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Abstract
1D water oil displacement in porous media is usually described by the Buckley-Leverett equation or the Rapoport-Leas
equation when capillary diffusion is included. The rectilinear geometry is not representative for near well oil displacement
problems. It is therefore of interest to describe the radially symmetric Buckley-Leverett or Rapoport-Leas equation in
cylindrical geometry (radial Buckley-Leverett problem). We can show that under appropriate conditions, one can apply a
similarity transformation (r, t) → η = r2/(2t) that reduces the PDE in radial geometry to an ODE, even when capillary
diffusion is included (as opposed to the situation in the rectilinear geometry (Yortsos, Y.C. (Phys. Fluids 30(10),2928–2935
1987)). We consider two cases (1) where the capillary diffusion is independent of the saturation and (2) where the capillary
diffusion is dependent on the saturation. It turns out that the solution with a constant capillary diffusion coefficient is
fundamentally different from the solution with saturation-dependent capillary diffusion. Our analytical approach allows us
to observe the following conspicuous difference in the behavior of the dispersed front, wherewe obtain a smoothly dispersed front
in the constant diffusion case and a power-law behavior around the front for a saturation-dependent capillary diffusion. We
compare the numerical solution of the initial value problem for the case of saturation-dependent capillary diffusion obtained
with a finite element software package to a partially analytical solution of the problem in terms of the similarity variable η.

Keywords Radial Buckley-Leverett flow · Similarity transformation · Saturation dependent capillary diffusion · Power law
behavior

1 Introduction

Water drive recovery of oil is one of the most important sec-
ondary recovery methods. The displacement in rectilinear
(1D) geometry can be described by the Buckley-Leverett
(BL) model. The BL model disregards capillary diffusion
but uses a saturation-dependent fractional flow to model the
water and oil flux functions. To obtain a unique solution,
it is necessary to consider the limit of vanishing capillary
diffusion ([6, 9, 10, 14]), leading to the entropy condi-
tion. The solution in 1D consists of a rarefaction wave,
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followed by a shock to a constant state. When capillary
diffusion is included, the problem is known as the Rapoport-
Leas (RL) equation [11]. In this case, the shock is replaced
by a smooth saturation profile. Understanding of the dis-
placement process is enhanced when considering radial
geometries. King [3] describes a Buckley-Leverett prob-
lem with capillary diffusion through a cylindrical tube in
the axial direction. Yortsos [16] presents an analytical solu-
tion to the 1D Rapoport-Leas equation (Buckley-Leverett +
capillary diffusion), by specially adapting the constitutive
relations (relative permeability and capillary pressure), such
that an exact solution can be obtained [16].

In the absence of diffusion, the radial problem is similar
to the 1D problem, where the solution again consists of
a rarefaction wave and a shock connected to the constant
initial state. As in the 1D case, the shock saturation
can be determined by Welge’s tangent construction (see
Appendices 1, 2 and [14]). However, the radial saturation
profile cannot be approximated by the linear saturation
profile because this leads to a violation of mass conservation
and thus to an incorrect prediction of the shock position (see
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[8]). Capillary diffusion can be straightforwardly included
in the cylindrical model. This model can be solved using
a finite element package ([1]), if the capillary diffusion
is taken large enough. We solve it using COMSOL as
detailed in Section 4. The numerical results indicate that
the shock is replaced by a continuous curve that follows
a power-law behavior: continuous but not differentiable at
the toe where Sw = Swc. A larger capillary diffusion leads
to broader fronts. We also studied the problem using a
similarity transformation (r, t) → r2/(2t = η). Contrary
to the 1D case, the model equations including the capillary
diffusion term can be expressed entirely in terms of η.
This leads to a system of coupled ODEs for the saturation
and pressure. In the incompressible case, the saturation
equation decouples from the pressure equation. We obtain
a second-order ODE for the saturation [15] and an ODE
for the pressure with saturation-dependent coefficients.
Yortsos [15] studies the stability of the saturation profile
in two asymptotic cases. Yortsos [15] did not consider
explicit solutions for general cases of saturation-dependent
capillary diffusion in a radially symmetric Buckley-Leverett
problem. In this manuscript, we carry out an extension
of the work by Yortsos in the sense that we consider
generic saturation-dependent capillary diffusion. A second
innovation is that we consider explicit solutions for Sw and
more importantly for the pressure, which can be helpful
when these solutions are applied for the pressure build-
up. We follow the approach due to Yortsos, where we
determine self-similar solutions for cases of small well radii
and long-time behavior. Furthermore, also in Yortsos, we
approximate the location of the boundary condition on the
injection well by shifting the injection well boundary to
the origin of the computational domain. This approximation
is accurate moderately far from the well and for the long-
time behavior. Our more general approach can be used to
gain quick insight into the relation between several input
and output parameters, as well as for testing of numerical
simulators.

The model equations are presented in Section 2 and
analyzed in Section 3 using our similarity transformation.
The case with a saturation-dependent capillary diffusion
is solved with a combination of analytical and numerical
methods in Section 3.1. The case with small, but constant,
capillary diffusion is solved in Section 3.3 using the method
of matched asymptotic expansions. Numerical results are
presented in Section 4 and subsequently discussed in
Section 5. We end the paper with some conclusions.
Although most of the theory in the Appendices is well-
known, we have added the Appendices for the convenience
of the reader who needs to recap this theory.

We finally note that the current manuscript is meant to
have a descriptive nature, rather than being mathematically
rigorous.

2Mathematical model

In this section, we formulate our model equations in
dimensionless form; we use capital letters or variables with
superscript ∼ for (in)dependent variables with dimensions,
small letters for dimensionless (in)dependent variables, and
we use the subindex c for characteristic scales. Notice
that only three scales need to be chosen: length, time,
and pressure: ρc will drop out entirely because gravity is
neglected.

The mass conservation equation for water reads in full-
dimensional form:

ϕ
∂

∂T
(ρwSw) + 1

R

∂

∂R
(UwRρw) = 0. (1)

The termUw
∂ρw

∂R
is proportional to the square of the pressure

gradient ∂pw

∂R
which is small and can thus be neglected (since

Uw ∼ ∂pw

∂R
and ∂ρw

∂R
= dρw

dpw

∂pw

∂R
see [2], Ch. 5, equation

(5.18)).
Furthermore, we divide by ρw and we obtain:

ϕ
∂Sw

∂T
+ ϕ

Sw

ρw

∂ρw

∂T
+ 1

R

∂

∂R
(UwR) = 0. (2)

Similarly, we find for oil (neglecting ∂ρo

∂R
):

ϕ
∂So

∂T
+ ϕ

So

ρo

∂ρo

∂T
+ 1

T

∂

∂T
(UoR) = 0. (3)

Adding (2) and (3) yields:

1

R

∂

∂R
(RUtot ) + ϕ

So

ρo

∂ρo

∂T
+ ϕ

Sw

ρw

∂ρw

∂T
= 0, (4)

where Utot = Uw + Uo. Using isothermal compressibilities
for oil and water, we have:

1

ρo

∂ρo

∂T
= 1

ρo

∂ρo

∂Po

∂Po

∂T
= c̃o

∂Po

∂t
, (5)

where 1
ρo

∂ρo

∂Po
= c̃o. We finally obtain:

1

R

∂

∂R
(RUtot ) + ϕSoc̃o

∂Po

∂T
+ ϕSwc̃w

∂Pw

∂T
= 0. (6)

Furthermore, we use Darcy’s law, i.e.:

Uw = − k

μw

krw

dPw

dR
= −�w

dPw

dR
, Uo = − k

μo

kro

dPo

dR
= −�o

dPo

dR
,

(7)

where we used the mobility

�i = k

μi

kri . (8)

This means that we find:

Utot = −�w

∂Pw

∂R
− �o

∂Po

∂R
, �tot = �w + �o. (9)
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The capillary pressure Pcap = Po − Pw can be used to
express Uw in terms of Utot , i.e.:

Uw = fwUtot + fw�o

∂Pcap

∂R
= fwUtot − D̃cap

∂Sw

∂R
, (10)

where we used fw = �w

�tot
and the capillary diffusion

coefficient D̃cap = −�w�o

�tot

dPcap

dSw
. This can be substituted in

Eq. 2 to obtain:

ϕ
∂Sw

∂T
+ϕSwc̃w

∂Pw

∂T
+ 1

R

∂

∂R
(RfwUtot )+ 1

R

∂

∂R

(
−RD̃cap

∂Sw

∂R

)
= 0.

(11)

The model is supplemented with appropriate initial and
boundary conditions in Section 2.1; constitutive relations
for the mobilities and capillary pressure are given in
Section 2.2. The relevant scales for time, length, and
pressure (tc, rc and pc) are discussed in Section 2.3 and used
to rewrite the model equations in dimensionless form in
Section 2.4. We end with a summary of the model equations
for easy reference in Section 2.5.

2.1 Initial and boundary conditions

Inflow of pure water at a given rate yields boundary
conditions for Sw and RUtot at the inlet R = Rw, i.e.:

Sw = 1 at R = Rw, (12)

RUtot = Qinj

2πH
at R = Rw (13)

Initially in the compressible case, we have oil at constant
pressure, which yields initial conditions for Sw and Pw at
T = 0, i.e.:

Sw = Swc, at T = 0 (14)

Pw = Pw0, at T = 0. (15)

The initial water pressure is some constant. Due to the gauge
invariance, the specific value of the constant does not matter.
In the incompressible case, we only have an initial condition
for Sw; however, the time dependence of the pressure enters
through the time-dependent saturation profile, but not due
to an initial pressure condition for the incompressible case.
Notice that Eq. 42 requires a numerical boundary condition
for Sw as R → ∞; we set:

Sw → Swc as R → ∞ (16)

as water travels a finite distance in a finite time, which
means that the water saturation effectively remains at its
initial value as R → ∞.

Table 1 Parameters in the constitutive relations

nw 4

krw,0 0.2

Swc 0.1

no 1.8

kro,0 0.93

2.2 Overview of the constitutive relations

Water mobility:

�w = k

μw

krw = k

μw

krw,0

(
Sw − Swc

1 − Swc

)nw

. (17)

Oil mobility:

�o = k

μo

kro = k

μo

kro,0

(
1 − Sw

1 − Swc

)no

. (18)

Total mobility and fractional flows:

�tot = �w + �o, fw = �w

�tot

, fo = �o

�tot

. (19)

Capillary pressure:

Pcap = Pcb

(
Sw − Swc

1 − Swc

)−1
λ

, λ = 2

nw − 3
. (20)

We will use the dimensionless parameters from Table 1 in
the constitutive relations.

2.3 Length scales and parameters

Wemust now assign the reference values, tc, rc, and pc. Our
interest is in well testing and therefore we choose for the
time scale of interest tc = one day = 8.64 × 104 s. From
this, we can derive the characteristic radius rc around the
well that will be affected during the well test:

rc =
√

Qinj tc

2πH
. (21)

Note that due to this specific choice, numeric constants
are absorbed in the length scale which will simplify our
expression rutot = 1 in Section 3.2.

The reference pressure can be obtained independent of
our choice of tc from:

pc = μw

k

Qinj

2πH
. (22)

In summary:

• Timescales in days, tc = 1 day = 0.864 · 105 seconds
• Length scale rc =

√
Qinj tc
2πH

= 0.73[m]1

1Note that with the chosen characteristic time and the given injection
rate, the affected domain of interest is about fourteen well radii in one
day
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• Pressure scale pc = μw

k

Qinj

2πH
= 0.61[bar],

where the physical constants are given in Table 2.

2.4 Model equations in dimensionless form

Using R = r rc, T = t tc, Utot = urc
tc
, and Pw = pwpc, the

conservation equation for water (11) becomes:

ϕ
∂Sw

∂t
+ ϕSwcw

∂pw

∂t
+ 1

r

∂

∂r
(rfwutot ) + 1

r

∂

∂r

(
−rDcap

∂Sw

∂r

)
= 0,

(23)

where we set cw = pcc̃w and Dcap = D̃cap
tc
r2c
. Similarly,

we rewrite the equation for the sum of oil and water
conservation (6) as follows:

1

r

∂

∂r
(rutot )+ϕSoco

∂pcap

∂t
+ϕ(Swcw+Soco)

∂pw

∂t
= 0. (24)

We use the capillary pressure Pcap = Po − Pw to eliminate
Po from the Darcy (9) and find:

Utot = −�tot

∂Pw

∂R
+ D̃cap

�tot

�w

∂Sw

∂R
, (25)

which yields the dimensionless expression for utot :

utot = −λtot

∂pw

∂r
+ Dcap

λtot

λw

∂Sw

∂r
, (26)

where we have used D̃cap = Dcap
r2c
tc
and the dimensionless

mobilities λw and λo:

�w = λw

r2c

pctc
, �o = λo

r2c

pctc
. (27)

This means that we have according to Eqs. 17 and 18:

λw = k

μw

pctc

r2c
krw = k

μw

pctc

r2c
krw,0

(
Sw − Swc

1 − Swc

)nw

, (28)

λo = k

μo

pctc

r2c
kro = k

μo

pctc

r2c
kro,0

(
1 − Sw

1 − Swc

)no

(29)

for the (dimensionless) mobilities and according to Eq. 20:

Dcap = −λwλo

λtot

dpcap

dSw

, pcap = pcb

(
Sw − Swc

1 − Swc

)−1
λ

,

(30)

Table 2 Physical constants

Hor. perm. k = 10−13m2

For. thickness H = 30m

Injection rate Qinj = 100m3/d

Viscosity water μ̃w = 10−3Pas

Viscosity oil μ̃g = 2 · 10−3Pas

Porosity ϕ = 0.21

Interfacial tension σ̃ = 0.03 Pa m

Well radius Rw = 0.05 m

for the (dimensionless) capillary pressure, where pcb = Pcb

pc
.

The physical constants enter our problem (32)-(41) only
via some dimensionless combinations. They occur in the
equations for the mobilities in the combination k

μw

pctc
r2c

; due

to our choice of scales, this combination now equals 1,
which means that the water and oil mobility reduce to:

λw = k

μw

pctc

r2c
krw = krw, λo = μw

μo

kro, (31)

where the ratio μo

μw
arises due to our scaling procedure.

The injection flux
Qinj

2πH
tc
r2c

from Eq. 13 also equals 1 due

to our choice of scales. The only parameters left are the
combinations pcb = Pcb

pc
and cw = c̃wpc and co = c̃opc,

which are given in Table 3.
We summarize the model for easy reference.

2.5 Summary of the governing equations

Mass conservation equation for water (23):

ϕ
∂Sw

∂t
+ϕSwcw

∂pw

∂t
+1

r

∂

∂r
(rfwutot )+1

r

∂

∂r

(
−rDcap

∂Sw

∂r

)
= 0,

(32)

Sum of oil and water mass conservation (24):

1

r

∂

∂r
(rutot )+ϕSoco

∂pcap

∂t
+ϕ(Swcw+Soco)

∂pw

∂t
= 0. (33)

Darcy (34):

utot = −λtot

∂pw

∂r
+ Dcap

λtot

λw

∂Sw

∂r
. (34)

Mobilities:

λw = krw = krw,0

(
Sw − Swc

1 − Swc

)nw

, λo = μw

μo

kro = μw

μo

kro,0

(
1 − Sw

1 − Swc

)no

.

(35)

Capillary pressure:

Dcap = −λwλo

λtot

dpcap

dSw

, pcap = pcb

(
Sw − Swc

1 − Swc

) −1
λ

, λ = 2

nw − 3
(36)

The equations (32) to (36) are valid for t > 0 and r > rw.
Initial conditions:

Sw = Swc, at t = 0, r > rw. (37)

pw = pw0, at t = 0, r > rw. (38)

Boundary conditions:

Sw = 1 at r = rw, t > 0 (39)

rutot = 1 at r = rw, t > 0 (40)

Sw → Swc as r → ∞, t > 0. (41)

The dependencies are summarized in Table 4.
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Table 3 Dimensionless constants

Capillary pressure Pcb = σ̃

√
ϕ
k

= 4.3 · 104 Pam
m

pcb = Pcb

pc
= 0.71

Water compressibility c̃w = 4.6 · 10−10Pa−1 cw = 4.6 · 10−10Pa−1 · pc = 2.2 · 10−5

Oil compressibility c̃o = 2.03 · 10−9Pa−1 co = 2.03 · 10−9Pa−1 · pc = 1.2 · 10−4

3 Similarity transformation

We express (32)–(34) in terms of η using the similarity
transformation (r, t) → (r2/2t = η). The product
(rutot ) is used as a dependent variable, i.e., the product
(rutot ) depends on η (see Eq. 44). Physically, this product
represents the flux, i.e., the flux depends on the variable
η (whereas the velocity depends on (r, t)). Using this
transformation, Eq. 32 yields:

−ϕη
dSw

dη
− ηϕSwcw

dpw

dη
+ d

dη
(rutot fw) − d

dη

(
2ηDcap

dSw

dη

)
= 0.

(42)

Similarly, (33) becomes:

d

dη
(rutot )−ηϕSoco

dpcap

dSw

dSw

dη
−ηϕ(Swcw+Soco)

dpw

dη
= 0. (43)

Finally, (34) yields:

rutot = −2ηλtot

dpw

dη
+ 2ηDcap

λtot

λw

dSw

dη
. (44)

Note that pw ∼ ln η for small η, which means that the
first term on the RHS of Eq. 44 yields a finite, nonzero
contribution.

The boundary conditions at the injection well r = rw are
mapped to η = ηw(t), where:

ηw(t) = r2w

2t
. (45)

We consider a well with a radius that is much smaller than
the dimensions of the outer region. Furthermore, we are
interested in the intermediate time behavior. The well radius
is Rw = 0.05 m, then the behavior of the solution for
T > 30 min, which corresponds to t = 0.02, gives

ηw(t) < 0.11. (46)

We are interested in the behavior of the solution far away
from the well, i.e., η ≈ 5 and therewith ηw(t) � 5;
and therefore, we use the approximation ηw(t) ≈ 0. This
means that we use the following boundary conditions as an
approximation:

rutot = Qinj

2πH

tc

r2c
= 1, Sw = 1 at η = 0. (47)

Table 4 Overview of the dependencies

Independent variables r, t

Dependent variables Sw(r, t), utot (r, t), pw(r, t)

Constitutive relations fw(Sw), Dcap(Sw)

In Section 3.2.5, we will analyze this approximation for the
boundary condition quantitatively and we will see that the
error is less than 1%.

The initial condition (at t = 0) and the boundary
condition (at r → ∞) for Sw are both mapped to η → ∞,
i.e.:

Sw → Swc as η → ∞. (48)

The initial condition for the pressure in the compressible
case is mapped to η → ∞, i.e.:

pw → pw,0 as η → ∞. (49)

We will solve problem (42)-(49) for saturation-dependent
capillary diffusion in Section 3.1 and for constant cap-
illary diffusion in Section 3.3. We focus mainly on the
incompressible case where co = cw = 0.

3.1 Summary of the self similar (in)compressible
problem

Equations (42)–(44) can be rewritten as a set of four coupled
nonlinear ordinary differential equations, i.e.:

d

dη

⎛
⎜⎜⎝

Sw
dSw

dη

rutot

pw

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝

dSw

dη

f1(Sw, dSw

dη
, rutot , pw, η)

f2(Sw, dSw

dη
, rutot , pw, η)

f3(Sw, dSw

dη
, rutot , pw, η)

⎞
⎟⎟⎟⎠ , (50)

where f3 is given by Eq. 44, f2 is given by Eq. 43 and f1
is given by Eq. 42. Notice that Eq. 42 is converted into two
first-order equations. The functions f1, f2, f3 are given by
the following expressions:

f3 = 1

−2ηλtot

(
rutot − 2ηDcap

λtot

λw

dSw

dη

)
, (51)

f2 = ηϕSoco

dpcap

dSw

dSw

dη
+ ηϕ(Swcw + Soco)f3, (52)

f1 = 1

2ηDcap

(
−2Dcap

dSw

dη
− 2η

dDcap

dSw

(
dSw

dη

)2

− ϕη
dSw

dη

−ϕSwcwf3 − fwf2 − rutot

dfw

dSw

dSw

dη

)
. (53)

We have two conditions at η = 0 (see Eq. 47) and two
conditions at η → ∞ (see Eqs. 48 and 49). However, our
analysis is for incompressible flows (see [2] Chapters 5 and
7); this analysis is valid for t > ϕμceff r2c /k ≈ 1s for
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Fig. 1 Water saturation versus
η. The figure shows the behavior
in the region I, i.e., 0 ≤ η ≤ η
,
region II, i.e., η
 ≤ η ≤ η̃, and
region III, i.e., η̃ ≤ η ≤ ηf . In
region II, we use the numerical
solution, whereas in regions I
and III, we use an analytical
approximation to solve the
equations (see text)

our parameters. Therefore, compressibility effects can be
disregarded for processes beyond 1 s.

3.2 Analysis in the incompressible case
(cw = co = 0)

Setting cw = co = 0, we have f2 = 0, which means that:

d

dη
(rutot ) = 0 ⇒ rutot = rutot (0) = 1. (54)

Furthermore, f1 now only depends on Sw and dSw

dη
=

S′
w and not on pw. Consequently, the equation for Sw is

decoupled from pw now, which means that we can first
solve the second-order ODE for Sw and use the result to find
the pressure profile pw. We do have the following problem
though. Close to Sw = 1 and Sw = Swc, Dcap becomes very
small because

Dcap ∼ (Sw −Swc)
nw (Sw −Swc)

1
2 − 1

2 nw (1−Sw)no = (Sw −Swc)
1
2 + 1

2 nw (1−Sw)no .

(55)

This means that numerical integration close to Sw = 1 and
Sw = Swc is difficult, due to the presence of Dcap in the
denominator of f1 (see e.g. [4], [5] for similar problems).
For this reason, we split the domain in three regions (see
Fig. 1):

Region I Small η and Sw ≈ 1 : S

w ≤ Sw ≤ 1 and

0 ≤ η ≤ η


Region II Intermediate η and Sw: S̃w ≤ Sw ≤ S

w and

η
 ≤ η ≤ η̃

Region III η around ηf and Sw ≈ Swc: Swc ≤ Sw ≤ S̃w

and η̃ ≤ η ≤ ηf

Here, η = ηf is the endpoint of the region where Sw > Swc,
i.e., Sw(ηf ) = Swc and for η ≥ ηf we have Sw = Swc

2.
The parameters S


w and S̃w are numerical parameters
that are chosen as close to Sw = 1 and Sw = Swc as
possible; several consecutive values are chosen until no
visible difference between the corresponding solutions of
the model equations is observed. Once the parameters S


w

and S̃w are fixed, all the other parameters (η
, η̃, ηf )
follow as part of our solution to the model equations.

We will solve our problem analytically in regions I and
III and we will use numerical integration in Region II as
discussed in more detail in the following Sections 3.2.1–
3.2.3.

3.2.1 Small η and Sw ≈ 1: S�
w ≤ Sw ≤ 1

First, we choose a value S

w close to one; we will investigate

the influence of this (numerical) choice later. We then use a
linear approximation for our solution:

Sw(η) = S

w + S′


w(η − η
), (56)

where the condition Sw(0) = 1 fixes η
 in terms of S′

w :

1 = Sw(0) = S

w − η
 · S′


w ⇒ η
 = 1 − S

w

−S′

w

(57)

2Note that ηf truncates the domain. This is a consequence of the
solution of our problem and not an a priori imposed condition.
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The value of S′

w is determined as follows: a value of S′


w is
picked and adjusted such that the total mass is conserved in
the entire domain.

3.2.2 Intermediate η, S�
w ≥ Sw ≥ S̃w

We integrate numerically from η = η
, where we have
Sw = S


w and S′
w = S′


w until η = η̃, where η̃ is chosen such
that Sw at η̃ is close to Swc. We will investigate the influence
of this (numerical) choice later.

3.2.3 Large η ≈ ηf and Sw ≈ Swc : S̃w ≥ Sw ≥ Swc

Around the toe, η = ηf , we have Sw ≈ Swc and
consequently the oil mobility λo ≈ 0. This means that we
have:

λw ∼ (Sw − Swc)
nw , Dcap ∼ (Sw − Swc)

1
2+ 1

2nw . (58)

We assume power law behavior of Sw around ηf

Sw ∼ Swc + (ηf − η)p, (59)

where the exponent p remains to be determined.
Substitution of Ansatz (59) into Eq. 42 and balancing

different powers of Sw − Swc, we find (see Appendix C):

Sw = Swc + K1(ηf − η)p, p = 2

nw + 1
= 0.4, (60)

where K1 and ηf are constant.
This means that Sw connects continuously to the initial

state Sw = Swc at η = ηf (i.e., no shock). The derivatives
of Sw though do blow up near the toe.

The constants K1 and ηf are determined by matching the
analytical solution in region III to the numerical solution in
region II at η = η̃.

3.2.4 Global mass conservation

The unknown parameter S′

w has to be chosen such that we

select the correct saturation profile, i.e., such that mass is
globally conserved. The total amount of mass injected until
time T , min equals:

min = QinjρwT , (61)

the mass initially present m0 equals:

m0 = ϕ

∫∫∫
W

Swcρw dV, W = [Rw, ∞)×[0, 2π ]×[0, H ] (62)

and the mass present at time T , mT equals:

mT = ϕ

∫∫∫
W

Swρw dV . (63)

Due to conservation of mass, we have mT = m0 +min, i.e.:

ϕ

∫∫∫
W

Swρw dV = ϕ

∫∫∫
W

Swcρw dV + QinjρwT .

(64)

Using cylindrical coordinates for the triple integrals, we
have:

2πHϕ

∫ ∞

Rw

(Sw − Swc)ρw R dR = QinjρwT . (65)

In the incompressible case, we have constant water density;
furthermore, we use R = r rc and T = t tc to obtain:

ϕ

∫ ∞

rw

(Sw − Swc) r dr = Qinj

2πH

tc

r2c
t . (66)

Using η = r2

2t ⇒ dη = r
t
dr , we find:

ϕ

∫ ∞

0
(Sw − Swc) dη = Qinj

2πH

tc

r2c
. (67)

Due to our choice of scales, we have
Qinj

2πH
tc
r2c

= 1;

furthermore, we have Sw = Swc for η ≥ ηf , which means
that Eq. 67 reduces to:

ϕ

∫ ηf

0
(Sw − Swc) dη = 1. (68)

The value of S′

w is adjusted until (68) is satisfied.

3.2.5 Saturation-dependent capillary diffusion results

Figure 2 shows the influence of the choice of S

w on the

results. For the scale used to display the figure, we observe
that the solution with S


w = 0.95 slightly deviates from
the other three curves, which appear (almost) completely
on top of each other. This means that our solution Sw(η) is
practically independent of our choice of S


w if S

w is chosen

large enough, i.c., above 0.97.
Note furthermore that for η < 0.11, we have Sw > 0.99,

which means that the error on the boundary condition due
to approximating ηw(t) by zero is in the worst case 1%.

In Fig. 3, we explore the effect of different bubbling
pressures Pcb on the saturation profile. For small values
the curves approach a steep shock-like behavior. For larger
values of the bubbling pressure, which acts as a parameter
for enhanced capillary diffusion, the saturation profiles are
broadened. In the limit of zero capillary pressure, we find
the Buckley-Leverett solution as shown in Fig. 4, which also
shows that capillary diffusion broadens the front.

Figure 5 shows the water pressure profile. Our solution
is only valid for t ≥ 2 · 10−2 as discussed in Section 3. This
occurs frequently in the case of well testing, where the very
early data are ignored (see Dake [2], chapter VII, p 159 ff).

In this period, the total pressure increase of �p ≈
14, �P = �ppc ≈ 8.5 bar is limited due to the practical
duration of the test.
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Fig. 2 Effect of the choice of S

w on the solution for Sw in the entire

domain. The left figure shows that the dependence on S

w for S


w =
0.95, 0.96, 0.97, 0.98 is negligible, but zooming in for small values of

η shows that small differences can be observed for S

w = 0.95 and

S

w = 0.96, but in practice no discernible differences for S


w ≥ 0.97.
Therefore, we use S


w = 0.97 in our computations

3.3 Constant small capillary diffusion: matched
asymptotic expansions

In general, the capillary diffusion is saturation dependent,
i.e.:

Dcap = −fwλ0
dpcap

dSw

. (69)

However, in this section, we will assume a constant
(small) capillary diffusion coefficient; we will take a
few representative values for Dcap and compute the
corresponding saturation profiles. These saturation profiles
are compared with the profiles (with a saturation-dependent
capillary diffusion) obtained in Section 3.2.5.

We take incompressible conditions for water and oil, i.e.,
co = cw = 0. This means that Eq. 43 yields:

d

dη
(rutot ) = 0 ⇒ rutot = Qinj

2πH

tc

r2c
= 1. (70)

Furthermore, we set Dcap = ε constant; Eq. 42 yields:

−ϕη
dSw

dη
+ rutot

dfw

dη
− ε

d

dη

(
2η

dSw

dη

)
= 0 (71)

with boundary conditions

Sw(0) = 1, Sw(ηf ) = Swc, (72)

where ηf ≈ ηs (the location of the shock in the unperturbed
profile).

We will use the method of matched asymptotic expan-
sions to obtain an approximation to the solution of
Eq. 71. We solve the outer problem to obtain Sout

w (η) in

Section 3.3.1 and we solve the inner problem to obtain
Sin

w (ξ = ηf −η

ε
) in Section 3.3.2. The total solution of Eq. 71

is then given by:

Fig. 3 Dependence of Sw(η), for S

w = 0.97 for different values of

the bubbling pressure Pcb. We use Pcb: 5, 10,20, 50, and 100 times the
bases case value of 4.3 ×104 Pa. The sharpest profile corresponds to
Pcb = 5 times the base value. For larger values of Pcb, the front gets
more disperse and the whole profile gets broader
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Fig. 4 Comparison of the saturation profile Sw(η) for S

w = 0.97

to the Buckley-Leverett solution. We observe that the overall mass
balance is satisfied

Sw(η) = Sout
w (η) + Sin

w (
ηf − η

ε
) − Sm

w , (73)

where the matching condition states that the inner limit of
the outer solution = the outer limit of the inner solution
([13]). The matching condition

lim
ε→0− Sout

w = lim
ξ→∞ Sin

w = Sm
w (74)

Fig. 5 Water pressure pw(t) at the inlet (Rw = 0.1 m) for 0.02 ≤
t ≤ 5. The lower limit is chosen according to the arguments at the
end of Section 3.2.5. The upper limit is taken as t = 5, being a
reasonable limit of the duration of the test. In this period, the total
pressure increase of �p ≈ 14, �P = �p · pc ≈ 8.5 bar is limited
due to the practical duration of the test

determines Sm
w for η < ηs and the matching condition

lim
ε→0+ Sout

w = lim
ξ→−∞ Sin

w = Sm
w (75)

determines Sm
w for η > ηs .

3.3.1 Solution of the outer problem

In the outer problem, we neglect contributions proportional
to ε, and thus Eq. 71 reduces to:

−ϕη
dSout

w

dη
+ rutot

dfw

dη
= 0. (76)

The solution of Eq. 76 is given by the Buckley-Leverett
profile:

η = rutot

ϕ

dfw

dSw

= 1

ϕ

dfw

dSw

, 0 ≤ η < ηs, (77)

where we use that rutot = 1; see Eq. 70. For η > ηs we
have Sw = Swc. Furthermore, the shock saturation Ss

w is
obtained via Welge’s tangent construction:

dfw

dSw

|Ss
w

= fw(Ss
w) − fw(Swc)

Ss
w − Swc

= fw(Ss
w)

Ss
w − Swc

⇒ Ss
w ≈ 0.915.

(78)

Details of the derivation of Welge’s tangent construction
are outlined in the Appendices 1 and 2 for easy referencing
for the general audience. Mathematical derivations can be
found in [12] and [7].

Using Eq. (77), we obtain ηs ≈ 5.551. Later on, we need
ηf for which we use mass conservation. Notice, indeed that
we have:∫ ηs

0
(Sout

w − Swc) dη = 1 (79)

due to mass conservation; see Eq. 68.

3.3.2 Solution of the inner problem

The shock at η = ηs is spread out and replaced by a front
in the inner region [ηs − δ, ηs + δ = ηf ], where δ is O(ε)

small. For the inner problem, we define the new variable ξ ,
i.e.:

ξ = 1

ε
(ηf − η) ⇒ η = ηf − εξ, (80)

which yields the following inner problem (to lowest order
in ε):

ϕηs

dSin
w

dξ
−rutot

dfw

dξ
−2ηs

d2Sin
w

dξ2
= 0, Sin

w (ξ = 0) = Swc,

(81)

where we used η = ηs + O(ε) in the inner region. We
have an additional boundary condition due to the matching
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condition:

lim
ξ→∞ Sin

w = lim
ε→0− Sout

w = Ss
w. (82)

Furthermore, we have the trivial condition:

lim
ξ→−∞ Sin

w = lim
ε→0+ Sout

w = Swc. (83)

This means that our total solution (outer solution plus inner
solution minus matching saturation) becomes:

Sw =

⎧⎪⎨
⎪⎩

Sout
w (η) + Sin

w (
ηf −η

ε
) − Ss

w 0 ≤ η ≤ ηs

Sin
w (

ηf −η

ε
) ηs < η < ηf

Swc η ≥ ηf

(84)

because Sout
w = Swc = Sm

w (see Eq. 83) for η > ηs .
Integrating (81) once yields:

ϕηsS
in
w −rutotfw−2ηs

dSin
w

dξ
= ϕηsSwc−2ηs

dSin
w

dξ
|Ssc , (85)

i.e.,

dSin
w

dξ
= fw

rutot

−2ηs

+ 1

2
ϕSin

w − 1

2
ϕSwc + dSin

w

dξ
|Swc = g(Sin

w ) + K,

(86)

where we set the constant K = dSin
w

dξ
|Ssc and

g(Sin
w ) = fw

rutot

−2ηs

+ 1

2
ϕSin

w − 1

2
ϕSwc. (87)

We use separation of variables to solve (86) and find

ξ =
∫ Sin

w

u=Swc

1

g(u) + K
du. (88)

We use the matching condition (82) to determine the
constant K . The integral:

∫ Ss
w

u=Swc

1

g(u) + K
du (89)

has to diverge due to the matching condition (82); ξ = ∞
if and only if Sin

w = Ss
w. Note that the integration interval

is finite and that g(u) is continuous; the integral only blows
up if the denominator equals 0, i.e., if g(u)+K = 0. Notice
that we have g(Ss

w) = 0; this means that we need K = 0 in
order to have a divergent integral around Sw = Ss

w, i.e.:

ξ =
∫ Sin

w

u=Swc

1

g(u)
du. (90)

Equation (90) is integrated numerically to obtain ξ(Sin
w ) and

inverted to obtain Sin
w (ξ).

3.3.3 Determining ηf to first order in ε

We use global mass conservation to compute the width of
the front and thus ηf . According to Eq. 68, we have:

ϕ

∫ ηf

0
(Sw − Swc) dη = 1, (91)

and therefore using Eq. 84 we find:

ϕ

∫ ηs

0
(Sout

w +Sin
w −Ss

w−Swc) dη+ϕ

∫ ηf

ηs

(Sin
w −Swc) dη = 1, (92)

which yields (using Eq. 79, part of the first integral equals
1, and therefore the RHS becomes 0).

ϕ

∫ ηs

0
(Sin

w − Ss
w) dη + ϕ

∫ ηf

ηs

(Sin
w − Swc) dη = 0. (93)

Equation (93) can be rewritten as:
∫ ηs

0
(Sin

w −Swc) dη−
∫ ηs

0
(Ss

w−Swc) dη+
∫ ηf

ηs

(Sin
w −Swc) dη = 0

(94)

and combining the first and the last integral and computing
the second we find that:∫ ηf

0
(Sin

w − Swc) dη = ηs(S
s
w − Swc). (95)

Setting η = ηf − εξ yields:

ε

∫ ηf
ε

0
(Sin

w − Swc) dξ = ηs(S
s
w − Swc). (96)

The product of ε and the integral on the LHS will be
finite; numerically, we compute the integral first, and then
we multiply by ε. For small values of ε, this might cause
numerical problems. We circumvent those problems by
splitting the integral into two parts. For large values of ξ

(ξ > δ, where δ is specified below), the integrand is approx-
imately constant and equal to Ss

w − Swc because we have
limξ→∞ Sin

w (ξ) = Ss
w due to our matching condition (82).

We use Eq. 90 to compute δ such that Ss
w − Sin

w < 10−3

for ξ > δ. We then approximate Sin
w by Ss

w in the integrand
of Eq. 96 for δ < ξ <

ηf

ε
and we split the integral from

Eq. 96 in two parts as follows:

ε

∫ ηf
ε

0
(Sin

w − Swc) dξ = ε

∫ δ

0
(Sin

w − Swc) dξ + ε

∫ ηf
ε

δ

(Ss
w − Swc) dξ

= ε

∫ δ

0
(Sin

w − Swc) dξ + (ηf − δε)(Ss
w − Swc). (97)

We substitute this expression in Eq. 96 and we solve for
the end point of the saturation profile ηf (Sw = Swc for
η > ηf ) to obtain:

ηf = ηs + δε − ε

Ss
w − Swc

∫ δ

0
(Sin

w − Swc) dξ . (98)

Note that the parameter δ is order 1. This is so because we
stay away far enough from g(u) = 0, i.e., u = Ss

w in Eq. 90.
Furthermore, notice that the product δε is a measure of the
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Fig. 6 Inner, outer and total
solution of the saturation profile
for ε = 10−2. Consecutively the
solution over the entire η range,
and a zoom in the front region
are given. At η ≈ 4.8 the
transition from the outer to the
inner solution occurs

width of the front, which is approximately given by ηf − ηs

(see Fig. 6).

3.3.4 Numerical and analytical results

Figures 6, 7, and 8 give the results of the matched
asymptotic expansions, for two values of ε. For larger values
of ε, we obtain a dispersed front and for very small values
of ε we approach the Buckley-Leverett solution.

4 Numerical results

We consider a fully coupled, implicit numerical solution
approach based on finite elements, which is solved with

the mathematical module of COMSOL to solve the model
equations in weak form. We consider the spatial domain
0 ≤ x ≤ L of length L = 100m, where the
Dirichlet boundary condition is taken at the production
side, x = L. The grid size in the numerical simulation
is 0.001 m, which corresponds to a spatial resolution
of 100,000. This is fine enough to resolve the salient
features. The reservoir parameters are given in Tables 2
and 3.

Numerical results for the base case are shown in
Fig. 9. Here, the numerical simulation confirms the
mentioned analytical results. As shown in Fig. 9, for
smaller capillary diffusion (lower Pcb), the front is
steep, whereas for higher capillary diffusion, the front is
smeared out.
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Fig. 7 Inner, outer, and total solution of the saturation profile for ε = 10−3. On the left is the solution over the entire η range; on the right is a
zoom in the front region. It is difficult to observe the transition from the inner to the outer solution due to the small value of ε

5 Discussion

Figure 10 compares the analytical and numerical solutions
of problems (32)–(41). The solutions practically coincide
over the entire domain except where the downstream
solution connects to the initial condition.This is due to the
fact that capillary diffusion vanishes at this point (toe).
This causes power law behavior for the saturation Sw,
i.e., Sw is a continuous function of η at the toe, but the

Fig. 8 Total solution of the saturation profile for ε = 10−2 and
ε = 10−3. Large values of ε lead to a more spread out wave

derivatives blow up. In the analytical solution, we use
an explicit expression for Sw to circumvent this problem.
In the latest versions of COMSOL, numerical problems
ensuing from the large values of the derivatives at the toe
are suppressed by algorithms implemented in COMSOL.
For smaller values of the capillary diffusion coefficient,
i.e., less than five times Pcb, numerical problems occur
at the injection point due to the vanishing capillary
diffusion. Figure 11 compares the analytical solution of
problems (32)–(41) with the analytical solution of problems
(71)–(75), i.e., the problem with a saturation-dependent
capillary diffusion to the problem with a constant diffusion

Fig. 9 The saturation profile Sw(η) is given for different values of the
bubbling pressure Pcb. We use Pcb : 5, 10,20, 50, and 100 times the
bases case value of 4.3 ×104 Pa. The sharpest profile corresponds to
Pcb = 5 times the base value. For larger values of Pcb, the front gets
more disperse and the whole profile gets broader. For smaller values
of Pcb, COMSOL is not able to find a solution
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Fig. 10 Combination of Figs. 3
(saturation profile obtained by
the analytical method) and 9
(saturation profile obtained
using COMSOL) for Pcb 10 and
100 times of the base value. We
observe that both methods yield
the same saturation profile

coefficient of comparable magnitude. Close to the injection
point, the solutions more or less coincide. Close to the
toe, we observe that the problem with constant diffusion
has a smooth saturation profile, whereas the solution with
the saturation-dependent diffusion coefficient shows power
law behavior. Note that a very small constant diffusion
coefficient admits a viable solution, which can be obtained
with the method of matched asymptotic expansions.

6 Conclusion

The equations for radial Buckley-Leverett flow can be
reduced to a first-order ODE using a similarity coordinate

Fig. 11 Pressure pw as function of η obtained by the analytical method
and using COMSOL for Pcb 10 times the base value. We observe that
both methods yield the same pressure profile until η = 5. Note that for
η > 5, the time t < 2 × 10−3 at r = rw , which is outside the range of
validity of the analytical solution (and outside the range of interest)

η = r2/(2t) transformation of the model equations. The
resulting ODE can be solved in a similar way as the
1D problem. The solution consists of a rarefaction wave,
followed by a shock to the constant initial state. When we
include capillary diffusion, we obtain the Rapoport-Leas
equation, which can be reduced to a second-order ODE
using the same similarity transformation. This problem can
be solved with a combination of analytical and numerical
techniques. In this case, we observe that the shock is
replaced by a curve that shows power law behavior; the
saturation profile is continuous, but the derivatives blow
up at the toe. We compare the similarity solution of the
second-order ODE to a numerical solution of the initial
value problem over the entire domain. The solutions for
the saturation profile show excellent agreement. As long
as we stay away from the connate water saturation, where
the capillary pressure blows up, the solutions for the water
pressure also show excellent agreement. If we replace
the saturation-dependent capillary diffusion by a constant
diffusion coefficient, we obtain a simpler problem, which
can be solved with the method of matched asymptotic
expansions. In this case, the shock is replaced by a smooth
profile.

Our analysis is for incompressible flows (see [2],
Chapters 5 and 7). It is shown in [2] that this analysis is
valid for t > ϕμceff r2c /k corresponding with our parameter
values to approximately 1 s. Therefore, compressibility
effects can be disregarded for processes beyond 1 s. For
other parameters, e.g., for gas shales, this analysis can
be used including the self-similar transformation for t <

ϕμceff r2c /k. This results in a system of four coupled ODEs
in terms of η. In general, the similarity transformation
reduces the number of independent variables from two
to one; this may considerably simplify the equations
used to interpret the results of this type of well test
problems.
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Appendix 1: Rankine-Hugoniot condition

Mass conservation across the shock specifies the shock
velocity in terms of the shock saturation; this condition is
called the Rankine-Hugoniot condition. In the case of radial
flow, the shock velocity vs is replaced by ηs = rvs , where
ηs can be interpreted as (2D) radial flux up to a factor of 2π .

1.1 The Rankine-Hugoniot condition in the
rectilinear (1D) case

We will first give a short summary of the 1D problem. In the
1D (incompressible) problem with pc = 0, we have mass
conservation:

ϕ
∂Sw

∂t
+ ∂uw

∂x
= 0, ϕ

∂So

∂t
+ ∂uo

∂x
= 0 (99)

and Darcy

uw = −λw

∂p

∂x
, u0 = −λo

∂p

∂x
⇒ uw = fwutot , utot = uw + uo

(100)

with boundary conditions and initial condition:

Sw(0, t) = 1, uw(0, t) = uinj , Sw(x, 0) = Swc, (101)

where uinj is the constant injection velocity. Adding
both (99) and using the boundary conditions (101), we find:

utot = uinj (constant), (102)

which means that our problems (99)–(100) reduces to:

ϕ
∂Sw

∂t
+ uinj

∂fw

∂x
= 0, Sw(0, t) = 1, Sw(x, 0) = Swc.

(103)

Setting η = x
t
we find a rarefaction wave (similarity

solution):

η = uinj

ϕ

dfw

dSw

, 0 ≤ η < ηs (104)

followed by a shock at η = ηs to the constant state
Sw = Swc. The self similar variable η can be interpreted
as a velocity, i.e., saturations above the shock saturation Ss

w

travel with speed u = uinj

ϕ
dfw

dSw
. The velocity of the shock

vs can be expressed in terms of the saturations in front of
the shock and behind the shock using mass conservation as
follows. The shock is located at position x0 at time t0 and
moves to the right to the position x0 + �x at time t0 + �t .
This means that we have at t = t0 + �t :

Sw = S+
w for x > x0 + �x (105)

slightly in front of the shock and

Sw ≈ S−
w for x ∈ [x0, x0 + �x) (106)

behind the shock (Sw is approximately constant in [x0, x0 +
�x) if �x is small enough). Furthermore, we have the (1D)
volumetric velocities in front of/behind the shock:

u+
w = uinjfw(S+

w ), u−
w = uinjfw(S−

w ). (107)

We use the following mass balance in the region [x0, x0 +
�x]:
(u−

w − u+
w)�t ≈ ϕ(S−

w − S+
w )�x, (108)

where the net inflow is given by the LHS and the mass
accumulation is given on the RHS. Taking the limit �t → 0
yields the shock velocity:

vs = uinj

ϕ

fw(S−
w ) − fw(S+

w )

S−
w − S+

w

. (109)

Notice that Eq. 109 only specifies vs (or ηs) in terms of the
saturations S−

w and S+
w ; these saturation values around the

shock are given by another physical mechanism called the
entropy condition, described in Section B.

1.2 The Rankine-Hugoniot condition in the radial
case

The derivation of the Rankine-Hugoniot in the radial case
goes along the same lines as the 1D case. In the radial
(incompressible) problem, we have:

ϕ
∂Sw

∂t
+ 1

r

∂

∂r
(uwr) = 0, ϕ

∂So

∂t
+ 1

r

∂

∂r
(uor) = 0, (110)

and Darcy

uw = −λw

∂p

∂r
, u0 = −λo

∂p

∂r
⇒ uw = fwutot , utot = uw + uo

(111)

with boundary condition and initial condition

Sw(0, t) = 1, ruw(0, t) = 1 Sw(r, 0) = Swc. (112)

Adding both (110) and using the boundary conditions (112),
we find:

rutot = 1 (constant), (113)

http://creativecommonshorg/licenses/by/4.0/
http://creativecommonshorg/licenses/by/4.0/
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which means that our problems (110)–(111) reduce to

ϕ
∂Sw

∂t
+ rutot

r

∂fw

∂x
= 0, Sw(0, t) = 1, Sw(x, 0) = Swc.

(114)

(we keep the product rutot throughout the section, even
though it equals 1, to facilitate comparison with the 1D-

case). Setting η = r2

2t , we find a rarefaction wave:

η = rutot

ϕ

dfw

dSw

, 0 ≤ η < ηs (115)

followed by a shock at η = ηs to the constant state Sw =
Swc. The self similar variable η can be interpreted as 2D-
volumetric flux (η = ru), i.e., saturations above Ss

w travel
with “speed” ru = rutot

ϕ
dfw

dSw
.

The shock is located at position r0 at time t0 and at
position r0 + �r at time t0 + �t . This means that we have

Sw = S+
w for r > r0 + �r (116)

slightly in front of the shock and

Sw ≈ S−
w for r ∈ [r0, r0 + �r) (117)

behind the shock (Sw is approximately constant in [r0, r0 +
�r) if �r is small enough). Furthermore, we have the (2D)
volumetric velocities in front of/behind the shock:

ru+
w = rutotfw(S+

w ), ru−
w = rutotfw(S−

w ). (118)

The mass balance (net inflow equals mass accumulation) in
the annulus between r = r0 and r = r0 + �r yields:

2πr(u−
w − u+

w)�t ≈ ϕ2πr(S−
w − S+

w )�r . (119)

Taking the limit �t → 0 yields the shock velocity:

rvs = rutot

ϕ

fw(S−
w ) − fw(S+

w )

S−
w − S+

w

. (120)

Notice that Eq. 120 only specifies vs (or ηs = rvs) in terms
of the saturations S−

w and S+
w ; these saturation values are

given by the entropy condition in Section 2.

Appendix 2: The entropy condition

The Rankine-Hugoniot condition does not specify the shock
saturation. Behind the shock, the velocity (in the 1D case) is
given as:

u = utot

ϕ

dfw

dSw

. (121)

This means that we have at the shock saturation Ss
w = S−

w

vs ≥ utot

ϕ

dfw

dSw

∣∣∣∣
Ss

w

. (122)

If vs < utot

ϕ
dfw

Sw

∣∣∣
Ss

w

higher saturations would overtake

the shock and the solution would become multivalued.

According to the entropy condition (140) derived in
Section 2.1 we also have:

vs ≤ utot

ϕ

dfw

dSw

∣∣∣∣
Ss

w

, (123)

which means that we have:

vs = utot

ϕ

dfw

dSw

∣∣∣∣
Ss

w

, (124)

i.e.,

fw(Ss
w) − fw(S+

w )

Ss
w − S+

w

= dfw

dSw

∣∣∣∣
Ss

w

. (125)

Due to the specific functional form of fw there is usually
one solution that shocks to the base state, which means that
S+

w = Swc, i.e.,

fw(Ss
w) − fw(Swc)

Ss
w − Swc

= dfw

dSw

∣∣∣∣
Ss

w

. (126)

This means that Eq. 126 has only one solution Ss
w, which

corresponds to the solution found using Welge’s tangent
construction.

In the radial case, a similar argument holds; we need:

rvs ≥ rutot

ϕ

dfw

dSw

∣∣∣∣
Ss

w

, (127)

otherwise higher saturations would have a higher 2D
volumetric velocity and would overtake the shock, leading
to a multivalued solution. Furthermore, we will show in
Section 2.2 (see Eq. 143) that:

rvs = ηs ≤ rutot

ϕ

dfw

dSw

∣∣∣∣
Ss

w

(128)

and we can conclude that the shock saturation is given by:

rvs = rutot

ϕ

dfw

dSw

∣∣∣∣
Ss

w

⇒ fw(Ss
w) − fw(Swc)

Ss
w − Swc

= dfw

dSw

∣∣∣∣
Ss

w

,

(129)

just as in the 1D case.

2.1 The entropy condition in the 1D case

The idea of the entropy condition is that the physical
solution of problems (99)–(101) is given by the solution of
equation:

ϕ
∂Sw

∂t
+ ∂uw

∂x
= ε

∂2Sw

∂x2
, uw = utotfw(Sw), (130)

with boundary condition and initial condition

Sw(0, t) = 1, Sw(x, 0) = Swc (131)

in the limit ε → 0.
We can solve problems (130)–(131) using the method of

matched asymptotic expansions around the shock. The outer
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solution is given by a rarefaction wave, possibly followed
by a constant state, i.e., approaching the shock we find:

lim
η→0− Sout

w = Ss
w, (132)

where we use the moving coordinate η = x − vst . We solve
the inner problem in the comoving frame and we set:

ξ = x − vst

ε
(133)

to obtain the inner problem:

−ϕvs

dSin
w

dξ
+ uinj

dfw

dξ
= d2Sin

w

dξ2
, Sin

w (ξ = 0) = Swc, lim
ξ→−∞ Sin

w = Ss
w .

(134)

Integrating once from −∞ to ξ yields:

−ϕvsS
in
w + uinjfw = dSin

w

dξ
− ϕvsS

s
w + utotfw(Ss

w), (135)

where we used that dSin
w

dξ
|Ss

w
→ 0 as ξ → −∞3. Solving for

dSin
w

dξ
yields:

dSin
w

dξ
= uinj

(
fw − fw(Ss

w)
) − ϕ

(
Sin

w − Ss
w

)
(136)

and using a Taylor approximation for fw around Ss
w we

obtain:

dSin
w

dξ
= uinj

dfw

dSw

∣∣∣∣
Ss

w

(Sin
w −Ss

w)−ϕvs

(
Sin

w − Ss
w

)
, (137)

i.e.,

dSin
w

dξ
=

(
uinj

dfw

dSw

∣∣∣∣
Ss

w

− ϕvs

)(
Sin

w − Ss
w

)
≤ 0, (138)

where the inequality holds because Sin
w is a decreasing

function of ξ ; dSin
w

dξ
is determined by Sin

w (see Eq. 136), so if
dSin

w

dξ
would be positive for some value of Sin

w , the saturation

will never drop below this value of Sin
w and reach Swc. We

have Sin
w − Ss

w ≤ 0 which means that we need:

uinj

dfw

dSw

∣∣∣∣
Ss

w

− ϕvs ≥ 0, (139)

which leads to the following inequality for vs

vs ≤ uinj

ϕ

dfw

dSw

∣∣∣∣
Ss

w

(140)

used in the previous section.

3The derivative approaches zero because Sin
w is a continuously

decreasing function of ξ , approaching a constant as ξ → −∞ (see the
last equation in (134))

2.2 The entropy condition in the radial case

We use the method of matched asymptotic expansions (see
Section 3.3) to derive (128). Integrating (81) from ∞ to ξ

yields:

ϕηs(Sw − Ss
w) − rutot (fw − fw(Ss

w)) = 2ηs

dSw

dξ
, (141)

where we used that dSin
w

dξ

∣∣∣
Ss

w

→ 0 as ξ → ∞.4 Using a

Taylor approximation for fw around Ss
w and solving for dSw

dξ

we find:

2ηs

dSw

dξ
=

(
ϕηs − rutot

dfw

dSw

∣∣∣∣
Ss

w

) (
Sw − Ss

w

)
. (142)

Notice that the LHS of Eq. 142 is positive (the saturation is
an increasing function of ξ due to the choice of ξ ), which
means that we find:

ϕηs − rutot

dfw

dSw

∣∣∣∣
Ss

w

≤ 0 ⇒ ηs ≤ rutot

ϕ

dfw

dSw

∣∣∣∣
Ss

w

. (143)

Appendix 3: Mathematical details
of Section 3.2.3

In this section, we will discuss briefly how Eq. 60 is derived
using Eqs. 58 and 59.

For Sw ≈ Swc, only the first and last terms of
Eq. 42 are nonzero. The second term vanishes due to the
incompressibility assumption; for the third term, we have:

d

dη
(rutotfw) = dfw

dη
, (144)

because rutot = 1 in the incompressible case (see Eq. 54).
Furthermore, we have λo ≈ 0 ⇒ fw ≈ 1, which means that
the third term indeed vanishes.

This means that we have to balance the first and fourth
terms to get a nontrivial solution.

For the first term −ϕη dSw

dη
, we find:

−ϕη
dSw

dη
∼ −ϕηf p(ηf − η)p−1 (145)

and for the fourth term d
dη

(
2ηDcap

dSw

dη

)
, we find three

contributions:

2Dcap

dSw

dη
+ 2η

Dcap

dη

dSw

dη
+ 2ηDcap

d2Sw

dη2
, (146)

where

2Dcap

dSw

dη
∼ (ηf − η)

1
2p+ 1

2pnw(ηf − η)p−1, (147)

4The derivative approaches zero because Sin
w is a continuously

increasing function of ξ , approaching a constant as ξ → ∞ (see
Eq. 74)
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2η
Dcap

dη

dSw

dη
∼ (ηf − η)

1
2p+ 1

2pnw−1(ηf − η)p−1 (148)

and

2ηDcap

d2Sw

dη2
∼ (ηf − η)

1
2p+ 1

2pnw(ηf − η)p−2. (149)

Note that the contributions of Eqs. 148 and 149 are of the
same order and that the contribution of Eq. 147 is of higher
order and can be neglected. Balancing powers of ηf − η of
Eqs. 145, 148, and 149, we indeed find a nontrivial solution,
provided the balance:

1

2
p + 1

2
pnw − 1 + p − 1 = p − 1 ⇒ p = 2

nw + 1
. (150)
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