FRFs show that the tyre has little damping.
Furthermore, each resonance peak may be considered to represent a distinct
Single Degree Of Freedom system (SDOF), since the resonance frequencies are
well separated. Consequently, we may assume that the vibrations in the region of
resonance frequencies represent normal modes of the tyre. Using this
approximation the modal FRF G,(w) may be expressed in terms of the FRF of a
SDOF system:

2
(DOn
+ 2jK,00, — ©?

G, () = (8.2)

where o, denotes the natural frequency of the SDOF system and x, the relative
damping. The total response function H{m) of the tyre at point i is equal to the
sum of all modal response functions multiplied by the modal amplitudes a; ,:

Hiw =3 a,,G, @) (8.3)

n=1

where n denotes the mode number and m the number of modes used. The modal

th

amplitude q, , is defined as the normalised inner product of the i response and

Ln

the n'* modal response in a narrow frequency range around the resonance
frequency:

_ G, ()"H(w)

Q;, == 0.95 ®,, < ® < 105 w,, (8.4)
A Gn’((l))TGn(OJ) ( On 0 )

The degree of fit is expressed by defining an error function E, :

Ei,n. = “HI(OJ) - ai,n,Gn,((D)H (095 Mg, <O < 105 wOn) (85)
The total error £, then reads:
E =YE,, (8.6)
i=1
where n, is the number of measured FRFs. The total error E, was minimised by

fitting the optimal values for natural frequency ,, and relative damping x,.
Using this method all modes are fitted individually but the responses of all 30
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measurements are used at the same time. Figure 8.3 in Section 8.4 present the
resulting mode shapes. A cubic interpolation between the measured points is
used to obtain smooth mode shapes.

The responses at point 11, located at the underside of the tyre, could not be
measured. In the case of the free tyre, the amplitude at this point was estimated
from the amplitudes of the adjacent points. If the tyre stands on the road, point
11 is located at the centre of the contact patch and the amplitude at this point is
set equal to zero. Section 8.4 discusses the results in detail.

8.3 Theoretical modal analysis using the flexible ring model

The flexible ring model introduced in Chapter 4 (¢f. Figure 4.3), consists of a
circular ring representing the tyre tread-band, a mass representing the rim,
circumferentially distributed radial and tangential springs representing the tyre
sidewalls and pressurised air. The deformation of the flexible ring was
represented by a set of partial differential equations with derivatives with respect
to time ¢ and angular position 0 (¢f. Eq. 4.1).

As in the analysis presented in Chapter 4, the Modal Expansion Method is
used to simplify the analysis. In contrast to the analysis presented in Chapter 4,
the equations of the flexible ring model will not be simplified by the introduction
of the in-extensibility assumption (c¢f. Eq. 4.3), even though this assumption is
usually valid for radial tyres [32]. The in-extensibility assumption leads to a total
pressure distribution (c¢f. Eq. 4.7) which is a combination of the tangential and
radial pressure distributions. The total pressure distribution makes a
discrimination between tangential and radial constraints in the contact patch
difficult. When the in-extensibility assumption is not used, expression (4.5) of the
tangential v, and radial w, displacements of the flexible ring takes the form:

oo o0
v,(8,£) = Y a,(t)cosnB +b,(¢)sinnd , w,(0,t)= > c,(t)cosnb+d,(¢)sinn®  (8.7)
n=0 n=0
where «a, (), b,(t), ¢,(t) and d, (t) are the generalised modal displacements.
Substituting Equations (8.7) into (4.1), multiplying the resulting equations by
cos(nB) and sin(nB), and integrating these equations over 2rn yields the equations
of motion of the modal displacements x,,:

M i, +Cx,=F, (n=0,1,2,3,.) (8.8)

n=n —n

where M,, and C, are the modal mass matrix and modal stiffness matrix,
respectively, and F, are the generalised modal forces. To obtain this result, the
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orthogonality of the sine and cosine functions was used. The modal equations, the
generalised modal displacements, the modal forces and the modal parameters
read for n>1:

M, +Cx,=F, (8.9a)

x,=[a, b ¢, d] (8.9b)

Fo=[ln Men Eown ncw,n]T (8.9¢)
my, O 0 0

T (8.9d)

0 0 m, O
0 0 0 m

n

Chom 0 0 ~Chun
0 Coon Chvom 0
C.=l Cown Coun 0 (8.9e)
L—Cbuw,n 0 0 Chu,n J

The zeroth order modes are slightly different: We only have two modal
displacements a, and c, because the sine terms are zero for n=0. Furthermore,
. . 5
U

M,i, +Cyx,=F, (8.10a)
v, =[ay ¢l BH]T (8.10b)
T
EO = [&cu.o é’;cu.O : Mya] (810C)
rmbo 00|
|
My= 0 my | 0 (8.104)
0o,
Cbu 0 0 : rCy,
|
C, = 0 Cpoi 0O (8.10e)

Introduced in the modal representation of the flexible ring model are the modal
stiffnesses C,_ ,C ~and C, :

. A .
va,n = E41 nz + E2 nZ +Cpy (811&)
r r
Chown = —Ef n® +—E;4 n (8.11b)
r r
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Chon = —n+—- +c,,w+—p—°b—R(nz41) (8.11¢)
r r

the modal masses m,,:

my, = pA (812)
and the generalised forces &(,M s Mo » F,cw,n andn,,
2n 2n
Eevo = ﬁj‘qw de v Eeon = %qu cosn8do (n=123,..) (8.13a)
0 0
2n
Nwo= 0 s Men =3[, sinn0d6  (n=123,.) (8.13b)
0
2n 2n
él![ﬁ,ﬂ = —QL‘](Jq(,‘IU de > iclll," = %J‘qclll COS nede (’7' = 17273" M ') (8'13C)
0 0
2n
nmu,() = 0 » ncw,n. = %chw sinn6do (n = ]12’3:- - ) (813d)
0

To analyse the modes of the unloaded tyre, the generalised forces are set to zero.
The mode shapes of the flexible ring tyre model are shown in Figure 8.4 in
Section 8.4. There they will be discussed in relation with the experimentally
found results.

The tyre-road interface

If the tyre is loaded on the road surface, large deformations of the tyre occur and
a finite contact length arises. In the contact patch the deformation of the tyre
ring is prescribed by the flat road surface. The new boundary condition has
changed the structure of the system. We could use the partial differential
equations (4.1) and perform the Modal Expansion Method again with these new
boundary conditions. Instead, the modes of the free tyre model will be used and
the equations that describe the forces in the contact patch are added.

The displacement of the tyre ring in the contact patch equals all modal
displacements multiplied by their modal shapes. The forces generated in the
contact patch, which depend on the displacements in the contact patch, are fed
back into the model. This destroys the modal structure of the free tyre model,
resulting in new modes that are linear combinations of the free tyre modes.

The modified ring model, introduced in Figure 4.5, is used for the analysis. In
this model the flexibility of the tread rubber is added. The differences with
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respect to the discrete simulation model presented in Section 4.3 are that in this

chapter:

¢ the tread elements are modelled in the contact patch only.

o the in-extensibility assumption is not used

+ the model is linear: the tread elements are only modelled in the contact zone;
all tread elements adhere to the road surface; the non-linearity of the sidewall
stiffnesses is neglected.

The radial and tangential displacements of the tyre ring in the contact patch are

calculated for a finite number of contact points n,:

m m
Up; = zancosnei +b,80n8; , w,; = chcosnﬂi +d,sinng, (8.14)
n=0 n=0

where m denotes the number of modes used. The angular position 6, of the
contact points is defined by:

2 ) ,
6;=%n+(—l—IJ£ 1=0,12,...,n, (8.15)
n, r
The vertical and horizontal displacements read:
Xp; =—8Iinb; - v, ; +cos8; - vy ; (8.16a)
z,; =—cosb; v, ; —sinb; -y, (8.16b)

The vertical and horizontal forces per unit of length equal the displacements
multiplied by the tread stiffnesses:

qcx.t = wccpx X (8178)
qcz,i = _ccpz ‘Zb,i (817[))

- X,

where c,,. and c,,, are the horizontal and vertical tread stiffnesses per unit of
length, respectively. Since the tread element stiffnesses only play a role in the
contact patch, the stiffnesses are termed horizontal and vertical rather than
tangential and radial. The radial and tangential forces acting on the tyre ring

read:
ey, = —SINO; - oy ; —CO8H; - q,, ; (8.18a)
Qew,i = €086, -Gy —8In0; -y (8.18b)
Combining the equations for the vertical and horizontal displacements of the ring
in the contact patch (¢f. Eq. 4.16) and the vertical and horizontal forces in the

contact patch (cf. Eq. 4.17 and 4.18) gives radial and tangential forces in the
contact patch in terms of the radial and tangential displacements:

192




Modal Analysis of Tyre In-Plane Vibrations

- 2 2 :
Qevi = —(cijc sin” 0, + ¢, cos 9,-) -v; + sin®,; cos@i(cm - ccpz) w; (8.19a)

Qew; = $Ind;cos Gi(c@x - ccpz) v, - (ccpx cos? 0; ¢y, sin? Gi) -w; (8.19b)

The forces g, ; and g,,,; at position 6, depend on the deformations v, and w;. These
deformations are summations of all the modal deformations according to
Equation (8.14). As we consider only a finite number of points in the contact
patch, rather than a continuous description, the integral for the generalised
modal force (Equation 8.13) changes into summations of the forces in the contact
points considered:

Eevo = Aef%{): Qevi > Soon = AG%&, quwicosnd; (n=123,.) (8.20a)
i=1 i=1

Nevo = 0 M, = A0 %i Ge;8innd; (n=123,.) (8.20b)
i=1

Cewo = A8 51;2 Qewi + Sown =40 %i Qewicosn®;, (n=123,..) (8.20c)
i=1 i=1

Newo = 0 s Nown = AB%i G Sinng;, (n=123,..) (8.20d)

i=1

The equations are now rearranged according to Equations (8.9) and (8.10)
resulting in the final set of equations of the tyre standing on the road:

M, 0 - 0 [x, C, 0 - 0= F,
0 .0 iil o 0 i :
- | aRK . Sl (8.21)
N : 20 0 :
0 - 0 Mm Xm o - 0 Cm X _Em

where the forces F, on the right hand side of the Equation (8.21) depend on all
modal displacements. This indicates that these equations have lost their diagonal
shape and we can perform a transformation into a new diagonal shape. The
result is a set of new modes which are linear combinations of the modes of the

original model. Figure 8.4 shows the resulting mode shapes.
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8.4 Comparison of the experimental findings with the theoretical
results using the flexible ring model

The free tyre

In Figure 8.3 the left half shows the mode shapes obtained from the experimental
modal analysis of the free tyre. This figure results from various excitations. Mode
0 can be identified from a tangential excitation on either the tyre or the rim.
Modes 1 can be identified from a radial or tangential excitation on the tyre
circumference. The higher order modes can be identified only from a radial
excitation on the tyre circumference. The relative damping, which is difficult to
assess accurately, ranges from 2.5% to 4.5%. The mode number n equals half the
number of nodes of the mode shape. The frequency of mode 0 is 113 Hz. This
frequency will drop to 68 Hz if the rotation of the rim is also constrained. From
this case onwards the frequencies of the modes will always increase with the
mode number. Note that the rim will not rotate at these higher modes.

The in-plane modes of vibration occur only up to n=8. The highest frequency
(n=8) is approximately 250 Hz. Higher frequencies belong to sidewall waves and
are strongly damped [118].

Table 8.2: The parameters of the flexible ring and the rigid ring model.

parameter symbol value unit
bending stiffness tyre ring EI 4.0 Nm?
extensional stiffness tyre ring EA 4.9 10° N
tyre ring radius r 0.300 m
inside tyre width b, 0.152 m
inflation pressure Do 2.2 10° N/m?
tangential sidewall stiffness Cpo 6.49 10° N/m?
radial sidewall stiffness Cow 1.93 10° N/m?
horizontal tread stiffness Cope 25 10° N/m?*
vertical tread stiffness Cepe 75 108 N/m?”
moment of inertia rim I, 0.35 kg m”
mass density tyre ring pA 3.81 kg/m
half the contact length (at ¥, =4000 N) «a 0.0535 m
number of tread elements in contact n, 100 -
number of modes m 30 -
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In Figure 8.4 the left half shows the modes of the flexible ring model of the free
tyre. The parameters used are given in Table 8.2. Although, the measured
frequencies have been used to estimate the parameters, the calculated
frequencies of the higher order modes are lower than measured. The calculated
mode shapes, on the other hand, represent the measured mode shapes rather
well.

All higher order modes are double, they can be imagined as modes, which
have similar shape and frequency, of which the nodes and anti-nodes have been
interchanged. Combining both modes can result in a mode in any direction. If the
tyre is excited by a hammer, it will only show those modes of vibration in the
direction of the excitation. In other words, the excitation will always take place in
an anti-node of the mode shapes, which enables accurate estimations of the mode

shapes.
The tyre standing on the road.

The boundary condition of the flat road surface forces the two identical modes for
each mode number to split [21,42,112,113]: both the mode shapes and the
frequencies are no longer identical. The orientation of the modes is not arbitrary;
they are clearly subdivided into symmetrical (with respect to the vertical axis)
and anti-symmetrical modes. This effect complicates the measurements because
the excitations are generally not in the anti-nodes. This means that less energy is
transmitted into the modes, making the estimation of the mode shapes more
difficult. The excitation may even occur in a node of the mode shape. Then this
specific mode shape cannot be identified using this excitation. Accordingly, it is
important that the excitations should take place at several locations on the tyre,
to ensure a proper identification of all modes. The effect is illustrated in Figure
8.2 where the gains of the modes of the free tyre are approximately equal to each
other and the gains of the modes of the loaded tyre vary considerably.

The right halves of Figures 8.3 and 8.4 show the modes of the tyre standing
on the road. Mode 0 is a rigid body rotation of the rim and the tyre. Modes 1,2,3,
and 4 are almost identical to the free tyre case. A small rotation of the rim is
added to the free tyre modes to make the horizontal deformation in the contact
patch equal to zero.
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free tyre tyre standing on the road

T

S Z
n=4%, f=188.8 Hz

n=4 f=1725Hz

Figure 8.3: The modes of the tyre from the experimental modal analysis.
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free tyre tyre standing on the road
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Figure 8.4: The modes of the tyre from the flexible ring model.

X7

n =4, f= 168.6 Hz
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The standing tyre also shows modes different from the free tyre case: mode
numbers 1%, 2%, 3%, and 4% Although this mode numbering (using halves) is
rather uncommon it still fits the original definition: the mode number n equals
half the number of nodes of the mode shape. Consequently, a mode with 5 nodes
has a mode number of 2%. Also the frequency of mode 2% is approximately equal
to the average value of the frequencies of mode 2 and 3.

Figure 8.5 shows the frequencies of the modes as function of the mode
number. The open circles are the frequencies of the free tyre. The filled circles are
the frequencies of the tyre standing on the road. This figure shows that the
frequencies of the higher order modes of the flexible ring model deviate from the
measured frequencies.

The frequencies above mode number 1 are all situated on a single line
regardless of whether they belong to the free or to the standing tyre case. The
frequencies of modes 1Y%, 2V4, 3%, and 4% fall precisely between the frequencies of
modes 1, 2, 3, 4, and 5. Figure 8.5 shows that the natural frequency is inversely
proportional to the distance between two nodes of the mode shapes of the Figures
8.3 and 8.4. The figure shows some discrepancies for mode number 0 and 1. The
reason is the rotational degree of freedom of the rim, which influences the
frequencies of the rigid modes.

(a) experimental modal analysis (b) flexible ring model
200 T T T T . U 200 T T T T
® . @®
— . — ® —
Eb: 150 . ® EN 150 © .
. O @ B ® °
2 100} ¢ . 2100 & e 4
@ [ O 53 v/
= 3
o o
& £ 504 -
& 50¢ O free tyre halliad O free tyre
¢ standing on the road « standing on the road
O 1 | ! N P 0 1 1 | 1
0 1 2 3 4 5 0 1 2 3 4 5
mode number mode number

Figure 8.5: The natural frequencies of the tyre as function of the mode number
for two different boundary conditions.

The experimentally and theoretically obtained mode shapes of the tyre
(cf. Figures 8.3 and 8.4) correspond well to the mode shapes of the tyre presented
in the literature: the modes of the free tyre [12,27,103,109], the symmetrical
modes of the standing tyre [21,43,103,112,113] and the anti-symmetrical modes
of the standing tyre [21,112,113].
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8.5 Theoretical modal analysis using the rigid ring model

This section presents the modes of the rigid ring model, which was developed in
the previous chapter. First, these modes will be compared with the results of the
experimental modal analysis; and second, the influence of the boundary
conditions of these modes will be investigated.

The natural frequencies of the modes obtained from experimental modal
analysis are much higher than the frequencies obtained from the dynamic
experiments presented in Chapters 9, 10 and 11 where the tyre actually rolls over
the drum surface. A possible reason is that the brake system was not mounted
during the modal analysis experiments so that the moment of inertia of the
rotating parts was higher for the dynamic experiments on the drum than for the
experimental modal analysis. However, after we had corrected the natural
frequencies for the difference in the moment of inertia of the rotating parts we
still noticed that the stiffnesses obtained from the dynamic experiments are 30%
lower than the stiffnesses obtained from the experimental modal analysis.

There are two other reasons for the difference in frequencies: First, the
measured frequencies of the rigid modes are significantly lower at higher
velocities [68,97,111,112,113]. Second, the amplitude of vibration during the
brake and cleat experiments is much higher than during the modal analysis
experiments and the stiffness of rubber is velocity and amplitude dependent.
Consequently, for comparison of the modes of the rigid ring model with the
results of the experimental modal analysis (see Figure 8.6) the parameters of
Table 8.2 are used, and for comparison with the dynamic experiments (see
Figures 8.7 through 8.9) the parameters of Table 7.1 are used.

The equations of motion of the rigid ring model have been derived in
Chapter 7. In this model the tyre ring can move as a rigid body with respect to
the rim. The tyre has three degrees of freedom: the horizontal displacement x,,
the vertical displacement z, and the rotation 0,. The rim has one degree of
freedom: the rotation 6,. The contact with the road is modelled with a vertical
residual stiffness and a horizontal slip model. The linearised equations of motions
(Eq. 7.51) at non-rolling conditions (Q=0), with zero average brake torque

(Q,=€,=Q;=0) and no excitation (p=z,=M, =0) become:

My, + ki, + €% — k8,240 = Ol (8.22a)
myZ, + kyZy +(cy +¢,)%, =0 (8.22b)
1,8, + iy (8, —B,) + 40 (B, —B,) = 0 (8.22¢)
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1,0, — kyy (8, —8,) — (8, —8,) = —10C, Lo (8.22d)
Gcgcx + reOQEcx = _gb + reoéb (8226)

The parameters of the rigid ring model are related to the parameters of the
flexible ring model (cf. Eq. 7.15, 3.10, 6.19):

translational sidewall stiffness: ¢y = r{c, +¢,) (8.23a)
translational sidewall damping constant: k, = nr(k, +&,) (8.23b)
rotational sidewall stiffness: Cpo = 2mc,r? (8.23¢)
rotational sidewall damping constant: kyg = 2mk,r? (8.23d)
slip stiffness: C. = 2ccpxa2 (8.23e)
relaxation length contact patch: 6.=a (8.230)
mass of tyre belt: my, = 2nrpA (8.23g)
moment of inertia of tyre belt: I, = 2nrépA (8.23h)

The modes of the rigid ring model at zero average rotational speed (Q=0) are
presented in Figure 8.6, the parameters used are given in Table 8.2. As already
stated, the rigid ring model shows only the rigid modes of the tyre. The modes of
the rigid ring model represent the measured modes (Figure 8.3) rather well.

free tyre tyre standing on the road

1\

/: )
%
> <
\\4

n=0,f=111.2 Hz

PPl

n=1,f=106.2Hz
Figure 8.6: The modes of the tyre from the rigid ring model; parameters
obtained from the experimental modal analysts.
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Figures 8.7 through 8.9 present the influence of the operational conditions (load,
speed and brake force) on the modes of the rolling tyre. The parameters have
been obtained from the dynamic experiments on the drum and are given in Table
7.1. Rather than using the mode numbering method, the individual modes are
indicated by names. The mode number n=1 will be called the vertical or
horizontal mode of vibration, depending on the direction of the mode. The
rotational modes will be referred to as: in-phase rotation of the rim and tyre belt
(at 33 Hz) or anti-phase rotation (at 76 Hz) of these bodies.

Figure 8.7 presents the influence of the vertical load on the mode shapes and
the roots of the model. The modes of the free tyre are presented on the right hand
side of Figure 8.7. For this case we can identify three modes of vibration: the anti-
phase rotational mode and a horizontal and vertical mode of vibration. The
system does not show the fourth mode because the tyre and wheel may rotate
freely about the spindle. This in fact corresponds to a natural frequency zero.

The modes of the standing tyre are presented on the left hand side of Figure
8.7. The free rotation of the wheel (at 0 Hz) has changed into the in-phase
rotational mode at 33 Hz. The relative damping of this mode decreases with
increasing vertical load. The frequency of the anti-phase mode decreases slightly
with vertical load. The mode shape of this mode has changed considerably with
respect to the free tyre mode: the horizontal displacement of the tyre in the
contact patch becomes small. The horizontal mode at 74 Hz changes into a mode
at 100 Hz. This mode is a vibration of the tyre ring on the tread elements in fore
and aft direction, which constitutes the highest stiffness in the model.

Figure 8.8 presents the root loci of the tyre model as function of the velocity.
The influence of the velocity on the modes is rather small. The relative damping
of the in-phase rotational mode increases with velocity. The relative damping of
the horizontal mode at zero velocity is high owing to the tread element damping
(cf. Equations 7.30 and 7.31). The relative damping of this mode decreases with
the velocity because the damping of the tread element decreases. At high velocity,
on the other hand, the relative damping of this mode increases again owing to the
damping resulting of the relaxation length contact model. Furthermore, the
sidewall stiffnesses in the model decrease with velocity (c¢f. Eq. 7.22) resulting in
lower frequencies at higher velocities.

The average brake force has much more influence. Its influence is opposite to
the influence of vertical load. At very high levels of brake force, the slip stiffness
in the contact patch approaches zero. This means that the horizontal constraint
becomes less effective: the in-phase rotational mode disappears at high brake
force levels and the horizontal mode becomes the free horizontal mode again.
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rootloci as function of vertical load
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Figure 8.7:

function of the vertical load.

202

The root loci and modes of vibration of the rigid ring tyre model as




modes at Q = 100 rad/s

Modal Analysis of Tyre In-Plane Vibrations

1

rootloci as function of rotational velocity1 000 modes at Q = 0 rad/s
: . Rt .
F, = 4000 N < )
F. =0N
Q =0-200 rad/s 2
,//fi:77 é” 800
//”’/ - V N
e - T
in-phase rotational B o V=0 rad/s 600 in-phase rotational
mode /= 30.4 Hz mode f= 33.0 Hz
VW

400

” 200
f="754Hz

vertical mode
f=179.6 Hz
PN <0

in-phase ~.__
rotational mode i

] T —200 =
AN

anti-phase ~__
~ rotational mode
anti—bigse rotational B

mode f= 71.2 Hz

—400  anti-phase rotational
vertical mode «__ mode f = 76.4 Hz
A
-600
\ horizontal mode
S |
- st -800
horizontéf‘inode
f=128.8Hz

horizontal mode
—real(h) +—— f=100.5Hz
! L -1000
-600 —400 -200 0
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Dynamic Tyre Responses to Brake Torque
Variations

9.1 Introduction

The tyre model described in Chapter 7 is able to generate the typical tyre
vibrations in the frequency range 0-80 Hz. In this frequency range the tyre tread-
band behaves as a rigid body with respect to the rim. Consequently, the model is
called rigid ring model. Above 80 Hz the tread-band shows deformations during
vibration. These modes of the tyre, which are called the flexible modes are
presented in the previous chapter.

There are several sources of tyre in-plane vibrations: brake torque
fluctuations, road unevennesses, horizontal and vertical wheel oscillations, and
tyre non-uniformities. The tyre model, developed in Chapter 7, will be validated
for most of these excitations. This chapter presents the dynamic tyre response to
brake torque variations, the next chapter treats the response to road
unevennesses, and Chapter 11 deals with the response to axle height oscillations.

Most research into the dynamic tyre response to brake pressure variations
has been done within the context of Anti-lock Brake System (ABS) development.
The main task of ABS is to maintain the longitudinal slip within a small range
about the maximum of the brake force vs. slip curve. In order to achieve this goal
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the pressure in the wheel brake cylinder is modulated by the ABS, resulting in
rapid brake pressure variations.

The Anti-lock Brake System was successfully introduced by Bosch in 1978
[60]. In the 70s fundamental research was carried out into hardware
requirements for ABS: the optimal rise time of the brake pressure, the delay time
of components [35,59]. The ABS uses the rim velocity to monitor the longitudinal
slip of the tyre. Tyre vibrations affect the monitoring of slip, especially, the
longitudinal wheel hop mode and the in-phase rotational vibration of the tyre and
wheel cause problems. The tyre vibrations can be induced by road unevennesses
and it is well known that the performance of ABS deteriorates on very rough roads
[44,66,96,108,116].

The dynamic tyre responses due to brake torque variations can be
investigated in the frequency domain and in the time domain. The frequency
domain is generally used to study the linear tyre responses, while the time
domain can be used to study both the linear and the non-linear tyre response. In
Section 9.2 the measured Frequency Response Functions (FRFs) are used to
estimate the parameters of the rigid ring model. The simulations in the time
domain are used to study the non-linear behaviour of the model, its robustness
and the agreement with experimental findings (Section 9.3, 9.4 and 9.5).

The measured frequency response functions of brake force to brake torque are
similar to the ones found by Kobiki ef al. [53]. They studied the interior booming
noise caused by tyre vibrations and measured the frequency response functions of
the longitudinal force over the brake torque in the frequency range up to 120 Hz.
Kobiki et al. identified two modes of vibration of the tyre in this frequency range.

L4 01 PO |
L1

11ey used id rin

& riglll lats tha d

4o i
21 w0 3iilitiace uie /1l

v ic tvre behavicur in a power

1amic tyre behaviour in a power
train-suspension model. Using a simple simulation model Zellner studied the
time and frequency responses of several subsystems of the ABS and of the tyre
[123]. He performed his study not to gain knowledge about tyre behaviour, but as
an analytical approach to ABS design.

The non-linear behaviour of the rigid ring tyre model has been validated in
the time domain. This allows the use of large variations in slip, velocity and
forces. The non-linear simulation model is based on the equations given in
Sections 7.3 and 7.4. Figure 9.1 shows schematically the non-linearities of the
model: (1) the non-linear slip characteristics and contact patch relaxation length;
(2) the vertical load dependency of the loaded tyre radius r, and the effective
rolling radius r,; (3) the slight increase of the tyre radius due to the centrifugal
force; (4) the horizontal shift of the contact point due to the influence of a
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horizontal force on the vertical force; and (5) the dry friction in the disc brake. Of
these, the two first non-linearities have the largest influence.

slip characteristics F, dependency centrifugal force shift contact point dry friction brake

N {
‘ M brake

>

Figure 9.1: The major non-linearities of the simulation model of the tyre-wheel

system.

Section 9.3 presents the non-linear responses of the tyre to successive step
increases in brake pressure. These input signals are similar to the ones used by
Van Zanten et al. [121,122]. They studied the tyre responses during ABS operation
in a vehicle and simulated and measured the responses of the tyre to successive
step increases in brake pressure. Their model consists of two rigid bodies with
two degrees of freedom: the rotation of the rim and the rotation of the tyre (belt).
The interface with the road was governed by individual tread elements.

The robustness of the rigid ring model was validated at zero velocity
conditions. Simulations encounter numerical problems at low speed because the
longitudinal speed of the wheel hub appears in the denominator of the
expressions of both longitudinal and lateral slip [11]. The numerical stability of
the rigid ring model was validated by using two brake manoeuvres: braking with
wheel lock at constant drum velocity and braking to stand-still of both wheel and
drum.

Section 9.4 presents a brake manoeuvre with wheel lock. During this
experiment the drum velocity was constant and the brake pressure was increased
rapidly, causing wheel lock. Bernard et al. developed a tyre model for both low-
speed and high-speed calculations [11]. He modelled the longitudinal tyre
transient behaviour by using a first order equation for the longitudinal slip with
the longitudinal slip velocity as input (comparable to model 2 of Chapter 6). He
proved that this model was numerically able to brake to stand-still even on a
slope. But as soon as the velocity became zero the tyre showed large lightly
damped vibrations. Section 9.5 presents a brake manoeuvre to stand-still of the

drum.
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9.2 Frequency Response Functions

The Frequency Response Functions (FRFs) were used to estimate the relevant
parameters of the tyre. To estimate the FRFs the tyre-wheel-brake system was
excited by small variations of brake pressure. The FRFs to brake pressure
variations could not be established accurately because of non-linearities (i.e. a
mechanical delay) in the brake system. Two kinds of FRFs could be estimated
accurately: the response of the longitudinal force F, to brake torque (-M,)
variations and the response of the longitudinal force to wheel slip ({ ) variations.
For the latter FRF the wheel slip is considered to be an input, even though the
wheel slip is in fact a response of the tyre to the brake torque.

The goal of these experiments was to estimate the tyre parameters in
different operating conditions. The experiments were carried out at three
constant axle heights, corresponding to 2000, 4000 and 6000 N vertical load for
the initially non-rotating tyre. One set of experiments was carried out at five
velocities: 25, 39, 59, 92, 143 km/h and a small average brake torque. Another set
of experiments was carried out at one velocity (25 km/h) and several average
brake torques covering the entire slip characteristic. The total number of
conditions investigated was 35. For each condition 10 measurements were
averaged to enable the estimation of the coherence functions as well. The
duration of each measurement was 16 seconds at 256 Hz sampling rate.

The standard deviation of the applied brake pressure was approximately
1 bar. Table 9.1a shows the resulting average brake torque and the standard
deviation of the brake torque for the experiments with low average brake
pressure (5 bar) and several velocities. Table 9.1b shows the values of brake
torque for the experiments at various levels of average brake pressure and one
velocity.

Table 9.1a: The average values (L) and standard deviations (o) of the applied
brake torque variations at low average brake pressure (5 bar).

V [km/h] F,=2000 N F,=4000 N F,=6000 N
Hpp, INm] G, [Nm] Hp, INm] 0, [Nm] My, [Nm] Gy, [Nm]
25 121 20 129 23 128 24
39 129 22 130 24 123 23
59 121 22 120 22 124 23
92 106 20 107 20 113 22
143 106 21 97 20 97 20

208




Dynamic Tyre Responses to Brake Torque Variations

Table 9.1b: The average values () and standard deviations (6) of the applied
brake torque at V=25 km/h and various levels of brake pressure.

brake F_=2000N F,=4000 N F,=6000 N
pressure . [Nm] o, [Nm] Wy, (Nm] o, [Nm] Hur, (Nm] o, [Nm]
low 121 20 129 23 128 24

213 17 324 20 416 20

g 319 19 529 19 701 22
399 11 704 16 966 15

high 477 11 872 10 1190 15
1030 11 1410 12

The piezo electric force transducers used in the cleat and brake test stand could
only accurately measure variations in the forces and not the static components.
In Section 2.3 the vertical force of a rolling tyre at constant axle height was
measured by using the measurement tower. These experiments showed that the
increase in the vertical force due to the rotation cannot be neglected. The values
of the vertical force presented in Table 2.4b will be used in this chapter as the
average vertical force in the given operating (axle height and velocity) condition.

It was rather difficult to control the tyre temperature during the
experiments. The increase in the tyre temperature was minimised by alternately
measuring for 16 seconds and cooling during a period of free rolling. For severe
conditions (high velocity, large vertical load and large average brake torque) the
ratio between cooling time and measuring time was as large as 10 to 1.

Figure 9.2a shows one of the measured and simulated FRFs of longitudinal
force to brake torque variations. These FRFs clearly show two modes of vibration
of the tyre. The first mode is the in-phase rotational mode; and the second one is
the anti-phase rotational mode. The estimated coherence functions show that the
measured FRFs are valid until 80 Hz. To represent the measured FRFs, the
linearised model (¢f. Eq. 7.51) does not include the moment of inertia between the
applied brake torque (at the disc brake) and the measured brake torque (at the
brake torque sensor in the intermediate shaft). The measured and simulated FRFs
are similar to the ones presented by Kobiki [53].

The FRFs of the longitudinal force to slip variations ({, =-V,,/V,) are shown
in Figure 9.2b. This figure presents the FRF of a system with a different boundary
condition than that of the FRF of Figure 9.2a. In Figure 9.2a the brake torque was
used as input to the system; thus the rotational velocity of the wheel was not
prescribed. In Figure 9.2b, on the other hand, the wheel velocity is considered to
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be the input to this system; thus the rotational velocity of the wheel was
prescribed. Consequently, the resonance frequencies of Figure 9.2a and Figure
9.2b do not match.

From the FRF to slip variations (Figure 9.2b) two important tyre properties
can be found: the slip stiffness which can be estimated from the amplitude of the
FRF at zero frequency and the overall relaxation length of the tyre which can be
estimated from the phase shift in the frequency range 0—-30 Hz. Note that this
frequency is much smaller than the first resonance frequency (approximately
65 Hz) of the system with the given boundary conditions. The coherence functions
show that these measured FRFs could not be estimated very accurately in the
frequency range up to 80 Hz.

(a) FRF longitudinal force to brake torque (b) FRF longitudinal force to wheel slip
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Figure 9.2: The measured and simulated frequency response functions.
Conditions: F,,=4000 N, F , =450 N, V = 25 km/h.

The simulated and measured frequency response functions are compared in
Figure 9.2 as well. The model represents the in-phase rotational mode very well
(see Figure 9.2a). The simulated amplitude of the anti-phase rotational mode is
lower than the measured amplitude. For some reason, the excitation of the anti-
phase mode of the real tyre is larger than the excitation of this mode in the
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model. According to the phase diagram we can see that the relative damping of
the simulation is equal to the value of damping obtained from measurements.

The model represents the measured FRF of force to slip variations well in the
frequency range 0-50 Hz, see Figure 9.2b. This figure shows the correct course of
the phase angle up to 90 degrees owing to the modelling of a relaxation length
system, and a mode of vibration corresponding to the natural vibration of the belt
of the loaded tyre when the rotation of the rim is prescribed. The simulation
clearly shows this mode at 63 Hz. The measured amplitude hardly reveals this
mode, but from the phase diagram we can identify this mode at 65 Hz.

The dynamic parameters of the rigid ring model (sidewall stiffnesses ¢, ¢,
sidewall damping coefficients k%,, k,, and the tread element stiffness per unit of
length ¢,,) were not estimated directly from the measured FRFs. First the most
important response properties of the dynamic brake performance of the tyre were
estimated. The parameters of the model are estimated from these properties. The
following properties of the tyre responses were estimated:

« natural frequency of the in-phase rotational mode  (from FRF F, /M)

» natural frequency of the anti-phase rotational mode (from FRF F, /M)

« relative damping of the in-phase rotational mode (from FRF F, /M)

« relative damping of the anti-phase rotational mode (from FRF F, /M)

« slip stiffness {(from FRF F, /()

« overall relaxation length of the tyre (from FRF F,/C)

In Figures 9.3 through 9.5 the results from measurements are indicated with a
little circle. The results of the simulations (with the parameters of Table 7.1) are
presented with full lines. Two sets of parameters were used to show the influence
of the velocity dependency of the sidewall stiffnesses. The bold lines represent
represents the rigid ring model as described in Sections 7.3 and 7.4, thus
including the velocity dependent sidewall stiffnesses (c¢f. Eq. 7.22). The thin lines
represent a model with constant sidewall stiffnesses (q,,=0, ¢,,,=0, g,1,=0).

Figure 9.3 shows the tyre properties as function of the vertical load. It is
shown that the slip stiffness C, increases with the vertical load. This corresponds
with measured stationary slip characteristics (¢f. Section 3.5). Apparently, the
overall relaxation length ¢ increases proportionally with the slip stiffnesses,
which corresponds with theoretical findings.

The damping of the in-phase rotational mode decreases with increasing
vertical load. This effect is strengthened by the influence of the average brake
force. An average brake force is needed to be able to excite the tyre with brake
torque variations. At very small levels of vertical load, the average brake torque
becomes so large that sliding in the contact patch occurs. This increases the
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relative damping of this mode of vibration as well. The increasing damping
lowers the natural frequency of vibration.

The vertical mode of vibration is defined to be the mode which has the largest
amplitude of the vertical motion of the ring. When the moment of inertia of the
brake system is omitted, the difference between the natural frequency of the anti-
phase mode and of the vertical mode becomes small. Then the vertical mode and
the anti-phase rotational mode may interchange at increasing vertical load. This
phenomenon causes the jumps in the simulated frequency and damping graphs.

Figure 9.4 shows the tyre properties as functions of the velocity for three
constant axle heights. The slip stiffness and relaxation length increase slightly
with the velocity. The reason for this is that the experiments were carried out at
constant axle height and the vertical load increases with velocity (cf. Table 2.4b).
The damping of the in-phase rotational mode increases with velocity as predicted
in Section 6.4. The natural frequency of the anti-phase rotational mode decreases
with velocity. The simulations with the velocity dependent sidewall stiffnesses
represent the measurements much better than the simulations with constant
sidewall stiffnesses.

Figure 9.5 shows the tyre properties as functions of the average brake force.
The average brake force varied between a small value and a value close to the
peak value of the slip characteristics. When the average brake force increased the
vibrations occurred around a point further on the slip characteristic curve. The
slip stiffness, which is defined as the local derivative of the slip characteristics,
will decrease with increasing slip. At very high levels of brake force the damping
of the in-phase rotational mode increases rapidly and the natural frequency
decreases. The natural frequency of the anti-phase mode decreases slightly with
increasing brake force. This effect hardly be observed in the simulations.

In the subsequent sections the tyre responses are analysed in the time
domain. The natural frequencies found from these of the responses do not
correspond directly with the resonance frequencies presented in the Figures 9.3,
9.4 and 9.5. In these figures, the resonances of the FRF of longitudinal forces with
respect to the measured brake torque are presented. The brake torque sensor is
mounted on the intermediate shaft between wheel system and brake system (cf.
Appendix A.1). This means that the moment of inertia concerned in these FRFs is
the moment of inertia between the brake torque sensor and the longitudinal
reaction force at the wheel bearings (thus excluding the brake system). From the
subsequent section onwards the tyre dynamics are considered in the time
domain. The moment of inertia of all rotating parts (thus including the brake
system) must be taken into account.
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Figure 9.3: The tyre properties as function of the vertical load (F , = 400 N).
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9.3 Braking with successive steps in brake pressure

As illustrated in the previous section, the tyre properties vary with speed,
vertical load and brake torque. The linearised tyre model was used to estimate
the tyre parameters from these tyre properties in each condition. In this section,
the estimated parameter values are used in a non-linear simulation model of the
tyre. The parameters which depend on the operating conditions are represented
by the coefficients of the polynomials shown in Table 7.1b. The behaviour of the
tyre model is validated by using variations in wheel slip and longitudinal force
covering the entire slip curve.

The tyre was excited by stepwise increases of brake pressure until the peak in
the slip characteristics is reached. The experiments were carried out at three axle
heights: corresponding to 2000, 4000 and 6000 N vertical load for an initially
non-rotating tyre and at five velocities: 25, 39, 59, 92 and 143 km/h. Fifteen
conditions were investigated. The duration of each measurement was 4 seconds
at 1024 Hz sampling rate. The filter frequency was 400 Hz. To reduce the
influence of noise, the measurements were averaged 10 times. The measured
brake torque was used as input for the non-linear simulation model.

Figures 9.6 and 9.7 show the measured and simulated responses of the tyre
for two different speeds. From ¢ is 0 to 2 seconds the brake pressure is increased
stepwise. The dominant oscillation, that is the in-phase rotational mode at 33 Hz,
is excited by each step in brake pressure. These oscillations are shown clearly in
the dynamic force vs. slip characteristics. After a few oscillations a new steady-
state value of the slip characteristics is found. At the end of the series of steps
when wheel lock almost occurs, the wheel velocily decreases rapidly.

Figures 9.6 and 9.7 show the influence of the velocity on the tyre dynamics.
The relative damping of the in-phase rotational mode increases at higher velocity
(see also Figure 9.4). The friction coefficient is also affected: the tyre temperature
increases at higher velocity and thus the friction coefficient increases as well. A
further effect, which is not shown in the Figure 9.6 and 9.7, is the increase in
vertical load of the rolling tyre at constant axle height.

Figures 9.8 and 9.9 represent the measurements and simulations for all 15
investigated conditions in a convenient manner. For comparison the dynamic
force vs. slip characteristics are given and the longitudinal force is normalised by
the vertical force. The values of the vertical force used for the normalisation are
not the values for a non-rotating tyre (2000, 4000, 6000 N), but the values
obtained from fitting the measurements of stationary rolling at constant axle
heights as presented in Table 2.4b. Now, the y-axis represents the used portion of
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friction coefficient present between tyre and drum. The friction coefficient
increases from 0.6 at 25 km/h till 0.8 at 143 km/h.
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Figure 9.6: Tyre response on successive step increases of brake pressure.
F,,=4000N, V=25 km/h, (a) measurements, (b) simulation.
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Figure 9.7: Tyre response on successive step increases of brake pressure.
F,,=4000 N, V =59 km/h, (a) measurements, (b) simulation.
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Figure 9.10: Measured brake torque at five velocities and three axle heights.
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The model represents the measurements reasonably well. The input to the model
is the measured brake torque, see Figure 9.10. The results achieved by the rigid
ring model with a single-point contact tyre-road interface including the contact
patch relaxation length are comparable with the results achieved with tyre
models showing distributed deflections over the contact length [121,122].

At high levels of slip the model deviates from the measurements. This is
because the used slip characteristics (of brush model) do not represent the
measured slip characteristics accurately enough. The performance of the model
will improve if a better representation of the measured slip characteristics
(e.g. according to Magic Formula) is used.

9.4 Braking with wheel lock

The tyre model has also been validated for a brake manoeuvre resulting in wheel
lock and spinning up again. This manoeuvre is not used to validate the tyre
model properties themselves, but to validate the numerical stability of the
simulation model. Two numerical problems may show up at wheel lock owing to
the possible integration of theoretical slip to minus infinite and the dry friction
characteristic of the brake system.

The experiments have been performed at three axle heights and at one
velocity only (25 km/h). From ¢ = 0.5 to 1.5 seconds the brake pressure is kept at
a high level causing wheel lock within 0.25 seconds. In contrast to all previous
brake measurements, no averaging is performed. In the previous experiments,
the brake pressure signals were generated by a computer. Measurements could
be averaged easily because the excitation signal could be repeated. During the
wheel lock experiments the brake pressure is kept constant at a high level. The
tyre vibrations are not directly excited by the brake pressure changes. The tyre is
excited by two abrupt changes in the rotational velocity: directly after wheel lock
occurs and at spinning up of the wheel. The timing of these events depends
highly on the friction between tyre and road.

Figure 9.11 presents the measured tyre response. The brake torque increases
proportionally with the brake pressure until wheel lock occurs. The measured
brake torque consists of two contributions: the torque resulting from the
horizontal force generated in the contact patch and the torque needed to
accelerate and decelerate the wheel. At wheel lock the deceleration of the wheel
becomes abruptly zero causing a drop in measured brake torque. During wheel
lock the brake torque is sufficient to maintain this condition.
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Figure 9.11: Measured brake response with wheel lock.
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Figure 9.12: Simulated brake response with wheel lock.
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The wheel acceleration was obtained by numerically differentiating the wheel
velocity. Just before wheel lock occurs the wheel velocity decreases rapidly,
resulting in a large negative peak in the wheel acceleration. At spinning up of the
wheel the velocity increases rapidly causing a large positive peak of the wheel
acceleration. The measured wheel velocity and wheel acceleration signals
indicate that the motion of the wheel was not constrained completely. This is
probably due to flexibility between the wheel and the brake system.

Figure 9.12 presents the simulated brake response. For these simulations the
brake torque was not used as input, because of the fact that especially during
wheel lock the measured brake torque must be regarded as a response of the tyre
wheel-system rather than as an input to the system. Therefore, the brake
pressure was used as input for the simulation model. The frictional force
generated in the brake system depends on the applied brake pressure and the
wheel velocity. The constraint equations used are given in Section 7.4.

The model represents the measurements rather well. We see wheel lock
within 0.25 seconds. The constraint equation for the brake system operates well.
The rotational velocity of the wheel is exactly zero during wheel lock. The tyre
model generates a constant force during wheel lock. At spinning up of the wheel
the simulations show the same vibrations as the measurements.

Section 6.2 introduces in the model limitation of the longitudinal slip at full
sliding. This limitation prevents the integration of the slip to plus or minus
infinity. If this limitation would not be employed in the model, the simulated
spinning up of the wheel would be delayed.

The abrupt change in wheel deceleration causes a vibration of the tyre. The
simulated frequency of this vibration is higher than the measured frequency.
This is probably caused by the flexibility between the brake system and the
wheel. This flexibility decreases the overall stiffness between brake system and
contact patch.

Owing to the use of the model with a constant friction coefficient the model
does not show the stick-slip behaviour which is shown very severely in the
measurements. However, a model with a decreasing friction coefficient at full
sliding shows only small vibrations and not the severe vibrations exhibited in the
experiments.
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9.5 Braking to stand-still

The rigid ring tyre model has also been validated for a brake manoeuvre to stand-
still. This is in contrast to all previous experiments, where the electric motor of
the drum was used to maintain a constant drum velocity.

We may see the rotating drum as the mass of a vehicle and the tyre is used to
slow down the drum. The goal of this experiment was to validate the tyre model
at varying velocity and to check the numerical stability of the model at zero drum
velocity. The difference between the tyre rotating on a drum and the tyre rotating
in a vehicle is that the longitudinal force in the contact patch is used to slow
down the drum, rather than the reaction force at the axle slowing down the
vehicle.

This experiment has been done only at one axle height, corresponding to
6000 N vertical load, because the moment of inertia of the drum is relatively
large. Only at high levels of vertical load can the tyre produce enough
longitudinal force to slow down the drum within a reasonable time span.

A periodic brake pressure signal was chosen, each brake cycle consisted of one
second free rolling, followed by two seconds of successive step increases until
maximum brake force, followed by one second free rolling. The initial velocity was
59 km/h and 8 brake cycles were used to brake the drum to a complete stand-still.
The resulting measuring time was 32 seconds. Due to limitations of the data-
acquisition system the 32 seconds measuring time was split into two 16 seconds
intervals and the sampling rate was decreased from 1024 Hz to 512 Hz.
Accordingly, the filter frequency was decreased from 400 Hz to 200 Hz. Figure
9.13a through 9.13d present the measured tyre and drum responses.

The drum is modelled as an equivalent moving mass m,, . slowed down by
two forces: the longitudinal force generated in the tyre contact patch F, and an

internal hysteresis force in the drum propulsion system F}_:

"/drum = (E’x - F}zyst )/mdrum (91)

where V,  denotes the velocity of the drum. The equivalent mass of the drum
equals all moments of inertia of the drum and its subsystems such as motor,
transmissions and brake systems. The value of the equivalent mass was
estimated from the drum deceleration and the measured longitudinal reaction
force in the wheel bearing during the successive step increases. The equivalent
mass equals 3800 kg for the drum with transmission in third gear (maximum
velocity 59 km/h).
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During the free rolling intervals the drum decelerated considerably owing to
internal friction in the drum propulsion system. This frictional force varied from
1000 N at 60 km/h to 400 N at 2 km/h. The influence of this friction is
represented by the hysteresis force F,

yst:

thst = (3685 +1431- |Vdrum|) : Sgn(Vdrum) (9.2)

Obviously the hysteresis force is the maximum friction force generated in the
drum propulsion system and it is acting in the direction opposite to the drum
velocity. In the simulation model this force is modelled as a dry friction force with
magnitude according to expression (9.2).

The brake pressure is used as input for the simulation model. At 10 km/h the
disc brake produces 25 Nm brake torque at 1 bar brake pressure; at 60 km/h this
value decreases to 17 Nm/bar.

Figures 9.13a through 9.13d compare the measured tyre response with the
simulated tyre response. These figures clearly show the decrease of the relative
damping of the in-phase rotational mode at decreasing velocity. A similar effect
was found from the random brake pressure variations presented in Figure 9.4.
The simulation represents the measurements rather well. except

At the end of both the simulation and the experiment a vibration of the drum
can be seen. Here, the drum vibrates against the tangential tyre stiffness. The
frequency of this vibration (1.7 Hz) results directly from the tangential stiffness
of the tyre (C, ,,=400000 N/m) and the equivalent mass of the drum (m,,,,,=3600
kg). The damping of these drum rotational vibrations is a result of the hysteresis
forces.

9.6 Conclusions

The rigid ring model gives a satisfactory representation of the dynamic tyre
responses to brake torque variations. The parameters of the model were
successfully estimated from the measured frequency response functions. The tyre
parameters should actually be taken as functions of the velocity, because the
measured natural frequencies apparently decrease with velocity. A further
improvement on the stationary performance of the model may be achieved by
changing the brush characteristics into a better representation like the Magic
Formula.
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Figure 9.13a Measured and simulated braking to stand-still (t=0-8 s).
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Figure 9.13b Measured and simulated braking to stand-still (t=8-16 s).
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Dynamic Tyre Responses to Short
Wavelength Road Unevennesses

10.1 Introduction

The study of vehicle dynamics on uneven road surfaces requires a mathematical
tyre model to transform the road profiles into forces at the vehicle hub. With long
wavelength road irregularities, the tyre-road interface may be governed by a
single-point contact model. For short wavelength irregularities, on the other
hand, a more detailed description of the tyre-road interface is necessary.

The approach used in this PhD study is to separate the tyre-road interface
from the tyre dynamics, as shown schematically in Figure 10.1. In Chapter 4 an
elaborated tyre model (the flexible ring tyre model) and extensive experiments
were used to obtain the quasi-static excitation of the tyre on short wavelength
irregularities. These quasi-static excitations were transformed into an effective
road surface and can be used as input to the rigid ring tyre model. The advantage
of this approach is that the dynamic simulations are relatively fast.

The flexible ring model (see Chapter 4 and 8) can also be used to calculate the
dynamic tyre responses in short wavelength conditions. The exact obstacle shape
can be used as input for such a model. However, this approach leads to
unacceptably large simulation times.
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Figure 10.1: The transformation of the road profile to forces at the wheel hub.

Table 10.1 presents a chronological literature study of the dynamic tyre

responses due to cleat impacts. These studies were generally performed to study

either vehicle comfort properties [8,15,47,79], or vehicle durability properties

[74,75). For these studies it was important that the tyre simulations were
relatively fast. The following items of interest are considered in Table 10.1:

Velocity. The low velocity experiments, used either to validate the enveloping
model, or to establish the effective excitation of the tyre in quasi-static
conditions. A literature study of the enveloping properties of tyres has already
been presented in Table 4.1.
Direction of the responses. The longitudinal and vertical forces acting on
the hub are important. This chapter presents the rotational wheel velocity and
accelerations as well.
Boundary condition at the axle. The boundary conditions for experiments
carried out on a rotating drum test stand were generally pinned conditions;
that is with constrained horizontal and vertical axle displacements. The tyre
dynamics were identified from the forces acting on the hub. For experiments
PRy P |

- A+l 1. < P |
U Lt aliiu

on a road surface a vehicle with a suspension was used an
vertical accelerations of the hub were measured.

Input to the model. Tyre models that describe tyre tread-band deformation
in detail can use the actual shape of the obstacle as input. For simplified
models effective excitations are used rather than the actual shape of the
unevenness. Oldenettel et al. measured the vertical response at low velocity (2
km/h) and determined the frequency response function between the high and
the low velocity excitation [79]. Ushijima et al. measured the excitation forces
under the cleat and used these forces as excitation to the model.

Tyre model. The Finite Element Models (FEM) have proven to be very
successful in enveloping obstacles at high velocities. Oertel [78] and Eichler
[24,25] used a 2-dimensional FEM. They increased the accuracy of the tyre-road

interface by adding massless sensor points between the node points. The

232




Dynamic Tyre Responses to Short Wavelength Road Unevennesses

2-dimensional FEMs are faster than full scale 3-dimensional FEM. Kao et al. [47]
increased the simulation speed by reducing a 3-dimensional FEM to a modal
representation with 8 fore/aft and vertical modes and 9 contact points. Bandel
[8] also used a modal model with even less modes. Mousseau et al. used both a
radial spring model and a 3-dimensional FEM; the relatively simple radial
spring model could not predict the dynamic tyre forces [75].
+ Experiments. The experiments were either carried out on a rotating test

drum or with a vehicle on the road.

Table 10.1: Literature survey on dynamic tyre responses on short wavelength

obstacles.
reference velo- |direction| axle model dynamic experi-
city |response input tyre model ments
o
a2 8 w B0 —
E g2 § 2 £ 3 3
. o 3
g~ dle § S|z % 8 g =
3 ® °- d|lg = B r o g -
2 S|l9 3| o P E G _E <
E Wl g B8 2|2 83 §lpoAQa 8 € B|lg g
2 2|l8 S|AR Bl 2 8|l » & E E|B8 8
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Oertel [78] e (o o |o ° ® °
Oldenettel [79] o o/ 0o o |0 ®
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10.2 Experimental setup

The experiments were carried out on the cleat and brake test stand that is shown
in detail in Appendix A. The tyre rotates on a drum with a diameter of 2.5 meter.
The tyre was excited by obstacles which were mounted on the drum surface. The
trapezoid cleat (obstacle 1) was created by mounting a metal strip to the drum.
Obstacles 2 and 3 were created by mounting cylindrical shells on half the drum
circumference, resulting in one positive and one negative step for each drum
revolution. The fourth obstacle was created by mounting the shells along almost
the entire drum circumference leaving a gap of 50 cm.

Obstacle 1, 2 and 3 are discussed in Chapter 4 for determining the effective
inputs. The effective input of obstacle 4 ‘negative cleat’ can be composed from one
negative and one positive step.

15 mm
v

obstacle 1: trapezoid cleat obstacle 2: positive step obstacle 3: negative step

] ' 15 mm 500 mm
_AV : -

obstacle 4: negative cleat

Figure 10.2: The four obstacles used.

The experiments were carried out at three constant axle heights, corresponding
to 2000, 4000 and 6000 N vertical load for a non-rotating tyre measured on the
undisturbed surface of the drum. The four obstacles are used to study the tyre
dynamics after obstacle impact. After the obstacle is passed, the vertical load will
tend to its average value while showing initial vibrations. For the tyre rolling
over positive step obstacles 2 and 4, the average vertical load during vibration
will be 3000 N larger due to the finally reached constant obstacle height of 15
mm. In other words, the experiments of the tyre rolling over obstacles 2 and 4
were effectively carried out at 5000, 7000 and 9000 N vertical load.

The experiments were carried out at three velocities: 25, 39 and 59 km/h.
This choice of velocities resulted from the transmission ratios of the drum
propulsion system. The maximum velocity was restricted owing to the large
impact forces and the settling time of the tyre vibrations between two impacts. At
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60 km/h the drum rotates at approximately one revolution per second. When the
cylindrical shells are mounted on half the drum circumference, the time interval
between the positive step and negative step is only 0.5 seconds. At higher
velocities, the tyre has not reached a steady-state situation at the next cleat
impact.

In total 36 experiments were carried out for a free rolling tyre (4 obstacles at
3 axle heights and 3 velocities). 96 experiments were carried out at various levels
of constant brake torque to study cleat impacts on a braked tyre as well.

The wheel axle was fixed in a frame to constrain its vertical and horizontal
motion. The reaction forces of the wheel were measured with piezo electric
elements mounted above the wheel axle bearings. These sensors can only
measure the variations of the force due to a drifting effect. As in the brake
experiments, the vertical load at constant axle height will increase with
increasing velocity. The exact values of vertical load in given operating conditions
(axle height and velocity) are presented in Table 2.4b.

The other sensors were the wheel velocity sensor and the brake torque
sensor. The brake torque sensor did not only measure the constant brake torque
but also the torque needed to accelerate and decelerate the brake system in
rotational direction. By dividing the variations in measured torque by the
moment of inertia of the rotating parts between sensor and brake callipers, the
rotational acceleration of the wheel could be obtained as well.

An optical cleat passage sensor was used to trigger the data acquisition
system. Using this trigger it was possible to average the tyre responses reducing
the influence of tyre non-uniformities and other sources of noise. The
measurements were averaged 20 times for free rolling conditions and 10 times for
braking conditions.

10.3 Natural frequencies obtained directly from the measurements

This section presents the natural frequencies which were obtained directly from
the experimental data without using tyre models or knowledge of the excitation
of the tyre by unevennesses. The measured time signals were transformed into
the frequency domain. The auto-spectral densities of the tyre responses are used
rather than the frequency response functions, as the excitation is assumed to be
unknown at this stage.

The measured auto-spectral density function in a narrow frequency band
around an expected natural frequency is used to estimate this frequency. In this

235



Chapter 10

narrow band the input signal is assumed to be of constant mean square density
and the frequency can be estimated from the position of the peak and the relative
damping from the sharpness of the peak. The method is not very accurate as the
input spectrum is usually non-constant. The method used to estimate the natural
frequency and damping from auto-spectral density functions is identical to the
method used to estimate these quantities from a frequency response function, see
Equations (8.2) through (8.5) in Section 8.2.

The results are presented in Figures 10.3 through 10.5 where the estimated
frequencies are plotted as functions of vertical load, velocity or average brake
force. Each estimated frequency is indicated by a small circle. Only data which is
thought to be reasonable is presented in these figures: first, the relative error in
the estimation (Eq. 8.5) should be small enough, second the estimated frequency
should lie in a narrow band (+ 10 Hz), and third, the estimated damping should
lie in a narrow band (= 5%) as well. From the data scatter it can be seen that this
method is not very accurate for estimating tyre natural frequencies.

Table 10.2 presents the average frequencies of the five identified modes. The
measured vertical force response shows two resonance frequencies: the vertical
mode where the belt moves approximately as a rigid body at 76 Hz, which is in
this thesis referred as the vertical mode of the tyre, and the first flexible mode in
vertical direction (mode 2% in the Figures 8.3 and 8.4).

Table 10.2: The average natural frequencies obtained from the experiments.

tyre-wheel mode natural frequency relative damping
first vertical flexible mode 111 +4 Hz 3+2%
first longitudinal flexible mode 91+ 2 Hz 4+2%

the vertical mode 76 + 3 Hz 5+2%
anti-phase rotational mode 74 + 4 Hz 5+2%
in-phase rotational mode 28 + 3 Hz 20+ 13 %

Three measured signals were used to estimate the longitudinal and rotational
tyre modes: the longitudinal force, the rotational wheel velocity and the
rotational wheel acceleration. Three longitudinal and rotational resonance
frequencies were obtained: the in-phase rotational mode at 28 Hz, the anti-phase
rotational mode at 74 Hz, and the first flexible longitudinal mode, corresponding
to mode 2 in Figures 8.3 and 8.4. The natural frequencies of the rigid ring tyre
model which velocity dependent sidewall stiffnesses are depicted in Figures 10.3,
10.4, and 10.5 as well.
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Figure 10.3: The tyre natural frequencies as function of the vertical load.
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Figure 10.5: The tyre natural frequencies as function of the average brake force.
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The relative damping of most modes varies between 3 and 5%. As already
discussed in Section 9.2, the damping of the in-phase rotational mode depends
highly on the slip stiffness and the velocity.

10.4 Excitation of the tyre by the effective road surface

The effective road surface, introduced in Chapter 4, is used in Sections 10.5
through 10.8 as excitation of the rigid ring tyre model. This section presents the
excitation of the effective road surface in the frequency domain by means of the
auto spectral density functions. Two methods of modelling the excitation of the
tyre by the effective road surface are considered the first method can be used at
fixed axle height, and the second method can be used at varying axle height as
well.

Spectral densities of the excitation of the effective road surface

The effective road surface is constructed from basic functions, resulting in
unequally distributed energy in the frequency range. Figures 10.6 and 10.7 show
the auto-spectral densities of the effective plane height and the effective plane
angle as function of the velocity and undisturbed vertical load. The auto-spectral
densities of the positive step (obstacle 2) are identical to the those of the negative
step (obstacle 3) even though the signals in the time domain are mirrored. These
figures illustrate that the excitation of the tyre is highly velocity and load
dependent. We furthermore may distinguish zeros (i.e. frequencies with
amplitude zero) in the signals The zeros in the spectral densities will influence
the identification of the tyre dynamics adversely: tyre natural frequencies cannot
be identified if they coincide with a frequencies of a zero in the input spectrum.

If we divide the velocity by the frequency we can obtain the wavelengths of
the zeros. It is most striking to see that the wavelengths of the zeros are not
related directly to the overall length of the obstacles or the overall length of the
effective inputs. To understand the mechanism of the origin of the zeros we have
to return to Chapter 4 where the effective inputs were defined as convolutions of
basic functions with impulse functions, as indicated in the Figures 4.15 and 4.16.
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Figure 10.6: The auto spectral densities of the effective road plane height.
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Figure 10.7: The auto spectral densities of the effective road plane angle.
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A convolution of two functions in the time domain is identical to a multiplication
of the Fourier transformed functions in the frequency domain. Thus, to identify
the zeros in the responses, we may study the two Fourier transformed functions
separately. Accordingly, the zeros in the effective road surface are related to
either the basic functions or to the two shifted impulse functions.

Both the basic functions and the shifted impulse functions may generate a
series of zeros in the auto-spectral densities of the effective road surface. Table
10.3 presents the expressions of the zeros as function of the length of the basic
functions X, and the shift of the impulse functions ,,,,. The length of the basic
functions is independent of the vertical load. These shifts of these functions,
which are slightly smaller than the contact length, increase with the vertical
load.

The basic function for obstacle 1 (trapezoid cleat) is equal to half a sine wave.
The effective plane height results from the convolution of the basic function with
two positive impulse functions shifted over a distance A,

imp”

The effective plane
angle results from the convolution of the basic function with one negative and one
positive impulse function shifted over the same distance.

The basic function of the obstacles 2 and 3 is represented by a quarter of a
sine wave. This basic function does not provide any zeros in the power spectral
densities. Accordingly, the zeros in the effective road surface of these obstacles
are related to the shift in the impulse functions only.

Table 10.3: The wavelengths of the zeros in the power spectral densities of the
effective road plane height and effective road plane angle.

obstacle effective wavelength zeros from
number input basic function contact length gap length
effective 2 2 A —_
1 plane height on+1 2n-1 "
effective 2 2 1 A
1 1 o 1 bf - imp -
plane angle 2n+1 n
effective - 2 2. —
2.3 plane height 2n-1 "
effective _ l A —
plane angle n "™
effective o 2 A 1 N
4 plane height 2n-1 """ n 5
effective . 1 A 1 2
plane angle n 7 n_ %
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Figures 10.6 and 10.7 do not present the auto-spectral densities of the effective
road surface of obstacle 4 (negative cleat) as these spectra have too many zeros to
depict the responses clearly. The effective road surface of obstacle 4 can be
decomposed into the effective road surface of obstacle 3 (negative step) and
obstacle 2 (positive step), or, in other words, into a convolution of the effective
road surface of a step obstacle with shifted positive and negative impulse
functions. This additional convolution will give zeros with parameter the length
of the gap A__ . The length of the gap is large compared to the length of the basic

gap’

functions %, or the shift in these function 2, .

the zeros resulting from the length of the gap are much lower than the

This means that the frequencies of

frequencies of the other zeros.

It is striking to see that most zeros (for obstacle 2, and 3 all zeros) depend
only on the length of the contact patch. This means that changing the shape or
height of the obstacles does not influence the positions of most zeros. To excite
the tyre in a broad frequency range it is important to perform experiments at
many axle heights and velocities rather than using many obstacle shapes.

The large number of zeros makes it almost impossible to estimate the
frequency response functions of the tyre on an effective road surface. Only if the
actual conditions match the expected conditions exactly, the zeros in the tyre
responses will coincide with the zeros in the inputs. Therefore, in the subsequent
sections the auto-spectral densities of the simulations are compared to auto-
spectral densities of the measurements rather than using the frequency response
functions.

Table 10.4 presents the parameters of the basic functions. The first two
columns comprise the data from either the quasi-static experiments or the quasi-
static simulations of Chapter 4. The quality of the fit of the dynamics responses
(see next Sections) is influenced strongly, even though the difference in the
parameter values between the various experiments is rather small. Processing
the measured dynamic responses showed that the zeros in the auto-spectral
densities of the tyre responses did not coincide exactly with the zeros in the input
spectrum. For this reason, the parameters of the basic functions are altered such
that the zeros in the input spectrum match the zeros in the dynamic responses
best. The last column of Table 10.4 shows these altered values.
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Table 10.4: The parameters of the basic functions

obstacle symbol measured simulated from dynamic
number parameter quasi-static quasi-static tyre response
(see Chapter 4) (see Chapter 4)
Mot 0.1432 0.1401 0.1510
Aipp at Fg=2kN 0.0624 0.0572 0.0700
1 Aimp at F g =4 KN 0.0906 0.0904 0.0920
Mimp 8t F g =6 kN 0.1231 0.1197 0.1140
Aoy 0.0953 0.0949 0.0950
Aimp 8t Fg =2 kN 0.0727 0.0625 0.0770
2 Aimp 8t F g =4 kN 0.1023 0.1025 0.1012
Aimp at Fo=6 kN 0.1358 0.1331 0.1397
Aoy 0.0985 0.0945 0.0950
Mimp 2t Fg=2 kN 0.0665 0.0633 0.0770
3 Aimp 8t F o =4 kN 0.0939 0.1057 0.1012
Mimp 8t F g =6 KN 0.1274 0.1326 0.1397

Excitation of a model at constant axle height

In Chapter 4 the quasi-static excitation of the tyre on short wavelength
irregularities and constant axle height was transformed into an effective road
surface (¢f. Eq. 4.22a,4.23a and 4.38b). Chapter 4 showed that effective inputs
(1D, E and 7 ) depend highly on ohstacle shape and constant axle height. In this
chapter the effective road surface is used as input to the rigid ring model. First,
we will discuss the excitation of the linearised model running at constant axle
height.

The variation in effective plane height @ generates the vertical force
variations F,, in the contact patch through the radial residual stiffness c,,:

F,=(0-%,)c, (10.1)

cz

where z, denotes the change in vertical position of the tyre ring. The tyre is
excited longitudinally and rotationally by the effective plane angle variation and

the effective rolling radius variations. The effective plane angle variation f
results in a longitudinal force variations F,, acting on the tyre ring:

i‘cx = EFZO (102)
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where F,, denotes the vertical force on an undisturbed road surface. The
additional effective rolling radius variations 7,, due to the short wavelength
unevenness give additional slip velocities in the contact patch:

‘Z’,sx = 56[) - r306b + TlQﬁcz + ;‘;CQ (103)
The full set of linearised equations is given in expressions (7.51). The linearised
model may be used to estimate the parameters at the given operating conditions.

Excitation of the model at general conditions

The equations of motion of the non-linear simulation model of the rigid ring
model are presented in Section 7.3. The tyre-road interface of this non-linear
model on short wavelength unevennesses is employed in expressions (7.33)
through (7.37). The non-linear model is designated to be used for vehicle
simulations. It is obvious that the axle height is not constant during vehicle
motions over uneven roads.

Chapter 4 showed that the shift of the basic functions can be expressed in
terms of the axle height above the undisturbed road surface because the shift
depends on the contact length and the contact length depends on the vertical tyre
deformation. Consequently it is important that the height of the obstacles
relative to the undisturbed road surface is small as the contact length of the tyre
on the undisturbed road surface is used to determine the shift of the basic
functions.

The undisturbed road surface may be easily determined for the experiments
carried out on the rotating drum test stand in the laboratory: the height of the
obstacles is small and the drum surface with no cleat mounted is defined as the
undisturbed road surface. For the tyre running on a general road surface, on the
other hand, it is considered difficult to determine the undisturbed road surface.
Furthermore, the height road unevennesses of a general road cannot be assumed
small with respect to the undisturbed road surface.

For the tyre running on a general uneven road surface it is thought to be
easier to asses the alternative set of basic functions where the vertical load is
kept constant at different levels rather that the axle height is kept constant at
different levels. The shift of the basic functions now directly results from the
contact length at the given level of vertical load. In Section 4.8 the effective
inputs were obtained from simulations at constant vertical load rather than
constant axle height. The analysis showed that the effective excitation of the tyre
obtained from simulation with constant vertical load could also be represented by
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shifted basic functions. Furthermore, the analysis in Section 4.8 showed that
these basic functions depends on the obstacle shape and tyre radius, and the shift
of these functions depends on the contact length a.

The original approach, depicted in Figure 10.1, will be replaced by the
approach presented in Figure 10.8. The basic functions may be obtained off-line
by using, for instance, the flexible ring model. In Section 4.8 an alternative
approach was suggested, using the response of a rigid wheel. More research will
be needed before this relative simple approach can be used.

actual basic effective forces
road - functions road at the
profile . surface hub
geometric » shifting > tyre. s
| filter dynamics
: vertical
L y \ load in
) contact
tyre radius contact length contact patch patch
L— §

Figure 10.8: The enhanced tyre-road interface.

The vertical force in the contact area F,, varies due to the road unevennesses and
axle height variations. Consequently, the contact length 2a will change and
thereby influencing the effective excitation of the tyre. An iteration procedure is
needed to solve for the shift A, , of the basic functions as this shift depends on the
contact length (¢f. Eq 7.33), the contact length depends on the vertical force in the
contact patch (¢f. Eq. 7.29) and the vertical force depends on the effective plane

height {¢f. Eq. 7.23).
Comparison with the measurements

In the subsequent sections results of test at constant axle heights are compared
with simulations using the linearised and the non-linear rigid ring model. The
basic functions for effective inputs assessed at constant axle height were used in
connection with the linearised model. The alternative functions at constant
vertical loads were employed in the non-linear model. Using the vertical tyre
stiffness, the effective inputs defined at constant axle height can be transferred
into the effective inputs defined at constant vertical load.

Section 10.5 presents the comparison between the measured vertical tyre
responses and the simulated vertical tyre responses with the linearised rigid ring
model. The subsequent section presents the longitudinal responses of the tyre.
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Sections 10.7 and 10.8 present the influence of the obstacle shape and the
average brake torque respectively. The goals of the research presented in these
sections are: (1) to validate the rigid ring model, (2) to validate the method of
replacing the actual road surface excitation of the tyre by effective road surface
inputs; and (3) to estimate the parameters of the rigid ring tyre model. It should
be noted that the parameter values of the model obtained from the frequency
response functions to brake torque variations presented in Section 9.2 were
considered most adequate and therefore used in the simulations.

The figures in this chapter present a selection of the experiments conducted
as it is not feasible to present the responses of all 128 conditions investigated.
The time base is shifted such that at t=0 the tyre is exactly on the centre of the
obstacle.

Before we are able to compare the measurements with simulations we have
to match the simulation conditions with the measurements. The most important
factor is the exact timing of the cleat excitation. The highest frequency of interest
is approximately 79 Hz. This represents a wavelength of 9 mm at the lowest
velocity (25 km/h). Consequently, the accuracy of the cleat position measurement
should be much smaller than 9 mm.

The cleat position is monitored by an optical sensor which generates an
impulse like signal at cleat passage. Although this sensor is very useful for
triggering the data acquisitions, it is not accurate enough for assessing the cleat
position as the shape of this impulse like signal varies with the drum velocity.
Therefore, the exact position of the cleat is used as an additional parameter in
the parameter fit routine.

10.5 Vertical tyre responses to a trapezoid cleat

Figure 10.9 presents the measured and simulated responses of the vertical force
for three axle heights corresponding to 2000, 4000 and 6000 N vertical load for
the non-rotating tyre and three velocities: 25, 39 and 59 km/h. The time base is
shifted such that at ¢=0 the tyre is exactly on the centre of the obstacle. The
simulations presented in this section were performed with the linearised rigid
ring model. The vertical responses of the non-linear model are very similar to the
presented responses of the linearised model.
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The response of the vertical force at low velocity is a combination of the excitation
of the tyre by the unevenness (i.e. the effective plane height) and free tyre
vibration with a natural frequency of 76 Hz after cleat passage. At higher
velocities the excitation of the tyre in the vertical direction will become more
impulse like.

The shape of the auto-power spectral density function of the vertical force (see
Figure 10.10) is very much related to the auto-power spectral density functions of
the effective plane height (see Figure 10.6). The amount of vibration after cleat
impact depends highly on the velocity and vertical load. At 2000 N, 25 km/h and
6000 N, 59 km/h the vertical mode of vibration is hardly excited because the
natural frequency of this mode coincides with a zero in the input spectrum. At
6000 N, 39 km/h and 2000 N, 59 km/h, on the other hand, the tyre shows large
vertical vibrations after cleat impact as the input spectrum contains much energy
at 76 Hz.

We may distinguish the same zeros (i.e. frequencies where the amplitude is
zero) in the spectrum of the vertical force as in the spectrum of the effective plane
height. For example at 25 km/h the zeros related to the length of one basic
function and are independent of the vertical load: 70 and 115 Hz. The other zeros
in the frequency range 0-150 Hz at 25 km/h are related to the contact length and
shift with the vertical load: from 55 Hz at 2000 N, 35 Hz at 4000 N, to 30 Hz at
6000 N. At higher velocities the frequencies of all zeros will shift to higher values.

Figures 10.9 and 10.10 show that the rigid ring model with the effective road
surface as input describes the vertical tyre dynamics rather well in the frequency
range up to 100 Hz. Above this frequency the model deviates from the
measurements because the higher order modes are not taken into account in the
rigid ring model. The frequencies of the higher order can be identified from the
high velocity experiments at 110 Hz and 140 Hz. These frequencies probably
correspond to the first two modes of vibration where the belt does not keep its
circular shape during vibration (modes 2% and 3%z of Figures 8.3 and 8.4).

The results of the measured and simulated vertical responses of the tyre at
constant axle height running over a trapezoid cleat corresponds to the studies
presented in literature [8,46,78,79]. The response of the vertical force at constant
axle height is rather similar to the response of the vertical hub acceleration of the
wheel in a vehicle suspension [25,47]. Oldenettel et al. [79] studied the influence
of the velocity on the shape of the frequency spectrum of the vertical force. They
found similar results compared to those presented in Figure 10.10: the excitation
of the tyre depends highly on the velocity and the zeros in the spectrum shift with
the velocity. Oldenettel et al. showed that a mode of vibration could only be
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identified when the natural frequency did not coincide with the frequency of a

zero in the input spectrum {79].

10.6 Longitudinal tyre responses to a trapezoid cleat

The longitudinal force variations, the rotational wheel velocity and accelerations
represent the tyre dynamics in longitudinal and rotational directions. The
influence of effective plane angle variations is relatively small; the effective
rolling radius variations are much more important. The resulting slip velocity
variations generate longitudinal forces in the contact patch. These longitudinal
force variations accelerate and decelerate the wheel in rotational direction.

Figure 10.11 compares the measured longitudinal forces with the simulations
of the linearised tyre model in the time and frequency domain. This figure shows
that the linearly simulated forces are much larger than the measured forces. The
reason for this difference is the constant slip stiffness of the linearised model.
During cleat impact, large horizontal forces arise in the contact patch: the peak
values of the longitudinal force can be up to 40% to 90% of the vertical force. The
longitudinal slip stiffness during cleat impact will become much smaller owing to
these large longitudinal forces. Therefore it cannot be assumed that the slip
stiffness is constant.

The non-linear simulation model represents the measurements much better,
see Figure 10.12. In this model the slip stiffness decreases with increasing
longitudinal force, resulting in a smaller excitation of the longitudinal vibrations
of the tyre. Furthermore, the effective excitation according to the scheme
presented in Figure 10.8 is used, which means that the effective inputs depend on
the vertical force in the contact patch. In other words, the condition that the axle
height was constant was not used in the non-linear simulation model. All the
simulation results presented from this point onwards were obtained by using the

non-linear simulation model.
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It is interesting to see that the first small peak in both the measured and
simulated responses of longitudinal force is oriented in the positive rather than
the negative direction. According to the road plane angle variations, the first
peak in the longitudinal force should be negative. But, as stated before, the
influences of the rotational velocity variations of the wheel are much more
important than the variations of the effective plane angle. The effective rolling
radius increases rapidly if the tyre hits the trapezoid cleat (c¢f. Figures 4.10 and
4.11), resulting in a negative slip velocity according to the definition of Equation
(3.2). This negative slip velocity generates the first positive peak in the response
of the longitudinal force.

The first positive peak in the longitudinal force is also found in other
experimental studies [8,25,75,79]. The same effect is also represented by the
finite element models of Mousseau [75] and Eichler [25], where the actual shape
of the obstacle was used as input. The modal model of Bandel [8] with the
effective plane angle as input showed this first peak as well.

Figure 10.13 presents the measured and simulated longitudinal tyre
responses: the variations in longitudinal force at the wheel axle, the variations in
rotational velocity of the rim and the rotational acceleration of the rim. The
literature studied by the author presents only the dynamic responses of the
longitudinal forces [8,15,25,46,47,75,78,79]. The rotational wheel velocity and
wheel acceleration provide additional information to validate the dynamic tyre
model.

Figure 10.14 shows the measured and simulated auto spectral densities of the
longitudinal responses. The measured spectral density of the longitudinal force
shows three modes of vibration in the frequency range 0-100 Hz: the in-phase
rotational model at 31 Hz, the anti-phase rotational mode at 72 Hz, and a
resonance at 90 Hz. The last mode, which is not represented by the rigid ring
model, is the first flexible mode in longitudinal direction: mode 2 of Figures 8.3
and 8.4. Bruni et al. erroneously identified the first flexible mode as the
horizontal mode of the rigid ring model [15]. This horizontal mode results from
the horizontal constraint in the contact patch of the rigid ring model (cf. Section
8.5) and cannot be found in measurements (cf. Figure 8.3). The measured time
response of the longitudinal force (Figure 10.13) shows a beating phenomenon as
the difference in frequencies between the anti-phase rotational mode (72 Hz) and
the first flexible mode (90 Hz) is rather small.
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The measured rotational wheel velocity and rotational wheel acceleration show
only two modes in the frequency range 0-100 Hz: the in-phase rotational mode at
31 Hz and the anti-phase rotational mode at 72 Hz. This is consistent with the
modal analysis results presented in Chapter 8, where the amplitude of the wheel
rotation decreases rapidly with increasing mode number.

Both the measurements and the simulations show that the in-phase
rotational mode is the most important mode of vibration at low velocity. At
higher velocity, the relative damping of this mode increases and the other modes
of vibration become more important. Unfortunately, the simulated amplitude of
the vibrations of the anti-phase rotational mode is too low compared to the
measured tyre vibrations. This effect was already observed at the brake torque
variations in Section 9.2.

To provide insight into the longitudinal excitation of the tyre the Frequency
Response Functions (FRF) of the linearised model are examined. Figure 10.15a
presents the FRF of the longitudinal force F, and rotational wheel acceleration ¢,
with respect to the effective plane angle variations. These FRFs clearly show the
two modes of vibration in longitudinal direction: the in-phase rotational mode at
31 Hz and the anti-phase rotational mode at 72 Hz.

Figure 10.15b presents the FRF of the longitudinal force F, and rotational
wheel acceleration ¢, with respect to the effective rolling radius variations. These
FRFs are the most important ones, since the influence of the effective rolling
radius variations is much larger than the influence of the effective plane angle
variations. These FRFs, presented in Figure 10.15b, do not show a clear resonance
at 72 Hz. First, the phase difference between the response of the force and the
rotational acceleration is 180 degrees, rather than the 0 degree according to the
natural mode of vibration; and second, the peaks in the FRFs do not coincide
exactly with the natural frequency: the peak frequency of the force is somewhat
greater and the peak frequency of the acceleration is somewhat smaller than the
natural frequency. This difference between peak frequencies can also be seen in
the measured and simulated auto-spectral densities, see Figure 10.14.

At higher values of vertical load the relative damping of the in-phase
rotational mode decreases. Furthermore, the slip stiffnesses increase with
increasing vertical load, resulting in greater excitation of the tyre due to the
effective rolling radius variations. Both effects can be seen in the measured and
simulated tyre responses, see Figures 10.13 and 10.14.
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(a) FRF to effective plane angle variations (b) FRF to effective rolling radius variations
oo —F
10 . ‘ ,
|
1
710
1011
180

phase [deg]
=

phase [deg]
[«

|
N3
o

, 4 -90 N
\ \‘/' — ]
~180 [ T Y B I | j _ I I I I .
0

20 40 60 80 100 0 20 40 60 80 100
frequency [Hz] frequency [Hz]

Figure 10.15: The simulated frequency response functions of tyre response due to
the effective plane angle and the effective rolling radius variations.

10.7 Tyre responses to other obstacle shapes

This section discusses briefly the influence of the obstacle shape on the tyre
responses. The measurements and simulations with the non-linear model were
performed for all obstacle shapes depicted in Figure 10.2. Figure 10.16 presents
the tyre vibrations for one vertical load and velocity after rolling over the positive
step (obstacle 2), the negative step (obstacle (3), and the negative cleat (obstacle
4). The time bases of the responses are shifted such that the negative step takes
place at =0 s, and the positive step takes place at £=0.042 s. The negative cleat
causes a negative step at t=0 s and a positive step at {=0.042 s. The negative cleat
is not only a realistic road unevenness (e.g. a pothole), but is also chosen to prove
the superposition principle.
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Figure 10.16: The responses of the free rolling tyre at F,,=4000 N and
V =39 km/h: influence of obstacle shape.
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At first sight one might think that the responses for the positive and the negative
step should be identical However, this is not true as the vertical load increases
roughly from 4000 N to 7000 N for the positive step and decreases from 7000 N to
4000 N for the negative step, and most of the tyre vibrations take place after the
cleat impact. Consequently, after a positive step the vibrations take place at a
much larger vertical load than the vibrations after a negative step. The damping
of the in-phase rotational mode is strongly influenced by the average vertical
load.

The vertical tyre responses (top graphs of Figure 10.16) show the vertical
mode of vibration at 76 Hz. The other graphs represent the longitudinal and
rotational tyre responses. The longitudinal force, rotational wheel acceleration
and velocity clearly show the in-phase rotational mode at 31 Hz. The relative
damping of this mode after the negative step is much larger than after the
positive step, owing to the difference in average vertical load. Another influence
of the step change in vertical load is the increase or decrease in effective rolling
radius: the rotational wheel velocity that is finally achieved increases slightly
after a positive step and decreases slightly after a negative step.

10.8 Tyre responses during braking

This section presents the responses of a constantly braked tyre rolling over
obstacles. This situation is in contrast to the results presented in the previous
sections, where only a free rolling tyre was considered. Braking the tyre will not
only influence the modes of vibration as presented in the root-loci of Figure 8.9,
but it is also a severe condition for the rigid ring tyre model. Obviously, the non-
linear simulation model has to be used for these severe conditions.

Experiments and simulations of a braked tyre were performed for four
obstacle shapes, three velocities and three axle heights. Figures 10.17 and 10.18
present a selection of the performed experiments: the responses at one velocity,
one axle height, and three levels of constant brake torque. The brake torque level
varies from free rolling (very low values of brake torque) to large levels of brake
torque (close to wheel lock). The value of the brake torque M, is indicated in the
upper right corner of the graphs.
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Figure 10.17: The influence of the average brake torque on the response of the
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During rolling over short wavelength obstacles, the contact between tyre and
road may be divided into more than one small contact patch rather than one
large contact patch. Deformed tread elements moving from one contact patch to
another will lose their deformation. A tread element entering a new contact patch
needs some time to build up a new deflection.

The tyre-road interface of the rigid ring model is governed by a single-point
for the vertical excitation and a relaxation length contact model. The relaxation
length concept is based on a finite contact length and the input to the relaxation
length model is the slip velocity of a single point (point S). The multiple contact
patches due to the obstacle shape are not represented by this model.
Nevertheless, this model is able to represent a braked tyre rolling over a short
wavelength obstacle in an approximate way.

Figure 10.17 presents the responses of the longitudinal force and Figure
10.18 presents the responses of the wheel velocity. The responses of the
rotational wheel acceleration are not presented as these responses are very
similar to the responses of the longitudinal force. The responses of the vertical
force are not shown either, as these responses are hardly influenced by the
average brake torque.

The uppermost graphs of Figures 10.17 and 10.18 present the measured and
simulated responses of the tyre rolling over the trapezoid cleat. These graphs
present the results of the trapezoid cleat at 2000 N load rather than 4000 N
because the attachment of cleat to the drum restricted the maximum brake
torque. A brake torque level close to wheel lock could only be achieved at 2000 N
vertical load.

'The major influence of an average brake torque is the decrease in the slip
stiffness resulting in an increase in the damping of the in-phase rotational mode.
The amplitude of the tyre responses to the trapezoid cleat is hardly affected by
the brake torque. The first small peak in the force response is oriented in the
positive direction and results from the sudden increase in the effective rolling
radius, as already discussed in Section 10.6. The amplitude of this first peak,
which is related to the slip stiffness, decreases with increasing brake torque.

The second row of graphs of Figures 10.17 and 10.18 presents the tyre
responses to the second obstacle: the positive step. The tyre vibrations take place
after the positive step, thus at 7000 N average vertical load rather than 4000 N.
The large brake torque (which results in a situation close to wheel lock at
4000 N) is effectively a medium brake torque at 7000 N. Simultaneously, the
relative damping of the in-phase rotational mode does not increase as much. The
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wheel velocity increases after the step because at higher values of vertical load
less slip is needed to obtain the same longitudinal force.

The average brake torque has a larger influence on the negative step than on
the positive step because the vibrations for the negative step take place at
4000 N. At the high level of brake torque, the tyre produces approximately the
maximum possible longitudinal force and the slip stiffness approaches zero. This
results in a supercritically damped in-phase rotational mode. Another effect is
that the vertical tyre vibration at 76 Hz influences the generation of the
longitudinal force in the contact patch.

The responses of the tyre rolling over the fourth obstacle constitute a
combination of the negative and positive step. The damping of the in-phase
vibration after the negative step is much larger than the vibration after the
positive step. For these situations one really needs the non-linear simulation
model that has been employed.

Summing up: the non-linear rigid ring model is able to simulate simultaneous
braking and rolling over obstacles. Unfortunately, these results could not be
compared to other studies, as there no such studies are available in the
literature.

10.9 Simulations with non-constraint axle height

As stated in Section 10.4 the effective inputs assessed at constant vertical loads
can be used for simulations where the axle height is not constant. This section
will show the results of simulations where the axle is mounted in a suspension.
In these simulations the height of the vehicle body was constant and the axle
could only move in vertical direction. The parameters of the suspension are: mass
of the axle m, = 13 kg, vertical stiffness of the suspension c,, = 20000 N/m,
vertical damping coefficient suspension £,, = 1700 Ns/m.

Figure 10.19, 10.20 and 10.21 show the results of the simulations: the
vertical forces in tyre and suspension, and the vertical motions of the tyre and
the axle. Unfortunately we are not able to validate the simulations with
experiments since the experiments were only carried out at constant axle height.
The height of the vehicle body is constant during the simulations and at the start
of the simulation the tyre is load on the road (F, = 4000 N). At low velocity the
axle follows approximately the vertical profile of the road surface and the
variations in vertical load are small. At high velocity, the vertical axle motion is
excited strongly resulting in a large variation in the forces.
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Figure 10.19: The vertical tyre response of the tyre rolling over obstacle 1 with

axle mounted in a suspension.
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Figure 10.21: The vertical tyre response of the tyre rolling over obstacle 3 with
axle mounted in a suspension.

The simulations show that the method of assessing the effective input can be

used with a moving axle.
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Dynamic Tyre Responses to Axle Height
Oscillations While Braking

11.1 Introduction

This chapter presents the responses of a tyre subjected to a constant brake torque
during variations of the axle height. Very severe conditions were also considered:
axle height oscillations where the vertical force decreases to such an extent that
wheel lock occurs, including the case where the tyre loses contact with the road.

For a tyre operating in a vehicle, axle height oscillations occur due to
suspension travel of the wheel. Pacejka et al. studied the influence on the in-
plane behaviour of a free rolling tyre to axle height oscillations [82]: slip
variations occur owing to effective rolling radius variations as function of the
vertical load (cf. Eq. 3.27). The slip velocity variations result in variations in
longitudinal force. Another effect is the rolling resistance because the rolling
resistance force is proportional to the vertical load. For a tyre subject to a
constant brake torque, the variations in the longitudinal force are larger because
the generated longitudinal force depends highly on vertical load.

It is well known that axle height oscillations during constant side slip angle
have an adverse effect on the generated lateral forces |86,106,107]. Not only do
large variations occur in the lateral forces, but the average value of the lateral
force is also affected. In contrast, the average value of the longitudinal force at
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constant brake torque is almost unaffected by the variation of the axle height as
long as wheel lock does not occur. The reason for this is the that average
longitudinal force in the contact zone has to counterbalance the average applied
brake torque.

Force variations also occur owing to rotational accelerations of the wheel to
achieve a new value of slip, since at high values of vertical load, less slip is
needed to generate a longitudinal force than at low values of vertical load. To
obtain these variations of wheel slip, the wheel has to be accelerated or to be
decelerated in the rotational direction. In conclusion, there are four mechanisms
that contribute to the variations of the longitudinal force to axle height
oscillations:

o The variation of the effective rolling radius.

e The rolling resistance force.

o The load dependency of the slip stiffness.

e The forces needed to accelerate and decelerate the wheel in rotational
direction.

The axle height experiments were not used to obtain the parameters of the rigid

ring model. For the simulations, the parameter values obtained in the previous

chapters were used (¢f. Table 7.1). To be able to simulate the tyre responses in

the most severe conditions (wheel lock) the following properties of the simulation

model are important:

o The first order differential equation of the slip in the contact zone which can be
used at zero velocity (¢f. Eq. 6.18).

« The value of the slip is limited during wheel lock. Otherwise, the simulated
spinning up of the wheel would occur much later (cf. Section 6.2).

o The brake torque that is modelled as a dry friction torque (c¢f. Section 7.4).

e The vertical force that is only generated in the contact patch if the vertical tyre
deformation is positive (cf. Eq. 7.23).

The experiments were performed with the measurement tower, see Appendix A.2.

In the test stand the wheel can be moved up and down by using a hydraulic

cylinder. The reaction forces at the wheel axle bearings are measured with strain

gauges. Owing to the relatively high mass of the test stand and strain gauged

measuring hub, the maximum frequency range of operating is limited to 20 Hz.

The other measured signals were: the displacement of the hydraulic cylinder, the

rotational velocity of the wheel and the drum and the applied brake pressure.

Unfortunately, the brake torque could not be measured. The constant value of the

brake torque, which was needed for the simulation model, was estimated from

the average value of the longitudinal reaction force.
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11.2 Comparison of the results

Tyre responses at an average axle height corresponding to 4000 N vertical
load

Figures 11.1, 11.2 and 11.3 present the tyre response to large sinusoidal axle
height variations around an average value corresponding to 4000 N vertical load.
The amplitude of the axle height variation is 10 mm, which is equivalent to an
amplitude of 2000 N vertical load. Four excitation frequencies were used: 1,2,4
and 6 Hz. For each excitation frequency the figures present one wavelength of the
excitation signal. The vertical load presented has been corrected for the inertia of
the measuring hub and the wheel, thus, the value in the figures represents the
value of the vertical force in the contact zone. The top graphs of the figures
present the vertical tyre deformation.

The inputs to the simulation model are the constant brake torque, the
measured and filtered vertical axle displacement (which is equal to the negative
value of the tyre deformation) and the vertical velocity (cf. Eq 7.20b) of the axle
motion obtained by numerically differentiating the measured and filtered vertical
axle displacement.

Figure 11.1 presents the responses for a tyre subjected to a small constant
brake torque (6 bar brake pressure). Figure 11.2 presents the responses at large
constant brake torque (28 bar) and Figure 11.3 presents the responses of a tyre
subjected to a very large brake torque (43 bar), where the vertical force decreases
to such an extent that wheel lock occurs.

At 1 Hz excitation frequency and low constant brake pressure (cf. Figure
11.1) the response of the longitudinal force is mainly caused by the rolling
resistance, which is proportional to the vertical load (¢f. Eq. 3.21). The response of
the wheel velocity is caused by the load dependency of the slip stiffness and the
load dependency of the effective rolling radius.

To accelerate or decelerate the wheel in the rotational direction additional
longitudinal forces are needed in the contact zone: to accelerate the wheel an
additional negative force is needed, and to decelerate the wheel an additional
positive force is needed. The additional contributions of longitudinal force in the
contact zone can be seen in the measured reaction force at the hub: at increasing
vertical load, the rotational wheel velocity increases and the absolute value of the
longitudinal force [Fxl increases. At higher excitation frequencies, the value of
rotational wheel accelerations increases and thus the additional forces as well.
This is clearly shown in the longitudinal force response of Figure 11.1: at 1 Hz
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excitation frequency the response is symmetrical, at 4 and 6 Hz excitation
frequency the force response is not symmetrical due to the acceleration and
deceleration of the wheel.

Figure 11.2 presents the responses at a high constant brake torque. The rapid
decrease of the rotational wheel velocity and decreasing vertical load indicate
that full sliding occurs. The longitudinal forces also decrease with decreasing
vertical load because the maximum longitudinal force is limited by the friction
between tyre and road.

At the beginning of the increase in the vertical load, the wheel velocity is
small and the slip is large. Consequently, the longitudinal force is equal to the
friction coefficient multiplied by the vertical load (uF,). The longitudinal force
increases rapidly with increasing vertical load as long as the slip is large. The
increase in the longitudinal force stops abruptly when the wheel velocity has
reached the original value again. Exactly at that point, the tyre shows the
vibration corresponding to the in-phase rotational mode at 30 Hz.

Figure 11.3 shows the tyre response to a very severe operating condition. The
very high constant brake pressure of 43 bar corresponds to an average reaction
longitudinal force of 3300 N. This value is close to the average vertical load of
4000 N. The large brake torque causes wheel lock at the low values of vertical
load. The rapid acceleration of the wheel causes more violent vibrations than
those shown in the previous figure (cf. Figure 11.2).

Wheel lock only occurs if the wheel has enough time to reach wheel lock: at
low frequency excitation wheel lock will occur, and at high frequency excitation
wheel lock will not occur. The exact timing of wheel lock and spinning up of the
wheel highly depends on the friction between tyre and road and the applied brake
torque. Neither the friction between tyre and road nor the applied brake torque
could be measured and they vary in time: the tyre temperature and disc brake
temperature increase during the experiments. For the simulations these values
have been estimated.
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Figure 11.1: The measured and simulated responses to large variations of axle
height and small constant brake pressure (6 bar).
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Tyre responses at an average axle height corresponding to 0 N vertical load

One experiment was carried where the tyre loses contact with the road. The
average value of the axle height chosen corresponds to the case where the tyre
just touches the road without generating a vertical force. The amplitude of the
axle height variations was equal to 10 mm. A relatively high average brake
pressure (8 bar) was used.

Figure 11.4 presents the measured and simulated tyre responses. This figure
shows that the tyre generates only a vertical force if the vertical tyre deformation
is positive. Furthermore, the vertical tyre dynamics are excited by the sharp
transitions in the vertical force.

The maximum longitudinal force is limited by the vertical force. If the tyre
loses contact with the road, the longitudinal force becomes zero and the rotational
wheel velocity decreases rapidly. At 1 and 2 Hz excitation, the wheel becomes
locked. When the vertical load increases again, the wheel spins up and the in-
phase rotational mode is excited.
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Conclusions and Recommendations

12.1 The rigid ring model

The rigid ring model contains those modes of vibration of the tyre in which the
tyre ring itself remains rigid and circular. In other words, the tyre ring moves as
a rigid body with respect to the rim. The rigid ring for the in-plane tyre dynamic
behaviour has three degrees of freedom: the horizontal and vertical motions and
the rotation about the wheel axis. The motions of the ring are represented by
three second order differential equations. The valid frequency range of the rigid
ring model is limited to frequencies higher than the first natural frequencies of
the tyre, where the natural modes correspond to the rigid ring modes, but
sufficiently below the higher natural frequencies showing flexible modes of
vibration of the ring. The experiments showed that the valid frequency range of
the rigid ring model is 80 Hz for the longitudinal and rotational dynamics and
100 Hz for the vertical dynamics.

The relative damping of the in-phase rotational mode depends highly on the
velocity, the vertical load and the amount of slip. This dependency can be easily
explained by the influence of a relaxation length system on the tyre dynamics.
The relative damping of all other tyre modes is low (3-5%) and almost
independent of the operating conditions. The measured frequencies of the rigid
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modes decrease significantly with increasing velocity. This effect has been
reported in the literature [15,53,68,97,111,112,113]. At present there is no
theoretical explanation for this effect available.

The tyre stiffnesses obtained from experiments with a non-rotating tyre
cannot be used to represent the tyre dynamics of a rotating tyre. Instead, the
experiments with a tyre rolling on the drum are to be used to estimate these
parameters: the total vertical stiffness of the tyre was obtained from axle height
oscillations for a rotating tyre; the sidewall stiffnesses and damping coefficients
were obtained from brake experiments. The experiments with small random
variations of brake torque around an average value used to estimate the
frequency response functions proved to be a good method for estimating the
dynamic parameters of the model. The cleat experiments are not needed to
estimate the parameters, however, a single cleat experiment should be used to
validate the frequency of the vertical mode of vibration of the tyre.

For the calculation of the transient responses in the contact zone a first order
differential equation is used. In this contact model, the slip velocity is used as
input rather than the slip. This means that the model can be used in zero velocity
conditions. The first order differential equation provides a smooth transition from
the response of a rotating tyre (force is proportional to the slip) to the response of
a non-rotating tyre (force is proportional to the displacement). For a realistic
response, the slip should be limited at zero velocity, otherwise, the first order
differential equation may integrate the slip to plus or minus infinity. The slip
characteristics for the contact model can be obtained from the slip characteristics
based on the slip of the wheel and the reaction forces at the wheel.

The relaxation length contact model can be used to simulate the transient
tyre responses also at short wavelengths. The model is able to simulate the
transient responses even when more than one wavelength fit in the contact
patch. Furthermore, the relaxation length contact model is able to represent the
tyre rolling over short wavelength obstacles in an approximate way even if
multiple contact patches arise due to the deformation of the tyre on the obstacle
shape.

The overall relaxation length of the total tyre is not a parameter of the model
but results from the tyre sidewall flexibilities and the relaxation length of the
contact model. The expression of the longitudinal relaxation length of the
complete tyre (longitudinal slip stiffness divided by the longitudinal stiffness) is
similar to the expression for the lateral relaxation length (lateral slip stiffness
divided by the lateral stiffness). The longitudinal relaxation length in the vertical
load range considered is smaller than the lateral relaxation length. The ratio
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between these relaxation lengths increases from 0.5 at 2000 N vertical load to
0.85 at 6000 N load. It is expected that a value of the vertical load exists where
both relaxation lengths have the same value, since the longitudinal slip stiffness
increases more than proportional to the vertical load and the lateral slip stiffness
increases less than proportional to the vertical load.

The rigid ring model has been developed and validated for braking and free
rolling conditions. It is assumed that the model will hold for driving conditions
even though the definitions for slip during braking and during driving are not
symmetrical. The rigid ring model has been validated for severe operating
conditions: large brake torque variations including wheel lock of the wheel,
rolling over short wavelength unevennesses while braking and large axle height
variations while braking. The non-linear simulation model represents the tyre
behaviour for these conditions rather well.

12.2 Tyre enveloping propetrties

The tyre enveloping properties were obtained from experiments at very low
velocity of the tyre rolling at constant axle height over short wavelength road
irregularities. These quasi-static tyre responses were also simulated using the
flexible ring model. The flexible ring model consists of a flexible circular beam
supported on an elastic foundation. When the non-linearity of the tyre sidewall
stiffnesses is incorporated, the model is able to show an accurate response. Three
effective inputs were defined to represent tyre enveloping properties:
« the effective plane height.
o the effective plane angle.
« the variation of the effective rolling radius.
The effective inputs are strongly dependent on the axle height and the obstacle
shape. The effective inputs could be further decomposed into shifted basic
functions. The effective plane height equals the sum of two positive shifted basic
functions. The effective plane angle equals the sum of one positive and one
shifted negative basic function. The effective rolling radius is related to the
derivative of the effective plane angle with respect to the travelled distance. The
influence of the obstacle shape on the effective inputs is governed by the basic
functions, and the influence of the axle height (or average vertical load) is
governed by the shift of the basic functions.

The effective inputs were used as excitation of the rigid ring model for
dynamics simulations. The comparison of the simulated and measured responses
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showed that the effective inputs can be used to excite the tyre also at higher

velocities.

12.3 Recommendations for further research

Two sets of random brake experiments were carried out to estimate the tyre
parameters: one set at low velocity and several levels of average brake torque and
one set at several velocities and low average brake torque. To cover the entire
operating range experiments at high velocity and high average brake torque
should also be carried out. The experiments were carried out at one inflation
pressure, but the influence of the inflation pressure on the tyre dynamic
behaviour needs to be investigated as well.

The rigid ring model developed in this thesis has been validated for one tyre
only. Consequently, it is important to validate the model structure for several
types of tyres and sizes. It is expected that the basic structure of the rigid ring
model does not need to be changed. However, some aspects of the tyre which are
represented by polynomials (contact length and effective rolling radius as
function of vertical load, velocity dependency of the parameters) might need some
adaptation.

The stationary slip characteristics of the brush model have been used for the
development and validation of the rigid ring model. Appendix B shows the
changes of the model needed when the Magic Formula is used instead. However,
the model has not been validated in combination with the Magic Formula. The
limitation of the slip at velocities close to zero and the problems that arise with a
characteristic showing a decreasing part need maore attention.

The model development and the assessment of the parameters were based on
the assumption that the dynamics of the tyre measured on a rotating drum test
stand represent the dynamics of the tyre operating in a vehicle. This, even
though the stationary slip characteristics on the drum and road differ
considerably. Therefore, this assumption should be verified by testing the model
on the road: measuring the reaction force of the tyre operating in a vehicle and
comparing the results to simulations with the rigid ring model incorporated in a
multi body vehicle simulation model. The model should also be tested for
combined excitations: brake torque variations (e.g. ABS operation) on uneven
roads in an actual vehicle (thus with the axle height not fixed).

The effective inputs obtained from the tyre enveloping properties can be
represented by shifted basic functions. The comparison between the shape of the
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basic functions and the response of a rigid wheel showed remarkable similarities.
To be able to replace the rather cumbersome assessment of basic functions from
either measurements or simulations with the flexible ring model, the benefits of
using the rigid wheel motion should be investigated in greater detail.

The method of using effective road inputs (including effective rolling radius
variations) has been validated for a number of short obstacles. The method
should also be validated by wusing longer and smoother obstacles with
wavelengths ranges from 10 cm to 1 m. Higher obstacles should also be
considered. Nevertheless, it is expected that the method will hold also for longer
wavelength unevennesses. At large wavelengths the effective inputs approach the
actual geometrical surface quantities (height and slope) and the actual effective
rolling radius occurring on a flat surface. It is important to further develop the
method for general application on a random road surface. For such an application
the present method of finding the effective inputs is too cumbersome.

The measurements and simulations showed that the effective rolling radius
variations can be obtained from the other two effective inputs. This might be
explained by theory. However, for a solid theoretical explanation, the influence of
a varying road plane angle on the variation of the effective rolling radius needs
more study. This can be done with simulation inodels that represent the effective
rolling radius in a more accurate way than the flexible ring model used in this
thesis (e.g. finite element models, or a flexible ring model where the height of the
tread elements is not neglected [51}).

The dynamic response of the tyre to short wavelength unevennesses show the
shortcomings of the model in the higher frequency range. The measured
responses at higher velocities showed that the flexible modes have considerable
amplitudes in the frequency range 80-150 Hz. At least one additional vertical
flexible mode (at 90 Hz) and one additional longitudinal flexible mode (at 110 Hz)
should also be incorporated into the model to obtain a more accurate model
behaviour in the higher frequency range (> 60 Hz). The inclusion of the first
flexible modes at high velocity is important as the measurements showed beating
phenomena probably originating from the rigid modes and the first flexible

modes.
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Appendix

Experimental Setup

The experiments were carried out on the rotating drum test stand in the Vehicle
Research Laboratory of the Delft University of Technology. On this test stand
several test rigs can be mounted including the cleat and brake test rig and the
tyre measurement tower. The drum was driven by an electric motor connected by
means of two transmissions. The propulsion torque available to the drum
depends on the transmission ratios. The choice of the velocities for the
experiments (25, 39, 59, 92 and 143 km/h) was based on the characteristics of the
electric motor and on the transmission ratios.

The drum has a steel surface. Even though a more realistic road surface (i.e.
safety walk paper) generates better stationary slip characteristics, the tyre
properties will quickly deteriorate due to excessive tread wear. Conversely, the
stationary slip characteristics on a steel surface differ substantially from road
measurements, but the dynamic tyre properties will be less effected.

A.1 Cleat and brake test stand

The tyre was mounted in the cleat and brake test rig which was placed on the
drum test stand. The complete test stand is shown in Figure A.1. The tyre rolls
over the rotating drum representing the road surface. This test stand is used to
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examine the dynamic behaviour of the tyre in the frequency range 0-100 Hz.
Obviously, the natural frequencies of the test stand must be sufficiently higher
than the frequency range of interest.

The vertical axle height can be adjusted to load the tyre on the drum. During
the measurements, the horizontal and vertical motions of the wheel axle are
constrained. The reaction forces of the tyre are measured at both wheel bearings
with piezo electric elements. These elements measure only the variations in the
forces only and not the static components.

~ - -—e floor level
N -  test drum (2.5 m diameter)

Figure A.1a: Schematic view of the cleat and brake test stand (side view).

-— o reaction forces
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® disc brake

and
pressure sensor

wheel velocity s -
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drum velocity e——-—
incremental encoder

o flexible couplings

Figure A.1b: Schematic view of the cleat and brake test stand (front view).

The disc brake is mounted in a separate structure. The reaction forces of the
brake are counterbalanced by the bearings of the brake shaft. The brake shaft
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and the wheel shaft are connected with an intermediate shaft and two flexible
couplings. These couplings are flexible in all directions except about the axis of
revolution. This arrangement results in the application of a pure brake torque to
the wheel without residual forces due to a possible offset in the alignment of the
two shafts. The applied brake torque is measured with strain gauges in the
coupling shaft.

To estimate the wheel slip, the wheel and drum velocities are measured. The
wheel velocity is measured with an tachometer which has a good dynamic
response. The generated signal showed a small ripple of 7 times the rotational
velocity of the sensor. Therefore, the tachometer was connected through a gear
with ratio varying between 5:1 at 25 km/h to 1:1 at 143 km/h to ensure that the
frequency of the ripple was above 100 Hz. The drum velocity is measured with an
incremental angle encoder that generates 2000 pulses each revolution. These
pulses are converted into an analog signal by a frequency converter.

A hydraulic servo system is used to control the brake pressure. The servo
valve is controlled by feedback of the difference between the measured and the
desired brake pressure. The desired brake pressure signal is generated by a
computer. This setup allows us to be flexible in the kind of brake torque
excitations used: sinusoidal, block pulses, successive steps, random variations or
sinusoidal sweeps.

Figure A.2 shows the hydraulic scheme. We may discern three pressures: the
high pressure generated by a pump, the low pressure of the reservoir and the
controlled pressure in the brake cylinder. The accumulator and pressure relief
valve are used to maintain a constant high pressure.

pressure . eontrol pressure

sensor ®—— brake cylinder
e \
A
AN V1

mano —_—T—_
meter ® accumulator IIIEJI:[Z]E servo valve

high pressure ) I
100! 140 4 L/mi
bar bar 0 L/min
[ 1=
aH I " A
‘ZM ﬂ ‘ low pressure
LY ] reservoir
on /off pressure safety pump and
valve relief valve valve filter

Figure A.2: The hydraulic scheme of the brake system.
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The rotating part of the cleat and brake test stand can be seen as two systems
connected by two flexible couplings and a coupling shaft (¢f. Figure A.1). The
brake system includes the brake disc, the rotating wheel-shaft and a part of the
coupling shaft, and the wheel system includes the tyre, the rim, the rotating
wheel-shaft and a part of the coupling shaft. The brake torque sensor is mounted
in the coupling shaft between these two systems.

The moment of inertia of the wheel system was obtained from the difference
in applied brake torque and the measured longitudinal reaction force multiplied
by the tyre radius. The value of this moment of inertia was calculated from the
ratio between the torque difference and the rotational acceleration (from
differentiating the rotational velocity of the wheel). Obviously, only the low
frequency components (0-5 Hz) were used. At higher frequencies tyre dynamics
play a role.

The moment of inertia of the brake system was obtained from cleat
experiments at free rolling. Due to the cleat passage, large rotational vibrations
occur. The brake torque sensor measured the amount of torque needed to
accelerate and to decelerate the brake system in rotational direction. The value of
this moment of inertia was calculated from the ratioc between the measured
torque and the rotational acceleration (from differentiating the rotational velocity
of the wheel).

A.2 Tyre measurement tower

The tyre measurement tower, depicted in Figure A.3, can also be placed on the

rotating drum test stand. This test stand was adapted for the experimental gtudy

Lliad vol o

of the combined slip tyre dynamics [65]. The tyre and measuring hub can be
moved in the vertical direction, the excitation is controlled by a hydraulic
cylinder. The wheel frame and the vertical cylinder are mounted on the top
frame. The top frame is mounted on a large bearing, so that the entire rig can
rotate about the vertical axle. The steer angle can be adjusted by a hydraulic
cylinder. Obviously, for the in-plane experiments the steer angle was set to zero.
The same hydraulic servo system of Figure A.2 was used to control the brake
pressure.

The reaction forces at the wheel axle bearings are measured with strain
gauges. The wheel velocity, the drum velocity and the applied brake pressure are
measured with the same sensors, which can also be mounted on the cleat and
brake pressure. The applied brake torque cannot be measured. Due to the
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relatively high mass of the test stand and strain gauged measuring hub, the
maximum frequency range of operating is limited to 20 Hz.

The moment of inertia of the rotating parts of the rim and brake system of
the measurement tower was estimated from the time needed to achieve wheel lock
of a wheel at a known level of constant brake torque.

hydraulic
cylinder

top frame

tyre o i wheel frame

(a) front view o ‘ (b) side view

Figure A.3: The tyre measurement tower [65].

A.3 Data acquisition and processing

Figure A.4 presents an overview of the data acquisition and the control system.
The desired brake pressure signal and a trigger signal were generated by a
personal computer equipped with a DA interface. A similar scheme is used for the
axle height variations. A HP workstation with LMS CADA-X 2.6 software was used
for the data acquisition and some basic signal processing (amplification and
filtering). The filter frequency was set automatically to 0.4 times the sample
frequency.

Most measurements were repeated 10 times and the average results were
stored. The LMS software proved to be very powerful in estimating Frequency
Response Functions (FRFs)

The off-line signal processing was performed in MATLAB 4.2¢: Digital filtering,
estimating natural frequencies and parameters. The non-linear simulations were
also performed in MATLAB, using a fixed step 4th order RUNGE-KUTTA integration
method.

287



Appendix A

_Signal Generator desired

pressure

—

trigger
signal

_Analog Controller

current ‘ T I
— Aoy ]
E I T

brake pressure

Hydrauljgs )

control

./

WORKSTATION

sensor signals

Data acquisition

Brake test stand

Figure A.4: Overview of the data acquisition and control system.
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The Magic Formula and the Rigid Ring
Model

The contact model of the rigid ring model developed in this thesis was based on
the brush model characteristics. In this appendix the changes to the model are
discussed when the Magic Formula characteristics are used instead of the brush
model characteristics. Figure B.1 depicts the stationary slip characteristics of the
two models.

braking F.|

x

traction braking  F, traction

) T

st +1 -1 +Kyi0 +o0

I —»theoretical slip — practical slip k

(a) brush model (b) Magic Formula
Figure B.1: Stationary slip characteristics.

One of the differences between the Magic Formula and the brush model is that

the practical slip k is generally used as input to the stationary slip characteristic
of the Magic Formula while in this thesis the theoretical slip {_ is used as input
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for the stationary slip characteristic of the brush model. These slips are defined
as:

Vv
= 3.3
LS V. (3.3)
Vv
- 34
=t (3.4)

r

where V, denotes the forward velocity of the wheel axle, V, denotes the rolling
velocity of the wheel (= Qr,) and V, the slip velocity of the wheel. The equations
of the contact model used read (¢f. Eqs. 6.18e, 6.19 and 3.16):

dg
G, =+ ‘/Cr cx — _Vc sx (Bla
eyt IVerlt : )
y F,
o, = Jes0 O (B.1b)
CKO accx
E?x = bruSh(gcxa ch:Fcz) (BIC)

where the additional subscript ¢ is used to denote this situation in the contact
model and o, denotes the relaxation length of the contact model, o, and C
denote the relaxation length of the contact model and the slip stiffness at free
rolling and F,, and F_, denote the longitudinal and vertical forces in the contact

patch. The theoretical slip in the contact patch (_, which is used as input to the

cx?
brush model characteristics, is found from the first order differential equation.
If the Magic Formula is used, the practical slip k., may be employed rather

then the theoretical slip. Than the calculation scheme becomes:

N (B 92)

K dr |V ex|™c c,8x -
O,.o OF,

L S (B.2b)
CKO aKc

F_. = MagicFormula(x,F.. ,F,) (B.2¢)

The differences between the two calculation schemes is that the original scheme
(Eq. B.1) uses the absolute value of the rolling velocity in the differential
equation and the other approach (Eq. B.2) uses the absolute value of the forward
velocity instead. To discriminate between both relaxation lengths of both
approaches the additional subscripts { and « are used. The relaxation length of
the second model is chosen such that the time constant of this differential
equation is equal to the time constant of the original equation (Eq. B.1a):
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O :__1__Gc1<0 an — 1 Ocxo an aC:cc :_1_Gc»c0 aF:c - Gcf;
"/m| "fcx| CKO aKa |ch| CKO aCxc aKc \Vcr\ CKO agxc chr|

7= (B.3)
Note that the relaxation lengths at free rolling are equal to each other
(Gexo = Oro)-

To prevent the longitudinal slip to appreach plus or minus infinity at zero
velocity conditions, the theoretical slip was limited in Section 6.2 to the value at
which total sliding starts (+{_ ). The limitation was essential for the simulation
of braking with wheel lock (Section 9.4) and braking to stand-still (Section 9.5).

If the Magic Formula is employed, the slip value at the peak in the
characteristic (-, and +x,,,) cannot be used to limit the slip as the decreasing
part of the characteristics beyond the peak may not be neglected. An approach
similar to the method employed by Higuchi [40] may be adopted to overcome the
problems that arise with a characteristic showing a decreasing part. However, a
simpler but less accurate method is to limit the slip x to +1.
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ummary

The dynamic response of tyres
to brake torque variations and road unevennesses
Peter W.A. Zegelaar

The pneumatic tyre is a vital component of the road vehicle as it interacts with
the road in order to produce the forces necessary for the support and the
movement of the vehicle. To analyse the dynamics of the vehicle it is important to
understand the behaviour of tyres. For this purpose, different kinds of
mathematical models of the behaviour of the pneumatic tyre are used in vehicle
dynamic simulations.

In this thesis two models are developed and used to study the in-plane
dynamics of the tyre. The in-plane dynamics of tyres deal with the forces and
motions in the plane of rotation of the wheel. These motions are generally excited
by brake torque variations, road unevennesses, longitudinal and vertical axle
motions and tyre non-uniformities. The first model, the flexible ring model, is
used to study the tyre behaviour in detail. The second model, the relatively
compact rigid ring model, is developed to be used in vehicle simulations. Both
tyre models are based on the typical construction of the radial tyre: a circular belt
mounted on a relatively soft carcass.
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The flexible ring model consists of a flexible circular beam supported on an
elastic foundation. This model is well suited for the analysis of the higher
frequency tyre dynamics. The Modal Expansion Method is used to transform the
partial differential equations of the deformation of the beam into a set of ordinary
differential equations representing the modal displacements. Comparison with
the results of experimental modal analysis showed that the model based on the
modes of the free tyre plus an adequate contact model can represent the modes of
vibration of the tyre standing on the road as well.

The flexible ring model is also used to calculate the deformation of the tyre
loaded on the road. When the non-linearity of the tyre sidewall stiffnesses is
incorporated the model is able to show accurate load-deflection characteristics.
The flexible ring model is used to calculate the response of the tyre rolling quasi-
statically over short wavelength road unevennesses. Three responses may be
identified for the tyre rolling at constant forward velocity and constant axle
height over obstacles: a variation in the vertical force, a variation in the
longitudinal force and a variation in the rotational velocity. The response of the
flexible ring model is rather good in comparison with experimental results.

To simulate the dynamic response of the tyre rolling over short wavelength
unevennesses, a tyre model which describes the deformation of the tyre in detail
(e.g. the flexible ring model) should be used. Simple tyre models which do not
describe the tyre deformation in detail cannot be used directly on short
wavelength unevennesses. To obtain a similar excitation of the simple model the
actual road surface is replaced by an effective road surface such that the quasi-
static response of the simple tyre model on the effective road surface is similar to
the response of the real tyre on the actual road surface.

The effective road surface consists of three effective inputs: the effective plane
height, the effective plane angle and the effective rolling radius variation. These
three effective inputs can be further decomposed into shifted basic functions. The
shift of the basic functions is approximately 80% of the contact length (on an
undisturbed road surface) and both the length and size of the basic functions are
related to the shape of the obstacles. It is of interest that the shape of the basic
functions and the motion response of a rigid wheel show remarkable similarities.

The second model used is the rigid ring model. The development of this model
is the main goal of the research presented in this thesis. One of the requirements
for the rigid ring model is that it is a compact tyre model as it has to be used in
vehicle dynamic simulations. In the frequency range up to 80 Hz the free tyre
belt remains almost rigid. Accordingly, the belt is modelled as a rigid ring
suspended on the rim. The rigid ring has three degrees of freedom for the motion
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in the wheel plane: the horizontal and the vertical motion of the ring and the
rotation about the wheel axis. A radial spring (residual stiffness) is attached to
the belt to accomplish a realistic normal compliance of the tyre model.

The analysis of a discrete multi tread element contact model showed that the
transient response of the tyre to load variations and to slip variations may be
represented by a first order differential equation with the ‘relaxation length’ as
parameter. The responses of four of such pragmatic models have been studied. A
contact model is chosen which can be simulated easily and which shows an
adequate response to slip and load variations even at zero velocity. The
relaxation length contact model provides the tyre model with a smooth transition
between a slip stiffness at high velocity (force proportional to slip velocity) to a
tangential stiffness at (almost) stand-still (force proportional to deflection).

The total relaxation length of the tyre is considered as a property of the rigid
ring model rather than a parameter of this model. The total relaxation length of
the model depends on all the longitudinal and rotational flexibilities of the model:
the longitudinal and rotational sidewall stiffnesses and the relaxation length of
the contact model. The expression of the longitudinal relaxation length of the
total tyre (longitudinal slip stiffness divided by the longitudinal stiffness) is
similar to the expression of the lateral relaxation length (lateral slip stiffness
divided by the lateral stiffness).

Experimental modal analysis of the non-rotating tyre is used to validate the
modes of the model. The free non-rotating tyre has three modes of vibration in
the frequency range 0-80 Hz: a vertical motion of the ring, a longitudinal motion
of the ring, and a rotation of the ring. The tyre standing on the road also has
three modes of vibration: a vertical motion of the ring and two rotational modes
where the rim and ring rotate either in-phase or in anti-phase with respect to
each other. The relative damping of the in-phase rotational mode depends highly
on the operating conditions (vertical load, average brake torque and velocity).

The dynamic experiments have been carried out on the rotating drum test
stand. Two rigs can be mounted on this test stand: the cleat and brake rig for the
study of the tyre responses to brake torque variations and road unevennesses in
the frequency range 0-100 Hz, and the tyre measurement tower for the study of
the tyre response to axle height variations during constant braking in the
frequency range 0-20 Hz.

The parameters of the rigid ring model have been obtained from quasi-static
experiments (contact patch dimensions, effective rolling radius, masses and
moments of inertia), from stationary rolling experiments (stationary slip charac-
teristics, rolling resistance coefficients, vertical tyre stiffness), and from dynamic
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rolling experiments (sidewall stiffnesses and sidewall damping coefficients). The
measured frequency response functions of the longitudinal force to brake torque
variations appeared to be the most accurate method for identifying the dynamic
parameters of the model. In addition to these brake experiments at least one
cleat experiment was needed to identify the vertical mode of vibration.

The vertical load influences some parameters of the model: contact patch
dimensions, stationary slip characteristics and vertical tyre stiffness.
Furthermore, the following velocity dependencies were incorporated in the model:
the tyre radii (free radius, effective rolling radius and loaded radius) which grow
with the square of the rotational velocity due to the centrifugal forces acting on
the tyre; the vertical tyre stiffness which shows an approximately linear increase
with the rotational velocity; the tyre sidewall stiffnesses which decrease
approximately with the square root of the rotational velocity.

The rigid ring model has been validated for a number of severe conditions:
large variations of brake pressure and zero velocity conditions (wheel lock and
braking to stand-still). The experiments and simulations of the tyre rolling over
short wavelength obstacles showed that the effective excitation can be used also
at higher velocities. However, the cleat impacts on the tyre are rather severe and
the frequency spectrum of the responses showed that at higher velocity, the high
frequency flexible modes of the tyre are strongly excited.

The most important suggestion for further research is that the rigid ring
model should be validated with tests of a wheel operating in a vehicle on the
actual road. So far validation experiments have been done only in the laboratory,
even though the model has been particularly developed to be used in the study of
the dynamics of vehicles on the road. Therefore, it is thought to be very important
to compare simulations of a vehicle model including the rigid ring model with
road measurement results. The model should also be tested for combined
excitations: brake torque variations (e.g. ABS operation) on uneven roads in an
actual vehicle (thus with the axle height not fixed).

The method of using effective road inputs (including effective rolling radius
variations) has been validated for a number of short obstacles. It is obvious that
the method will hold also for longer wavelength unevennesses. At large
wavelengths the effective inputs approach the actual geometrical surface
quantities (height and slope) and the actual effective rolling radius occurring on a
flat surface. It is important to further develop the method for general application
on a random road surface. For such an application the present method of finding
the effective inputs is too cumbersome.
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De dynamische responsie van autobanden
op remmomentvariaties en wegdekoneffenheden
Peter W.A. Zegelaar

De autoband vormt een essentieel onderdeel van wegvoertuigen vanwege de
wisselwerking met de weg om de krachten te genereren welke nodig zijn voor de
ondersteuning en de beweging van het voertuig. Het is belangrijk om het gedrag
van autobanden te doorgronden om in staat te zijn het dynamisch gedrag van het
voertuig te kunnen analyseren. Voor dit doel worden verschillende typen
modellen die het gedrag van de autoband beschrijven toegepast voor simulaties
van het dynamisch gedrag van wegvoertuigen.

In dit proefschrift worden twee modellen ontwikkeld en toegepast om het
gedrag van de band in het wielvlak de bestuderen. Het gedrag in het wielvlak
van het wiel wordt gekenmerkt door de krachten en de bewegingen in het vlak
van rotatie van het wiel. Deze bewegingen worden in het algemeen aangestoten
door remmomentvariaties, wegdekoneffenheden, langs- en verticale bewegingen
van de as van het wiel en bandonrondheden. Het eerste model, het flexibele-ring-
model, 1s gebruikt om het gedrag van de band in detail te kunnen bestuderen.
Het tweede model, het relatief compacte starre-ring-model, is specifiek
ontwikkeld om te kunnen worden toegepast in voertuigsimulaties.
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Het flexibele-ring-model bestaat uit een vervormbare cirkelvormige balk
afgesteund om een elastische ondergrond. Dit model is zeer geschikt om de hoog
frequente banddynamica te onderzoeken. De modale decompositiemethode is
toegepast om de partiéle differentiaalvergelijking die de vervorming van de balk
beschrijft te transformeren in een stelsel gewone differentiaalvergelijkingen
welke de modale verplaatsingen beschrijven. De vergelijking met de resultaten
van experimentele modale analyse laat zien dat een model gebaseerd op de
trilvormen van een vrije band plus een geschikt contact model in staat is om de
trilvormen van de band die op de weg staat te beschrijven.

Het flexibele-ring-model is ook toegepast om de vervorming te berekenen van
een band die onder belasting op de weg staat. Het model kan nauwkeurige
kracht-vervorming karakteristieken produceren als de niet-lineariteiten van de
zijwangstijfheden ingevoerd worden in het model. Het flexibele-ring-model is
gebruikt om de responsie van de band te bepalen wanneer deze onder quasi-
statische condities over wegdekoneffenheden met korte golflengte rolt. Voor een
band rollend over obstakels met constante snelheid en bij constante ashoogte
kunnen drie responsies worden waargenomen: een variatie in de verticale kracht,
een variatie in de horizontale kracht en een variatie in de rotatiesnelheid van het
wiel. De responsies van het flexibele-ring-model komen goed overeen met de
gemeten responsies.

Om de dynamische responsie van een band rollend over korte golflengte
wegdekoneffenheden te kunnen simuleren moet een bandmodel gebruikt worden
die de vervorming van de band gedetailleerd beschrijft (zoals het flexibele-ring-
model). Eenvoudige bandmodellen, die de vervorming van de band niet in detail
beschrijven, kunnen niet direct gebruikt worden voor deze korte golflengte
wegdek oneffenheden. Om een gelijksoortig aanstoting van het eenvoudige model
te verkrijgen wordt de geometrie van het wegdek vervangen door een effectief
wegdek zodanig dat de quasi-statische responsie van het eenvoudige model op het
effectieve wegdek overeenkomt met de responsie van een echte band op de echte
weg.

Het effectieve wegdek geeft drie effectieve inputs: de effectieve wegdekhoogte,
de effectieve wegdekhelling en de variatie van de effectieve rolstraal. Deze drie
effectieve inputs kunnen nog verder worden ontbonden in verschoven basis-
functies. De verschuiving van deze basisfuncties is ongeveer gelijk aan 80% van
de contactlengte op het onverstoorde wegdek. Zowel de lengte als de vorm van de
basisfuncties zijn gerelateerd aan de vorm van de obstakels. De overeenkomsten
tussen de vorm van de basisfuncties en de responsie van de beweging van een
star wiel zijn opmerkelijk.
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Het starre-ring-model is het tweede bandmodel dat toegepast is. De
ontwikkeling van dit model is het belangrijkste doel van het onderzoek gepresen-
teerd in dit proefschrift. Een belangrijke eis gesteld aan dit model is dat het
compact en relatief eenvoudig is omdat het toegepast moet kunnen worden in
voertuigsimulaties. De vrije band blijft vrijwel star in het frequentiegebied tot 80
Hz. Daarom is de band gemodelleerd als een starre ring. Deze ring heeft drie
graden van vrijheid voor bewegingen in het wielvlak: de horizontale en verticale
beweging van de ring en de rotatie om de wielas.

De analyse met behulp van een discreet contact model laat zien dat het
overgangsgedrag van de band op variaties in verticale belasting of in slip kan
worden gerepresenteerd door middel van een eerste orde differentiaalvergelijking
met de relaxatielengte als parameter. Er zijn vier van zulke pragmatische
modellen bestudeerd. Uiteindelijk is een contactmodel gekozen dat eenvoudig
gesimuleerd kan worden en dat een geschikte responsie geeft op slipvariaties en
op verticale krachtvariaties =zelfs bij snelheid nul. Het relaxatielengte
contactmodel geeft het bandmodel een soepele overgang van een slipstijfheid bij
hoge snelheid (kracht is evenredig met slipsnelheid) naar een langsstijfheid bij
een vrijwel stilstaande band (kracht is evenredig met vervorming).

De totale relaxatielengte van de band wordt gezien als een eigenschap van
het starre-ring-model en is geen parameter van dit model. De totale
relaxatielengte van het model hangt af van alle langs- en rotatie-stijfheden in het
model: de langs- en rotatie-stijtheid van de zijwangen en het contact model met
zijn relaxatielengte. De uitdrukking voor de relaxatielengte voor het langsgedrag
van de totale band (langsslipstijtheid gedeeld door totale langsstijtheid) is
overeenkomstig aan uitdrukking voor de relaxatielengte voor het dwarsgedrag
(dwarsslipstijfheid gedeeld door dwarsstijtheid).

Experimentele modale analyse van een niet-roterende band is gebruikt om de
eigen-trilvormen van het model te valideren. De vrije niet-roterende band heeft
drie eigen-trilvormen in het frequentiegebied 0-80 Hz: een verticale beweging van
de ring, een langsbeweging van de ring en een rotatie beweging van de ring. Als
de band op de weg staat zijn er ook drie eigen-trilvormen: één verticale beweging
van de ring en twee rotatie-trilvormen waarbij de velg en de ring of in-fase of in
anti-fase roteren ten opzichte van elkaar. De relatieve demping van de in-fase
trilling hangt sterk af van de externe condities (verticale belasting, remmoment
en snelheid).

De dynamische experimenten zijn uitgevoerd op de roterende trommeltest-
bank. Twee testopstellingen kunnen gemonteerd worden: de obstakel en rem test-
opstelling om het bandgedrag op remmomentvariaties en wegdekoneffenheden in
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het frequentiegebied 0-100 Hz te onderzoeken, en de bandenmeettoren om het
bandgedrag op ashoogtevariaties tijdens remmen in het frequentiegebied 0-20 Hz
te onderzoeken.

De parameters van het starre-ring-model zijn verkregen door middel van
quasi-statische experimenten (afmetingen van het contactvlak, effectieve rol-
straal, massa's en massa-traagheidsmomenten), van stationaire rolexperimenten
(stationaire slipkarakteristieken, rolweerstandscoéfficiént, verticale stijfheid van
de band) en van dynamische experimenten (stijfheden en dempingscoéfficiénten
van de zijwangen). De gemeten frequentie-responsie-functies van de langs-
krachten op remmomentvariaties bleek de meest accurate methode te zijn om de
dynamische parameters van het model te identificeren. Naast deze rem-
experimenten moet ten minste één obstakel-experiment gedaan worden om de
verticale trilvorm te kunnen identificeren.

De verticale belasting beinvloed een aantal parameters van het model: de
afmetingen van het contactvlak, de stationaire slipkarakteristieken en de
verticale stijfheid van de band. Tevens zijn een aantal snelheidsathankelijke
parameters in het model ingevoerd: de straal van de band (de vrije straal, de
effectieve rolstraal en de belaste bandstraal) die toeneemt met het kwadraat van
de snelheid ten gevolge van de centrifugale krachten in de band. De verticale
stijfheid van de band neemt lineair met de snelheid toe. De afname van de
zijwangstijfheden is evenredig met de wortel van de snelheid.

Het starre-ring-model is voor een aantal lastige condities gevalideerd: grote
variaties in remmoment en snelheid nul condities (een geblokkeerd wiel en het
remmen tot stilstand). De experimenten en simulaties van de band rollend over
korte wegdekoneffenheden iaten zien dat de effectieve aanstotingen gebruikt
kunnen worden. Maar de obstakelstoten zijn nogal zwaar en het frequentie-
spectrum van de gemeten responsie toont dat bij hoge snelheden de flexibele
hoogfrequente modes van de band sterk aangestoten worden.

De belangrijkste aanbeveling voor verder onderzoek is dat het starre-ring-
model gevalideerd moet worden met experimenten van een wiel aan een voertuig
op de echte weg. Tot nu toe zijn de experimenten uitgevoerd in het laboratorium,
ondanks het feit dat het model speciaal ontwikkeld is om te worden toegepast in
voertuigsimulaties. Het is daarom uiterst belangrijk dat simulaties van een
voertuig inclusief het starre-ring-model vergeleken worden met metingen. Het
model zou ook getest moeten worden voor gecombineerde situaties: remmoment-
variaties (bijvoorbeeld met ABS) op een oneffen wegdek in een voertuig (dus met
niet-constante ashoogte)
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De methode van het gebruik maken van effectieve inputs (inclusief de
variatie in effectieve rolstraal) is slechts gevalideerd voor een aantal korte
obstakels. Natuurlijk zal de methode ook gelden voor obstakels met langere
golflengten. Voor lange golflengten zullen drie effectieve inputs de geometrie
(hoogte en helling) van de echte weg en de effectieve rolstraal op een vlakke weg
benaderen. Voor de verdere ontwikkeling van deze methode is het belangrijk dat
een algemene methode wordt ontwikkeld voor de toepassing van de effectieve
inputs op een weg met willekeurige oneffenheden. Voor deze toepassing is de
huidige methode voor het bepalen van de effectieve inputs te omslachtig.
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