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We present an iterative learning control (ILC) algorithm for controlling the shape of a membrane deform-
able mirror (DM). We furthermore give a physical interpretation of the design parameters of the ILC
algorithm. On the basis of this insight, we derive a simple tuning procedure for the ILC algorithm that,
in practice, guarantees stable and fast convergence of the membrane to the desired shape. In order to
demonstrate the performance of the algorithm, we have built an experimental setup that consists of a
commercial membrane DM, a wavefront sensor, and a real-time controller. The experimental results
show that, by using the ILC algorithm, we are able to achieve a relatively small error between the real
and desired shape of the DMwhile at the same time we are able to control the saturation of the actuators.
Moreover, we show that the ILC algorithm outperforms other control algorithms available in the
literature. © 2013 Optical Society of America
OCIS codes: (110.1080) Active or adaptive optics; (090.1000) Aberration compensation; (230.3990)

Micro-optical devices; (150.5495) Process monitoring and control.
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1. Introduction

Adaptive Optics (AO) is a well-established technique
for correcting wavefront aberrations in optical sys-
tems. The basic principle of AO is to measure wave-
front aberrations using a wavefront sensor (WFS)
and to compensate them by changing the geometry
of an active optical element in the system. One of
the first successful applications of the AO technique
was in astronomy [1,2] to compensate wavefront
aberrations induced by atmospheric turbulence.
Nowdays, AO technique is used in the fields of
microscopy [3,4], ophthalmology [5], tomography [6],
laser beam shaping [7], optical communication [8],
and more recently in lithography [9–11].

The basic components of an AO system are WFS, an
active optical element like a deformable mirror (DM) or
a spatial light modulator, and a control algorithm.
There are different types of DMs. Most widely used
are segmented, microelectromechanical systems, bi-
morph piezoelectric, and membrane DMs. Membrane
DMs are relatively cheap, they have low hysteresis,
and they have low power consumption. However, the
response ofmembranemirrors is nonlinear and the cou-
pling between control channels is relatively strong [12].

In the literature various modeling and control strat-
egies for membrane DMs have been proposed [12–14].
The control strategy presented in [12] is based on a
steepest-descent optimization algorithm. The control
strategy presented in [14] is derived by inverting an
influence function (matrix) of a DM. In [13], the prob-
lem of controlling a membrane DM is formulated as a
non-negative least squares (NNLS) problem. How-
ever, the tuning of the parameters of the above cited
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control strategies is performed empirically, by trial
and error. Because of this, these control strategies
might not guarantee optimal performance of an AO
system. This nonoptimality manifests itself in the
slow convergence of the wavefront error and in a sig-
nificant steady-state wavefront error. The nonoptimal-
ity of the above cited control strategies also originates
from a somewhat heuristic method used to identify a
DMmodel (an influence matrix). Namely, in the above
cited papers, the ith column of an influence matrix is a
measurement of a membrane response when the step
voltage is applied to the ith channel. Although simple,
this identification method directly incorporates meas-
urement errors into a DM model. Furthermore, this
method does not take into account the “cross-talk”
between the channels of a DM. Another drawback
of the above cited control strategies is that they do
not properly address the problem of saturation of
the actuators of a DM. The saturation of the actuators
is an undesired phenomena. On the one hand, it
creates a strong mechanical stress on the membrane
of a DM, and thus it reduces its lifetime. On the other
hand, saturation might prevent undamped control
algorithms to converge.

In order to boost the performance of AO systems, in
this paper we present an iterative learning control
(ILC) algorithm for controlling the shape of a mem-
brane DM. The presented ILC algorithm is based on
the linearized model of the DM, that is identified
from the experimental data. We furthermore give a
physical interpretation of the design parameters of
the ILC algorithm. On the basis of this insight, we
derive a simple tuning procedure for the ILC algo-
rithm that, in practice, guarantees stable and fast
convergence of the membrane to the desired shape.
In order to demonstrate the performance of the new
algorithm we have built an experimental setup that
consists of a commercial membrane DM, a WFS, and
a real-time controller. The experimental results show
that by using this new ILC algorithm we are able to
achieve a relatively small error between the real and
desired shape of the DM while at the same time we
are able to control the saturation of the actuators.
Moreover, we show that the ILC algorithm outper-
forms other control algorithms available in the liter-
ature. We also present a simple and effective
statistical identification procedure for a linearized
model of a DM. Using this model, and only one initial
measurement of the DM shape, we can apply the ILC
algorithm offline. After the ILC algorithm has con-
verged, we apply a “learned input” to a DM. Because
it uses only one measurement, this is a fast method
for generating the desired shape.

The benefits of the ILC algorithm for correcting
wavefront aberrations were first demonstrated in
[15].However, in [15] theILCalgorithmonlypenalizes
the differences between the voltages of two consecu-
tivecontrol iterations.Althoughthisapproachenables
ustocontrol theconvergencerateoftheILCalgorithm,
in some situations the steady-state voltages can still
saturate. Furthermore, because the convergence

and stability of the ILC algorithmhave not been stud-
ied in [15], the tuning of the parameters of the ILC
algorithm have to be performed online on the real
setup which can be time consuming. In contrast to
[15], inthispaperwepenalizethevaluesofthevoltages
for the next control iteration which enable us to
directly control the voltage saturation. Beside this,
we perform the stability and convergence analysis of
the ILC algorithm and we propose a simple tuning
procedure which can be performed offline.

This paper is organized as follows. In Section 2,
we describe an experimental setup. In Section 3, we
present an ILC control algorithm. In Section 4,
we present an identification procedure for a model
of the DM. In Section 5, we present experimental
results and in Section 6, we draw conclusions.

2. Experimental Setup

In this section we describe the optical test bench (AO
system) that we use to validate the ILC algorithm for
controlling the shape of the DM. The sketch of the
experimental setup is shown in Fig. 1.

We use coherent light from a semiconductor laser
working at λ � 638 nm. The light from the laser is
then coupled with a single mode fiber. The other
end of the fiber is placed in the focal point of the
spherical lens L1 (focal length f 1 � 100 mm, diam-
eter ϕ1 � 100). The resulting collimated beam is folded
by 90° by the beam splitter (BS). The central part
(9 mm in diameter) of the beam illuminates the clear
aperture (ϕ � 11 mm) of the DM uniformly. The DM
is a commercial membrane mirror with 48 actuators,
produced by Adaptica Srl. The specification of this
mirror can be found in [16]. The reflected light goes
again through the BS in a relay system consisting of
the lens L2 (focal length f 2 � 250 mm, diameter
ϕ2 � 200) and L3 (focal length f 3 � 100 mm, diameter
ϕ3 � 200). The purpose of the optical system L2-L3 is
twofold. The first purpose is to optically conjugate
the surface of the DM with the Shack-Hartmann
WFS (S-H WFS, Thorlabs WFS S300-14AR, 1.3

Fig. 1. Illustration of the experimental setup.
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Mpixel, λ∕50 rms accuracy). The optical system L2-
L3 also has the function to decrease the beam diam-
eter by a factor M � f 3∕f 2 that is needed for the S-H
WFS. The controller, that is implemented on a stan-
dard personal computer, receives measurements
from the S-H WFS, and on the basis of these
measurements sends a control signal to the DM. This
feedback loop is established using a LabVIEW
interface. The control algorithm is implemented in
MATLAB.

The wavefront is sampled with the maximal
sampling rate of the S-H WFS, which is 15 Hz.
The time constant of the membrane DM is in order
of a few milliseconds [17]. Because the sampling
period of the S-H WFS is much larger than a time
constant of the DM, we are not able to observe the
transient response of the DM using the S-H WFS.
Consequently, in Section 3 we model the DM as a
static system. The control sampling rate is 1 Hz.
Because the sampling rate of the S-H WFS is larger
than the control sampling rate, in some degree we
are able to reduce the effect of the measurement
noise on the AO system. This is performed as follows.
In between two consecutive control iterations, we
take five measurement samples of the wavefront
and we average these samples. This averaged
wavefront is then used in the next control iteration.

3. Iterative Learning Control for Membrane DM

In this section we present an ILC algorithm for
controlling the shape of a membrane DM. We study
its stability and convergence rate. As a result of this
study, we give a physical interpretation of the param-
eters of the ILC algorithm. This physical interpreta-
tion gives us guidelines for its (optimal) tuning.

In this paper, the wavefront that is produced by the
DM will be represented using the Zernike polyno-
mials basis expansion (the Malacra notation is used
in [18]):

Φ�x; y� ≈
X36
i�1

αiZi�x; y�; (1)

where Φ�x; y� is the spatial distribution of the
wavefront, αi is the ith coefficient of the Zernike
polynomials expansion, and Zi�x; y� is the ith Zernike
polynomial. The steady-state model of the DM is
given by [13,14]:

W � FV; (2)

whereW ∈ R36,W � � α1 α2 … α36 �T is the wave-
front (membrane shape of the DM) expressed as
Zernike coefficients, F ∈ R36×48 is the influence ma-
trix, and the vector V ∈ R48 is given as follows:

V � �u2
1 u2

2 … u2
48 �T; (3)

where ui is the control voltage applied to the ith
channel of the DM. As it can be seen from Eqs. (2)
and (3), the model of the DM is a nonlinear

(quadratic) function of the applied voltages. In con-
trast to [13,14], in this paper we propose a control
algorithm that is based on the linearized model of
the DM. We identify a linear model of the DM,
directly from experimental data, using the identifica-
tion procedure explained in Section 4. By neglecting
higher-order terms of the Taylor expansion, a linear-
ized model of the DM around the working point A can
be written as (see Fig. 2):

w � Mu; (4)

u � U − UA; w � W −WA; (5)

where U � �u1 u2 … u48 �T is the vector of (total)
voltages, UA is the vector of working point voltages, u
is the vector of relative voltages,WA is the wavefront
(membrane shape of the DM) produced by UA, W is
the wavefront produced by U, w is the relative wave-
front, and M is the influence matrix of the linear
model. In this paper the working point voltages
are chosen as follows:

UA � �uA uA … uA �T; (6)

where uA is equal to 50% of the maximal voltages. It
should be stressed that the model in Eqs. (4) and (5)
depends on the working point voltages UA. From
Fig. 2, we can conclude that for different working
point voltages, we obtain a different linear model
of the DM. Furthermore, if U is “close” to UA, then
the linear model accurately describes the behavior
of the DM. On the other hand, if U is “far away” from
UA, then the linear model is less accurate. However,
as we experimentally demonstrate in Section 5, the
ILC algorithm can effectively handle these model un-
certainties. For more details about robustness of the
ILC algorithm with respect to model uncertainties,
see [19,20] and references therein.

Let the control iteration be denoted by k (the con-
trol sampling rate is 1 Hz). Further, let the wavefront
(membrane shape of the DM), at the control iteration
k, be denoted byWk. Similarly, we denote the relative
membrane shape by wk � Wk −WA. From Eqs. (4)
and (5) it follows:

Fig. 2. Linear and nonlinear model of the DM.
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wk � Muk; (7)

where uk � Uk − UA is the vector of relative voltages
at the control iteration k, and Uk is vector of (total)
voltages at control iteration k. The wavefront that
is sensed by the S-H WFS, is the combination of
the wavefront produced by actuating the DM and
static wavefront aberrations initially present in
the AO system [12]. These static wavefront aberra-
tions come from nonflatness of the DM (when the
voltages are not applied to DM) and from imperfec-
tions and misalignments of the optical components.
Because the wavefront Wk corresponds to the
membrane shape, this wavefront is obtained by
subtracting all static wavefront aberrations from
the wavefront measured by S-H WFS. As we explain
in Section 5.A, the ILC algorithm can be easily
modified such that it takes into account static
wavefront aberrations of the AO system.

For simplicity, in this paper we did not include the
measurement noise in Eq. (7). In reality the mea-
sured wavefront is corrupted by the measurement
noise of the S-H WFS. As we have explained in
Section 2, the effect of the noise is reduced by aver-
aging the wavefront between the two consecutive
control iterations. Moreover, as it will be explained
later, by adjusting the parameters of the ILC
algorithm we are able to additionally increase noise
immunity of the AO system.

The goal of the ILC algorithm is to produce a wave-
front of the desired shape. Let such a wavefront be
denoted by Wd. The relative desired wavefront is de-
noted by wd and it is defined as: wd � Wd −WA. The
wavefront error ek at the control iteration k is defined
as follows:

ek � wd − wk � wd −Muk. (8)

The error at the time instant k� 1 is given by:

ek�1 � wd −Muk�1. (9)

From Eqs. (8) and (9) we have:

ek�1 � ek −MΔuk; (10)

where

Δuk � uk�1 − uk. (11)

For a given uk and ek, the optimal ILC law [20] is ob-
tained by solving the following optimization problem:

min
uk�1

n
eTk�1Qeek�1 � uTk�1Quuk�1 � ΔuTkQΔuΔuk

o
; (12)

where Qe, Qu, and QΔu are the weighting matrices.
The first term in Eq. (12) penalizes the wavefront er-
ror at the control iteration k� 1. The second term
penalizes the voltages for the control iteration
k� 1. Finally, the last term of the cost function
Eq. (12) penalizes the difference between the volt-
ages between the two consecutive control iterations,
k and k� 1. In this paper we chose the weighting
matrices of the cost function Eq. (12) as follows:

Qe � I; Qu � γI; QΔu � βI; (13)

where β and γ are positive real numbers. By solving
Eq. (12) for the selection of the weighting matrices
Eq. (13) we obtain the control law in the following
form [20]:

Fig. 3. Analysis of the convergence of the wavefront from an arbitrary to a flat wavefront, for different values of β and γ. (a) Convergence of
the norm of the tracking error for different γ. (b) Convergence of the norm of the total voltages for different γ.
(c) Convergence of the norm of the tracking error for different β. (d) Convergence of the norm of the total voltages for different β.
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uk�1 � Q�uk � Lek�; (14)

where

Q � �MTM � γI � βI�−1�MTM � βI�; (15)

L � �MTM � βI�−1MT . (16)

At the initial iteration k � 0, the vector of relative
voltages u0 needs to be initialized. We choose
u0 � 0, which corresponds to the vector of total
voltages U � UA.

The experimental tuning of the parameters β and γ
of the ILC control algorithm Eqs. (14)–(16) might be
time consuming and it might not guarantee optimal
performance of the AO system. In order to simplify
the tuning of the ILC algorithm, in the sequel we
derive stability and monotonic convergence
conditions for the ILC algorithm. Furthermore, we
show how the steady-state tracking error and inputs
depend on the parameters β and γ. Based on these
insights we give application oriented guidelines for
the selection of β and γ.

A. Stability and Convergence Rate of the ILC Algorithm

By substituting Eq. (8) in Eq. (14), we obtain:

uk�1 � Q�I − LM�uk �QLwd. (17)

The stability and convergence rate of the ILC algo-
rithm is primarily determined by the spectral proper-
ties of the matrix Q�I − LM�. In order to perform the
stability and convergence rate analysis, we introduce
the Singular Value Decomposition [21] of the full
rank influence matrix M:

M � E1�Σ 0 �ET
2 ; (18)

where E1 ∈ R36×36 and E2 ∈ R48×48 are unitary matri-
ces, and the matrix Σ ∈ R36×36 is a diagonal matrix of
singular values: Σ � diag�σ1; σ2;…; σ36�, where σ1 ≥
σ2 ≥ … ≥ σ36 > 0 are singular values. From Eqs. (15)
and (16) we have:

Q�I − LM� � �MTM � �γ � β�I�−1β. (19)

Using the SVD Eq. (18), we can write Eq. (19) as
follows:

Q�I − LM� � E2

� �Σ2 � �γ � β�I�−1β 0
0 β

γ�β I

�
ET

2 . (20)

The ILC algorithm is stable if ‖Q�I − LM�‖2 < 1,
where ‖ · ‖2 denotes the 2-norm. From Eq. (20) we
conclude:

‖Q�I − LM�‖2 � β

γ � β
�21�

and consequently, we conclude that the ILC algo-
rithm is stable if

β

γ � β
< 1. �22�

Because by definition β > 0 and γ > 0, from Eq. (22)
we see that the ILC algorithm is always stable.
However, a stable ILC algorithm does not necessarily
imply a fast convergence of the control voltages. Due
to this, in the sequel we study a convergence rate of
the ILC algorithm.

We say that the ILC algorithm is monotonically
convergent, if

‖u∞ − uk�1‖2 ≤ ν‖u∞ − uk‖2; (23)

where u∞ � limk→∞uk and 0 ≤ ν < 1 is the conver-
gence rate of the ILC algorithm. The smaller ν is,
the faster is the convergence of the ILC algorithm
and vice-versa. From Eq. (17) we have:

u∞ � Q�I − LM�u∞ �QLwd. (24)

Because γ > 0, we have ‖Q�I − LM�‖2 < 1. This im-
plies that the matrix I −Q�I − LM� is invertible,
and by solving Eq. (24) for u∞ we obtain:

u∞ � �I −Q�I − LM��−1QLwd. (25)

By substituting Eqs. (15) and (16) in Eq. (25) we
obtain:

u∞ � �MTM � γI�−1MTwd. (26)

Equation (26) gives the value of the steady-state
relative voltage vector. This equation helps us to
estimate the steady state voltages for the desired
wavefront wd, for the influence matrix M, and for
a chosen parameter γ. Next we will show how the
convergence rate of the ILC algorithm depends on
the parameters β and γ. From Eq. (25) we have:

QLwd � �I −Q�I − LM��u∞. (27)

Further we have:

u∞ − uk�1 � u∞ −Q�I − LM�uk −QLwd. (28)

Substituting Eq. (27) in Eq. (28), we obtain:

u∞ − uk�1 � Q�I − LM��u∞ − uk�. (29)

From the last expression, we obtain:

‖u∞ − uk�1‖2 ≤ ‖Q�I − LM�‖2‖�u∞ − uk�‖2. (30)

From Eq. (20) we have ‖Q�I − LM�‖2 � β∕�β� γ�.
This implies that the convergence rate of the ILC
algorithm is given by:

ν � β

β� γ
. (31)
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From the last equation we can observe that by in-
creasing γ the convergence rate ν decreases. That
is, by increasing γ we have a faster convergence of
the ILC algorithm (since smaller ν gives faster con-
vergence of the ILC algorithm). In the sequel, we will
show that by increasing γ we decrease the steady-
state relative voltages. This way, we can prevent
actuator saturation. However, as we show in the se-
quel, the increase of γ has a negative effect on the
steady-state tracking error. From Eq. (8) we obtain:

e∞ � wd −Mu∞. (32)

By substituting Eq. (26) in Eq. (32) we obtain:

e∞ � �I −M�MTM � γI�−1MT �wd. (33)

Equation (33) can help us to estimate the steady-
state wavefront error for a desired wavefront, for
the influence matrix M and for the chosen value of
the parameter γ. As we prove in Appendix A, the
steady-state relative input and the wavefront error
are bounded as follows:

‖u∞‖2 ≤
1

2
���
γ

p ‖wd‖2; (34)

‖e∞‖2 ≤
γ

γ � σ236
‖wd‖2. (35)

From the analysis presented in this section, we are
able to give a physical interpretation of the design
parameters β and γ, and to draw the following guide-
lines for the tuning of the ILC algorithm.

B. Physical Interpretation of the Parameters of the ILC
Algorithm and Guidlines for its Tuning

• From Eq. (34) we know that by increasing γ we
decrease the upper bound on the steady-state volt-
ages. This physically means that by increasing γ
we can prevent the steady state voltages to saturate.
At the same time, we know that by increasing γ the
ILC algorithm converges more rapidly.
• On the other hand, from Eq. (35) we see that by

increasing γ the upper bound on the steady state
wavefront error increases. This physically means
that by increasing γ we degrade the accuracy of
the wavefront correction/generation.
• From Eq. (35) we can deduce that when γ → 0,

e∞ → 0. However, this will never be achieved in prac-
tice since this condition only holds when there are no
model uncertainties (due to linearization, we always
have model uncertainties). Furthermore, there is
always measurement noise in the system.
• From Eqs. (26) and (33) we see that the param-

eter β does not influence the steady-state input and
the steady-state wavefront error. However, from
Eq. (31) we have that by increasing β the convergence
rate of the ILC algorithm is slower and vice-versa.
The parameter β can also be used to regularize badly

conditioned matricesM and consequently to improve
the noise immunity of the system [20,22].

In this section, we have derived the ILC algorithm
by assuming that at each control iteration k we are
able to measure wk. That is, we have assumed that
the ILC algorithm is applied online. However, in
Section 5C. we will experimentally show that with
only one initial measurement of the membrane
shape, and by learning the control input offline using
the ILC algorithm, we are able to achieve a relatively
good performance of the AO system. Although the
accuracy of the wavefront generation using this off-
line method is slightly worse than the online method,
the offline method can produce a relatively small
wavefront error in only one control iteration.

4. Identification of the Influence Function

In order to identify the linearized model of the DM
around the working point A (see Fig. 2), we introduce
the following matrices:

P � � u1 u2 … uN �; D � �w1 w2 … wN �.
(36)

In Eq. (36), ui ∈ R48, i � 1;…; N, is a vector of ran-
dom relative voltages varying between 0% and
�30% (30% of relative voltages correspond to 80%
of total voltages, since the working point A is chosen
at 50% of total voltages) and wi is the membrane
shape produced by ui andN is a relatively large num-
ber (in our case N � 200). The influence matrix M is
identified by solving the following least-squares
optimization problem:

min
M

‖D −MP‖2F; �37�

where ‖ · ‖F denotes the Frobenius norm [23]. The
random voltages ensure that P has full row rank,
so the solution of the optimization problem Eq. (37)
is then given by:

M � DP† (38)

where P† � PT�PPT�−1 denotes the matrix pseudoin-
verse. The random voltages ensure that the mirror is
persistently excited and that the crosscoupling be-
tween the channels is captured by the identified
model. In order to determine wk and consequently to
define D, we need to know WA. That is, we need to
know the membrane shape produced by the working
point voltages. In theory, the wavefront WA can be
obtain by subtracting all static wavefront aberra-
tions (originating from the experimental setup when
the voltages are not applied to the DM) from the total
measured wavefront [12]. However, by applying the
vector of working point voltages UA at different time
instants k, and by subtracting all static wavefront
aberrations from the measured wavefront, we will
observe different WA

k . This is due to the measure-
ment noise of the S-H WFS. We solve this problem
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using the following strategy from [23]: we apply UA

30 times to DM. Each time we measure the corre-
sponding wavefront and subtract all static wavefront
aberrations. After that, we determine WA by averag-
ing wavefronts from these N � 30 measurements
(assuming that the effect of the hysteresis of the
DM is not significant).

In Section 5C we will compare the dynamical
behavior of the AO system with the dynamical
behavior of the modeled AO system that is based
on the identified model M.

5. Experimental Results

In the first part of this section we present experi-
mental results that illustrate the influence of β
and γ on the dynamical behavior of the AO system.
In the second part we illustrate the ability of the
AO system to generate/compensate some typical
Zernike polynomial wavefront aberrations. In the
third part we compare the identified model of the DM
with experimental results. Furthermore, we show
that by taking one initial wavefront measurement
and by applying the ILC algorithm offline, we are
able to achieve a good performance of the AO system.
Finally, in the fourth part we compare the ILC
algorithm with other control algorithms.

A. Dynamical Behavior

In Fig. 3 we present experimental convergence rates
of the wavefront error and voltages for different val-
ues of β and γ. In this experiment, our goal is to make
the wavefront sensed by S-HWFS to be equal to a flat
wavefront. In this case, the desired total wavefront
(desired membrane shape) for the ILC algorithm
is:Wd � −d, where d is the measurement of all static
wavefront aberrations in the AO system when the
voltages are not applied to the DM. From Fig. 3

we see that by increasing γ we decrease the norm
of the steady-state voltages. That is, by adjusting
γ we can prevent actuator saturation. However,
by increasing γ we increase the steady-state wave-
front error, that is, we degrade the accuracy of the
wavefront correction. We can also see that the con-
vergence speed of the ILC algorithm decreases as
β increases. These experimental results confirm
the theoretical conclusions that we drew in Section 3.

B. Performance of the AO System

In order to demonstrate the performance of the AO
system, we have generated several wavefronts de-
scribed by different modes of the Zernike polynomial
basis. The details of the desired wavefronts are listed
in Table 1.

The results of the wavefronts convergence are
given in Figs. 4–8. For the purpose of demonstrating
the performance of the AO system, we have used: β �
0.0005 and γ � 0.0001. Since we wanted to boost the
performance of the AO system, for coma generation
(Fig. 8) we have allowed some of the channels to sat-
urate (this can be avoided by increasing γ). As we can
see from these figures, the ILC algorithm guarantees
relatively good wavefront generation performance
with a final RMS wavefront error of about 0.01λ
for all the considered cases.

Figures 4–8. (a) Convergence of the norm of the
wavefront error ‖ek‖2. (b) Convergence of the total

Table 1. Desired Wavefront Details

Desired Aberration Zernike Index P-V [λ] RMS [λ]

Astigmatism α4 0.34 0.1
Defocus α5 0.45 0.1
Trefoil α6 0.45 0.08
Coma α7 0.45 0.08

Fig. 4. Flat wavefront generation.
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voltages ‖Uk‖2. (c) Converged voltages of each
channel of the DM. (d) Converged wavefront.

C. Comparison Between the Model and the Experimental
Setup

Using the identified influence function M as a model
of the DM, we have simulated the dynamical behav-
ior of the AO system. We assume that the desired
wavefront is a flat wavefront. We compare such a si-
mulated behavior with the experimental results. The
comparison is presented in Fig. 9.

As it can be observed from Fig. 9, the identified
model of the influence function gives a relatively

good prediction of the dynamical behavior of the real
AO system. This motivates us to perform the follow-
ing experiment. For a desired wavefront equal to the
flat wavefront and for a one initial measurement of
the initial nonflatness of the DM, we run the ILC al-
gorithm offline. That is, we run it without taking any
additional measurements except the initial one.
After the ILC algorithm has converged, we apply
the converged voltages to the DM. The converged
wavefront (steady-statewavefront) is given in Fig. 10.
As comparison, we present a converged wavefront
of the experiment when the ILC algorithm has been
applied online.

Fig. 5. Astigmatism generation.

Fig. 6. Defocus generation.
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The RMS value of the steady state wavefront error
when the ILC algorithm is performed offline is
0.015λ. On the other hand, the RMS value of the
steady state wavefront error when the ILC algorithm
is performed online is 0.011λ. These results shows us
that using the identified model and the ILC
algorithm, we can generate/correct wavefront
aberrations with only one initial measurement of
the wavefront.

D. Comparison of ILC with Other Control Algorithms

As a final demonstration of the advantages of the
ILC algorithm, we compare it with a NNLS control

algorithm of [13]. Furthermore, we compare the
proposed ILC algorithm with the Steepest Descent
ILC algorithm [20]:

uk�1 � uk � αMTek; (39)

where α � 0.3 is a step size. In this case the desired
wavefrontWd is Astigmatism α4 of 0.1λ RMS. The re-
sults are presented in Fig. 11. In order to distinguish
the proposed ILC algorithm from other algorithms,
in this subsection we call it the optimal ILC algo-
rithm. We have used β � γ � 0.0001.

Fig. 7. Trefoil generation.

Fig. 8. Coma generation.
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As it can be observed from Fig. 11, the optimal ILC
algorithm (proposed in this paper) outperforms other
two control algorithms. First of all, the optimal ILC
algorithm converges in only 5 control iterations,
while the NNLS converges after 10 iterations and
Steepest descent ILC algorithm does not converge
in 20 iterations. Next, the optimal ILC algorithm
reaches the smallest value of the steady-state
tracking error.

6. Conclusion

In this paper we have proposed an ILC algorithm for
controlling the shape of a membrane DM. We have
studied the stability and convergence rate of the
novel algorithm and on the basis of this study we
have given a physical interpretation of the controller
parameters. This interpretation enabled us to
derive a simple tuning procedure that in practice

guarantees fast and stable convergence of the wave-
front error. The experimental results show that by
using the ILC algorithm we are able to achieve a
relatively small value of the residual wavefront,
while at the same time we are able to effectively
control the saturation of voltages. Furthermore, the
experimental results show that the ILC algorithm
gives a small residual wavefront when it is applied
offline with only one initial measurement of the
membrane shape.

Appendix A

In this appendix we give a proof of Eqs. (34) and (35).
Using Eq. (18) we can express Eqs. (26) and (33) as
follows:

u∞ � E2KET
1wd; (A1)

e∞ � E1SET
1wd; (A2)

where

K �
�
Σ�Σ2 � γI�−1

0

�
; S � I − Σ2�Σ2 � γI�−1.

(A3)

From Eqs. (A1)–(A3) we have:

‖u∞‖2 ≤ ‖E2KET
1 ‖2‖wd‖2; (A4)

Fig. 9. Comparison of the model with the experimental results. (a) Convergence of the norm of the wavefront error ‖ek‖2. (b) Convergence
of the norm of the total voltages ‖Uk‖2.

Fig. 10. Comparison of the offline with the online application of the ILC algorithm. (a) Converged wavefront when the ILC algorithm is
applied offline. (b) Converged wavefront when the ILC algorithm is applied online.

Fig. 11. Comparison of different control algorithms.
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‖e∞‖2 ≤ ‖E1SET
1 ‖2‖wd‖2. (A5)

From Eq. (A3) we see that the singular values of
E2KET

1 have the following form:

σi
σ2i � γ

; �A6�

where σi is the ith singular value ofM. The 2-norm of
E2KET

1 is equal to its maximal singular value. Con-
sider the function f �x� � x∕�x2 � γ�, where x is a real
number. The maximum of f �x� is equal to 1∕�2 ���

γ
p �

and it is achieved for x � ���
γ

p
. When x � σi, f �σi� is

equal to Eq. (A6). From the above analysis, we have:

max
σi

σi
σ2i � γ

≤
1

2
���
γ

p . (A7)

When a singular value σi is equal to
���
γ

p
, then

‖E2KET
1 ‖2 � 1

2
��
γ

p . From Eqs. (A4)–(A7) we obtain
Eq. (34). From Eq. (A3) we see that the singular val-
ues of E1SET

1 are given by:

γ

σ2i � γ
. �A8�

From Eq. (A8) we see that the maximal singular
value of E1SET

1 (that is the 2-norm) is given by:

‖E1SET
2 ‖2 � γ

σ236 � γ
; (A9)

where σ36 is the minimal singular value of M. Using
Eqs. (A5) and (A9) we obtain Eq. (35). This completes
the proof.
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