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Railway Track Circuit Fault Diagnosis

using Recurrent Neural Networks
Tim de Bruin, Kim Verbert and Robert Babus̆ka

Abstract—Timely detection and identification of faults in rail-
way track circuits is crucial for the safety and availability of
railway networks. In this paper, the use of the Long Short Term
Memory Recurrent Neural Network is proposed to accomplish
these tasks based on the commonly available measurement
signals. By considering the signals from multiple track circuits
in a geographic area, faults are diagnosed from their spatial and
temporal dependencies. A generative model is used to show that
the LSTM network can learn these dependencies directly from
the data. The network correctly classifies 99.7% of the test input
sequences, with no false positive fault detections. Additionally, the
t-SNE method is used to examine the resulting network, further
showing that it has learned the relevant dependencies in the
data. Finally, we compare our LSTM network to a convolutional
network trained on the same task. From this comparison we
conclude that the LSTM network architecture better suited for
the railway track circuit fault detection and identification tasks
than the convolutional network.

Index Terms—Fault Diagnosis, Track Circuit, LSTM, Recur-
rent Neural Network.

I. INTRODUCTION

A
S railway networks are becoming busier, they are re-

quired to operate with increasing levels of availability

and reliability [1]. To enable the safe operation of a railway

network, it is crucial to detect the presence of trains in the

sections of a railway track. The railway track circuit is world-

wide the most commonly used component for train detection.

To prevent accidents, the detection system is designed to be

fail-safe, meaning that in the case of a fault the railway section

is reported as occupied.

When this happens, trains are no longer allowed to enter

the particular section. This avoids collisions, but leads to train

delays. Moreover, in-spite of the fail-safe design of the track

circuit, there are situations in which the railway section can

be incorrectly reported as free, which can potentially lead to

dangerous situations. Therefore, to guarantee both safety and

a high availability of the railway network, it is very important

to prevent track circuit failures. This requires a preventive

maintenance strategy to ensure that components are repaired

or replaced before a fault develops into a failure. To schedule

the maintenance of the track circuits in the most efficient and

effective manner, it is necessary to detect and identify faults

as soon as possible.
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In this work, we propose a neural network approach to fault

diagnosis in railway track circuits. The fault diagnosis task

comprises the detection of faulty behavior and the determina-

tion of the cause(s) of that behavior.

Since the railway track circuit network is a large network,

it is not realistic to assume that additional monitoring devices

will be installed on each track circuit. Therefore, this paper as-

sumes only the availability of data that are currently measured

in track circuits. By analyzing the measurement signals from

several track circuits in a small area over time, the fault cause

can be inferred from the spatial and temporal dependencies

[2]. In contrast to [2], in this work, a data-based approach to

fault diagnosis is considered, namely an Artificial Recurrent

Neural Network called the Long Short Term Memory (LSTM)

network [3].

Artificial Neural Networks have recently achieved state-

of-the-art performance on a range of challenging pattern

recognition tasks, such image classification [4] and speech

recognition [5]. Some of the advances made in these domains

can be applied to fault diagnosis problems as well, which

makes the use of neural networks an interesting option in this

domain.

Learning the long-term temporal dependencies that are

characteristic of the faults in the track circuit case presents

a challenge to standard neural networks. The LSTM network

deals with this problem by introducing memory cells into the

network architecture.

Currently, not enough measurement data are available to

train the network and to verify its performance. Therefore, we

have combined the available data with qualitative knowledge

of the fault behaviors [2] and we have constructed a generative

model. The performance of the proposed approach is demon-

strated using synthetic data produced by this model. However,

as the amount of available track circuit data is expected to

increase rapidly over time, we expect that the method will be

relevant.

Related work

Several methods for fault diagnosis in railway track circuits

have been proposed in literature [1], [2], [6]–[10]. A distinc-

tion can be made between methods that use data collected

by a measurement train [6], [7], [9], [10] and methods that

use data collected via track-side monitoring devices [1], [2],

[8]. In this work, track-side monitoring devices are considered

because they continuously monitor the system health and are

therefore suitable for the early diagnosis of faults. The main

difference compared to the approaches in [1], [8] is that in

those works multiple monitoring signals are used, while in this
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paper, for each track circuit, only one measurement signal is

available. The main difference compared to the approach in [2]

is that in [2] a knowledge-based approach is proposed, while

we consider a data-based approach, namely a Long Short Term

Memory (LSTM) network.

The use of spatial fault dependencies for the diagnosis of

faults is relatively new to the railway track circuit setting [2],

although it is more commonly used in other domains (e.g [11]–

[13]).

To the authors’ best knowledge, LSTM networks have not

been previously proposed for fault diagnosis in railway track

circuits. However, many applications of neural networks to

fault diagnosis and condition monitoring problems can be

found in the literature. One recent popular approach is to use

a Deep Belief Network [14]. The stochastic nature of these

networks make them a natural fit to fault detection. By training

exclusively on examples from healthy behavior, the network

can determine the probability that a new input vector does not

come from the class of healthy states.

One example of this principle is given in [15], where a deep

belief network is trained to detect faults in electric motors. In

[16], a deep belief network is used to create an industrial soft

sensor. The network predicts the value of a process variable

based on the values of many other variables. However, it

does not take the temporal developments of these variables

into account. When these methods do take a time sequence

as an input, they often consider a sequence of fixed length.

In contrast, we use a recurrent network which allows the

predictions of the network to be updated at every input time-

step while keeping a ’memory’ of the past inputs.

Methods using recurrent neural networks have also been

discussed in the literature. An example closely related to this

work is given in [17], where Echo State Networks are trained

to learn the spatial and temporal dependencies in a distributed

sensor network. Faults are detected by predicting the values

that the sensors will measure and comparing these to the true

values. Methods for fault classification based on predicting

the output of a system are common as well. One example

is [18], in which for each fault category a separate recurrent

neural network model predicts the output of the system

given the inputs. The fault is then identified by determining

which model best explains the measured outputs. In contrast

to these methods, our method learns to detect and classify

faults directly from the measurements. Additionally, using the

LSTM network architecture allows us to learn longer term

temporal dependencies.

The rest of this paper is organized as follows. In Section II,

the working of a track circuit is discussed.

In Section III, the structure and working of the LSTM

Network that is used to identify the faults is discussed. The

results of using the proposed neural network with the synthetic

data are given in Section IV, together with an analysis of the

trained network using the visualization method t-SNE [19]. In

Section V a comparison is made between the proposed LSTM

network and a convolutional network. The conclusions of this

work are given in Section VI. In Appendix A, a number of

faults that can cause a track circuit to fail are presented, with

special attention given to the spatio-temoral dependencies that

make it possible to identify these faults from the measured

or generated data. Appendix B describes the generative model

that is used to produce the training and test data.

II. TRACK CIRCUITS

To enable the safe operation of a railway network, track

circuits are used to detect the absence of a train in a section

of railway track. Trains are only allowed to enter track sections

which the corresponding track circuit has reported to be free.

A track circuit works by using the rails in a track section as

conductors that connect a transmitter at one end of the section

to a receiver at the other end, as shown in Figure 1. When no

train is present in the section, the transmitter will energize a

relay in the receiver which indicates that the section is free.

When a train enters the section, the wheel-sets of the train

forms a short circuit as shown in Figure 1. This causes the

current flow through the receiver to decrease to a level where

the relay is no longer energized and the section is reported as

occupied.

The correct operation of a track circuit depends on the

electrical current through the receiver. In the absence of a train

in the section, the current must be high enough to energize the

relay. Conversely, in the presence of a train, the current must be

low enough so that the relay is de-energized. To maintain the

safety and availability of the railway network, it is important to

detect all possible faults in the system. Moreover, to schedule

preventive maintenance on the track circuits, it is important

to identify the fault type and to determine the development of

the fault severity over time.

A. Fault diagnosis

Every track circuit has different electrical properties which

results in different values of the ‘high’ current Ih(t) when no

train is present, and of the ‘low’ current Il(t) when a train is

present. Additionally, the transients between these values may

be different. The current levels also depend on environmental

influences and on the properties of the train passing through

the section. For these reasons, it is not possible to adequately

detect the presence of a fault by only considering the electrical

current I(t) during the passing of a single train. In this work

we consider the current signals from several track circuits in

the same geographic area, measured over a longer period of

time. This makes it possible to not only detect the presence of

a fault, but to also distinguish between different fault types.

The reasoning behind this approach is that different faults have

different spatial and temporal footprints [2]. The faults that are

considered in this paper are:

• Insulated joint defect

• Conductive object (across the insulated joints)

• Mechanical rail defect

• Electrical disturbance

• Ballast degradation

A description of these fault types, together with their spatial

and temporal footprints, is given in Appendix A.
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TransmitterTransmitter ReceiverReceiver
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Fig. 1. Current flow in a track circuit. Each track circuit detects the absence of trains in a section of a railway track. Subsequent sections are separated from
each other by insulated joints.

B. Generative Model

To enable the development, testing and comparison of

condition monitoring methods, we have developed a generative

model. This model is based on a qualitative understanding of

the system and the effect of the faults considered, as well as on

limited set of measurement data available from real world track

circuits. This model, together with a strategy for sampling the

electrical current, is described in Appendix B.

III. NEURAL NETWORK

Artificial Neural Networks have achieved state of the art

performance on several pattern recognition tasks. One reason

for these successes is the use of a strategy called ’end-to-

end learning’. This strategy is based on moving away from

hand crafted feature detectors and manually integrating prior

knowledge into the network. Instead, networks are trained

to produce their end results directly from the raw input

data. To use end-to-end learning, a large labeled data set

is required. When this requirement is met, the benefits of a

holistic learning approach tend to be larger than the benefits

of explicitly using prior knowledge [20].

One example of a field in which this strategy has been

successfully applied is image recognition. On this problem,

convolutional networks achieve state of the art performance by

using raw pixel values, instead of using hand-crafted feature

detectors as inputs [4]. Another example is speech recognition,

in which methods using phonemes as an intermediate repre-

sentation are being replaced by methods transcribing sound

data directly into letters [5].

For the track circuit fault diagnosis case there are currently

not enough labeled data available. However, the measuring

equipment that records these data has been installed. There-

fore, it is reasonable to assume that at some future time the

data requirement will be met. The neural network proposed in

this paper is trained and tested with synthetic data from our

generative model. This enables us to analyze the opportunities

of applying end-to-end learning to the track circuit fault

diagnosis problem.

A. Network Architecture

The prior knowledge of the spatial and temporal fault

dependencies will not be explicitly integrated into the neural

network. It is, however, important to give the network a

structure that enables it to learn these dependencies from the

data.

In order to take the spatial dependencies into account, the

network input consist of the electrical current signals from

five separate track circuits. The signals come from the track

circuit that is being diagnosed IB(t), as well as two other

track circuits on the same track {IA(t), IC(t)} and two track

circuits on an adjacent track {ID(t), IE(t)}.

For detecting temporal dependencies, a Recurrent Neural

Network (RNN) is a natural choice, since the recurrent connec-

tions in the network allow it to store memories of past events.

However, standard RNN’s struggle to learn long-term time

dependencies. This is due to the vanishing gradient problem

[3]. A popular solution to this problem is the use of the Long

Short Term Memory network architecture.

1) LSTM cell: LSTM networks are able to learn long-term

time dependencies by introducing specialized memory cells

into the network architecture. The structure of the memory

cell is shown in Figure 2. The units a and b are the input

and output units respectively. The unit M is the memory unit.

It can remember a value through a recurrent connection with

itself. The neurons denoted by g are gate units. The input gate

i determines when a new input is added to the value of the

memory unit by multiplying the output of the input unit a by

the output of the gate unit. In a similar way, the forget gate f

determines when the value in the memory unit is kept constant

and when it is reduced or reset. The output gate o determines

when the cell outputs its value.

Our network has two hidden layers containing 250 LSTM

cells each. This configuration was empirically found to reliably

yield good results for this problem. Smaller networks resulted

in worse performance and larger networks did not improve

the performance further while requiring significantly increased

training times. In general, the ideal size of the network is based

on the complexity of the problem, the amount of available
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Fig. 2. Architecture of the LSTM memory cell. The black dots indicate a
multiplication of the outputs of the gate units g by the outputs of the regular
units.

training data and the available computational resources.

The inputs to each LSTM cell j in layer l consist of the

inputs to the layer at that time step xl(T ), as well as the

outputs of all LSTM cells in layer l at the previous time-step

hl(T − 1). The equations that describe LSTM cell j in layer

l are:

ilj(T ) = sigm
(

Wxil
j
xl(T ) +Whil

j
hl(T − 1) + bil

j

)

(1)

f l
j(T ) = sigm

(

Wxf l
j
xl(T ) +Whf l

j
hl(T − 1) + bf l

j

)

(2)

alj(T ) = tanh
(

Wxal
j
xl(T ) +Whal

j
hl(T − 1) + bal

j

)

(3)

olj(T ) = sigm
(

Wxol
j
xl(T ) +Whol

j
hl(T − 1) + bol

j

)

(4)

M l
j(T ) = f l

j(T )
(

M l
j(T − 1)

)

+ ilj(T )alj(T ) (5)

hl
j(T ) = olj(T )tanh

(

M l
j(T )

)

(6)

2) Inputs and outputs: For each of the five track circuits

in Figure 3, the current magnitude is sampled four times

during a train passing event. The details of this sampling

procedure are described in Appendix B. The resulting 20

current values for each train passing event T are the inputs

to the first hidden layer for that train passing event time-step:

x1(T ) = [I1A(T ) ... I4E(T )].
The outputs of the first hidden layer are the inputs of the

second hidden layer: x2(T ) = h1(T ). The outputs of the

second hidden layer are the inputs to the output layer of

the network. This layer consists of six softmax classification

units; one for the healthy state and five for each of the fault

categories. They give the likelihood that the network assigns

to each category c at time-step T as:

P (Y = c)(T ) =
eWch

2(T )+bc

6
∑

d=1

eWdh2(T )+bd

(7)

A complete overview of the network is given in Figure 3.

B. Network training

To train the neural network, two data sets are generated.

The first one is a training data set with 21600 sequences.

Time [s]
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Fig. 3. Fault diagnosis process overview. For each train passing event T , the
current time sequence of the five track circuits (I) is sampled (II). These
samples are the input to the neural network (III) which uses them to update
the likelihood of the six different fault classes.

The second is a validation data set containing 600 sequences.

For each sequence the properties of the track circuits and

the properties of the fault are stochastically determined. Each

sequence has a length of 2000 train passing events. This relates

to a time period of 100 days. Note that although more trains are

likely to pass through the considered sections, it is important

to keep the temporal dependencies from becoming too long

term. Therefore, it might be necessary to limit the number of

train passing events per day that are used as network inputs.

The network is trained to give a classification of the

sequence at every time-step T . The target for this classification
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t(T ) is the healthy state, unless the sequence contains a fault

for which the severity at that time-step T is above 0.15. The

severity of the fault is between 0 and 1. A fault severity

of 0 will have no influence on the electrical current levels

and a fault severity of 1 will influence the current enough to

cause a failure, where the track circuit is no longer able to

function correctly. The value of 0.15 is chosen to detect the

faults as early as possible without having any false positive

fault detections. Based on the target classifications t(T ) the

network is trained to minimize the negative log likelihood loss

function:

l(T ) = −log(P (Y (T ) = t(T ))) (8)

The network is trained with the Back-Propagation Through

Time algorithm [21] on the sequences in the training data

set. The network is unrolled for 500 time-steps. First, the

network activations and outputs are calculated for these 500

time-steps. Then, moving backwards through time, the error

gradients are calculated and the weights are updated. Finally,

the activations of the network at the final time-step are used as

the initial network activations for the subsequent sub-sequence

of 500 time-steps. This process is repeated until all 2000 time-

steps in the sequence are processed. To improve efficiency, 56

sequences are processed simultaneously in a mini-batch using

Stochastic Gradient Descent.

During the training on the training data set, the performance

according to (8) on the validation data set is monitored.

When this performance stops improving the learning rate is

lowered. After the training is complete, the network weights

that resulted in the best performance on the validation data set

are used to test the network.

IV. RESULTS

To test the trained network a test data set is generated

containing 1500 sequences.

A. Prediction accuracy

To test the performance of the network, the test data set

is presented to the network. At the final time-step of the

sequences, the class that is assigned the highest probability

is compared to the correct diagnosis for that time-step.

Of the 1500 sequences, 1495 were identified correctly. The

confusion matrix is given in Table I. An example of a complete

input sequence with the resulting classification outputs is given

in Figure 4, from which it can be seen that the network is

insensitive to current drops that are not caused by faults and

assigns the majority of the probability to the correct category

exactly according to the trained target classifications for each

time step. This shows that faults can not only be classified

correctly but also identified in a timely fashion, long before

they lead to a failure.

B. Misclassifications

Arguably more interesting than the 1495 correctly classified

sequences are the 5 incorrectly classified sequences (see

Table I).

TABLE I
CONFUSION MATRIX FOR THE FAULT DIAGNOSIS TASK ON THE TEST DATA

SET WITH 1500 SEQUENCES. THE ROWS INDICATE THE TRUE CLASS AND

THE COLUMNS REPRESENT THE PREDICTED CLASS.

true cat. / pred cat. 1 2 3 4 5 6

1 (healthy) 754 0 0 0 0 0

2 (Insulated joint defect) 0 131 0 1 0 0

3 (conductive object) 1 0 238 0 0 0

4 (mechanical rail defect) 0 1 0 249 0 0

5 (electrical disturbance) 0 0 0 0 4 0

6 (Ballast degradation) 2 0 0 0 0 119

Fig. 4. Network inputs and output for one realization of a ballast degradation
fault sequence. The detection time TD marks the detection threshold. Before
this point the correct classification is healthy and after this point the correct
classification is ballast degradation.

Of these, the misclassification of the insulated joint defect

as a mechanical rail defect and the misclassification of the

mechanical rail defect as a insulated joint defect are easily

explained. The only difference between these sequences was

the speed of the progression of the fault severity. This speed

is drawn from normal distributions that are fault depen-

dent. Some realizations from these distributions will be very

similar. In combination with the natural fluctuations of the

current measurements, this will make some misclassifications

inevitable.

The false negative misclassification of the ballast degrada-

tion sequences and the conductive object sequence seems to

be related to the limits of the long-term time dependencies

that the network can handle.

For the misclassified conductive object sequence the net-

work inputs and outputs are given in Figure 5. The fault is ini-

tially classified correctly when the characteristic sudden drop

in the high current level occurs. Although this classification

is kept for 1500 train passings, it seems that eventually new
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Fig. 5. Incorrectly classified sequence.

evidence makes the network forget the earlier events.

C. t-SNE

To gain some more insight into what the network has

learned, the internal representations of the network at the end

of the sequences will be investigated. After presenting each of

the 1500 sequences to the network the state of the memory

units in the LSTM cells and the activations of the output

units of the two recurrent layers in the network are stored.

These activations are the network’s internal representation of

the sequence of events that has preceded the final time-step

and of the last input.

To compare these unit activation vectors, t-SNE [19] is

used. This technique makes it possible to embed these 250-

dimensional vectors in a 2-dimensional image in such a way

that the vectors that are close together in the 250 dimensional

space are also close together in the 2 dimensional plot.

Therefore, sequences that are similar according to the network

will occur close together in the plots. Note that the opposite

does not have to be true; large distances do not mean the

sequences are very dissimilar.

1) Role of the layers: The network has two hidden layers.

The idea behind having multiple layers is that each subsequent

layer uses the outputs of the previous layer to form higher level

abstractions of the data. To investigate if this has happened, the

activation vectors of the output units of both layers are plotted.

Figure 6 shows the activations of the output units in the first

recurrent layer at the last time-step for all 1500 sequences in

the test set. Figure 7 shows the same for the second layer.

From Figure 6a it can be seen that the outputs of the

first recurrent layer of the classification network are not

too sensitive to the temporal dependencies in the data, as

sequences from different classes are close together in the plot.

From Figure 6b it can be seen that the similarity of the outputs

of the first layer seem to be based mostly on the fault severity

at the final time-step as sequences with similar fault intensities

are grouped close together.

The activation vectors of the output units in the second

layer are labeled by the true fault category in Figure 7a. The

grouping here seems based mostly on the true category and

therefore on the underlying dependencies that define these

categories.

In Figure 8a the state of the memory units in the second

layer can be seen in the final time-step of the sequences.

It is interesting to note that the classes are less clearly

separated here than they are in the output units of this layer.

Presumably the information about the fault severity coming

from the first layer at the same time-step is used to improve

the classification. Alternatively it might mean that the network

remembers more information about the sequence than what is

output at any given time to the softmax layer.

To gain more insights into how the network learns to

classify faults, it can also be attempted to deduce how the

network distinguishes between the conductive object and the

electrical disturbance fault categories. Both faults abruptly

lower the value of the current when a train is not present in the

section. But where the current subsequently stays low for the

conductive object fault, it is only intermittently low for the

electrical disturbance. Furthermore, an electrical disturbance

affects multiple track circuits along the same track where a

conductive object impacts only one. From Figure 8b it can

be seen that the network keeps a memory of a conductive

object being present in the network. It does not however keep

a memory of the fact that electrical disturbances have been

observed earlier in the sequence, as the sequences for which

this is the case are not separated from those of the healthy

sequences. In fact, in Figure 8a it can be seen that also for the

sequences that are at that time-step undergoing an electrical

disturbance, the state of the memory is similar to those in the

healthy state.

2) Spatial dependencies: As discussed in Section III, the

prior knowledge of the spatial and temporal fault dependencies

is not explicitly used in the network. Doing so on real data

could introduce a bias if the prior knowledge turns out to be

inaccurate. Since the neural network is trained and tested with

synthetic data that is generated by a model that is based on

the prior knowledge it is interesting to see to what extent the

network has learned to identify these dependencies by itself.

Clearly, since the fault categories differ only based on their

spatial and temporal dependencies and the network manages

to correctly classify them in 99.7% of the trials, it has learned

to distinguish between these dependencies. However, from

Table III it can be seen that the spatial dependencies are

not strictly necessary to distinguish between these 5 faults.

Therefore it is interesting to see if the network has learned

these dependencies or not.

The degradation of the ballast can affect either one track

circuit or several along the same track. These spatial depen-

dencies are identified with D1 and D2 respectively. For each



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 7

healthy
Insulated joint
Conductive Object
Mechanical defect
Electrical disturbance
Ballast degradation

(a) Labeled by true category.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Labeled by fault severity.

Fig. 6. t-SNE representation of the activity vectors of the output units in the first recurrent layer at the last time-step of the sequences in the test data set (
h1(2000) ).
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Fig. 7. t-SNE representation of the activity vectors of the output units in the second recurrent layer at the last time-step of the sequences in the test data set
( h2(2000) ).
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Fig. 8. t-SNE representation of the state of the memory units in the second recurrent layer at the last time-step of the sequences in the test data set (
M2(2000) ).
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sequence with a ballast degradation fault one of these options

is picked with equal probability. In Figure 7c the sequences

suffering from the ballast degradation fault are shown. It

appears from the plot that although these sequences are very

similar the network does distinguish between these spatial

dependencies.

V. CONVOLUTIONAL NETWORK COMPARISON

Besides LSTM RNNs, Convolutional Neural Networks

(CNNs) [22] are a popular choice for dealing with temporal

data [23]. In this section we compare our LSTM network with

a CNN.

The CNN that we consider is a feed-forward network that

takes all of the measurements of the past 2000 train-passings

on the five track circuits at once as an input and gives

the classification of the sequence at the most recent time-

step as an output. The CNN has two convolutional layers,

followed by a fully connected layer with Rectified Linear Unit

(ReLU) nonlinearities and a softmax output layer. Both con-

volutional layers consist of two sub-layers. The first performs

a convolution step where a series of kernels is convolved

with the inputs to the layer. The second sub-layer performs

a max-pooling step that takes the maximum activation of

the kernels over a certain time window. The max-pooling

operation introduces a limited invariance to the exact time at

which a certain input pattern was detected. This simplifies the

learning procedure and improves generalization. The kernel

widths and the number of filters were chosen based on prior

knowledge of the faults and in such a way that the total number

of parameters was approximately equal to that of the LSTM

network.

Table II gives the classification results for the CNN. These

can be compared to the results of our LSTM method, which

are presented in Table I.

One thing that stands out is the inability of the CNN

to diagnose electrical disturbances. This can be related to

the max-pooling operator. This operator is relevant to most

of the considered faults, as they degrade with time. So, if

they were present at any previous time-step, they are also

present at the current time step. This is not the case for

electrical disturbances, since these faults are intermittent and

the classification of the sequence depends on the presence of

the fault at the most recent time step. By introducing the time

invariance through the max-pooling operation, the network is

no longer applicable for diagnosing these faults. It has been

found experimentally, however, that removing the max-pooling

does not enable the convolutional network to correctly classify

electrical disturbances. The removal of the max-pooling step

did result in reduced performance on the test data as the

network started to over-fit on the training data.

While the trained LSTM network is able to diagnose all

types of faults with good accuracy, the learning performance is

quite sensitive to the choice of the hyper-parameters. The con-

volutional network gives slightly worse overall performance,

but achieved this performance consistently for a wide range of

hyper-parameters such as the kernel sizes, number of kernels,

optimization algorithm and learning rates. The training was

also significantly faster.

In addition to the overall performance and ease of training,

the suitability of the two methods differs per fault type. As

discussed before, the LSTM network is more appropriate for

intermittent faults and yields better overall performance. It

does however sometimes forget faults that started a long time

ago (see Section IV-B). Since the convolutional network does

not use a memory, it does not suffer from this problem. Given

the complementary strengths, it might be beneficial to combine

both methods, as proposed in e.g. [24], [25].

TABLE II
CONFUSION MATRIX OF THE CONVOLUTIONAL NETWORK FOR THE FAULT

DIAGNOSIS TASK ON THE TEST DATA SET WITH 1500 SEQUENCES. THE

ROWS INDICATE THE TRUE CLASS AND THE COLUMNS REPRESENT THE

PREDICTED CLASS.

true cat. / pred cat. 1 2 3 4 5 6

1 (healthy) 753 0 1 0 0 0

2 (Insulated joint defect) 0 132 0 0 0 0

3 (conductive object) 1 0 238 0 0 0

4 (mechanical rail defect) 5 1 0 245 0 0

5 (electrical disturbance) 4 0 0 0 0 0

6 (Ballast degradation) 0 0 0 0 0 121

VI. CONCLUSION

In this paper a Recurrent Neural Network (RNN) with Long

Short Term Memory (LSTM) has been proposed for fault diag-

nosis in railway track circuits. Synthetic data from a generative

model are used to train and test the network. This enabled us to

explore the opportunities of using this network in this setting.

It has been shown that the network could learn the spatial an

temporal dependencies that characterize the considered faults

directly from the electrical current measurements, without the

manual integration of prior knowledge into the network. Of the

1500 scenarios presented to the network, 1495 were classified

correctly. Furthermore, no false positive fault detections were

made.

Although this research has focused specifically on railway

track circuits, LSTM-RNNs seem a promising option for other

fault diagnosis problems as well, especially when the faults are

characterized by long-term temporal dependencies. We com-

pared our LSTM network to a convolutional network. While

the LSTM network outperforms the convolutional network for

the track circuit case, convolutional networks are easier to

train. Given their complementary strengths, a combination of

these networks might result in better performance on general

fault diagnosis tasks than either of the individual networks can

achieve.

APPENDIX A

FAULT TYPES CONSIDERED AND THEIR SPATIAL AND

TEMPORAL DEPENDENCIES

In this paper, we consider the following temporal depen-

dencies:

L Linear

E Exponential

A Abrupt

I Intermittent
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Some faults that depend on time in a linear or exponential

fashion can also be distinguished by the relative speed of the

dependence. The spatial dependencies considered are:

Dc: The fault only affects the current in one track circuit.

Dt: The fault affects the current in more track circuits on the

same track.

Da: The fault affects the current of all track circuits in a

certain area.

A. Fault types considered

In this paper, we consider a set of five different faults as

described below. Table III gives a summary of the spatial and

temporal dependencies per fault type.

TABLE III
FAULT TYPES AND THEIR SPATIAL AND TEMPORAL DEPENDENCIES.

Fault type Spatial Temporal Fault rate

Insulated joint defect D1 L ∨ E intermediate

Conductive object D1 A -

Mechanical rail defect D1 E high

Electrical disturbance D2 I -

Ballast degradation D1 ∨D2 L ∨ E low

1) Insulation imperfections: The sections of a railway track

are electrically separated by insulated joints. When these joints

wear out, the track circuit current of one section can leak into

the adjacent section. The system is designed to be failsafe,

ensuring that the section that the current leaks into will not

be identified as free because of this leakage. However, the

current level in the section that the signal leaks out of will

drop, potentially causing the section to be incorrectly identified

as being occupied.

The effect of this fault will only be noticed in the section

that the current leaks out of. As trains pass over the damaged

joint the defect will gradually get worse. The fault severity is

therefore expected to increase either linearly or exponentially.

A conductive object placed over an insulated joint has a

similar effect as the joint defect. In this case, however, the

effect will occur abruptly and will not deteriorate over time.

2) Rail conductance impairments: The current travels

through the rails from the transmitter to the receiver. When

the impedance of this path increases, the current level in the

receiver will decrease. One fault that can cause this problem is

a mechanical defect in the rail. This fault would be specific to a

single section and will increase exponentially over time as each

passing train would cause greater damage to the deteriorating

rail.

Another reason for the impedance of the rails to increase

is the influence of disturbance currents. An example of this is

when the track is saturated with traction currents. This problem

occurs intermittently and affects several track circuits along the

same track.

3) Ballast degradation: Some current will always leak

through the ballast between the rails in the section. The

amount of current that leaks through the ballast depends on

the impedance of the ballast. This impedance varies as a

consequence of environmental conditions.

The ballast can also degrade over time, leading to a linear

or exponential reduction in the magnitude of the signaling

current when no train is present in the section. This effect

would be noticeable in one or more sections along the same

track. Compared to other faults this fault would likely develop

more slowly.

APPENDIX B

GENERATIVE MODEL

To create a model that generates the amplitude of the

electrical current I(t) in the receiver of a track circuit as a

train passes through the section, a data set of measurement

sequences from T = 30000 train passings has been studied.

A mathematical model that was found to accurately describe

these measurements was then fitted to the data. This model is

based on four phases during a train passing event:

• Phase 1: Between t0 and t1 the train has not yet arrived

in the section. During this phase the current I(t) through

the receiver should therefore be at the high level: I(t) =
Ih.

• Phase 2: At t = t1 the first wheel-set of the train

enters the section. If the resistance of the wheel-set

short circuit is low enough this should result in a very

quick drop of I(t) to its low value Il. However, in a

large portion of the samples in the data set the current

drop is more gradual. By fitting a number of samples

from three different track circuits to several equations

for step responses it was found that this phase could be

accurately and robustly described by an equation of the

form I(t) = α1e
−τα1(t−t1) + β1e

−τβ1(t−t1) .

• Phase 3: Although ideally I(t) = Il should hold until

the last wheel-set of the train leaves the section, in the

majority of the samples in the data set the current starts

to increase before this time. The curve between t = t2
where the current is at the lowest level and t = t3 where

the last wheel-set leaves the section can in almost all

cases be accurately described by a function of the form:

I(t) = α2e
τα2(t−t2) + β2e

τβ2(t−t2) .

• Phase 4: After the last wheel-set leaves the section

at t = t3 the current I(t) quickly increases to a value

near Ih. On some of the samples some overshoot is

observed and on some samples a trend after the step is

observed. Although a first order step response was found

to accurately describe many of the samples, a function of

the form I(t) = α3e
−τα3(t−t3)+β3e

τβ3(t−t3) was found to

represent these less common cases as well and is therefore

chosen for the initial fitted model.

In Figure 3-II it can be seen that this model accurately

describes the development of the current over time I(t) during

a train passing event T . This model was fitted to all of the

measured data sequences. By analyzing the distributions of the

values of the fitted model parameters it was possible to create

a simplified model with only a minimal sacrifice to the fitting
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accuracy. This model is given by

I(t) = Il +∆Imax·


















1 for t < t1

(1 −R)e−τα1(t−t1) +Re−τβ1(t−t1) for t1 ≤ t < t2

(t− t2)
∆I3

(t3−t2)
for t2 ≤ t < t3

1− e−τ3(t−t3) for t ≥ t3
(9)

with the following values for the time-constants:

τα1 = 9.25
τβ1 = 1.7
τ3 = 12.5

and

∆Imax = Ih − Il .

In this simplified model the properties of the track circuit and

the passing train are now represented by the four variables

Ih, Il, R and ∆I3. By fitting the simplified model to the

measured data and investigating the environmental conditions

at the time of the measurements, the dependencies of these

four variables on several sources of normal variation were

found. These sources include precipitation, the time of day

and train specific variations.

As these dependencies only explain part of the observed

variation in the measured data, several short and long-term

stochastic variations have been added to the model that affect

both single track circuits and several track circuits in an area.

Additionally, the nominal parameters of the track circuits as

well as the sensitivity of each track circuit to the sources

of variation are determined stochastically for each track cir-

cuit. This ensures that the synthetic data that the generative

model produces contains comparable types of variation to

the true measurement data. This makes it possible to not

only determine the robustness of the condition monitoring

method to these variations, but also its ability to pick up more

subtle dependencies in the data and use them. For example,

weather influences will affect all track circuits in a small

area. By correctly identifying this influence the effects on the

measured signal could be filtered out, improving the condition

monitoring performance.

A. Sampling strategy

The faults that can affect the performance of the track

circuits will in most cases change the values of the parameters

Ih, Il, R and ∆I3 very slowly over time. It is therefore impor-

tant to sample the current I(t) in a way that is informative of

these values while taking as few samples per train passing

T as possible to ensure a high information density in the

measurements.

Based on equation 9 the following sampling times are used:

• t1: Just before the train arrives in the section: when the

amplitude of the track circuit current is the highest Ih.

• t1 +0.35s: The value of the current I(t) at 0.35 seconds

after the first wheel set of the train enters the section is

most instructive about the value of parameter R.

• t2: When the current is at its lowest value Il, about

halfway through the train passing event.

• t3: Just before the last wheel set of the train leaves the

section. This measurement gives ∆I3.

These four sampling times are indicated in Figure 3 - II . As

the simplified model of equation 9 fits the measured data well,

these sampling times should also work for real measurement

data.

To ensure a high enough information density for the Ar-

tificial Neural Network to learn the long-term temporal fault

dependencies, these four current values are observed for all

five considered track circuits and presented as one input time

step T to the network. This means that two trains (one on

each track) should pass through the area before a new input

is presented to the network.
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