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Data-Driven Incipient Fault Detection via
Canonical Variate Dissimilarity and Mixed
Kernel Principal Component Analysis

Ping Wu “, Riccardo M. G. Ferrari

Wingerden

Abstract—Incipient fault detection plays a crucial role
in preventing the occurrence of serious faults or failures
in industrial processes. In most industrial processes, lin-
ear, and nonlinear relationships coexist. To improve fault
detection performance, both linear and nonlinear features
should be considered simultaneously. In this article, a novel
hybrid linear-nonlinear statistical modeling approach for
data-driven incipient fault detection is proposed by closely
integrating recently developed canonical variate dissimilar-
ity analysis and mixed kernel principal component analy-
sis (MKPCA) using a serial model structure. Specifically,
canonical variate analysis (CVA) is first applied to estimate
the canonical variables (CVs) from the collected process
data. Linear features are extracted from the estimated CVs.
Then, the canonical variate dissimilarity (CVD) which quan-
tifies model residuals in the CVA state-subspace is calcu-
lated using the estimated CVs. To explore the nonlinear
features, the nonlinear principal components are extracted
as nonlinear features through performing MKPCA on CVD.
Fault detection indices are formed based on Hotelling’s
T? as well as Q statistics from the extracted linear and
nonlinear features. Moreover, kernel density estimation is
utilized to determine the control limits. The effectiveness of
the proposed method is demonstrated by the comparisons
with other relevant methods via simulations based on a
closed-loop continuous stirred-tank reactor process.

Index Terms—Canonical variate analysis (CVA), dissim-
ilarity analysis, incipient fault detection, kernel principal
component analysis (KPCA), mixed kernel.
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[. INTRODUCTION

ECENTLY, data-driven fault detection techniques, espe-
R cially multivariate statistical process monitoring (MSPM)
methods have attracted considerable interest from both the
academic and industrial spheres. Compared with model-based
or knowledge-based methods, MSPM methods are developed
to operate exclusively on process data without detailed first-
principle models or expert experience, which is usually infeasi-
ble or time-consuming to obtain in practice [1]-[3].

Widely used MSPM methods include principal component
analysis (PCA), partial least squares (PLS), canonical variate
analysis (CVA), [4]-[11]. A major limitation of PCA- and
PLS-based approaches is that both PCA and PLS rely on the
assumption that the process data are not time-dependent [12].
However, most real industrial processes are dynamic. Compared
to PCA and PLS, CVA is a state-space based method that
takes both serial correlation and relationship between correlated
process variables into consideration. Therefore, CVA is more
suitable for dynamic process modeling [13]-[15].

Although MSPM methods have been successfully applied
in fault detection, dealing with incipient faults is still a major
challenge. The main reason for this is that incipient faults often
have small amplitudes and are slowly developing changes, as
opposed to abrupt faults [16]. Incipient faults are easily com-
pensated by feedback control during their initial stage [17].
Unfortunately, incipient faults can slowly affect the process
behavior and gradually evolve into serious faults, even system
failures. Thus, incipient fault detection plays a crucial role in
the maintenance activities where timely and effective detection
of incipient faults can avoid more serious consequences [18].
Conventional MSPM methods as mentioned above are not sen-
sitive to incipient faults, resulting in a high missed detection rate
(MDR) and long detection delay (DD) time.

To detect incipient faults, Harmouche ef al. [19] combined
Kullback-Leibler divergence (KLD) with PCA. A dissimilarity
measure is established by comparing the probability density of
each of the latent scores to a reference one using the KLD. In
a similar work, Chen et al. [20] presented an incipient fault de-
tection and diagnosis method based on KLD under probability-
relevant PCA, where KLD and Bayesian inference is integrated.
Another dissimilarity measure for process data called DISSIM
method was proposed by Kano ef al. [21]. DISSIM method
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is to evaluate the difference between distributions of data sets
based on the Karhunen—Loeve expansion. Zhao et al. [22], [23]
proposed a subspace distribution monitoring strategy to evaluate
the changes of linear and nonlinear stationary and nonstationary
distribution structures based on the DISSIM method for incipient
fault detection. To observe the variation of process data statistics,
Shang et al. [24] proposed recursive dynamic transformed com-
ponent statistical analysis where the higher-order statistics of
projected data are monitored from a sliding window of process
data. Ji et al. [25] developed a generic fault detection index
in MSPM by using moving average and exponentially weighted
moving average for incipient fault detection. It should be noticed
that these dissimilarity-based techniques require a large window
width of samples for computing statistical patterns.

In recent work, Pilario et al. [26] proposed a method called
canonical variate dissimilarity analysis (CVDA) to cope with
incipient fault detection. In CVDA-based incipient fault detec-
tion the model residuals in the CVA state-subspace, namely
canonical variate dissimilarity (CVD) between past-projected
and future-projected canonical variables, are formed through
traditional CVA. Then a detection index is defined as the
squared Mahalanobis distance of the CVD for fault detection.
Furthermore, the kernel density estimation (KDE) method was
utilized to compute control limits. In [27], a combined index that
combines Hotelling’s T? statistic, Q) statistic, and CVD-based
statistic was developed. Furthermore, Pilario et al. [28] extended
CVDA to nonlinear CVDA by preprocessing the original data
with a kernel principal component analysis (KPCA) method.
Then, CVDA was performed on the extracted nonlinear principal
components (NPCs). A mixed kernel was adopted to enhance the
interpolation and extrapolation abilities of single kernel-based
learning. The method was referred to as MKCVDA in [28]. Since
mixed kernel principal component analysis (MKPCA) was first
performed, only nonlinear features are explored in MKCVDA.

Both linear and nonlinear relationships always coexist in
complex industrial processes [29]-[31]. Using a single nonlinear
model may not be optimal for statistical modeling in process
monitoring and fault diagnosis [29]. A combined strategy would
thus be preferable, by exploring linear and nonlinear features.
Such a hybrid structure was successfully applied to describe the
underlying relationship for time series forecasting [32]. Chen
combined the linear and nonlinear statistical models to forecast
time series with possibly nonlinear characteristics [33]. In [34],
a linear model was first built via a projection algorithm, then a
feedforward neural network was used to model the unmodeled
dynamics. Recently, Deng et al. [29] integrated linear PCA
and kernel PCA methods in a serial model structure to extract
linear and nonlinear features. However, hybrid linear-nonlinear
statistical modeling is still little investigated for incipient fault
detection.

Motivated by the above discussions, we propose a novel data-
driven fault detector using a hybrid linear—nonlinear statistical
modeling approach. The main spirit of the proposed method is
to use CVDA to build a linear dynamic model from process data
and then extract nonlinear features from the CVD. This way, both
linear and nonlinear features are simultaneously leveraged for
fault detection. To extract the nonlinear features, neural networks
and kernel-based methods are widely used and studied [34].

Compared to neural network methods, kernel-based methods
have their foundation in the solid mathematical framework of
reproducing kernel Hilbert spaces. Kernel methods yield con-
vex optimization problems, can be used as universal nonlinear
approximators, and require only moderate computational com-
plexity [35]-[38]. Among the kernel-based methods, KPCA is
a powerful technique, widely applied in process monitoring and
fault diagnosis [1], [3], [39]-[41]. However, the commonly used
Gaussian radial basis function (RBF) may suffer from overfitting
problem, due to its lack of extrapolation ability, particularly
while an inappropriate kernel width is selected [28], [42], [43].
The combination of RBF and polynomial kernels can provide
enhanced modeling performance [44]. Following this idea, we
adopt MKPCA to extract the nonlinear features from the ob-
tained CVD for incipient fault detection. Moreover, five fault
detection indices are designed by computing Hotelling’s 7 and
(@ statistics based on the extracted linear and nonlinear features.
Therefore, here the proposed method is referred to as canonical
variate dissimilarity mixed kernel principal component analysis
(CVD-MKPCA).

CVD-MKPCA combines the merits of CVDA and MKPCA
methods. Compared to the recently developed MKCVDA [28],
CVD-MKPCA has two advantages. First, linear and nonlin-
ear features are simultaneously extracted in a natural way.
MKCVDA only considers nonlinear features, as the original
data is first projected into a nonlinear high-dimensional space.
In CVD-MKPCA, linear features are extracted by CVDA, and
then MKPCA extracts the nonlinear features from CVD. A more
reliable fault index can thus be derived for nonlinear dynamic
processes, compared to MKCVDA. Second, the computational
cost of the proposed CVD-MKPCA is lower than MKCVDA
in the online monitoring stage, since two mixed kernel matrices
are required to be computed for inputs and outputs in MKCVDA
versus only one for CVD in CVD-MKPCA.

The main contributions of this article lie in the following:

1) A hybrid statistical modeling approach is presented by
integrating CVDA and MKPCA in a serial model struc-
ture. Linear and nonlinear features are simultaneously
extracted from process data for incipient fault detection.

2) Animproved incipient fault detection performance can be
attained for nonlinear dynamic processes. Furthermore, a
lower computational cost is required, compared to the
recently developed MKCVDA method.

Moreover, canonical correlation analysis (CCA) based fault
detection methods have been developed for a variety of indus-
trial applications [45]-[47]. These methods can be improved
through utilizing the similar statistical data modeling framework
proposed in this study.

The remainder of this article is structured as follows. The basic
idea of CVDA-based incipient fault detection is described in the
next section. Section III presents the proposed CVD-MKPCA
method in detail. Section IV gives the case study description,
results, and discussion. Finally, Section V concludes this article.

II. BRIEF REVIEW OF THE CVDA

Denote u(k) € R™ and y(k) € R™ as the process inputs
and outputs at time instant k. The past data vector z,(k) €
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R (" +74)P containing the past inputs and outputs, and the future
data vector y ¢ (k) € R"+/ which consists of the future outputs
are defined

u(k—1)]
u(k —2)
y(k)
_ k+1
zp(k) = ZEZ]; yr(k) = u + )
y(k—2 ylk+f—1)
Ly(k—p)

where p and f are the numbers of time lags in past and future
data vectors z, (k) and y ¢ (k), respectively.

Supposed that a training data set with N measurements of
u(k)and y(k),k = 1,2,..., N are collected under normal op-
erating condition, the past and future Hankel matrices Z,, and Y}
are constructed from z,, (k) andy s (k) forallk € [p+ 1,p + M]
as follows:

Z,= [5mp+1) %E+2) - zE+M)] O

Y= yr(p+ M)} 2
where M = N — p — f + 1. The sample covariance matrices of
the past and future vectors and cross-covariance matrix can be
estimated

s p+1) yro+2)

1

S =371 Zv%0 ©)
1
1

The goal of CVA is to find the projection matrices J and
L to maximize the correlation between Ly (k) and Jz,(k),
where Ly (k) and Jz, (k) are also called canonical variables.
Generally, the projection matrices J and L can be computed by
performing singular value decomposition (SVD)

P82 2 = usvt ©6)

where U and V are the matrices consisting of the left and right
singular vectors, respectively. The diagonal matrix S consists of
ordered singular values. From the result of SVD, the projection
matrices J and L are formed by

_ I's—1/2
J=vrs)/ )
L=Uu"s;""? 8)

Further, the canonical variables c(k) and (k) at time instant &k
are obtained

c(k) = Ly (k) ©
(10)

In CVA-based fault detection method [48], [49], the state vec-
tors x,, (k) are extracted from the past data vectors to represent
the process status

(k) = Jnzp(k) (11)

where J,, = VZ:E;pl/z e R™*(mutny)p ) contains the first n
columns of V. The value for n can be determined by analyzing
the plot of the singular values curve from the result of SVD in
(6). In [26], n is selected as the point where a knee appears in
the singular values curve.

Additionally, the model residual vectors e(k) which span the
residual subspace is derived

e(k) = (I = V,V)2, %2, (k) (12)

where I is the identity matrix of appropriate dimension.

Remark 1: CVA is usually employed as a standard method for
system identification where the state space vector is different
from the x,, in (11) [50]. Particularly, the estimation of the state
vector from (11) is biased in the closed-loop case. However, in
the process of monitoring and fault diagnosis framework, (11)
only builds the vector of the canonical variables for residuals
generation. As pointed out in [50], as far as the collected process
data do cover the major process operation scenarios, x,, can be
used for process monitoring and fault diagnosis.

Two fault detection indices including Hotelling’s 772 and Q
statistics are computed at time instant k

T2 (k) = zn (k)2 (k)"
Qs(k) = e(k)e(k)T.

Here, T? measures the variations of state vectors x,, (k), while
Qs measures the variations of model residual vectors e (k).

Itis noticed that the predictability of future canonical variables
from past canonical variables can effectively reflect the small
shifts in process data. To detect incipient faults such as decay
in process parameters, sensor drifts, the CVD between the past-
projected and future-projected canonical variables is employed
in CVDA [26]. The CVD d,, (k) at time instant k is defined as
follows:

13)
(14)

dp(k) = Loy s (k) — Snd nzp(k) (15)

where L, :Z/lng_fl/2 e Rl 1, contains the first n
columns of U. S,, consists of the n largest singular values
S, = diag(A1, A2, . .., Ay ). For CCA-based methods [45]-[47],
it is noted that the residuals are generated in a similar way as
(15) for fault detection.

As presented in [26], [50], the covariance of d, can be

estimated by
Sa=1-S8,8". (16)

To detect incipient faults a fault detection index T2, is intro-
duced, based on the squared Mahalanobis distance of d,, [26]
Tic(k) = dn(k)TEgd dn (k). (17)

KDE method is often employed to determine the upper control
limits (UCLs) [13], particularly for nonlinear or non-Gaussian
distributed process data. In CVDA-based fault detection, KDE is
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utilized to estimate the probability distributions of Tsz, Qs, and Canonical Mixed Nonlincar Wit
. . . . . nonica — inci Statisti
szc. The widely used kernel function in KDE is the Gaussian Dis\s/?;iial:—ity P]r(ifll:il;icl c:;',;f,f:n](s s
kernel function which is defined by d “Analysis Retained T
4 Nonlinear Sot:lﬁz:il:g
1 ) Principal Q
K(g) — eXp*g /2 . (18) Components -
2w -
Given a specific significance level «, the UCL Jycr, can be Projectionyr Q
calculated by solving the following problem: Futine Suate Space i_~ St
Data TZ -
Vector Model Residual S
P(J < JUCL) = Y Vector e SHe

T ST — J(k)
— N K (—= ) ag
/m Mh; ( h ) (19)

=

where J(k),k=1,2,..., M represents the samples of fault
detection index J € {T?, Q,, T2} under normal operating con-
ditions and £ is the kernel bandwidth. Jycr represents the corre-
sponding UCL Jucr € {T{cy ¢» Quet,s; Ticr e - More details
for KDE can be found in [13]. In the proposed CVD-MKPCA
based fault detection, we also adopt KDE to determine UCLs.

Remark 2: The parametric approach of probability distribu-
tions estimation relies on the assumption of specific probability
distributions. KDE is a nonparametric one. Thus, KDE has
more flexibility for the determination of UCLs. A drawback
of KDE is that the kernel function and its parameters should
be selected appropriately. In KDE, the problem of finding the
appropriate bandwidth h is a key concern. Several approaches
have been proposed to find the optimal bandwidth such as the
least squares cross-validation, contrast methods [51]. In [52], a
simple estimation of bandwidth was developed from minimizing
the approximation of the mean integrated squared error

h = 1.060 M2 (20)

where ¢ is the standard deviation of the established fault de-
tection indices using the collected process data under normal
conditions. It has been proved that this selection method (20) can
provide a promising performance in CVA-based fault detection
methods [13], [26].

In the online monitoring stage, fault detection indices TSZ,
Qs, and T2, at every sampling instant are calculated using (13),
(14), and (17). For CVA-based fault detection, the occurrence
of a fault is detected when any one of T2, (Q, exceeds its
corresponding UCL, TéCL’57 QucL,s, respectively. For CVDA-
based fault detection, the occurrence of a fault is detected
when any one of T2, Q,, T2. exceeds its corresponding UCL,

2 2 .
TGer.s» QueL,s, Ticr aer Tespectively.

[ll. PROPOSED METHOD

Although the fault detection index 77, has proved its effec-
tiveness for incipient fault detection as shown in [26], it can
only evaluate the variations of linear features in process data.
Nonlinear features usually occur in the residuals of the linear
model [29], [32] and their effect cannot be separated by that of
other normally occurring uncertainties. This leads to high UCLs
and, thus, low detectability of small faults such as incipient ones
at early stages. To extract these nonlinear features and improve
detectability, it is worthwhile to further analyze the CVD, which

Fig. 1. Schematic diagram of CVD-MKPCA statistical modeling.

is the model residuals in the CVA state-subspace, through non-
linear features extraction methods. Given the main objective of
this article and the simplicity of kernel-based methods, MKPCA
is applied for this goal. Along with this concept, MKPCA is
performed to examine the nonlinear features for fault detection
in the proposed CVD-MKPCA method. The proposed method
consists of two main steps, as shown in Fig. 1.

In Section II, the derivation of CVD has been introduced.
Besides x,, and e, the residuals y,. of y onto the state subspace
can also be used to construct a fault index, where

Yo (k) = (I - UUD)S [Py (k). @1

Similarly to what has been done before, the (), statistic can be
introduced

Qy(k) = yr (K)y- (k)"

As shown in Fig. 1, fault indices 772, Q;, @, are established
from linear features through CVDA model. To extract the non-
linear features, d,, is further investigated. Assumed that d,,
is implicitly mapped onto a high-dimensional feature space
F through a nonlinear function map ¢(d,) : R™ — F, then
the sample covariance of high-dimensional features can be
calculated

(22)

(23)

where "M | ¢(d,. (7)) = 0. In KPCA, the loading vector v in
the high-dimensional feature space can be computed by solving
the below eigenvalue problem

M
= Cr = 123 GO () )

where A > 0 and v # 0. However, since ¢(d,, (7)) can not be
expressed explicitly, the eigenvalue problem (24) cannot be
directly solved via eigenvalue decomposition. It is known that
v lies in the subspace spanned by ¢(d,,(i)). Thus, there exist
some v where v = [71,...,var]? such that

M
v= wan(z‘))- (25)
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Substitute (25) into (24), and multiply ¢(d,,(j)) with the left
of both sides in (24),

M

28(dn () = d(dn(i)~7 Y ¢(dn(0))d(dn (i) v. (26)

i=1

Moreover, the kernel matrix K € RM*M  with ker-
nel function s is defined as K;; = k(d,(i),dn(j)) =
(p(dn (1)), d(dn(4))), 0,5 = 1,2,..., M where (-, -) represents
the inner-product operator. Then, the eigenvalue problem (26)
can be expressed in terms of the dot products of two mappings
to derive the eigenvectors

Mi~y = K~. 27

The detailed explanation, discussion, and implementation of
KPCA can readily be found in the literature [28], [39], [53].

Based on Mercer’s theorem, the inner products are to be
calculated in a possible infinite-dimensional space, known as the
Hilbert space [53]. An appropriate kernel function should make
the kernel matrix K a positive semidefinite. Two representative
kernel functions, the Gaussian RBF and polynomial kernel are
widely used in process monitoring and fault diagnosis. The RBF
is defined by

2
Tr; — &,
Kpf (X4, ;) = exp <—”’5”>

S

(28)

where s is the kernel width. The polynomial kernel is given as

Fpoly (T4, ;) = (w;] + 1) (29)

where 1 is the user-defined degree of the polynomial.

For RBF kernel, only the data points in the neighborhood
of the test points are affected. The RBF kernel has good in-
terpolation ability but lacks extrapolation ability. Thus, it is
considered a local kernel. The overfitting problem may occur in
the learning while a single RBF kernel is employed. On the other
hand, the polynomial kernel can be considered as a global kernel
[43]. The polynomial kernel has good extrapolation ability but
poor interpolation ability. In [44], the mixtures of kernels were
proposed by combining RBF and polynomial kernels to enhance
the modeling performance of the support vector machine for
regression. To improve the performance of incipient fault detec-
tion, a mixed kernel was applied in [28]. Inspired by these ideas,
MKPCA is adopted in our study to extract nonlinear features
from CVD.

The mixed kernel is constructed by using a convex combina-
tion of RBF and polynomial kernels

Rmix = 6Hrbf + (1 - B)Hpoly (30)

where (0 < 8 < 1) is the mixing coefficient to balance the
interpolation and extrapolation abilities.

Assumed that the mixed kernel K ,;x has been centered [54],
then (26) is equivalent to

Moy = Kmnixy- (€19}

For the mixed kernel, three important parameters should be
determined including the degree of the polynomial 1, the kernel
width s, and the mixing coefficient 3. A large value of s would
weaken its interpolation ability of RBF kernel but strengthen

the extrapolation ability. Similarly, an appropriate 1 should be
determined by considering the tradeoff between interpolation
and extrapolation abilities. Meanwhile, the mixing coefficient
B is of importance to achieve the optimal performance of the
learning task. Although several optimization methods such as
genetic algorithm, particle swarm optimization, have been de-
veloped for finding the optimal kernel parameters, they require
much effort and computational costs. A practical method is using
a grid search strategy to determine the optimal parameters of a
mixed kernel [28]. To find the optimal parameters, we use false
alarm rate (FAR) as a criterion in the offline training stage. FAR
is the ratio of the false alarming samples over all the fault-free
samples. The optimal parameters should be chosen to obtain
a FAR as lower as possible. Since p is an integer, it is easy
to choose through cross-validation. In the case study, p = 2 is
adopted. The other two parameters s and /3 are chosen through
the results of the grid search.

Remark 3: While the mixing coefficient 3 is set as 1, the
mixed kernel K ,;x becomes a single RBF kernel K ¢. Usually,
aregularization term is imposed to deal with the ill-conditioned
kernel matrix which is constructed by a single RBF kernel

(32)

1
= —Ku+CI
Y <M bt+<>7

where ( is the regularization parameter. A cross-validation can
be used to determine (. In KPCA-based fault detection methods
using RBF kernel function, s usually is specified as 5007 [29],
where [ is the dimension of process variables.

For a test d,, (k), its retained NPCS tcy ;(k),i = 1,2,...,m
which are with the first m eigenvalues are extracted by

M
tem,i(K) = Y ' Fmix (A (7), dn (F)).- (33)
j=1

Denote tem,m (k) = [tem1(k), - - -, temm (K)]. A fault detec-
tion index is formed by using Hotelling’s 77 statistic to monitor
the variation of retained NPCs

szm(k) = t3cm,m(k)Ac_nitcm,m(k)T

where A, is the sample covariance of tem .
The rest NPCs can be monitored by establishing the following
Qqm statistic as in [39]:

Qdm(k) = tcm,Mt?m,Af - tcm,m(k)tcm,m(k)T

(34)

(35)

where tcm,M = [tcm,h . 7tcm,M]~

Remark 4: Similar to linear PCA, the number of retained
NPCs m can be determined by using the cumulative percent
variance (CPV) method. In the case study, the selection of m is
to achieve the predetermined percentage variation of 98%.

The UCLs Tjcp_gm and Quct,am of T, and Qun, are obtained
by the KDE method, similarly to what was done in Section II.
Under the CVD-MKPCA based fault detection framework, all
five indices 72, Qs, Qy, T2 and Qqm, Will be used to detect
incipient faults. The fault detection logic is that a fault is de-
tected when any one of 72, Qs, Qy, T, Qam exceeds its cor-
responding  UCL, TI%CL,sa QucL,s, QueL,ys TéCL,dm’ QucL,dm>
respectively.
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Procedure of the proposed CVD-MKPCA based fault detection.

Fig. 2.

In summary, the procedure of the proposed CVD-MKPCA
based incipient fault detection is described as follows. 1) In the
offline training stage, the CVD-MKPCA model is built from
the collected process data and the corresponding UCLs are
established through KDE. 2) In the online monitoring stage,
the real-time fault detection indices are computed with the
continuous collection of a moving window of samples of length
p + f. The process is determined to be normal or faulty by
comparing real-time indices with their respective UCLs. The
detailed procedure of the proposed CVD-MKPCA method is
depicted in Fig. 2.

IV. CASE STUDY

In this section, a closed-loop CSTR process is used to verify
the performance of the proposed CVD-MKPCA based incipient
fault detection method. The studied CSTR process is particularly
designed by Pilario et al. for simulating incipient faults [26].
Fig. 3 plots the diagram of the closed-loop CSTR process. The
mechanism of the CSTR process is mainly described by the
following equations:

¢ = 9(C; - C) — akC + vy
AH,)kC
L= T —T) - a B8 b LA (T~ T.) 40,
e = (Toi — To) + b 245 (T = T.) + vs
(36)

C; (mol/L) !

T; (K)

| |
T (K) C (mol/L)
Q. (L/min) T (K)

Fig. 3. Diagram of the closed-loop CSTR [26].
TABLE |
MODEL PARAMETERS OF THE CSTR PROCESS
Parameter Description Value
Qc Coolant Inlet flow rate 100 L/min
Tank volume 150L
Ve Jacket volume 10L
AH, Reaction heat —2 x 105cal/mol
UA Heat transfer coefficient 7 x 10°cal/min
ko Pre-exponential kinetic constant 7.2 x 10'%/min
E/R Activation energy 1 x 104K
p Fluid density 1000g/L
Pe Fluid density 1000g/L
Cp Fluid heat capacity 1cal/g/K
Che Fluid heat capacity Ical/g/K

TABLE Il
DESCRIPTION OF THE INCIPIENT FAULTS IN THE CSTR PROCESS

No. Description I3 Type
1 Sensor drift 7" =T+ &t 0.005 Additive
2 Catalyst decay a = ape™ &% 5 x 10~*  Multiplicative
3 Fouling b = bge&? 1 x 1072  Multiplicative

where C; is the concentration of the reactant. 7; and T,; are
the temperature of the reactant and inlet temperature of the
coolant, respectively. v; are process noise. k = koexp F/1T
is an Arrhenius-type rate. Due to the existence of Arrhenius-
type rate k, it can be observed that there are linear and
nonlinear relationships in the closed-loop CSTR process as
shown in (36). The model parameters of the CSTR pro-
cess are given in Table I. Similar to [26], we select u =
[C; T; Te)and y = [C T T, Q.]. The CSTR simulation model
in Matlab Simulink used in this study can be downloaded
from https://www.mathworks.com/matlabcentral/fileexchange/
66189-feedback-controlled-cstr-process-for-fault-simulation.
For evaluating the fault detection performance, three typical
incipient faults are considered [28]. These incipient fault scenar-
ios are described in Table II. To simulate the saturation faults, a
and b are decayed from 1.00 at the normal operation to 0. It can be
used to simulate incipient faults such as catalyst decay and heat
transfer fouling. Another incipient fault is a sensor drift in 7.
The sampling interval for all variables is 1 min. The offline
training dataset is collected during 20 h under normal operation
stimulated by randomly varying inputs w around their nominal
values every 1 h. Therefore, 1200 samples are generated for
training models. These samples are correlated and non-Gaussian
distributed owing to the dynamic and nonlinear behavior of the
closed-loop CSTR process. Each fault scenario also has 1200
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Fig. 4. FAR results versus [s, 8] where s is the kernel width of RBF
and § is the mixing coefficient.

samples which are generated during 20 h of process operation.
The fault is injected after 200 min under each fault scenario.
A 99.9% control limit is used to determine the UCLs for all
methods.

For comparison, CVA T2 and @ [13] (which are the same TS2
and Qs in CVD-MKPCA method), CVDA D [26], CVDA T?
[27], KCDVA D, and MKCVDA D [28] are employed. Besides,
CVD-KPCA T7 is adopted for comparison. CVD-KPCA 77 is
derived through a single Gaussian RBF kernel.

A. CVD-MKPCA Training

We use two fault-free data sets as the training data to build the
CVD-MKPCA model and determine the related parameters. As
discussed in [26], the numbers of time lag p and f can be deter-
mined by using auto-correlation analysis. n is then selected as the
point where a knee appears by screening the plot of the singular
value curve. In this study, we adopt the same values of p, f,n
as in [26] for comparison, where p = f =5, and n = 8. With
the sets s = 10°, 3 =1077(i,5 = 1,2,...,5) and predefined
u = 2, the FARs against choices of [s, 8] are plotted in Fig. 4.
Through Fig. 4, the parameters s and /3 are chosen as s = 100
and 5 = 0.01. By calculating the CPV from the result of (31), m
is set as 40. For CVD-KPCA with a single Gaussian RBF kernel,
the kernel width is set as 4000, and the regularization coefficient
C is set to 0.0001 in (32) through cross-validation. For CVDA,
KCVDA, and MKCVDA, the parameters are determined with a
similar procedure described in [28].

B. CVD-MKPCA Monitoring

Fault 1 is a sensor drift. As shown in Fig. 5(a) and (b), it
can be found that the amplitudes of the change of C' and 1" are
relatively small. Notwithstanding that the DDs of all indices are
long, the MDR of CVD-MKPCA T3, is lower than other indices.
From Fig. 5(c)—(j), it can be observed that the detection time
by CVD-MKPCA T3, is 440 min, while other indices require
more time to detect the occurrence of Fault 1 such as 480 min
for MKCVDA D, 580 min for KCVDA D and 445 min for
CVD-KPCA T3. For Fault 2, it is a catalyst decay fault. In the
beginning, the variations of process variables such as C' and
T are not obvious. After a few hours, the deviation of process
variables between under normal and abnormal conditions would
gradually become huge as shown in Fig. 6 (a) and (b). As shown
in Fig. 6(1), CVD-KPCA Tj changes around a constant after

700 min. However, Fault 2 is actually becoming more severe.
The reason is that there may exist an overfitting problem while
using a single RBF kernel in CVD-KPCA. On the contrary, this
issue is addressed by introducing the mixed kernel. As shown in
Fig. 6(j), it can be seen that CVD-MKPCA T35, can follow the
variation trend of the severity of Fault 2. And the detection time
is 300 min for CVD-MKPCA T3, . It is longer than the DD of
MKCVDA D (290 min). However, CVD-MKPCA T3, obtains
shorter detection time than most of the indices in this case. For
Fault 3, the fouling parameter b would gradually become zero. It
can be found that the performance of CVD-MKPCA T3, is better
than other indices. Especially, CVD-MKPCA T3, can detect
Fault 3 much earlier than MKCVDA D where the detection time
is 285 min for CVD-MKPCA T3, and 305 min for MKCVDA D.
As plotted in Fig. 7(a) and (b), there is a spike around 1000 min
in C'and T'. However, CVD-KPCA Tj can not detect this severe
change due to the overfitting problem as shown in Fig. 7(i).
Similar to Fault 2, CVD-MKPCA szm works well to capture the
trends of process variables C' and 7" due to the adoption of mixed
kernel , as shown in Fig. 7(j).

To evaluate the performance robustly, a Monte Carlo sim-
ulation of 15 realizations with different random seeds for the
process noises, measurement noises, and input disturbances for
each fault scenario. Three indices are utilized to quantify the fault
detection performance: 1) DD, the elapsed time since the fault
has been injected until it is detected—to confirm the occurrence
of incipient faults, the detection time is defined as the first time
after ten consecutive alarms were raised as in [28]; 2) FAR; and
3) MDR, the ratio of the undetected samples over all the faulty
samples. For a robust comparison, 15 test data sets are generated
for each fault scenario. In Table III, the medians of DD, FAR,
and MDR across 15 faulty data sets in each fault scenario are
listed. To make the comparison of DD time more clear, the unit
of DD is converted to hours.

As presented in Table III, it can be observed that the fault
detection indices relying on linear features have similar perfor-
mance except for CVA T2 and Q). Although CVA Q, has the
same level of DDs and MDRs as CVDA D, CVDA TCZ, its FARs
are higher. In general, for fault detection indices using linear
features, the monitoring index based on CVD can provide better
performance than other indices. It can also be found that the
performance using the fault detection indices based on nonlinear
features is superior over these indices based on linear features.
For example, the MDRs and DDs of KCVDA D, MKCVDA D,
and CVD-MKPCA T3, are much lower and shorter than CVDA
D and CVDA T?2. The CSTR process used in this study includes
both linear and nonlinear relationships. Compared to CVDA and
MKCVDA, CYVD-MKPCA can obtain a more accurate statistical
model using a serial model structure. The 77 statistic of the
NPCs with dominant eigenvalues can capture the change of the
process status more accurately. CVD-MKPCA T3 can derive
lower MDRs and shorter DDs for Fault 1 and Fault 3 scenarios,
and the same level of performance for Fault 2, compared to
KCVDA D and MKCVDA D. From the data in Table III, it
is also observed that CVD-MKPCA Qg can provide better
DDs and MDRs for Fault 2 and Fault 3 scenarios. However, like
CVA @, the FARs of CVD-MKPCA Qg are higher than other
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start of fault.

TABLE IlI

COMPARISON OF FAULT DETECTION PERFORMANCE FOR THE INCIPIENT FAULTS IN CSTR PROCESS'

Fault No.  CVDA CVDA KCVDA MKCVDA CVD-KPCA CVD-MKPCA
‘ D T2 D D T2 T2 Qs Qy T2 Qdm

I 438¢ 448 3.65 332 332 7.61 440 7.98 321 1.92
0P 0 0 0 0 0 1.04 0 0 471

23.00 © 24.30 20.50 19.11 17.20 423 24.00 435 17.10 24.0

2 2.13 2.65 1.55 1.50 1.70 6.12 2.90 6.05 1.70 1.28
0 0 0 0 0 0 0 0 0 471

11.40 14.50 8.42 8.00 8.89 34.50 15.30 36.5 8.20 5.50

3 211 2.26 1.82 1.69 1.45 7.40 227 11.85 1.45 1.20
0 0 0 0 0 0 0.52 0 0 8.37

11.00 11.60 10.20 9.50 7.10 39.20 11.90 76.30 7.00 4.90

T All results were medians from the results across 15 faulty data sets monitored in each fault scenario. ¢ First row: DDs (DD, hours) consistently for ten consecutive sampling times;
bSecond row: (FAR, %); ¢ Third row: (MDR,%).
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indices. Although CVD-MKPCA Qg can not provide reliable
results due to high FARs. The FARs of CVD-MKPCA T3,
are much lower than CVD-MKPCA Qg as listed in Table III.
Compared to CVD-MKPCA Qgm, CVD-MKPCA T3, is more
reliable.

In the following discussion, the comparative results are ana-
lyzed between CVD-MKPCA T3, and other indices based on
nonlinear features such as KCVDA D, MKCVDA D, and CVD-
KPCA Tj. Compared to other indices, the DD and MDR derived
by CVD-MKPCA T3, are superior for Fault 1 and Fault 3 sce-
narios. And its FARs are zero for all faults. Despite MKCVDA
D and KCVDA D can provide slightly better performance for
Fault 2 scenario than CVD-MKPCA T3, CVD-MKPCA T3,
can still outperform over other fault detection indices.

Based on the results listed in Table III, it is shown that
CVD-KPCA T3 and CVD-MKPCA T3, can provide better
performance than KCVDA D and MKCVDA D for Fault 1
and Fault 3 scenarios. In summary, it can be concluded that the
combination of CVDA and MKPCA via a serial model structure
is more effective for incipient fault detection for nonlinear
dynamic processes, compared to CVDA and MKCVDA. As
shown in Fig. 6(i) and (j) and Fig. 7(i) and (j), it can be seen that
CVD-MKPCA T}, is amore reliable index than CVD-KPCA T
for detecting incipient faults. Nonetheless, CVD-MKPCA T3,
is the most powerful index for incipient fault detection among
the comparable indices in terms of combined FARs, DDs, and
MDRs.

The computational cost should also be a concern in real-time
fault detection, particularly while the kernel-based methods are
introduced. In order to compare the computational costs of the
proposed CVD-MKPCA method with other kernel-based meth-
ods such as KCVDA and MKCVDA, we list the elapsed time of
the establishment of online fault detection indices in Table IV.
The simulation environment is under Matlab 2019a with Intel
Core i7-8750H CPU @2.20 GHz and 32 GB RAM. As listed

TABLE IV
COMPARISON OF COMPUTATION TIME IN THE ONLINE MONITORING PHASE

KCVDA D MKCVDA D CVD-MKPCA T3
0.0018 0.0088 0.0042

Computation time(s)

in Table IV, the computation time of MKCVDA D is 0.0088 s.
Since only a single kernel is adopted in calculating KCVDA D,
the computation time is shorter than MKCVDA D as listed in
Table IV. On the other hand, the computation time of calculating
CVD-MKPCA T3, is 0.0042 s. As analyzed in Section III, Only
one kernel matrix is needed to compute CVD-MKPCA T3, in
the online monitoring stage. The computation time of calculating
CVD-MKPCA T2, is shorter than MKCVDA D.

V. CONCLUSION

In this article, a novel data-driven incipient fault detection
method using CVDA and MKPCA in a serial model structure
was proposed. Except for the linear features extracted from
CVDA, nonlinear PCs were extracted from the CVD between
past-projected and future-projected canonical variables. The
proposed CVD-MKPCA takes both the advantages of CVDA
and MKPCA. Fault detection indices using Hotelling’s 7 and
() statistics were established based on the extracted linear and
nonlinear features for incipient fault detection. The UCLs were
determined using KDE. Simulation results have confirmed the
superior performance of the proposed method over the related
techniques. It can also be noticed that although CVD-MKPCA
T3, can provide better performance than other indices, a further
study on the utilization of all the extracted features or statistics
is suggested. Additionally, this article mainly focused on fault
detection. Fault identification and diagnosis can be developed
using the proposed CVD-MKPCA statistical modeling frame-
work for incipient fault monitoring in the future.
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