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Abstract

The startup company Fleet Cleaner has developed a mobile robot, specialized in the hull
cleaning of large cargo vessels. Navigation and localization of this robot is currently performed
manually. This is a difficult process that is greatly complicated during operation. This is
mainly due to the availability of relative positioning sensors only, which are prone to error
build-up and noise, and to the difficulty of interpreting optical underwater images in turbid
water conditions. Instead, operators must rely on acoustic images from a forward-looking
sonar. In the field of mobile robotics, Simultaneous Localization and Mapping (SLAM) is an
often used technique to improve navigation and localization by utilizing visual information.
The objective of this thesis is to develop a sonar-based SLAM framework, tailored to working
environment of the Fleet Cleaner robot. The thesis scope has been restricted to the conceptual
design of such a framework and the implementation of one of the subsystems, visual odometry.

A conceptual design of a SLAM system is proposed using a systematic approach. Different
working principles are evaluated according to operating conditions and requirements that
specify desired behavior. Analysis of operating conditions reveal the limitations of sonar ima-
gery, such as a high signal-to-noise ratio and inhomogeneous intensity patterns. In addition,
the environment is sparse, with few distinct recognizable landmarks, limiting feature-based
approaches. Because of these limitations, visual odometry is essential to reduce error build-up
between loop closure corrections.

A Fourier-based approach to visual odometry is implemented, taking the whole image view
into account instead of extracted features. By analyzing the dominant peak in the phase
correlation matrix, the in-plane sonar motion between consecutive image frames can be esti-
mated. Several image processing steps are necessary to improve peak sharpness, increasing
the quality of registration.

To validate the proposed method, an experiment was conducted during cleaning of the Pi-
oneering Spirit, the worlds largest construction vessel. Under normal circumstances, visual
odometry showed less error build-up in the position estimate than wheel odometry. However,
outliers appear when driving near the waterline, caused by reflections and wave reverbera-
tions. Ultimately, the proposed visual odometry method improves the current positioning
system and serves as a basis for an integral SLAM implementation.
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Chapter 1

Introduction

1-1 Motivation

The start-up company Fleet Cleaner has developed a cleaning robot that is able to remove
fouling that has built up on the hull of ships. Fouling may consist, among other things, of
algae, slime and barnacles. This fouling increases the frictional drag of a ship, resulting in
increased fuel consumption. Compared to a hydraulically smooth hull, frictional drag may
increase by up to 20.4% depending on the amount of fouling [1]. Fleet Cleaner has reported
a reduction of fuel consumption by up to 5% from past cleanings. These savings provide
economic benefits to shipping companies, while also reducing the environmental impact of
the shipping industry.
The robot attaches itself to a ship’s hull by the use of three large permanent magnets and
moves on the surface using three hydraulically actuated wheels. The ship’s hull is cleaned
using high-pressure water jets. In contrast, other underwater vehicles often use thrusters to
maneuver. The main advantage of using magnets and wheels is that the Fleet Cleaner robot
is able to clean the ship’s hull under and above the waterline. This is important as fouled
areas may be present above the waterline due to variance in the ship’s draft, especially during
loading and unloading.
The Fleet Cleaner robot in its current operation, is controlled by operators on a support
vessel. This is in contrast to Autonomous Underwater Vehicles (AUVs), a more recent type
of underwater vehicle that is able to carry out missions without human intervention and
without the need for a support vessel. AUV’s have been applied in a variety of differend
missions including under-ice exploration [2], neutralization of mines [3] and coral inspection
[4].
When the robot is underwater, the operators have no direct line of sight to the robot and rely
on a multitude of sensors to keep track of the pose (position and orientation) of the robot.
Accurate and reliable localization is necessary for the operators to avoid obstacles, plan a
correct path and keep track of cleaned areas. Furthermore, Fleet Cleaner has the desire
to transition towards a semi-autonomous mode of operation, reducing operation costs and
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Figure 1-1: The Fleet Cleaner robot attached to a ship’s hull.

improving speed and accuracy. A necessary contribution to this transition is the improvement
of navigation and localization which is the motivation for this thesis.
This chapter serves as a background for the main problem that has motivated this thesis.
The problem will be further detailed in Section 1-2. The objectives and methodology used in
this thesis are described in Section 1-3 and finally the structure of this document is presented
in Section 1-4.

1-2 Problem statement

Navigation and localization of underwater vehicles is a challenging subject due to the absence
of an absolute positioning system, such as GPS. Therefore, modern underwater robots rely
on, among others, the deployment of acoustic beacons, dead reckoning and terrain-based
navigation [5]. The Fleet Cleaner robot currently uses a relative positioning system, using
measurements from a depth sensor, wheel encoders and an IMU, which has been developed in
a preliminary study [6]. This approach, however, suffers from unbounded error build-up over
time resulting in a drifting position estimate. Currently the operators need to periodically
reset the position estimate based on visual feedback from the optical and sonar imaging
systems. They correspond recognizable landmarks, such as weld lines, from the visual images
to the map of the ship’s hull.
The use of pre-deployed infrastructure, such as acoustic beacons, is considered to be impracti-
cal and expensive. Therefore, Fleet Cleaner is looking for other ways to achieve drift-free lo-
calization. In the field of mobile robotics, drift-free localization using visual information has
been a key topic of research. Simultaneous Localization and Mapping (SLAM) approaches
make use of visual information to construct a map of the environment while concurrently
localizing the robot in that map. By recognizing previously visited locations, the error build-
up can be bounded. This is essentially what the operators now do manually by resetting
the position estimate. SLAM is a widespread technique in above water robots and has more
recently been implemented in underwater systems as well [7].
Acquiring visual images underwater is not without its challenges however. Optical imaging
systems suffer from poor visibility in the presence of floating particles and turbulence. Cle-
aning operations are usually conducted in the harbor, where the visibility range is severely
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Figure 1-2: Examples of optical images suffering from poor visibility.

limited, as shown in Figure 1-2. Due to this limitation, underwater applications often rely on
sonar technology instead of optical technology. Sonar systems are able to operate at longer
range underwater and are less affected by turbulent conditions. However, sonar images in ge-
neral suffer from more noise, a lower resolution and are more difficult to interpret. In recent
years 2D Forward Looking Sonars (FLSs) have emerged as an alternative to optical cameras
in underwater environments. They are able to provide high quality acoustic images at a high
frame rate. These properties make FLSs the optimal choice as input for an underwater SLAM
system.

Most visual SLAM systems feature the same framework, which is described in Table 1-1. As
the robot is expected to drive long segments without returning to a previously visited location,
it is vital that the position estimate does not drift significantly during these segments. Visual
odometry provides benefits to reduce the error build-up, as it is not affected by wheel slip.

Visual odometry The robot pose is estimated by computing the motion between
subsequent image frames.

Loop closure detection A previously visited location is recognized by cross-referencing
the current image frame to temporally distant frames.

Pose and map estimation
Odometry estimations are combined with the correspondences
found by loop closure detection to estimate the pose trajectory
and landmark positions.

Table 1-1: Subsystems of a typical visual SLAM system.

1-3 Thesis approach

Following the problem description, the goal of this thesis is to develop a sonar-based under-
water SLAM framework tailored to the working environment of ship hull cleaning robots.

This objective has been split in multiple sub-objectives to fit the scope of the thesis. Due
to time constraints a complete SLAM system has not been realized, but the scope will be
restricted to the conceptual design of this system and a proof of concept of one of its compo-
nents, a sonar-based visual odometry algorithm:

1. Propose a conceptual design for a SLAM system

2. Validate the sonar-based visual odometry algorithm with a proof of concept
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Methodology

The systematic approach to engineering design by Pahl et al. [8] is used as a guide to fulfill
the objectives. The approach used consists of four main phases, described in Table 1-2.

1. Task clarification
The objective of task clarification is to gather information
about the requirements that the design needs to fulfill and
the existing operating conditions.

2. Conceptual design

The principle solution is determined by abstracting the es-
sential problems, defining function structures, searching for
suitable working principles and combining these in a working
structure.

3. Embodiment design
The conceptual design is implemented in line with the techni-
cal criteria. Subsequently, system parameters are weighted
and analyzed to be able to solve the problem

4. Proof of concept
In the final design phase the working structure is demonstra-
ted in an expiremental setup. The results serve as a valida-
tion of the conceptual design.

Table 1-2: Main phases of systematic approach to engineering design [8].

The task clarification and conceptual design phase will be conducted for a complete SLAM
system, resulting in a principle solution for the Fleet Cleaner robot. The embodiment of this
design and proof of concept will be restricted to one of the sub components, visual odometry,
due to the scope of this thesis.

1-4 Document road map

An overview of the document structure is given in Figure 1-3 while a more detailed outline is
given below:

Chapter 2 describes the sonar operation principles and a geometry model outlining the
image acquisition process. This chapter serves as a background for sonar imaging and as
context for the subsequent chapters.

Chapter 3 defines the operating conditions that are imposed on a potential SLAM system.
The environment as well as current limitations of the navigation system are considered.

Chapter 4 sets up a list of desired requirements for the various subsystems. The requirements
are split into functional and non-functional requirements. The former specifies the abstract
behavior while the latter defines criteria that are used to evaluate performance.

Chapter 5 addresses the conceptual design phase. A small literature survey is conducted to
analyze the main paradigms for each subfunction. A final solution is proposed in a qualitative
manner.

Chapter 6 covers the implementation of the visual odometry component. The underlying
principles are discussed as well as the specific implementation for the Fleet Cleaner robot.
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1-4 Document road map 5

Chapter 7 presents the final results of the visual odometry algorithm. An experiment was
conducted during a cleaning operation. The algorithm is rated against the requirements.

Finally, Chapter 8 concludes the document with the main contributions and recommenda-
tions for future work.

Sonar operation principles

Chapter 2

Define opera-
ting conditions

Chapter 3

Set up requirements

Chapter 4

Select working principles
and optimal solution

Chapter 5

Implement solution and
optimize parameters

Chapter 6

Validate the solution

Chapter 7

Concluding remarks

Chapter 8

Background

Task clarification

Conceptual design

Embodiment design

Proof of concept

SLAM

Visual odometry

Figure 1-3: Overview of the activities in each chapter. On the left the main phases of the design
methodology are listed. On the right it is outlined whether the chapter is concerned with the
complete SLAM system or the visual odometry sub-component.
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Chapter 2

Sonar operation principles

This chapter describes the basic principles of Forward Looking Sonar (FLS) operation and
image formation, which will serve as the basics that contextualize the later methods. In
Section 2-1 the fundamentals of acoustic propagation are described, which is the fundamental
working principle for all sonar systems. The specifics of FLS operation are discussed in Section
2-2. Finally in Section 2-3 an imaging model is proposed, which is used for the remainder of
the document.

2-1 Acoustic propagation

The following introduction to the basic principles of sonar and underwater acoustic propaga-
tion is given based on [9]. Acoustic waves are characterized by the wave frequency and speed
of sound. Loss and attenuation can happen while propagating simply through the water or
by traveling from one medium to a different medium. Both situations will be discussed next.

2-1-1 Transmission loss

Acoustic waves lose energy simply by propagating through a medium. The main contributing
factors are spherical spread and absorption.

Spherical spread

The sound wave spreads as a spherical wave from the source. As the wave travels, the intensity
I decreases with range R in inverse proportion to the sphere’s surface:

I ∼ 1
R2 (2-1)

Master of Science Thesis CONFIDENTIAL Dave Verstrate



8 Sonar operation principles

In two way propagation the reflector returns the sound wave back to the receiver. The
returned signal spreads again as a spherical wave. Thus the intensity of the returned signal
becomes

I ∼ 1
R4 (2-2)

Absorption

The sound wave is attenuated by the seawater due to viscosity and chemical processes. This
absorption is frequency dependent such that lower frequencies travel farther than higher
frequencies. In addition the absorption is dependent on temperature, salinity, depth and pH.

2-1-2 Refraction, reflection and scattering

When the sound wave travels from one medium to a different medium with a different sound
speed, the wave will partially reflect and partially refract into the other medium, see Figure
2-1.

Surface

Direction of

source pulse

Reflection

Transmission

Scattering

Angle of

incidence

Figure 2-1: Refraction, reflection and scattering when an acoustic wave travels to a different
medium.

When the sound wave is refracted, the angle of refraction is given by Snell’s law:
sin θ1
c1

= sin θ2
c2

(2-3)

The incoming acoustic wave will partly reflect with the reflection angle equal to the incident
angle. The amount of reflection and refraction is dependent on the angle of incidence and
material properties. In addition to this specular reflection, diffuse reflection is also considered
which results in scattering.
When reflecting from a rough surface the acoustic waves are scattered diffusely in random
directions. The amount of scattering depends on the roughness of the surface. Scattering is
vital when the incident wave is not normal to the surface, i.e. the specular reflection cannot
reach the receiver. For these constraints, visibility depends heavily on the roughness of the
observed surface.
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2-2 FLS operation 9

2-2 FLS operation

Fleet Cleaner employs a multibeam FLS which provides high definition acoustic images at a
high frame rate. An FLS is aimed forward and often tilted, granting the same functionality
as optical cameras. These type of sonars are more recently used by hovering Autonomous
Underwater Vehicles (AUVs), inspecting man-made structures [5].

The FLS, like other active sonar systems, operates by emitting a sound wave, spanning the
azimuth (θ) and elevation (φ) angles. Figure 2-2 shows the geometric definitions that will be
used. The intensity of the acoustic return is sampled by an array of transducers as a function
of range and bearing. The range, r is estimated from the travel time, t, of the acoustic wave
and the sound speed, c, of the medium:

r = ct

2 (2-4)

Figure 2-2: Projection of a point in 3D to the 2D sonar image plane [10].

Note that only the azimuth angle θ can be estimated by the sonar, i.e. for a point on the
returned image it can have originated from anywhere on the corresponding elevation arc.
This 3D information is lost in the mapping to a 2D image. Figure 2-2 shows a 3D point that
is mapped to the 2D plane, removing information of the elevation angle φ. The 3D to 2D
projection is further detailed in Section 2-3.

Following the particular nature of the transducers, the sonar images are captured in polar
coordinates, representing range r and azimuth angle θ. The images can be transformed to
Cartesian coordinates, which allow for a more easier interpretation of the images. It should
be noted that the Cartesian images have a non-uniform resolution due to this transformation.
The difference is shown in Figure 2-3.
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10 Sonar operation principles

(a) Polar coordinates (b) Cartesian coordinates

Figure 2-3: Sonar image captured in the polar domain (a) and transformed to Cartesian coordi-
nates (b).

2-3 Sonar geometry model

In this section the sonar imaging geometry is analyzed. Two models are considered: a linear
approximation and a more exact model. Shortcomings of both models are discussed and a
final model is proposed that will be used for the remainder of this report.

Consider point P in spherical coordinates (r, θ, φ), again refer to Figure 2-2 for the geometric
definitions. In the sonar (xs, ys, zs) frame it is described by the following Cartesian coordinates

P =

xsys
zs

 =

r cosφ cos θ
r cosφ sin θ
r sinφ

 (2-5)

The projection of this point on the image plane (u, v) is defined as

Î(P) =
[
u
v

]
=

[
r cos θ
r sin θ

]
= 1

cosφ

[
xs
ys

]
(2-6)

This projection is non-linear and depends on the elevation angle φ.

2-3-1 Approximated model

Considering the narrow elevation angle of FLSs, the non-linear part can be approximated by

cosφ ≈ 1 (2-7)

This approximation is equivalent to assuming that all points are located on the zero-elevation
plane (φ = 0). A typical elevation angle of [−10◦, 10◦] corresponds to a limit on the non-
linear component of 1 ≤ 1

cosφ ≤ 1.0154 or a maximum error of 1.54%. This approximation
holds when the scene’s relief in the elevation direction is small compared to the range [11].
With a small beam width in the elevation angle and tilted to a small grazing angle, the sonar
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Figure 2-4: The sonar projects point P on the image plane along the elevation angle, mapping
to point p, which is approximated by an orthographic projection, mapping to point p̂. [12]

imaging geometry falls within this condition. The difference between the approximation and
the actual projection is illustrated in Figure 2-4.

A change in azimuth angle θ is preserved by the projection, i.e. the image rotates by the
same angle as the sonar with respect to its vertical axis. This can be shown by calculating
the angle between two image points [10]. Let P and P ′ be the same point, rotated by α
around the z-axis. The estimate of rotation of the sonar is α̂. Then, the angle between the
image points can be found by calculating the inner product:

‖p‖‖p′‖ cos(α̂) = Î(p) · Î(p′) (2-8)

=
[
r cos θ
r sin θ

]
·
[
r cos(θ + α)
r sin(θ + α)

]
(2-9)

=
[
r cos θ
r sin θ

]
·
[
r(cos θ cosα− sin θ sinα)
r(sin θ cosα+ cos θ sinα)

]
(2-10)

= r2 cos2 θ cosα+ r2 sin2 θ cosα (2-11)
= r2 cosα (2-12)

α̂ = α (2-13)

Rotations in the pitch direction will affect intensity values and limits of the sonar view, but
do not change the projection of the points. Changes in roll will cause a compression of points
along the y-axis. The roll angle is assumed to be small on the flat side of the ship, but will
increase at the bow and stern of the ship where the surfaces are curved. Like roll, changes in
z-direction do not change the projection of points, but only the insonified area.

Therefore, two images can be related by a translation (tx, ty) and a rotation θ. Considering
two points from different images p and p′ that represent the same point P in 3D, the points
can then be related by a homography matrix H, which describes the translation tx, ty and
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12 Sonar operation principles

rotation θ of the two images:

p′ = Hp =

cos θ − sin θ tx
sin θ cos θ ty

0 0 1

 p (2-14)

Obvious shortcomings of the simplified model are twofold:

• Only simple motion in 3 DOF can be estimated.

• Projection error due to orthographic approximation.

2-3-2 Non-approximated model

By lifting the small elevation angle assumption, a more exact model can be proposed. The
rigid body motion model for features lying on the plane n is defined as [13]

P′ = (R + tnT )P = QP (2-15)

where R is the rotation matrix and t is the translation vector, describing the rigid body
motion. From this transformation, the homography relating two image points can be found
[14]:

p′ = Hp =

αq11 αq12 βq13
αq21 αq22 βq23

0 0 1

 p (2-16)

with α = cosφ
cosφ′ , β = r sinφ

cosφ′ (2-17)

qij denote the components of the Q-matrix. This more complex transformation is dependent
on the elevation angles of every image point. This information is not directly available from
the sonar sensor. However, the elevation arc of points on a flat surface can be estimated by
its surface normal [15]. Estimation of the surface normal is done by assuming that the leading
and trailing edges of the image correspond to the extreme elevation angles (−φmax, φmax).
Then, the surface normal can be estimated using the sonar pitch and height. Furthermore,
the elevation angle of objects can be estimated by considering the shadow cast by that object.

While the 6 DOF motion of the sonar can be estimated with the exact model, the estimation
of elevation angles is not always trivial. When the image limits do not correspond to the
extreme range values, error are introduced. This can be avoided by detecting the actual
leading and trailing edged, but this can be a complex and inaccurate process [15].
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2-3-3 Selection of model

Both models are summarized in Table 2-1. The exact model offers obvious benefits over
the approximated model. First, the model allows the estimation of sonar motion in 6 DOF.
However, when driving on the flat surfaces of the ship (sides and bottom) the movements
in the sonars z-direction, pitch and roll are minimal. It is sufficient to estimate the planar
transformation (x, y and yaw).

Furthermore, the exact model uses elevation angles in the estimation, which reduces the
approximation errors in the simplified model. Computation of the elevation angles, however,
is not completely trivial and is susceptible to its own inaccuracies.

Considering these benefits and downsides, the approximated model is found to be suitable to
describe the image formation process. Although the projection is approximated, the error is
expected to be insignificant as long as the elevation is small compared to the range of the
sonar. The later sections of this report will therefore assume the use of the 2D approximated
sonar model.

Model Remarks

Approximated model -3 DOF
-Projection errors due to approximation

Exact model -6 DOF
-Requires estimation of elevation angles

Table 2-1: Overview of sonar image formation models.
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Chapter 3

Operating conditions

Clearly establishing the operating conditions of the Fleet Cleaner robot is fundamental, be-
cause they influence the performance and functionality of the proposed Simultaneous Locali-
zation and Mapping (SLAM) design. Constraints and limitations of robots sensors as well as
of the environment are analyzed. The final contribution of this chapter is a list of operating
conditions for the SLAM system.
Conditions imposed by the employed sonar system are discussed in Section 3-1. In Section
3-2, the auxiliary sensors of the positioning system are discussed. The environment of the
robot and its impact on a potential SLAM system is discussed in Section 3-3. Finally, an
overview of the discussed operating conditions is presented in Section 3-4.

3-1 Sonar operating conditions

The sonar used by Fleet Cleaner is a Blueview M900-2250-130 [16]. This sonar has two
frequency modes: 900 kHz and 2250 kHz, the full specifications are listed in Appendix A-1.
The sonar unit mainly operates in the high frequency (2250 kHz) mode, which allows for
higher quality images at the expense of a shorter range.

3-1-1 Sound speed

The acoustic propagation of the transmitted and received sound waves depend heavily on
the properties of the medium. A simple empirical formula to estimate the speed of sound in
seawater has been developed by Medwin [17]:

c = 1449.2 + 4.6T − 0.055T 2 + 0.00029T 3 + (1.34− 0.010T )(S − 35) + 0.016D (3-1)

The speed of sound in water is found to be dependent on the temperature (T ), depth (D) and
salinity (S) of the water. The depth is dependent on the draft of the ship and does not feature
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fluctuations that have a noticeable impact on the speed of sound. Salinity and temperature
may vary throughout the year and across different harbors. As range estimation in the sonar
images is dependent on the sound speed, a small approximation error is present.

Furthermore, some random fluctuations may affect the acoustic propagation. These effects
include turbulence, currents and surface waves and are impacted by the harbor conditions.
These can show up as artifacts or noise in the sonar images.

3-1-2 Geometry

The sonar imagery is further impacted by the placement of the sonar in relation to the
observed surface. From the robot frame the sonar unit is displaced vertically and horizontally.
Furthermore the unit is tilted to a small grazing angle of 10◦. The current location and
dimensions of the sonar unit are detailed in Appendix B.

The tilt angle is of particular importance as it impacts the field of view of the observed surface.
A small tilt angle provides a wider field of view, while a large tilt angle can provide better
observability of objects at the expense of a narrower perspective.

3-1-3 Image formation

The nature of sonar image formation introduces some further limitations that impact the
ability to handle and process the images in subsequent processing steps [18]. The most
important and relevant aspects are summarized here:

• Non-uniform resolution: As mentioned before, the transformation from the polar
images to a Cartesian representation results in a non-uniform representation. The me-
asurement sparseness increases with the range of the sonar, meaning that objects at a
farther range are represented by a degraded resolution.

• Speckle noise: Sonar imagery in general suffer from a low Signal-to-Noise-Ratio
(SNR), due to the presence of speckle noise. This type of noise is introduced by in-
terference patterns of the sampled acoustic returns.

• Inhomogeneous insonification: A time varying gain mechanism is included that
is used to compensate for transmission loss by spreading and absorption. As a result,
similar objects at different ranges are represented by the same intensity values. However,
inhomogeneous illumination pattern may still be present due to an increasing angle of
incidence on some segments. Furthermore, vertical stripes are visible on the sonar
images due to the overlapping of sonar beams.

• Reflections: In some circumstances reflections and reverbation artifacts may be visible.
These result from acoustic returns reflecting from the water surface. These artifacts
disturb the image content and may cause ambiguities between images.
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3-2 Positioning system operating conditions

In this section the conditions imposed by the current positioning system are discussed. First
the movement of the robot is detailed. Subsequently, the positioning system is discussed
focusing on the employed sensors and their limitations.

3-2-1 Movement

The robot is attached to the ship’s hull by three large magnets. As such the movement of the
robot is restricted to the surface of the ship’s hull, meaning that the orientation of the robot
with respect to the earth-fixed frame depends on the curvature of the surface.

Figure 3-1: Robot parameters and coordinate frames [6].

In Figure 3-1 displays the different coordinates and frames for the robot. The robot is steered
with the angle of the front wheel, α. The rate of change in the global coordinates can then
be given as

ẋ = cos(ψ + α)v (3-2)
ẏ = sin(ψ + α)v (3-3)

with v the velocity of the front wheel, aligned with the steering angle. The rate of turn of the
robot can be found by decomposing the velocity in the x- and y-component with respect to
the robot frame. The y-component is always perpendicular to the direction of the robot and
contributes to the rate of turn:

ψ̇ = vy
l

(3-4)

ψ̇ = v sinα
l

(3-5)

with l the distance between the front wheel and the center of the robot.
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3-2-2 Auxiliary sensors

A set of relative and absolute sensors are currently used to localize the robot. These include:

• Inertial Measurement Unit (IMU)

• Depth sensor

• Wheel encoders

• Steering angle encoder

Full specifications are listed in Appendix A. The IMU is used to measure the orientation
of the robot. This document uses an intrinsic Euler angle convention. The names of the
rotation angles are based on the aerospace convention: yaw (ψ, z-axis), pitch (θ, y-axis), and
roll (φ, x-axis), as depicted in Figure 3-2a. Roll and pitch measurements are referenced to
the direction of gravity. Due to the use of magnets to attach to the ship’s hull, the IMU
cannot employ a magnet, causing the orientation of the heading to be un-referenced. This
results in a heading drift over time. When the robot is attached to the side of the ship with
the coordinate system as shown in Figure 3-2b, the un-referenced orientation becomes the
rotation around the ship’s hull fixed y-axis, or pitch.

x

φ

y

θ

z

ψ

(a)
x

y

z

Ship’s hull

Robot

x

y

z

(b)

Figure 3-2: Coordinate systems used throughout the document. The associated orientations are
found using the right-hand rule (a). On the flat side of the ship’s hull, the coordinate system as
shown in (b) is used.

For the localization, only the depth or y-coordinate has an absolute measurement. For the
x- and z-coordinates, the position system relies solely on relative positioning. The current
location is estimated through wheel odometry, introducing error build-up in the estimate.
Sensor noise contributes to the error build-up as small errors are added up and integrated
to the position estimate. However, the main cause of the error build-up is wheel slip, which
happens when the robot is driven over uneven or slippery surfaces. Furthermore, the wheel
encoders suffer from a high rate of hardware failure due to the build-up of dirt.

Dave Verstrate CONFIDENTIAL Master of Science Thesis



3-3 SLAM operating conditions 19

3-3 SLAM operating conditions

The typical trajectory of the robot during cleaning looks like a lawn mower pattern to ensure
maximal coverage, as shown in Figure 3-3. This means that the robot is not in the exact same
position twice. When the robot re-observes a landmark, this will be from a slightly different
viewpoint, complicating the ability to recognize previously visited locations.

Figure 3-3: Trajectory of robot during cleaning in land mower pattern

From cleaning operations and inspection reports, Steensma has identified the following ele-
ments that may be encountered during navigation on the ship’s hull [19]:

• bilge keels

• bow thrusters

• depth markings

• holes

• sea chests

• stabilizing fins

• stern thrusters

• weld lines

• zinc anodes

Some of these elements, such as holes or thrusters may be used as recognizable landmarks for
a SLAM system. However, the ships are typically sparse with these elements and segments
without distinct visible landmarks are expected.

3-4 Overview

The conditions and limitations discussed in this chapter are summarized in Table 3-1.
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Operating
conditions

Topic Specifications

FLS sonar FLS specifications Max range rmax = 10 m
Range resolution dr = 6 mm
Angular resolution dθ = 0.18◦

Field of view FOV = 130◦

Beam width θ × φ = 1◦ × 20◦

Number of beams n = 768
Acoustic frequency fsonar = 2250 kHz
Update frequency fupdate = 10 Hz

Acoustic propagation Temperature
Salinity
Depth
Water fluctuations

Geometry Displacement from robot frame [1141, 0, 306] mm
Tilt φ = 10◦

Image Formation Non-uniform resolution
Speckle noise
Inhomogeneous insonification
Reflections from water surface

Robot Movement Attached to ship’s hull
Positioning system Unreferenced IMU heading orienta-

tion
Relative localization of x- and z-
coordinates
Drifting due to wheel slip
Hardware failure of wheel encoders

SLAM Landmarks Landmarks are re-observed from dif-
ferent viewing angles, due to lawn
mower pattern
Segments without any distinct visible
landmarks

Table 3-1: Overview of operating conditions
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Chapter 4

Requirements

The task clarification phase is finalized by setting a list of requirements for the Simultaneous
Localization and Mapping (SLAM) system. A distinction is made between functional and
non-functional requirements. The former describe the desired behavior of the SLAM system,
while the latter specify criteria that are used as evaluation metrics. The final contribution of
this chapter is a list of requirements and metrics that the proposed design needs to fulfill.

In Section 4-1 the functional requirements are proposed. The system is split into multiple
subsystems and for each subsystem the requirements are set. The non-functional requirements
are detailed in Section 4-2. A final overview is presented in Section 4-3.

4-1 Functional requirements

The set of functional requirements describe the behavior and functionality of the system.
These requirements are described in a qualitative way and specify the input that may be used
as well as the desired output of the system.

The basic SLAM system architecture is discussed first and serves to give the reader a basic
understanding for the later sections in this chapter. The system is further divided into
subsystems, for which requirements are further specified.

4-1-1 SLAM architecture

A visual SLAM system uses visual information to track the robot position and landmark
positions. Position estimates from auxiliary sensors, such as IMU and wheel odometry, may
optionally be used as well to improve the estimate. In the most basic form this amounts to
visual odometry. As with wheel odometry, this results in error build-up. The error build-
up can be reset in a SLAM system by observing previously visited locations. In literature
this is often referred to as loop closure or data association. The associations to previous
observations, along with the position estimates from visual odometry and auxiliary sensors,
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are used to produce an updated position of the robot on the ship’s hull as well as a map
representation of tracked landmarks.

pose estimate
xp

sonar image
frame Si

Visual Odometry

Loop Closure
Detection

Pose and Map
Estimation

SLAM
estimate

xs

Figure 4-1: Basic system architecture of SLAM.

This basic interaction between the different subsystems is shown in 4-1. Visual odometry
and loop closure detection are often referred to as the front-end, as these subsystems are
concerned with abstracting sensor data. The SLAM back-end is the pose and map estimation
which uses the abstracted data to produce an estimate.

Given the operating conditions, the SLAM system uses as input:

• Sonar images (polar and/or Cartesian coordinates)

• Position estimate from IMU and wheel odometry

Where the usage of auxiliary sensors is optional. After abstraction of the sensor data, the
system must produce as output:

• Position estimate of robot on ship’s hull

• Map representation of tracked landmarks

In the next sections the requirements of each subsystem will be further detailed.

4-1-2 Visual odometry

Visual odometry is used to estimate the robot motion from subsequent sonar images. The
motion estimates can then be integrated to a position estimate of the robot on the ship’s hull.
Along with the position estimate from IMU and wheel odometry measurements, this provides
an initial position estimate for SLAM.

Given the operating conditions, this subsystem uses as input:

• Pair of subsequent sonar image frames (polar and/or Cartesian coordinates)

• Auxiliary sensor measurements (optional)
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Auxiliary sensor measurements are optional and may be used for absolute measurements of
depth and orientation. Visual odometry must produce as output:

• Position estimate of the robot on the ship’s hull

4-1-3 Loop closure detection

With loop closure detection the system is able to correct drift that has accumulated from the
odometry measurements. This process consists of two steps. First, the current location has
to be matched to a set of previously visited locations. When an association between locations
is found, the current robot pose has to be related to the tracked landmark.
Given the operating conditions, this subsystem uses as input:

• Current sonar image frame (polar and/or Cartesian coordinates)

• List of tracked landmarks

• Current position estimate

Loop closure detection relies on the current SLAM estimate and thus the accuracy of this
estimate is vital. As an output this subsystem produces:

• Match between current observation and a previous observation

• Relative transformation to previous observation

4-1-4 Pose and map estimation

This subsystem is involved in simultaneously estimating the robot position and map of the
ship’s hull with information from the previous subsystems. The map can be represented
in different ways, but the most important aspect is tracking landmarks that are used for
navigation and obstacle avoidance. Instead of building a map from scratch, some shipping
companies offer general arrangements of the ship, which can be used to locate landmarks and
the robot position relative to those landmarks.
Given the operating conditions, this subsystem uses as input.

• Position estimate from visual odometry

• Position estimate from IMU and wheel odometry

• Loop closure match and relative transformation, if detected

• A priori map information (optional)

The estimation is dependent on the accuracy of the previous subsystems. The output of this
system is the final output of the SLAM system:

• Position estimate of robot on ship’s hull

• Map representation of tracked landmarks
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4-2 Non-functional requirements

This set of requirements specify the desired performance of the system. The requirements are
proposed in the form of metrics that can be used to compare and evaluate different working
principles.

4-2-1 Accuracy

Improvement of the accuracy of the positioning system of the robot is one of the main ob-
jectives of the SLAM system and thus the accuracy of the position estimate is an important
criteria to consider. An important term to express this term is the error build-up, which is
used to describe the accumulated error between the true position and estimated position per
true meter traveled:

EBU = 100% · ||pest(T )− ptrue(T )||∑T
i=T−N ||ptrue(ti)− ptrue(ti−1)||

(4-1)

where ptrue(T ) is the true position and pest(T ) is the estimated position at time instance T
and N is the size of the data sequence over which the error build-up is calculated.
With correct loop closure detection, the error build-up can be reset. The maximum error
build-up is thus expected before a loop closure event, on segments without distinct visible
landmarks. In a loop closure event the acceptable error tolerance is assumed to be 10 m,
as the landmark should then be somewhere in the sonar field of view. Assuming a typical
ship length of 200 m and distinct landmarks at the start and end of the lane, where the error
build-up can be reset. Traveling along the length of the ship, the error build-up should then
not be more than 10 m or 5 % to ensure successful loop closure detection.

• EBU < 5 %

4-2-2 Robustness

A SLAM system may be susceptible to many failure modes, either algorithmic or hardware-
related. Robustness to these failure modes is thus of particular interest. The most important
cause of algorithmic failure in a SLAM system is erroneous loop closure detection [20]. In-
correct landmark associations (false positives) cause the pose and map estimation to produce
wrong estimates. On the contrary, when the system rejects or misses a correct loop closure
event (false negatives), fewer measurements are used for estimation, reducing accuracy.
In pattern recognition precision and recall are often used metrics to describe the accuracy of
an algorithm:

PRC = TP

TP + FP
(4-2)

RCL = TP

TP + FN
(4-3)
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Where TP are True Positives, FP false positives and FN false negatives. Since false positives
can lead to completely wrong estimates, from which recovery is not trivial, precision needs to
be as high as possible. While false negatives contribute to a degraded accuracy of the estimate,
their presence is not enough to trigger failure in the system. As such, the requirements are
chosen as:

• PRC > 0.98

• RCL > 0.90

4-2-3 Computation time

For autonomous behavior of the Fleet Cleaner robot it is necessary for the algorithm to run
online. The computation time for visual odometry, during landmark sparse segments, and
the computation time during a loop closure event are considered.

Visual odometry relies on subsequent image pairs and as such the computation time should
be faster than the image update rate, which is 10 Hz. However, the image pairs can also be
chosen every n-th frame, so that a longer computation time is allowed. Fleet Cleaner has
stated a required accuracy within 10 cm, in order to make the robot autonomous. With the
travel speed of 0.3 m s−1 of the robot, the computation time of the postion estimate needs to
be at most 0.33 s, otherwise the true position exceeds the 10 cm requirement. This means the
computation can be done every 3 sonar image frames.

Loop closure detection and re-localization based on these observations is computationally
heavy, increasing with time and scale of the mission. However, a low computation time is
desired to improve accuracy. During a successful loop closure event the error build-up may
be removed, whereas erogenous detection may be the cause of failure as discussed before. It
is for this reason that the requirement for computation time during loop closure is chosen to
be more lenient, to make the trade-off in favor of accuracy.

• TV O < 0.3 s

• TLC < 2 s

4-3 Overview

An overview of the requirements is presented in Table 4-1 (functional) and 4-2 (non-functional).
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Subsystem Requirements

Visual odometry Input: - Pair of sonar frames (polar or Cartesian)
- Auxiliary sensor data (optional)

Output: - Robot position estimate

Loop closure detection Input: - Sonar image frame polar or Cartesian
- List of tracked landmarks
- Robot position estimate

Output: - Association with previous observation
- Relative transformation to previous observation

Pose and map estimation Input: - Visual odometry position estimate
- IMU and wheel odometry position estimate
- Loop closure detection and relative transforma-
tion
- A priori map information (optional)

Output: - Robot position estimate
- Map representation of tracked landmarks

Table 4-1: Overview of functional requirements

Metric Requirements

Accuracy EBU < 5 %

Robustness PRC > 0.98
RCL > 0.90

Computation time TV O < 0.3 s
TLC < 2 s

Table 4-2: Overview of non-functional requirements
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Chapter 5

Working principles

In this chapter technical solutions that match the requirements are presented. Different
working principles are discussed for each of the subsystems. The working principles are to be
combined in an optimal working structure or principle solution to the problem, taking into
account previously discussed goals, operating conditions and requirements.

In Sections 5-1, 5-2 and 5-3 working principles for respectively visual odometry, loop closure
detection and, pose and map estimation are discussed. The optimal solution is proposed in
Section 5-4 and a final overview is given in Section 5-5.

5-1 Visual odometry

The basic principle of visual odometry is to estimate camera (or in this case sonar) motion by
analyzing image pairs. Most techniques are based on extracting features from the images and
tracking their movement. View-based approaches, in contrast, make use of the entire image
content.

All feature-tracking approaches basically consist of the following steps:

• Feature extraction

• Feature matching

• Motion estimation

Where the approaches differ is the type of features that are extracted. The features can be
extracted at pixel-level or at region-level, as shown in Figure 5-1. We will go into detail into
each of these approaches.
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5-1-1 Pixel-level feature registration

Pixel-level feature points are described by the local area around the feature point. These
are based on a change of an image property, such as intensity, color and texture [21]. These
points need to be matched in different images and thus are often invariant to scale and/or
rotation. The types of features extracted by these methods include corners, edges and blobs,
the more popular feature descriptors being Harris corners [22], Scale-Invariant Feature Trans-
form (SIFT) [23] and Speeded Up Robust Features (SURF) [24].
The points are matched based on the similarity of the desciptors. Usually this procedure is
followed by an outlier-rejection algorithm such as RANdom SAmple Consensus (RANSAC)
[25], to remove wrong correspondences. The sonar motion is calculated by estimating the
homography [26].
Most feature descriptors were developed for optical imagery and their performance on sonar
images can be unreliable. In [27], the authors used SIFT descriptors to match features. They
report a very low amount of inliers (12 correct matches from 150 features). This results is
further underlined by Hurtós [28], noting low repeatability rates.

(a) (b)

Figure 5-1: Example of extracted features at (a) pixel level [27] and (b) region level [29].

5-1-2 Region-level feature registration

As noted before, sonar images suffer from weaker textures and more speckle noise when
compared to optical images, which impacts the ability to reliably extract pixel-level feature
descriptors. More stable features can be extracted on a region-level. These features can
be extracted based on sharp intensity changes [10]. In a different approach the features are
focused on bright blobs, representing objects or structures, and darker regions that correspond
to cast shadows [29]. A clustering algorithm to detect objects such as gratings was proposed
by Steensma in the preceding work [19].
Alignment and matching of the region-level features is often solved as an optimization pro-
blem. A popular method is Normal Distribution Transform (NDT) [30]. This region-level
feature registration approach has been implemented on sonar images in various applicati-
ons [10, 31, 32]. These results show more stability than the pixel-level features and have
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been successfully applied in sonar-based Simultaneous Localization and Mapping (SLAM)
applications.

5-1-3 View-based registration

View-based registration approaches are characterized by the lack of using detected features.
Correspondences are estimated by analzing large areas or even the complete image content.
Since these approaches are able to process more information, it is presumed they are more
robust to changes in the viewpoint and outliers. The downside to these approaches is that only
similarity transformations can be identified. However, the simplified sonar geometry model
falls within this limitation. These methods include approaches based on spatial-correlation
and Fourier analysis [33].

Spatial correlation

Spatial correlation is found by analyzing the normalized cross-correlation [34]:

γ(u, v) =
∑
x,y(f(x, y)− f̄)(g(x− u, y − v)− ḡ)√∑

x,y(f(x, y)− f̄)2 ∑
x,y(g(x− u, y − v)− ḡ)2

(5-1)

Where f(x, y) and g(x, y) are the image frames and f̄ , ḡ indicate the means of the images.
The displacement of the images can then be found by estimating the location of the peak of
the cross correlation. Downsides of this method are high computation effort and difficulty of
reliably estimating maxima [33].

Fourier analysis

This method follows a similar approach to spatial correlation, but instead correlation is found
by analyzing the phase correlation matrix in the Fourier domain:

C(u, v) = F (u, v)G∗(u, v)
|F (u, v)G∗(u, v)| = e−j(utx+vty) (5-2)

Where F (u, v) and G(u, v) are the 2D Fourier transformed image frames, and G∗ (u, v) deno-
tes the complex conjugate. The inverse Fourier transform is applied to the phase correlation
matrix and the displacement is then found by estimating the location of the peak of this
function. In a comparison with feature-based methods, the Fourier registration method sho-
wed superior performance and seemed better suited to the limitations of sonar images [28],
especially in feature sparse environments.

5-1-4 Comparison

The discussed methods are compared against the non-functional requirements from Section
4-2. The comparison is made qualitatively using information and results from the discussed
literature.
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Working principle Accuracy Robustness Computation time
Pixel-level features +/– – – ++
Region-level features + +/– +
Spatial correlation ++ – – –
Phase correlation ++ + +/–

Table 5-1: Comparison of visual odometry methods

While both feature extraction methods have a simple and fast implementation, performance
on sonar images is questionable. Low stability and repeatability will impact the robustness
of these methods. The correlation methods are better tailored to the limitations of sonar
images and are expected to perform better. From these methods, phase correlation offers
higher computational efficiency and more reliable peak detection.

5-2 Loop closure detection

Loop closure detection can be carried out by not only matching the current location to recent
locations but to all previous locations. Matching can be done based on features or complete
images, as was described for visual odometry. The discussed loop closure detection approaches
are categorized based on where the loop closure detection takes place: in the map space or in
the image space [35].

Image processing

Loop closure detection methods are heavily dependent on the extracted information from
images. The same methods that were discussed in Section 5-1 can be used. However, now
with the added requirement of long-term matching. As the robot itself interacts with the
environment by cleaning fouling, feature descriptors are expected to vary too much over time.
View-based approaches suffer from the same problem and in addition provide no description
of the image content. However, objects on the ship, such as gratings, remain static and are
therefore viable landmarks to be used in loop closure detection. Object detection from sonar
imagery has been explored by Sawas [36] and in the preceding work of Steensma [19].

Next, loop closure methods are discussed that can match the tracked objects.

5-2-1 Submap matching

In this type of loop closure detection, correspondences are found in the map space. The map
is divided into smaller submaps and loop closures are found by looking at common features,
taking visual appearance and spatial information into account. Figure 5-2 shows matched
features between two different submaps. The detection can take place in the background
and in this way can achieve real time operation. Often, features from different submaps are
related using a branch and bound search based on joint compatibility [37]. This method has
been applied on monocular cameras [38], as well as mechanically scanned imaging sonar [39].
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Figure 5-2: Loop closure by finding correspondences between common features in different
submaps [35]. The red and blue dots represent features from two different submaps. Features
that are matched to each other are indicated by the black lines.

5-2-2 Image to image matching

In the image space correspondences can be found by comparing the latest image to previously
seen images, as shown in Figure 5-3. This matching is done by purely considering appearance
information. As such scalability can become a issue as the number of stored images increases.
Bag of words and vocabulary tree search methods are therefore often used as efficient means
to look through the large image space [40]. These methods can retrieve images in a similar
way as Google retrieves text or webpages. Such a model is used to detect loop closing in a
SLAM system in [41]. A visual vocabulary is build based on SURF descriptors in images and
is learned offline using training data.

While the accuracy and precision of this method is good and it can be run real time with
efficient search methods, there are some downsides [35]. Only visual appearance information
is considered and the spatial transformation is not given directly. Furthermore it requires
offline learning of a good vocabulary.

Figure 5-3: Loop closures are detected by finding correspondences between the current image
and previously viewed images [35].
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5-2-3 Image to map matching

The latest category combines the image and map space. Correspondences are sought between
the latest image and features in the map, as shown in Figure 5-4. In [42] the authors use a
relocalization module to determine the pose of the current view in relation to a map of point
features. The pose is computed from feature point correspondences using RANSAC [25].

In a quantitative comparison, this method shows a high precision and fast real-time perfor-
mance , but it requires a high amount of memory usage [35].

Figure 5-4: Loop closure detection by finding correspondences between the current image and
map features [35].

5-2-4 Comparison

The discussed loop closure methods are compared against the non-functional requirements
from Section 4-2. The analysis is made qualitatively using information and results from the
previously discussed literature. The final comparison is shown in Table 5-2.

Working principle Accuracy Robustness Computation time
Submap matching +/– – – +
Image to image matching + + –
Image to map matching + ++ +

Table 5-2: Comparison of loop closure detection methods.

In the research of Wiliams et al. results show that submap matching has a poor perfor-
mance, lacking the ability to reliably distinguish between true and false positives [35]. The
other two methods that perform matching in the image space have a better performance in
general. From these, image to image matching has the highest true positive rate and lowest
computation time. However, this is at the cost of a higher memory usage.

Dave Verstrate CONFIDENTIAL Master of Science Thesis



5-3 Position and map estimation 33

5-3 Position and map estimation

Position and map estimation is considered as the back-end of a SLAM system. Many approa-
ches exist for this problem and the optimal solution depends on the robot sensors, desired map
resolution, nature of the environment and so on. In this section, the three main paradigms
within the field of SLAM are discussed.

Recall that in SLAM, a robot uses all given information to simultaneously build a map of
the environment and estimate its own location inside that map. There are two categories of
the SLAM problem, full SLAM and online SLAM [43]. Full SLAM is involved in estimating
the entire robot trajectory, while online SLAM instead only tries to recover the current robot
pose. As full SLAM is solved in an offline manner, with all available data, it will not be
further considered here, since it does not meet the stated requirements for the system.. The
online SLAM problem is defined as

P (xt,m|Zt, Ut) (5-3)

where xt is the robot pose at time instant t, m is the true map of the environment, containing
locations of objects and landmarks. Zt is the sequence of observations, while Ut is the sequence
of odometry measurements or control inputs.

The three main paradigms that are discussed in the subsequent sections are based on the
Extended Kalman Filter (EKF), particle filter and an optimization based on a graphical
representation. The paradigms are briefly discussed, listing the main benefits and downsides,
for a more in-depth discussion the reader is referred to the work of Thrun, which explains the
different algorithms and their application in SLAM [44].

5-3-1 Extended Kalman filter

The EKF is an extension of the popular Kalman filter, applied to non-linear state models [45].
Its application to the SLAM problem is one of the first reported solutions. Benefits of the
EKF include an optimal mean-square error estimate and a strong convergence [46]. However
due the nature of the covariance matrix, the computational effort increases quadratically with
the scale of the map, making it unviable for large-scale environments (>100 landmarks).

Several variants of the EKF are developed to reduce the computational effort needed. Ap-
proaches that are based on the information form of the Kalman filter are shown to be more
efficient. Sparse Extended Information Filter (SEIF) [47] and Exactly Sparse Extended Infor-
mation Filter (ESEIF) [48] are sparse variants of the information form and have been applied
on ship hull inspection [49]. Another strategy is divide the map into smaller submaps, which
limits the cost associated with the covariance matrix [39]

5-3-2 Particle filter

The second category of solutions is based on the particle filter. Particle filters are non-
parametric and able to handle non-linear state transitions [50] by representing the distribution
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with a finite set of sample states or particles. They have become more popular in recent years
and have been applied to the SLAM problem. Particle filters scale exponentially with the
state space and as such are unsuitable for most SLAM applications. FastSLAM, however,
alleviates this issue and makes particle filters suitable for SLAM [51].

The main advantage for FastSLAM is efficiency. It scales logarithmic to the size of the map
and linear to the number of used particles. An improved version of FastSLAM was proposed
in [52]. The so called FastSLAM 2.0 differs by taking into account the motion model and
current observations to generate particles. While FastSLAM 2.0 is superior in most aspects, it
has a more difficult implementation compared to FastSLAM 1.0, as it is more mathematically
involved [53].

5-3-3 Graph-based optimization

This category of solutions is based on a graph formulation of the SLAM problem. This graph
representation is shown in Figure 5-5. The nodes in the graph correspond to robot locations
at different time instants. Edges, connecting the nodes, represent spatial constraints that
are derived from measurements. Consecutive nodes are related by odometry measurements
whereas other edges correspond to constraints that arise from multiple observations of the
same landmark.

Figure 5-5: Graph representation of SLAM, where nodes correspond to robot locations at dif-
ferent time instants and edges are spatial constraints derived from odometry and observational
measurements [54].

Let zij and Ωij be the mean and information matrix of a spatial transformation relating node
i to node j. This can be obtained from odometry measurements or multiple observations
of the same landmark. Furthermore, let ẑij be the predicted transformation, based on the
relative transformation between the two nodes. Then, the error is defined as

eij = zij − ẑij (5-4)
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The goal of the optimization is to find the configuration of nodes that minimize the negative
log likelihood of all observations [54]:

x∗ = arg min
x

∑
<i,j>∈C

eTijΩijeij (5-5)

where C is the set of all constraints. While most graph-based SLAM approaches are offline
approaches, more recently iterative methods have emerged that are able to run the optimi-
zation in an online manner. Current iterative approaches include iSAM [55] and SLAM++
[56].

5-3-4 Comparison

The discussed pose and map estimation methods are compared using the non-functional
requirements from Section 4-2. The comparison, shown in Table 5-3, is derived from the
discussed literature in a qualitative manner.

Working principle Accuracy Robustness Computation time
EKF +/– +/– – –
Particle filter + + +
Graph-based + ++ –

Table 5-3: Comparison of pose and map estimation methods

It should be noted that all methods are viable and have been widely used in different applica-
tions, including sonar-based systems [7]. However, EKF methods have several disadvantages
due to the linearization and high computational effort. Particle filter approaches are widely
used due to their good performance and fast implementation. The graph-based have the po-
tential to handle higher-dimension maps even better, but at the cost of computational costs,
requiring an incremental method for online use.

5-4 Optimal working structure

The selection of an optimal working structure is done by choosing the optimal solution for
each sub-function. This will be done in a qualitative manner, based on the goals, constraints
and requirements. Recall from Chapter 1 the thesis objectives: development of a sonar-
based underwater SLAM framework tailored to the working environment of ship hull cleaning
robots. The final proposed design consists of the following working principles:

Visual odometry: Phase correlation

A view-based approach is chosen as it is suited for the feature sparse underwater environment.
The Fourier-based phase correlation shows promising results on FLS images. The major
downside of view-based approaches, identification of only similarity transformations, is not
an issue with the simplified sonar geometry model.
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Loop closure detection: Object-based image to map matching

For loop closure detection, an approach based on visible objects is chosen. While not many
distinct landmarks are present on the ship, gratings and holes provide an orientation point.
To detect previously visited locations, the image to map method is chosen as the most op-
timal. This method showed the best accuracy and precision in literature, while also being
computationally efficient.

Pose and map estimation: Particle filter

Graph-based SLAM and particle filter methods both show a good performance. In the end, the
particle filter method is chosen as the optimal solution for its fast and efficient implementation
and provides a good starting point for further development. However, note that all methods
are generally suitable for a SLAM system.

5-5 Overview

A final overview of all discussed methods in this chapter is shown in Table 5-4.

Subsystem Working principle Note
Visual odometry Pixel-level feature registration Unreliable on sonar imagery.

Region-level feature registration Low stability and repeatability.
Spatial correlation Unreliable peak detection and high

computation time.
Phase correlation Best accuracy and robustness.

Loop closure detection Submap matching Unreliable in distinguishing true and
false positives.

Image to image matching Good performance, high computa-
tion time.

Image to map matching Best performance, high memory
usage.

Pose and map estimation Kalman filter Linearization errors and high compu-
tation time.

Particle filter Good performance, fast and efficient.
Graph optimization Growth in computation time in lar-

ger maps.

Table 5-4: Overview of the discussed working principles in this chapter for each sub-function.
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Chapter 6

Sonar-based visual odometry

In the previous chapters, the conceptual design of a sonar-based Simultaneous Localization
and Mapping (SLAM) system for the Fleet Cleaner robot was described. As detailed in
Section 3-3, long segments without distinct landmarks are expected when driving on the
hull. To reduce the error build-up on these segments, visual odometry is of importance. The
implementation of a visual odometry approach is the first step towards the second thesis
objective: validate the sonar-based visual odometry algorithm with a proof of concept.

As explained in Section 5-1, the phase correlation method was chosen as the most optimal
method for sonar-based visual odometry. While this method has been applied on other dom-
ains such as optical imagery, its application on sonar imagery is not widespread. Therefore,
the implementation phase will consist of tailoring the method to the specific limitations of
sonar imagery. The chapter will detail several image processing steps necessary to improve
the method, as well as the tuning of parameters in these operations.

In Section 6-1 the basic principles of the phase correlation method are explained. The im-
plementation of different sub-functions, such as image processing operations, are discussed in
Section 6-2, with the tuning of parameter values in Section 6-3. Finally, a discussion of the
findings and limitations is presented in Section 6-4.

6-1 Phase correlation

Fourier-based registration is based on the Fourier shift property, which states that a shift
between two functions is transformed into a linear phase shift in the Fourier domain. Consider
two images i1(x, y) and i2(x, y), which are related by a translational shift (tx, ty):

i1(x, y) = i2(x− tx, y − ty) (6-1)
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Applying 2D Fourier transformation then yields the following relation, according to the Fou-
rier shift property:

I1(u, v) = I2(u, v)e−j(utx+vty) (6-2)

Where I1 and I2 are the 2D Fourier transforms of the pair of images. The phase term can
then be factored out, which results in the normalized cross power spectrum:

C(u, v) = I1(u, v)I∗2 (u, v)
|I1(u, v)I∗2 (u, v)| = e−j(utx+vty) (6-3)

Where I∗ is the complex conjugate of I. This equation can be solved for (tx, ty) in the
frequency domain, or more commonly in the time domain. Applying the Inverse Fast Fourier
Transform (IFFT) to equation 6-3 yields the Phase Correlation Surface (PCS):

c(x, y) = δ(x− tx, y − ty) (6-4)

Since this an impulse function centered on (tx, ty), this leads directly to the identification
of displacement. Although the presence of image noise and other disturbances may degrade
this function, the displacement may be retrieved as long as it contains a dominant peak.
The complete process is summarized in Figure 6-1. From the sonar displacements, the robot
velocity can be derived. This is further detailed in Appendix B.

FFT

FFT

Cross Power
Spectrum

IFFT
Peak

Detection

i1(x, y)

i2(x, y)

I1(u, v)

I2(u, v)

C(u, v) c(x, y) (tx, ty)

Figure 6-1: Diagram describing the phase correlation registration process of two input images
to find the displacement (tx, ty).

Compared to classical correlation methods, the phase correlation method shows an advantage
in the accuracy of peak detection. As shown in Figure 6-2, the phase correlation shows a very
sharp and distinct peak, when compared to standard cross correlation. Furthermore, the cross
power spectrum is normalized by the denominator, meaning that all frequency components
have unity amplitude. This operation is equivalent to pre-whitening of signals, which makes
the phase correlation robust to noise types that are correlated to the image function, such as
uniform variations of illumination or offsets in average intensity [57].
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(a) Standard cross correlation (b) Phase correlation

Figure 6-2: Phase correlation surface shows a more clear and distinct peak when compared to
standard cross correlation.

6-2 Implementation

In the previous section, the basic principles of a phase correlation registration method were
discussed. In practice, however, there can be some problems in reliably detecting a peak in
the PCS. In this section, several operations are discussed that aim to improve the quality of
peak detection.

Methods to detect sub-pixel displacements are discussed in Section 6-2-1. In Sections 6-2-2
and 6-2-3 masking and filtering operations on the sonar images are detailed, while filtering
operations on the cross power spectrum are discussed in Section 6-2-4. Finally, in Section
6-2-5 methods are discussed that can estimate the rotational displacement instead of the
translational displacement.

6-2-1 Peak detection

The dominant peak in the PCS can be found simply by examining the maximum value:

(tx, ty) = arg max
x,y
|c(x, y)| (6-5)

However, this yields only integer offsets and does not take into account the shape of the peak
when the surface is not an ideal Dirac function due to noise and disturbances. The typical
forward velocity of the robot is roughly 0.3 m s−1, meaning that with 10 Hz the robot displa-
cement is 3 cm between every update. In the sonar image view this displacement translates
to roughly 3.75 pixels. The small pixel displacements lead to large inaccuracies when only
integer offsets are considered. Several methods exist to find sub-pixel displacement in the
PCS. According to [57], c(x, y) can be approximated as:

c(x, y) = sin(π(x− tx))
π(x− tx)

sin(π(y − ty))
π(y − ty)

+ n(x, y) (6-6)
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Where n(x, y) refers to interference terms, including noise. If this term is negligible due to
high SNR, they propose sub-pixel displacement can be found by:

tx = c(1, 0)
c(1, 0)± c(0, 0) ty = c(0, 1)

c(0, 1)± c(0, 0) (6-7)

In this equation the highest peak is located at (x0, y0) and the notation c(k, l) = c(x0+k, y0+l)
is used as a simplification. Sonar images, however, feature low SNR and as shown in [58] this
method is inaccurate in the presence of interference terms. They instead propose a method
that takes into account the difference between the two-sided neighbors:

Dx = c(1, 0)− c(−1, 0) Dy = c(0, 1)− c(0,−1) (6-8)

tx = Dx

c(0, 0) + |Dx|
ty = Dy

c(0, 0) + |Dy|
(6-9)

The authors show that this approach is more robust in the presence of noise and leakage
to side peaks, which is very common, especially in sonar imagery. An example of a phase
correlation surface with side peaks is shown in Figure 6-3. As such, this method for sub-pixel
peak detection will be used in the subsequent sections of the report.

Figure 6-3: Phase correlation surface with a main peak and multiple side peaks.

6-2-2 Windowing operations

Some degrading effects occur due to the computation process of the Fourier transform. The
Fast Fourier Transform (FFT) algorithm approaches the continuous Fourier transform by
assuming that the finite-length signals are periodic in nature. However, the considered signals
are not periodic in nature and this results in rough transitions when a cyclic repetition is
imposed at the end and beginning of such a cycle. These transitions result in undesired
frequency components appearing in the spectrum, which is known as spectral leakage. On
1D signals it is typical to perform a windowing operation on the signal before the FFT
computation. These windows operations reduce the amplitude of points at the start and
end of the signal, smoothing out the effects of spectral leakage. Often used windows include
Gaussian, Hamming and Hann functions.
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I m Im

·

Figure 6-4: Fan-shaped edge mask applied on a sonar image in Cartesian coordinates.

These effects are similarly present in the 2D FFT applied on images, as can be seen in
Figure 6-5. However, the Cartesian sonar images feature a fan shaped image frame instead
of a rectangular frame. Hurtós describes the following procedure to create a mask for the
Cartesian sonar images to reduce the effects of spectral leakage [18]:

1. Compute the footprint f of the input sonar image.

2. Apply a shrink operation to f with n pixels, resulting in fs.

3. Apply a Gaussian filter k to fs with standard deviation σ = n and size 6n× 6n.

4. Convolve fs ∗ k, obtaining mask m.

5. Apply the mask to the input image: Im = I ·m.

(a) No masking (b) Masking with n = 3%

(c) FFT of unmasked image (d) FFT of masked image

Figure 6-5: The FFT of the unmasked image shows patterns due to the edge effects, most
notable in the diagonal lines. By applying a mask on the image, some of these effects are reduced
and patterns related to the image content gain more relevance.

Master of Science Thesis CONFIDENTIAL Dave Verstrate



42 Sonar-based visual odometry

6-2-3 Image filtering

To reduce the effect of unwanted frequencies that lead to a noisy phase correlation matrix,
it is common to apply a filtering step to the sonar images before further processing. The
predominant type of noise present in sonar imagery is speckle noise. The main difference to
white noise is that speckle noise is assumed to have a multiplicative error model:

In(x, y) = I(x, y) · n(x, y) (6-10)

Several filtering operations exist that can reduce the amount of speckle noise. Two different
categories of filters are distinguished, i.e. adaptive and non-adaptive. Adaptive filters use a
kernel with parameters that are changed with respect to local image properties. Therefore,
these filters in general feature a better reduction of speckle noise than non-adaptive filters.
The improved performance is at the cost of increased computation time as most of the adaptive
filters are not optimized for real time use.

Different speckle noise reduction filters were compared in [59] and [60] by measuring metrics
such as MSE, SNR and ENL. In both comparisons, adaptive filters performed consistently
better than non-adaptive filters. From the adaptive filters, the Frost filter [61] was found to
have the best performance in all metrics except for edge preservation. Implementation of the
Frost filter is provided in Appendix C-2-2. In addition, the median filter is considered too, as
it shows good results for a non-adaptive filter and its computation time is considerably faster
than the Frost filter.

(a) Original (b) Median filter (c) Frost filter

Figure 6-6: Median filter and Frost filter applied to reduce speckle noise effects.

Both filters are applied to the sonar image in Figure 6-6. The Frost filter produces the best
resulting, smoothing out the noise while the image content is a little sharper compared to the
median filter. However the computation time of the Frost filter on one image is more than
60 s, obstructing the requirement to run the algorithm in real time. Therefore, the median
filter will be selected which is considerably faster at the expense of lost sharpness in the
images.
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6-2-4 Phase correlation filtering

In the foregoing sections, filtering and masking operations were discussed that are applied
directly on the input images. With these operations it is still possible to have unwanted
frequencies in the cross power spectrum, originating from e.g. noise. Therefore filtering ope-
rations applied on the cross power spectrum become necessary as well. Two main approaches
to filter out the noise are identified, directly in the frequency domain or in the spatial domain,
after the IFFT is applied.

Filtering in spatial domain

The most straightforward approach is to smooth out the noise in the correlation surface.
This can be done in a simple way by, for example, applying an averaging filter. However, for
these filters selecting the right kernel size is critical. A wrong peak may be selected when the
kernel size is too small, while data may be smeared when the filter size is too large, losing
significant accuracy. Figure 6-7 shows the effect of various filter sizes on the peak of the
surface. Furthermore, the appropriate size is heavily dependent on the specific surface and
may vary greatly between different registrations.

(a) No smoothing (b) Filter size 7× 7

(c) Filter size 15× 15 (d) Filter size 33× 33

Figure 6-7: The effect of averaging filter size on the peak of the phase correlation surface.

Filtering in frequency domain

Hurtós [18] has looked instead at filters in the frequency domain that may be adapted to
the specific properties of each registration. The frequencies that are most likely to introduce
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problems are the higher frequencies. The intuition is then to use a simple low-pass filter,
such as a Butterworth filter. As in the spatial case, the problem here is to tune the filter
parameters to the specific situation. The Butterworth filter is described as:

H(u, v) = 1
1 + ( rfc

)2k , u = 1, 2, ..,M, v = 1, 2, ...N (6-11)

Where r =
√
m2 + n2 is the frequency radius in normalized coordinates:

m =
u− M

2
M

n =
v − N

2
N

(6-12)

Furthermore, k is the order of the filter and fc is the normalized cutoff frequency in the
range (0, 0.5]. These filter parameters are again dependent on the image content and finding
a static value for different image pairs can be a hard task. Stones et al. propose to filter out
frequencies outside of a range from the frequency origin [62]. They find a suitable range to
be 0.6N/2, where N is the minimum of samples in the x and y direction of the image.

(a) Phase difference matrix of a
2D delta function. (b) Phase difference matrix of a pair of sonar images.

Figure 6-8: The sawtooth pattern is visible in the phase difference matrix of a 2D delta function
(a). In the phase difference matrix of a pair of sonar images, the pattern is visible in an area
around the origin (b).

However, this static approach may not be robust to different image pairs with different image
content and frequency responses. A more adaptive approach is established by Hurtós. The
basic principle behind this approach will be summarized here. As shown in [63], the phase
difference matrix of a pair of images correspond to a sawtooth pattern. Figure 6-8a shows the
phase difference matrix of a pure delta, being the ideal scenario without noise. The period of
this sawtooth pattern along each axis correspond to the shift along that same axis. However,
the sonar images produce a phase difference matrix in which this sawtooth pattern is not
clearly visible due to the presence of noise in the images. As shown in Figure 6-8b there is
an area around the origin where the sawtooth pattern is visible. The intuition is that the
frequencies inside that area contribute to the correlation peak, while frequencies outside the
area correspond to noise and can be filtered out. A watershed segmentation algorithm [64]
is used by Hurtós to find the range of this area and the corresponding cutoff frequency, see
Figure 6-9. The MATLAB method grayconnected is used here instead for its simplicity and
efficiency. The implementation of this function is provided in Appendix C-2-3. This method
uses a tolerance value, which is tuned in Section 6-3.
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Figure 6-9: A segmentation algorithm is used from the origin, indicated by the red area. The
radius of this area is used as an indication for the cutoff frequency [18].

6-2-5 Rotation estimation

The phase correlation method discussed up until this point is used to estimate only translati-
onal shifts between a pair of images. Since the robot is able to rotate using a steering wheel,
rotational shifts between images are expected as well. Except for driving in a straight line,
all movement of the robot is a combination of translations and rotations. Two images related
by a rotation θ0 and translation (tx, ty) can be expressed by:

i1(x, y) = i2(x cos θ0 + y sin θ0 − tx,−x sin θ0 + y cos θ0 − ty) (6-13)

The aim is to find θ0 and correct the rotation between images so that the previous discussed
phase correlation method can be used to find the translational shifts, as shown in Figure 6-10.
Several approaches to find the rotational shifts are discussed here.

Figure 6-10: One of the images is compensated for rotation, so that only a translational displa-
cement remains, which can be estimated with the phase correlation method.

A brute force approach is possible by finding the angle θ that yields the maximum correlation
between i1 and i2. However, this requires computation of the phase correlation for each angle

Master of Science Thesis CONFIDENTIAL Dave Verstrate



46 Sonar-based visual odometry

hypothesis, making it unviable to perform in real time. Therefore, this brute force method
will not be considered here.

Using IMU measurement to estimate the rotations is a different approach using already avai-
lable data without further computations. While an absolute measurement of yaw is possible
on the side of the ship, this measurement is unreferenced on the bottom of the ship. There-
fore, methods that estimate the rotations using the FLS images are considered first as they
can be used to extend the current yaw measurements.

Fourier-Mellin transform

This method is an extension of the phase correlation method and is used to estimate rotation
and scale changes using the log-polar domain [65]. A simplified explanation of the method is
given here. Using the Fourier translation and rotation property, Equation 6-13 is expressed
in the Fourier domain as

I1(u, v) = I2(u cos θ0 + v sin θ0,−u sin θ0 + v cos θ0)e−j(utx+vty) (6-14)

As stated before the translational displacement only affects the phase spectrum, so the mag-
nitudes of these Fourier transforms are given as:

|I1(u, v)| = |I2(u cos θ0 + v sin θ0,−u sin θ0 + v cos θ0)| (6-15)

This equation shows that both magnitudes are the same, but with a rotation applied to the
second one. This rotation can be expressed as a linear translation in polar coordinates:

|I1(r, θ)| = |I2(r, θ − θ0)| (6-16)

From this θ0 can be found using the phase correlation method. In this case the phase cor-
relation is not applied on the original images, but on the magnitude of the polar Fourier
transform which have a low structural nature. Furthermore, these images degrade from the
conversion to polar coordinates as the Cartesian images are sampled to obtain the polar grid.
This is especially apparent in the lower frequencies, which may require the use of a high-pass
filter.

Direct polar estimation

Problems with the Fourier-Mellin transformation are caused by using magnitude of polar Fou-
rier transformed images as input for the phase correlation. The transformation is numerically
intensive and prone to inaccurate estimations.

Remember that the FLS images are actually recorded in the polar domain, capturing range
and azimuth angle, and then transformed to Cartesian coordinates. Up until this point phase
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correlation has been applied to the Cartesian images to find the translational displacement.
However, when phase correlation is applied directly to the polar images, the rotational dis-
placement can be recovered. While this method is viable in the presence of pure rotations,
some inaccuracies may arise in the case of combined rotations and translations. There is a
difference between the sonar origin and the actual center of rotation, which can be accounted
for by recomputing the polar images. Furthermore, in the polar domain rotations are not
decoupled from the translational shifts, i.e. a pure translational movement will result in a
change in both range and azimuth angle in the polar domain. Hurtós notes that when the
translations are small compared to the image size, the distortions in the polar images are
small enough to allow for the recovery of the rotational displacement. The high frame rate
of the FLS ensures large overlaps and thus small translations between consecutive frames,
reducing significant errors by this effect.

In [66], Hurtós et al. compare different methods for estimating rotation on FLS images,
including the Fourier-Mellin transform and direct polar estimation. They show that direct
polar estimation has a better accuracy in the case of pure rotations. When introducing
translations in combination with rotations the quality degrades and the observed accuracy
is similar or slightly worse than the other methods. However, the direct polar estimation is
considerably faster than other methods, facilitating the desired real time use of the method.
Because of the faster computation time, similar accuracy and simplicity of this method,
direct polar estimation will be used in the remainder of this report as the method of choice
to estimate rotational displacements.

6-3 Parameters

In the previous section, the used filter and processing steps were detailed. The process is
summarized in Figure 6-11. As the quality of the final peak detection step is dependent
heavily on these steps, proper tuning of the filters is necessary. The parameters that are
considered are summarized in Table 6-1.

Subfunction Parameter Remarks

Input nf FLS imagery is used as input. Every nf -th
frame is analyzed.

Edge mask nm Edge mask size as a percentage of the maxi-
mum image size.

Image filter Smed Median filter size.
Phase correlation filter Tflood Butterworth filter with cut-off frequency fc

and order kbw. fc is estimated with a flood
fill algorithm with tolerance Tflood.

kbw

Rotation estimation Previous filter and masking operations are ap-
plied on polar images before phase correlation.
Different values are used on the polar images.

Table 6-1: Overview of parameters
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iP1 (r, θ)

iP2 (r, θ)

Phase Correlation
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Figure 6-11: Overall pipeline for the phase correlation method. Phase correlation is used twice,
first to estimate rotation and then to estimate translation on the rotation compensated images.

Validation datasets

From a multitude of datasets different pairs of consecutive images were selected as validation
datasets to tune the parameters. The datasets include varying environmental circumstances
summarized in Table 6-2. The datasets do not include an accurate ground truth measurement
and as such a performance metric for peak detection is used to qualify the registration process.

Dataset Ship Remarks

1 Mineral China Visible weld line, fouling
2 OOCL Europe Reflections
3 Tosca Reflections, multiple weld lines
4 Fagelgracht Fouling, weld lines
5 Cosco Pride Multiple gratings and weld lines

Table 6-2: Datasets used for tuning, from each set a pair of images is chosen.

Performance metrics

The performance of peak detection is quantified using the Peak to Sidelobe Ratio (PSR)
metric:

PSR = peak − µ
σ

(6-17)

This metric essentially describes how many standard deviations the peak is above the average.
A high distinct peak indicates a high correlation, whereas leakage to side peaks can indicate
erroneous correlation caused by noise or spectral leakage. The intuition of the PSR metric is
that lower values indicate leakage to side peaks, degrading the registration process.
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6-3-1 Input

As input the Forward Looking Sonar (FLS) images are used. The Cartesian representation
is used to estimate the translational displacement and the polar representation to estimate
the rotations, as explained in Section 6-2-5. The other important factor to consider is the
frequency of the used input images. Fleet Cleaner employs a FLS with an update rate of
roughly 10 Hz, while the required update rate of the algorithm is 3 Hz (as stated in Section
4-2). Instead of analyzing every frame, one can choose to analyze every 2nd (5 Hz) or 3th
(3 Hz) frame.

Dataset PSR

nf = 1 nf = 2 nf = 3

1 400.6 210.6 153.3
2 73.8 50.8 37.7
3 99.1 73.1 48.0
4 136.2 92.3 83.2
5 149.2 75.5 53.5

Table 6-3: PSR rating of image pairs are compared, varying the update rates from nf = 1 to
nf = 3.

In Table 6-3 it is shown that higher update rates improve the performance of registration.
This can be explained by the higher overlap between images and therefore more correlation.
However, this does not inherently mean that higher update rates lead to higher accuracy of
the registration. A high update rate leads to smaller pixel displacements between images.
Relative to the small pixel displacement, the sub-pixel peak estimation becomes more impor-
tant. However as explained before in Section 6-2-1, the sub-pixel estimation is not without
inaccuracies. To minimize the relative error in the sub-pixel estimation, the update rate can
be lowered, such that a higher pixel displacement is observed. Furthermore a lower update
rate allows more time per calculation, which is not a trivial advantage as the filtering and
masking operations all increase the required computational effort. Therefore, nf is set to 3,
despite the improved performance at lower values.

6-3-2 Edge masks

Edge masks are applied to the datasets with different mask sizes in the range nm = 1− 4%,
expressed in a percentage of the max image size. The resulting PSR metric for registration
is shown in Table 6-4. For most datasets (dataset 2 being the exception), a larger mask size
results in a higher PSR metric. However, larger mask sizes may remove artifacts on the edges
of the window, so a too large mask size is not desirable as well. Mask size nm = 3% was
chosen as the best balance between these priorities.
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Dataset PSR

nm = 0% nm = 1% nm = 2% nm = 3% nm = 4%

1 153.3 172.1 192.7 218.8 235.2
2 37.7 40.8 39.7 38.8 36.7
3 48.0 55.5 62.6 76.4 93.3
4 83.2 95.3 99.2 104.5 109.1
5 53.5 57.9 63.0 72.8 81.4

Table 6-4: PSR metric for the image pairs with different edge mask sizes in the range n=1−4%

6-3-3 Image filter

Prior to the edge mask operation, the images are adjusted with a median filter to reduce the
amount of speckle noise in the images. The filter is tuned by varying the filter size Smed. A
too large filter size reduces sharpness and detail in the image. For this reason the filter size
is tested for the odd-number values in the range 1 − 15. The max PSR value in this range
is shown in Table 6-5. In the tested datasets there is no clear value that is suitable for all
datasets. The preference is for smaller filter sizes as more detail is preserved in the images.
Therefore, a filter size of Smed = 5 was chosen.

Dataset PSR(no filter) Max PSR Smed

1 218.8 - 1
2 38.8 44.0 3
3 76.4 89.0 5
4 104.5 149.5 5
5 72.8 101.2 15

Table 6-5: Max PSR metric for different median filter sizes in the range Smed = 1− 15

6-3-4 Correlation filter

The cutoff frequency fc and filter order kbw are the parameters that impact the performance
of the Butterworth filter. The cutoff frequency is estimated by using a flood fill algorithm
with a tolerance Tflood. The filter order is set to kbw = 2, which showed the highest PSR for
all datasets. The flood tolerance is tested in the range 0.1 to 0.3 in increments of 0.01. The
tolerance values for which the PSR is maximal, are shown in Table 6-6. While the variance in
cutoff frequency is significant, the optimal tolerance values are all close to each other, varying
between 0.23 and 0.26. The average value of 0.24 is chosen as the flood tolerance in the
remainder of the report.
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Dataset PSR(no filter) Max PSR Tflood fc fc,opt

1 167.0 266.6 0.23 0.19 0.19
2 42.4 109.8 0.25 0.14 0.12
3 89.0 169.1 0.23 0.14 0.13
4 149.5 242.9 0.26 0.13 0.16
5 59.3 159.3 0.23 0.09 0.1

Table 6-6: Max PSR metric for different tolerance values in the range Tflood = 0.1-0.3

A comparison is made between the cutoff frequency estimation resulting from the flood fill
algorithm and the optimal cutoff frequency. The optimal cutoff frequency is calculated by
testing values in the range 0.01 to 0.5 in increments of 0.01. The results are shown in Figure 6-
12, where the green dots represent the optimal cutoff frequency and the red dots the estimated
cutoff frequency. It can be seen that the PSR metric of the estimated cutoff frequency is close
to the optimal value in most cases.
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(d) Dataset 4
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(e) Dataset 5

Figure 6-12: PSR metric for cutoff frequencies in the range fc = 0.01− 0.5. The optimal cutoff
frequency is indicated by a green dot, whereas the cutoff frequency estimated with the flood fill
algorithm is indicated by a red dot.
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6-3-5 Rotation estimation

The same procedure is repeated for the images in polar coordinates. The methods to estimate
the parameter values are same as above and only the results are shown here, summarized in
Table 6-1. Differences with the Cartesian images are found in the median filter and Butter-
worth filter. The median filter seems to have a more degrading effect on performance, so the
filter size will be set to Smed = 3 for rotation estimation. The Butterworth filter produces
similar results, however with a slight change for the flood fill tolerance value.

6-3-6 Overview

Final parameter values are summarized in Table 6-7

Subfunction Parameter Value (Cartesian images) Value (Polar images)

Edge mask nm 3% 3%
Image filter Smed 5 3
Phase correlation filter Tflood 0.24 0.20

kbw 2 2

Table 6-7: Final parameter values for the images in Cartesian coordinates, to estimate transla-
tions, and polar coordinates, to estimate rotations.

6-4 Discussion

In the preceding sections the underlying principles and implementation of the Fourier-based
registration method were detailed. Here, the main findings are discussed, as well as limitations
of the proposed method and implementation.

6-4-1 Findings

The Fourier-based phase correlation method was presented as a viable alternative to the
more widely used feature-based registration approaches. There are various advantages when
applied specifically on sonar imagery:

• Correlation can be found in areas with minimal details and distinct features.

• Because of the normalization in the method, the approach offers some robustness to
noise, illumination changes and occlusions [57].

However, even with these advantages, some operations are needed to improve the quality of
peak detection in the correlation surface. In order to reduce the edge effects, caused by the
FFT, masks are applied to the images. In the case of sonar images in Cartesian coordinates,
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a fan-shaped mask is used, instead of a rectangular shape. Furthermore, speckle noise is
reduced by applying a filter directly on the sonar images. The Frost filter, though having
better performance, is turned down due to the heavy computational costs. A simple median
filter is considered instead. For both the median filter and edge masks, a trade-off needs to
be made between reducing negative effects and maintaining enough details in the images.

A final operation is introduced on the phase correlation matrix in order to sharpen the main
peak and reduce the side-peaks in the surface. This is done in the frequency domain with a
low-pass filter. The cut-off frequency is estimated depending on the structure of the phase
matrix, such that it is adaptive to the image content.

The method is further extended to estimate rotational displacements in addition to transla-
tional displacements by applying the same phase correlation method on the sonar images in
polar coordinates. The same operations are applied on the polar images.

6-4-2 Limitations

However, the proposed method is subjected to the following limitations:

• The phase correlation method is unable to handle complex transformations. Only trans-
lational displacements can be recovered and with extension rotations. However, this falls
within the simplified FLS geometry model, introduced in Section 2-3.

• The simple median filter, used to reduce speckle noise, is non-adaptive. The optimal
filter size varies heavily between different images and a suitable value for different situ-
ations was not found. More complex filters however are not able to fulfill the real-time
requirement of the algorithm.

• Rotations estimated by the phase correlation are inherently susceptible to inaccura-
cies. Rotation is not decoupled from translations in the polar representation, creating
distortions in the presence of combined rotations and translations.
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Chapter 7

Experiments and results

In Chapter 6, the final implementation of the proposed Fourier-based visual odometry method
was detailed. This implementation should work under the operating conditions, described in
Chapter 3 and achieve the required performance, proposed in Chapter 4. In this chapter, the
algorithm is tested using data collected during cleaning operations.
The performance in several cases is considered and compared to the current positioning sy-
stem. The most typical scenario is the robot driving in a straight line. Furthermore, rotation
in combination with translation is considered. Finally, a comparison is made in the case of
wheel slip, which is a major cause of error build-up in the current setup. The performance is
measured according to the non-functional requirements, discussed in Section 4-2.
Section 7-1 describes an experiment that was conducted during cleaning of the Pioneering
Spirit, the worlds largest construction vessel. During this experiment the robot is driving from
a known start point to a known ending location. The performance is compared to the true
known traveled distance and the estimate by the wheel encoders. In Section 7-2 the rotational
displacement is considered and compared against the IMU measurements. In Section 7-3, a
comparison is made against the wheel encoders in the case of wheel slip. Finally, the findings
are summarized and discussed in Section 7-4.

7-1 Weld line to weld line

7-1-1 Experiment description

This experiment was carried out during cleaning operation of the Allseas Pioneering Spirit
in the Port of Rotterdam. With a length of 382 m this is the largest construction vessel in
the world. The robot was guided on a segment between weld lines, maintaining constant
depth and velocity. The weld lines act as markers for a ground truth measurement, where the
distances are estimated from the ship’s general arrangements and validated by measuring on
the actual ship. Weld line markers are visible at the start, midway and end of the segment,
as shown in Figure 7-2. The total distance is 30.0 m with a marker midway at 15.0 m.
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Figure 7-1: Allseas Pioneering Spirit in the
Port of Rotterdam.

Weld line datasets

Date 24-May, 2018
Ship Pioneering Spirit
Location Port, flat side
Total distance 30.0± 0.05 m
Midway marker 15.0± 0.05 m

Table 7-1: Specifications of weld-line ex-
periment

(a) Segment on the general arrangements, weld lines are marked by red, yellow and green.

(b) First weld line on the ship. (c) Second and third weld line on the ship.

Figure 7-2: Segment on the Pioneering Spirit. Marked lines on the GA correspond to weld lines
on the ship.

The segment was repeated several times along different directions, depth levels maintaining a
reference velocity of around 0.14 m s−1, as summarized in Table 7-2. Depth and velocity were
controlled by an autopilot function, though small changes are to be expected.

Auxiliary sensor measurements are collected so that the visual odometry output can be compa-
red to the current positioning system, which relies on wheel encoders and IMU measurements.
In the current setup each of the wheels is equipped with an encoder. To improve the estimate
when one of the wheels is slipping, the minimum value of the encoders is taken as the output:

venc = min(vfront, vleft, vright) (7-1)
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Figure 7-3: Weld line visible on sonar image, indicated by red arrow.

Dataset Reference depth [m] Average velocity [m/s] Duration [s] Frames

1 9.2 0.14 229.7 1965
2 12.2 0.13 240.4 1966
3 12.4 0.14 224.9 1909
4 6.5 0.13 234.1 2049

Table 7-2: Details of the recorded datasets.

It should be noted that the conditions for the wheel encoders during the Pioneering Spirit
experiment are as ideal as currently possible. Multiple wheel encoders were performing wit-
hout mechanical error. Furthermore, this ship featured a reliable surface without slime, such
that minimal wheel slippage was encountered during recording.

7-1-2 Results

Performance of the visual odometry algorithm is compared to ground truth measurements
and the current positioning system. The criteria set up in Chapter 4 are used as metrics to
evaluate the performance.

Accuracy

The estimated distances by visual odometry and wheel odometry are compared to the ground
truth measurements from the general arrangements. The error build-up is calculated indica-
ting the accumulated error during the segment. Table 7-3 shows these results.
While this is an ideal scenario for the wheel encoders, the visual odometry method shows
a better accuracy in almost all datasets. Dataset 4 is the only scenario where the accuracy
exceeds the desired requirement of EBU > 5%. As this dataset is recorded at a lower depth
level, this is most likely caused by the visibility of the waterline and the occurrence of re-
flections and wave perturbations in the sonar images. This effect can be seen in Figure 7-5.
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(a) Dataset 1
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(b) Dataset 2
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(c) Dataset 3
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(d) Dataset 4

Figure 7-4: Estimated velocity by visual odometry compared to wheel encoders.
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Dataset
Visual odometry Wheel encoders

Est. distance Error build-up Est. distance Error build-up

1
midway 14.42 m 3.8% 15.90 m 6.0%
final 29.21 m 2.6% 32.39 m 8.0%

2
midway - - - -
final 30.33 1.1% 31.45 4.8%

3
midway 14.80 1.3% 15.50 3.3%
final 30.29 1.0% 31.63 5.4%

4
midway 14.48 3.5% 16.15 7.7%
final 28.17 6.1% 31.72 5.7%

Table 7-3: Error build-up during the segment by visual odometry and wheel odometry. In dataset
2 the midway marker was not clearly visible on the sonar view.

These artifacts can show up at the same location in multiple sonar images and as such visual
odometry will correlate these artifacts instead of the robot motion.

Figure 7-5: Artifacts that cause disturbances indicated by the red circles. Reflections and wave
perturbations are caused by the presence of the waterline.

Robustness

Robustness of the algorithm is impacted by the quality of registration. Since each error
accumulates over time, each erroneous registration impacts the final output. In Figure 7-4
the estimated velocity over time is shown from both visual and wheel odometry methods. In
datasets 1-3, the results of visual odometry seem quite stable, but in dataset 4 some outliers
are clearly visible. The lowered accuracy was already explained by the occurrence of waterline
reflections and wave perturbations. As a consequence of that, erroneous registrations are
clearly present in dataset 4.
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When taking a look at the Peak to Sidelobe Ratio (PSR) metric for the registrations in Figure
7-6 it can be seen that the PSR dips to very low values between 150s and 200s, around the
same time the outliers are present in the velocity graph. This implies that the PSR metric
can be used as an indicator for erroneous registrations.
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Figure 7-6: PSR metric for each registration in dataset 4.

Recall from Section 4-2 that precision and recall were proposed as metrics for robustness.
False negatives are not relevant as every registration is currently accepted, thus for now
only precision is considered. The PSR is used as an indicator for false registrations. When
correlating images with no overlap, PSR values below 20 are found. With that information
and experience of different scenarios, a PSR value of 40 is taken as a threshold for erroneous
registrations.

Dataset Erroneous
registrations Precision

1 0 100%
2 0 100%
3 1 99.8%
4 91 86.7%

Table 7-4: Precision for each dataset. An erroneous registration is defined as a registration
where PSR < 40.

From Table 7-4 it can be seen that only dataset 4 contains registrations that fall below the
threshold, which is consistent with earlier observations. For the other datasets the registrati-
ons (almost) never fall below the threshold, implying the consistency of the algorithm under
expected circumstances.

Computation time

Computation time is obviously dependent on the specifications of the used hardware. Howe-
ver, examining computation time gives insight in the possibility of the algorithm running in
real time and which subfunction employs the most resources. Table 7-5 shows the average
computation time of each registration in dataset 1.
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Subfunction Computation time [ms]
Cartesian Polar

Preprocessing (filter and mask) 74 29
Phase correlation 354 97
Correlation filter 1348 430
Peak detection 12 4
Apply rotation 49
Total 2397

Table 7-5: Average subfunction computation time of dataset 1

The current computation time needed is 2.4 s, which is more than the 0.3 s that is required for
real-time operation when every third frame is analyzed. It can be seen that the Butterworth
filter that is applied on the phase correlation matrix has the highest contribution to the overall
computation time.

7-2 Rotation

7-2-1 Experiment description

In this experiment the proposed method for rotation estimation is further considered. When
cleaning on the bottom of a vessel, the yaw measurement of the IMU is unreferenced and as a
consequence drifts over time. As rotational differences are estimated by the proposed visual
odometry method as well, the intuition is that this estimation may be used in the scenario
where the IMU measurement is unreliable.

The used dataset was recorded again on the Pioneering Spirit. Instead of driving in a straight
line, the robot makes a turn. An overview of the dataset is given in Table 7-6. As a ground
truth the yaw output of the IMU is used. Since this experiment is conducted on the flat side
of the ship, the yaw value is assumed to be drift-free.

Figure 7-7: Schematic overview of rotation
experiment.

Weld line datasets

Date 24-May, 2018
Ship Pioneering Spirit
Location Port, flat side
Total angle difference 56.4◦ ± 0.5◦

Table 7-6: Specifications of ro-
tation experiment
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(a) Start frame (b) End frame

Figure 7-8: First and last frame of the rotation experiment dataset. From the sonar images the
total rotational displacement is roughly 56◦.

7-2-2 Results

The estimated yaw orientation by visual odometry drifts far over time and acquires a 34.0%
error build-up over the segment. However, the results are dependent on nf (the number
of frames between registrations), which can be seen in Figure 7-9. This is caused by the
inaccuracies of peak detection when the overlap is high (low nf ) and degrading correlation
when the overlap is low (high nf ). In any case, these results show too much error build-up
for the method to be reliable as an alternative to the IMU measurements. Furthermore, the
resulting estimates depend on the parameter value of nf , where ideally the estimated value
is independent of the overlap between images.
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Figure 7-9: Estimated robot yaw orientation by visual odometry. Differen values for nf (frames
between registrations) are compared against the referenced IMU measurments.

One of the limitations described in Section 6-2-5, is the difference between the sonar origin
and the actual center of rotation of the robot. We can compensate for this difference by
recomputing the polar images while taking into account the transformation relating the sonar
origin to the center of rotation. The implementation of this transformation is further detailed
in Appendix C-1-3. With the recomputed sonar images the results are indeed more accurate
as shown in Figure 7-10. It can be seen that the result is most accurate using nf = 4 with
an error build-up of 1.7%. With the desired value of nf = 3, the error build-up is 9.0%,
which is outside the required value, but still significantly more accurate than without the
recomputed polar images. Finally, it should be noted that recomputing the polar images is
an operation with a heavy computational cost, causing the computation time to increase to
16 s per registration.
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Figure 7-10: Estimated robot yaw orientation with recomputed polar images to compensate the
center of rotation. Differen values for nf (frames between registrations) are compared against
the referenced IMU measurments.

7-3 Wheel slip

7-3-1 Experiment description

In the weld line experiment the proposed visual odometry method was compared to the most
ideal scenario for the wheel encoders. However, in practice Fleet Cleaner has experienced
problems with the wheel encoders. One of the major problems is the occurrence of wheel
slippage on slippery surfaces due to slime and/or algae. In addition to this, the wheel encoders
are prone to failure caused by the accumulation of dirt. This means that taking the minimum
value of the encoders in the case of wheel slippage may not always prove successful.
Kes Cassee has researched methods to detect wheel slippage and correct the velocity estima-
tion accordingly [67]. Nonetheless, visual odometry is obviously not affected by the occurrence
of wheel slip and should prevent drifting of the position estimate in that case. In this section
an occurrence of wheel slip during cleaning of the OOCL Europe is analyzed, see Table 7-7.
A comparison between visual and wheel odometry is made in this specific case.

Wheel slip dataset

Date 1-Aug, 2017
Ship OOCL Europe
Location Port, flat side
Total distance 6.5 m± 0.5 m

Table 7-7: Specifications of wheel slip experiment

7-3-2 Results

In Figure 7-11 it can be seen that from about 48 s the wheel encoder measurements show
erratic behavior. This is caused by the wheels slipping, as the footage from the sonar clearly
shows that the robot’s motion is stagnated in the end of this segment. The visual odometry
estimate is consistent with this observation as the estimated velocity slows down towards 0
at the expected time.
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Figure 7-11: Estimated robot velocity by visual odometry and wheel encoders. From the 48 s
point it can be seen that the encoders show unstable behavior due to wheel slip occuring.

The consequence of this is visible when observing the estimated location of the robot in Figure
7-12. The wheel encoder estimate drifts and the ending location is significantly farther away
from the visual odometry estimate. For this particular segment there is no ground truth
measurement available, but from visible weld lines, the traveled distance in x-direction is
estimated to be around 6.5 m.
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Figure 7-12: Estimated robot position by visual odometry and wheel encoders. It can be seen
that the wheel encoders drift by a significant margin due to the occurrence of wheel slip.

7-4 Discussion

In this chapter the practical application of the proposed visual odometry method was analy-
zed. By recording datasets during live cleaning operations of the Fleet Cleaner, the behavior
in actual operating conditions can be examined. The algorithm was tested in the scenario
where the robot is driving in a straight line with a known start and end point. Further-
more, the ability to estimate the robot’s yaw orientation was considered. The performance
is compared to wheel encoder measurements, the current status quo. Finally, the results are
compared in the case of wheel slip, a scenario where the wheel encoder estimate drifts heavily.

7-4-1 Findings

In the simple case of driving in a straight line, the proposed Fourier-based visual odometry
method showed superior performance when compared to the wheel encoders. On 7 of the

Dave Verstrate CONFIDENTIAL Master of Science Thesis



7-4 Discussion 65

8 distance markers, the estimated traveled distance was within the desired requirement for
error build-up (EBU < 5%).

As a metric for the quality of a registration, the PSR value was used. The intuition being
that a bad correlation leads to a correlation matrix without a significant dominant peak and
with many side-peaks. Under normal conditions the algorithm was able to perform consistent,
reaching almost 100% precision scores. However, when driving at a lower depth, the waterline
was visible which caused reflections and wave perturbations to be visible on the sonar images.
This had a significant impact on the quality of registration as the precision lowered to 86.7%,
below the requirement of 98%.

While this scenario features the ideal conditions for wheel encoders, with multiple functioning
encoders and a rough surface on which the wheels did not slip. Even then, visual odometry
was able to achieve a higher accuracy. However, the improvement becomes more significant
when comparing to the wheel encoders in not so ideal conditions. In the case of wheel slip,
which may happen often on surfaces fouled with slime and algae, the position estimate drifts
a couple of meters over a short period of time. In this scenario it was shown that the visual
odometry estimate showed the expected behavior of stagnated motion. In the case of wheel
slip or hardware failure, visual odometry is able to provide an accurate alternative to the
wheel encoders.

In addition to translational shifts, the algorithm also estimates rotational shifts. The estimate
for yaw rotation was compared to IMU measurements to find if the estimate could be used
as an alternative in situations where the IMU is unreferenced, i.e. when cleaning on the
bottom of a vessel. However, the results showed a high error compared to the IMU reference.
Furthermore, the results were dependent on the amount of overlap between images. While
the rotation estimation is good enough for compensation in the phase correlation pipeline,
it is not accurate enough to function as a yaw orientation estimate as an alternative to the
IMU.

7-4-2 Limitations

In spite of the promising results of Fourier-based visual odometry, some limiting factors were
found as well.

Reflections and other perturbations

While under normal conditions the performance of the proposed method seems promising, it
is sensitive to reflections and waves that are visible at lower depth levels. The motion of these
artifacts are independent from the robot motion and thus will interfere with the correlation
process.

Rotation estimation

Estimation of the robots yaw orientation is not accurate enough with the proposed method.
Rotation is estimated using phase correlation on the polar images, which has two limitations:
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• Since the robot is a three-wheeled vehicle, it always features a translation in addition to
a pure rotation. In the polar coordinates these motions are not decoupled and as such
will deform the image, causing an inaccurate estimation of the rotational displacement.

• The algorithm assumes the origin of the sonar frame to be the center of rotation. Howe-
ver, this is not the case on the Fleet Cleaner robot, inducing an error in the estimation
of the robot rotation.

The latter limitation can be accounted for by recomputing the polar images such that the
center of rotation becomes the origin of the sonar image frame. It is shown that the resulting
estimation is indeed more accurate. However, this operation adds a heavy computational cost
to the process.

Computation time

Finally, a note on the computational cost of the proposed method. The current computation
time is considerably higher than the required computation time of 0.3 s for real-time operation.
The image processing steps, especially the Butterworth filer, are most demanding on the high
resolution FLS images. MATLAB uses the CPU to make these calculations instead of the
GPU, which should be faster with image processing steps. Furthermore, the expectation is
that with better hardware and a more optimized code language, the algorithm should be
able to achieve a computation time that is near the requirement. Another note is that the
computation time is almost constant given the same image size and thus not dependent on
the image content.
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Chapter 8

Closing remarks

The thesis, presented in this document, is concluded in this final chapter. A summary of
the completed work is provided in Section 8-1. The final conclusions regarding the thesis
goal and objectives are presented in Section 8-2. Finally, in Section 8-3 the future work and
recommendations are discussed.

8-1 Summary of completed work

The Fleet Cleaner robot currently suffers from unbounded error build-up resulting in a drifting
position estimate. A visual Simultaneous Localization and Mapping (SLAM) system can be
used to bound this error by utilizing visual information in addition to odometry and IMU
measurements. Visual information is gathered with a FLS. Sonar images, however, suffer
from noise, lower resolution and are difficult to interpret, compared to optical images. The
thesis goal is, therefore, to develop a sonar-based underwater SLAM framework tailored to
the working environment of ship hull cleaning robots. The thesis scope is limited by dividing
the goal into two specific objectives: propose a conceptual design for a SLAM system, and
validate the sonar-based visual odometry algorithm with a proof of concept. Visual odometry
is of importance as the robot is expected to drive long segments without returning to a
previously visited location and it is vital that the position estimate does not drift significantly
during these segments. A systematic approach to engineering design is adopted as a guide to
accomplish these objectives and consists of the following steps: task clarification, conceptual
design, embodiment design and proof of concept.

Chapter 2 provides the reader with some necessary background information on the principles
and working of FLS imagery. The fundamental properties of acoustic sound propagation are
explained, which serves as the working principle for all sonar imaging systems. The operation
of FLS devices is discussed, as well as different geometry models that derive the sonar motion
from different images. A simplified model, based on orthographic projection, and an exact
model that takes elevation angles into account are considered. Ultimately, the simplified
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model is adopted as it has minimal approximation errors under the assumption that the
elevation angles are small compared to the range.
Chapter 3 considers the operating conditions that are relevant to the development of a
SLAM system. First, the limitations of the FLS imagery are discussed. These include non-
uniform resolution, speckle noise, inhomogeneous insonification and reflection artifacts. Next,
the auxiliary sensors used in the positioning system are detailed. These include the IMU,
depth sensor and wheel encoders. Yaw orientation, and x- and y-position are unreferenced,
resulting in error build-up in the position estimate. Finally, constraints in the environment
that have an impact on SLAM are listed. The types of visible objects are noted, as well as
the observation that ships are typically sparse with these elements and long segments without
distinct landmarks are expected.
Chapter 4 proposes the requirements for the system as the final step in the task clarifica-
tion phase. The SLAM system is split into three subsystems: visual odometry, loop closure
detection and, pose and map detection. Functional requirements are defined for each subsy-
stem, concerning the abstract behavior. Non-functional requirements specify the desired
performance of the system and are used as metrics to compare and evaluate different working
principles. These metrics consider accuracy, robustness and computation time.
Chapter 5 discusses different working principles for the subsystems. The principles are
evaluated based on discussed literature and rated using the non-functional requirements. The
proposed optimal solution is chosen, while considering performance, requirements and the
operational conditions. For visual odometry, a phase correlation method is chosen as it is
most suited for the sonar images. Furthermore, object-based image to map matching is
scored best for loop closure detection and particle filter for pose and map estimation. The
remainder of the report is concerned with the implementation and proof of concept of the
visual odometry subsystem.
Chapter 6 details the implementation phase for the visual odometry subsystem. Motion
between subsequent images is estimated by detecting a dominant peak in the phase correlation
matrix. Several image processing steps are proposed to improve the peak sharpness, increasing
accuracy and precision of the method. Rotation can be estimated by applying the same
method to the sonar images in polar representation. Finally, tuning of parameters is done
according to the PSR metric, which indicates how many standard deviations the dominant
peak is above the average of the surface.
Chapter 7 validates the proposed method in an experiment that was conducted during clea-
ning of the Pioneering Spirit. While driving in a straight line, the visual odometry estimates
are within the desired accuracy (> 95%). However, outliers are present when driving near the
waterline, caused by reflections and wave reverberations. Rotation estimation is compared to
the IMU output, but failed to reach the required accuracy in a reliable manner. Finally, the
algorithm is compared to wheel odometry in a scenario where wheel slip occurs.

8-2 Main conclusions

This thesis has contributed to the overall goal to develop a sonar-based underwater SLAM
framework tailored to the working environment of ship hull cleaning robots. This main con-
tribution can be split into more specific contributions:
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The first objective of this thesis, propose a conceptual design for a SLAM system, has been
completed by presenting an optimal working structure. The working structure combines
a view-based approach for visual odometry and a object-based approach for loop closure
detection. For pose and map estimation, the particle filter was chosen, but it should be noted
that the other solutions are viable as well. This solution is tailored to the operating conditions
of the Fleet Cleaner robot, thereby contributing to the main objective.

The second objective of this thesis, validate the sonar-based visual odometry algorithm with
a proof of concept, has been accomplished by showing that the proposed Fourier-based met-
hod achieved the required accuracy (EBU < 5%). Furthermore, the results showed an im-
provement over wheel encoders in almost all datasets. By reducing error build-up during
segments between loop closures, this method contributes to the main objective.

Limitations

Beyond the visual odometry component, the conceptual SLAM design has not been implemen-
ted. Although it is believed that the proposed system would improve the current position and
navigation system, this has not been experimentally validated under operational conditions.

As phase correlation is heavily dependent on the image content, the method is impacted by
the particular nature of FLS images. Speckle noise and other artifacts such as reflections
and wave reverberations were found to have the greatest impact. The effect of speckle noise
can be reduced by filters, but these are either too costly (in the case of adaptive filters) or
too general (in the case of median filter). Reflections and perturbations that occur when the
waterline is visible are more problematic and have a degrading effect on the performance of
visual odometry.

Using the phase correlation method to estimate yaw orientation did not accomplish the desired
accuracy. Furthermore, the accuracy is dependent on the frames between registration pairs.
The lowered accuracy is mainly explained by the combined rotations and translations, which
deform the polar representation of the sonar images.

Finally, it should be noted that the proposed visual odometry method has not fulfilled the
requirements regarding computation time. The image processing steps, applied on the high
resolution images, currently have the greatest contribution to the total computation time.
However, it is expected that the requirement could be fulfilled in the future with better
hardware and more optimized coding.

8-3 Recommendations

The results could be further improved by addressing the previously listed limitations of the
completed work. It is believed that the following areas are worth exploring in future work:

SLAM implementation

The next step is to further implement the SLAM system. The visual odometry subsystem
showed promising results, but the error can be further bounded by incorporating detection of
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loop closures. As proposed in Section 5-2, objects such as gratings can be used as landmarks
for loop closure detection. This thesis has provided a framework for a SLAM implementation,
but this should be further tested and validated in future work.

Opti-acoustic navigation

This work has focused completely on sonar imagery for visual information, disregarding optical
cameras for their poor quality in the presence of turbulence and dirt. However, the optical
images can provide visual information of textures and other properties not visible on the
sonar, which may be used as constraints for loop closures. The main advantage of this is
the wide library of existing algorithms that are tailored to the use of optical cameras. This
combined approach of optical and acoustical visual navigation has been applied on ship hull
inspection by Hover et al. [32].

Data fusion

Another are of interest is to fuse the current positioning methods. Visual odometry and
wheel odometry can be used in conjunction to improve accuracy and precision of the overall
estimate. Furthermore, fusion can be used to mitigate shortcomings of both methods. While
previous approaches have taken fusion of the positioning sensors (wheel encoders, IMU) into
consideration [6, 67], this can be further expanded by fusion of imaging data.

Computation time

While most requirements are fulfilled by the proposed visual odometry method, the desired
computation time is not reached. By migrating from MATLAB to Python, the programming
language used by Fleet Cleaner, and further hardware accelerations (i.e. using GPU), the
necessary optimization should be achievable.

Improved image processing

Outliers and erroneous registrations in the visual odometry algorithm are mainly caused by
the nature of sonar images. Noise, reverberation artifacts and acoustic returns from the water
surface can cause false correlations between images. Efficient methods to further reduce the
effect of speckle noise should be researched. Furthermore, the effect of waterline reflections
could be partly reduced using waterline detection and clipping everything above the waterline
out of the images.

Image mosaicing and blending

Besides visual odometry, other applications of image registration are possible. Mosaics or
maps can be created by stitching consecutive sonar images to each other using the estimated
translations and rotations [18, 27]. These mosaics can provide visual details of regions of
interest. In addition, by blending or averaging consecutive images, speckle noise can be
further reduced. This can be used to improve the results of object detection algorithms [19].
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Sensor specifications

In this appendix, the auxiliary sensors are listed. The descriptions are based on technical
documentation of the specific sensors.

A-1 Forward looking sonar

The sonar deployed by Fleet Cleaner is the Blueview M900-2250 [16]. This sonar has two
frequency modes: a long range mode operating at 900 kHz and a higher quality short range
mode operating at 2250 kHz. The full technical specifications are listed in Table A-1.

Sonar specifications

Operating frequency 900 kHz/2250 kHz
Field of view 130◦

Max range 900/2250 100 m/10 m
Range resolution 900/2250 1.3 cm/0.6 cm
Beam width 1◦× 20◦

Number of beams 768
Angular resolution 0.18◦

Max update frequency 25 Hz

Table A-1: Blueview M900-2250-230 specifications [16].

Images are captured using the provided Proviewer software [68]. The raw data, a 16 bit
unsigned integer image, can be streamed to third-party applications, such as MATLAB. The
data contains the polar and Cartesian image, ping number, time stamp, resolutions and
imaging range.
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A-2 IMU

The IMU used by Fleet Cleaner is the Xsens MTi-20 [69]. Pitch and roll values can be mea-
sured absolutely, while yaw orientation is unreferenced. The IMU outputs a rotation matrix,
from which the orientations can be derived. Furthermore, direct accelerations and velocities
from the accelerometers and gyroscopes can be measured. Noise and bias specifications from
the producer are listed in Table A-2.

Accelerometers Gyroscopes

Noise density 60 µg/
√

Hz 0.03 ◦/s/
√

Hz
In-run bias stability 15 µg 18 ◦ h−1

Table A-2: Noise and bias specifications of IMU [69].

A-3 Wheel encoders

The Fleet Cleaner robot is equipped with a RLI200 bearingless wheel encoder [70] on each of
the three wheels. From the encoder, the forward velocity of the robot can be calculated. The
specifications are listed in Table A-3.

Accuracy 0.3◦

Pulse rate 2800 ppr
Input frequency 250 kHz

Table A-3: Accuracy, pulse rate and input frequency of wheel encoders [70].

A-4 Depth meter

Fleet Cleaner uses a depth meter to measure the absolute y-coordinate of the robot. The
water pressure is measured by the ATM.1ST/N. The measured pressure by the depth meter
is the absolute pressure. To account for the atmospheric pressure a barometer is installed
that measures atmospheric pressure at initialization of the robot. This measurement is then
deducted from the water pressure measurement. Specifications are listed in Table A-4 and
A-5.

Accuracy 0.1 % FS
Total error 0.8 % FS

Table A-4: Accuracy and total error of depth sensor [71].

Dave Verstrate CONFIDENTIAL Master of Science Thesis



A-5 Steering angle encoder 73

Accuracy 0.1 % FS
Total error 0.4 % FS

Table A-5: Accuracy and total error of barometer [72].

A-5 Steering angle encoder

The angle of the steering wheel is measured by an electromagnetic absolute encoder. The
TBX36 has a resolution of 4096 steps per 360◦ [73]. The technical documentation reports a
measured deviation of ±0.5 of its least significant bit or in degrees:

360◦
4096 · 0.5 = 0.044◦ (A-1)
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Appendix B

Velocity estimation

This appendix describes the process to estimate robot velocity from the translation and
rotation in the 2D-plane. The sonar is tilted around the y-axis by φ, see Figure B-1. The
x-compoment of the sonar velocity therefore has to be multiplied by cosφ:

vsonar =

txty
0

 ·
cosφ

1
1

 · 1
∆t (B-1)

Figure B-1: Side view of the sonar geometry in relation
to the robot frame [74].

Element Unit

a 271 mm
b 880 mm
c 80 mm
d 251 mm
φ 10.0◦

Table B-1: Dimensions of
the elements in Figure B-1
[74].

The rotation of the image frames in Cartesian coordinates corresponds to the same rotation
of the robot body as the projection preserves the change in yaw.

ωrobot =

0
0
θ

 · 1
∆t (B-2)
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The sonar velocity vsonar consists of the translational velocity and the tangential velocity due
to the rotational motion of the robot body. In the transformation to the velocity of the robot
frame we take into account this component with the cross product rsonar × ωrobot. rsonar can
be calculated from the sonar dimensions, see Figure B-1.

rsonar =

b+ c sinφ+ d cosφ
0

a+ c cosφ− d sinφ

 (B-3)

vrobot = vsonar + rsonar × ωrobot (B-4)
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Appendix C

Algorithms

This appendix lists source code of self-written and existing algorithms, that were altered. If ne-
cessary, additional information is provided. The experiments were performed using MATLAB
R2016b on a personal computer (PC) with an Intel Core i7-3630QM CPU that features a clock
speed of 2.4 GHz and 8 GB of usable RAM.

C-1 Fourier-based odometry

C-1-1 Phase correlation

The following function is used to estimate the transformation between two images by analyzing
the phase correlation in the Fourier domain.

1 function [ shift , PSR , fc , C_uv , C_xy ] = phaseCorrelation ( I1 , I2 , regOptions , floodTol )
2 % PHASECORRELATION Estimates spatial shift of two images by analyzing phase
3 % correlation
4 % I1 , I2: Set of two images in polar or cartesian coordinates
5 % regOptions : Options for filters
6 % shift : Spatial transformation of I1 to I2
7 % C_xy: Correlation matrix
8
9 F1 = fft2 ( I1 ) ;

10 F2 = fft2 ( I2 ) ;
11 [ n , m ]=size ( I1 ) ;
12 C_uv = ( F1 .∗ conj ( F2 ) ) . / abs ( F1 .∗ conj ( F2 ) ) ; % phase correlation matrix
13 C_uv = fftshift ( C_uv ) ;
14 if ( nargin > 2)
15 if ~regOptions . fcBool
16 fc = estimateFc ( C_uv , floodTol ) ; %use adaptive cutoff freq for bw filter
17 else
18 fc = regOptions . fc ;
19 end
20 C_uv = applyBwFilter ( C_uv , fc , regOptions . k_filter ) ;
21 end
22 C_xy = abs ( fftshift ( ifft2 ( C_uv , ’symmetric ’ ) ) ) ;
23
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24 [ t_x , t_y , peak ] = detectPeak ( C_xy ) ;
25 t_x=floor ( m /2)−t_x +1; % difference from center of image
26 t_y=floor ( n /2)−t_y +1;
27 shift = [ t_x , t_y ] ;
28
29 u = mean ( C_xy ( : ) ) ;
30 s = std ( C_xy ( : ) ) ;
31 PSR = ( peak − u ) /s ;
32 end

C-1-2 Peak detection

The function below is used to detect peaks in the phase correlation matrix. The method is able
to find sub-pixel displacement, by taking into account the difference between the two-sided
neighbor [58].

1 function [ t_x , t_y , peak ] = detectPeak ( C_xy )
2 % DETECTPEAK This function finds the largest peak in the correlation matrix
3 % C_xy: Correlation matrix
4 % t_y , t_x: Coordinates of peak
5 % peak: Value of peak
6 % -----------------------------------------------------------------------
7 % This function is based on the work of Ren et al. (2010)
8
9 % Find largest value and neighbors

10 [ peak , index ] = max ( C_xy ( : ) ) ;
11 [ t_y , t_x ] = ind2sub ( size ( C_xy ) , index ) ;
12 [ yMax , xMax ] = size ( C_xy ) ;
13 y1 = t_y + 1 ; y2 = t_y − 1 ;
14 x1 = t_x + 1 ; x2 = t_x −1;
15 % Situation where the peak is at the edge of the matrix
16 if ( t_y == 1)
17 y2 = yMax ;
18 elseif ( t_y == yMax )
19 y1 = 1 ;
20 end
21 if ( t_x ==1)
22 x2 = xMax ;
23 elseif ( t_x == xMax )
24 x1 = 1 ;
25 end
26 % Find subpixel value
27 D_y = C_xy ( y1 , t_x ) − C_xy ( y2 , t_x ) ;
28 D_x = C_xy ( t_y , x1 ) − C_xy ( t_y , x2 ) ;
29 delta_y = sign ( D_y ) /(1 + C_xy ( t_y , t_x ) /abs ( D_y ) ) ;
30 delta_x = sign ( D_x ) /(1 + C_xy ( t_y , t_x ) /abs ( D_x ) ) ;
31 t_y = t_y + delta_y ;
32 t_x = t_x + delta_x ;
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C-1-3 Transform polar origin

The function below is used to transform the origin of the polar images to the centre of rotation
of the robot. This is done by using the law of sines to calculate the angle from the robot
centre, depicted in C-1:

sin θr,max = rs,max
sin(180◦ − θs,max)

rr,max
(C-1)

θr,max
{R}

rr,max
rs,max

θs,max

{S}

Figure C-1: Schematic overview of transformation from the sonar origin S to the robot centre
of rotation R. r denotes the range and θ the bearing

1 function [ I_transformed , r_r , theta_r ] = transformPolarOrigin ( I_old , sonar_arm ,
range_res , bearing_res )

2 % TRANSFORMPOLARORIGIN This function transforms the origin of the polar
3 % images to the centre of rotation of the robot
4 % I_old : Original polar image
5 % sonar_arm : Distance from robot centre to sonar
6 % range_res : Resolution of range measurement
7 % bearing_res : Resolution of bearing measurement
8 % I_transformed : Transformed polar image
9 % r_r: New max range

10 % theta_r : New max bearing
11
12 I_old = double ( I_old ) ;
13 [ n , m ] = size ( I_old ) ;
14
15 thetaMax = m/2 ∗ bearing_res ;
16 rangeMax = n ∗ range_res ;
17
18 rangeMax_r = rangeMax + sonar_arm ;
19 thetaMax_r = asin ( rangeMax∗sin ( (180 − thetaMax ) ∗pi /180) / rangeMax_r ) ;
20 range_res_r = rangeMax_r /n ;
21 bearing_res_r = thetaMax_r ∗ 2/m ;
22
23 k = 1 ;
24 for i = 1 : n
25 for j = 1 : m
26 range_s = ( n + 1 − i ) ∗ range_res ;
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27 theta_s = ( j − m /2) ∗ −bearing_res ;
28 r_r ( k ) = range_s + sonar_arm ;
29 theta_r ( k ) = asin ( range_s /r_r ( k ) ∗ sin ((180− theta_s ) ∗pi /180) ) ;
30 value ( k ) = I_old ( i , j ) ;
31 k = k + 1 ;
32 end
33 end
34
35 r_r = r_r/ range_res ;
36 theta_r = ( theta_r ∗180/ pi ) / bearing_res + m /2 ;
37 [ xq , yq ] = meshgrid ( 1 : m , 1 : n ) ;
38 I_transformed = griddata ( theta_r , r_r , value , xq , yq ) ;
39 I_transformed ( isnan ( I_transformed ) ) =0;
40 I_transformed = flip ( mat2gray ( I_transformed ) , 1 ) ;
41 I_transformed = flip ( I_transformed , 2 ) ;
42 end

C-2 Filters

C-2-1 Edge mask

The following function is used to create a mask that is used as a windowing operation to
reduce edge effects. A fan-shaped mask is created for polar images and a rectangular mask
for Cartesian images.

1 function [ mask ] = edgeMask ( I , s , type )
2 % SONARMASK This function creates an edge mask based on the input image
3 % Input type ’polar ’ or ’cartesian ’ define the type of mask that is
4 % created . Standard deviation s defines the amount of smoothing of the
5 % mask
6 % I: Input image
7 % s: Standard deviation
8 % type: Cartesian or polar input image
9

10 % Image in Cartesian coordinates
11 if isequal ( type , ’cartesian ’ )
12 mask = I>0;
13 mask = imfill ( mask , ’holes ’ ) ;
14 mask = bwmorph ( mask , ’shrink ’ , s ) ;
15 mask = imgaussfilt ( double ( mask ) , s , ’FilterSize ’ , 6∗s+1) ;
16
17 % Image in polar coordinates
18 elseif isequal ( type , ’polar ’ )
19 [ n , m ] = size ( I ) ;
20 mask = ones ( n , m ) ;
21 mask ( 1 , : ) = 0 ; mask ( n−34:n , : ) = 0 ; % original image is not

completely filled
22 mask ( : , 1 : 3 ) = 0 ; mask ( : , m−1:m ) = 0 ;
23 mask = bwmorph ( mask , ’shrink ’ , s ) ;
24 mask = imgaussfilt ( double ( mask ) , s , ’FilterSize ’ , 6∗s+1) ;
25 end
26 end
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C-2-2 Frost filter

The Frost filter [61] makes use of an adaptive kernel that changes its properties based on local
image statistics. Source code from the Indian Institute of Technology Kharagpur [75] is used
for this implementation.

1 function outputImage = fcnFrostFilter ( inputImage , mask )
2
3 % fcnFrostFilter performs noise filtering on an image based
4 % on using an adaptive filter proposed by Frost .
5 %
6 % OUTPUTIMAGE = fcnFrostFilter ( INPUTIMAGE ) performs
7 % filtering of an image using the Frost filter . It uses a square neighborhood of 5x5
8 % pixels to estimate the gray - level statistics in default settings .
9 % Supported data type for INPUTIMAGE are uint8 , uint16 , uint32 , uint64 ,

10 % int8 , int16 , int32 , int64 , single , double . OUTPUTIMAGE has the same
11 % image type as INPUTIMAGE .
12 %
13 % OUTPUTIMAGE = fcnFrostFilter ( INPUTIMAGE ,MASK) performs
14 % the filtering with local statistics computed based on the neighbors as
15 % specified in the locical valued matrix MASK.
16 %
17 % Details of the method are avilable in Frost (1982)
18 %
19 % 2012 (c) Debdoot Sheet , Indian Institute of Technology Kharagpur , India
20 % Ver 1.0 13 February 2012
21 % --------------------------------------------------------------------------
22
23 % Input argument check
24 iptcheckinput ( inputImage , { ’uint8 ’ , ’uint16 ’ , ’uint32 ’ , ’uint64 ’ , ’int8 ’ , ’int16 ’ , ’int32 ’ , ’

int64 ’ , ’single ’ , ’double ’ } , {’nonsparse ’ , ’2d’ } , mfilename , ’I’ , 1 ) ;
25 if nargin == 1
26 mask = getnhood ( strel ( ’square ’ , 5 ) ) ;
27 elseif nargin == 2
28 if ~islogical ( mask )
29 error ( ’Mask of neighborhood specified must be a logical valued matrix ’ ) ;
30 end
31 else
32 error ( ’Unsupported calling of fcnFirstOrderStatisticsFilter ’ ) ;
33 end
34
35 imageType = class ( inputImage ) ;
36 windowSize = size ( mask ) ;
37 inputImage = padarray ( inputImage , [ floor ( windowSize (1 ) /2) floor ( windowSize (2 ) /2) ] , ’

symmetric ’ , ’both ’ ) ;
38 inputImage = double ( inputImage ) ;
39 [ nRows , nCols ] = size ( inputImage ) ;
40 outputImage = double ( inputImage ) ;
41 [ xIndGrid yIndGrid ] = meshgrid(−floor ( windowSize (1 ) /2) : floor ( windowSize (1 ) /2) ,−floor (

windowSize (2 ) /2) : floor ( windowSize (2 ) /2) ) ;
42 expWeight = exp (−( xIndGrid . ^2 + yIndGrid . ^ 2 ) . ^ 0 . 5 ) ;
43
44 for i=ceil ( windowSize (1 ) /2) : nRows−floor ( windowSize (1 ) /2)
45 for j=ceil ( windowSize (2 ) /2) : nCols−floor ( windowSize (2 ) /2)
46 localNeighborhood = inputImage ( i−floor ( windowSize (1 ) /2) : i+floor ( windowSize (1 )

/2) , j−floor ( windowSize (2 ) /2) : j+floor ( windowSize (2 ) /2) ) ;
47 localNeighborhood = localNeighborhood ( mask ) ;
48 localMean = mean ( localNeighborhood ( : ) ) ;
49 localVar = var ( localNeighborhood ( : ) ) ;
50 alpha = sqrt ( localVar ) / localMean ;
51 localWeight = alpha ∗( expWeight . ^ alpha ) ;
52 localWeightLin = localWeight ( mask ) ;
53 localWeightLin = localWeightLin /sum ( localWeightLin ( : ) ) ;
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54 outputImage ( i , j ) = sum ( localWeightLin .∗ localNeighborhood ) ;
55 end
56 end
57
58 outputImage = outputImage ( ceil ( windowSize (1 ) /2) : nRows−floor ( windowSize (1 ) /2) , ceil (

windowSize (2 ) /2) : nCols−floor ( windowSize (2 ) /2) ) ;
59 outputImage = cast ( outputImage , imageType ) ;

C-2-3 Adaptive cut-off frequency

The following function is used to estimate the cut-off frequency. In [18] a flood segmentation
algorithm is proposed. Instead, this function uses the simple grayconnected function to find
regions with similar gray values.

1 function [ fc ] = estimateFc ( C_uv , tol )
2 % ESTIMATEFC Estimate cutoff frequency based on flooding algorithm
3 % C_uv: Phase correlation matrix
4 % tol: Flood fill tolerance
5 % fc: Adaptive cutoff frequency
6 % --------------------------------------------------------------------------
7 L = ( angle ( C_uv ) ) ;
8 [ Gmag , ~ ] = imgradient ( L ) ; )
9 [ imageHeight , imageWidth ] = size ( C_uv ) ;

10
11 %fill flooding from center , 8 connected with tolerace tol
12 BW = grayconnected ( mat2gray ( Gmag ) , floor ( imageHeight /2) , floor ( imageWidth /2) , tol ) ;
13 [ rows , cols ] = find ( BW==1) ;
14 y = rows − imageHeight /2 ;
15 x = cols − imageWidth /2 ;
16 norms = sqrt ( sum ( [ x , y ] . ^ 2 , 2 ) ) ;
17 [ ~ , ind ] = max ( norms ) ;
18
19 fc = norm ( [ y ( ind ) / imageHeight , x ( ind ) / imageWidth ] ) ;
20
21 end
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List of Acronyms

AUV Autonomous Underwater Vehicle

DOF Degree of Freedom

EKF Extended Kalman Filter

ENL Equivalent Number of Looks

ESEIF Exactly Sparse Extended Information Filter

FFT Fast Fourier Transform

FLS Forward Looking Sonar

GPS Global Positioning System

IFFT Inverse Fast Fourier Transform

IMU Inertial Measurement Unit

NDT Normal Distribution Transform

MSE Mean Square Error

PCS Phase Correlation Surface

PSR Peak to Sidelobe Ratio

RANSAC RANdom SAmple Consensus

SEIF Sparse Extended Information Filter

SIFT Scale-Invariant Feature Transform

SLAM Simultaneous Localization and Mapping

SNR Signal-to-Noise-Ratio

SURF Speeded Up Robust Features
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