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Abstract
The increasing complexity of mechanical systems has resulted in an increased usage and de-
pendence on data driven modelling techniques in order to obtain simple yet accurate models
of these systems. Neural networks have emerged as a popular modelling choice due to their
proven ability to learn complex nonlinear relationships between inputs and outputs of any
given system. Moreover, they are capable of generalizing on data that they have not been
trained on. The downside of modelling with neural networks is that they do not provide any
insight into the dynamics of the system they model. This limits the application of neural net-
works in carrying out fault diagnosis of mechanical systems to just the fault detection and
isolation (FDI) tasks. While in some applications this may be sufficient, sometimes alongside
FDI, it is also desirable to carry out a fault identification task in order to determine the nec-
essary adjustments to bring the faulty system back to its normal operating condition. This
thesis explores the possibility of carrying out a fault identification task alongside an FDI task
for a mechanical system that has been modelled by a neural network.

Traditionally, the weights of a trained neural network represent the strength of a connection
between the two neurons they connect. The possibility of an existing correlation between the
weights of a neural network and the properties of the mechanical system being modelled is a
concept that has not been fully explored yet. This study considers that such a relation exists,
implying that the change in certain properties of the mechanical system due to the occurrence
of a fault can be related to a change in the corresponding weights of the neural network
modelling the system. Consequently, the change in weights of the neural network could give
an insight into the fault occurrence in a mechanical system. Taking this idea forward, two
fault diagnosis algorithms have been proposed in this study - a fault detection algorithm using
adaptive threshold, and a fault isolation & identification algorithm based on sparse Bayesian
learning framework. The proposed algorithms were tested on (hypothetical) faulty linear
and non-linear systems. The results show that the adaptive threshold based fault detection
algorithm was successful in detecting the occurrence of faults in the linear system. For the
non-linear system, although a simplistic neural network was used to model the system, the
fault detection algorithm was still successful while returning few and sparse false positives
and negatives. The fault isolation & identification algorithm was also successful in isolating
and identifying all the changed weights in the neural networks modelling the system for both
linear and non-linear cases. Although the algorithms proposed show promising results for
the experiments conducted, further research is needed to establish the suitability of using
them in real world applications.
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1
Introduction

1.1. Introduction
The last few decades have seen an increased usage and dependence on mathematical models
across several engineering disciplines such as the aerospace, automotive and process engi-
neering industries where these models are used for the purpose of designing, optimizing,
testing, controlling and maintaining of engineering systems. Even in applications outside of
engineering such as health care, there has been an increased interest in model-based tech-
niques following a gradual ongoing shift towards personalized health care. Over the years,
the increasing demands on the performance, efficiency, safety and environmental aspects
have pushed engineering systems to become increasingly complex in both their operating
dynamics and their interactions with other sub-systems that surround them (in case of dis-
tributed architectures).The downside of this increasing complexity is that it poses a major
challenge in accurately modelling such systems. This is because there is a high chance that
the engineering insights and governing equations describing the working dynamics of the
complex system and its subsystems may be unknown, or too difficult to analytically express.
Even when equations are known, the mathematical model may be sensitive to modelling er-
rors which in turn affects the success of the model based method. Lastly, if known equations
are overly complex in their analytical expression, they might be computationally expensive
to solve in real time and therefore unsuitable for application. As a result, there has been
an increased usage of data-driven modelling techniques such as black-box models, which
can obtain accurate models directly from the available measurement data from the system,
without requiring any/much knowledge of the dynamics behind it. However, such models
provide limited insights in the dynamics of the modelled systems. Neural networks are one
of the most commonly used black-box modelling techniques.
One common requirement for the systems employed across the engineering and non engi-
neering disciplines mentioned earlier is their (system’s) reliable operation in an uncertain and
(temporally and spatially) changing environment. Consider for example a mechanical system
employed in a process or manufacturing engineering application. There are time instances
during the system’s running operation when a fault(s) occurs, especially when the system is
operated at its peak load/capacity conditions for extended periods in order to meet produc-
tion demands. After the occurrence of this fault, certain properties of the system change as
a result of which the system dynamics are affected. This in-turn means that the identified
black-box model of the system is no longer able to describe the dynamics corresponding to
the current faulty system. This renders the model useless for the purpose of control appli-
cations of the system unless the occurrence of the fault in the system can be detected at the
earliest and a diagnosis of the system can be carried out in order to identify the cause of this
fault and the parameters of the system that have changed as result of this fault. Performing
these tasks are collectively referred to as a fault diagnosis of the faulty system and in such
high-cost safety critical systems it is advantageous to have a fault diagnosis system in place.
The aim of this research is to propose fault diagnosis algorithms that can carry out the fault

1



2 Introduction

diagnosis of faulty systems that have been modelled using neural networks.

1.2. Related Work
Fault diagnosis techniques can be roughly classified under two main categories namely:
physical redundancy and analytical redundancy. In the physical redundancy approach, re-
dundant sensors are installed on board the operating system. During the system’s normal
operation, only one sensor is required for the purpose of measuring or controlling a particular
variable. However, following the occurrence of a fault, the redundant sensors provide reliable
measurements which allows for carrying out a fault diagnosis and maintaining control of the
system. Despite the advantage of being easy to implement, some of the downsides of this
approach include high maintenance and operational costs, and an increase in the overall
size, bulk and complexity of the system which is undesirable for already complex systems.
Moreover, this approach is not suitable for systems where the parameters of the system can
not be directly measured by sensors. On the other hand, the analytical redundancy approach
involves constructing a mathematical model representing the dynamics of the system. The
mathematical model is then compared with the actual system during its operation in order
to detect and isolate any occurrence of fault in the system. The figure 1.1 shows a broad
classification of the various analytical redundancy based approaches.
The fault detection and identification (FDI) methods shown in this figure can be broadly clas-
sified as model-based and knowledge-based methods. Model-based quantitative methods
require a prior knowledge of the governing equations of the system in order to construct a
mathematical model that represents the dynamics of the system. While adopting this ap-
proach is likely to result in an accurate mathematical model of the system, the increasing
complexity of systems means that often the exact governing equations of the system are ei-
ther not known or partially known. The alternative of making some assumptions on the
system in order to obtain a simplified model results in an inaccuracy between the mod-
elled and real system, which could in-turn affect the fault detection accuracy. Conversely,
knowledge-based methods do not require prior knowledge of the governing equations of the
system. For example, consider quantitative knowledge-based methods that make use of the
abundantly available measurement data from the system in order to construct a mathemat-
ical model of the system. This type of modelling approach is also commonly referred to as
a data-driven modelling approach for which black-box modelling methods such as neural
networks and statistical methods are widely used. Although an accurate model is obtained,
some disadvantages of quantitative knowledge-based methods are that they require lot of
data from the system in order to construct a model. Moreover, the model obtained does not
provide much insights into the dynamics of the system itself. On the other hand, qualitative
knowledge-based methods construct models based on the vast available knowledge of the
system’s working dynamics in its normal and faulty operational modes. The models are con-
structed with the aim of emulating the decision-making ability of a human expert. FDI using
these models is carried out based on logical reasoning based on an inbuilt inference network
or rule-based network that links certain observed phenomena/symptoms of the system to its
current health condition and then suggests the necessary actions to be carried out, similar
to how a human expert would. The major disadvantage of the qualitative knowledge-based
methods is the problem of knowledge-acquisition. Although quantitative knowledge-based
methods have some drawbacks, their ability to construct an accurate model of the system
purely on measurement data have made them an increasingly popular and suitable option
among researchers in recent times.

Fault detection and isolation methods

• Statistical based FDI methods
Achmad et. al. [11] used Support Vector Machine (SVM) classifiers for FDI of an induc-
tion motor having several fault modes. Prior to the classification process, raw data was
subjected to Principal Component Analysis (PCA) and Independent Component Analysis
(ICA) data dimensionality reduction methods to improve the SVM’s classification per-
formance. The SVM’s fault classification accuracy on test data was compared for four
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Figure 1.1: Broad classification of the different analytical redundancy fault detection and isolation methods [1] and the focus of
this research (highlighted)

separate cases: data dimensionality reduction of the test data carried out by linear and
nonlinear variants of PCA and ICA. It was found that kernel based methods resulted in
a more accurate classification when compared to their linear counterparts. Moreover,
kernel ICA method was shown to outperform kernel PCA method.
SVM based FDI approach has also been used in several other applications such as FDI
of gears [7], wind turbines [12] and turbo-pump rotors [13] to name a few.
Setu et. al. [14] performed a fault diagnosis of HVAC chillers that had 27 modes of
normal operation and 8 faulty conditions with each faulty condition having 4 severity
levels of the fault. A Partial Least Squares (PLS) approach was used to obtain a nominal
model of the system. A fault in the system was detected by performing the generalized
likelihood ratio test (GLRT) on residuals that were generated by comparing outputs of
the nominal model with actual measurements. Fault isolation was carried out by 3 dif-
ferent types of classifiers namely SVM, PLS and PCA. A comparison of the classification
accuracy for all three methods in each of the 27 operating modes showed that the clas-
sifiers outperformed one another for different operating conditions. Each classifier was
found to have a classification accuracy of at least 95 %, with SVM performing best on
average. The fault identification task to identify the severity of the fault was performed
by another PLS model that was trained separately on the four severity levels of each
fault type.
PLS based FDI approach has also been used in several other applications such as the
fault detection and isolation of robotic manipulators[15] and chemical systems [16] to
name a few.

PCA has been used in areas such as data dimensionality reduction, pattern recogni-
tion and feature extraction. Its simplicity and efficiency in handling large volumes of
data has lead to its usage in process monitoring and FDI. Lee et. al. [17] proposed
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a nonlinear kernel principal component analysis (KPCA) approach and compared it to
linear PCA for carrying out a fault detection of a biological waste-water treatment pro-
cess. The nonlinear kernel function was used to project the data corresponding to the
normal operating condition of the system to a feature space from which principal com-
ponents were extracted. This was used to calculate the 𝑇 and squared prediction error
(SPE) monitoring statistics of the normal operating data, from which the control limits
of the 𝑇 and SPE charts were set. The 𝑇 statistic provides a measure of the variation
within the KPCA model. The goodness of fit of a sample to the KPCA model is given by
the squared prediction error (SPE) statistic. A fault in the system is detected when the
monitored 𝑇 and SPE statistics cross the pre-defined control limit for these statistics.
It was shown that the proposed KPCA method outperformed the linear PCA approach in
capturing nonlinear relationships in the process variables, and the fault detection task.
The Fisher Discriminant Analysis (FDA) technique does data dimensionality reduction
by determining a set of projection vectors that maximize scatter between the classes
while minimizing scatter within each class. PCA on the other hand, does this by project-
ing data in directions of maximum variance without taking into account the information
between classes. As a result, in PCA there is a possibility that the identified directions
of maximum variance may not necessarily be effective for classification. Therefore in
theory FDA is expected to do better because it carries out data reduction while still
being able to differentiate among classes. Unlike in PCA, where separate models are
identified for the normal operating conditions (fault detection) and for each fault case
(fault isolation). In FDA, all data (normal and fault) is used to obtain a single lower di-
mensional model for carrying out a fault diagnosis. Identical to PCA, in FDA the fault is
detected and isolated by using the identified model in combination with the monitored
𝑇 and SPE statistics. Chiang et. al. [18] compared three techniques namely FDA, PLS
and PCA with one another for fault diagnosis of a chemical processes. It was found that
FDA and PLS methods were better than PCA at dimensionality reduction from a fault
diagnosis point of view. As a result, both FDA and PLS outperformed PCA, with FDA
being the best.

The positive results show the suitability of different statistical based modelling tech-
niques for carrying out FDI across various applications. However, a drawback associ-
ated with them (except FDA) when it comes to performing a multi-fault classification is
that several models have to be trained - one for each fault type. This in turn implies that
each of these models have to be checked with in order to make the classification. More-
over, consider systems where multiple faults can be present in the system at a time, the
number of models to train based on the different fault combination would raise greatly
with a possibility that the classification accuracy decreases. This motivate an investiga-
tion into other quantitative knowledge-based approaches such as neural networks for
performing FDI of the system.

• Neural network based FDI
Several applications of neural networks have been found in the literature for Fault De-
tection and Isolation. In one of the earlier works that implemented neural networks for
fault diagnosis, Venkatasubramanian et. al. [8] initially identified shortcomings of the
Knowledge Based Expert System (KBES) used for FDI of a fluidized catalytic cracking
process in an oil refinery. To overcome the shortcomings, a neural network based FDI
approach was proposed. The neural network’s input and output layers consisted of
neurons representing the 18 fault symptoms and 13 possible faults that can occur in
the system, respectively. The network was trained on all known ’symptoms-faults’ pairs
from the inference network in the KBES, and tested for its classification accuracy for
single and multiple-faults in the system. The results showed an accurate classification
for single faults and a gradual drop in classification accuracy with an increase in the
number of faults (multiple-faults case). A possible reason for this could be that the neu-
ral network was trained based on the embedded logic in the inference network rather
than measurement data corresponding to the different fault cases. In the multiple fault
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case, the prediction accuracy increased when an additional hidden layer was added to
the neural network architecture. A possible explanation for this is that deeper neural
networks (more hidden layers) have a better ability to identify more nonlinear mappings
of the system when compared to shallower networks.
Baillie et.al. [19] compared three modeling techniques namely Box-Jenkins linear au-
toregressive model, back propagation neural networks and radial basis function (RBF)
networks for carrying out a fault diagnosis using time-series vibrational signal of a
rolling element bearing that has 1 normal and 3 faulty modes. For each technique,
a model for each type of bearing fault was identified. A fault in the system was detected
by observing the vibration signal of the rotating machine over a fixed time-window and
then using the identified models to predict the current vibration level. The model per-
forming the best is said to be indicative of the current operating or faulty mode of the
bearing. It was found that the classification accuracy had increased with an increase
in the size of the time-window and vice-versa. Results showed that on average neural
networks performed better than the other two methods, especially when only shorter
lengths of time-series vibrational data was available.
Patton et. al. [20] proposed a neural network based approach for carrying out a fault
diagnosis of a nonlinear-laboratory 3 tanks system. The FDI was carried out in two-
stages. In the first stage, the predicted output from the trained neural network was
compared to the actual system output to generate a residual. In the second stage, the
generated residual was passed to the second trained neural network that examined it
for the likelihood of a fault(s) in the system. The results showed that the neural network
based FDI approach was successful in detecting both single and multiple faults in the
system. Moreover, it was shown that small faults could be detected and isolated till
a certain limit after which the neural network was no longer capable of being trained
on such small faults. A similar approach of carrying out the FDI in two-stages for an
electrical power transmission system was seen in the work of Majid et. al. [21].
Chine et. al. [22] used a combined approach of a neural network alongside another al-
gorithm to jointly carry out a fault isolation of a photovoltaic system. This was because
the other algorithm was capable of isolating only those fault cases having different com-
bination of attributes and not the fault cases having same combination of attributes.
Hence a neural network was trained on these particular fault cases and was shown to
be successful in isolating them.
Apart from the literature provided above, neural network based FDI approaches have
also been used for several other applications such as FDI of gears [7], gearboxes [23]
and induction machines [24] to name a few.

In the literature provided above, the procedure for fault detection remains same: the
trained neural network provides an estimated output that is used to generate residuals.
These residuals are compared to threshold(s) to detect whether a fault has occurred in
the system or not. This threshold could be fixed or adaptive [25]. The fault isolation
also remains more or less the same with only a slight variation in its implementation.
For example, some researchers have opted to train a single neural network that en-
compasses fault isolation with fault detection. Other researchers have opted to train a
single or multiple neural network(s) for fault isolation. Other subtle differences in the
FDI process include selection of number of hidden layers in the neural network. Some
researchers have opted for shallow networks while others [22] claim that deep neural
networks are capable of performing the FDI better as they can learn the system better.
Irrespective of the variations in the approaches taken, it can be concluded that neural
networks are suitable candidates for performing or assisting in the FDI over a large and
diverse range of systems.

Fault identification methods
The quantitative knowledge based approaches discussed above are limited to detecting and
classifying the type of fault that has occurred in the system. While in various applications
this is sufficient, sometimes alongside the FDI, it is also desirable to determine the necessary
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adjustments in the parameters to bring the faulty system back to its normal operating con-
dition. This requires a determination of the size and time-variant behaviour of the occurred
fault. This is referred to as fault identification. Within existing literature, fault identification
has been shown to be successfully carried out by: physical redundancy approaches, state
observers/estimators [26], Kalman Filters (KF) [27] and reconstruction based contribution
approaches using statistical models like PCA [28] and PLS [29]. Literature on using neural
networks for carrying out a fault identification for sensor and actuator faults was found in
applications such as flight control systems [30] and UAVs [31]. However, to the author’s best
knowledge, none of the existing literature has looked at using neural networks to carry out
a fault identification on process faults for estimating the changed parameters of the faulty
system. This research investigates the possibility of doing so.

1.3. Scope of thesis
1.3.1. Problem Description
Consider any complex mechanical system in a process or manufacturing engineering appli-
cation such as a boiler, mill, etc. In the absence of governing equations or any engineering
insight into the mechanical system, the system is chosen to be modelled by a neural network
from available time-series measurement data that is obtained from the system while it is
operating in its normal (non-fault) state. Traditionally, the weights of a trained neural net-
work represent the strength of a connection between the two neurons it connects. However,
the possibility of a correlation between the weights of a neural network and the properties
of the mechanical system being modelled is a concept that has not been fully explored yet.
This thesis follows the idea that such a correlation exists. Now consider that the mechanical
system (along with the trained neural network of the system in parallel) starts its operation
at time step 0 and continues to operate under in its normal (non-fault) state till time-step ’t’.
During its operation, suddenly at time-step ’t+1’ a fault occurs in the system as a result of
which certain properties of the system change. These changes can be related to a change in
the values of certain weights in the neural network that correlate to the changed properties.
After the occurrence of this fault, from time-step ’t+1’ onward, the trained neural network
model is unable to provide a reliable estimate of the system’s output states and therefore this
model can no longer be used for the purpose of providing any aid for controlling the system
or any other applications unless a fault diagnosis of the faulty system is carried out.

1.3.2. Research Question and Objectives
The research question can be stated as follows:
How can a fault diagnosis (fault detection, isolation and identification) task be carried out for
a mechanical system modelled by a neural network?

Based on the stated research question, the aim of this research is to propose suitable fault
diagnosis algorithms that are capable of carrying out a fault diagnosis of a neural network
modelled mechanical system using available time-series measurement data. Specifically, the
objectives of these fault diagnosis algorithms are to:

• Detect that a fault has occurred in the mechanical system and the time-step of its
occurrence.

• Locate and identify the weights in the neural network that have changed from their
original value after the occurrence of the fault.

• Identify the new values of the weights in the neural network that were found to have
changed.

• Test and comment on the suitability of the proposed fault diagnosis algorithms in car-
rying out a fault diagnosis of any given system modelled by a neural network.
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1.4. Thesis Outline
The rest of this thesis is structured as follows: chapter 2 provides a comprehensive technical
background on the following three areas: 1) modelling of mechanical systems with a focus on
black-box modelling techniques, 2) the sub-tasks that constitute a fault diagnosis process
and common approaches for carrying them out, and finally, 3) the sparse signal recovery
problem and algorithms that are used to solve such problems with an emphasis on sparse
Bayesian learning methods. Chapter 3 proposes the fault detection, isolation and identifica-
tion algorithms used to carry out a fault diagnosis task on a faulty system. Chapter 4 is the
experimentation and results chapter which tests the suitability of the proposed algorithms for
carrying out the fault diagnosis task on different types of systems. Chapter 5 draws some key
conclusions based on results obtained. Finally, based on these conclusions, some potential
areas of future work are proposed and detailed upon.





2
Technical Preliminaries

This chapter provides a basic yet comprehensive technical overview of the following 3 do-
mains: modelling of systems, fault diagnosis and sparse regression techniques. The aim of
this chapter is to establish the required base knowledge of the different concepts belonging
to each of these domains which are referred to from time to time in the different sections of
chapters ahead.

2.1. Modelling of systems
Modelling techniques can be broadly classified as either data driven or non-data driven de-
pending on whether or not the system model is constructed using the measurement data
obtained from the system. In the non-data driven modelling approach, the construction
of the system model is completely independent of the measured data, rather the model is
constructed completely based on standard engineering principles (Newton’s law of motion,
conservation of energy and more) and the known insights to the system. Models identified
via this approach are more commonly referred to as white-box models. On the other hand,
data-driven modelling approaches construct a system model using the measurement data
acquired from the system. Grey-box and black-box models are the two types of models that
fall under this approach. Black-box models are entirely constructed from the measurement
data. Grey-box models can be considered as a hybrid of black-box and white-box models in
the sense that their construction requires the combination of both engineering insights of
the system and the measurement data. More specifically, certain variables of the grey-box
models have to be identified for which the measurement data is used. Therefore the selection
of modelling using either a white-box, grey-box or a black-box model depends on the avail-
ability of measurement data and physical physical insights of the system. Figure 2.1 shows
this classification in the form of a flowchart.

Figure 2.1: Classification of the different modelling approaches.

White-box models have an advantage over grey-box and black-box models in terms of their

9
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transparency, which means that they can provide a good understanding and clear explana-
tion of the inner workings and behavior of the system. This transparency arises from the fact
that these models were built using the engineering insights of the system. The disadvantage
associated with white-box models is that in the case of complex nonlinear systems (process
engineering systems) which may contain many subsystems that interact with one another,
it may not be possible to have a complete engineering insight of the system, making the
white-box modelling approach too difficult and sometimes impossible. It is also likely that
the accuracy of the constructed model might be low. Grey-box models also suffer from this
as they too require engineering insights in order to construct the model. Also, they provide a
lower transparency as compared to white-box models. The advantage of black-box models is
that they are relatively easy to model with as they just require identifying a function (linear
or nonlinear) that can fit the observed input to output measurement data from the system,
without taking into account the inner working of the system. This makes them a more suit-
able choice in comparison to white-box models for modelling complex nonlinear systems. The
disadvantage of black-box modelling however is that the model identified is unable to provide
any transparency, which makes carrying out tasks like maintenance and fault diagnosis of
these systems more challenging, but not impossible, as will be explained later in the fault
diagnosis section.
Since this thesis is concerned with the fault diagnosis of (mechanical) systems such as those
found in process engineering applications, where the system(s) are known to be complex and
nonlinear in nature and the engineering insights are unknown, but the measurement data
is available, black-box models will be the choice of modelling.
Black-box modelling techniques can be further divided into linear and nonlinear models.
Auto-regressive (AR) model, Auto-regressive with Moving Average (ARMA), Auto-regressive
with Moving Average with exogenous inputs (ARMAX) models and Output Error (OE) models
are examples of a few popular linear black-box models, while Basis Functions and Neural
Networks are examples of popular nonlinear black-box models. As mentioned above, the
thesis is concerned with modelling of nonlinear systems for this purpose the discussion on
linear has been left out but can be referred to here [32].
The discussion on nonlinear black-box models is made bellow:

1. Basis Functions
It is known that a nonlinear function can be represented as a sum of terms belonging to
a family of parameterized functions [33]. A popular approach is to search among a set
of nonlinear terms belonging to basis functions, for a compact expression that is coher-
ent with the available measurement data. The Taylor polynomial expansion, Volterra
expansion and Fourier series are examples of some popular basis functions from which
the nonlinear terms can be searched for.
Success in modelling using basis functions highly depends on selecting a list of appro-
priate basis functions to search from. This requires having some insight on the system
and its domain knowledge in order to make an educated guess on the type of nonlinear
terms (polynomial, trigonometric and so one) that are typically expected for modelling
such a system. For example, if a mechanical system is known to typically have nonlin-
ear polynomial terms in its expression, then having this insight can help eliminate all
basis functions that contain non-polynomial terms in their expansions and help narrow
down the search to a limited number of basis functions that do contain these nonlinear
polynomial terms of certain polynomial order. If such an insight is missing, then there
is an endless number of different types of basis functions and their nonlinear terms to
search from, which then becomes a challenging task. This is essentially the downside
of modelling using basis functions. The use of basis function for the identification of
nonlinear systems can be referred to in [34].

2. Neural Networks
Neural networks (NNs) are one of the most popular modeling techniques for nonlinear
systems. They draw their inspirations from the structure and workings of biological
neural networks present in human brains. These biological networks are a collection
of several interconnected (by synapses) neurons that transmit signals in order to pass
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information from one neuron to another. A structure of a typical neural network can be
seen in figure 2.2. The neural network contains several interconnected neurons across
various layers. The first and last layers are the input and output layers respectively
while the layer(s) in between are known as the hidden layer(s). The connection between
any two neurons is known as a weight. The number of neurons in the input and output
layer is decided by the number of input and output states of the system, with each in-
put/output neuron representing one of the input/output states. The number of hidden
layers and neurons in these hidden layers can be considered to be a tuning parameter
that is likely dependent on the degree of nonlinearity present in the system. The only
way to determine the optimal architecture for modelling the system is by trying with
several different neural network architectures to see which one consistently yields a
better result.

Figure 2.2: Typical architecture of a neural network showing its layers, neurons and weights [2].

Modelling using a neural network basically refers to training the neural network on the
available set of measurement data. Training of a neural network is finding the optimal
set of values of its parameters (weights) such that the neural network is able to model
the system with a high level of accuracy.
Training a neural network is an iterative process consisting of two tasks: Forward prop-
agation followed by backward propagation.

• Forward propagation
The values of the input states are fed to their respective input neurons, and the
value of the first neuron in the first hidden layer is calculated by multiplying the
value of each neuron in the input layer with their respective weights that connects
them to the first neuron in the hidden layer and then summing up all of the prod-
ucts to receive a value. This value is then subjected to the nonlinear activation
function (sigmoid, tanh, ReLu, etc) of this hidden layer in order to receive the value
of the first neuron in the first hidden layer. This process is then carried out for the
remaining neurons in the first hidden layer and then repeated for all the neurons
in each hidden layer. The values of neurons in the final hidden layer are then used
to calculate the values of the output neurons in the output layer in a similar man-
ner with the exception that the activation function for the final layer is usually a
linear one. This process of providing the neural network with a set of input states
and calculating the values received at the output neurons is known as Forward
Propagation. The forward propagation task in a neural network can be visualized
in figure 2.3. Here ’Wij’ represents the incoming weights from all neurons ’i’ in the
previous layer to neuron ’j’ in the current layer, ’g’ represents the activation func-
tion and ’a’ represents the neuron value after applying the activation function.

The final step before carrying out the back propagation is to calculate the error in
modelling, this is done with the help of a predefined cost function such as Mean
Square Error (MSE), so the MSE between the values received at the output neurons
and target (actual output measurement) output for the corresponding input state



12 Technical Preliminaries

Figure 2.3: Forward propagation process for neural network training [3].

is calculated. This error is then used to carry out the backward propagation task.
• Backward propagation
In the backward propagation step, the values of the neural network parameters
(weights) are updated with the intention of reducing the overall modelling error.
The magnitude and direction in which the weights of the neural network are to be
updated is found out by a process called gradient-descent which requires taking
the derivative of the cost function with respect to each weight in the neural network
(descent because the goal is to move the parameters in a direction that minimizes
the cost function and not maximize it).
The new set of weights of the neural network are obtained by subtracting the current
set of neural network weights by the product of the learning rate with the gradient
of the cost function. The learning rate term helps control the magnitude with which
the weights are updated in a stable manner. Following this update step, the forward
propagation step is repeated for the next input-output data measurement pair with
the newly obtained weights. This iterative process continues either for a certain
number of iterations or till a stage in the training process is reached when the
update terms are negligible. In the later case this implies that the cost function
has been minimized and that the neural network has been trained or modelled on
the given measurement data. The backward propagation task in a neural network
can be visualized in figure 2.4. Here the green circle represents the error between
the estimated and target output. The error is then used to calculate new value
of weights (indicated in red) by process of backward propagation. The equations
represent this process mathematically.

In short, modelling a system with a neural network can be thought of performing an
optimization of a cost function which is representative of the fitness of the model output
with the actual/target output. The cost is reduced by updating the parameters (weights)
of the neural network model in the direction and magnitude as suggested by the gradi-
ent of the cost with respect to the neural network model parameters(weights).

Some important points to keep in mind regarding the quality of the identified neural
network model (in terms of its fitness) and the interpretation of its weights are:

• Over-fitting and Under-fitting of model
Although the objective is to construct an accurate model of the system with a low
modelling error (figure 2.5), this accuracy should not come at the compromise of the
generalizing capabilities of a neural network. This means that the neural network
model obtained should not have simply memorized (over-fitting) all the inputs and
the corresponding outputs that it was trained on, rather it should learn some useful
patterns in the data set that allow it to provide a good level of accuracy not only on
the data it was trained on, but also for data that it has not yet seen (generalization).
In order to prevent the neural network from over-fitting, regularization techniques
such as dropout [35] and including additional penalty term (L1 and L2 norms) in
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Figure 2.4: Backward propagation process for neural network training [4].

the cost function to promote sparsity can be implemented [36]. However, excessive
regularization leads to a situation where the neural network model obtained is a
poor one which is a sign of an under-fitted model.
The quality of the model in its ability to model and generalize can be tested by
dividing the available measurement data set into two data sets: training data set
and test data set. The neural network is then trained on the training data set and
the obtained neural network model is then validated to see how good its prediction
accuracy is on the test data set. If it does well on both data-sets then the neural
network can be said to be trained.

Figure 2.5: Neural network modelling error between true output (blue) and predicted output from model (orange) [5].

• Interpretation of weights
As mentioned earlier, black-box models provide very little insights into the system
dynamics of the system being modelled. These insights have to interpreted from
the model’s parameters. In the case of a neural network model its parameters
are its weights. The weights of the neural network are real numbers of certain
magnitude. Traditionally these weights provide a simple understanding of how
positively (for positive valued weights) or negatively (for negative valued weights)
sensitivity two neurons are to data passed between one another. Hence in the case
of a trained neural network, the large positive weights imply that the input has a
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strong positive proportional correlation to the output states, a large negative weight
would imply that the input has a strong inverse correlation of the output states of
the system. This is an elementary level interpretation of the weights of a neural
network which can be used to gain limited insights into the systems. More work on
the interpretation of neural network weights can be found in these papers [37],[38].

Having explained the process of modelling using NNs above, some key advantages as-
sociated with NNs that make them an attractive choice for modelling are:

• Superior in their ability to identify and model complex nonlinear relationships be-
tween the inputs and outputs of a system.

• Their ability to generalize enables them provide a good estimate on data samples
they havn’t been trained on. Hence while modelling the system, the neural network
is also capable of forecasting which is very useful when it comes to the task of
classification as will be explained in the fault detection section later on in this
chapter.

Taking into consideration the modelling process and the advantages associated with Neural
Networks, they have been chosen as the preferred black-box modelling approach for mod-
elling systems in this thesis.

2.2. Fault Diagnosis of Mechanical Systems
Consider a mechanical system such as those employed in process engineering applications,
there are bound to be time instances during its running operation when a fault(s) may occur.
The chances of encountering a fault especially increases when the system is operating at
its high load conditions for extended periods. In these high-cost safety critical systems it is
advantageous to be able to detect the occurrence of a fault at the earliest and carry out a
fault diagnosis to identify the cause of this fault and the parameters of the system that have
changed as result of this fault.
Before defining what a fault diagnosis is and what its sub-tasks are, it is important to define
what a fault is. The IFAC SAFEPROCESS technical committee recognizes the definition of a
fault as the definition provided in [39], which states that: ”A fault is an unpermitted deviation
of at least one characteristic property or parameter of a system from its normal condition.”
The occurrence of this fault causes a degradation in the system’s performance but may not
result in complete loss of system functionality.
As per the IFAC SAFEPROCESS technical committee [39], fault diagnosis is a collective of
the following 3 tasks sequential tasks:

1. Fault Detection

2. Fault Isolation

3. Fault Identification

The tasks and common methods used to carry them out have been explained in the following
sections.

2.2.1. Fault Detection
Fault detection is defined as the determination of the faults present in a system and the time
of detection [39]. Fault detection can be thought of as a real-time monitoring and classifica-
tion process. Carrying out this monitoring process is not so straightforward when it comes
to dealing with time-series data. Some of the factors which makes detection in time-series
challenging are:

1. There are many ways in which a fault can be defined as shown in figure 2.6. The fault
could be a single event or a sub-sequence within the time-series, alternatively it could
be the entire time-series itself.
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2. Most algorithms used to detect these faults are based on similarity/distance between
fault free and faulty systems. Finding a suitable one to apply for a particular type of
time-series (periodic, aperiodic, synchronous, asynchronous) is not easy because some
of the simpler methods are over sensitive to outliers.

3. Often the length of the training (non-fault) time-series and the test (faulty) time-series
are not equal which makes comparing the time-series using the fault-detection algo-
rithms complicated.

4. Sometimes the detection of fault requires the comparison of two or more time-series
data which requires them to be in a comparable scale in magnitude.

Figure 2.6: Fault occurrence as a single event in the time-series data (Left); as an ECG signal and a sub sequence (portion in
red) in the time-series (Middle) ; and as the entire time-series (Right). [6]

To overcome some of the problems stated above, transformation of the data can be done
before applying the fault detection algorithms. Some popular transformation techniques
include Aggregation, Discretization and Signal Processing. More about these methods can
be referred to in [6].
Since the focus of this thesis is in detecting faults in time-series data occurring in mechanical
systems, the faults that are of interest to be detected are single-event in nature.
Some of the popular fault-detection algorithms are:

1. Window-Based methods divide the entire training and test time-series into windows
(sub-sequences) of certain fixed lengths. The score of each test window is calculated
by comparing its similarity to the corresponding training window. The scores for each
test window is then aggregated to obtain the final score. These application of window
based techniques are motivated by the belief that one or more sub sequences could be
the cause for the fault.

2. Similarity-Based methods calculate the pairwise-proximity between the training and
testing time-series data using approximate distance or similarity kernels to compute a
score. The scores are calculated by using methods like k-neural network (distance of
test time series to its kth nearest neighbour in the training data set) and clustering.

3. Segmentation-Basedmethods partition the training data into a series of segments after
which a Finite-State-Automation (FSA) model is learned to model the transition between
these series of segments. The idea behind this method is that, a faulty time-series data
divided into similar segments will not fit the FSA that was identified for the training
time-series data.

4. Predication-Basedmethods identify a function that is capable of modeling the available
time-series data from a system. It does so by taking a certain ’n’ number of observations
of the training time-series data and learns the parameters of the function from this data
in order to predict the observations for the subsequent ’m’ time-steps. The function
identified is said to be trained well if the difference in the predicted output and the true
output (prediction error) for these ’m’ time-steps is small.
Once the function is identified, it can be said to be represent the system under normal
(no-fault) operating conditions. This function, can now be used to forecast the output
for any ’n’ observations of a test time-series. If the prediction error is large for these ’n’
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observations, these data points can be classified as faulty.
Hence, prediction-based fault detection models in essence is a construction of a model
from the time-series (measurement) data available which as discussed in the previous
section is known as a data-driven modelling approach. This implies that if a black-box
modelling technique such as neural networks is chosen for modelling the system, then
the same framework can be used be used for the purpose of fault detection.

Window-based, similarity-based and segmentation-based methods are more suitable for their
application when faults in the time-series exists as sub-sequences. Prediction based meth-
ods on the other hand are more suitable for detecting single event faults in the time-series
data. A more detailed overview of the methods mentioned above can be referred to in [6].
The focus of this thesis is on fault diagnosis of mechanical systems, where detecting faults
which exist as single events in the time-series data is of interest for which prediction-based
fault detection algorithms are a suitable choice. Some examples of prediction based mod-
els are ARIMA and ARIMAX models, regression based models such as least squares and
lasso regression, Principal Component Analysis (PCA) and state-observers (Kalman filters).
Considering that fault detection is essentially monitoring and classifying each data point as
a ’fault’ or ’not fault’, it should come as no surprise that, besides the methods mentioned
above, classifiers such as Support Vector Machines (SVMs) and Neural Networks are ideal
candidates for fault detection.

Some selected popular fault detection methods found in literature are described bellow:

1. Principal Component Analysis
Principal Component Analysis (PCA) is a statistical approach that applies an orthogonal
transformation to identify orthogonal vectors with the intention of converting the given
set of measurement data containing possible correlations among its variables/features
into a set of linearly uncorrelated variables known as the principle components. The
identified orthogonal vectors otherwise known as Principle Components (PC) are in the
direction where most of the variation in the measurement data can be captured. The
PCs identified are in their decreasing order of variance that they capture in the data set.
In short, PCA can be thought of as a data dimension reduction technique where by se-
lecting just the first few PCs, enough variance in data has been captured as a result
of which the rest of the variables/features (PCs) can be neglected or discarded as they
don’t play as much role in explaining the correlation in data. For the reduced data set
obtained, it is much easier to apply some statistical tests to differentiate the data points
that are correlated and uncorrelated to one another.
Mathematically, for any normalized measurement data matrix ‘X’ (where the rows repre-
sent the time samples and the columns represent the variables of the system) obtained
from a system, the data matrix can be expressed as sum of two terms �̂� and E [40] as
shown in equations 2.1 and 2.2.

𝑋 = �̂� + 𝐸 (2.1)

�̂� = 𝑇𝑃 =∑𝑡 𝑝

𝐸 = 𝑇 𝑃 = ∑ 𝑡 𝑝

(2.2)

Where, �̂� is the predicted portion that lies in the principal component subspace and E
contains the residuals that lies in the residual subspace, i.e., E is the the data ”not-
explained” by the PCA model. The matrices T and P are the score and loading matrices,
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respectively.

Applying PCA for fault detection:
Due to the sensor correlation in physical processes, only a few principal components
are needed to capture the data variance and help in fault detection and identification.
The faults can be detected by monitoring and applying statistical tests to the generated
residuals in residual space (E) in order to detect faults. The Squared Prediction Error
(SPE) approach used by Wise and Ricker [41] is one such approach where the Euclidean
norm of the residuals in the different rows of E are measured and then used to detect
the fault. Another approach is the Sensor Validity Index (SVI) proposed by Dunia et al
[28] where the ratio of residuals is taken in order to obtain a SVI which lies between 0
and 1 where values close to 0 indicate a fault and values near to 1 indicate no fault. H.
Henry Yue et al. in their work [42] combine the SPE and 𝑇 index into a single index
for fault detection. S.Joe Qin in his paper [43] provides an overview of these and more
statistical metrics.

2. Support Vector Machines
Support Vector Machines (SVM) is a classifier proposed by Vapnik [44] based on statis-
tical learning theory. The most basic version of SVM performs a binary classification,
that is either the data falls in class A or class B, in the case of fault detection this can
be thought as class ‘fault’ and class ‘not-fault’. The SVM and its working can be visual-
ized in figure 2.7. The SVM performs this classification by identifying a linear boundary
(solid line in figure) which can be placed between the two classes (squares and circles
in the figure). The orientation of this boundary (w) is decided by trying to maximize its
(boundary) distance to the nearest data points falling on either side of it. The distance
being maximized is otherwise known as the margins (dotted lines). The data points be-
longing to either class which was used to identify the margins are known as the support
vectors (line going through grey square and circle in figure). Once the margin is iden-
tified, the boundary is placed along the middle of the margin. The identified support
vectors and boundary equations are enough to carry out the classification task.

[7]

Figure 2.7: The SVM its working

This basic form of SVM places a linear boundary between the classes which it assumes
are linearly separable but in the case that the classes are not linearly separable, the
original data can be projected to a different feature space with the help of Kernel func-
tions. The result of this projection is that the data points in this feature space are now
linearly separable and the SVM can now be applied for the classification task. This
procedure of projecting the data to a different feature space using Kernal functions is
known as transformation and can be visualized in figure 2.8.



18 Technical Preliminaries

Figure 2.8: The transformation of data from input space to feature space using the Kernel function ( )[7].

SVM for fault detection: For the fault detection task, the SVM can be modelled us-
ing the available time-series measurement data, where it is already known which data
points correspond to the system’s normal and faulty operations. Following the training
of the SVM on the measurement data, the equations for the linear boundary/hyper-
plane and support vectors for both classes (fault and not-fault) have been identified.
The classification of any new time-series data point into either the faulty or normal
system operation classes can be done by substituting this data point into the equations
identified. The work by Samanta et al. in [7] and [45] show a comparative study between
SVM and neural networks for the task of fault detection in gears and roller bearings re-
spectively.

Finally it is important to note that SVMs are good for binary classification problems,
which makes them suitable for fault detection. The downside to SVMs is that when it
comes to the case of multi-class classification problems where a data has to be classified
either under class A, B or C, the process of classification becomes lengthy and methods
like one-against-one or one-against-rest have to be employed. For example in the one-
against-rest approach three SVMs have to be trained:

• SVM for class A vs data falling in class B or C (rest)

• SVM for class B vs data falling in class A or C (rest) and

• SVM for class C vs data falling in class B or A (rest)

The number of SVMs to train increase with the number of classes there are. This is not
required in the case of neural networks which by default are capable of performing a
binary or a multi-class classification task using a single neural network.

3. Neural Networks for fault detection:
Constructing a neural network model using the available system measurement data is
already explained in the previous section ’modelling of mechanical systems’. Having
trained the neural network, any new time-series data point can be fed into the neural
network, the neural network provides an estimated output for this input. If the es-
timated output from the neural network varies from the system’s actual output by a
value greater then a predefined threshold, the data-point can be classified to belong to
the system’s faulty operation. The threshold can be fixed or be made to be adaptive
and is usually decided based at the modelling error obtained at the time of training
the neural network on the measurement data. The value of the threshold impacts the
sensitivity with which the faults are detected. Choosing a value for the threshold is
important in order to reduce the number of false negatives (high threshold value) and
false positives (low threshold value).

2.2.2. Fault Isolation
Fault isolation is defined as the determination of the kind, location and time of detection
of a fault. Fault isolation follows fault detection and just like fault detection, it too can be
considered to be a classification task where the type of fault which has occurred from a list
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of possible faults that can occur for the physical system has to be determined. Such a task
requires an insight of the system in order to make a judgment just by looking at the symp-
toms/faulty measurement data of certain input and output states of the system.
Therefore, the zeroth step, i.e., the step that comes before performing a fault isolation task
is to have in place an insight to the system faults. This insight can exist in the form of an
inference network that maps a list of possible faults that could occur in the system to the
list of symptoms that explain/indicate the occurrence of a particular fault. An example of an
inference network for an oil refinery can be seen in figure 2.9, here the top row is a list of the
faults while the bottom row contains the symptoms. Hence after a fault has been detected,
certain symptoms observed are used to isolate the fault. The inference method is more of
a logic based and less of a data based approach especially if the symptoms explaining the
faults can be observed visually.

Figure 2.9: The inference network showing a mapping between the faults and symptoms for these faults for an oil refinery [8].

Alternatively, a more data-dependent and popular approach can be used for fault isolation
where a classifier of choice can be trained on faulty data that corresponds to a particular
type of fault. This training can then be extended to all the fault cases. As a result a trained
classifier is obtained which is capable of fault isolation based on the data faulty data that it
is provided.
For the data driven approach, as is always the case with classifiers, the training data used to
train the classifier must contain combination of unique features that enables the classifier
to learn a clear distinction between the different fault cases. To ensure this distinction,
before the classifiers are trained, the faulty data corresponding to the different modes of
operation of the system are subjected to some signal processing techniques in order to obtain
some distinctive features that possibly exist in the data. Some popular techniques applied
to the data include Modal Analysis, Fast Fourier Transform (FFT), Wavelet Transform and
derivatives and integrals of the system’s input states [7].
Although rare, there is a possibility that at any given time instance, multiple faults occurs
and it is in situations like these where, the downside of choosing a classifier such as an SVM
becomes more apparent because one has to not only take into account to train an SVM for
each individual fault case against-the-rest (fault case 1 against-the-rest and so on) but also
consider a combination of fault cases against-the-rest (fault case 1 & 2 against-the-rest) and
so on.
A final point worth mentioning is that if a binary classifier is already being used for the
purpose of fault detection, rather than training yet another classifier for the sole purpose
of fault isolation, this binary classifier can be replaced/extended to a multi-class classifier
to classify the current operational mode of the system among the various modes (not-fault,
fault type 1, fault type 2 and so on) based on the system input data it is provided. Hence in
this manner the fault detection and isolation steps can be done in tandem.

2.2.3. Fault Identification
Once a fault in the system has been detected, it is desirable to determine the necessary
adjustments to bring the process back to normal operating condition for which a fault iden-
tification process is to be carried out. IFAC SAFEPROCESS defines fault identification as
the determination of the size and time-variant behaviour of a fault. Fault identification can
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be considered to be a reconstruction task where the non-faulty part of the system is to be
reconstructed from the faulty system so as to estimate its (non-faulty system) contribution
and subtract it from the existing faulty system in order to identify the fault.
Some of the poplar fault identification techniques include:

1. State-observers
State-observers are a popular control-theory andmodel based approach for fault-identification.
The state-observer can be chosen to be a deterministic or stochastic (Kalman Filter and
Extended Kalman Filter) depending on the nature of system’s dynamics. The operation
of state observers for fault identification can be described as follows: At each time step,
the estimate of the state 𝑋 (priori state estimate) is first updated using information
about the: 1) State model 𝑋 (from previous time-step); 2) Control input 𝑈 (at current
time-step), and 3) Process covariance matrix 𝑃 (assumed Gaussian). This estimate is
then passed on to a mathematical model (modelling system under normal operation),
the model provides the expected system output 𝑋 which is then compared with the ac-
tual output Y of the faulty system. The difference in the two is used to update the priori
state estimate 𝑋 in order to receive the posteriori state estimate 𝑋 . This posteriori es-
timate is obtained via a gain matrix (Kalman gain matrix) K which is a weightage factor
combining the priori state estimate 𝑋 with the observation differences 𝑌 −𝑋 . The gain
matrix K itself depends on the state error covariance matrix 𝑃 . Hence, the state ob-
server learns a gain matrix which forces the outputs as predicted by the mathematical
model to converge closer to the actual measurements obtained from the faulty system
and in this manner the fault identification is carried out. The mathematics behind a
state-observer/kalman filter can be visualized in terms of a flowchart in figure 2.10.

Figure 2.10: Overview of the working principle and mathematics of a state-observer/Kalman Filter [9].

It should be noted that the state-observer can be supplemented with a Markov Decision
Process (MDP) or a Partially Observable Markov Decision Process (POMDP) depending on
whether the transitions between states (different operating modes) are either determin-
istic or stochastic. The dynamics in these discrete states are continuous. Washington
in his work [27] shows the implementation of kalman filters with a MDP to carry out
the fault detection of a rover. In [26] Jiang et al. carry out a fault identification using
state-observes taking into account the time delays present in systems.
Finally it is worth mentioning that the working mechanism of observer-based methods
make them suitable candidates for the task of fault detection and fault isolation as well.
This can be understood as follows: during the system’s normal (no-fault) operating con-
dition, the difference between the state observer’s priori state estimate and the system’s
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actual output 𝑌 − 𝑋 would be negligible as a result of which the difference between
the posteriori and priori state estimates 𝑋 − 𝑋 would also be negligible. However in
the occurrence of a fault in the system, the difference in the priori state estimate and
the actual systems’s output 𝑌 − 𝑋 would be of a considerable magnitude as a result of
which the difference between the posteriori and priori state estimates 𝑋 − 𝑋 would be
considerable as well and this indicates a possible occurrence of a fault (fault detection),
the system’s state for which this difference is large is the location of the fault (fault
isolation). This can also be interpreted from the perspective of the gain matrix, any
significant change in the gain matrix should indicate a fault in the system.

2. Least Squares Fitting
Least Squares Fitting (LSF) is a model based fault identification method that can be
explained with the help of the following example: consider an occurrence of a fault(s)
in a physical system, considering that the system is a physical one, the fault can be
modelled as an equivalent load(s) (virtual forces and moments) that acts on the undam-
aged system model to generate a dynamic behaviour identical to the damaged system.
The first step is to generate the measurement residuals (example: displacement, veloc-
ity, acceleration, etc) by comparing the actual output (faulty system) to the estimated
output obtained from the mathematical model of the system (in non-fault condition).
The generated residuals are then plugged into the mathematical model of the system
(in non-faulty conditions) in order to identify the measured equivalent loads. Mean-
while the theoretical equivalent loads are identified from fault models which are models
representing the dynamics of a particular fault in terms of a relationship between fault
parameters and the equivalent loads. A least squares algorithm is then implemented
in order to best fit between the measured equivalent loads and the theoretical ones
obtained from the fault models. In this manner the type, amount and location of the
current fault can be estimated. The work by Richard et al. [46] shows the application
of the LSF approach to carry out a fault identification task of a faults occurring in rotor
systems.

3. Principal Component Analysis
Unlike the previous two methods (LSF and state-observers) which require knowing be-
fore hand a white-box model that represents the dynamics of the system, PCA does not
require a prior known white-box model. In the described methodology PCA is used for
fault identification of faulty sensors as follows: the first step is to carry out a recon-
struction of each sensor to determine the non-fault contribution from the faulty error
signal. The reconstruction technique is based on PCA. Some popular reconstruction
techniques are discussed in detail by Dunia et al. in the following works [28], [47] and
[48]. The differences in the reconstruction techniques shown in these papers arise due
to a difference in the statistical metrics (SPE, SVI, combined index and 𝑇 ) used for
carrying out the fault detection task using PCA in each of these work. Following this
reconstruction, a set of residuals are defined, these residuals are then monitored to
determine a deviation between individual measurements and the normal trend of the
remaining variables. The magnitude of the deviation is used to identify the fault.
The PCA-based scheme mentioned above is based on the assumption that the system
follows a linear process. However for the case of nonlinear processes, the linear tech-
nique might not perform well, hence there is a need for a framework to help in fault
identification for nonlinear systems, this issue is addressed by the use of Kernel PCA
methods which can be found in the works of by Choi et al [49], Cho et al. [50] and
Carlos et al [51].
Finally its worth mentioning that the process described above is based on the assump-
tion that at any given time, only one sensor fault can occur. For diagnosing multiple
sensor faults which occur at different times, the approach would be to carry out the
reconstruction processes in a serial manner.
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2.3. Sparse Signal Recovery Problem
A typical Sparse Signal Recovery problem (SSR) can be visualized in figure 2.11. The SSR
problem can be considered as a task of solving a linear set of equations formulated in equation
2.3.

Figure 2.11: Typical structure of a sparse signal recovery problem [10].

𝑦 = Φ ∗ 𝑥 + 𝛾 (2.3)

Where,

• y is a ’𝑁 × 1’ vector that represents the system’s output for its (system’s) single output
state for the ’N’ different experiments/time-instances. For a systemwithmultiple output
states ’J’, y would then be a matrix of dimension ’𝑁 × 𝐽’ (output for the N experiments
across J output states).

• Φ is a matrix of dimension ’𝑁×𝑀’ that represents the system’s input across its (system)
’M’ input states for the ’N’ different experiments/time-series. ’Φ’ is commonly referred
to as the dictionary or measurement matrix.

• 𝛾 is a ’𝑁×1’ vector that represents the measurement noise in the system’s single output
state for the ’N’ different experiments/time-series. The noise is usually modelled as a
Gaussian distribution of mean 𝜇 and variance 𝜎 . For a system with multiple output
states ’J’, ’𝛾’ would then be a matrix of dimension ’𝑁 × 𝐽’ (measurement noise for the N
experiments across J output states).

• x is the ’𝑀 × 1’ k-sparse vector (k non-zero entries in it) that is to be identified. It
represents the weights/parameters of the system. For a system with multiple output
states ’J’, x would then be a sparse matrix of dimension ’𝑀× 𝐽’, where each ’𝐽 ’ column
of x would be a sparse column vector that represents the weights/parameters for the
system that corresponds to the ’𝐽 ’ output state.

The objective in the SSR problem is to solve for the sparse vector ’x’ in order to identify the
parameters of the model, given the target/output measurement signal ’y’ and the dictionary
matrix Φ. Mathematically the SSR can be represented in the form of an optimization prob-
lem shown in equation 2.4 for the no-noise case and equation 2.5 for the noisy case. The
function 𝐼 in these equations represent the indicator function, whereas 𝛽 in 2.5 represents a
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predefined threshold value for the data fit by the model.

𝑚𝑖𝑛 ∑𝐼(𝑥 ≠ 0) such that 𝑦 = Φ ∗ 𝑥 (2.4)

𝑚𝑖𝑛 ∑𝐼(𝑥 ≠ 0) such that ‖𝑦 − Φ ∗ 𝑥‖ ≤ 𝛽 (2.5)

Generally the SSR problem is under-determined because the number of model parameters
’M’ to be identified is greater than the number of measurements ’N’ from the system that are
available. For such an under-determined system, there exists infinite such solutions for ’x’
that satisfies equation 2.3, however the objective is to identify the sparsest solution ’x’ from
this set of infinite solutions. Because this system is under-determined, the existence and
uniqueness of the solution are guaranteed as soon as the signal is sufficiently sparse, and
the measurement matrix satisfies the Restricted Isometry Property (RIP) at a certain level
[52].
Before discussing the different sparse recovery algorithms that are used to solve the SSR
problem, some applications where solving a SSR problem is required includes:

1. Speech coding and Compressive sensing: Large signals are often compressed to a
signal with a reduced dimensionality prior being transmitted. After being transmitted,
the compressed signal has to be reconstructed to its (signals) original dimension as
the signal approaches the receiver’s end. This reconstruction requires solving an SSR
problem in order to obtain the original decompressed signal.

2. EEG/MEG:Different areas of the brain are known to react to different stimulus, keeping
this in mind the idea is to provide a known external stimulus and infer the brain activity
of different parts of the brain in response to the stimulus by measuring the intensity of
the magnetic fields at several locations (points in blue) across the scalp as can be seen
in figure 2.12. The objective is to then find the sparse set of active candidate sources
(points in red) from the list of all the candidate sources (orange). These active sources
indicate the part of the brain that is sensitive to the external stimulus. This process
helps in the construction of a map which is of neuro-physiological importance.

Figure 2.12: EEG/MEG setup for inferring brain activity of different parts of the brain in response to stimulus [10].

3. Modelling of sytems: The SSR problem can be thought of as a data-driven modelling
approach that uses sparse recovery algorithms based on linear regression to identify
the model parameters/weights that models the system’s input states (values stored in
Φ) to the system’s output states (values stored in y) from the available time-series mea-
surement data of the system. The sparse recovery algorithms are explained in detailed
in the next section of this chapter.
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2.3.1. Sparse regression techniques
The SSR problem can be solved by a host of sparse recovery algorithms. These algorithms
can be broadly classified (figure 2.13) under three main categories: Greedy methods, Mini-
mization Diversity Measures and Bayesian Methods.

Figure 2.13: Overview of the classification of sparse recovery algorithms.

A discussion on these sparse recovery algorithms is provided as follows:

1. Greedy Methods
Greedy methods (figure 2.14) get their name based on the sequential (greedy) manner
in which they search for the location of the non-zero elements of the sparse vector. The
Matching Pursuit (MP) is a popular greedy solution algorithm proposed by Mallet et al.
[53] whose working is described as follows: The first step is to initialize the residual
’r’ equal to the measurement vector ’t’ and then find the first non-zero element ’a’ in
sparse vector ’w’ that best matches the residual ’r’ by solving equation 2.6. Once ’a’ is
identified, for the case when multiple non-zero elements exist in ’w’, the next non-zero
element ’b’ in w can be identified by removing the contribution made by the all previous
non-zero elements (here ’a’) in w. Removing the contribution of ’a’ in w can be done
by updating the residual ’r’ as per equation 2.7. Having updated the residual ’r’, the
next non-zero element ’b’ is the calculated as per equation 2.6 (replacing ’a’ with ’b’).
This process is carried out till the residual becomes small enough or after exceeding a
pre-defined sparsity threshold.
A variation to the Matching Pursuit algorithm is the Orthagonal Matching Pursuit (OMP)
algorithm [54]. A final note on greedy based methods is that the manner in which

Figure 2.14: Greedy sparse recovery algorithm [10].

𝑎 = ‖Φ ∗ 𝑤 − 𝑟‖ (2.6)

𝑟 = 𝑡 − Φ ∗ 𝑤 (2.7)
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2. Minimization Diversity Measures
Minimization Diversity Measures are sparse recovery algorithms that solve the SSR
problem by defining a cost function and performing an optimization on the defined cost
function using methods such as gradient-descent with the objective of minimizing the
cost function in order to yield a sparse vector solution to the SSR problem. Choosing
a cost function that is continuous and differentiable (smooth) is desirable in order to
calculate the gradient of the cost function and carry out the optimization process with
more ease.

𝑚𝑖𝑛 (‖𝑡 − Φ ∗ 𝑤‖ + 𝜆∑‖𝑤 ‖ ) (2.8)

LASSO Regression:

𝑚𝑖𝑛 (‖𝑡 − Φ ∗ 𝑤‖ + 𝜆∑‖𝑤 ‖ ) (2.9)

Ridge Regression:

𝑚𝑖𝑛 (‖𝑡 − Φ ∗ 𝑤‖ + 𝜆∑‖𝑤 ‖ ) (2.10)

Equation 2.8 is an example of a cost function that is to minimized in order to yield the
desired sparse vector solution ’w’. Here ’t’ represents the target/measurement and ’Φ’ is
the dictionary matrix. In this cost function there exists an additional penalty term (right
hand side of the addition sign) that allows for a trade-off between model complexity and
data fit. Here ’𝜆’ is the regularization term attached to penalty term that regulates this
trade off. Assigning 𝜆 a large value results in obtaining a cost function where the con-
tribution by the penalty term is significant as a result of which the model complexity
increases and the model ends up under-fitting, choosing a lower value of 𝜆 results in
a minor contribution from the penalty term which results to a lower model complexity
and a over-fitting model.
The term ’p’ appearing in the cost function in equation 2.8 represents the regularizing
norm that is applied to each model parameter ’𝑤 ’ of the sparse vector ’w’. Choosing p=1
implies a L1 norm regularization that gives equation 2.9 which is the popular LASSO
regression technique [55] that is known to yield a sparse vector ’w’. Whereas choosing
p=2 implies a L2 norm regularization that gives equation 2.10 which is another popular
regression technique that goes by name of Ridge regression [56]. Unlike LASSO regres-
sion, the Ridge regression technique does not yield a sparse vector ’w’.

The reason for obtaining a sparse solution with the L1 norm regularization and a non-
sparse solution in the case of the L2 norm regularization can be understood from their
mathematical expressions: the L1 norm of any vector X is given by summing up all the
absolute values for each element in X. The L2 norm for the same vector ’X’ is given by
summing up the squares of each element in X and then taking the square root of this
summation.
For simplicity, consider a case where the vector X contain two elements ’a’ and ’b’, let
the L1 and L2 norm of vector X calculated as per equations 2.11 (L1 norm) and 2.12
(L2 norm) be ’𝑐 ’ and ’𝑐 ’ respectively. If all points that have a L1 and L2 norm equal to
𝑐 and 𝑐 are plotted graphically then the shape obtained in the case of the L1 norm is
a diamond as shown in figure 2.15 (left) where the intercepts at the x and y axes are
of magnitude 𝑐 . In the case for the L2 norm the shape obtained is that of a circle as
shown in figure 2.15 (right) where the intercepts on the x and y axes are of magnitude
𝑐 . The diamond shape obtained in the case of the L1 norm is likely to intersect the
solution hyperplane ’G’ at the diamond’s tips which yields a sparse solution ’�̂�’. The
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circle in the case of the L2 norm is not as likely to intersect the solution hyperplane G
at its extreme points but rather at some other point on its circumference which yields
a non-sparse solution ’�̂�’.
For a higher dimensional space, the L1 and L2 norms are an octahedron and sphere
respectively.

‖𝑋‖ = |𝑎| + |𝑏| = 𝑐 (2.11)

‖𝑋‖ = √𝑎 + 𝑏 = 𝑐 (2.12)

Figure 2.15: Graphical representation of the L1 norm (left) and the L2 norm (right).

3. Bayesian Methods
Bayesian Methods make appropriate statistical assumptions on the solution and then
apply estimation techniques on the assumptions made in order to yield sparse solutions
to the SSR problem. Bayesian Methods can be categorized into Type 1 and Type 2
methods as follows:

(a) Type 1: Maximum a Posterior (MAP) Estimation Framework
A typical MAP estimation framework can be visualized in figure 2.16. According to
the MAP hypothesis, the desired sparse vector �̂� is given by the value of x for which
the posterior ’P(x|y)’ is maximized (equation 2.13). Hence the objective under this
MAP estimation framework can be reformulated as: ”Finding the ’x’ that maximizes
the posterior distribution P(x|y)”. According to the Bayes theorem, the posterior
P(x|y) can be represented as a product of the likelihood ’P(y|x)’ with the prior ’P(x)’
as shown in equation 2.14. The prior ’P(y)’ term is a normalizing term that is con-
stant and hence it can removed from the formulation. The likelihood term ’P(y|x)’
is characterized by the noise in the system which is assumed to be a Gaussian and
so it remains fixed, this allows the possibility to express equation 2.14 in a closed
form as shown in equation 2.15. In equation 2.15, the only selection to be made is
that for the prior P(x), which is chosen to be sparse so that the vector x identified by
solving the MAP formulation (equation 2.15) is a sparse one. Hence, in this manner
the MAP estimation framework has been used to identify the sparse vector x from
the known measurements y.
Choosing different priors P(x) results in obtaining different formulations, for exam-
ple if P(x) is chosen to be Gaussian then a L2 norm regularization problem (Ridge
regression in equation 2.10) is obtained, while choosing P(x) to be a Laplacian re-
sults in a L1 norm regularization (LASSO regression in equation 2.9) formulation.
Alternatively, the concave penalty function g in equation 2.15 can be bounded after
which the steps of a Majorize-Minimization (MM) optimizing algorithm [57] can be
followed in order to obtain the re-weighted iterative L1 [58] and re-weighted itera-
tive L2 formulations shown in equation 2.16 and equation 2.17 respectively.
In these re-weighted iterative algorithms: The weights 𝑤 are first initialized, this is
followed by solving the MAP formulation (equation 2.16 for L1 or equation 2.17 for
L2) for obtaining the vector 𝑥( ). The identified vector 𝑥( ) is then used to update
the weights from their initialized value 𝑤 to their new values 𝑤( ). These new
weights 𝑤( ) are then used to solve the MAP formulation once again to obtain the
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next estimate of the vector x. This iterative process of solving the MAP formulation
and updating the weights continues till the weights have converged. The converged
weights are then used to solve the MAP formulation for the final time in order to
obtain the required sparse vector x that correspond to the converged weights.

Figure 2.16: MAP estimation framework to identify sparse vector x from known measurements y [10].

According to the MAP hypothesis:

�̂� = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑃(𝑥|𝑦) (2.13)

Expansion according to Bayes rule:

�̂� = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑃(𝑥|𝑦) = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑃(𝑦|𝑥)𝑃(𝑥)
𝑃(𝑦)

�̂� = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑃(𝑦|𝑥)𝑃(𝑥)
(2.14)

Expression in closed form:

�̂� = 𝑎𝑟𝑔𝑚𝑖𝑛 (− log 𝑃(𝑦|𝑥) − log 𝑃(𝑥))

�̂� = 𝑎𝑟𝑔𝑚𝑖𝑛 ‖𝑦 − Φ ∗ 𝑥‖ + 𝜆∑𝑔(|𝑥 |)
(2.15)

Re-weighted L1:

𝑥( ) = 𝑎𝑟𝑔𝑚𝑖𝑛 ‖𝑦 − Φ ∗ 𝑥‖ + 𝜆∑𝑤( )|𝑥 |

𝑥( ) = 𝜕𝑔(𝑥 )
𝜕|𝑥 | where 𝑥 = 𝑥( )

(2.16)

Re-weighted L2:

𝑥( ) = 𝑎𝑟𝑔𝑚𝑖𝑛 ‖𝑦 − Φ ∗ 𝑥‖ + 𝜆∑𝑤( )𝑥

𝑥( ) = 𝜕𝑔(𝑥 )
𝜕𝑥 where 𝑥 = 𝑥( )

(2.17)

It is worth noting that although setting up a MAP estimation framework is quite
straightforward and essentially only requires a careful selection of the sparse prior
P(x) in order to obtain a formulation that can be optimized to obtain the required
sparse vector x, practical experience says that performing this optimization on the
formulation often results in searching for a solution in a terrain that has several
local minima in which the solution is prone to be stuck in. As a result the solution
obtained may be close in value to the global minima but may in reality correspond
to one of the many local minima.
This downside of theMAP estimation frameworkmotivates the use of Type 2 Bayesian
Methods known as the Hierarchical Bayesian Framework which is more commonly
known as the Sparse Bayesian Learning (SBL).
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(b) Type 2: Hierarchical Bayesian Framework/Sparse Bayesian Learning
Tipping in 2001 proposed in his work [59] a Bayesian framework known as sparse
Bayesian learning for obtaining sparse solutions to regression problems. A visual-
ization of a typical SBL framework can be seen in figure 2.17. The framework is
quite similar in structure to the MAP estimation framework with the exception that
an additional vector of hyper-parameters ’𝛾’ have been introduced into the frame-
work in the layer above the sparse vector x. Each hyper-parameter 𝛾 in this 𝛾 layer
is connected with the corresponding element in the sparse vector x.
The objective in the sparse Bayesian learning framework is to first identify the opti-
mal values of the hyper-parameters in the 𝛾 layer, following which these identified
hyper-parameters are used to help identify the required sparse vector x from the
measurement y.
In order to estimate the optimal value of the hyper-parameters �̂�, the MAP hypothe-
sis is applied, which in present context states that: ”The desired hyper-parameters
�̂� is given by the value of 𝛾 for which the posterior P(𝛾|y) is maximized”. Mathe-
matically this is given by equation 2.18, which can then be expanded as per Bayes
rule to obtain equation 2.20. In equation 2.20 two terms: the likelihood P(x|𝛾)
and the prior P(𝛾) appear which were obtained by expressing the prior P(x) in the
form of a Gaussian Scale Mixture as given in equation 2.19. The likelihood terms
P(x|𝛾) and P(y|x) are defined by the noise in the system which is assumed to be
Gaussian. This allows the equation 2.20 to be expressed in closed form as given
by equation 2.21. In equation 2.21, the only selection that is to be made is for
the prior P(𝛾 𝑑), following which the formulation given by equation 2.21 is solved
in order to obtain the optimal value of the hyper-parameters �̂�. Once identified,
these hyper-parameters 𝛾 are then fixed and the posterior P(x|y;𝛾) is calculated by
solving a MAP formulation between x and y (as was shown in the MAP estimation
framework sub-section) to obtain the required sparse vector x from measurements
y.
SBL also has its re-weighted iterative L1 and L2 algorithm variants. In the SBL vari-
ants, the iterative process is slightly different: At first the weights are initialized,
these weights are then used to solve a MAP formulation to obtain sparse vector
x. The sparse vector x is then used to find the first set of values for the hyper-
parameters 𝛾. These hyper-parameters are then used to update the weights from
their initialized value to their new values for the next iteration. These updated
weights are then used to solve the MAP formulation to obtain the new sparse vector
x for the next iteration. This iterative process continues till the hyper-parameters
𝛾 converges or a stopping criterion is reached. The vector x that corresponds to the
converged hyper-parameter 𝛾 is the required sparse vector.

Figure 2.17: Typical Sparse Bayesian Learning framework with a list of hyper-parameters , corresponding elements in sparse
vector x and available measurements y [10].

According to the MAP hypothesis:
�̂� = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑃(𝛾|𝑦) (2.18)

Expansion of the prior P(x) represented in the form of a Gaussian Scale Mix-
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ture:

Separability: 𝑃(𝑥) = Π 𝑃(𝑥 )

𝑃(𝑥 ) = ∫𝑃(𝑥 |𝛾 )𝑃(𝛾 )𝑑𝛾
(2.19)

Expansion of equation 2.18 according to Bayes rule and substituting equation
2.19:

�̂� = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑃(𝛾|𝑦) = 𝑎𝑟𝑔𝑚𝑎𝑥 ∫𝑃(𝑦|𝑥)𝑃(𝑥|𝛾)𝑃(𝛾) (2.20)

Expression in closed form:

�̂� = 𝑙𝑜𝑔|𝜇 | + 𝑦 𝜇 𝑦 − 2∑log𝑃(𝛾 ) (2.21)

Note: The presentation by Bhaskar Rao [10] on Sparse Bayesian Learning can be
referred to for a more elaborate explanation of the mathematics used in both Type 1
and Type 2 methods.

Although the SBL and the MAP estimation approach have many similarities in
their respective frameworks with only exception being that the SBL approach intro-
duces a layer of hyper-parameters 𝛾 in its framework, practical experience shows
that using the SBL framework results in searching for a solution in a terrain with
much fewer local minima than the MAP estimation approach. This means that
the chances of the SBL approach getting stuck in the local minima is lower which
increases the chance that the sparse solution obtained corresponds to the global
minima. This can be thought of intuitively as: ”By using a SBL framework, we
move up one hierarchy level and hence move further away from the measurement
data y as a result of which the terrain gets a bit blurred. This results in several of
the local minima to become hidden. What is left on the terrain now are the main
peaks which are more likely to be captured in comparison to the local minima.”

The motivation to choose a SBL approach over other techniques such as Greedy methods
and Minimization diversity measures for solving a SSR problem can be summarized in the
following points:

• SBL algorithms have not only shown to outperform other algorithms in practical appli-
cations, but have also solved some problems where other methods have either failed or
have been unable to provide a reliable solution [60]. The work by Zhang et al. in [61] is
one such example where a variant of SBL known as the Block Sparse Bayesian Learning
(BSBL) approach was applied for reconstruction of FECG recordings.

• In general the SBL approach shows a better performance in terms of local and global
convergence than other methods [60]. The work of Youness et al. [62] can be referred to
for a comparison of the performance of six different sparse recovery methods belonging
to Greedy, Minimization Diversity and Bayesian Methods.

• SBL’s recovery performance is robust to the characteristics of the dictionary matrix (Φ)
[60], i.e., even when the columns of this matrix are highly coherent, SBL manages good
performances while other algorithms show poor performance. The work by David [63]
shows the SBL approach outperforming Type 1 Bayesian methods for a highly struc-
tured (correlated) dictionary matrix for the application of MEG source localization.

Although the SBL approach has many advantages over other sparse recovery approaches,
one drawback of the SBL approach is that it is generally computationally expensive to solve
in comparison to the other methods. The computational loads increase with the increase in
the number of parameters that are to be estimated.
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2.4. Discussion
In this chapter, concepts and methods from the domains of: modelling of systems, fault di-
agnosis and sparse signal recovery were extensively discussed. Although neural networks
by themselves cannot perform the fault identification task, if supplemented with a sparse
recovery that can perform a sparse reconstruction of the neural network’s weights from the
available time-series measurement data, then in theory a fault identification could be car-
ried out. Finally, it was discussed that among the recovery methods, the sparse Bayesian
learning approach seems to outperform other methods in finding an accurate sparse solution.



3
Fault Detection, Isolation and

Identification
In the previous chapter, different methods for carrying out fault detection, isolation and
identification ware discussed. This chapter proposes and describes the fault diagnosis algo-
rithms, namely fault detection and fault isolation & identification algorithms that are used
to carry out a fault diagnosis in this study.

3.1. Fault Detection Algorithm
The fault detection algorithm is shown in figure 3.1. At time-step ’t+1’, the inputs states
are simultaneously provided to the system, the neural network modelling the system and
the adaptive threshold model (explained ahead). The neural network estimates the system’s
output ’𝑦 ’ for time-step ’t+1’. The difference between the expected output (𝑦 ) and actual
output (𝑦 ) of the system is used to generate the residual ’𝑟’ at time-step ’t+1’. This resid-
ual is compared to the upper (𝑇 ) and lower (𝑇 ) threshold values provided by the threshold
model for time-step ’t+1’. If the residual is greater than or equal to the upper threshold value
(𝑟 ≥ 𝑇 ), or less than or equal to the lower threshold value (𝑟 ≤ 𝑇 ), the fault detection algo-
rithm considers that a fault may have occurred (not yet classified as fault yet) at time-step
’t+1’. If this condition is not met, then the algorithm classifies the system at time-step ’t+1’
as not a fault. This process is carried out at each time-step during the operation of the system.

The reason that the system is not directly classified to be at fault when the fault detection
condition (𝑟 ≥ 𝑇 or 𝑟 ≤ 𝑇 ) is satisfied for time-step ’t+1’ is because there is a possibility
that time-step ’t+1’ is a single point outlier i.e. false positive which may have occurred as a
result of noise or inaccuracies in modelling the system. In order to prevent over-sensitivity
to outlier(s) and detect true occurrence of fault(s), the successive time-steps after ’t+1’ (’t+2’,
’t+3’, and so on) are checked against the fault detection condition (𝑟 ≥ 𝑇 or 𝑟 ≤ 𝑇 ). If for
most of these successive time-steps the condition is met, then the fault-detection algorithm
classifies the occurrence of a fault at time-step ’t+1’. Conversely, if the condition is not
true for the majority of successive time-steps, then it is highly likely that time-step ’t+1’ is a
single point outlier and so the algorithm classifies the system at time-step ’t+1’ as not a fault.

3.1.1. Adaptive Threshold
The threshold is of key importance in detecting the occurrence of a fault in this algorithm. Se-
lecting a suitable threshold is a challenging task. A small threshold value will result in false
positives i.e. data points belonging to normal operation being classified as a fault. Whereas
a large threshold will result in false negatives i.e, data points that actually belong to the
system’s faulty operation being classified as not-fault. Although it is desirable for the fault
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Figure 3.1: Fault detection algorithm.

detection algorithm to correctly classify each time-step data point, in practice achieving a
perfect classification is nearly impossible. Therefore the goal is to have a threshold that can
help achieve a good classification accuracy thereby resulting in a reduced number of false
positives and false negatives while not memorizing (over-fitting) the data in order to achieve
such result.

The threshold can either be static or adaptive. A static threshold is one that remains fixed
in value through-out the operation of the system. While suitable in some applications, static
threshold can be disadvantageous for fault detection when a fault is not characterized solely
on the magnitude of the residual but rather its magnitude in relation to the input states
of the system at that time-step. For such a system, implementing a static threshold would
result in an increased number of incorrect classifications. The alternative is implementing
an adaptive threshold whose value changes at each time-step during the system’s operation
and is provided by a model that has been trained in prior to identify a relation between the
input-residual pairs of the system. This naturally results in a reduction of the number of
incorrect classifications by the fault detection algorithm. An example for the comparison
between a static and an adaptive threshold can be seen in figure 3.2.

Assuming that the system is modelled by a neural network, the design procedure for identi-
fying an adaptive threshold model [64] for assisting the fault detection algorithm is described
as follows:

• Residuals ’𝑟 ’ are generated (𝑟 = 𝑦 − 𝑦 ) for each data point ’𝑖’ in the training data set.
Here 𝑦 and 𝑦 are the target output and estimated output for the 𝑖 data point in the
training data set, respectively. The input states of the system ’𝑢 ’ and the corresponding
residual 𝑟 are then paired and stored in a separate data set (𝑢 , 𝑟 ) .

• A new neural network is trained on the input-residual pairs data set. The newly identi-
fied model constitutes an estimate of the error due to under-modelling (neural network
modelling the system), and is called the error or adaptive threshold model.

Once trained, the adaptive threshold model is ready for implementation in the fault detection
algorithm as follows: at time-step ’t’ of the system’s operation, the upper (𝐵 ) and lower
confidence bounds (𝐵 ) are calculated as per equations 3.1 and 3.2. Here 𝑇 and 𝑇 are the
upper and lower thresholds calculated by the adaptive threshold model as per equations 3.3



3.2. Fault Isolation and Identification Algorithm 33

Figure 3.2: Comparison between a static and an adaptive/dynamic threshold for the purpose of a fault detection based on the
residual generation.

and 3.4, respectively. The ’𝑣’ term in equations 3.3 and 3.4 is the standard deviation of 𝑦
while 𝑡 is the 𝒩(0, 1) tabulated value assigned to a given confidence level.

𝐵 = 𝑦 + 𝑇 (3.1)

𝐵 = 𝑦 + 𝑇 (3.2)

𝑇 = 𝑦 + 𝑡 𝑣 (3.3)

𝑇 = 𝑦 − 𝑡 𝑣 (3.4)

3.2. Fault Isolation and Identification Algorithm
Once the fault detection algorithm has detected an error at time-step ’t+1’, the next task is to
carry out the fault isolation and identification. The fault isolation and identification tasks are
performed in tandem by applying the sparse Bayesian learning approach to first reconstruct
the weights between successive layers of the neural network (fault identification) and from
these reconstructed weights, identify those weights that have changed in their value and
isolate them (fault isolation).
This section covers the fault isolation and identification for the following three cases:

• Case 1: Linear systems modelled by neual networks without a hidden layer.

• Case 2: Linear systems modelled by neural networks having a hidden layer.

• Case 3: Nonlinear systems modelled by neural networks having a hidden layer with a
nonlinear activation function.

A separate approach for linear and non-linear systems arise due to the difference in the
neural network architecture required to model them. A linear system can be modelled by a
neural network architecture that has an input and an output layer but may or may not have
a hidden layer. Whereas, to model a nonlinear system, the neural network architecture must
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have at least 1 hidden layer (with nonlinear activation function on this layer).

Note: for the fault detection task, separate approaches were not required because the fault
detection algorithm is independent of the neural network architecture and whether or not
the system is linear or nonlinear.

The fault isolation and identification algorithms for the three cases are described below:

• Case 1: Fault isolation and identification for linear systems modelled by neural
networks without a hidden layer
Consider a generic linear system that has six input states 𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥 and two out-
put states 𝑦 , 𝑦 . Let the normal operating dynamics of the linear system be described
by equation 3.5, where 𝜃 to 𝜃 are fixed coefficients of the input states and 𝛾 , 𝛾 are
measurement noise that is assumed to be Gaussian.

𝑦 = 𝜃 ∗ 𝑥 + 𝜃 ∗ 𝑥 + 𝜃 ∗ 𝑥 + 𝜃 ∗ 𝑥 + 𝜃 ∗ 𝑥 + 𝜃 ∗ 𝑥 + 𝛾
𝑦 = 𝜃 ∗ 𝑥 + 𝜃 ∗ 𝑥 + 𝜃 ∗ 𝑥 + 𝜃 ∗ 𝑥 + 𝜃 ∗ 𝑥 + 𝜃 ∗ 𝑥 + 𝛾 (3.5)

Figure 3.3: Neural network architecture without a hidden layer used for modelling the linear system.

Let the system be modelled by a neural network that does not have a hidden layer, as
shown in figure 3.3. In this figure the green and red neurons represent the input and
output neurons in the input and output layers, respectively. 𝑁𝑁 represent the weights
of the neural network, with 𝑁𝑁 to 𝑁𝑁 connecting the six input neurons to the first
output neuron (𝑦 ), and 𝑁𝑁 to 𝑁𝑁 connecting them to the second output neuron (𝑦 ).
Finally,𝑊 represents all the set of weights in the neural network in a matrix form. Once
trained, the system dynamics can be represented in terms of the weights of the neural
network as per equation 3.6.

𝑦 = 𝑁𝑁 ∗ 𝑥 + 𝑁𝑁 ∗ 𝑥 + 𝑁𝑁 ∗ 𝑥 + 𝑁𝑁 ∗ 𝑥 + 𝑁𝑁 ∗ 𝑥 + 𝑁𝑁 ∗ 𝑥
𝑦 = 𝑁𝑁 ∗ 𝑥 + 𝑁𝑁 ∗ 𝑥 + 𝑁𝑁 ∗ 𝑥 + 𝑁𝑁 ∗ 𝑥 + 𝑁𝑁 ∗ 𝑥 + 𝑁𝑁 ∗ 𝑥 (3.6)

Assume that at time-step ’t+1’ during the system’s operation a fault occurs, as a result
of which the system’s properties change. This can be related to a change in the values
of certain weights in the neural network modelling the system. Let 𝑁𝑁 and 𝑁𝑁 be the
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changed/faulty weights which after the occurrence of the fault change their values to
𝑁𝑁 and 𝑁𝑁 , respectively. The dynamics of the faulty system expressed in terms of the
changed neural network’s weights is given by the equation 3.7.

𝑦 = 𝑁𝑁 ∗ 𝑥 + 𝑁𝑁 ∗ 𝑥 + 𝑁𝑁 ∗ 𝑥 + 𝑁𝑁 ∗ 𝑥 + 𝑁𝑁 ∗ 𝑥 + 𝑁𝑁 ∗ 𝑥
𝑦 = 𝑁𝑁 ∗ 𝑥 + 𝑁𝑁 ∗ 𝑥 + 𝑁𝑁 ∗ 𝑥 + 𝑁𝑁 ∗ 𝑥 + 𝑁𝑁 ∗ 𝑥 + 𝑁𝑁 ∗ 𝑥

(3.7)

Following the detection of this fault by the fault detection algorithm, in order to recon-
struct the weights of the neural network (fault identification), enough number of input
and output measurement data from the operating faulty system have to be recorded.
Practical experience says that an accurate reconstruction of the weights requires at-
least twice the number of observations as the number of weights that are to be deter-
mined. If the number of measurements available are less, then the accuracy with which
the weights are reconstructed decreases.
The task of reconstructing the weights from the collected measurement data set can be
reformulated into the task of solving a sparse signal recovery (SSR) problem by using
the sparse Bayesian learning approach as shown in figure 3.4.

Figure 3.4: Reconstruction of neural network weights by reformulating into a sparse signal recovery problem.

In this formulated SSR problem, y is a vector of dimension M×1 which represents the
system’s output state 𝑦 across M measurements recorded from the faulty system. The
dictionary matrix Φ is of dimension M×6 where each column represents one of the six
input states (𝑥 to 𝑥 ) of the faulty system across the Mmeasurements recorded from this
faulty system. The vector x of dimension 6×1 represents the six reconstructed weights
𝑁𝑁 to 𝑁𝑁 that are identified upon solving the SSR problem. The reconstruction of
these six weights is followed by solving another SSR problem for the reconstruction of
the next six weights 𝑁𝑁 to 𝑁𝑁 . In the second SSR problem, the dictionary matrix Φ
remains the same and vector y now represents the output state 𝑦 across the same M
measurements.

The re-weighted 𝐿 type sparse Bayesian learning algorithm [60] that is used to solve
the SSR problem is shown in algorithm 1. Recall from the previous chapter the working
of the iterative SBL algorithm: the vector of reconstructed weights 𝑥 from the 𝑘
iteration is used to update the value of the hyper-parameters 𝛾 in the 𝑘 iteration.
These hyper-parameters are in turn used to update the weights 𝑤 in the 𝑘 iteration,
and finally, these weights are used to calculate the vector of reconstructed weights 𝑥
in the (𝑘 + 1) iteration. This iterative process continues till the hyper-parameters
𝛾 converge or a stopping criterion is reached. The vector x that corresponds to the
converged hyper-parameter 𝛾 is the required set of reconstructed weights 𝑁𝑁 to 𝑁𝑁
and 𝑁𝑁 to 𝑁𝑁 .
This algorithm requires the calculation of the hessian matrix H which in the case of the
neural network is the double derivative of the cost/error function E with respect to the
neural network’s reconstructed weights ( ( ) ). In algorithm 1, the hessian matrix
H is expected to be of dimension 6×6 and its expression is given in equation 3.8. The
work by C.Bishop [65] covers the calculation of the hessian matrix for a multi-layered
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Algorithm 1 Re-weighted 𝐿 type sparse Bayesian learning algorithm for reconstruction of the neural
network weights (fault identification) for the linear case.
1: Fault Identification by weight reconstruction:
2: Initialize 𝜆 = 1 and 𝑤 as unit vector;
3: Assign B to be an identity matrix of dimension 6×6; B = eye(6);
4: for 𝑘 = 1, ....., 𝑘 do
5: 𝑥 = 𝑎𝑟𝑔𝑚𝑖𝑛 (‖𝑦 − Φ𝑥‖ + 𝜆∑ ‖𝑤 . ∗ 𝐵 ,∶𝑥‖ ) ;
6: 𝛾 = | ,∶ | ;
7: 𝜏 = 𝑑𝑖𝑎𝑔(𝛾 ) ;
8: 𝐶 = (𝐵 (𝜏 ) 𝐵 + 𝐻) ;

9: 𝛼 = − ,∶ ,∶
( ) + ;

10: 𝑤 = √𝛼 ;

11: if 𝛾 has converged or a stopping criterion has been reached then
12: break ;
13: end if
14: end for
15:
16:
17: Where 𝐵 ,∶ stands for the 𝑖 row of the matrix B
18: Where 𝐻 stands for the hessian matrix
19: Where .∗ represents dot product

neural network.
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(3.8)

Following this reconstruction, the equations for the faulty system can be written in
terms of the reconstructed weights, as shown in equation 3.9.

𝑦 = 𝑁𝑁 ∗ 𝑥 + 𝑁𝑁 ∗ 𝑥 + 𝑁𝑁 ∗ 𝑥 + 𝑁𝑁 ∗ 𝑥 + 𝑁𝑁 ∗ 𝑥 + 𝑁𝑁 ∗ 𝑥
𝑦 = 𝑁𝑁 ∗ 𝑥 + 𝑁𝑁 ∗ 𝑥 + 𝑁𝑁 ∗ 𝑥 + 𝑁𝑁 ∗ 𝑥 + 𝑁𝑁 ∗ 𝑥 + 𝑁𝑁 ∗ 𝑥

(3.9)

The reconstructed weights (𝑁𝑁 ) that are not equal in value to their corresponding ini-
tial weights (𝑁𝑁 ) imply that these weights changed their value after occurrence of the
fault and hence are to be isolated. In this example, only the reconstructed weights 𝑁𝑁
and 𝑁𝑁 are expected to differ in value from their initial values 𝑁𝑁 and 𝑁𝑁 , implying
that these weights were affected by the fault and are to be isolated. The fault isolation
algorithm can be seen in algorithm 2.
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Algorithm 2 Fault isolation algorithm for the reconstructed neural networks
1: Fault Isolation:
2: for 𝑧 = 1, .., 12 do
3: if 𝑁𝑁 ≠ 𝑁𝑁 then
4: Isolate this weight ;
5: end if
6: end for

• Case 2: Fault isolation and identification for linear systems modelled by neural
networks having a hidden layer
Consider the same generic linear system from case 1 whose system dynamics are given
by equation 3.5. Let the system be modelled by a neural network architecture having
a hidden layer, as shown in figure 3.5. The purple neurons in the figure represent the
neurons in hidden layer. Once trained, the system dynamics can be represented in
terms of the weights of the neural network as per equation 3.10 or in the matrix form
as given in equation 3.11.

Figure 3.5: Neural network architecture with a hidden layer.

[𝑦 𝑦 ] = ( [𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 ] ×

⎡
⎢
⎢
⎢
⎢
⎣

𝑁𝑁 𝑁𝑁
𝑁𝑁 𝑁𝑁
𝑁𝑁 𝑁𝑁
𝑁𝑁 𝑁𝑁
𝑁𝑁 𝑁𝑁
𝑁𝑁 𝑁𝑁

⎤
⎥
⎥
⎥
⎥
⎦

) × [𝑁𝑁 𝑁𝑁
𝑁𝑁 𝑁𝑁 ] (3.10)
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𝑌 = 𝑓(𝑋 ×𝑊 ) ×𝑊 (3.11)
𝑓(𝑍) = 𝑍 (3.12)

Here f is a linear activation function (equation 3.12) applied on the neurons in the hid-
den layer. Finally, 𝑊 and 𝑊 represent the set of weights connecting the input layer to
the hidden layer and the hidden layer to the output layer of the neural network, respec-
tively.
In the previous case (figure 3.3), implementing the sparse Bayesian learning algorithm
on the system’s neural network architecture was straightforward because the neural
network did not have a hidden layer resulting in a direct mapping between the neurons
of the input layer to the neurons of the output layer. However, in case 2, the presence of
a hidden layer (figure 3.5) prevents a direct mapping between the neurons of the input
layer to the neurons of the output layer. As a result, the weight reconstruction process
has to be carried out over two stages. The first reconstruction is for the set of weights
lying between the input and hidden layer i.e. 𝑊 and the second reconstruction is for
the set of weights lying between the hidden and output layer i.e. 𝑊 .
However, this stage-wise reconstruction process is not straightforward. Take for exam-
ple the reconstruction of the set of weights in 𝑊 which requires solving a SSR problem
formulated between the input and hidden layer’s neurons. The issue with solving this
SSR problem arises with a realization that although the values of neurons in the input
layer are known (time-series measurements corresponding to input states of the faulty
system), the values of the neurons in the hidden layer are unknown. Therefore, in the
SSR problem formulation, the dictionary matrix Φ of dimension M×6 can be formed
(from the six input states measurement data) but the vector y of dimension M×1 can
not be formed (hidden layer’s neuron values are not known). Hence, this results in an
incomplete SSR problem formulation. Similarly, the reconstruction of weights in 𝑊 re-
quires solving a SSR problem formulated between the neurons of the hidden and output
layers. Although the values of the neurons in the output layer are known (time-series
measurements corresponding to output states of the system), those of neurons in the
hidden layer are unknown. Therefore, in the SSR problem formulation, the measure-
ment vector y of dimension M × 1 can be formed (from output state(s) measurement
data) but the dictionary matrix Φ of dimension M × 2 can not be formed (hidden layer’s
neuron values are not known). Hence, in order to carry out stage-wise reconstruction,
the first step is to estimate the values of neurons in the hidden layer.

This estimation relies on making an educated guess on the possible locations of the
weights in the neural network that have changed in value after the occurrence of the
fault. For this, a new set of neural networks are trained from the inputs states of the
faulty system onto the prediction errors (actual system output - neural network pre-
dicted output) at the output states. The idea behind training these new neural networks
is to find out which weight(s) of the neural network modelling the system can be held
accountable (indicated by a pattern in the values of the weights of the newly trained
neural networks) for the prediction error observed at the output states. The architec-
ture of these new neural networks can be seen in figure 3.6. The input layer consists of
6 neurons which correspond to each input state (𝑥 to 𝑥 ) of the system and the output
layer consists of one neuron that represents the prediction error at the output states (𝑦
and 𝑦 ) of the system.

Practical experience shows that distinctive patterns in values of the weights of the newly
trained neural networks are observed depending on the true location(s) of the changed-
weight(s) in the neural network modelling the system. Recognizing these patterns help
narrow down the possible locations of the changed weights from many to only a few in
number. These distinctive patterns are described below:

– Situation 1: True location of changed weight(s) lies between the input and
hidden layers (𝑊 ) only
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Figure 3.6: New neural networks (right) trained on the prediction errors (left) at the output states.

Consider that a fault in the linear system results in changing of one of the neu-
ral network’s weights that lies between the input and hidden layers (𝑊 ). Assume
this weight to be 𝑁𝑁 , which after the occurrence of the fault changes its value
to 𝑁𝑁 . Training two new neural networks (figure 3.7 (left)) on the prediction er-
rors for output states (𝑦 and 𝑦 ) reveals a distinctive pattern in the values of the
trained weights, as listed in table 3.1 (situation 1 example 1). In both the newly
trained neural networks, the first weight (in red) has a large magnitude while the
other weights have a low or nearly zero magnitude. From this pattern, an educated
guess can be made that the changed weight in the neural network modelling the
linear system belongs to the set of weights in 𝑊 . It’s location can be further nar-
rowed down to either one of the weights going from the first input neuron to the
rest of the neurons in the hidden layer (𝑁𝑁 or 𝑁𝑁 ), as shown by the red dotted
weights in figure 3.7 (right). Similarly, when multiple weights in 𝑊 change, for ex-
ample 𝑁𝑁 and 𝑁𝑁 , the pattern observed in the trained weights is listed in table
3.1 (situation 1 example 2). From this pattern, again an educated guess can be
made that all weights other than the red (𝑁𝑁 and 𝑁𝑁 ) and blue (𝑁𝑁 and 𝑁𝑁 )
dotted weights in figure 3.8 (right) remain unchanged.
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Figure 3.7: (Left) Two neural networks trained on the prediction errors of the output states; (Right) The likely location of the
changed weights narrowed to the two dotted weights in red.

Figure 3.8: Likely location of the changed weights narrowed down to the four dotted weights in red and blue.

In both these examples, observing patterns in values of the weights in the newly
trained neural networks helps conclude that changed weight(s) only lie in 𝑊 and
therefore the weights in 𝑊 remain unchanged. This allows for the unchanged
weights in 𝑊 to be used for estimating the values of the neurons ’a’ and ’b’ in the
hidden layer as shown in figure 3.9. In this figure, it is seen that the weights in 𝑊
remain unchanged (𝑁𝑁 = 6, 𝑁𝑁 =2, 𝑁𝑁 = 3 and 𝑁𝑁 = 5), and the output of the
faulty system at time-step t = 5 for the output states 𝑦 and 𝑦 is known from the
measurement data to be 60 and 45, respectively. The value of the hidden neurons
’a’ and ’b’ at time instance t = 5 is therefore calculated by solving the pair of linear
equations given in equation 3.13. This is repeated to calculate the value of hidden
layer neurons for all time-steps.

3𝑎 + 5𝑏 = 45
6𝑎 + 2𝑏 = 60 (3.13)

The limitation of calculating the values of hidden layer neurons in this manner is
that the accuracy of the values calculated is highest when the number of neurons in
hidden layer is equal to the number of neurons in the output layer. This is because
the number of unknowns (values of hidden layer neurons) to be estimated is equal
to the number of known equations that can be formed (deterministic equations).
An example of this limitation is shown in figure 3.10 where the values of three
neurons a, b and c in the hidden layer are to be estimated from the two known
equations (equation 3.14). The accuracy of the values obtained for neurons a, b
and c is expected to be poor due to the under-deterministic nature of the equations
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Figure 3.9: Calculating the values of the neurons ’a’ and ’b’ in the hidden layer at time step t = 5.

(3 unknown variables and 2 equations).

Figure 3.10: Calculating the value of the three unknown hidden layer neurons a, b and c.

3𝑎 + 5𝑏 + 9𝑐 = 45
6𝑎 + 2𝑏 + 4𝑐 = 60 (3.14)

Following the estimation of values of neurons in the hidden layer, the reconstruc-
tion of neural network’s weights (𝑁𝑁 ) in 𝑊 can be done by formulating a sparse
signal recovery problem between the neurons of the input and hidden layers and
then solving it by applying the sparse Bayesian learning algorithm for the linear
case (algorithm 1). In the formulated SSR problem, y is a vector of dimension
M×1 that represents the estimated values of the hidden neurons ’a’ or ’b’ over M
measurements. The dictionary matrix Φ of dimension M×6 represents the 6 input
states of the system (𝑥 to 𝑥 ) across the M measurements. Finally, the vector x of
dimension 6×1 contains the required reconstructed weights 𝑁𝑁 . Following the re-
construction of the weights, the fault isolation is then performed as per algorithm 2.

– Situation 2: True location of changed weight(s) lies between the hidden and
output layers (𝑊 ) only
Consider that a fault in the linear system results in changing of one of the neural
network’s weights that lies between the hidden and output layers (𝑊 ). Assume this
weight to be 𝑁𝑁 , which after the occurrence of the fault changes its value to 𝑁𝑁 .
The prediction errors at both the output states as a result of this fault is shown in
figure 3.11 (left). From this figure it can be seen that the prediction error for output
state 𝑦 is negligible even after the occurrence of the fault. However, this is not the
case with the prediction error on output state 𝑦 . This type of pattern implies that
one of the weights in 𝑊 has changed. Moreover, it can only be either one of the
weights connecting the neurons of the hidden layer to the first neuron of the output
layer (output state 𝑦 ), as indicated by the pink dotted weights (𝑁𝑁 and 𝑁𝑁 ) in
figure 3.11(right).
Additionally, training a new neural network (figure 3.11 (middle)) on the prediction
error of output state 𝑦 reveals a distinctive pattern in values of the trained weights,
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as listed in table 3.1 (situation 2 example 1). All values of the weights of the neu-
ral network are non-zero and significant in their magnitudes. Repeated simulation
shows that this pattern re-occurs whenever the true location of the changed-weight
belongs to the set of weights in𝑊 of the neural networkmodelling the linear system.

Figure 3.11: (Left) Prediction errors at output states and . (Middle) Neural network trained on prediction error at output
state . (Right) Likely weights that changed in the neural network after the occurrence of fault.

With the intuition that the changed weight only lies in 𝑊 and that all weights in
𝑊 remain unchanged, the value of the hidden layer’s neurons ’a’ and ’b’ can be
easily calculated by performing a single feed-forward step. Following the estima-
tion of values of the neurons in the hidden layer, the reconstruction of the neural
network’s weights (𝑁𝑁 ) in 𝑊 can be done by formulating a sparse signal recovery
problem between the neurons of the hidden and outer layers and then solving it
by applying the sparse Bayesian learning algorithm for the linear case (algorithm
1). In the formulated SSR problem, y is a vector of dimension M×1 that represents
the output state of the system (𝑦 ) across the M measurements. The dictionary
matrix Φ of dimension M×2 represents both hidden layer neurons (a and b) across
the M measurements. Finally, the vector x of dimension 2×1 contains the required
reconstructed weights 𝑁𝑁 in 𝑊 . Following the reconstruction of the weights, the
fault isolation is then performed as per algorithm 2.

– Situation 3: True location of changed weight(s) lies in both 𝑊 and 𝑊 layers.
Consider that a fault in the linear system results in changing of multiple neural
network weights that belong to the set of weights in both 𝑊 and 𝑊 . Assume these
weights to be 𝑁𝑁 (in 𝑊 ) and 𝑁𝑁 (in 𝑊 ), which after the occurrence of the fault
change their values to 𝑁𝑁 and 𝑁𝑁 , respectively. The prediction errors at both
the output states as a result of this fault are shown in figure 3.12 (left). From
this figure , it is safe to rule out the possibility that the changed weights lie only
in 𝑊 (situation 2). However, no comments can be made yet about whether the
changed weights lie only in 𝑊 (situation 1) or both 𝑊 and 𝑊 (situation 3). In
order to differentiate between these two, a distinctive pattern must be identified
in the values of the weights of the neural networks that have been trained on the
prediction errors of the output states.

The identified weights following the training of new neural networks on the predic-
tion errors (figure 3.12 (middle)) are listed in table 3.1 (situation 3 example 1). The
weights of the neural network that was trained on the prediction error of output
state 𝑦 replicates a pattern similar to the one observed in situation 1 i.e. one of the
weights (here the first weight) has a large magnitude while the other weights have
a low or nearly zero value. This pattern indicates that at-least one of the changed
weights lie in 𝑊 and it’s location can be narrowed down to any one of the weights
going from the first input neuron to the rest of the neurons in the hidden layer i.e.
𝑁𝑁 or 𝑁𝑁 . The value of the weights of the neural network that was trained on
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Figure 3.12: (Left) Prediction errors at output states and . (Middle) Neural network trained on prediction error of output
state and . (Right) Likely weights that changed in the neural network after the occurrence of fault.

the prediction error of the output state 𝑦 replicates a pattern similar to the one
observed in situation 2, i.e. all the weights are non-zero and of certain magnitude
in value. This pattern indicates that at-least one of the changed weight(s) lies in
𝑊 and it’s location can be narrowed down to any one of the weights going from the
second neuron of the hidden layer (because the pattern appeared in the weights of
the neural network that was trained on prediction error of output state 𝑦 ) to the
rest of the neurons in the output layer, i.e. 𝑁𝑁 or 𝑁𝑁 . As a result, the possible
locations of the changed weights are narrowed down to the red and pink dotted
weights shown in figure in 3.12 (right).

Following the intuition on the possible locations of the changed weights, the next
step is to treat the red dotted weights (𝑁𝑁 and 𝑁𝑁 ) in𝑊 as variables and carry out
a single feed-forward step to obtain the values of neurons in the hidden layer as a
function of these variables. This is followed by the reconstruction of the neural net-
work’s weights (𝑁𝑁 ) in𝑊 by formulating a sparse signal recovery problem between
the neurons of the hidden and output layers that is solved by the sparse Bayesian
learning algorithm (algorithm 1). Now that the weights in 𝑊 have been recon-
structed, the numeric values of the neurons in the hidden layer can be estimated
by solving pairs of linear equations as was done in situation 1. This is followed
by the reconstruction of the neural network’s weights (𝑁𝑁 ) in 𝑊 by formulating
another sparse signal recovery problem, but this time between the neurons of the
input and hidden layers. This is then solved by applying the sparse Bayesian learn-
ing algorithm (algorithm 1). Following the reconstruction of weights in both𝑊 and
𝑊 , the fault isolation is then performed as per algorithm 2.

• Case 3: Fault isolation and identification for nonlinear system modelled by neural
networks having a hidden layer with a nonlinear activation function.
Consider a generic nonlinear system that has six input states 𝑥 to 𝑥 and two output
states 𝑦 , 𝑦 respectively. Let the normal operating dynamics of the nonlinear system be
described by equation 3.15, where 𝜃 to 𝜃 are fixed coefficients of the input states and
𝛾 , 𝛾 are the measurement noise that is assumed to be Gaussian.

𝑦 = 𝜃 ∗ 𝑥 + 𝜃 ∗ 𝑥 + 𝜃 ∗ 𝑥 + 𝜃 ∗ 𝑥 + 𝜃 ∗ 𝑥 + 𝜃 ∗ 𝑥 + 𝛾
𝑦 = 𝜃 ∗ 𝑥 + 𝜃 ∗ 𝑥 + 𝜃 ∗ 𝑥 + 𝜃 ∗ 𝑥 + 𝜃 ∗ 𝑥 + 𝜃 ∗ 𝑥 + 𝛾 (3.15)

Let the system be modelled by the same neural network architecture used in the previ-
ous case (figure 3.5). Once trained, the system dynamics can be represented in terms
of the weights of the neural network as per equation 3.16, or in the matrix form as given
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in equation 3.17.

[𝑦 𝑦 ] = 𝑓( [𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 ] ×

⎡
⎢
⎢
⎢
⎢
⎣

𝑁𝑁 𝑁𝑁
𝑁𝑁 𝑁𝑁
𝑁𝑁 𝑁𝑁
𝑁𝑁 𝑁𝑁
𝑁𝑁 𝑁𝑁
𝑁𝑁 𝑁𝑁

⎤
⎥
⎥
⎥
⎥
⎦

) × [𝑁𝑁 𝑁𝑁
𝑁𝑁 𝑁𝑁 ] (3.16)

𝑌 = 𝑓(𝑋 ×𝑊 ) ×𝑊 (3.17)

𝑓(𝑍) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑍) = 1
1 + 𝑒 (3.18)

Here f is the sigmoid activation function (nonlinear) on the hidden layer given by equa-
tion 3.18. 𝑊 and 𝑊 represent the set of weights connecting the input layer to the
hidden layer and the hidden layer to the output layer of the neural network, respec-
tively.
Due to the presence of a hidden layer in the neural network modelling the nonlinear
system (figure 3.5), the weight reconstruction process for all weights in 𝑊 and 𝑊 has
to be carried out in two stages (similar to the previous case). As mentioned earlier, this
reconstruction is not direct and requires estimating the values of the neurons in the
hidden layer. This is done by training new neural networks on the prediction errors at
the output states in order to locate the weights in the neural network that have most
likely changed their value after the occurrence of the fault in the system. The architec-
ture of the neural networks that are trained on the prediction errors of output states
differ from the ones in the previous case and is shown in figure 3.13 (right). The input
layer consists of 6 neurons which correspond to each input state (𝑥 to 𝑥 ) of the system.
The hidden layer consists of two neurons for which the activation function is a nonlin-
ear one (sigmoid function). The output layer consists of one neuron that represents the
prediction errors for the output states (𝑦 and 𝑦 ) of the system.

Figure 3.13: Case 3: Architecture of the neural networks (right) that are trained on the prediction errors at the output states (left).

Practical experience shows that distinctive patterns in values of weights of the newly
trained neural networks are observed depending on true location(s) of the changed-
weight(s) in the neural network modelling the nonlinear system. Recognizing these pat-
terns helps narrow down the possible locations of the changed weights from many to
only a few in number. These distinctive patterns are described below:
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– Situation 1: True location of changed weight(s) lies between the hidden and
output layers (𝑊 ) only
Consider that a fault in the non-linear system results in changing of one of the
neural network’s weights that lies between the hidden and output layers (𝑊 ). As-
sume this weight to be 𝑁𝑁 , which after the occurrence of the fault changes its
value to 𝑁𝑁 . The prediction errors at both the output states as a result of this
fault are shown in figure 3.14 (left). The prediction error for output state 𝑦 can be
seen to be negligible after the occurrence of the fault. However, this is not the case
with the prediction error on output state 𝑦 . Training a new neural network on the
prediction error of output state 𝑦 (figure 3.14 (middle)) reveals a distinctive pattern
in the values of the trained weights, as listed in table 3.2 (situation 1 example 1). It
can be seen that all pairs of weights in 𝑊 going from any one neuron in the input
layer to the neurons in the hidden layer (𝑁𝑁 &𝑁𝑁 , 𝑁𝑁 &𝑁𝑁 , 𝑁𝑁 &𝑁𝑁 , 𝑁𝑁 &𝑁𝑁 ,
𝑁𝑁 &𝑁𝑁 and 𝑁𝑁 &𝑁𝑁 ) are nearly equal in magnitude and same in sign to one
another. In addition to this, both weights in 𝑊 vary significantly from each other
in magnitude and are same in sign. The combination of these patterns indicates
that a changed-weight is located in 𝑊 of the neural network modelling the system.
Furthermore, its location can be narrowed down to either one of the weights con-
necting the hidden layer’s neurons to the first neuron of the output layer (output
state 𝑦 ), as indicated by the red dotted weights (𝑁𝑁 and 𝑁𝑁 ) in figure 3.14(right).

Note: the prediction errors on the output states in figure 3.14 (left) in itself is an indi-
cator that the changed-weight is located in the set of weights connecting the hidden
and outer layer, and therefore intuitively could be either 𝑁𝑁 or 𝑁𝑁 .

Similarly, when multiple weights in 𝑊 change, for example 𝑁𝑁 and 𝑁𝑁 , pat-
terns observed in the weights of both newly trained neural networks are listed in
table 3.2 (situation 1 example 2). A similar pattern is seen in the weights of both
neural networks, i.e. all weight-pairs in𝑊 are nearly equal in magnitude and same
in sign while the weights in 𝑊 are of same sign but vary significantly from each
other in magnitude. Based on these patterns an educated guess can be made that
all weights other than the red dotted weights (𝑁𝑁 ,𝑁𝑁 ,𝑁𝑁 and 𝑁𝑁 ) in figure
3.15 (right) remain unchanged.

Figure 3.14: (Left) Prediction error in the output state . (Middle) Neural network trained on the prediction error. (Right) Red
dotted weights represent the likely weights that changed after fault.
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Figure 3.15: (Left) Prediction errors in the output states and . (Middle) Neural network trained on the prediction errors.
(Right) Red dotted weights represent the likely weights that changed after fault.

With the intuition that the changed-weight(s) in the neural network modelling the
system only lies in 𝑊 and that all weights in 𝑊 remain unchanged, the value of
the hidden layer’s neurons can be easily calculated by performing a single feed-
forward step, while keeping in mind the sigmoid activation function on the hidden
layer. Following the estimation of the values of neurons in the hidden layer, the
reconstruction of the neural network’s weights (𝑁𝑁 ) in𝑊 can be done by formulat-
ing a sparse signal recovery problem between the neurons of the hidden and output
layers, and then solving it by applying the sparse Bayesian learning algorithm for
the linear case (algorithm 1). In the formulated SSR problem, y is a vector of di-
mension M×1 that represents the output state of the system (𝑦 or 𝑦 ) across the M
measurements. The dictionary matrix Φ of dimension M×2 represents both hidden
layer neurons across the M measurements. Finally, the vector x of dimension 2×1
contains the required reconstructed weights 𝑁𝑁 in 𝑊 . Following the reconstruc-
tion of the weights, the fault isolation is then performed as per algorithm 2.

– Situation 2: True location of changed weight(s) lies in both the 𝑊 and 𝑊 lay-
ers.
Consider that a fault in the nonlinear system results in changing of multiple trained
neural network’s weights that belong to the set of weights in both 𝑊 and 𝑊 . As-
sume these weights to be 𝑁𝑁 (in 𝑊 ) and 𝑁𝑁 (in 𝑊 ), which after the occurrence
of the fault change their values to 𝑁𝑁 and 𝑁𝑁 , respectively. The prediction er-
rors at both output states as a result of this fault can be seen in figure 3.16 (left).
Training new neural networks on the prediction errors of the output states (figure
3.16 (middle)) reveals a distinctive pattern in the values of the trained weights, as
listed in table 3.2 (situation 2 example 1). In the first trained neural network, for
the weights in𝑊 , with the exception of the first pair of weights (𝑁𝑁 &𝑁𝑁 ) the other
weight-pairs (𝑁𝑁 &𝑁𝑁 ,𝑁𝑁 &𝑁𝑁 , 𝑁𝑁 &𝑁𝑁 , 𝑁𝑁 &𝑁𝑁 and 𝑁𝑁 &𝑁𝑁 ) are nearly
equal in magnitude and same in sign. Additionally, the weights in 𝑊 vary signif-
icantly from each other in magnitude but are same in sign. In the second trained
neural network, for the weights in 𝑊 , all pairs of weights are significantly different
from each other in magnitude.
From the combination of these patterns it can be inferred that one of the changed-
weights is located in 𝑊 of the neural network modelling the nonlinear system.
Furthermore, its location can be narrowed down to either one of the weights con-
necting the hidden layer’s neurons to the first neuron of the output layer (output
state 𝑦 ) i.e., 𝑁𝑁 or 𝑁𝑁 , as shown by the red dotted weights in figure 3.16 (right).
In addition to this, the mismatch in magnitudes of the first pair of weights in 𝑊
of the first neural network implies a second changed-weight is located in 𝑊 of the
neural network modelling the nonlinear system. The location of this weight can be
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narrowed down to either one of the weights connecting the first neuron of the input
layer to all the neurons in the hidden layer, i.e. 𝑁𝑁 or 𝑁𝑁 , as shown by the blue
dotted weights in figure 3.16 (right).

Figure 3.16: (Left) Prediction errors in the output states and . (Middle) Neural network trained on the prediction errors.
(Right) Red dotted weights represent the likely weights that changed in the neural network after fault.

Consider an extension where in addition to 𝑁𝑁 and 𝑁𝑁 , the 𝑁𝑁 weight in 𝑊
also changes after the occurrence of fault in the system. Training new neural net-
works on the prediction errors (figure 3.17 (middle)) of the output states results in
the identified weights as listed in table 3.2 (situation 2 example 2). The pairs of
weights in 𝑊 of the first neural network show a similar pattern as before, i.e. all
pairs of weights with the exception of the first pair are nearly equal in magnitude
and sign. Moreover, the weights in 𝑊 layer for the first neural network are un-
equal in magnitude and same in sign. From the combination of these patterns it
can be inferred that one of the changed-weights is located in 𝑊 of the neural net-
work modelling the nonlinear system. Furthermore, its location can be narrowed
down to either one of the weights connecting the hidden layer’s neurons to the first
neuron of the output layer (output state 𝑦 )i.e., 𝑁𝑁 or 𝑁𝑁 , as shown in the red
in figure 3.17 (right). The weights in𝑊 and𝑊 of the second neural network shows
the same pattern as the weights in 𝑊 and 𝑊 of the first neural network, which
implies that a second changed weight is located in the 𝑊 of the neural network
modelling the nonlinear system. This weight’s location can be narrowed down to
either one of the weights connecting the hidden layer’s neurons to the second neu-
ron of the output layer (output state 𝑦 ), i.e. 𝑁𝑁 or 𝑁𝑁 , as shown in red in figure
3.17 (right). Lastly, the mismatch in magnitudes of the first pair of weights in𝑊 for
both the neural networks implies that a third changed weight exists and is located
in 𝑊 of the neural network modelling the system. Its location can be narrowed
down to one of the weights going from the first neuron of the input layer to all the
neurons in the hidden layer, i.e. 𝑊 or 𝑊 , as shown by the blue dotted weights in
figure 3.17 (right).

Following the intuition on the possible locations of the changed weights, the next
step is to treat the dotted weights in 𝑊 as variables and carry out a single feed-
forward step in order to obtain the values of neurons in the hidden layer as a
function of these variables. This is followed by the reconstruction of the neural
network’s weights in 𝑊 by formulating a sparse signal recovery problem between
the neurons of the hidden and output layers that is solved by the sparse Bayesian
learning algorithm (algorithm 1). Now that the weights in the 𝑊 have been recon-
structed, the numeric values of the neurons in the hidden layer can be estimated
by solving pairs of linear equations. Finally, the reconstruction of the neural net-
work’s weights in 𝑊 can be done by formulating a sparse signal recovery problem
between the neurons of the input and hidden layers that can be solved by applying
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Figure 3.17: (Left) Prediction errors in the output states and . (Middle) Neural network trained on the prediction errors.
(Right) Red and blue dotted weights represent the likely weights that changed in the neural network after fault.

the sparse Bayesian learning algorithm for the nonlinear case, as shown in algo-
rithm 3. The only difference between the two versions (nonlinear and linear) of the
SBL algorithm is to account for the nonlinear activation function applied on the
hidden layer of the neural network modelling the nonlinear system. Following the
reconstruction of the weights, fault isolation is then performed as per algorithm 2.

Algorithm 3 Re-weighted 𝐿 type sparse Bayesian learning algorithm for reconstruction of the neural
network weights (fault identification) in the nonlinear case
1: Fault Identification by weight reconstruction:
2: Initialize 𝜆 = 1 and 𝑤 as unit vector;
3: Assign B to be an identity matrix of dimension 6×6; B = eye(6);
4: for 𝑘 = 1, ....., 𝑘 do
5: 𝑥 = 𝑎𝑟𝑔𝑚𝑖𝑛 (‖𝑦 − 𝑓(Φ𝑥)‖ + 𝜆∑ ‖𝑤 . ∗ 𝐵 ,∶𝑥‖ ) ;
6: 𝛾 = | ,∶ | ;
7: 𝜏 = 𝑑𝑖𝑎𝑔(𝛾 ) ;
8: 𝐶 = (𝐵 (𝜏 ) 𝐵 + 𝐻) ;

9: 𝛼 = − ,∶ ,∶
( ) + ;

10: 𝑤 = √𝛼 ;

11: if 𝛾 has converged or a stopping criterion has been reached then
12: break ;
13: end if
14: end for
15:
16:
17: Where 𝐵 ,∶ stands for the 𝑖 row of the matrix B
18: Where 𝐻 stands for the hessian matrix
19: Where .∗ represents dot product

– Situation 3: True location of changed weight(s) lies between the input and
hidden layers (𝑊 ) only
Consider that a fault in the nonlinear system results in changing of one of the neu-
ral network’s weights that lies between the input and hidden layers (𝑊 ). Assume
this weight to be 𝑁𝑁 , which after the occurrence of the fault changes its value
to 𝑁𝑁 . The prediction errors at the output states as a result of this fault can be
seen in figure 3.18 (left). Training two new neural networks on the prediction er-
rors (figure 3.18 (middle)) for output states 𝑦 and 𝑦 reveals a distinctive pattern
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Figure 3.18: (Left) Prediction errors in the output states and . (Middle) Neural network trained on the prediction errors.
(Right) Blue dotted weights represent the likely weights that changed in the neural network after fault.

in the values of the trained weights as listed in table 3.2 (situation 3 example 1).
In both the neural networks, for the weights in 𝑊 , with the exception of the first
pair of weights (𝑁𝑁 & 𝑁𝑁 ) the other weight-pairs (𝑁𝑁 &𝑁𝑁 ,𝑁𝑁 &𝑁𝑁 , 𝑁𝑁 &𝑁𝑁 ,
𝑁𝑁 &𝑁𝑁 and 𝑁𝑁 &𝑁𝑁 ) are nearly equal in magnitude and same in sign to each
other. Meanwhile looking at the value of the weights in 𝑊 , for both the neural net-
works it can be seen that both weights are nearly equal in magnitude and opposite
to each other in sign. From the combination of these patterns it can be inferred
that one of the changed-weights is located in 𝑊 of the neural network modelling
the nonlinear system. Furthermore, its location can be narrowed down to either
one of the weights connecting the hidden layer’s neurons to the first neuron of the
output layer (output state 𝑦 ), i.e. 𝑁𝑁 or 𝑁𝑁 , as shown in the red in figure 3.17
(right). From the combination of the observed patterns in both neural networks
it can be inferred that the changed weight is located in 𝑊 of the neural network
modelling the system. Furthermore, its location can be narrowed to either one of
the weights connecting the first neuron in the input layer to both neurons in the
hidden layer, i.e. 𝑊 or 𝑊 weights shown in blue in figure 3.18 (right).

Following the intuition that the changed weights are located only in 𝑊 of the neu-
ral network modelling the nonlinear system and that the weights in 𝑊 layer of this
neural network remain unchanged, the value of neurons in the hidden layer can
be calculated by solving the required linear equations. The reconstruction of the
neural network’s weights in𝑊 can then be carried out by formulating a sparse sig-
nal recovery problem between the neurons of the input and hidden layer. This SSR
problem can then be solved by applying the sparse Bayesian learning algorithm for
the nonlinear case (algorithm 3).

Note: that the pattern of the value of weights in 𝑊 of both neural networks is what
differentiates this situation (situation 3) from previous situation (situation 2), where
the weights in 𝑊 of both the neural networks are same in sign and had large differ-
ence in their magnitudes.

3.3. Discussion
Some final points worth mentioning about the process of fault detection, isolation and iden-
tification described above are:

• The fault detection task can be done online.

• The weight reconstruction (fault identification) task involves computationally expensive
calculations which although can be done online, are not possible to implement during
real time operation.
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• Although there can be an occurrence of more than one fault at any given time instance,
while the data corresponding to the faulty system is being recorded for the reconstruc-
tion of weights, it is assumed that no other faults occur in the system during this brief
period.

In this chapter, the methodology for carrying out fault detection and fault identification and
isolation via reconstruction of neural network weights by applying sparse Bayesian learning
algorithm was discussed. For a linear system modelled by a neural network that does not
have a hidden layer, the fault diagnosis process is straightforward. However for the linear or
nonlinear systems modelled by a neural network having a hidden layer, in order to recon-
struct the weights, first the values of the neurons of the hidden layers have to be estimated.
This estimation requires having some insights into the possible locations of the weight(s) that
have changed after the occurrence of the fault. It is shown that this insight can be gained by
identifying distinctive patterns in the values of the weights of the neural networks that have
been newly trained on the prediction errors of the output states. The distinctive patterns
help identify whether the location of the changed-weight(s) lie either in𝑊 ,𝑊 or in both. This
insight is then used to estimate the values of the neurons in the hidden layer. Finally, the
reconstruction of the weights across the whole neural network that models the system is
carried out.



4
Experiments

In the previous chapter, fault diagnosis algorithms for carrying out fault detection and fault
identification & isolation of a generic linear and nonlinear system were proposed and their
implementations were discussed. The goal of this chapter is to apply the proposed algorithms
to (hypothetical) linear and non-linear systems modelled by neural networks, to demonstrate
their suitability for carrying out a fault diagnosis task.

4.1. Experiment 1: Linear systemmodelled by neural networkwith-
out hidden layer

Consider a linear system that has six input states 𝑥 to 𝑥 and two output states 𝑦 𝑦 . Let
the normal operating dynamics of the linear system be described by equation 4.1, where 𝛾
and 𝛾 are the measurement noise at output states 𝑦 and 𝑦 , respectively, and are assumed
to be Gaussian.

𝑦 = 0.5𝑥 + 2𝑥 − 1.1𝑥 + 0.95𝑥 + 0.5𝑥 − 2𝑥 + 𝛾
𝑦 = 3𝑥 + 2.5𝑥 + 𝑥 + 0.5𝑥 − 0.5𝑥 + 1.5𝑥 + 𝛾 (4.1)

Step 1: Data generation from the linear system
For the purpose of this study, synthetic data corresponding to the normal operating condi-
tions of the system is generated with the help of true equations of the system given in equation
4.1. All input states (𝑥 to 𝑥 ) are Gaussian 𝒩(0, 1) with mean = 0 and variance = 1. The
measurement noises 𝛾 𝛾 are also assumed to be Gaussian 𝒩(0, 0.01) with mean = 0 and
variance = 0.01. This ensures the presence of noise in the output signals whilst maintaining
a good signal to noise ratio. Figure 4.1 shows the generated training data set for the input
(left) and output (right) states of the system.

Step 2: Modelling linear system with neural network
The neural network architecture chosen to model the linear system is shown in figure 3.3.
The neural network’s input layer has six neurons, each corresponding to one of the input
states of the system (𝑥 to 𝑥 ). The output layer has two neurons, each corresponding to one
of the output states (𝑦 & 𝑦 ) of the system. The next step is to train this neural network on
the training data set. Once trained, the neural network is cross-validated on the training
and test data sets as shown in figure 4.2. Here the red line and the blue stars represent the
predicted and target outputs, respectively. The mean-square errors (MSE) obtained on the
training and test data sets are listed in table 4.1. As expected, the neural network accurately
models the linear system. Moreover, it is able to generalize to data it has not been trained
on, as is evident from its modelling accuracy on the test data set. The trained weights of
this network are given in table 4.3 (second column). Having trained the neural network, the
linear system can now be represented as a function of the neural network’s weights, given
by equation 3.5.

53
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Figure 4.1: Experiment 1: Training data set corresponding to the linear system’s six inputs (left) and two output states (right)
under normal operating conditions.

Figure 4.2: Experiment 1: Cross-validation of the trained neural on training (left) and test data sets (right).

Output State MSE on training data set MSE on test data set
y1 0.0094 0.0109
y2 0.0086 0.0136

Table 4.1: Experiment 1: Mean-squared error on the training and test data sets.

The low MSE obtained on the training data set indicates that on average, the magnitude of
the modelling errors i.e. residuals 𝑟 (= 𝑦 − 𝑦 ) for each data point ’i’ in the training data set
are low. Training a model on the current input-residual pair data sets ((𝑢 , 𝑟 ) ) will result
in an adaptive threshold model whose output 𝑦 and variance 𝑣 are very low. This in turn
implies that the upper and lower thresholds calculated by this model as per equations 3.3
and 3.4 respectively, will also be low in their mean and variance. The low variance of the
thresholds essentially means that they will behave similar to static thresholds. Hence, for
this experiment, a static threshold was implemented instead.
Ignoring the contribution of the 𝑦 term in equations 3.3 and 3.4, the static upper and lower
thresholds are calculated as per equations 4.2 and 4.3, respectively.

𝑇 = 𝑡 𝑣 (4.2)



4.1. Experiment 1: Linear system modelled by neural network without hidden layer 55

𝑇 = −𝑡 𝑣 (4.3)
Although, originally, 𝑣 is the standard deviation of 𝑦 , due to the absence of the model, 𝑣 is
assigned the standard deviation of the residuals. This was found to be 0.0966 and 0.0928
at the system’s output states 𝑦 and 𝑦 , respectively. For a 95% confidence level, 𝑡 was as-
signed a value of 1.96. The upper and lower thresholds were calculated to be ±0.1893 and
±0.1819 for the system’s output states 𝑦 and 𝑦 , respectively.

Step 3: Occurrence of a fault in system
After the neural network has been trained offline, it is ready for its online implementation
alongside the linear system, where it will monitor and detect the occurrence of faults and
perform fault identification and isolation tasks after a fault has been detected in the system.
At time-step t = 301 during it’s operation, a fault in the system occurs, as a result of which
the weights 𝑁𝑁 & 𝑁𝑁 change their values to 𝑁𝑁 & 𝑁𝑁 , as per equation 4.4. From time-
step 301 onward, the faulty system generates data as per equation 4.5. Figure 4.3 shows the
effect of the fault on the system’s output states 𝑦 (top) and 𝑦 (bottom). Here the blue and red
plots represents the neural network’s predicted output and the system’s output (after fault),
respectively.

𝑁𝑁 = 𝑁𝑁 + 3
𝑁𝑁 = 𝑁𝑁 − 5

(4.4)

𝑦 = 𝑁𝑁 ∗ 𝑥 + 𝑁𝑁 ∗ 𝑥 + 𝑁𝑁 ∗ 𝑥 + 𝑁𝑁 ∗ 𝑥 + 𝑁𝑁 ∗ 𝑥 + 𝑁𝑁 ∗ 𝑥 + 𝛾
𝑦 = 𝑁𝑁 ∗ 𝑥 + 𝑁𝑁 ∗ 𝑥 + 𝑁𝑁 ∗ 𝑥 + 𝑁𝑁 ∗ 𝑥 + 𝑁𝑁 ∗ 𝑥 + 𝑁𝑁 ∗ 𝑥 + 𝛾

(4.5)

Figure 4.3: Experiment 1: Effect of the fault on the linear system’s output states (top) and (bottom).

It is expected for the neural network implemented online to carry out the following three
tasks:

• Detect the occurrence of the fault in the system from time-step 301 onward (fault de-
tection)
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• Isolate the the weights that changed due to the occurrence of the fault (fault isolation)

• Identify the new values of these changed weights (fault identification)

Step 4: Fault diagnosis of faulty system
Figure 4.4 shows the monitoring task performed by the fault-detection algorithm for both
output states 𝑦 (top) and 𝑦 (bottom) at each time-step. Here, the dotted black lines represent
the static upper and lower thresholds, while the solid red line represents the residuals. Figure
4.5 shows the classification made by the fault-detection algorithm at each time-step for both
the output states of the system 𝑦 (left) and 𝑦 (right). A value of ’0’ indicates that the system
is not at fault while a value of ’1’ indicates that the system is at fault. From figure 4.5 it can be
seen that there are occurrences of a few false positives. However, they are largely spread out
and do not occur over successive time-steps. Moreover, for each of them, majority (at least
4 out of 5) of the successive time-steps following the false-positive fail to satisfy the fault
detection condition. As a result, the fault detection algorithm treats them as single-point
outlier. In contrast, the fault detection algorithm correctly detects the occurrence of a fault
in the system’s output states 𝑦 and 𝑦 from time-step 401 onward, because the majority
(at least 4 out of 5) of successive time-steps also satisfy the fault detection condition. The
classification accuracy of the fault detection algorithm has been summarized in table 4.2.
The classification accuracy for both states was found to be 96%.

Figure 4.4: Experiment 1: Fault detection algorithm monitoring for faults at the output states (top) and (bottom) of the
system.

Output State False positives
(out of 350)

False negatives
(out of 350)

Correct classifications
(out of 350)

Classification accuracy
(%)

y1 13 1 336 96
y2 12 2 336 96

Table 4.2: Experiment 1: Classification results of the fault detection algorithm.
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Figure 4.5: Experiment 1: Classification made by the fault detection algorithm for each time-step for output states (left) and
(right).

Following the detection of the fault, data from the faulty system (301-350) is collected and
used to reconstruct the weights by forming an SSR problem between the neurons of the input
and output layers and is solved using the sparse Bayesian learning algorithm (algorithm 1).
The reconstructed weights are listed in table 4.3 (column 4). From the reconstructed weights,
it is clear to see that weights 𝑁𝑁 and 𝑁𝑁 (in red) had changed after the occurrence of the
fault in the system and are hence isolated. Moreover, close agreement with the true value of
the changed-weights (column 3) i.e.low reconstruction error (column 5) shows that the SBL
based weight reconstruction approach was successfully able to carry out fault identification
of the faulty system.

Weight # Trained weights Changed weights Reconstructed weights Reconstruction error (%)
NN 1 0.4940 3.4940 3.4949 0.025
NN 2 1.9917 1.9917 1.9810 0.54
NN 3 -1.1074 -1.1074 -1.0935 1.26
NN 4 0.9397 0.9397 0.9321 0.81
NN 5 0.4956 0.4956 0.4952 0.087
NN 6 -2.0013 -2.0013 -1.9887 0.63
NN 7 2.9967 2.9967 3.0022 0.18
NN 8 2.4912 2.4912 2.4798 0.46
NN 9 0.98229 -4.0177 -3.9890 0.71
NN 10 0.49704 0.4970 0.5004 0.68
NN 11 -0.49772 -0.4977 -0.4635 6.87
NN 12 1.4953 1.4953 1.4913 0.27

Table 4.3: Reconstructed weights for experiment 1.

4.2. Experiment 2: Linear systemmodelled by neural network with
a hidden layer

Consider a linear system that that has six input states 𝑥 to 𝑥 and two output states 𝑦 𝑦 .
Let the normal operating dynamics of the linear system be described by equation 4.6, where
𝛾 & 𝛾 are the measurement noise at output states 𝑦 and 𝑦 , respectively, and are assumed
to be Gaussian.

𝑦 = 2.5𝑥 − 1.5𝑥 − 2𝑥 + 3𝑥 + 𝑥 + 2𝑥 + 𝛾
𝑦 = −𝑥 + 3𝑥 + 4𝑥 + 2.75𝑥 − 1.5𝑥 + 3.5𝑥 + 𝛾 (4.6)

Step 1: Data generation from the linear system
The first step is to generate data corresponding to the normal operating conditions of the
linear system from its true equation 4.6. Similar to experiment 1, all input states (𝑥 to 𝑥 )
are Gaussian 𝒩(0, 1) with mean = 0 and variance = 1. The measurement noises 𝛾 & 𝛾 are
also assumed to be Gaussian𝒩(0, 0.01) with mean = 0 and variance = 0.01. Figure 4.6 shows
the generated training data set for the input (left) and output (right) states of the system.
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Figure 4.6: Experiment 2: Training data set corresponding to the linear system’s six inputs (left) and two output states (right)
under normal operating conditions.

Step 2: Modelling linear system with neural network
The neural network architecture chosen to model the linear system is shown in figure 3.5.
The neural network’s input layer has six neurons, each corresponding to one of the input
states of the system (𝑥 to 𝑥 ). The hidden layer contains two neurons for which the activation
function is a linear one. Finally, the output layer has two neurons, each corresponding to
one of the output states (𝑦 and 𝑦 ) of the system. The next step is to train this neural network
on the training data set. Once trained, the neural network is cross-validated on the training
and test data sets as shown in figure 4.7. Here the red line and the blue stars represent the
predicted and target outputs respectively. The mean-square errors (MSE) obtained on the
training and test data sets are listed in table 4.4. As expected, the neural network accurately
models the linear system. Moreover, it is able to generalize to data it has not been trained
on, as is evident from its modelling accuracy on the test data set. The trained weights of
this network are given in table 4.7 (third column). Having trained the neural network, the
linear system can now be represented as a function of the neural network’s weights, given
by equation 3.17 where the activation function 𝑓(𝑍) = 𝑍 is a linear one.

Figure 4.7: Experiment 2: Cross-validation of the trained neural on training (left) and test data sets (right).

Similar to the previous experiment, the low value of the MSE obtained on the training data
set indicates that the residual 𝑟 for each data point ’i’ in the training data set is either very
low or negligible in magnitude. This will result in a low variance of the upper and lower
thresholds calculated by the adaptive threshold model and therefore they will behave similar
to static thresholds. Hence, for this experiment, a static threshold was implemented instead.
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Output State MSE on training data set MSE on test data set
y1 0.0111 0.0163
y2 0.0099 0.0349

Table 4.4: Experiment 2: Mean-squared error on the training and test data sets.

The upper and lower thresholds are calculated as per equations 4.2 and 4.3, respectively.
Due to the absence of the model (𝑦 ), 𝑣 is assigned the standard deviation of the residuals.
This was found to be 0.1048 and 0.0991 at the system’s output states 𝑦 and 𝑦 , respectively.
For a 95% confidence level, 𝑡 was assigned a value of 1.96. The upper and lower thresholds
were calculated to be ±0.2054 and ±0.1942 for the system’s output states 𝑦 and 𝑦 , respec-
tively.

Step 3: Occurrence of a fault in the system
After the neural network has been trained offline, it is ready for its online implementation
alongside the linear system, where it will monitor and detect the occurrence of faults and
perform fault identification and isolation tasks after a fault has been detected in the system.
At time-step t = 401 during it’s operation, a fault in the system occurs as a result of which
the weights 𝑁𝑁 and 𝑁𝑁 change their values to 𝑁𝑁 and 𝑁𝑁 , as per equation 4.7. From
time-step 401 onward, the faulty system generates data as per equation 4.8. Figure 4.8
shows the effect of the fault on the system’s output states 𝑦 (top) and 𝑦 (bottom). Here the
blue and red plots represents the neural network’s predicted output and the system’s output
(after fault), respectively.

𝑁𝑁 = 𝑁𝑁 + 5
𝑁𝑁 = 𝑁𝑁 + 3

(4.7)

[𝑦 𝑦 ] = 𝑓( [𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 ] ×
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𝑁𝑁 𝑁𝑁 ] (4.8)

It is expected for the neural network implemented online to carry out the following three
tasks:

• Detect the occurrence of the fault in the system from time-step 401 onward (fault de-
tection)

• Isolate the the weights that changed (𝑁𝑁 and 𝑁𝑁 ) after the occurrence of the fault
(fault isolation)

• Identify the new values of these changed weights (fault identification)

Step 4: Fault diagnosis of faulty system
Figure 4.9 shows the monitoring task performed by the fault-detection algorithm for both
output states 𝑦 (top) and 𝑦 (bottom) at each time-step. Here, the dotted black lines represent
the static upper and lower thresholds, while the solid red line represents the residuals. Figure
4.10 shows the classification made by the fault-detection algorithm at each time-step for both
the output states of the system 𝑦 (left) and 𝑦 (right). A value of ’0’ indicates that the system is
not at fault while a value of ’1’ indicates that the system is at fault. From figure 4.10 it can be
seen that there are occurrences of a few false positives. However, they are largely spread out
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Figure 4.8: Experiment 2: Effect of the fault on the linear system’s output states (top) and (bottom).

and do not occur over successive time-steps. Moreover, for each of them, majority (at-least
4 out of 5) of the successive time-steps following the false-positive fail to satisfy the fault
detection condition. As a result, the fault detection algorithm treats them as single-point
outlier. In contrast, the fault detection algorithm correctly detects the occurrence of a fault
in the system’s output states 𝑦 and 𝑦 from time-step 401 onward, because the majority
(at-least 4 out of 5) of successive time-steps also satisfy the fault detection condition. The
classification accuracy of the fault detection algorithm has been summarized in table 4.5.
The classification accuracy at output states 𝑦 and 𝑦 was found to be 95% and 94.4%,
respectively.

Output State False positives
(out of 500)

False negatives
(out of 500)

Correct classifications
(out of 500)

Classification accuracy
(%)

y1 23 2 475 95
y2 26 2 472 94.4

Table 4.5: Experiment 2: Classification results of the fault detection algorithm.

Following the detection of the fault, the data from the faulty system from time-step 401-500
is used for the reconstruction of the weights. Recall from the previous chapter that for a
neural network architecture having a hidden layer, the reconstruction process takes place
in stages, i.e., separate reconstruction for the set of weights in 𝑊 and 𝑊 . This requires esti-
mating the values of the neurons in the hidden layer from time-step 401-500. This requires
making an educated guess on the location of the changed-weights by identifying a pattern in
the values of the weights of the new neural networks that are trained on the prediction errors
at output states 𝑦 and 𝑦 , respectively. Figure 4.11 shows the prediction errors (in red) on
the system’s output states 𝑦 (top) and 𝑦 (bottom). Figure 4.12 shows the training of the
two new neural networks on these prediction errors. The value of the weights of both newly
trained neural networks are listed in table 4.6. Looking at the values of the weights in the
first neural network, it can be concluded that a changed-weight is located in𝑊 of the neural
network modelling the linear system and is either one of weights going from the hidden layer
neurons to the first output neuron in the output layer i.e. 𝑁𝑁 or 𝑁𝑁 . Similarly, from
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Figure 4.9: Experiment 2: Fault detection algorithm monitoring for faults at the output states (top) and (bottom) of the
system.

Figure 4.10: Experiment 2: Classification made by the fault detection algorithm for each time-step for output states (left) and
(right).

the value of the weights in the second neural network, it can be concluded that a second
changed-weight is located in 𝑊 of the neural network modelling the linear system and is
either one of weights going from the input layer neurons to the first neuron in the hidden
layer i.e. 𝑁𝑁 or 𝑁𝑁 .

The possible locations of the changed-weights have been identified to be in both 𝑊 and 𝑊 .
Recall similarity to case 2 situation 3 from previous chapter. Hence, in order to reconstruct
the changed-weights, the first step is to treat weights 𝑁𝑁 and 𝑁𝑁 in𝑊 as variables (remain-
ing weights in𝑊 remain fixed to their original values) and carry out a single feed-forward step
in order to obtain the values of neurons in the hidden layer as a function of these variables.
This is followed by the reconstruction of the weights 𝑁𝑁 and 𝑁𝑁 in 𝑊 by formulating a
sparse signal recovery problem between the neurons of the hidden layer and the first neuron
of the output layer. This SSR problem is solved using the sparse Bayesian learning algorithm
(algorithm 1). Now that the weights 𝑁𝑁 and 𝑁𝑁 in the 𝑊 layer have been reconstructed,
the values of the neurons in the hidden layer for time-steps 401 to 500 are calculated by
solving the pairs of linear equations at each time-step. Once estimated, the reconstruction
of the neural network’s weights 𝑁𝑁 and 𝑁𝑁 in 𝑊 is carried out by formulating another
sparse signal recovery problem between the neurons of the input and hidden layers that is
solved by applying the sparse Bayesian learning algorithm (algorithm 1). The reconstructed
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Figure 4.11: Experiment 2: Prediction errors on the output states (top) and (bottom) of the system.

Figure 4.12: Experiment 2: Neural networks trained on the prediction errors on output states (left) and (right).

weights are listed in table 4.7 (column 5). From the four reconstructed weights i.e. 𝑁𝑁 ,
𝑁𝑁 , 𝑁𝑁 and 𝑁𝑁 (as all other weights in 𝑊 and 𝑊 were kept fixed in value), it is clear to
see that the weights 𝑁𝑁 and 𝑁𝑁 (in red) had changed after the occurrence of the fault in
the system and are hence isolated. Moreover, their (reconstructed weights) close agreement
with the true value of the changed-weights (column 4) i.e. low reconstruction error (column
6) shows that the SBL based weight reconstruction approach was successfully able to carry
out the fault identification of the faulty system.

Column 7 demonstrates the importance of having an intuition of the possible locations of
the changed-weights by recognizing the pattern in the values of the weights of the neural
networks trained on the prediction error. The reconstruction for the weights in this column
are done directly i.e. all the weights in 𝑊 are treated as variables and a single feed-forward
step is carried out in order to obtain the values of neurons in the hidden layer as a function
of these variables. The weights in 𝑊 are then reconstructed by formulating two SSR prob-
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Weight # Trained weights
(neural network 1)

Trained weights
(neural network 2)

NN 1 -1.3583 3.7128
NN 2 -0.5477 0.0078
NN 3 -0.7544 -0.0315
NN 4 4.8121 0.0063
NN 5 0.5211 -0.0024
NN 6 3.8699 -0.0191

Table 4.6: Experiment 2: Value of the weights of the two new neural networks trained on the prediction errors on the output
states of the system.

Weight lies in
(W1/W2) Weight # Trained weights Changed weights Reconstructed weights

(with intuition)
Reconstruction error

(%)
Reconstructed weights

(without intuition)
NN 1 -0.8751 4.129 4.1361 0.27 -1.7194
NN 2 0.1771 0.1771 0.1771 N/A -2.3323
NN 3 0.2411 0.2411 0.2411 N/A -3.1681
NN 4 -1.6110 -1.6110 -1.6110 N/A -0.4934
NN 5 -0.1861 -0.1861 -0.1861 N/A 1.2736
NN 6 -1.3054 -1.3054 -1.3054 N/A -1.3248
NN 7 -0.6612 -0.6612 -0.65166 1.44 -1.8918
NN 8 1.2596 1.2596 1.2596 N/A 0.0254
NN 9 1.6797 1.6797 1.6797 N/A 0.0200
NN 10 0.6170 0.6170 0.6170 N/A 0.7687
NN 11 -0.6629 -0.6629 -0.6629 N/A 0.0221

W1

NN 12 1.0112 1.0112 1.0112 N/A 0.6559
NN 13 -2.1966 0.8034 0.8013 0.26 0.3870
NN 14 -0.8725 -0.8725 -0.87722 0.54 -2.1366
NN 15 -0.7500 -0.7500 -0.7500 N/A -1.2450W2

NN 16 2.4820 2.4820 2.4820 N/A 2.7657

Table 4.7: Reconstructed weights for experiment 2.

lems between the neurons of the hidden layer and the first neuron of the output layer. The
first one for reconstructing weights 𝑁𝑁 and 𝑁𝑁 , while the second one for reconstructing
weights 𝑁𝑁 and 𝑁𝑁 . The reconstructed weights are used to calculate the values of the
neurons in the hidden layer. Once estimated, the weights in 𝑊 are reconstructed by for-
mulating another 2 SSR problems between the neurons of the input and hidden layers. The
first one for reconstructing weights 𝑁𝑁 to 𝑁𝑁 , while the second one is for reconstructing
weights 𝑁𝑁 to 𝑁𝑁 . It can be seen that set of reconstructed weights in 𝑊 and 𝑊 are both
highly inaccurate to the true values of the weights after the fault (column 4).

Note: The optimization problem in the SBL algorithm is solved in MATLAB using the fmin-
search function. fminsearch requires a starting or initial value for the variables that are being
optimized. In this context, the variables being optimized are the set of weights in the neural
network which are suspected (intuition from pattern) to have changed after the occurrence of
the fault in the system i.e. 𝑊 and 𝑊 in this experiment. Hence, while solving the optimiza-
tion problem, an initial starting value for these to-be reconstructed weights are to be provided.
The provide initial values for these weights were their originally trained values from table 4.7
(column 3).
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4.3. Experiment 3: Nonlinear system modelled by neural network
with a hidden layer

Consider a nonlinear system that that has six input states 𝑥 to 𝑥 and two output states 𝑦
and 𝑦 . Let the normal operating dynamics of the nonlinear system be described by equation
4.9, where 𝛾 and 𝛾 are the measurement noise at output states 𝑦 and 𝑦 , respectively that
are assumed to be Gaussian.

𝑦 = 𝑥 + 2𝑥 − 3𝑥 + 𝑥 − 𝑥 − 2.5𝑥 + 𝛾
𝑦 = 𝑥 + 3.5𝑥 − 𝑥 + 1.5𝑥 − 0.5𝑥 − 𝑥 + 𝛾 (4.9)

Step 1: Data generation from the nonlinear system
The first step is to generate data corresponding to the normal operating conditions of the
nonlinear system from its true equation 4.9. Similar to the previous experiment, all input
states (𝑥 to 𝑥 ) are Gaussian𝒩(0, 1) of mean = 0 and variance = 1. The measurement noises
𝛾 and 𝛾 are also assumed to be Gaussian𝒩(0, 0.01) of mean = 0 and variance = 0.01. Figure
4.13 shows the generated training data set for the input (left) and output (right) states of the
system.

Figure 4.13: Experiment 3: Training data set corresponding to the linear system’s six inputs (left) and two output states (right)
under normal operating conditions.

Step 2: Modelling nonlinear system with neural network
The neural network architecture chosen to model the nonlinear system is shown in figure
3.5. The neural network’s input layer has six neurons, each corresponding to one of the input
states of the system (𝑥 to 𝑥 ). The hidden layer contains two neurons for which the activation
function is chosen to be the sigmoid function (nonlinear). Finally, the output layer has two
neurons, each corresponding to one of the output states (𝑦 and 𝑦 ) of the system. The next
step is to train this neural network on the training data set. Once trained, the neural network
is cross-validated on the training and test data sets as shown in figure 4.14. Here the red line
and the blue stars represent the predicted and target outputs respectively.The MSE obtained
on the training and test data sets are listed in table 4.8. The high MSE value on the training
data set indicates that the neural network is unable to accurately model the nonlinear system.
Moreover, its does not show a good ability to generalize on data it has not trained on as is
indicated by the MSE on the test data set. Recall that in order to obtain a deterministic set of
equations for calculating the values of neurons in the hidden layer, the number of neurons
in the hidden and outer layers must be equal. As a result of this constraint, the choice
for modelling the system is limited to the current neural network architecture or perhaps
an architecture where there a several hidden layers, each having two neurons. However,
with multiple hidden layers, identifying the pattern becomes more challenging. Hence, the
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current architecture is the preferred choice of modelling the nonlinear system in this case.
The trained weights of this network are given in table 4.11 (third column). Having trained the
neural network, a reduced version of the nonlinear system can be represented as a function
of the neural network’s weights, given by equation 3.17 where the activation function (𝑓(𝑍))
is the sigmoid function.

Figure 4.14: Experiment 3: Cross-validation of the trained neural on the training (left) and test (right) data sets.

Output State MSE on training data set MSE on training data set
y1 5.4314 7.8919
y2 8.1848 11.3033

Table 4.8: Experiment 3: Mean-squared error on the training and test data sets.

Unlike the previous experiments, in this experiment a high value of MSE was obtained on
the training data set as a result of which the residuals 𝑟 for each data point ’i’ in the training
data set are quite significant in their magnitude. Hence, neural networks are trained on the
input-residual pair data sets ((𝑢 , 𝑟 ) ) in order to construct adaptive threshold models for
each output state of the system. Figure 4.15 shows the trained adaptive threshold models
for output states 𝑦 (left) and 𝑦 (right), respectively.

Figure 4.15: Experiment 3: Trained adaptive threshold models for output states (left) and (right).
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Step 3: Occurrence of a fault in the system
After the neural network has been trained offline, it is ready for its online implementation
alongside the nonlinear system, where it will monitor and detect the occurrence of faults and
perform fault identification and isolation tasks after a fault has been detected in the system.
At time-step t = 401 during it’s operation, a fault in the system occurs as a result of which
the weights 𝑁𝑁 and 𝑁𝑁 change their values to 𝑁𝑁 and 𝑁𝑁 , as per equation 4.10. From
time-step 401 onward, the faulty system generates data as per equation 4.11. Figure 4.16
shows the effect of the fault on the system’s output states 𝑦 (top) and 𝑦 (bottom). Here the
blue and red plots represents the neural network’s predicted output and the system’s output
(after fault), respectively.

𝑁𝑁 = 𝑁𝑁 + 4
𝑁𝑁 = 𝑁𝑁 + 20

(4.10)
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Figure 4.16: Experiment 3: Effect of the fault on the nonlinear system’s output states (top) and (bottom).

It is expected for the neural network implemented online to carry out the following three
tasks:

• Detect the occurrence of the fault in the system from time-step 401 onward (fault de-
tection)
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• Isolate the the weights that changed (𝑁𝑁 and 𝑁𝑁 ) after the occurrence of the fault
(fault isolation)

• Identify the new values of these changed weights (fault identification)

Step 4: Fault diagnosis of faulty system
Figure 4.17 shows the monitoring task performed by the fault-detection algorithm for both
output states 𝑦 (left) and 𝑦 (right) at each time-step. Here, the dotted black lines represent
the static upper and lower thresholds, while the solid red line represents the residuals. Fig-
ure 4.18 shows the classification made by the fault-detection algorithm at each time-step for
both the output states of the system 𝑦 (top) and 𝑦 (bottom). A value of ’0’ indicates that
the system is not at fault while a value of ’1’ indicates that the system is at fault. From
figure 4.18 it can be seen that there are occurrences of more false positives and negatives
than the previous experiments. However, they are quite spread out and do not occur over
multiple successive time-steps (example 4 or 5 successive time-steps). Moreover, for each of
them, majority (at least 4 out of 5) of the successive time-steps following the false-positive
fail to satisfy the fault detection condition. As a result, the fault detection algorithm treats
them as single-point outlier. In contrast, the fault detection algorithm correctly detects the
occurrence of a fault in the system’s output state 𝑦 from time-step 401 onward, because the
majority (at-least 4 out of 5) of successive time-steps also satisfy the fault detection condi-
tion. The classification accuracy of the fault detection algorithm has been summarized in
table 4.9. The classification accuracy at output states 𝑦 and 𝑦 were found to be 83.6% and
95%, respectively.

Figure 4.17: Experiment 3: Fault detection algorithmmonitoring for faults at the output states (left) and (right) of the system.

Output State False positives
(out of 500)

False negatives
(out of 500)

Correct classifications
(out of 500)

Classification accuracy
(%)

y1 61 21 418 83.6
y2 25 0 475 95

Table 4.9: Experiment 3: Classification results of the fault detection algorithm.

Following the detection of the fault, the data from the faulty system from time-step 401-500
is used for the reconstruction of the weights. Before reconstruction, an educated guess on
the location of the changed-weights must be made by identifying a pattern in the values of the
weights of the new neural networks that are trained on the prediction errors at output states
𝑦 and 𝑦 . Figure 4.19 shows the prediction errors (in red) on the system’s output states 𝑦
(top) and 𝑦 (bottom). The value of the weights of both newly trained neural networks are
listed in table 4.10.
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Figure 4.18: Experiment 3: Classification made by the fault detection algorithm for each time-step for output states (top) and
(bottom).

Figure 4.19: Experiment 3: Prediction error on the output states and of the system. Part in red is the prediction error after
the occurrence of the fault from time-step 401 onward

In the first neural network, for the weights in𝑊 , with the exception of the first pair of weights
(𝑁𝑁 & 𝑁𝑁 ) the other weight-pairs (𝑁𝑁 & 𝑁𝑁 , 𝑁𝑁 & 𝑁𝑁 , 𝑁𝑁 & 𝑁𝑁 , 𝑁𝑁 & 𝑁𝑁 and 𝑁𝑁
& 𝑁𝑁 ) are nearly equal in magnitude and same in sign. Meanwhile the two weights in 𝑊
vary significantly from each other in magnitude and are same in sign. In the second neu-
ral network, for the weights in 𝑊 , all the pairs of weights are significantly different from
each other in magnitude. From the combination of these patterns, it can be inferred that a
changed-weight is located in 𝑊 of the neural network modelling the system. The location of
this changed weight can be narrowed to one of the weights going from the neurons in the hid-
den layer to the first neuron in the output layer i.e., 𝑁𝑁 or 𝑁𝑁 . Moreover, the mismatch
in magnitudes of the first pair of weights in the first neural network implies that a second
changed-weight is located in 𝑊 . The location of this changed weight can be narrowed to one
of the weights going from the first neuron of the input layer to all neurons in the hidden layer
i.e., 𝑁𝑁 or 𝑁𝑁 .
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Weight lies in
(W1/W2)

Trained weights
(neural network 1)

Trained weights
(neural network 2)

W1

3.6021 -0.3782 -2.8016 -1.7093
-1.6172 -1.6327 -1.2265 0.6859
0.0072 0.0063 -0.6813 -2.5653
-0.8125 -0.8086 -2.1275 -0.7716
0.3516 0.3471 1.7142 -1.4905
1.0559 1.0889 0.0644 0.1387

W2 -12.6709 -5.8644
-7.2947 -1.2304

Table 4.10: Experiment 3: Identified pattern in the value weights of the two new neural networks that are trained on the prediction
errors on the output states ( and ) of the system.

The possible locations of the changed-weights have been identified to be in both 𝑊 and 𝑊 .
Recall similarity to case 3 situation 2 from previous chapter. Hence, in order to reconstruct
the changed-weights, the first step is to treat weights 𝑁𝑁 and 𝑁𝑁 in𝑊 as variables (remain-
ing weights in𝑊 remain fixed to their original values) and carry out a single feed-forward step
in order to obtain the values of neurons in the hidden layer as a function of these variables.
This is followed by the reconstruction of the weights 𝑁𝑁 and 𝑁𝑁 in 𝑊 by formulating a
sparse signal recovery problem between the neurons of the hidden layer and the first neuron
of the output layer. This SSR problem is solved using the sparse Bayesian learning algorithm
(algorithm 1). Now that the weights 𝑁𝑁 and 𝑁𝑁 in the 𝑊 layer have been reconstructed,
the values of the neurons in the hidden layer for time-steps 401 to 500 are calculated by
solving the pairs of linear equations at each time-step. Once estimated, the reconstruction
of the neural network’s weights 𝑁𝑁 and 𝑁𝑁 in 𝑊 is carried out by formulating another
sparse signal recovery problem between the neurons of the input and hidden layers that is
solved by applying the sparse Bayesian learning algorithm for the nonlinear case as shown
in algorithm 3. The reconstructed weights are listed in table 4.11 (column 5). From the four
reconstructed weights i.e. 𝑁𝑁 , 𝑁𝑁 , 𝑁𝑁 and 𝑁𝑁 (as all other weights in 𝑊 and 𝑊 were
kept fixed in value), it is clear to see that the weights 𝑁𝑁 and 𝑁𝑁 (in red) had changed
after the occurrence of the fault in the system and are hence isolated. Moreover, their (re-
constructed weights) close agreement with the true value of the changed-weights (column
4) i.e. low reconstruction error (column 6) shows that the SBL based weight reconstruction
approach was successfully able to carry out the fault identification of the faulty system.

Column 7 shows the results obtained when all weights in 𝑊 and 𝑊 are reconstructed di-
rectly without building an intuition on the possible location(s) of the changed weights in the
neural network modelling the nonlinear system. The process for reconstructing the weights
in 𝑊 and 𝑊 remains same to the one described in the previous experiment with the single
exception that the nonlinear SBL algorithm (algorithm 3) is used for the reconstruction of
the weights in 𝑊 to account for the nonlinear activation function on the hidden layer of the
neural network. From column 7 it can be seen that set of reconstructed weights in 𝑊 and
𝑊 are both highly inaccurate to the true values of the weights after the fault (column 4).

Note: The optimization problem in the SBL algorithm is solved in MATLAB using the fmin-
search function. fminsearch requires a starting or initial value for the variables that are being
optimized. In this context, the variables being optimized are the set of weights in the neural
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Weight lies in
(W1/W2) Weight # Trained weights Changed weights Reconstructed weights

(with intuition)
Reconstruction error

(%)
Reconstructed weights

(without intuition)
NN 1 -0.4008 3.5992 3.4668 3.68 -1.7194
NN 2 -1.6260 -1.6260 -1.6260 N/A -1.6014
NN 3 -0.0053 -0.0053 -0.0053 N/A -0.2985
NN 4 -0.8070 -0.8070 -0.8070 N/A -1.7947
NN 5 0.3488 0.3488 0.3488 N/A 1.1858
NN 6 1.0755 1.0755 1.0755 N/A 1.8948
NN 7 -0.5432 -0.5432 -0.5086 6.37 -0.7300
NN 8 0.6458 0.6458 0.6458 N/A -3.8572
NN 9 1.3559 1.3559 1.3559 N/A -0.1794
NN 10 0.5304 0.5304 0.5304 N/A -1.5624
NN 11 -0.7602 -0.7602 -0.7602 N/A 0.7266

W1

NN 12 -1.1962 -1.1962 -1.1962 N/A 1.0057
NN 13 -7.2495 12.7505 12.7462 0.03 -0.2511
NN 14 9.8016 9.8016 9.8047 0.03 1.3115
NN 15 -8.3811 -8.3811 -8.3811 N/A -0.8103W2

NN 16 5.0921 5.0921 5.0921 N/A 0.1712

Table 4.11: Reconstructed weights for experiment 3.

network which are suspected (intuition from pattern) to have changed after the occurrence of
the fault in the system i.e. 𝑊 and 𝑊 in this experiment. Hence, while solving the optimiza-
tion problem, an initial starting value for these to-be reconstructed weights are to be provided.
The provide initial values for these weights were their originally trained values from table 4.11
(column 3).

4.4. Discussion
The goal of this chapter was to investigate the suitability of the proposed fault detection and
fault identification-isolation (SBL) algorithms for carrying out a fault diagnosis task. The
suitability was tested by undertaking three experiments each differing from one another in
the nature of the system (linear or nonlinear) and/or in the neural network architecture with
which they have been modelled (with or without hidden layers and with linear or nonlinear
activation functions). It was found that for both the linear systems in experiments 1 and
2, the fault diagnosis algorithms were successful in not only detecting the time-step(s) at
which the faults occurred (fault detection), but also in accurately reconstructing the new
values of the weights in the neural network (fault identification) using the SBL algorithms
and correctly locating and isolating the changed-weights (fault isolation). In experiment 2
albeit a linear system, it was shown that even with the presence of a hidden layer, the loca-
tions of the changed-weights were identifiable by forming an intuition based on the value of
the weights of a neural network trained on the prediction error of the output states 𝑦 and
𝑦 . This intuition then lead to the estimation of values of the neurons of the hidden layer
which were key to the accurate reconstruction of weights using the SBL algorithm. Finally,
in experiment 3, the fault diagnosis algorithms were tested on a nonlinear system. The fault
detection algorithm performed reasonably well by successfully detecting the occurrence of
the fault in the system while managing to return only a few sparse false-positives and false-
negatives. The weight reconstruction (fault identification) using the nonlinear variant of the
SBL algorithm (algorithm 3) and the fault isolation of the changed-weights were shown to be
successful following the forming of an accurate intuition on all the possible locations of the
changed-weights. This was based on the observed pattern in the value of weights across 𝑊
and 𝑊 layers of the neural networks that were newly trained on the prediction errors of the
output states of the system.
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Conclusions and Future Work

5.1. Conclusions
The goal of this study was to explore the possibility of undertaking a fault diagnosis task
for systems modelled using neural networks. This was done by using an adaptive threshold
based fault detection algorithm, and sparse Bayesian learning based fault isolation & identi-
fication algorithm. Experiments were conducted on (simplified) linear and nonlinear systems
using the proposed algorithms, and based on the results obtained the following key conclu-
sions are made:

Fault Detection Algorithm:

• The success of the fault detection algorithm for a system is dependent on the accu-
racy with which the neural network models the system. For experiments 1 & 2 (linear
systems), the trained neural networks were able to model the non-faulty behaviour of
the system with high accuracy, which translated to a high accuracy of fault detection
(95%). Whereas, for experiment 3 (nonlinear system), the modelling accuracy of the
trained neural network was relatively lower, which resulted in more false positives and
negatives being detected, and a classification accuracy of 83%.

• It was also noted that for neural networks with high modelling accuracy, a static thresh-
old may be sufficient for fault detection, since the standard deviation of prediction error
is negligible. However, for those cases with lower modelling accuracy, adaptive thresh-
old is more suitable since it is able to capture the prediction errors due to the neural
network.

Fault Isolation & Identification Algorithm:

• The application of fault isolation & identification for linear systems without a hidden
layer (experiment 1) was found to be straightforward because of a direct mapping be-
tween the neurons of the input and output layers. Due to that, the proposed algorithm
using Sparse Bayesian learning was able to reconstruct the faulty weights accurately.
However, repeating the same for experiments 2 & 3 resulted in a poor reconstruction
due to the presence of a hidden layer. For these systems, it was proposed that an in-
tuition on the possible location(s) of the changed weight(s) could be formed by training
a new set of neural networks on the prediction errors of the system’s output state(s).
Doing so resulted in an observation of distinctive patterns in the values of the weights of
these neural networks. Moreover, these patterns were found to give an indication of the
true location(s) of the changed-weight(s) in the neural network modelling the system.
Using this intuition, for systems with a hidden layer, a stage-wise reconstruction of the
neural network weights was undertaken and found to be successful for both linear and
non-linear systems with a hidden layer.
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This study was a first step towards undertaking fault diagnosis for mechanical systems mod-
elled using neural networks. Overall, the proposed algorithms showed promising results in
carrying out fault diagnosis for all the three experiments conducted. However, firstly, the
experiments consisted of simplified (hypothetical) mechanical systems. Secondly, the task of
relating the weights with the physical properties of an actual mechanical system still remains
to be explored. Hence, in order to establish the suitability of applications of the proposed
algorithms for real world cases, further research is needed. Some ideas on potential future
research directions are detailed in the next section.

5.2. Recommendations for Future Work
Based on the results of this study, the following potential directions for future research are
proposed:

1. Relating the properties of the system to the weights of the modelled neural net-
work.
Recall having mentioned earlier that traditionally the weights of a neural network are
real numbers of certain magnitude that provide a simple understanding of how posi-
tively or negatively sensitive two neurons are to one another. Based on the values of the
weights, very limited and basic insights on the system can be gained i.e., a large positive
weight implies that the input neuron has a strong proportional relation to the output
neuron while a negative weight implies an inverse relation. In the current work, a the-
oretical neural network framework was considered where the properties of the system
being modelled were assumed to be represented by the weights of the neural network.
For this theoretical framework, it was shown that with the help of the proposed fault
diagnosis algorithms, a complete fault diagnosis of the faulty system is possible.
However, the current work does not focus on how such a framework can be realized for
a given physical system. Hence, a recommended direction for future work is to investi-
gate how such a framework can be realized for any given physical system and how the
weights of this neural network can be interpreted in order to gain better insights on the
system being modelled.

2. Extending the fault detection algorithm to detect the future occurrence of faults
in the system during its operation.
In the current work, the fault diagnosis process is carried out only after the fault has
already occurred in the system. However in process & manufacturing engineering do-
mains where the systems are required to operate reliably for long operating times at high
loads, the occurrence of a fault may require a forceful shutting down of the system for
repairs, which may take a long time depending on the nature of the fault. This causes
significant loss in production time, increased repair costs and in turn, lower profits.
For a system working in such an environment, it would be advantageous if the poten-
tial occurrence of a fault can be detected beforehand rather than allowing it to occur and
then reacting to it by performing a fault diagnosis. Hence, a recommended direction for
future work is to extend the fault detection algorithm proposed in the current study to
detect the faults in the system before they occur.
In order to achieve this, the fault-detection algorithm must now perform a monitoring
task where the operating states of the system are to be monitored over a certain time
window. Based on that the algorithm will access the health of the system at the current
time step and predicts whether the system shall continue to operate in a healthy state
or if it is heading towards the occurrence of a fault in the near future. For the pur-
pose of this monitoring task, long short-term memory (LSTM) neural networks would
be suitable as they operate by providing a prediction for future states of the system for
the next time-step ’t+1’ based on the states of the system that is observed at the current
time-step ’t’, and the states of the system that were observed in the past time-steps ’t-1’,
’t-2’ and so on. Note that this is significantly different from the current fault-detection
algorithm which classifies the system to be at fault based on the system’s states at the
current time-step without taking into consideration the history of the system’s states.
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3. Extension to systems modelled using an unrestricted neural network architecture
Recall that for a system that is modelled by a neural network containing a hidden layer
in its architecture, the reconstruction of weights (fault identification) belonging to 𝑊
layer of this neural network requires the estimation of values of neurons in the hidden
layers first. This estimation is carried out by solving a system of linear equations ob-
tained using the neurons in hidden and output layers along with the weights lying in
𝑊 layer of the neural network, as was shown in figure 3.13. In this thesis a special
case was considered where the architecture of the neural network modelling the system
was such that the number of neurons in the hidden layer (2) was always equivalent to
the number of neurons in the output layer (also 2), therefore resulting in obtaining ’n’
number of equations (here 2) and ’n’ number of unknown variables (here the 2 neurons
in the hidden layer) to solve for i.e., a deterministic set of equations, solving which the
accuracy with which the neurons of the hidden layer are estimated is quite high. This
high accuracy of estimation in turn allows for a higher accuracy in the reconstructed
weights when the SBL algorithms are applied.
However, this restriction placed on the architecture of the neural network limits the
accuracy with which the neural network is able to model the system at hand. This is
especially prominent in case of nonlinear systems where the training error obtained on
training and test data sets are likely to be large as was the case in the previous chapter
in experiment 3 in figures ?? and 4.14. This poor accuracy in modelling the system is
then bound to affect the performance of the fault detection algorithm.
On the other hand, consider that the system is accurately modelled (low training error
on the training and test data sets) by a neural network for which no restrictions are
placed on it’s architecture. Let this neural network have an unequal number of neu-
rons in it’s hidden layer and the output layer. Although by removing the restriction
on the neural network architecture, the problem of accurately modelling the system in
order for the fault-detection algorithm to perform well is taken care of, another problem
is encountered: values of the neurons in the hidden layer can no longer be estimated
accurately any longer. This is because a situation where the number of unknowns to be
calculated (neurons in the hidden layer) now exceeds the number of known equations
as was shown earlier in figure 3.14.
An attempt was made to reconstruct the weights in the 𝑊 layer of a neural network
modelling a nonlinear system whose architecture had 6 neurons in the input layer, 3
neurons in the hidden layer and 2 neurons in the output layer. In this example it is
assumed that it is already known that in total two changed-weights are present in the
neural network modelling the nonlinear system:

• First changed-weight in the𝑊 layer specifically one among the set of weights going
from first neuron in input layer to the three neurons in the hidden layer i.e., 𝑁𝑁 ,
𝑁𝑁 or 𝑁𝑁 (shown in blue in the table).

• Second changed-weight in the 𝑊 layer specifically one among the set of weights
going from the three neurons in hidden layer to the two neurons in the output
layer i.e., 𝑁𝑁 , 𝑁𝑁 or 𝑁𝑁 (shown in red in the table).

Results of the reconstruction can be seen in table 5.1. The neural network architecture
is a 6-3-2 with 6 neurons in the input layer, 3 neurons in the hidden layer and 2 neurons
in the output layer. It can be seen from the table that the accuracy of the reconstructed
weights (highlighted in blue) belonging to the 𝑊 layer is poor. This poor reconstruction
is a reflection of the accuracy with which the values of the neurons in the hidden layer
were estimated by solving the pair of linear equations.
Hence a recommended direction for future work, is to propose a method for accurately
estimating values of the neurons in the hidden layer of the neural network in a manner
that does not place a restriction on the neural network architecture required to model
the system.

4. Intuitivemethod for identification of the possible locations of the changed-weights
in the neural network modelling the system
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Layer in which
the weight is:

W1/W2

Neural network
weight #

Magnitude of the
trained weights

Magnitude of the
weights after fault

in system

Reconstructed weights from
SBL algorithm

NN 1 -0.6691 2.3309 2.3552
NN 2 -0.9520 -0.9520 -0.9520
NN 3 0.5670 0.5670 0.5670
NN 4 -0.3272 -0.3272 -0.3272
NN 5 0.2570 0.2570 0.2570
NN 6 0.0158 0.0158 0.0158
NN 7 -0.3193 -0.3193 -0.1900
NN 8 0.8967 0.8967 0.8967
NN 9 0.5845 0.5845 0.5845
NN 10 0.7714 0.7714 0.7714
NN 11 -0.6051 -0.6051 -0.6051
NN 12 -0.6026 -0.6026 -0.6026
NN 13 -0.3566 -0.3566 0.0970
NN 14 -0.2808 -0.2808 -0.2808
NN 15 -0.8694 -0.8694 -0.8694
NN 16 0.1934 0.1934 0.1934
NN 17 0.8466 0.8466 0.8466

W1

NN 18 1.0922 1.0922 1.0922
NN 19 1.3965 16.3965 16.3284
NN 20 9.5026 9.5026 9.5159
NN 21 -8.6836 -8.6836 -8.6386
NN 22 -9.3911 -9.3911 -9.3911
NN 23 8.9410 8.9410 8.9410

W2

NN 24 -1.6618 -1.6618 -1.6618

Table 5.1: Results obtained using the SBL algorithm for the reconstruction of red and blue weights lying in the and layer.

Recall that the reconstruction of weights (fault identification task) in the 𝑊 and 𝑊
layers requires the estimation of the values of the neurons in the hidden layer. This
estimation requires having an intuition on possible locations of the weights that have
changed their values in the neural network (modelling the system) after the occurrence
of a fault in the system. In this thesis the proposed method to help build this intuition is
by training new neural networks on the prediction errors obtained at the output states
of the system. The intention behind this was that, the values or patterns in the values
of the weights in these newly trained neural networks will help build an understanding
on which weights in the neural network (modelling the system) that are most responsi-
ble for the prediction errors received at the output states. Building this intuition helps
narrow down the number of possible locations for the changed-weights from several to
only a few in number.
Having said this, as was seen in the case of linear and nonlinear systems (experiments
2 and 3) modelled by neural networks having a hidden layer, identifying patterns in the
values of the weights of these newly trained networks may not be so straightforward and
rather complicated. Moreover these patterns varied for linear and nonlinear systems in
these experiments. Not only this but the pattern will also vary for nonlinear systems
that are modelled with different neural network architectures from one another for ex-
ample: 6-2-2 vs 6-3-2 architecture.
While figuring out a pattern is time-consuming, it is still manageable for cases where
the neural network architecture is relatively small in size. However in larger and more
complex neural network architectures (possibly having multiple hidden layers in addi-
tion to several neurons in each layer) identifying a pattern in the values of the weights
might be cumbersome or nearly impossible to do manually.
Hence a recommended direction for future work, is to extend the current method or
propose an alternative method that makes it easy to identify the possible locations of
the changed-weights in the neural network architecture modelling the system.
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5. Comparative study: Current fault diagnosis approach vs. fault diagnosis via sys-
tem identification using basis functions
The objective of the current work was to carry out a fault diagnosis of the system mod-
elled using a neural network using the two proposed fault diagnosis algorithms. A pos-
sible direction for future work is to carry out a comparative study between the current
fault diagnosis approach and a system identification based fault diagnosis approach
using basis functions. These methods can be compared on the basis of factors such
as the accuracy with which the fault diagnosis is carried out, complexity and prior re-
quirements for implementation of either method and computational time.
A brief overview of the fault diagnosis of a system that has been modelled using basis
function is explained as follows: Available measurement data corresponding to the sys-
tem’s normal operating conditions is used to identify an equation(s) of the system that
represents the system’s dynamics during normal operating condition. This is done by
solving the SSR problem shown in figure 5.1. In this figure:

• y is a ’𝑁 × 1’ vector that represents the system’s output for its single output state
across the ’N’ experiments/time-steps.

• Φ is a dictionary matrix of dimension ’𝑁 × 𝑀’ where each one of the M column
represent a function. For example, assume that the 𝑀 column of the dictionary
matrix is the polynomial function 𝑥 . The values of each entry in the 𝑀 column of
the dictionary matrix is given by the evaluating the polynomial function (𝑥 ) across
the ’N’ experiments/time-series. The same will happen for each of the M-1 other
columns.

• x is the ’𝑀 × 1’ vector that is to be solved for. This vector contains M coefficients
corresponding to the M functions of the dictionary matrix. For example a value of
’0’ in the 𝑀 row of vector x means that the function in the 𝑀 column (here 𝑥 )
has a coefficient 0 in front of it which in turn implies that the 𝑥 term does not
contribute to output ’y’ of the system.

Figure 5.1: Identifying the equation of the system from the available measurement data using basis functions.

The fault-detection algorithm is identical to the one proposed in this work, i.e., a fault is
said to have occurred in the system if the generated residuals (actual output - expected
output from constructed model) fall outside the upper and lower threshold band as was
shown in experiment 3 from the previous chapter in figure 4.17. Once the fault has been
detected by the fault-detection algorithm, measurement data from the faulty system’s
input and output states are used to identify an equation(s) that represents dynamics of
the faulty system. The fault identification task is then carried out on the assumption
that by subtracting the equation(s) that represents the dynamics of the normal system
from the equation(s) that represents the dynamics of the faulty system, an equation
that models the fault in the system can be obtained i.e., fault in system = faulty system
dynamics - normal system dynamics.

An example of this approach for carrying out a fault diagnosis is shown as follows:
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consider the nonlinear system given by its true equation 5.1.

𝑦 = 0.5𝑥 + 2𝑥 + 1.1𝑥 + 0.95𝑥 − 0.5𝑥 − 2𝑥 (5.1)

First the data from the normal operating conditions of the system is collected in order
to identify an equation for the normal operating condition using basis functions. The
equation obtained for the system is given by equation 5.2. It can be seen that the
equations of the system found using the basis functions are highly accurate.

𝑦 = 0.4999𝑥 + 1.9998𝑥 + 1.1𝑥 + 0.94977𝑥 − 0.49976𝑥 − 1.9997𝑥 (5.2)

Lets say that at a certain time-step ’t’ during operation, the system undergoes a fault
as a result of which the faulty system dynamics operates as per equation 5.3.

𝑦 = 1.5𝑥 + 2𝑥 + 1.1𝑥 + 0.95𝑥 − 0.5𝑥 − 2𝑥 (5.3)

Following the detection of the fault in the system by the fault-detection algorithm, mea-
surement data from the faulty system’s input and output states are collected and then
used to identify an equation(s) that represents the dynamics of the faulty system, the
obtained equation is given in equation 5.4.

𝑦 = 1.4999𝑥 + 1.9999𝑥 + 1.0998𝑥 + 0.94843𝑥 − 0.49858𝑥 − 1.9986𝑥 (5.4)

After the equation for the system operating under fault has been obtained, the fault
identification task is then carried out by subtracting the equation that represents the
dynamics of the normal system from the the equation that represents the dynamics of
the faulty system (fault in system = faulty system dynamics - normal system dynamics).
The equation that models the fault in the system obtained is given in equation 5.5.

𝑦 = 0.99994𝑥 + 1.9999𝑥 − 1.9998𝑥 (5.5)
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