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ABSTRACT

The DC Optimal Power Flow (DC-OPF) problem is a widely-studied topic in the field of
power systems. A solution to the problem consists of minimizing the running costs of the
power system, through defining the optimal operating state for each entity in the system,
while adhering to a set of physical constraints. A lot of research has been conducted
on decentralized and distributed solutions to this problem, which, when compared to
centralized solutions, offer benefits such as adaptability, reliability and scalability. Nev-
ertheless, most of these solutions have only been evaluated through simulations, while
physical applications of these algorithms introduce new challenges, such as noise, de-
lays, and the regulation of physical variables like voltage and current. In this thesis, we
focus on a decentralized DC-OPF algorithm based on the Consensus and Innovation
method, where system entities utilize their physical measurements and communicate
with their neighbouring entities in order to reach consensus on a solution. While pre-
vious implementations of the algorithm were tested on simulated environments, this
thesis explores and proves the effectiveness of the algorithm implemented for a real DC
unipolar microgrid, consisting of power supplies, loads and a Power Circuit Board at-
tached to each, where each device’s behavior is governed by its own, exclusive entity.
The newly-introduced challenges of a physical environment are accounted for, and any
negative effects of them are mitigated as much as possible. Furthermore, the algorithm
is successfully modified and extended to handle region DC-OPF, something that has not
been attempted before, where a single entity of the algorithm could be responsible for
many devices in the network. Finally, it is known that the original algorithm has not been
experimented on before on scenarios of islanding and de-islanding, which are of impor-
tance in OPF, because a power fault may occur and one area may wish to isolate itself
from the faulty area, or perhaps a distributed energy resource should only be connected
to the network during certain periods, e.g., during sunlight for solar panels. Hence,
this thesis also proves the effectivess of the algorithm on scenarios of islanding and de-
islanding, in an innovation site called the Green Village, where technologies in the field
of sustainable energy provision are tested and applied in a real-life environment.
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1
INTRODUCTION

1.1. RENEWABLE ENERGY AND DISTRIBUTED ENERGY RESOURCES

Renewable Energy (RE) refers to sources of energy that are not depletable, like wind and
solar power. These energy sources have nowadays become increasingly popular, mostly
because of the dangers that lie with the extended use of non-renewable ones, such as
pollution and the phenomenon of Climate Change. The Paris Agreement of 2015 is one
of the latest and most significant indicators that these issues are starting to receive global
attention and consideration. Regardless of the dangers involved with the alternative, the
use of RE also provides some direct benefits: instead of relying on a centralized power
source controlled by the government, Renewable Energy Sources (RES) such as photo-
voltaic (PV) panels can be installed in and owned by private households, essentially turn-
ing had-been clients into producers themselves. PV panels are also becoming increas-
ingly cheaper and more effective[19]. This shift gave rise to the phenomenon of Dis-
tributed Energy Resources (DER), bringing new capabilities and challenges to the table,
that are expected to significantly affect the development of power grids[15]. Drawbacks
related to DER usage include the lack of constant availability of certain power sources,
line congestion, and a low load factor[15], which is a measure of the utilization rate or
efficiency of electrical energy usage. These problems were to be expected, since DERs
are privately owned and decentralized, thus harder to coordinate, and power generation
is often dependent on weather conditions.

1.2. MESHED LOW VOLTAGE GRIDS (MICROGRIDS)
Some of the challenges introduced by the use of DERs are directly related to the infras-
tructure of Low Voltage (LV) distribution grids: traditionally, LV grids are arranged in a
top-to-bottom fashion, meaning that power flows from high power areas to decreasingly
lower power areas, i.e., from neighbourhoods to apartment blocks, and then to private
households. This setups makes it easier to isolate certain areas in case of faults, or coor-
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dinate the whole flow of power and congestion. By introducing DERs into the equation,
we observe a shift in the "power dynamic" (pun-intended), as power can now also be
generated in low power areas such as households, disrupting the original top-to-bottom
model, and can flow in both directions, something that the traditional LV grid is not built
to handle. Furthermore, the traditional LV grid is susceptible to the drawbacks men-
tioned regarding the use of DERs, such as line congestion and the availability of power
sources.

A solution suggested towards resolving these issues is meshing the LV grid[12], i.e.,
change the infrastructure so that nodes connect directly, dynamically and non-hierarchically
to as many other nodes as possible, cooperating with one another efficiently. Naturally,
a meshed LV grid, also known as a microgrid, offers redundancy, which helps tackle the
issues of line congestion, power availability and fault recovery. Nonetheless, the usage
of a meshed LV grid presents its own challenges, due to the increased amount of con-
trol variables and complexity, especially when deciding between the use of Alternating
or Direct Current.

1.3. ALTERNATING AND DIRECT CURRENT

While Alternating Current (AC) has been the traditional standard of power transmission,
especially considering long-distance transmission, Direct Current (DC) systems have
lately seen an increase in popularity and usage, largely due to the introduction of DERs
into the grid. For instance, a lot of RES such as PV panels and wind turbines already oper-
ate on DC, and a DC grid would eliminate the need for current conversion and the related
losses. Furthermore, in DC, current flow only depends on the voltage level, in contrast
to AC where the voltage angles also matter, with the latter making the whole meshing
process more of a challenge. Finally, DC offers benefits such as increased power-transfer
capacity and the elimination of reactive power considerations. Thus, DC proves to be a
considerable and viable choice for the design of meshed LV grids[12].

1.4. RESEARCH MOTIVATION

As mentioned in Section 1.2, meshed LV grids present certain challenges with coordi-
nating the power flow, due to their increased complexity and the fact that power flows in
both directions. Formally, this problem is referred to as the Optimal Power Flow problem
(OPF), or DC-OPF, if specifically referring to DC grids or DC approximations of AC grids,
and it is a widely-studied topic in the field of power systems. A solution to the problem
consists of minimizing the running costs of the power system, through defining the op-
timal operating state for each entity in the system, while adhering to a set of physical
constraints. A lot of this research has been conducted on decentralized and distributed
solutions to this problem[2], which, when compared to centralized solutions, offer ben-
efits such as adaptability, reliability and scalability. One of these decentralized solutions
is called the Consensus and Innovation (C+I) algorithm, which has been studied by vari-
ous scientists under different assumptions and problem formulations[21][10][20]. In its
essence, the C+I algorithm utilizes the Karush-Kuhn-Tucker Theorem to establish a set
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of conditions that each sub-problem needs to satisfy, in order for optimality and conver-
gence to be achieved.

While the C+I algorithm is relatively simple to apply in practise, there exists no work
of it being tested in a real, physical microgrid. The results of prior work on the algorithm
have been demonstrated through simulations, however, the transition from a simulated
to a physical environment is not trivial, as it involves factors that are not accounted for
in the simulated one, such as noise, delays, and the regulation of physical variables like
voltage and current. An interesting version of the simulated algorithm can be found
in the work of Pedro Parreira[17], with its innovative aspect being that it incorporates
physical measurements and droop control, effectively eliminating a lot of computational
requirements and boosting performance. Thus, it would be interesting to see how this
version of the algorithm can be adjusted for a physical microgrid, and how it performs
on it.

The C+I algorithm can hypothetically be implemented for both nodal and region
OPF[2], with nodal OPF being the decentralized solution where each sub-problem is
concerned with exclusively one device, and region OPF being the decentralized solu-
tion where each sub-problem can be concerned with multiple devices. Parreira’s version
of the algorithm is exclusively applicable to nodal OPF, and no attempts have been made
to extend the solution, along with its performance benefits, towards region OPF. Hence,
it would be of significance to see how the algorithm can be extended to be applicable to
region OPF, and how it performs at it.

Finally, the C+I algorithm has not been experimented on before on scenarios of is-
landing and de-islanding, i.e., in the case a connection between two devices is lost/removed
and their number of neighbours is reduced by one, or the opposite. Scenarios like these
are of importance in OPF, because a power fault may occur and one area may wish to
isolate itself from the faulty area. It might also be the case that a DER should only be con-
nected to the network during certain periods, e.g., during sunlight for solar DERs. Hence,
ensuring that the algorithm can handle such scenarios of islanding and de-islanding can
prove of great utility to various physical setups running on the specific algorithm.

1.5. RESEARCH QUESTIONS AND OBJECTIVES

The aforementioned goals can be summarized and divided into the following research
questions:

1. How is the C+I algorithm to be implemented for a physical environment where,
compared to the simulated one, various additional factors like noise, delays, and
voltage/current regulation come into play? What design choices and improve-
ments can be performed in order to eliminate the negative effects of these addi-
tional factors?

2. How does the algorithm perform, given these extra factors, in terms of conver-
gence time and overall execution speed, which are the traditional metrics the al-
gorithm is evaluated on?
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3. How can the original, nodal-OPF C+I algorithm be extended for region-OPF, while
maintaining its performance regarding metrics such as optimality, convergence
time and execution speed?

4. How does the C+I algorithm perform on scenarios of islanding and de-islanding?

1.6. CONTRIBUTIONS

In this Thesis, we present our implementation of the C+I algorithm for a physical micro-
grid, which we evaluate on small-scale networks of interconnected devices: generators
and loads. The theoretical aspect of our implementation is based on the work of Pedro
Parreira[17], performing any adjustments where deemed necessary. Our design choices
ensure that we achieve our expectations of a fast, effective and efficient algorithm, across
all the aforementioned performance metrics and eliminating a lot of the negative effects
that burden a physical operational environment.

We also present and evaluate a modified version of the C+I algorithm that is appro-
priate for region OPF, while maintaining its performance regarding metrics such as opti-
mality, convergence time and execution speed.

Finally, by using the appropriate components and by extending the capabilities of
the algorithm, we verify that our C+I algorithm can handle scenarios of islanding and
de-islanding. The grander experiment takes place in the Green Village, an innovation
site where technologies in the field of sustainable energy provision, such as ours, are
tested and applied in a real-life environment.

1.7. STRUCTURE OF THE THESIS

This Thesis is divided into 8 chapters.

Chapter 2 comprises the literature review, where the OPF problem is formulated and
various decentralized solutions to it are presented. The fundamentals of our C+I algo-
rithm are also presented, for the purposes of theoretical comparison with the other so-
lutions.

Chapter 3 describes the C+I algorithm in detail, focusing only on its theoretical as-
pect, while Chapter 4 dives into the technical and implementation details in order for
this algorithm to be applied to a physical environment.

Chapter 5 presents the case studies performed with our algorithm, along with the
resulting observations.

Chapter 6 describes the modified version of the C+I algorithm, for handling region-
OPF. Again, case studies are performed, and the effectiveness of the algorithm is evalu-
ated.

Chapter 7 evaluates the effectiveness of the C+I algorithm on scenarios of islanding
and de-islanding, with the grander of experiments taking place at the Green Village.

Finally, Chapter 8 summarizes the conclusions of our work and the answers to our
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established research questions. Future work is also discussed.
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As part of the literature review, previously established solutions to the OPF problem
will be examined. This allows for comparisons to be made between our implemented
C+I algorithm and the presented algorithms, in terms of methodology, effectiveness and
advantages. A comparison between physical implementations of the algorithms would
be preferred, but since there is a very limited and insufficient amount of physical exper-
iments to be found in the literature, we settle for a comparison between the structure of
each of the algorithms.

Section 2.1 begins by explaining the physical factors that govern the formulation of
the OPF problem, and specifies the assumptions made for the purposes of this thesis.
Having provided the generic problem definition, Section 2.2 presents a wide variety of
decentralized and distributed approaches, which are closely related to the Consensus
and Innovation (C+I) algorithm used in this Thesis. Finally, in Section 2.3, the funda-
mentals of the C+I method are presented, serving as a backbone for the upcoming de-
scription of the adapted C+I algorithm in the next chapter. A comparison between the
C+I algorithm and the presented ones, based on the aforementioned set of criteria, takes
place as the concluding part of this section.

2.1. THE OPTIMAL POWER FLOW PROBLEM

Assume an electric network of devices, connected to each other through transmission
buses. These devices can be either power generators, e.g. power supplies and photo-
voltaics, or power consumers, also referred to as loads, e.g. light bulbs. A visual repre-
sentation can be seen in Figure 2.1. In its essence, the goal of the Optimal Power Flow
(OPF) problem is to minimize the running costs of the network while making sure that
the power demand of the loads is satisfied, and while adhering to the physical restric-
tions of the network. Hence, OPF can be formulated as an optimization problem where
the objective function represents the minimization of costs, while the constraints con-
stitute the physical network restrictions and the problem requirements.

The literature has an abundance of OPF model formulations, based on both physical
factors and modelling factors. A few examples of physical factors include the consid-
eration (or not) of transmission losses, the consideration (or not) of bus voltage angles,
system polarity, and so on. The most prevalent physical factor amongst them all is the
type of power flow adopted: alternating current (AC) or direct current (DC). Let us first
determine the type of OPF problem this thesis is focused on.

As mentioned in section 1.3, AC has been the dominant form of electrical power
transmission and distribution, thus, a lot of the existing literature focuses on AC grids[7][9][3].
In this thesis, however, we focus on DC grids. One of the advantages of focusing on
DC grids compared to AC grids, as presented in section 1.3, is the absence of reactive
power, and consequently of any related equations in the model. DC grids can also ne-
glect bus voltage angles, which affect the amount of outgoing power in AC grids, whereas
in DC grids the current flow depends only on the voltage level[17]. Hence, bus voltage
angles are also ignored in our problem definition. Furthermore, we assume a unipolar
grid, as this offers less implementation complexity, while suffering drawbacks such as
higher current flow requirements. This trade-off is appropriate, given the nature of this
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Figure 2.1: An abstract representation of an electric network

implementation of the algorithm and the research questions. Finally, we employ Exact-
OPF[18], meaning that the transmission losses are taken into consideration, as opposed
to Lossless-OPF[10][25]. From this point onward, whenever we refer to the OPF problem,
it will be under the above assumptions, unless stated otherwise. Having defined the type
of OPF problem we will be focusing on, let us examine the aspects of the optimization
problem in more detail.

The running costs of the network can be described as the summation of the costs
for each device in the network to produce/consume a certain amount of power. Each
device has its own cost function, which determines the costs given the required amount
of power. The form of this function depends on the device itself, for example, gas turbine
and diesel-fuelled generators usually have a function of quadratic nature[24], while fuel-
cell devices tend to have linear functions[13]. Hence, the objective function of the OPF
problem can be defined as follows

min
p

∑
m∈N

Am p2
m +Bm pm (2.1)

where parameters Am and Bm are, respectively, the quadratic and linear polynomial co-
efficients of the cost function of each device m, out of the total number of devices N .
Decision variable pm is the power generated/consumed by the generator/load m.

Regardless of the specific type of OPF problem investigated, the constraints repre-
senting the physical network restrictions always need to preserve some fundamental
properties and laws of electric networks. Namely, they need to satisfy Ohm’s law for
the current-voltage proportional relationship, Kirchhoff’s laws for power balance at the
buses, current flow limits for transmission buses, and power and voltage generation lim-
its for generators. Given the type of OPF this thesis is focused on, the above constraints
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can be formulated as follows

pm = um · i s
m = um

∑
n∈Ωm

imn = um
∑

n∈Ωm

Gmn(um −un), ∀m,n ∈ N (2.2)

imn = ∑
n∈Ωm

Gmn(um −un) ≤ I mn , ∀m,n ∈ N (2.3)

P m ≤ pm ≤ P m , ∀m ∈ N (2.4)

U m ≤ um ≤U m , ∀m ∈ N (2.5)

where N is the set of all devices on the network. Notations p,u and i are the stan-
dard notations for power, voltage and current. While pm would denote the power gen-
erated at device m, notation i s

m denotes the current passing through device m, with s
making a clearer distinction between this notation and the current imn passing through
bus (m,n). The power and voltage upper and lower limits of device m are denoted by
P m ,P m ,U m ,U m , and the maximum current limit for bus (m,n) is denoted by I mn . Fi-
nally, Ωm represents the set of the physically connected neighbours of device m, and
Gmn represents the conductance of bus (m,n). For a better insight on how the above
equations are derived from Ohm’s and Kirchhoff’s laws, please refer to Appendix Section
A.1. Additionally, a visual representation of the relationship between the above variables
can be seen in Figure 2.2.

Figure 2.2: A visual representation of the relationship between variables u,
i and G , as presented in the generic problem definition.

2.2. DECENTRALIZED SOLUTIONS TO THE OPF PROBLEM

Compared to centralized solutions, decentralized OPF solutions offer various benefits:
they allow for different handling of each device in the network, and thus allow for diver-
sity amongst the selected devices. They also allow for the computational requirements
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to be divided and distributed. Yet another benefit of decentralized OPF solutions is the
safety they provide against cyber-attacks, and the possibility of single-area-failure with-
out having the whole algorithm collapse. The decentralized solutions presented in this
section serve as a great framework for comparison between our decentralized imple-
mentation and them.

To the best of our knowledge, the most recent, inclusive and comprehensive survey
of distributed and decentralized OPF solutions is provided by Kargarian et. al[2]. The
authors present six methods for OPF algorithms that are prevalent in the distributed and
decentralized domain, namely analytical target cascading (ATC), optimality condition
decomposition (OCD), alternating direction method of multipliers (ADMM), auxiliary
problem principle (APP), consensus+innovation (C+I), and proximal message passing
(PMP). They nicely present, in a hierarchical diagram, the way each method decom-
poses the problem, and they also present a table with the most important attributes of
each method. Both the diagram and the table can be seen below in Figures 2.3 and 2.4.
Before proceeding to describe the methods, let us first mention a few things about the
important attributes and properties that define them.

Figure 2.3: A diagram demonstrating how each distributed/decentralized OPF method
decomposes the original problem[2]

The main difference between the OPF problem, as defined in section 2.1, and the
OPF problem as approached by the aforementioned methods, is the consideration of
bus voltage angles θ by the latter. These variables are included as part of the decision
variables, which, in the original problem, consist of only the power variables (2.1).

Regarding the distinction between distributed and decentralized methods, the fol-
lowing is assumed[2]: In distributed approaches, there exists a central coordinator that
coordinates the otherwise independent entities. Each entity only communicates with
the coordinator, meaning there is no communication between the entities. In contrast,
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Figure 2.4: A table providing information on the most important attributes of each distributed/decentralized
OPF method[2]

decentralized methods do not involve a central coordinator, and the entities directly
communicate and exchange information with their neighbouring entities.

As for the decomposition strategies, we have the "Augmented Lagrangian relaxation"
(ALR) strategy and the "KKT conditions" strategy. ALR is used for solving constrained
optimization problems, by decomposing the original problem into a series of uncon-
strained sub-problems, and adds a penalty term to their objective function in order to
implicitly enforce constraints between the sub-problems. This penalty term includes the
Lagrangian term λ, also known as the dual variable of the problem, as found in the de-
rived Lagrangian function used to decompose the problem. Figure 2.5 demonstrates this
decomposition. The "KKT conditions" strategy takes the Lagrangian function of the orig-
inal (nonlinear) optimization problem and applies to it the "Karush–Kuhn–Tucker" theo-
rem, which states that an optimal solution is obtained by identifying the saddle points in
the Lagrangian function, i.e., the (non-local-extremum) points where the slopes/ deriva-
tives in orthogonal directions are all zero. A more concrete presentation of the latter
strategy is provided in section 2.3, as it is the decomposition strategy of the algorithm
explored in this Thesis.

There are two strategies through which the OPF methods coordinate the sub-problems
after the decomposition: coupling variables and coupling constrains. Under the former
strategy, different sub-problems contain common variables but the constraint sets are
separated, while in the latter strategy, the variable sets are separated but there are con-
straints that contain variables from two or more sub-problems.

The following subsections give an overview of the aforementioned methods and the
way they relate to each other, in terms of approach, advantages, limitations etc. It is sug-
gested that the subsections are read in order, as the first subsections introduce concepts
that are briefly referred to in the following ones.
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Figure 2.5: A demonstration of the idea of decomposition behind Augmented Lagrangian Relaxation, where
we can observe each sub-problem containing a penalty term depended on the Lagrangian term λ and the

coupling variablesΦ

ANALYTICAL TARGET CASCADING AND ALTERNATING DIRECTION METHOD OF MULTIPLI-
ERS

The ATC and ADMM are distributed methods involving a central coordinator. We start
off by defining a region as a set of entities, that is connected to other regions through
buses. Each region solves its own "slave" sub-problem (sub-problems are solved in par-
allel) and then informs the coordinator about the obtained values of some variables they
have in common. The coordinator then solves the "master" problem, and reports back
to the slave on the value of their common variables. Finally, the slave uses the reported
values to perform its variable updates (note that this is a different step from the one
of solving its sub-problem). The above process repeats iteratively, until convergence is
achieved, i.e., until all pairs of master and slave reach consensus, to a certain degree, on
the values of their common variables.

In the case of ATC, which is based on a multilevel hierarchical model, each entity can
be both a slave and a master, depending on its level in the hierarchy, with any connected
entities of lower levels being its slaves. In the case of ADMM, the problem is divided
into "slave" regions, and all regions respond to a common "master" coordinator. Thus,
ADMM can be seen as a two-level hierarchy. Figure 2.6 provides an indicative schematic.

For both methodologies, the common variables between master and slave, a.k.a the
coupling variables, can be defined as the voltage angles of the buses connecting the two
regions. These coupling variables are used within consistency constrains, which enforce
equal values for these variables between master and slave, in order for convergence to
be achieved. The consistency constrains are then applied to the objective function as
the penalty term, previously defined in the context of ALR. Figure 2.7 gives a visual rep-
resentation of the voltage angles and their role as coupling variables.

It is interesting to note that there is actually a whole family of ADMM-based methods,
such as the classical ADMM, Global Forms Consensus Optimization, Proximal Message
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(a) The two-level structure of ADMM regarding
slave-to-master communication

(b) The hierarchical structure of ATC regarding
slave-to-master communication

Figure 2.6

Figure 2.7: For two regions connected through bus (b,b′), the common variables θb and θb′ are as depicted
per region[2]

Passing etc. A peculiarity of the classical ADMM method is that it decomposes the orig-
inally obtained Lagrangian function, into minimized augmented Lagrangians per sub-
problem, using the Gauss-Seidel method. At each Gauss-Seidel iteration, the minimiza-
tion occurs with respect to the relevant primal variables used in the decomposition, and
the dual variables of the problem are updated using the updated primal variables. On
the other hand, the ATC method follows the traditional approach for decomposing the
original problem using the Lagrangian function.

One advantage of the ATC and ADMM methods is that they exchange very little data
per iteration, and this communication only happens between master and slave. More
sub-problems equates more shared variables and subsequently higher computational
effort, and thus, ATC and ADMM are well-suited for region-based OPF rather than nodal
OPF. Regardless, for convex optimization problems, ATC and ADMM have been proven
to converge to the optimal point[14][8]. An advantage of ATC over ADMM is that, be-
cause of its multilevel hierarchical structure, it is well-suited for power systems with
multiple voltage or management levels. Additionally, it is a more flexible method than
ADMM, the latter only allowing for a second-order penalty function. However, ADMM is
less complex to implement.

Tarek Alskaif and Gijs van Leeuwen[1] propose a novel approach for replacing the
central coordinator required by the aforementioned methods. They resort to using a
blockchain technology known as smart-contracts. A smart contract is a piece of com-
puter code that is deployed on the blockchain and can execute certain functions when
called upon by other agents. In their implementation, parts of the algorithm are moved
to the smart contract, and essential data that is needed by each region for optimization
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is retrieved from the contract. The contract also ensures that all nodes operate simul-
taneously by giving permission to proceed with the next operation only after all regions
have declared completion of the previous section. A drawback to this approach is cre-
ated by the inherent built-in delay in the blockchain verification process, and therefore
the authors suggest use of their algorithm for forecasting purposes, and not real-time
optimization.

PROXIMAL MESSAGE PASSING

PMP is an ADMM-based decentralized OPF method, thus erasing the need for a central
coordinator through message exchange between neighbours. Additionally, an entity in
the network is no longer identified as a region, like in the previous section, but as a device
itself, along with the node that controls it. Hence, PMP applies well to nodal OPF, as
opposed to region-based OPF.

The original objective function, in the case of PMP, is referred to as a prox function,
shown below:

pr ox f ,ρ(v) = argmin
x

( f (x)+ (ρ/2)‖x − v‖2
2) (2.6)

Just like in the case of classical ADMM, the prox function is decomposed, using the
Gauss-Seidel method, into one prox function per sub-problem, but for clarity purposes,
we will be describing the original prox function. Function f (x) is the device’s cost func-
tion, with respect to decision vector x, a vector containing both the primal and dual
variables. Parameter ρ is the tuning parameter for the augmented Lagrangian. The term
v represents the average value of vector x in the other nodes.

The objective of PMP is to minimize the summation of the devices’ objective func-
tions. This is actually a summation of power generation costs and augmented Lagrangian
penalty terms, the latter focused on satisfying the constraints corresponding to the Kir-
choff’s laws for power balance at the buses and the equality of bus voltage phase angles
for the different devices connected to a particular bus. The method proceeds as indi-
cated in pseudocode Algorithm 1: Each node solves its local sub-problem (prox func-
tion), and the resulting values for power generation and bus voltage angles are sent to
the neighbours. Once all neighbouring messages have been received, the node uses
them to perform its penalty-multiplier updates, and checks for convergence based on
the consensus status for the decision variables. If convergence has not been achieved,
the process repeats iteratively, with the penalty-multiplier updates sent to the neigh-
bouring nodes, so that they can be used in solving the local sub-problems again.

In the context of the DC-OPF problem, the decision vector is fully decomposable
across the devices, which renders PMP well-suited for nodal OPF, as mentioned. The
fact that PMP is fully decentralized helps a lot with fine tuning and modification down
to individual-device level, and works well for large-scale, multi-time step dispatch prob-
lems. However, convergence takes a large number of iterations, a limitation mitigated by
the reduced time to solve each sub-problem. Finally, it is worth noting that convergence
rate is highly dependent on the value of the tuning parameter ρ.



2

16 2. LITERATURE REVIEW

Algorithm 1 Proximal Message Passing OPF algorithm

1: Initialize decision variables, penalty-multiplier variables, power/voltage angle vari-
ables.

2: while not convergence do
3: Solve local prox function using penalty-multiplier variables
4: Broadcast updated power/voltage angle variables to neighbours
5: Gather power/voltage angle variables sent to you
6: Calculate updates for decision variables and penalty-multiplier variables
7: Check decision variables for convergence
8: Broadcast updated penalty-multiplier variables
9: Gather penalty-multiplier variables sent to you

10: end while

AUXILIARY PROBLEM PRINCIPLE

APP is a method that can be seen as a mixture of the attributes the previously presented
methods had: It is decentralized, just like PMP, but at the level of regions, not individ-
ual devices, just like ATC and ADMM. Another commonality with ATC and ADMM is
that the messages exchanged contain the bus voltage angles of the connected regions.
However, in this case these messages are exchanged between neighbours, since APP is
a decentralized method. Below are three differences/peculiarities of APP compared to
previously introduced methods:

• APP decomposes the original problem into auxiliary sub-problems through lin-
earization of the cross-terms in the Augmented Lagrangian.

• The bus voltage angle variables of each region are not only those connected to
its end of the bus, θ, but also those at the other end, θ′: in a sense, the coupling
variables θ and θ′ are duplicated. The local updates and convergence checks after
message retrieval now include these additional variables, please refer to the origi-
nal paper[4] for more information on the specifics of this method.

• In contrast to ATC and ADMM, at iteration t , APP uses the values of the coupling
variables received through messages at iteration t −1, and not those of the current
iteration t .

APP has similar advantages and limitations to ATC and ADMM (high computational
effort based on the amount of shared variables, exchange of few data, good for region-
based OPF etc.), but with the difference of not requiring a central coordinator, as it is a
decentralized single-level method.

OPTIMALITY CONDITION DECOMPOSITION

In contrast to the aforementioned solutions, Optimal Condition Decomposition (OCD)
uses the "KKT conditions" decomposition strategy, instead of the "Augmented Lagrangian
Relaxation" strategy. OCD is a decentralized algorithm, operating at the level of regions.
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After the KKT conditions are established, the algorithm works iteratively, and in each it-
eration the variables are updated/each subproblem is solved using a Newton-Raphson
step. Part of each subproblem m consists of coupling constraints, which constraints are
also part of the objective function of each neighbouring region n, with Lagrange multi-
pliers λm for each. All variables associated with boundary buses are also exchanged with
each neighbouring region, and their values are used at the updates of the next iteration
for the receiving region.

Compared to the other solutions, OCD offers a balance of computational effort per
iteration and data exchange with neighbours, but doesn’t shine anywhere in particular,
and can only be used at the level of regions, not individual devices. One major advantage
of this method is the fact that it can be generalized to solve the AC-OPF problem, which
is non-convex.

2.3. THE FUNDAMENTALS OF THE CONSENSUS AND INNOVA-
TION ALGORITHM

In this section, the fundamentals of the C+I method are presented, serving as a back-
bone for the upcoming description of the adapted C+I algorithm in the next chapter.
Firstly, the Karush-Kuhn-Tucker conditions are presented, upon which the C+I method
is based. The description of the C+I method fundamentals follows next, along with a
comparison between this algorithm and the previously presented ones, based on a set of
certain criteria.

2.3.1. KARUSH-KUHN-TUCKER (KKT) CONDITIONS

The KKT conditions strategy is used for optimising non-linear constrained problems. As
mentioned at the beginning of Section 2.2, the strategy takes the Lagrangian function of
the original (nonlinear) optimization problem and applies to it the "Karush–Kuhn–Tucker"
theorem, which states that an optimal solution is obtained by identifying the saddle
points in the Lagrangian function, i.e., the (non-local-extremum) points where the slopes/
derivatives in orthogonal directions are all zero. We can abstractly view the original op-
timization problem as follows:

min f (x) (2.7)

subject to:

hi (x) = 0, ∀i ∈ N (2.8)

g j (x) ≤G j , ∀ j ∈ M (2.9)

g j (x) ≥G j , ∀ j ∈ M (2.10)

The Lagrangian function of this problem would then be defined as follows:
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L (x,λ,µ) = f (x)+ ∑
i∈N

λi hi (x)+ ∑
j∈M

µG
j (g j (x)−G j )+µG

j (−g j (x)+G j ) (2.11)

Based on the "Karush–Kuhn–Tucker" theorem, an optimal solution is only reached
when the following 4 sets of conditions are met:

1. First-order Optimality conditions

∂L

∂x
= 0 (2.12)

∂L

∂λi
= 0, ∀i ∈ N (2.13)

2. Feasibility conditions (–)

3. Complementary slackness conditions

µG
j (g j (x)−G j ) = 0, ∀ j ∈ M (2.14)

µ
G
j (−g j (x)+G j ) = 0, ∀ j ∈ M (2.15)

3. Positivity conditions

µG
j ,µ

G
j ≥ 0, ∀ j ∈ M (2.16)

Vectors λ and µ are called KKT multipliers, or dual variables of the constraints. The
decision variables x are called the primal variables.

2.3.2. CONSENSUS AND INNOVATION: THE FUNDAMENTALS

The Consensus and Innovation method is a decentralized method that can be imple-
mented at both the nodal or the regional level. It utilizes the KKT strategy in order to
establish a set of KKT conditions that each local subproblem needs to satisfy, for the op-
timal solution to be found. Afterwards, a set of variable updates is defined, updates that
take place in every iteration of the C+I iterative algorithm. The updates are formed in
such a way that, eventually, the variables obtain values that ensure the KKT conditions
are satisfied, at which point we claim that convergence has been achieved and the op-
timal solution has been found. The C+I method, as described, was firstly established in
the works of [21] and [10]. It is noteworthy that C+I is inherently different from the ALR
decomposition methods, as, in the former, the KKT optimality conditions are directly
solved through the accumulated effects of the variable updates, while the latter methods
decompose the optimization problem into a smaller subproblem per entity to solve.
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As it can be inferred from the name of the method, the C+I method consists of two
main parts: the consensus part, and the innovation part. The consensus part refers to
the intention for all nodes in the decentralized network to reach consensus on the value
of the Locational Marginal Price (LMP), a term representing the increase in cost per unit
of power. The innovation part refers to the innovative integration of the KKT optimality
conditions into local updates/operations, that take place in order for the former to be
satisfied.

Generally speaking, the C+I algorithm we focus on in this Thesis does offer the ben-
efits that decentralized solutions offer, which were presented at the beginning of Sec-
tion 2.2. Additionally, the algorithm has various advantages and disadvantages of its
own, as indicated by [2]: it can be implemented at both the nodal or the regional level,
allowing for a shift in the balance and trade-off between communication costs and lo-
cal processing requirements. Each iteration of the algorithm is faster than that of the
Lagrangian-based methods, although more iterations are required due the fact that all
of the subproblems are required to reach consensus on the LMP.

Due to the improvements of our adaptation, which is firstly fully established in the
Master Thesis of Pedro Parreira[17], more advantages arise. One advantage results from
an applied practise where, in each iteration, physical measurements such as voltage and
current are locally measured from each device in the network. This effectively elimi-
nates a lot of computational requirements, since the physical network restrictions rep-
resented by some constraints of the problem are trivially satisfied when identifying the
actual state of the electric network. Another advantage of our implementation is that,
while it takes place at the nodal level, which equates greater communication require-
ments, a modification keeps the number of communicated variables low. This modifica-
tion involves some changes in the optimality conditions so that the neighbouring voltage
levels no longer need to be communicated, reducing the amount of communicated vari-
ables by one. Both of the aforementioned practises can be observed in Chapter 3, where
the algorithm is described in detail. Overall, the resulting algorithm is relatively simple
to implement, as it consists mainly of iterative variable updates, information exchange
amongst nodes and collection of information from the physical devices themselves.
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THE CONSENSUS AND INNOVATION

ALGORITHM FOR UNIPOLAR DC
MICROGRIDS: THEORY

This section describes the C+I algorithm for the DC-OPF problem, already introduced in
Section 2.3.2. The presented version of the algorithm was lastly developed by Pedro Per-
reira[17], and was modified/improved by us, wherever mentioned as such in the report.
Firstly, in section 3.1, an overview of the structure of the algorithm is presented. Then, in
section 3.2, we explain the way in which the DC-OPF problem is mathematically mod-
elled under the C+I algorithm. Finally, in section 3.3, the mechanics behind the “droop
control” functionality are explained, which plays an essential role in the effectiveness of
the algorithm.

3.1. OVERVIEW OF THE STRUCTURE: ENTITIES AND COMMU-
NICATIONS

T HIS section describes the general structure of the C+I algorithm for the DC-OPF
problem, in terms of entities and communications. We start off with the fact that

there exist two Layers of components: the Physical Layer and the Cyber Layer. The
Physical Layer represents the actual physical micro-grid, i.e., the converters (generators,
loads) that are connected to each other through electrical lines. Each one of these con-
verters is assumed to have a processing unit attached to it, a unit referred to as a “node”.
The Cyber Layer represents these nodes, which are connected to each other in the same
way their respective converters are connected to their neighbours. As explained in sec-
tion 2.3.2, each of these nodes iteratively performs some variable updates until so-called
"convergence" is achieved, i.e., until the KKT conditions established by using the KKT
strategy are satisfied.
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Figure 3.1: The form of interaction occurring between the Physical and Cyber Layers

Figure 3.1 presents the form of interaction occurring between the Physical and Cy-
ber Layers. There are, actually, two types of communication taking place: Inter-nodal
communication and inter-layer communication. Regarding inter-nodal communica-
tion, the nodes exchange variables that aid them in reaching consensus and achieving
convergence. As for inter-layer communication, each converter sends its physical mea-
surements (voltage/current/power) to its node, which then uses those measurements
to perform its necessary work. Part of this work is to regulate the relationship between
voltage and current, a task referred to as “droop control”. The decided voltage/current
is then communicated back to the converter of the node, in a way that the converter
is instructed on how to act, specifically, how to adjust its voltage, power etc. Different
converters have different capabilities. The results of this behavior are later communi-
cated again back to the node, and the cycle continues until convergence is achieved.
The aforementioned procedure is demonstrated in Figure 3.2.

Figure 3.2: The communication occurring during each iteration of the algorithm (enclosing rectangle), along
with the data exchanged



3.2. ADAPTING THE C+I ALGORITHM FOR THE DC-OPF PROBLEM

3

23

3.2. ADAPTING THE C+I ALGORITHM FOR THE DC-OPF PROB-
LEM

H AVING described the DC-OPF problem and its relevant parameters in section 2.1,
and having introduced the fundamentals behind the C+I method in section 2.3, we

are now ready to explain the way in which the C+I algorithm is mathematically defined
for the DC-OPF problem. We begin by once again presenting the optimization problem,
as it was initially formulated in section 2.1.

min
p

∑
m∈N

Am p2
m +Bm pm (3.1)

pm = um · i s
m = um

∑
n∈Ωm

imn = um
∑

n∈Ωm

Gm,n(um −un), ∀m,n ∈ N (3.2)

imn = ∑
n∈Ωm

Gmn(um −un) ≤ I mn , ∀m,n ∈ N (3.3)

P m ≤ pm ≤ P m , ∀m ∈ N (3.4)

U m ≤ um ≤U m , ∀m ∈ N (3.5)

Constraint 3.2 represents the “power mismatch" equation, that is, the total power
generated at node m is equal to the difference between its total incoming and outgoing
power. The fundamental equations from the Appendix section A.1 can be used to repre-
sent the right-hand side of the constraint as power. Constraint 3.3 ensures that the total
current flowing through a line does not exceed the maximum current limit. Outgoing
current is given a positive sign, while incoming current is given a negative sign. Con-
straints 3.4 and 3.5 ensure that both the power and the voltage generated, respectively,
stay within the appropriate limits.

3.2.1. FORMULATING THE KKT OPTIMALITY CONDITIONS

Given the rules surrounding the formulation of the Lagrangian function in section 2.3.1,
based off the KKT strategy and the specific optimization problem, the Lagrangian func-
tion in this case is formulated as follows.
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L = ∑
m∈N

Am p2
m +Bm pm

+ ∑
m∈N

λm(um
∑

n∈Ωm

Gm,n(um −un)−pm)

+ ∑
m∈N

∑
n∈Ωm

µmn(Gmn(um −un)− I mn)

+ ∑
m∈N

µP
m(pm −P m) (3.6)

+ ∑
m∈N

µ
P
m(−pm +P m)

+ ∑
m∈N

µU
m(um −U m)

+ ∑
m∈N

µ
U
m(−um +U m)

The notations λ and µ are the dual variables of the formulation, with λ being asso-
ciated with the “power mismatch” constraint (3.2), while the µ variables are associated
with the rest of the constraints. Specifically, λ is referred to as the Locational Marginal
Price (LMP), measured in monetary units per Watt (m.u./W ), and it represents the in-
crease in cost per unit of power. Theµ variables represent the violation (or not) of certain
restrictions and constraints, such as the maximum current limit for a bus.

The KKT Conditions can now be derived from the Lagrangian function. The First
Order Optimality conditions are as follows.
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∂L

∂pm
= 2Am pm +Bm (3.7)

−λm +µP
m −µP

m

∂L

∂um
=λm

∑
n∈Ωm

Gmn(um −un) (3.8)

+λmum
∑

n∈Ωm

Gmn − ∑
n∈Ωm

λnunGmn

+ ∑
n∈Ωm

Gmn(µmn −µnm)+µU
m −µU

m = 0

∂L

∂λm
=−pm +um

∑
n∈Ωm

Gmn(um −un) = 0 (3.9)

∂L

∂µmn
= ∑

n∈Ωm

Gmn(um −un)− I mn ≤ 0 (3.10)

∂L

∂µP
m

= pm −P m ≤ 0 (3.11)

∂L

∂µ
P
m

=−pm +P m ≤ 0 (3.12)

∂L

∂µU
m

= um −U m ≤ 0 (3.13)

∂L

∂µ
U
m

=−um +U m ≤ 0 (3.14)

As we can see, the KKT First-Order Optimality conditions are simply the derivatives

of the variables of the Lagrangian function. The only exception is the
∂L

∂um
derivative,

which has been adapted in order for the consensus goal of the algorithm to be achiev-
able.

Next, the Complementary Slackness conditions are presented.

µmn

(
I mn −Gmn(um −un)

)
= 0 (3.15)

µnm

(
−I mn +Gmn(um −un)

)
= 0 (3.16)

µP
m

(
P m −pm

)
= 0 (3.17)

µ
P
m

(
pm −P m

)= 0 (3.18)

µU
m

(
U m −um

)
= 0 (3.19)

µ
U
m

(
um −U m

)= 0 (3.20)
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Finally, the Positivity conditions require all µ variables to be positive. Any µ variable
with a value other than zero signifies a limit that has been violated (e.g. line congestion,
or exceeded voltage upper limit).

µmn ,µnm ,µP
m ,µ

P
m ,µU

m ,µ
U
m ≥ 0 (3.21)

Although the notation is omitted, the KKT conditions apply distinctively per node m
or per line (m,n) in the grid.

Notice that, in the context of the DC-OPF problem, a substitution is possible in the
above conditions: namely, fundamental equation 2 from the Appendix can be used to
replace parameter un with other, local parameters. This substitution is useful, since it
relieves the algorithm of the need to know the external, neighboring voltage un , thus
fewer variables need to be communicated across nodes. However, it is of vital impor-
tance to the algorithm that this substitution is done only after the KKT conditions are
derived, and not on the primal constraints (3.2-3.3). This is because consensus, i.e. the
effectiveness of the algorithm, depends on the existence of the neighboring LMP (λn) in
∂L

∂um
, however, as presented by Pedro Parreira[17], any substitution in the primal con-

straints would result in
∂L

∂um
lacking the neighboring LMP values, thus rendering the

algorithm ineffective. The resulting conditions are presented below, please refer to [17]
for a more detailed presentation of the substitution process.

∂L

∂um
= ∑

n∈Ωm

imn(λm +λn)+um

( ∑
n∈Ωm

Gmn(λm +λn)

)
+ ∑

n∈Ωm

Gmn(µmn +µnm)+µU
m −µU

m (3.22)

∂L

∂λm
= p

∧
m −pm = 0 (3.23)

∂L

∂µmn
= ∑

n∈Ωm

imn − I mn ≤ 0 (3.24)

Furthermore, the substitution could also be applied on the Complementary Slack-
ness conditions, but that is not relevant, since these conditions are indirectly enforced
through the use of the derivatives in the variable updates.

Having performed the above substitution, the only data necessary to be communi-
cated during inter-nodal communication are a subset of the dual variables, specifically,
λm and µmn . As mentioned in section 2.3.2, this constitutes a significant advantage in
terms of the data exchanges required by the algorithm, and it would have not been pos-
sible without the integration of physical measurements in our algorithm.

Since the above conditions will play a significant role in the updates performed at
each iteration of the algorithm, we will be providing an overview of what each condition
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represents. The
∂L

∂um
derivative represents the weighted average of the local and neigh-

boring LMPs, while accounting for congestion issues and voltage limit violations. Given
that, ideally, the LMPs of connected nodes are aimed to be equal, this condition is re-

ferred to as the “consensus" condition. The
∂L

∂λm
derivative is referred to as the “power

mismatch” condition, and it expresses the difference between the power, as measured
directly from the converter by the node (p

∧s
m in node-to-grid communication), and the

so-called power setpoint (p s
m), which is the power variable as used and altered through

the updates of the algorithm. Finally, the
∂L

∂µmn
derivative represents the line conges-

tion.

3.2.2. FORMULATING THE UPDATES PER ITERATION

Having formulated the KKT conditions for the DC-OPF problem, we proceed to define
the variable updates that will be executed at every iteration of the algorithm.

AN UPDATE STRATEGY OVER THE RELATIONSHIP BETWEEN λm AND pm

As mentioned, the λm variable represents the Locational Marginal Price (LMP), is mea-
sured in monetary units per Watt (m.u./W), and it represents the increase in cost per
unit of power. Thus, it is directly related to the power variable. When attempting to es-
tablish update rules for the above two variables, the following goals need to be achieved:
Intuitively, and based on the objective function, most power should be generated from
the cheapest generators. The expensive generators are only supposed to generate power
if all the cheaper ones have reached their maximum generation limits, or if there exist
other limitations, like line congestion. In order to avoid oscillation between the LMP and
power during their updates, Dolaputra[6] proposed an update mechanism that causes
an inter-dependence between the two variables and achieves the aforementioned goals:

Figures 3.3 and 3.4 depict the relationship between the LMP and the power. At each
iteration, either the LMP or the power will be updated, and the other variable will adapt
accordingly. The idea behind the updates is the following: If the LMP is less than the least
possible cost for power generation by a generator, as seen by the cost derivative thresh-
olds on the vertical axis, the generator keeps generating the minimum allowed power
(usually zero). A generator is only allowed to generate (more) power if its LMP reaches
the lower cost threshold. After the LMP equals/exceeds the threshold, the generator will
keep increasingly generating power, until it reaches its maximum power limit, or until
the whole network stabilizes at that LMP. As the power changes, the LMP will vary lin-
early if the generator has a quadratic cost function (Am 6= 0), and will remain constant if
the generator has a linear cost function (Am = 0). If the maximum power limit is reached
but there is still demand (signified by a continuously increasing LMP), the propagation of
LMP will involve another, more expensive generator. The above methodology makes in-
tuitive sense since, in any market, any product (power) sold at price lower than the “set”
price is not worth selling, while a well-priced product whose demand is higher than its
supply will keep having its price increased and more producers (generators) will engage
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Figure 3.3: The relationship between the LMP and the power, for a generator with a linear cost function

in the trade, producers that sell that product at that higher price.

Having described the relationship between the price and power generation for the
generators, it is also important to specify the relationship between the price and power
demand for the loads, in case there is a price involved with consuming power. We will
refer to that price as revenue, as it is of beneficial nature, contrary to the costs. Perhaps
the most important thing to note is that a load will only consume maximum power if the
generators that produce it, produce it at a lower cost than the revenue of consumption,
i.e. if the LMP is less than the least possible revenue of power consumption. The idea
is that a load only requests for more power if producing that amount of power is cheap
compared to consuming it, creating revenue. After the LMP equals/exceeds the lower
revenue threshold, the load will keep decreasing its request for power, until it turns off,
or until the whole network stabilizes at that LMP. Furthermore, similarly to a generator, a
load will allow for propagation of the the LMP at maximum/minimum power consump-
tion, as there may be other loads requesting for power.

Looking at Figures 3.3 and 3.4, we can observe two meaningful regions of variable
behavior. The first one is referred to as the Constant Power Region, where the power
remains constant at its minimum or maximum limit, and the LMP receives a value below
the Minimum Marginal Cost (λm < Bm +2AmP m) or above the Maximum Marginal Cost

(λm > Bm +2AmP m), respectively. The other region is referred to as the Marginal Power
Region, where the power has a value between its limits, and the LMP either remains
constant and equal to Bm (if the objective function is linear) or receives a value between
the Minimum and Maximum Marginal Cost, depending on the value of power.

Going into technicalities, it is worth noting that, at each iteration, the region these
variables belong to is identified by the LMP. That is, there are two cases that can unfold:

1. The LMP dictates that the current region is the Constant Power Region. The power
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Figure 3.4: The relationship between the LMP and the power, for a generator with a quadratic cost function

is then updated to the appropriate limit, and the LMP is updated using its update
equation. If the new LMP is now in the Marginal Power Region, the second case
needs to also be executed.

2. If the LMP dictates that the current region is the Marginal Power Region, the power
is updated using its update equation, and the LMP is updated with a value in be-
tween the Minimum and Maximum Marginal Costs, based on the new value of
the power. If, now, the new value of the power is exceeding or equal to any power
limit, then for one more time, the power is updated to the appropriate limit, and
the LMP is updated using its update equation.
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CONSTANT POWER REGION UPDATE EQUATIONS

The update of the LMP takes the below form, where both derivatives
∂L

∂um
and

∂L

∂λm
are

involved.

λm(l +1) =λm(l )−aλu
∂L

∂um
+aλλ

∂L

∂λm
(3.25)

pm(l +1) = P m (3.26)

aλu = 1/(|Ωm | +1)

um
∑

n∈Ωm Gmn
(3.27)

aλλ = 1×10−5 (3.28)

As mentioned,
∂L

∂λm
represents the “power mismatch”. As presented in the example

scenario A.2 from the Appendix, in the event of power demand from a load, the balance
between the measured and predicted power will be lost, creating the so-called mismatch
and giving the derivative a value, which value will then have an analogous effect on the
new LMP, eventually causing power generation/reduction for any demands to be met.
For example, a positive derivative translates to a measured power output that is higher
than the power setpoint, and so the LMP is increased to encourage power generation.
On the other hand, a negative derivative translates to a measured power output that is
lower than the power setpoint, and so the LMP is decreased to discourage power gener-
ation. Regarding the aλ

λ
tuning parameter, it represents the variation rate of the LMP, i.e.,

how drastically each node is willing to increase/decrease its LMP to match the intended
power output. Setting this tuning parameter too high runs the risk of oscillations and
very reactive behavior, while setting it too low slows the overall convergence rate of the
algorithm. Following past experimentation[6][17], the variation rate was defined as a 1%
variation per kW of power mismatch.

Derivative
∂L

∂um
represents, as mentioned, the consensus part of the algorithm, and

it includes the neighboring LMPs, hence it is also necessary for the LMP update. The
reason the derivative has a disanalogous effect on the new LMP (negative sign) is broken
down and explained in detail by both Parreira[17] and Dolaputra[6], and it is hence omit-
ted from this document. However, for the sake of argument, it is worth remembering that
this derivative represents the weighted average of the local and neighbouring LMPs: at
the absence of congestion and voltage limit violations, this derivative will be positive if
the local LMP is greater than the averaged neighboring ones, and negative otherwise.
Since the attempt is to equalize the LMPs (reach consensus), a positive derivative should
decrease the updated LMP. Through that same explanation, we argue that the tuning
parameter aλu , representing the variation rate of the LMP given the difference in LMP be-
tween this and the neighboring nodes, needs to have a nominator value of 1

|Ωn |+1 , as that
evenly distributes the stabilization efforts between neighboring nodes. This new value
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overrides the previously established value for aλu in Parreira’s work, which failed to take
in account the number of neighbours when evaluating this parameter.

Finally, since the LMP needs to remain the same at the absence of congestion and
losses, the previous LMP is also part of the update equation.

MARGINAL POWER REGION UPDATE EQUATIONS

The update of the power and the LMP takes the below form, where both derivatives
∂L

∂um

and
∂L

∂λm
are involved.

pm(l +1) = pm(l )−ap
u
∂L

∂um
+ap

λ

∂L

∂λm
(3.29)

λm(l +1) = 2Am pm(l +1)+Bm (3.30)

ap
u = 100

um
∑

n∈Ωm Gmn
(3.31)

ap
λ
= 1

(|Ωn | +1)∗2
(3.32)

Derivative
∂L

∂um
is necessary for the power update, just like it was for the LMP update

in the Constant Power Region. This consensus condition is necessary since it describes
the way through which the local and neighboring LMPs relate to and affect the power. In
the case of the LMP update for the Constant Power Region, we explained how a positive
derivative indicates a need for a smaller LMP. Consequently, a smaller LMP indicates a
lesser need for power generation, and thus the consensus derivative also has a disanalo-
gous effect on the new value of power (negative sign). The ap

u parameter represents the
variation rate of the power, given the difference in LMP between this and the neighbor-
ing nodes, and again, following past experimentation[6][17], the value of its nominator
has been defined to be 100, i.e, 100W per “amount of monetary units per power unit”
(W 2/m.u).

As explained in the Constant Power Region section, the “power mismatch” derivative
∂L

∂λm
receives a value upon a detected mismatch, which value is then used to update

the LMP. The same logic described in that section, applies here, but in order to update
the power setpoint instead. Again, a positive derivative indicates a need for power gen-
eration, and vice versa. Regarding the tuning parameter ap

λ
, the logic that applies is a

combination of the cases for aλu and aλ
λ

: Just like aλ
λ

, ap
λ

is a variation rate parameter,
but for the power, and based on the power mismatch. Furthermore, it is also required to
achieve the same goal that aλu is trying to achieve: evenly distributed stabilization efforts.
Thus, a value of 1

|Ωn |+1 would seem fitting, overriding the previously established value in
Parreira’s work. However, because the voltage update, presented in the following section,
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is also contributing to the elimination of the power mismatch, the significance of the ap
λ

tuning parameter is further halved to 1
(|Ωn |+1)∗2 .

Finally, we can observe the LMP update adapting to the new value of power, as it was
initially described by the power and LMP update strategy.

THE VOLTAGE UPDATE

The voltage update, under no congestion in a connected line of the node, is as follows,

with derivatives
∂L

∂um
and

∂L

∂λm
involved once again.

um(l +1) = um(l )−au
u
∂L

∂um
−au

λ

∂L

∂λm
(3.33)

au
u = 5

um
∑

n∈Ωm Gmn
(3.34)

au
λ = 1/(|Ωn | +1)∗2

um
∑

n∈Ωm Gmn
(3.35)

The voltage setpoint, apart from being used in various other updates, is also used to
evaluate the droop curve. As such, and as mentioned in the previous section, it directly

contributes to the elimination of any power mismatch. Thus, both derivatives
∂L

∂um
and

∂L

∂λm
are involved in its update equation, for the same reasons they are involved in the

power update equation. It is worth noting that increasing the voltage helps reduce trans-
mission losses across a line, since a higher voltage requires less current to satisfy the
same amount of power demand. Furthermore, at the start of each iteration, the voltage
setpoint assumes the value of the measured voltage from the grid, and is only updated
after the power and LMP updates are complete.

The au
u tuning parameter is a variation rate parameter for the voltage, given the dif-

ference in LMP between this and the neighboring nodes. A positive derivative indicates
a need for less power generation overall, so there is consequently a need for reducing the
voltage. Following past experimentation[17], the value of its nominator has been defined
to be 5V per “monetary unit per power unit” (V ∗W /m.u.).

The au
λ

tuning parameter represents the variation rate of the voltage given the power

mismatch. As mentioned, the au
λ

tuning parameter splits the necessary work with the ap
λ

parameter: that is, it assumes a nominator of 1
(|Ωn |+1)∗2 in order to collaborate with the

power setpoint in eliminating any power mismatch. However, it performs the opposite
operation on the voltage than the one performed on the power setpoint: Rather than

increasing the voltage, a positive
∂L

∂λm
would cause the voltage setpoint to diminish,

since a lower voltage encourages current flow, and the purpose of this parameter is more
focused on optimal current flow given the power, rather than alternating the power flow
itself.
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In a micro-grid, a line cannot allow an unlimited amount of current. This “maximum
current” limitation is represented by the variable I mn . In the case of line congestion,
the voltage update is performed differently than before, in order to contribute to the
elimination of this issue:

um(l +1) = I mn

Gmn
+un(l ) (3.36)

By utilizing the fundamental equation 4 from the Appendix, we can shape the voltage
update into 3.36, effectively assigning the proper voltage to node m so that the current in
the congested line (m,n) is maximized and kept stable to that I mn limit. If multiple lines
are congested, the neighbor of minimum voltage is selected for the update operation.

Using fundamental equation 2 from the Appendix, update 3.36 is reshaped into equa-
tion 3.37, effectively relieving us of the need to know variable un(l ).

um(l +1) = um(l )+ I mn − imn

Gmn
(3.37)

THE µmn DUAL VARIABLES UPDATE - CONGESTION MANAGEMENT

The µmn dual variables update is presented below.

µmn(l +1) =P
[
µmn(l )+βmn

∂L

∂µmn

]
(3.38)

P⇒µmn(l +1) = 0, if (µmn ∩ ∂L

∂µmn
) ≤ 0

βmn = 5 (3.39)

As stated for all µ variables at condition 3.21, any non-zero value indicates an issue,

in this case, line congestion. This non-zero value can only occur if the
∂L

∂µmn
derivative

is positive, i.e., if the current flowing through line (m,n) is greater than the highest al-
lowed. Even in the case of a positive derivative, the update does not allow µmn to receive
a negative value. Tuning parameter βmn represents the growth rate of the µmn variable,
given the excess current, and has been given a value of 5[17].

The effect of the µmn variable can be demonstrated with a simple example: suppose
line congestion occurs andµmn receives a non-zero value. This change will affect deriva-

tive
∂L

∂um
, and, subsequently, the LMP update 3.25. This will cause the LMP of node m

to decrease and the LMP of node n to increase, limiting power flow in the (m,n) direc-
tion and pushing for power consumption in the (n,m) direction, effectively reducing the
current flowing through line (m,n).



3

34
3. THE CONSENSUS AND INNOVATION ALGORITHM FOR UNIPOLAR DC MICROGRIDS:

THEORY

THE µU
m DUAL VARIABLE UPDATES – VOLTAGE LIMITS

The µU
m dual variables update is presented below.

µU
m(l +1) =P

[
µU

m(l )+βU ∂L

∂µU
m

]
(3.40)

µ
U
m(l +1) =P

[
µ

U
m(l )+βU ∂L

∂µ
U
m

]
(3.41)

βU =βU = 10 (3.42)

The exact same logic that applied for the µmn variables update, applies here as well.
The only difference is that the issue these variables represent is voltage limit violations,

with derivatives
∂L

∂µ
U
m

and
∂L

∂µU
m

calculating the amount of voltage exceeding a limit.

Tuning parameters βU and βU represent the growth rate of the µU
m variables, given the

excess voltage, and have been given a value of 10[6].

THE µP
m DUAL VARIABLE UPDATES – POWER LIMITS

The µP
m dual variables update is presented below.

µP
m(l +1) =P

[
µP

m(l )+βP ∂L

∂µP
m

]
(3.43)

µ
P
m(l +1) =P

[
µ

P
m(l )+βP ∂L

∂µ
P
m

]
(3.44)

βP =βP = 0.5 (3.45)

The exact same logic that applied for the µmn variables update, applies here as well.
The only difference is that the issue these variables represent is power limit violations,

with derivatives
∂L

∂µ
P
m

and
∂L

∂µP
m

calculating the amount of power exceeding a limit. Tun-

ing parameters βP and βP represent the growth rate of the µP
m variables, given the excess

power, and have been given a value of 0.5[6].

In contrast to the rest of the variables, these µP
m variables are not used in any other

update, and thus do not affect the convergence rate of the algorithm. They can, however,
be useful in verifying that the algorithm is functioning as intended.
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3.3. DROOP CONTROL

As discussed in section 3.1, the droop control functionality takes place as part of the work
for a node, and the results of droop control are then communicated to the converter in
order to adjust its behavior. Droop control is essentially the act of defining a droop curve,
such that the converter can optimally set its own power, current and voltage, and the
relationship between them, depending on the specific converter’s capabilities. In our
case, droop control ensures that, whenever there is a shift in either the voltage or the
current, the remaining variable adapts accordingly, and power is maintained stable.

Given that the maximum and minimum current (Im , Im) that a converter allows to
flow through it are known, the form of a droop curve is as presented in Figure 3.5.

Figure 3.5: The form of a droop curve, with its 5 regions of operation

It is possible to identify 5 regions of operation which describe the behavior of the
converter, depending on its own state. When the converter is supplying/demanding
maximum or minimum current, its behavior is mandated by the bright green and blue
lines, respectively. This means that its voltage may change, but the current may not, as
indicated by the horizontal lines. When the converter is at the regions of maximum or
minimum power, i.e., the red and olive-green lines, respectively, both current and volt-
age may change, but their product must remain constant (um · im = pm). Finally, in the
case where the converter is not at any operational limit (points C to F), its behavior is
described by a linear function:
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i s
m = f (u) =−d ∗um + i 0

m (3.46)

where i 0
m is the value of the current when the voltage is equal to one (um = 1), and d is

the so-called “droop slope”. The droop slope d is actually a tuning parameter: the smaller
the slope, the less reactive a converter is to a voltage oscillation, meaning it will provide
less current as compensation for the change, but it will remain more stable against volt-
age oscillations on the network. On the other hand, a higher droop slope means that a
node will compensate more for power imbalances, but it will be more susceptible to os-
cillation problems. In our implementation of the C+I algorithm, the droop slope is kept
constant per device, in all regions of operation, after experimentally identifying a droop
slope that provided a good trade-off between reactiveness and stability.

3.3.1. THE OBJECTIVE OF DROOP CONTROL

Apart from indirectly aiding towards the convergence of the algorithm, the establish-
ment of a droop curve also helps a converter preserve stability. The objective of droop
control is demonstrated in Figure 3.6.

Figure 3.6: A demonstration of the droop curve being redefined

Let us describe the example of Figure 3.6. Suppose a converter is capable of altering
its current. If the local voltage automatically increases (transition from red dot to hollow
red dot), it is indicated that, somewhere in the network, more power is being generated
than consumed. If no droop control was present, the power output of that node would
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eventually increase, possibility worsening the network instability. However, with droop
control present, the converter is instructed to maintain its current in accordance with
the droop curve, and so it will lower its current to match that curve (green dot). Based on
the observed events, the droop curve established by the algorithm for the next iteration
could be thought of as the gray line, with the gray dot being the new optimal voltage-
current setpoint.

3.3.2. DROOP CONTROL PER OPERATION REGION

Let us now describe the behavior of a converter for each of the regions, based on our al-
gorithm. It is important to note that we assume constant power and current limits, that
do not change over time. Additionally, for simplification purposes, and since our exper-
imental setup does not suffer from such limitations, our algorithm does not account for
the maximum and minimum current regions. The way they can be handled, however,
will be briefly explained.

OPERATING WITHIN THE LIMITS – LINEAR REGION

As mentioned, the goal in this region is to define an optimal droop curve, so that the
converter can be instructed to properly adjust its power generation. In order to define a
droop curve, two variables need to be defined, as seen from equation 3.46: droop slope
d and constant i 0

m . If we look at that linear equation of the droop curve and at Figure 3.6,
we can observe that the droop slope d describes the variation rate of the current, with
regards to any change in the voltage. Therefore, it can be written as

d =−∆i s

∆u
(3.47)

where∆i s is the range between the maximum and minimum possible current for the
converter, given the voltage deviation, and ∆u is the maximum voltage deviation that
the converter can experience. Based on the above definitions, it holds that

i s = p s /u, i s = p s /u (3.48)

where u and u are the maximum and minimum possible voltages that can occur,
given the voltage deviation. u and u are to be defined by the algorithm in order for an
optimal droop slope d to be defined, and, consequently, the droop curve. The droop
slope can then be rewritten as

d =
p s /u −p s /u

∆u
(3.49)

A proper and realistic range of voltage deviation ∆u must also be defined. In accor-
dance with DC standardization discussions, in order to decrease power output from the
maximum to the minimum limit, i.e., ∆p s = P

s
m −P s

m , and vice versa, it would require
a voltage deviation of 10V , i.e., ∆u = 10V . In other words, if a load is requesting power
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from a generator of zero power output, a 10V variation in voltage between the two can
cause the generator to switch to producing maximum power for the load. Consequently,
it needs to be ensured that variables u and u have a difference of 10V . The value of
∆i s per device is discussed in Chapter 5, where it is more relevant. Our choice of values
creates a steep slope that is both reactive to power imbalances, and resistant enough to
oscillation problems.

Based on 3.1, the linear equation of the droop curve is reformulated as follows

i 0
m = i s

m(l +1)+d ∗um(l +1) = p s
m(l +1)

um(l +1)
+d ∗um(l +1) (3.50)

and, after the droop slope d has been calculated, the local variable updates p s
m(l + 1)

and um(l +1) are used to generate i 0
m . It is important to note that if either um(l +1) >U m

or um(l + 1) < U m , variable um(l + 1) is set to the value of the exceeded limit. A more
visual representation of the procedure used to derive i 0

m from the defined droop slope
and power/voltage setpoints can be seen in Figure 3.7.

Figure 3.7: A representation of the procedure used to derive i 0
m from the

defined droop slope d and power/voltage setpoints ps
m (l +1) and um (l +1)

OPERATING AT THE MAXIMUM OR MINIMUM CURRENT REGION

So far, we have been referring to the node as a computational unit representing a con-
verter. If that computational unit is actually a Power Electronics (PE) interface, then we
are given the ability to safeguard the converter against extreme scenarios. In other words,
the PE interface can arbitrarily determine the current or power of the converter in order



3.3. DROOP CONTROL

3

39

to protect it. In the case of a converter experiencing maximum or minimum current, the
converter is arbitrarily set, by the PE interface, to exert maximum/minimum current,
and the voltage is allowed to vary naturally on its own. Once a power limit is reached, we
apply the reasoning for the maximum and minimum power regions.

OPERATING AT THE MAXIMUM OR MINIMUM POWER REGION

The main objective here is to safeguard the integrity of the converters, while also keep-
ing the algorithm optimal. In order to achieve both safety and optimality, the variables
u and u can be employed as so-called "soft and hard voltage thresholds", respectively,
for both the maximum and minimum power regions. These thresholds can be seen as a
subdivision of each operation region into three sub-regions. For example, when in the
minimum power region, the converter should not interfere with the provided minimal
power, unless the local voltage is under the defined hard threshold. This is necessary be-
cause, in the opposite case, small voltage oscillations over the soft threshold would cause
the converter to alternate between turning on and off during this “confusion”, greatly in-
creasing the overall costs.

Our implementation and setup bypasses the concerns expressed above, disabling a
device from completely turning off when at zero power. Thus, the values of u,u, and,
consequently, of the droop slope d , remain the same as they were in the linear region of
droop control.





4
THE CONSENSUS AND INNOVATION

ALGORITHM FOR UNIPOLAR DC
MICROGRIDS: IMPLEMENTATION

AND TECHNICAL DETAILS

41



4

42
4. THE CONSENSUS AND INNOVATION ALGORITHM FOR UNIPOLAR DC MICROGRIDS:

IMPLEMENTATION AND TECHNICAL DETAILS

This chapter is dedicated to describing the design considerations and technical de-
tails behind our implementation of the OPF algorithm. Section 4.1 describes the physical
components that we used to set up the network and the algorithm. Sections 4.2 and 4.3
focus on the way inter-nodal and inter-layer communication were practically achieved.
Finally, Section 4.4 presents a diagram that provides a clearer, visual representation of
the implementation and the relevant processes.

4.1. PHYSICAL SETUP: NODES AND GRID COMPONENTS

The OPF algorithm can only be utilized given that the devices of the network can be cal-
ibrated, in terms of power, voltage or current, and that those attributes can be effectively
measured. As a result, the decision was to use Power Circuit Boards (PCB), designed by
DC Opportunities, on devices that were compatible with such equipment and provided
those capabilities. Each PCB had an ESP32 micro-processor attached to it, which was
acting as the node of the device, as defined is section 3.1.

Regarding the devices themselves, two types of devices were used, one acting as a
generator, and another acting as a load. The Mean Well CSP-3000 Power Supplies were
used as generators, while custom LED lights were used as loads. These devices were
connected to each other through power cables, forming the electric network.

Having described the specific devices and components used for the setup, we may
now proceed to describe how the inter-nodal and inter-layer communication was im-
plemented.

4.2. INTER-NODAL COMMUNICATION

Regarding inter-nodal communication, the ESP32s controlling each device use their WIFI
capabilities to establish a connection with an Access Point (AP) and then communicate
with neighbouring ESP32s using the UDP communication protocol. While UDP com-
munication is faster than TCP communication, it runs the risk of lost data. Hence, in
each iteration of the algorithm, if data are not received within a time limit, either be-
cause they were lost or because the timeout was reached, then the node expecting that
data uses the data received in the last iteration instead. By establishing an appropriate
time limit, it can be ensured that the effectiveness of the algorithm is not harmed by the
amount of data lost during inter-nodal communication.

4.2.1. NEIGHBOUR DISCOVERY

In order for a node to communicate with its neighbours, it has to know who these neigh-
bours are, a process known as "neighbour discovery". Even though the devices them-
selves are physically connected through an electric cable, that does not provide a way
for the ESP32 controlling one device to somehow know which ESP32 is controlling the
neighbouring device. Thus, a method for "neighbour discovery" had to be devised.

One idea we came up with was to infer the distance between ESP32s using signal
strength; it is quite reasonable to assume that the neighbouring devices of a node are
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closer to it than its non-neighbouring ones. The ESP32 possesses Bluetooth technology,
and it is possible to infer distance using Bluetooth signal strength[5][11], however, there
are quite a lot of disadvantages that make it ineffective in our case, such as flight path
interference, emission power, receiver sensitivity, and noise in the measurements. Blue-
tooth can be used, however, where accuracy is of low priority, and where low power con-
sumption and low implementation cost is of higher importance. In the opposite case,
using WIFI signal strength is a much better alternative. Specifically, a special method
often-used is called "WIFI fingerprint positioning", where the Received Signal Strength
Indication (RSSI) of each device from the AP is collected, and then a strategy is used to
estimate the distance between two devices by using their RSSIs. Some of the available
strategies include k-nearest neighbour techniques[16], random forest learning[22], and
supervised machine learning[23]. Eventually, we decided that the complexity involved in
using WIFI fingerprint positioning for neighbour discovery was unnecessary, compared
to the custom solution we devised next.

The neighbour discovery method we eventually adopted involved a central coordi-
nator, i.e. a server, that would be aware of the network layout and the neighbours of
each device. Of course, since our OPF algorithm is decentralized, the centralized server
is only used during the initialization phase so that we avoid having to configure each
ESP32 separately. During the initialization phase of the algorithm, each ESP32 contacts
the server and informs it of two things: its MAC address and its IP address. The server,
being aware of the MAC address corresponding to each node, informs that node about
the IP addresses of its neighbours. The server also provides the necessary initialization
data for the algorithm.

4.3. INTER-LAYER COMMUNICATION

Inter-layer communication depends heavily on the specifics of each device in question.
The Mean Well CSP3000 Power Supplies used as generators can only have their voltage
levels configured, and that is possible through Pulse-Width Modulation (PWM) signals.
Hence, the node-to-grid direction of communication occurs through the use of PWM
signals and duty cycles. As for the grid-to-node direction of communication, it occurs
through Analog-to-Digital Conversion (ADC) measurements, retrieving the device’s volt-
age and current levels and, by extension, its power levels. As for the LED lights used as
loads, both directions of communication utilize a microcontroller on their PCB, acting as
a mediator between the ESP32 and the LED light. Through the microcontroller, the cur-
rent levels of the LED light can be configured, while the measurements retrieved include
the voltage and current levels and, by extension, its power levels.

4.4. DIAGRAM OF IMPLEMENTATION

The basics behind the technical implementation of the algorithm have been explained,
and diagram 4.1 can now provide a clearer, visual representation of the whole process.
Since the algorithm itself has already been explained in detail in chapter 3, we will only
be making a few points about the diagram that indicate any innovation in its architec-
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ture:

Figure 4.1: The diagram of our implementation of the OPF algorithm

• The implementation consists of 3 parallel sets of processes: the central set is re-
sponsible for running the algorithm itself, and it is the common set of processes
that all devices run upon initialization of the algorithm. The other 2 sets are ded-
icated to one type of device each, and are responsible for the inter-layer commu-
nication occurring between the node and the device it controls.

• The set of processes responsible for the power supply continuously runs PID con-
trol in order to regulate the voltage and keep it stable across varying current levels.
The PID control receives its feedback from a parallel process that continuously up-
dates the measured voltage levels. In order for the PID control to avoid the slow
transition from one voltage level to another, when the difference between the two
is big, we incorporated a voltage-to-duty-cycle function into the process, that we
created through interpolation. The function approximates the intended voltage,
and then the PID control takes over, performing small, controlled steps in order to
smoothly reach the intended voltage level.
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• Whenever a new voltage setpoint is decided by the algorithm (VOPF ), it is re-evaluated
through droop control based on the theoretical current setpoint, producing the
theoretical voltage setpoint VSET . The PID control process is then responsible to
make sure that the voltage setpoint is met fast and steadily, but while also apply-
ing its own droop control to re-evaluate the theoretical voltage setpoint based on
the actual current levels. For both applications of droop control, the appropriate
droop curve is used, the one that has been established by the algorithm.

• The set of processes responsible for the LED light continuously retrieve the voltage
and current measurements through a UART channel, connecting the ESP32 and
the microcontroller, the mediator. Similarly to the case of the power supplies, the
current setpoint decided by the algorithm (IOPF ) is re-evaluated through droop
control based on the theoretical voltage setpoint, producing the theoretical cur-
rent setpoint, which is eventually also re-evaluated based on the retrieved actual
current levels, resulting in ISET .

• The algorithm achieves fast execution through the parallel coordination of the
aforementioned processes. The "ADC measurements collection" process repeat-
edly runs with intervals of 1ms, with the "Voltage regulation" process running with
2ms intervals to ensure that at least one new set of measurements has been col-
lected before its next run. The "UART communications" process also runs with
a 1ms interval. Furthermore, the fact that all the grid measurements are contin-
uously collected in parallel to the algorithm ensures that there is zero delay be-
tween the moment the algorithm requests the latest measurements and the mo-
ment they are available for retrieval, i.e., zero delay during grid-to-node commu-
nication. This delay has been a concern in the work of Pedro Parreira[17], who last
worked on the simulated algorithm, and it has been effectively eliminated in this
implementation of it. Another concern in the work of Parreira was the possible loss
of data during inter-node communication. Specifically, Parreira attempted to give
timeouts of 300ms and 500ms to the inter-node communication process, but none
of them were sufficient; each iteration took quite longer to complete, because of
the time required to simulate the grid, resulting in a non-converging algorithm.
Hence, he decided to have no timeouts and simply artificially dismiss 25% of the
communication, which rendered the algorithm functioning and converging again.
In our case, we impose a 250ms timeout to the inter-node communication, which
has been shown to cause less than 5% of the communication data to be lost, and
our algorithm remains effective. Thus, both the timeout and data loss aspects of
the inter-node communication have been improved.
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In this chapter, we present some case studies with the purpose of demonstrating the
effectiveness of the algorithm under various different scenarios. The chapter is split into
3 sections, where Section 5.1 is concerned with 2-node networks of one generator and
one load, and Section 5.2 focuses on 3-node networks of two generators and one load. In
Figure 5.1, we can see the two Mean Well CSP3000 power supplies used as the generators,
and the LED light used as the load. Section 5.3 shares some concluding remarks.

(a) The two Mean Well CSP3000 power supplies, in their
cabinet

(b) The LED light that the two power supplies are
connected to

Figure 5.1: The two Mean Well CSP3000 power supplies used as the generators, and the LED light used as the
load

5.1. ONE GENERATOR AND ONE LOAD

The setup consists of one Mean Well CSP3000 power supply and one LED light, con-
nected to each other. Since we experienced quite a lot of current fluctuations at very
low current levels, we added some extra resistance in the connection between the two
devices, having the initial current start at about 1.25A.

Both the power supply and the LED light initialize their voltage levels at um = 350V ,
with a lower voltage limit of U m = 340V and an upper voltage limit of U m = 360V . At the
start of the algorithm, all generators must be off, i.e., pm = 0W , and have a lower power
limit of P m = 0W and an upper power limit of P m = 3000W . As for the LED light, we ini-
tialize its lower power limit to P m =−85W because, by construction, the maximum cur-
rent that it can achieve is just shy of 0.250A, and because the lower voltage limit is 340V .
Note that we care about the lower voltage limit when deciding the maximum power de-
mand, not the upper one, because we want the power demand to be satisfiable in any
voltage range, with the algorithm deciding what the optimal voltage is for optimality, not
by necessity. The cost coefficients Bm = 0 and Am = 0 were assigned to the LED light,
meaning there is no cost function related to power consumption, and the load will al-
ways request for full power. As a result, the upper power limit is also set to P m =−85W .
The power demand at initialization is pm = −85W , since all loads request full power at
startup. The cost coefficients Bm = 3.0 and Am = 0 were assigned to the power supply.
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EXPERIMENT 1 - NORMAL

In this first experiment, we aimed to observe how the power supply starts providing
power to the LED once it enters its Marginal Power Region. With this first experiment,
we also aimed to test the speed of our implementation in terms of iterations per second.
The results of the first experiment are presented in Figure 5.2.

Looking at the graph of the current, we can observe that the current of the power
supply starts at 1.25A and slowly increases, because of the resistors in the line heating
up. The current of the LED light starts at the maximum possible 0.25A. The equivalent
behavior occurs with the measured power from both devices. Unfortunately, by con-
struction of the network, the requested current is immediately satisfied by the network,
even though the power setpoint pm of the power supply is still at zero. This unwanted
behavior is eliminated in later, larger experiments with different setups. Regardless, once
the LMP of the power supply reaches its lower threshold, Bm = 3, the power supply starts
supplying the power needed to match the currently measured power in the network,
and the LMP stabilizes, since the power generated has not reached the upper limit. The
reason the LMP does initially increase is mainly attributed to the power mismatch con-
stantly experienced by the power supply due to the added resistance, and not so much
on the power request by the LED light, as the latter is immediately satisfied. This is also a
reason the LMP grows relatively slowly, reaching the lower threshold within 10 seconds.
It is worth noticing that the LMP of the LED light also stabilizes, as a result of the power
supply LMP holding it down to its level.

The voltage level of the power supply drops to the lower limit, 340V , and the voltage
of the LED light follows accordingly. This occurs because the voltage has a tendency to
drop when there is a request for power or increasing current, to allow for that to happen.

Finally, we can observe that the algorithm performs about 500 iterations in a mat-
ter of 10 seconds, which translates to about 50 iterations per second. We consider this
quite a good speed, given that the best indication of the algorithm’s hypothetical optimal
speed comes from the simulated algorithm in Pedro Parreira’s work[17], where the sim-
plest 2-3 node networks have a runtime of 12 seconds for 500 iterations; with about 8 of
those seconds being attributed to the simulation of the grid mechanics, we are left with
4 seconds for the actual algorithm, coming down to 125 iterations per second. If we do
not optimistically leave out the time for simulating the grid, we end up with 40 iterations
per second, which is less than the speed achieved by our implementation.

EXPERIMENT 2 - LED LIGHT TURNS ON HALFWAY THROUGH

The next experiment with this setup involved having the LED off and only turning it on
halfway through the process, to observe the impact this shift in power demand would
have on the algorithm. The results of the experiment are presented in Figure 5.3.

We can see that the results are similar to the previous experiment, only this time, the
LMP starts growing only once the LED turns on, at about 40 seconds into the process.
This happens because, although in the beginning there is still a power mismatch that
drives the LMP of the power supply up, the LMP of the LED light remains at zero, and
thus pushes the power supply LMP down with it. Furthermore, the moment the LED
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light turns on, we see a sudden spike in the measured power, current and voltage, all of
which stabilize immediately as the power demand is satisfied.

EXPERIMENT 3 - P m = -40W FOR THE LED LIGHT

This next experiment shown in Figure 5.4 is the same as the last one, only the power de-
mand of the LED has been halved, down to P m = 40W . The purpose of this experiment is
to verify that the power demand can be adjusted as desired, with the algorithm behaving
in the same way.

Indeed, aside from the difference in the power setpoint, measured power and mea-
sured current, the rest of the data remains the same.

EXPERIMENT 4 - I mn = 1.5A

The next experiment, Figure 5.5, is identical to the second experiment, only the upper
current limit of the line between the power supply and the LED light has been artificially
capped to I mn = 1.5A. The purpose of this experiment is to observe the different behav-
ior of the algorithm in case there is current congestion in a certain line.

Because the change is artificial, we can observe the current growing past that 1.5A
limit, however, the moment the limit is reached (around the 30sec mark), the dual vari-
able for the line current in that direction, µmn , starts growing. Since the line experiences
no relief, the dual variable keeps growing, giving more weight to the LMP of the LED
light. As a result, the LMP of the LED light manages to "escape" the other LMP, which
can no longer hold it down to its level. This is desirable behavior because, in the case of
current overflow in a line, we want the receiving end to consume or pass on that current,
and the sending end to lower its current output so that the current in the line is limited
back to acceptable levels. By having the LMP of the receiving end increase, and the LMP
of the sending end decrease, we are trying to achieve exactly that.

EXPERIMENT 5 - Bm = 2.0 AND Am = 0 FOR THE LED LIGHT

In the next experiment, Figure 5.6, we actually gave a cost function to the load, with cost
coefficients Bm = 2.0 and Am = 0. This also requires us to switch the upper power limit to
P m = 0W , so that the LED light can turn off if consuming any power is impractical. The
experiment is otherwise identical to the first experiment, but now that the load actually
has a cost function, we expect it to eventually turn off once its LMP exceeds the upper
threshold of its cost derivative, Bm = 2.0.

We can observe that, at about the 10sec mark, the LMP of both the devices reaches
value λm = 2.0. At that moment, and being a load with a linear cost function, the LED
light immediately turns off, as the LMP keeps growing towards the lower threshold of
the power supply, where it stabilizes. Counter-intuitively, the power supply does start
and keeps providing power even though the LED is now off, because of its own power
mismatch that is it experiencing due to the added resistance, that keeps its LMP high.
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(a) Locational Marginal Price (λ) (b) Iterations

(c) Voltage setpoint (um ) (d) Measured Current (imn )

(e) Measured power (f) Power setpoint (pm )

Figure 5.2: The value of various variables over time (ms)
Experiment 1 - Normal
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(a) Locational Marginal Price (λ) (b) Measured voltage

(c) Voltage setpoint (um ) (d) Measured Current (imn )

(e) Measured power (f) Power setpoint (pm )

Figure 5.3: The value of various variables over time (ms)
- Experiment 2 - LED light turns on at the 40sec mark
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(a) Locational Marginal Price (λ) (b) Measured voltage

(c) Voltage setpoint (um ) (d) Measured Current (imn )

(e) Measured power (f) Power setpoint (pm )

Figure 5.4: The value of various variables over time (ms)
Experiment 3 - P m =−40W for the LED light
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(a) Locational Marginal Price (λ) (b) Dual variable for line current (µmn )

(c) Voltage setpoint (um ) (d) Measured Current (imn )

(e) Measured power (f) Power setpoint (pm )

Figure 5.5: The value of various variables over time (ms)
- Experiment 4 - I mn = 1.5A
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(a) Locational Marginal Price (λ) (b) Measured voltage

(c) Voltage setpoint (um ) (d) Measured Current (imn )

(e) Measured power (f) Power setpoint (pm )

Figure 5.6: The value of various variables over time (ms)
- Experiment 5 - Bm = 2.0 and Am = 0 for the LED light
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5.2. TWO GENERATORS AND ONE LOAD

The setup consists of two Mean Well CSP3000 power supplies and one LED light, with
each power supply connected only to the LED light. Having performed some hardware
upgrades, the current fluctuations experienced in the previous set of experiments no
longer existed, and thus there was no need for the extra resistance this time around.
This change also affected the growth rate of the LMP, which made us change the cost
coefficients of each device from integer values to decimals between 0 and 1. Finally, it is
worth noting that the graphs depicted as "Line Current i" present the current measured
at the line connecting that device to its "i"th neighbour.

Both the power supplies and the LED light initialize their voltage levels at um = 350V ,
with a lower voltage limit of U m = 330V and an upper voltage limit of U m = 370V . At the
start of the algorithm, all generators must be off, i.e., pm = 0W , and have a lower power
limit of P m = 0W and an upper power limit of P m = 3000W . As for the LED light, we
initialize its lower power limit to P m =−165W because, by construction, the maximum
current that it can achieve is just shy of 0.5A, and because the lower voltage limit is 330V .
The cost coefficients Bm = 0 and Am = 0 were assigned to the LED light, meaning there is
no cost function related to power consumption, and the load will always request for full
power. As a result, the upper power limit is also set to P m =−165W . The power demand
at initialization is pm = −165W , since all loads request full power at startup. The cost
coefficients Bm = 0.03 and Am = 0 were assigned to the first power supply, and Bm = 0.06
and Am = 0 to the second one.

NORMAL

In this first experiment, we simply aim to observe only the cheap power supply provide
the requested power. The results of the first experiment are presented in Figure 5.7.

At startup, similarly to the case of the previous set of experiments, the power de-
mand is immediately satisfied by the joint and balanced efforts of the two power sup-
plies. This can be observed through the graphs of the two line currents, the measured
current and the measured power. Once the lower threshold of the cost derivative for the
cheap power supply (orange line) is reached, the LMP stabilizes, and the cheap power
supply is instructed to provide a constant amount of power to satisfy the power demand.
Unfortunately, the actual power and current flow in the network does not shift, because
of the voltage equivalence that naturally occurs between the power supplies. This be-
havior can be altered by artificially manipulating the voltage difference between the two
generators, as we will see in a later experiment. As of this point, however, the experiment
fails to show the cheap power supply take over the power generation, and only presents
that the algorithm instructs it to do so.

LED LIGHT TURNS ON AT THE 27SEC MARK

This experiment, seen in Figure 5.8, is identical to the last one, with the only difference
being that the LED light is turned on at about 27 seconds into the experiment, where
both power supplies transition from supplying no power to providing a balanced amount
each for the LED light.
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CHEAP GENERATOR HAS A LOWER VOLTAGE LIMIT OF 350V

For this experiment, Figure 5.9, we set the lower voltage limit of the cheap power supply
(orange line) to U m = 350V , instead of the previous value of 330V . This twitch has the
purpose of showing how a voltage difference between the two power supplies can give
priority to one power supply over the other, when it comes to power generation.

We can now observe that, once the LED light turns on at about 17 seconds, the cheap
power supply starts providing all the necessary power, with the other power supply stay-
ing off, something caused by the voltage difference established. And when the LMP
reaches the lower threshold of the cost derivative of the cheap power supply, the cheap
power supply is instructed to provide the full power required, after which the system
converges.

P m = 50W FOR THE CHEAP GENERATOR

This experiment, Figure 5.10, focuses on showing how the expensive power supply also
contributes to power generation, if the cheap one can not satisfy the full power demand.
For that purpose, we set the upper power limit for the cheap power supply to P m = 50W .

We can observe that, even though the Bm = 0.03 threshold of the cheap power supply
is reached by the LMP, the algorithm notices that it cannot provide the 75-80W required,
and so the LMP keeps growing, reaching the threshold of the second power supply, which
contributes along with the first power supply towards the total power generation.

I 23 = 0.15A

This experiment, Figure 5.11, focuses on artificially limiting the maximum current that
can pass through the line connecting the expensive power supply to the LED light, so
that the efforts of eliminating that overflow can be observed. Hence, we set I 23 = 0.15A.

Although the LMP of the LED light reaches the threshold of the cheap power supply,
the overflow of current drives it so high that the LMP of the cheap power supply cannot
keep it to its level anymore. Additionally, the LMP of the expensive power supply keeps
being pushed down and remains at zero. This is the expected behavior, since, in any
overflown line, the power at the origin-side of the current is limited, while the power
consumption at the receiving end is increased, in order to relieve the line of the excess
current. Finally, we can observe the voltage growing and reaching the upper limit for the
first time, since there is a non-stop push for relief of the overflown line, something that
never occurs because it is an artificial change.

DYNAMICALLY CHANGING POWER DEMAND

The experiment shown in Figure 5.12 simply had the purpose of showing that power
demand can be manipulated at random times, and that the system appropriately adjusts
to these changes.

As we can see from the graphs of the power setpoint and measured power/current,
whenever the power demand changes (green line), so does the instructed power by the
algorithm, and so does the provided/measured power and current.



5

58 5. CASE STUDIES

DYNAMICALLY CHANGING COST

For this final experiment, Figure 5.13, we waited until the LMP had stabilized at the lower
threshold of the cheap power supply, and then, at the 20th second, we changed the cost
coefficient of that power supply from Bm = 0.03 to Bm = 1. The idea is to watch the
cheap power supply, that has now turned into an expensive one, to give up all power
generation, and for the LMP to increase, reaching the next-best power supply, which
now takes over the power generation.

Indeed, our move caused the LMP to be freed from its stable state, the power setpoint
of the cheap power supply went down to zero, and the power generation was taken over
by the expensive power supply, at the same power setpoint initially set for the cheap one.

5.3. CONCLUDING REMARKS

We have tested out various scenarios on the 2 and 3-node setups, verifying that the al-
gorithm is indeed working as expected. We have also achieved fast algorithm execution,
with a rate of about 50 iterations per second, and identified that the growth rate of the
LMP is the biggest factor affecting convergence time. Due to our setup, we have not man-
aged to demonstrate that the power flowing through the network is directly affected by
our algorithm, which was an important goal of ours; that achievement is demonstrated
in a future chapter, using the same algorithm on a larger, more appropriate setup.
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(a) Locational Marginal Price (λ) (b) Voltage setpoint (um )

(c) Line Current 1 (d) Line Current 2

(e) Measured Power (f) Power setpoint (pm )

(g) Measured Current (h) Measured voltage

Figure 5.7: The value of various variables over time (ms)
- Experiment 1 - Normal
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(a) Locational Marginal Price (λ) (b) Voltage setpoint (um )

(c) Line Current 1 (d) Line Current 2

(e) Measured Power (f) Power setpoint (pm )

(g) Measured Current (h) Measured voltage

Figure 5.8: The value of various variables over time (ms)
- Experiment 2 - LED light turns on at the 27sec mark
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(a) Locational Marginal Price (λ) (b) Voltage setpoint (um )

(c) Line Current 1 (d) Line Current 2

(e) Measured Power (f) Power setpoint (pm )

(g) Measured Current (h) Measured voltage

Figure 5.9: The value of various variables over time (ms)
- Experiment 3 - Cheap generator has a lower voltage limit of 350V
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(a) Locational Marginal Price (λ) (b) Voltage setpoint (um )

(c) Line Current 1 (d) Line Current 2

(e) Measured Power (f) Power setpoint (pm )

(g) Measured Current (h) Measured voltage

Figure 5.10: The value of various variables over time (ms)
- Experiment 4 - P m = 50W for the cheap generator
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(a) Locational Marginal Price (λ) (b) Voltage setpoint (um )

(c) Line Current 1 (d) Line Current 2

(e) Measured Power (f) Power setpoint (pm )

(g) Measured Current (h) Measured voltage

Figure 5.11: The value of various variables over time (ms)
- Experiment 5 - I 23 = 0.15A
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(a) Locational Marginal Price (λ) (b) Voltage setpoint (um )

(c) Line Current 1 (d) Line Current 2

(e) Measured Power (f) Power setpoint (pm )

(g) Measured Current (h) Measured voltage

Figure 5.12: The value of various variables over time (ms)
- Experiment 6 - Dynamically changing power demand
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(a) Locational Marginal Price (λ) (b) Voltage setpoint (um )

(c) Line Current 1 (d) Line Current 2

(e) Measured Power (f) Power setpoint (pm )

(g) Measured Current (h) Measured voltage

Figure 5.13: The value of various variables over time (ms)
- Experiment 7 - Dynamically changing cost
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This chapter introduces a way of modifying the C+I algorithm, so that a node may
now be in control of more than one devices, essentially turning the problem from nodal
OPF to region-based OPF. The C+I algorithm cannot be trivially extended to support re-
gion OPF, because of some new challenges that arise: If the amount of communication
is to remain the same, then the LMP of one region is responsible for dictating the behav-
ior of not one, but multiple devices, which involves questions like "how to update the
total power and power per device, based on a single LMP value?", and "based on which
device’s cost coefficients will the new value of the LMP depend on?".

The incentive for this modification came when we considered a specific device as
a load in our network: a metal plate with two types of LED lights installed on it, one
with a warm color and another with a bright white color. The two LED lights could be
manipulated separately through the same PCB, which lead to the idea of coming up with
an appropriate algorithm for this kind of device.

Section 6.1 describes the modified algorithm, while section 6.2 provides case studies
that verify its effectiveness. Section 6.3 shares some concluding remarks.

6.1. THE MODIFIED ALGORITHM

We begin by explaining how the original, nodal OPF model of the C+I algorithm is mod-
ified when transitioning to a region-based OPF model. We then proceed to describe the
new KKT conditions that are introduced to the problem, the way the variable updates
are affected, and the additional challenges that arise as a result. Finally, we explain the
approach taken in order to solve these issues.

6.1.1. THE NEW OPTIMIZATION PROBLEM

The optimization problem from section 2.1 is now modified as follows:

min
p

∑
m∈N

∑
s∈Sm

Ams p2
ms +Bms pms (6.1)

pm = ∑
s∈Sm

pms = um i̇ s
m = um

∑
n∈Ωm

Gm,n(um −un), ∀m,n ∈ N (6.2)

imn = ∑
n∈Ωm

Gmn(um −un) ≤ I mn , ∀m,n ∈ N (6.3)

P m ≤ pm ≤ P m , ∀m ∈ N (6.4)

P ms ≤ pms ≤ P ms , ∀m ∈ N (6.5)

U m ≤ um ≤U m , ∀m ∈ N (6.6)

Essentially, the only necessary modification was the addition of power variables pms

for each device s within a node m, something that the original power variables were not
accounting for. The original power variables pm could be removed from the problem
definition, and be replaced with the sum of the pms variables, but are not, because we do
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end up requiring them defined in the devised algorithm we came up with. Furthermore,
we make the convenient assumption that the sum of all the power limits per device of
a node are equal to the power limit of the node, formally, P m = ∑

s∈Sm P ms and P m =∑
s∈Sm P ms . This assumption helps us avoid extra challenges and complexity.

We can observe that three extra conditions have been added. The first condition is
an equality (6.2), rationally requiring that the sum of the power setpoints of each device
of a node equals the total power setpoint for that node. The other two conditions (6.5)
require that each power setpoint of a device is also within its own power limits, not just

the node’s. The latter conditions introduce two additional dual variables, µP
ms and µ

P
ms ,

as we can see in the modified Lagrangian below:

L = ∑
m∈N

∑
s∈Sm

Ams p2
ms +Bms pms

+ ∑
m∈N

λm(um
∑

n∈Ωm

Gm,n(um −un)−pm)

+ ∑
m∈N

λm(
∑

s∈Sm

pms −pm)

+ ∑
m∈N

∑
n∈Ωm

µmn(Gmn(um −un)− I mn)

+ ∑
m∈N

µP
m(pm −P m)

+ ∑
m∈N

∑
s∈Sm

µP
ms (pms −P ms )

+ ∑
m∈N

µ
P
m(−pm +P m)

+ ∑
m∈N

∑
s∈Sm

µ
P
ms (−pms +P ms )

+ ∑
m∈N

µU
m(um −U m)

+ ∑
m∈N

µ
U
m(−um +U m)

The resulting KKT conditions are presented below:
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∂L

∂pms
= 2Ams pms +Bms (6.7)

+λm +µP
ms −µP

ms

∂L

∂um
=λm

∑
n∈Ωm

Gmn(um −un) (6.8)

+λmum
∑

n∈Ωm

Gmn − ∑
n∈Ωm

λnunGmn

+ ∑
n∈Ωm

Gmn(µmn −µnm)+µU
m −µU

m = 0

∂L

∂λm
=−pm +um

∑
n∈Ωm

Gmn(um −un)−pm + ∑
s∈Sm

pms = 0 (6.9)

∂L

∂µmn
= ∑

n∈Ωm

Gmn(um −un)− I mn ≤ 0 (6.10)

∂L

∂µP
m

= pm −P m ≤ 0 (6.11)

∂L

∂µP
ms

= pms −P ms ≤ 0 (6.12)

∂L

∂µ
P
m

=−pm +P m ≤ 0 (6.13)

∂L

∂µ
P
ms

=−pms +P ms ≤ 0 (6.14)

∂L

∂µU
m

= um −U m ≤ 0 (6.15)

∂L

∂µ
U
m

=−um +U m ≤ 0 (6.16)

The original power derivative
∂L

∂pm
is missing from this list, because, by construction

of our algorithm, pm is no longer a decision variable. Instead, the decision variables are
pms , which, once decided for, consequently define the pm variable. Additionally, since
we make the above relationship between pms and pm explicit by construction in the al-

gorithm, it no longer needs to be accounted for, and the lambda derivative
∂L

∂λm
can

be simplified to what it was originally (3.9). Furthermore, in the original algorithm, the

power derivative
∂L

∂pm
and power dual variables

∂L

∂µ
P
m

,
∂L

∂µP
m

are not used in the algo-

rithm; the requirements and conditions they represent are implicitly satisfied by the al-
gorithm, specifically, by the updates of the power variable. A similar approach is adopted

in this case as well, hence, the new power derivative
∂L

∂pms
and new power dual variables
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∂L

∂µ
P
ms

,
∂L

∂µP
ms

are not directly used, and the conditions they represent are implicitly sat-

isfied.

6.1.2. THE NEW STRATEGY

We have justified a lot of modelling decisions with the excuse of the algorithm and its
construction, so now it is time to describe the devised algorithm. The modifications
to the algorithm are only related to the power and LMP variable update strategy, please
refer to Section 3.2.2 for a reminder of the original strategy. Based on the original strategy,
the LMP would dictate the region of operation, Constant or Marginal Power Region, and
the updates of the LMP and power would take place accordingly. In this case, however,
where we have multiple devices per node, each device could be intercepted at a different
point and region on the cost derivative by the LMP, as portrayed by Figure 6.1.

Figure 6.1: A depiction of how one LMP value intercepts the cost derivative function of each device of the
node at different regions. Device 1 is intercepted in its upper Constant Power Region, device 2 is intercepted

in its Marginal Power Region, and device 3 in intercepted in its lower Constant Power Region

We could have handled the set of updates for each device separately, based on where
each device is intercepted, but that was introducing far more challenges than the alter-
native. The idea is to keep the power variable pm update the same as in the original al-
gorithm, and then decide how that power would be split amongst the candidate devices
of the node. This approach still created a lot of challenges to be solved, but they were
quite more manageable. The main challenges could be summed up as follows: which
region do we base the LMP and power updates on? How do we split the decided power
amongst the devices of the node? In case we are performing the updates corresponding
to the Marginal Power Region, which cost coefficients dictate the new value of the LMP?

Our solution takes a scenario-based approach. We break down each of the possible
5 scenarios, in terms of where does the LMP intercept each cost derivative, and explain
how the aforementioned challenges are handled for each. It is important to remember
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that, in both the original and this new version of the algorithm, if the updates are per-
formed according to the Constant Power Region (CPR), then the LMP is updated based
on external factors, and the power is deterministically defined based on local factors,
and vice versa for the Marginal Power Region (MPR).

LOWER CONSTANT POWER REGION

If all devices are intercepted in the lower CPR, the updates take place according to the
CPR: all devices are set to provide their minimum power P ms (minimum power genera-
tion for generators, maximum power demand for loads), and the LMP is updated as in
the original algorithm. Naturally, the power setpoint pm is set to P m .

UPPER CONSTANT POWER REGION

If all devices are intercepted in the upper CPR, the updates take place according to the
CPR: all devices are set to provide their maximum power P ms (maximum power gener-
ation for generators, minimum power demand for loads), and the LMP is updated as in
the original algorithm. Naturally, the power setpoint pm is set to P m .

LOWER AND UPPER CONSTANT POWER REGION

If some devices are intercepted in the lower CPR, and some others in the upper CPR, the
updates take place according to the CPR: all devices are set to provide their maximum
or minimum power, according to where each was intercepted by the LMP, and the LMP
is updated as in the original algorithm. Naturally, the power setpoint pm is set to be the
sum of the power setpoints pms decided per device.

MARGINAL POWER REGION

If all devices are intercepted in the MPR, the updates take place according to the MPR.
The power setpoint pm is updated as in the original algorithm, and each device calcu-
lates its own cost for producing the newly decided amount of power. The devices take
priority based on that cost, with the cheapest device given the most priority. Each priori-
tized device sets its own power setpoint pms to maximum power P ms , if a generator, and
to minimum power P ms , if a load. The process stops once we run out of available power

pm , for instance, if we assume that the remaining power to allocate is x, and P ms > x for
the generator with priority, then we set pms = x. Finally, the LMP is updated as in the
original algorithm, with the cost coefficients Bm and Am used being those of the device
with the highest priority.

This approach is based on the fact that, given that the power setpoint is already de-
cided by external factors when in the MPR, it makes sense to allocate most of that power
to devices that utilize it best, i.e., generators that produce it cheaply or loads that are
closer to turning off than others. Following the same line of thought, the LMP is best
to be dictated by the most prioritized device, as that is the device that makes the most
impact, and it is also the device that has a priority in dictating its transition compared to
the others, something that is achieved through the LMP.
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CONSTANT AND MARGINAL POWER REGION

If some devices are intercepted in the CPR, and some others in the MPR, the updates take
place according to the MPR. All devices intercepted in the CPR are set to provide their
maximum or minimum power, according to where each was intercepted by the LMP.
Once that process is over, the remaining power is essentially the new power setpoint pm

that was calculated, minus the power setpoints pms of the devices in the CPR. The rest of
the process follows exactly as in the previous scenario of all devices in the MPR, but this
time, the LMP is dictated by the device with the highest priority in the MPR, as it makes
no sense for the LMP to be dictated by a device in the CPR.

6.2. CASE STUDIES

Our case studies take place on a network consisting of one Mean Well CSP3000 Power
Supply as a generator, and the metal plate with the two LED lights mentioned at the
start of this chapter, as the load. The goal we wanted to achieve by using this setup was
to observe the algorithm give the appropriate priority to each of the LED lights, based
on their cost functions, while handling both of them through a single node and only
receiving a single LMP value. The cost functions are configured in such a way, that each
of the 5 aforementioned scenarios is encountered.

Both the power supply and the LED light initialize their voltage levels at um = 350V ,
with a lower voltage limit of U m = 330V and an upper voltage limit of U m = 370V . At the
start of the algorithm, all generators must be off, i.e., pm = 0W , and have a lower power
limit of P m = 0W and an upper power limit of P m = 3000W . As for the LED light, we
initialize its lower power limit to P m =−165W because, by construction, the maximum
current that each of the two LED lights can achieve is just shy of 0.250A, and because the
lower voltage limit is 330V . The upper power limit is set to P m = 0W . Each of the two
LED lights gets a balanced amount of power demand, formally, P ms =−82.5W .

ONE LED LIGHT STAYS ON

For the first experiment, the cost coefficients Bm = 0.2 and Am = 0 were assigned to the
first LED light, and Bm = 0.4 and Am = 0 to the second. The cost coefficients Bm = 0.3
and Am = 0 were assigned to the power supply. The purpose of this experiment was
to observe the less efficient LED light turn off before the power supply starts providing
power, since consuming power is not beneficial for that LED in this particular setup. The
results can be seen in Figure 6.2.

Indeed, we can observe that, once the LMP reaches the value of 0.2, which is the cost
threshold for the less efficient LED light, the light turns off, as indicated by the sudden
shift in its power demand (p_sour ce_0) and measured power (g r i d_p_sour ce_0). By
the time the LMP stabilizes at the threshold of the power supply, 0.3, only one LED light
is left on, and the power supply is instructed to provide the appropriate amount of power,
which is less than what the LED light requests, since part of it is automatically satisfied
by our setup. Another unfortunate side effect of our setup is the fact that the requested
power is automatically satisfied, even before the power supply is instructed to provide it,
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which is the same effect we had in the experiments with the original algorithm.

BOTH LED LIGHTS TURN OFF SIMULTANEOUSLY

For the second experiment, the cost coefficients Bm = 0.2 and Am = 0 were assigned to
both the LED lights. The cost coefficients Bm = 0.25 and Am = 0 were assigned to the
power supply. The purpose of this experiment was to observe both LED lights turn off
before the power supply has a chance to provide power, since that is not efficient for any
of the two. The LMP is supposed to stabilize at the cost threshold of the two LED lights,
since there is no request for power, and consequently no request for a higher LMP, after
the two LEDs turn off. The results can be seen in Figure 6.3.

Once the LMP reaches the value of 0.2, we can see that both LED lights turn off si-
multaneously, and by the time the LMP stabilizes at 0.25, the power supply doesn’t need
to provide power anymore because there is no demand from the environment. Notice
how the variables p_sour ce and g r i d_p_sour ce follow the same pattern of behavior
for both LED lights. Furthermore, contrary to what we expected, the LMP stabilizes at
the cost threshold of the power supply, but that is mostly attributed to the fact that, even
after the LED lights turn off, there is still some minor power mismatch measured by the
system that slowly pushes the LMP upwards.

BOTH LED LIGHTS TURN OFF SEQUENTIALLY

For the next experiment, the cost coefficients Bm = 0.2 and Am = 0 were assigned to the
first LED light, and Bm = 0.4 and Am = 0 to the second. The cost coefficients Bm = 0.5
and Am = 0 were assigned to the power supply. This time, the idea was to again observe
both LED lights turn off, but one after the other. Additionally, we again expected the LMP
to stabilize at the cost threshold of the most effective LED light, since there is no request
for power, and consequently no request for a higher LMP, after both the LEDs turn off.
The results can be seen in Figure 6.4.

We can observe that the less efficient LED turns off when the LMP hits its thresh-
old, 0.2, and then the second LED follows the same behavior when the LMP reaches its
threshold next, 0.4. However, this time the LED takes much more time to completely
turn off. The reason behind this behavior is the fact that the system, at this point, is very
low on both generated and demanded power, and so there is no increase in the LMP to
quickly push the LED to turn off; instead, the LMP stabilizes at the threshold of the LED,
which simply keeps the power at the current levels, or rather, allows it to slowly fade
away.

We then slightly modified the experiment by unbalancing the power demands per
LED light, setting them to P m1 =−45W , P m2 =−82.5W and, consequently, P m =−127.5W .
We also changed the cost coefficient of the second LED light from Bm = 0.4 to Bm = 0.3,
for the purposes of faster convergence and demonstration. The purpose of this experi-
ment is to simply observe a different demand for power by each LED light. The results
can be seen in Figure 6.5.

Indeed, before the first LED turns off, the system requests a total amount of power
of about 127W , and, after the low-demand LED turns off, the total request for power
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drops by about 45W , at 82.5W , and finally the system once again takes its time turning
completely off.

Finally, we modified the original experiment of this subsection in yet another way:
we added a quadratic cost coefficient to both LED lights, Am1 = Am2 = 0.001. This was
expected to cause a very rapid transition for each LED light from full demand to zero
demand, because, once each LED light enters its Marginal Power Region, the effects of
the quadratic cost coefficient would make the LMP jump from the lower cost threshold
to the higher cost threshold almost instantly. The results can be seen in Figure 6.6.

We can see that the LMP grows rapidly and immediately causes both LED lights to
turn off, but stops its rapid growth after escaping the Marginal Power Region of the effi-
cient LED light, i.e., after exceeding its upper cost threshold, and slowly grows towards
0.5, the lower cost threshold of the power supply, because of any remaining power mis-
match in the system. Thus, the behavior is indeed as expected.

6.3. CONCLUDING REMARKS

Through our experiments, we have verified that the algorithm is indeed effective in all 5
possible scenarios of LMP-to-cost-function relationships. A setup of greater scale would
be more convincing of this conclusion, but physical restrictions prevented us from im-
plementing one. The results also indicate that convergence is achieved almost, if not as
fast, as in the original algorithm, because the growth rate of the LMP remains the same,
since all the operations within a region are like a blackbox to the rest of the network,
which only gets to know the newly decided value of the LMP for that region. The main
weakness of the algorithm is its non-optimality in certain scenarios where many devices
of a region are in their Marginal Power Region: while the optimal solution may be for
those devices to each provide/request a fraction of their maximum power, our algorithm
takes a sequential approach, only allowing a device to provide/request power if all de-
vices of higher priority are already providing/requesting maximum power. Of course,
such scenarios are very rare, because of the preconditions required for them to happen,
namely non-zero quadratic coefficients, overlapping Marginal Power Regions and be-
longing to the same region.
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(a) Locational Marginal Price (λ) (b) Voltage setpoint (um )

(c) Measured Power of LED1 (d) Measured Power of LED2

(e) Measured Power (f) Power setpoint (pm )

(g) Measured Power of LED1 (pm1) (h) Measured Power of LED2 (pm2)

Figure 6.2: The value of various variables over time (ms)
- Experiment 1 - One LED light stays on



6.3. CONCLUDING REMARKS

6

77

(a) Locational Marginal Price (λ) (b) Voltage setpoint (um )

(c) Measured Power of LED1 (d) Measured Power of LED2

(e) Measured Power (f) Power setpoint (pm )

(g) Measured Power of LED1 (pm1) (h) Measured Power of LED2 (pm2)

Figure 6.3: The value of various variables over time (ms)
- Experiment 2 - Both LED lights turn off simultaneously
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(a) Locational Marginal Price (λ) (b) Voltage setpoint (um )

(c) Measured Power of LED1 (d) Measured Power of LED2

(e) Measured Power (f) Power setpoint (pm )

(g) Measured Power of LED1 (pm1) (h) Measured Power of LED2 (pm2)

Figure 6.4: The value of various variables over time (ms)
- Experiment 3 - Both LED lights turn off sequentially
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(a) Locational Marginal Price (λ) (b) Voltage setpoint (um )

(c) Measured Power of LED1
(d) Measured Power of LED2

(e) Measured Power (f) Power setpoint (pm )

(g) Measured Power of LED1 (pm1) (h) Measured Power of LED2 (pm2)

Figure 6.5: The value of various variables over time (ms)
- Experiment 4 - Both LED lights turn off sequentially - P m1 =−45W,P m2 =−82.5W
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(a) Locational Marginal Price (λ) (b) Voltage setpoint (um )

(c) Measured Power of LED1 (d) Measured Power of LED2

(e) Measured Power (f) Power setpoint (pm )

(g) Measured Power of LED1 (pm1) (h) Measured Power of LED2 (pm2)

Figure 6.6: The value of various variables over time (ms)
- Experiment 5 - Both LED lights turn off sequentially - Am1 = Am2 = 0.001



7
THE CONSENSUS AND INNOVATION

ALGORITHM: ISLANDING AND

DE-ISLANDING

As discussed in Section 1.4, the capability for an OPF algorithm to be applicable to sce-
narios of islanding and de-islanding can prove to be of great utility. This chapter focuses
on proving that our C+I algorithm does have that capability, by demonstrating its effec-
tiveness using experiments, one of which takes place at the Green Village, an innovation
site where technologies in the field of sustainable energy provision are tested and ap-
plied in a real-life environment.

In order to properly demonstrate the effectiveness of our algorithm in a scenario of
islanding or de-islanding, a 5-node network was devised, which is visually represented
by Figure 7.1. An actual photograph of the setup is also presented in Figure 7.2. In this
case, two of the PCBs are Solid State Protection (SSP) modules, containing 5 slots for
connections to neighbours that can be enabled and disabled, hence why they prove use-
ful for this kind of experiments. Each SSP module is considered a node in the network,
though, in contrast to the other nodes, they do not control any physical converter. We
can observe that module "SSP 2" has 2 neighbours, connected at its first two slots, while
module "SSP" has 3 neighbours, connected at slots 0, 2 and 3.

The idea is to have the LED request for power that should be provided by either the
expensive power supply, Power Supply D, if the connection between the SSPs is inac-
tive (islanding), or should be provided by the cheap power supply, Power Supply A, if the
connection between the SSPs is active (de-islanding). With that purpose in mind, we
set the cost of Power Supplies A and D to Bm = 0.5, Am = 0 and Bm = 1, Am = 0, respec-
tively. All devices initialize their voltage levels at um = 350V , with a lower voltage limit of
U m = 330V and an upper voltage limit of U m = 370V . Both power supplies set P m = 0W

and P m = 3000W . As for the LED light, we initialize its lower power limit to P m =−165W

81
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because, by construction, the maximum current that it can achieve is just shy of 0.500A,
and because the lower voltage limit is 330V . The cost coefficients Bm = 0 and Am = 0
were assigned to the LED light, meaning there is no cost function related to power con-
sumption, and the load will always request for full power. As a result, the upper power
limit is also set to P m =−165W . Finally, all power and cost variables for the SSP modules
are set to 0 (zero) because, as far as variables are of concerned, the SSPs just propagate
information, and we essentially treat them as loads with no request for power.

Figure 7.1: A sketch of the 5-node testing network

Figure 7.2: The 5-node laboratory testing network
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5 NODES - SHIFT FROM EXPENSIVE TO CHEAP

At the beginning of this experiment, the link connecting the two SSPs is inactive, leaving
the system in islanding mode. The purpose of this first experiment is to observe the ex-
pensive power supply step away from its role as the provider of power, allowing for the
cheap power supply to take over, once the link is re-enabled. The results of the experi-
ment can be seen in Figure 7.3.

We can observe that, at first, the LMP grows to 0.5 in the left section of the network,
and to 1 in the right section, because of each power supply trying to maintain its lower-
threshold LMP. Consequently, both power supplies are instructed to provide power, with
the expensive one providing about 165W, which is what the LED requests. The right SSP
experiences an incoming current of 0.5A (im2), because of the expensive power supply,
and an outgoing current of again 0.5A (im3), provided to the LED.

A little bit before the 17:13:00 mark, we re-enable the link between the two SSPs. We
can then immediately observe that the LMP of the right section stops being maintained
at a value of 1, and gradually drops down to 0.5, the lower cost threshold of the cheap
power supply. The initial cause for this behaviour is the sudden drop of power at the time
of re-enabling the link, and afterwards, the connected system stabilizes at its new LMP
value, 0.5. During this transition, we can also observe the shift in measured power, with
the cheap power supply taking over the power generation, and leaving only a fraction
of it to the expensive one, a behavior attributed to the setup rather than the algorithm;
after all, we can see that there is no request for power to the expensive power supply by
the power setpoint pm . Indeed, we shall see, at a later experiment, that the setup is the
cause for this involvement of the expensive power supply.

Finally, at the 17:14:13 mark, we disable the link between the two SSPs again, and
the system returns back to its initial behavior, with the expensive power supply taking
over the power generation. It is also interesting to notice the shift in the "iterations per
second" rate whenever we change the state of the connection: The slope for the right
section of the network decreases when the whole system is connected, because there are
more neighbours to communicate with and this takes up more time, while the slope in-
creases for that same right section when the system is disconnected, which equates more
iterations per second. Hence, it is obvious that even one additional neighbour makes a
significant change in the "iterations per second" rate. In Section 5.1, our estimation of
this rate was 50 iterations per second, with the simulated algorithm of Pedro having a
rate of about 40 iterations per second for the same amount of neighbours. In this exper-
iment, we can observe that, for the right section of the network, 500 iterations take up
about 15 seconds, resulting in a rate of 33 iterations per second. This is a positive result,
because we can see that the rate remains at satisfying levels, even with the addition of
extra operations for the whole (de-)islanding scenario to work.

Finally, we can observe that the algorithm performs about 500 iterations in a mat-ter
of 10 seconds, which translates to about 50 iterations per second. We consider thisquite
a good speed, given that the best indication of the algorithm’s hypothetical optimalspeed
comes from the simulated algorithm in Pedro Parreira’s work[15], where the sim-plest 2-
3 node networks have a runtime of 12 seconds for 500 iterations; with about 8 ofthose
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seconds being attributed to the simulation of the grid mechanics, we are left with4 sec-
onds for the actual algorithm, coming down to 125 iterations per second. If we donot
optimistically leave out the time for simulating the grid, we end up with 40 iterationsper
second, which is less than the speed achieved by our implementation

Another interesting observation is that the voltage is quite unstable, where most of
the devices seem to follow around the pattern of the oscillating, expensive power supply.
We suspect this is largely caused by the low current levels overall, a suspicion that we
back up in a later experiment.

5 NODES - SHIFT FROM CHEAP TO EXPENSIVE

For this experiment, we left the link connecting the two SSPs active, with the system in
de-islanding mode, and also initially disabled the expensive power supply. The purpose
of this experiment is to verify that, indeed, nothing about the power generation changes
if a power supply joins the network, that is more expensive than the current provider of
power.

We can observe that, at first, the LMP grows to 0.5 in the whole network, because
of the cheap power supply trying to maintain its lower-threshold LMP. Consequently,
that power supply is instructed to provide power, about 165W, which is what the LED
requests. The right SSP experiences an incoming current of 0.5A (im0), because of the
cheap power supply, and an outgoing current of again 0.5A (im3), provided to the LED.

At the 17:26:50 mark, we enable the expensive power supply. While the LMP does re-
tain its global value, we unexpectedly observe the cheap power supply lowering its power
generation and allowing room for the expensive power supply to contribute, which is
most likely attributed to the fact that the expensive power supply automatically provides
some power as long as it is part of the network, just like the case in our previous exper-
iment. Nonetheless, we can see that our algorithm still only instructs the cheap power
supply to provide power, just less than before.

Finally, at the 17:27:55 mark, we disable the link between the two SSPs, and the sys-
tem shifts so that the the expensive power supply takes over the power generation, with
the right section LMP growing to a value of 1. Once again, there is also an increase in the
"iterations per second" rate of the right section, now that it is isolated.

5 NODES - GREEN VILLAGE - SHIFT FROM EXPENSIVE TO CHEAP

Our final and grander experiment takes place at the Green Village, an out-of-the-lab in-
novation site where technologies in the field of sustainable energy provision, such as
ours, are tested and applied in a real-life environment. A sketch of our setup is presented
by Figure 7.5, and a picture of the operation environment can be seen in Figure 7.6. No-
tice that the new setup is almost identical to the laboratory 5-node setup, with the only
difference being that the power supplies are connected at different slots to the SSPs, and
that the two SSPs are connected to each other through a long cable that crosses through
a couple of street lights, consuming current of up to 2A. Our goal with this experiment
is the same as before: to verify that power is provided by the expensive power supply,
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if the system is in islanding mode, and by the cheap power supply, if the system is in
de-islanding mode.

Just like in the laboratory experiment, at first, the LMP grows to 0.5 in the left sec-
tion of the network, and to 1 in the right section, because of each power supply trying
to maintain its lower-threshold LMP. Consequently, both power supplies are instructed
to provide power, with the expensive one providing about 165W, which is what the LED
requests. The right SSP experiences an incoming current of 0.5A (im4), because of the
expensive power supply, and an outgoing current of again 0.5A (im3), provided to the
LED. We can also notice a couple of huge spikes in the power setpoint, that are, interest-
ingly, not recorded in the measured power itself, so we can go ahead and discard them
as noise.

At the 29:16:30 mark, we re-enable the link between the two SSPs. We can then imme-
diately observe that the LMP of the right section stops being maintained at a value of 1,
and gradually drops down to 0.5, the lower cost threshold of the cheap power supply, and
the now-connected system stabilizes at its new LMP value, 0.5. During this transition, we
can also observe the shift in measured power, with the cheap power supply taking over
the whole power generation. There are two interesting things to be noted here regarding
the power: First, and contrary to the laboratory experiment, the expensive power supply
completely stops generating any power, an indication that the reason it did not do so
in the lab experiment was the low current levels. Secondly, the measured power of the
cheap power supply is now much higher, due to the high demand and consumption of
the street lights across the line connecting the two SSPs. Of course, that demand is not
part of the problem or the algorithm, it is an external factor, that does, however, affect
our measurements, without negatively affecting the result: the LED still is provided its
requested 0.5A (im3), yet there is an incoming (im4) and outgoing (im1) current of more
than 2A on the left section SSP. Furthermore, the voltage levels have been stabilized a lot
more, which backs up our aforementioned argument in the laboratory experiment that
voltage stability can be obtained through higher current levels.

Finally, at the 29:16:32 mark, we disable the link between the two SSPs again, and the
system returns back to its initial behavior, with the expensive power supply taking over
the power generation.
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(a) Locational Marginal Price (λ) (b) Voltage setpoint (um )

(c) Iterations (d) Measured Current of neighbour 1 (im0)

(e) Measured Power (f) Power setpoint (pm )

(g) Measured Current of neighbour 3 (im2) (h) Measured Current of neighbour 4 (im3)

Figure 7.3: The value of various variables over time (hh:mm:ss)
- Experiment 1 - 5 nodes - Shift from expensive to cheap
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(a) Locational Marginal Price (λ) (b) Voltage setpoint (um )

(c) Iterations
(d) Measured Current of neighbour 1 (im0)

(e) Measured Power (f) Power setpoint (pm )

(g) Measured Current of neighbour 3 (im2) (h) Measured Current of neighbour 4 (im3)

Figure 7.4: The value of various variables over time (hh:mm:ss)
- Experiment 1 - 5 nodes - Shift from cheap to expensive
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Figure 7.5: A sketch of the 5-node testing network at the Green Village

Figure 7.6: The 5-node setup and testing network at the Green Village
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(a) Locational Marginal Price (λ) (b) Voltage setpoint (um )

(c) Iterations (d) Measured Current of neighbour 1 (im0)

(e) Measured Power (f) Power setpoint (pm )

(g) Measured Current of neighbour 5 (im4) (h) Measured Current of neighbour 4 (im3)

Figure 7.7: The value of various variables over time (dd:hh:mm)
- Experiment 1 - 5 nodes - Green Village - Shift from expensive to cheap
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CONCLUSION

In order to present our conclusions and work, we will be focusing on answering each of
the research questions, along with providing all the relevant achievements and newly-
found knowledge:

How is the C+I algorithm to be implemented for a physical environment where,
compared to the simulated one, various additional factors like noise, delays, and volt-
age/current regulation come into play? What design choices and improvements can
be performed in order to eliminate the negative effects of these additional factors?

As described in Chapter 4, our physical implementation consists of ESP32 proces-
sors, Power Circuit Boards, and the devices they are connected to, an implementation
that allows a wide variety of coordinated operations to take place in parallel. Specifically,
our algorithm achieves fast execution through the parallel coordination of processes like
measurements collection, voltage regulation and neighbour communication. The fact
that all the grid measurements are continuously collected in parallel to the algorithm
ensures that there is zero delay during grid-to-node communication, eliminating the re-
lated concerns expressed in Parreira’s work[17]. Another concern in the work of Parreira
was the possible loss of data during inter-node communication, which was effectively
taken care of in our work, resulting in less than 5% of the communication data to be lost
and still maintaining an effective algorithm. Thus, through the aforementioned prac-
tises and the overall structure of our implementation, we achieved not only the creation
of a functional C+I algorithm, but also an effective and efficient one.

How does the algorithm perform, given these extra factors, in terms of conver-
gence time and overall execution speed, which are the traditional metrics the algo-
rithm is evaluated on?

Our implementation of the DC-OPF algorithm has been verified as applicable and
functional on a physical network, specifically, on small-scale networks of 2 and 3 nodes.
Through testing out various different scenarios (Section 5), we ensured that the above
conclusion holds for all of them. Examples of such scenarios include current overflow,
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prioritizing generators, power limit handling and dynamic reconfiguration of costs and
power demands. We also verified that the C+I algorithm can work on a physical network
using the same exact parameter values as used in the simulations, although we modi-
fied a few of them to properly adapt to the number of neighbours of a device, as they are
supposed to by definition (Section 3.2.2). In terms of the number of iterations, we have
shown that our algorithm is better or on-par with the number of iterations of the simu-
lated algorithm, at least considering small networks, which we were experimenting on.
In terms of the time for convergence, we realized that the most significant factor towards
convergence time was the value of the cost coefficients of each device and the growth
rate of the LMP, since most of the other transitions were instantaneous.

How can the original, nodal-OPF C+I algorithm be extended for region-OPF, while
maintaining its performance regarding metrics such as optimality, convergence time
and execution speed?

Our work has shown that it is possible to implement a modified version of the C+I
algorithm for region-based OPF, i.e., multiple devices being controlled by a single node,
that is still effective. The modified C+I algorithm has allowed us to prove and demon-
strate the effectiveness of the algorithm on new scenarios, different to those that the
original algorithm had been tested on, such as the prioritization of loads and giving them
specific cost functions. The algorithm lacks optimality in scenarios where multiple de-
vices controlled by the same node have to operate in their Marginal Power Region, a very
rare scenario. Nonetheless, convergence is still guaranteed with speeds similar to that of
the original algorithm.

How does the C+I algorithm perform on scenarios of islanding and de-islanding?

The C+I algorithm, after having undergone minor adjustments to support (de-)islanding
scenarios, has proven to be very effective on at least a 5-node network. The network was
set up at the Green Village, an innovation site where technologies in the field of sustain-
able energy provision are tested and applied in a real-life environment, which further
proves the effectiveness of the algorithm on large-scale, real and physical environments.

FUTURE WORK

While the algorithm has been verified to be functional and effective on small-scale net-
works, it would be interesting to test it on larger-scale networks, whether that means a
greater number of nodes, or a bigger existing infrastructure, with longer cable lines and
generators/loads of greater magnitude.

It is also interesting to note that, while most of our case studies focused on prov-
ing the functionality of the algorithm in varying scenarios, it would be worthwhile to
test scenarios that specifically make convergence time-costly, such as current conges-
tion scenarios, which were not easily replicable in our experiments. Another example of
a scenario that makes convergence difficult is a network with a great amount of nodes
between a load and a cheap generator, which would make the propagation of the Lo-
cational Marginal Price slow, since the algorithm does not consist of individually-solved
sub-problems but of collaborative efforts towards solving one big problem. Additionally,
any such stress-test results could be compared with implementations of other OPF al-
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gorithms, to compare the performance between the two algorithms, and practically find
where the C+I algorithm falls short, and where it prevails.

Finally, we know that the C+I algorithm has been extended, from the unipolar version
of Parreira[17], to the bipolar version of Najjar[15]: it would be interesting to implement
the bipolar version of the algorithm for a physical grid, to test its effectiveness.

Regarding our modified C+I algorithm for region-OPF, a solution could be devised
for the current, non-optimal handling of multiple same-region devices in the Marginal
Power Region, or a new approach altogether could be proposed for adjusting the C+I
algorithm for region-OPF.





EPILOGUE

"A cool breeze rustled the trees, dried the sweat from my skin, and soothed my aching
bones. It whispered in my ear and shared a secret, which echoed in my brain, like a
drumbeat that wouldn’t stop: ’There is no finish line, Goggins. There is no finish line..."
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APPENDICES

A. FUNDAMENTALS OF ELECTRICITY

A.1. FUNDAMENTAL LAWS OF ELECTRICITY

The equations as shown below hold, given the characteristics of an electric network as
described in section 2.1. For power converters m, n, and a transmission line (m,n), the
following hold:

pm = um ∗ im (1)

Ohm’s Law

imn =Gmn ∗ (um −un) (2)

Kirchhoff’s Law

im = ∑
n∈Ωm

imn (3)

um −un = Rmn ∗ imn = imn

Gmn
(4)

A.2. THE INTERACTION BETWEEN A LOAD AND A GENERATOR

Figure 1: The interaction between a load and a generator
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In the event of power demand from a load, the load will automatically experience a
voltage drop because of power withdrawal, resulting in a neighboring generator having a
higher voltage. This voltage difference triggers power flowing from that generator to the
load, and then the generator is required to produce enough power to balance-out the
load’s demand.
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