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Abstract 25 

This study presents a novel approach for real time water quality state (chlorine concentration) 26 

and reaction parameter estimation in Water Distribution Systems (WDS) using Ensemble 27 

Kalman Filter (EnKF) based data assimilation techniques. Two different types of EnKF based 28 

methods are used in this study: (a) Non-Iterative Restart-EnKF (NIR-EnKF) and Iterative 29 

Restart-EnKF (IR-EnKF). Use of these data assimilation frameworks for addressing key 30 

uncertainties in water quality models such as (i) uncertainty in the source or initial 31 

concentration of chlorine and (ii) uncertainty in wall reaction parameter, is studied. The effect 32 

of ensemble size, number and location of measurement nodes, measurement error and noise 33 

are also studied extensively in this work. The performance of the methodology proposed is 34 

tested on two different water networks: (i) Brushy Plains Network; (ii) and a big, city-wide 35 

WDS, Bangalore inflow network. The results of the simulation study show that, both NIR-36 

EnKF and IR-EnKF methods are appropriate for dealing with uncertainty in source chlorine 37 

concentration, whereas IR-EnKF method performs better than NIR-EnKF method in case of 38 

reaction parameter uncertainty. 39 

 40 

 41 
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Introduction 48 

Advancement in engineering and nanotechnology has resulted in the development of several 49 

sensors that can log online water quality data such as residual chlorine, pH, electrical 50 

conductivity, dissolved oxygen etc. in Water Distribution Systems (WDS) (Suresh et al. 51 

2014). Installation of these online sensors help in safeguarding the WDS against accidental 52 

and intentional contamination (Hall et al.2007). But, deployment of these sensors at all the 53 

nodes of a WDS is not feasible, considering the cost that will be incurred in doing so. Hence, 54 

sensors are placed only at a few strategic locations in the WDS (Aral et al. 2009; Ostfeld et 55 

al. 2008; Hart and Murray2010, Simone et al. 2016). In such systems with limited sampling 56 

locations, data assimilation creates the best estimate of the system state at the non-57 

measurement nodes. In this work, the main objective is to assimilate the real time chlorine 58 

concentration data from these sensors, in a water quality model, for estimating the water 59 

quality state and parameters of the WDS in real time. 60 

In this work, water quality state refers to the chlorine concentration at all the nodes of the 61 

WDS. Traditional methods for nodal chlorine concentration estimation involve a well 62 

calibrated water quality simulation model. In literature, numerous alternate methods for state 63 

and parameter estimation methods are available. A few of them are,  inverse modelling (Clark 64 

et al. 1993; Biswas et al.1993; Rossman et al. 1994; Munavalli and Kumar 2004 &2005), 65 

time series analysis (Rodriguez and Serodes 1998; Polycarpou et al. 2002; Bowden et al. 66 

2006; Gibbs et al. 2006) and soft computational methods such as neural networks, genetic 67 

algorithm, machine learning etc. (Rodriguez and Serodes1998; Baxter et al. 1999, 2001; 68 

Serodes et al. 2001; Milot et al. 2002; Maier et al. 2004; Gibbs et al. 2006; Bowden et al. 69 

2006; May et al. 2008; D D’Souza and Kumar 2010; Soyupak et al. 2011). Water quality 70 

models   are sensitive to uncertainties in parameters like reaction coefficient, initial 71 

concentration, hydraulic model errors, structural errors, demand uncertainties etc. (May et al. 72 
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2008). Data assimilation techniques were found to perform better than inverse modelling 73 

approaches, even in presence various of system uncertainties. (Liu et al. 2012). Also, unlike 74 

most of the conventional methods, data assimilation methods are also capable of 75 

incorporating real time sensor data for estimating the system state and parameters,  thereby, 76 

making it an efficient tool for real time modelling of dynamic systems (Hendricks Franssen 77 

and Kinzelbach 2008). 78 

Application of data assimilation span across numerous scientific disciplines such as electrical 79 

systems (Beides and Heydt 1991; Doucet et al. 2001; Blood and Krough 2008), oceanic 80 

sciences (Park and Kaneko 2000; Carton and Giese 2008), meteorological/atmospheric 81 

sciences (van Loon et al. 2000; Kalnay 2003), groundwater (Dre'court et al. 2006; Hendricks 82 

Franssen et al. 2008) , gas and petroleum engineering (Benkherouf and Allidina 1988, Emara-83 

Shabaik et al. 2002, Liu et al.2005), surface water quality (Pastres et al. 2003).  84 

In WDS, existing applications of data assimilation techniques are mainly focused on 85 

hydraulic state estimation and event detection (Kang and Lansey 2009;  Ye and Fenner 2010 86 

& 2013; Jung and Lansey 2014, Okeya et al. 2014). It was observed that, most of the 87 

techniques used for hydraulic state estimation involves a linear data assimilation technique, 88 

such as -  Kalman Filter or Extended Kalman Filters etc. (Hutton et al. 2014) . Owing to the 89 

high non-linearily of the water quality models, these linear data assimilation models cannot 90 

be applied directly for water quality state estimation in WDS. Hence, in this study, Monte 91 

Carlo based Ensemble Kalman Filter (EnKF) (Burgers et al. 1998) was used for chlorine data 92 

assimilation . This method is applied to WDS under two different uncertainities : (i) Source 93 

concentration (C0) uncertainty , (ii) wall decay parameter uncertainty (kw).  Two different 94 

variants of EnKF (non-iterative and iterative EnKF) were formulated in this study and these 95 

methods were altered to deal with the problem of model variable initialization at intermediate 96 

time steps by implementing the Restart technique (Geir et al. 2003). These methods were 97 
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tested on two WDS: (i) Brushy plains network (Rossman et al. 1994) (ii) and a big, city-wide 98 

WDS, Bangalore inflow network (Manohar and Mohan Kumar 2013). In this study, it is 99 

assumed that the hydraulic model of the WDS is fully calibrated and hence, the uncertainties 100 

related to pipe roughness coefficient and systems demands are not considered. 101 

The main objectives of this study is to compare the two variants of EnKF for application in 102 

water quality state estimation under system parameter uncertainties. Different scenarios are 103 

tested for assessing the applicability of these data assimilation methods. These scenarios 104 

studied are : Scenario (i) : The source concentration value (C0 ),is considered uncertain; 105 

Scenario ii: The reaction parameter value (kw), is considered uncertain. For each of these 106 

scenarios, the following sub-scenarios are also studied in this work : Sub-scenario (a). the 107 

number of realizations (n) are varied ; Sub-scenario (b). The number (m) and location of 108 

sensors are varied, Sub-scenario (c), measurement error and measurement noise is 109 

considered, in order to understand the sensitivity of data assimilation model.   110 

Methodology 111 

The over-all methodology adopted in this study has two parts: (i) Hydraulic and water quality 112 

simulation and (ii) water quality data assimilation model.  113 

Water Quality Prediction Model 114 

In this study, the water quality simulation (i.e. prediction) model consists of hydraulic and 115 

chlorine reaction and transport components, modelled using EPANET (Rossman 2000). A 116 

mass balance equation based one directional advection- dominated transport and reaction 117 

kinetics is used for chlorine concentration modelling in WDS. The partial differential 118 

equation governing chlorine transport in a pipe is: 119 

 𝜕𝐶𝑖(𝑥,𝑡)

𝜕𝑡
+ 𝑣𝑖

𝜕𝐶𝑖(𝑥,𝑡)

𝜕𝑥
− 𝑅[𝐶𝑖(𝑥, 𝑡)] = 0                                                                                    (1) 120 
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where, Ci (x,t) is the chlorine concentration at any point x within link i, at time t. vi is the 121 

mean flow velocity of the water; and R[Ci(x, t)] is the reaction- rate expression. In this study, 122 

a first order wall and first order bulk reaction model is being used: 123 

  𝑅[𝐶𝑖(𝑥, 𝑡)] = −𝑘𝑏𝐶𝑖(𝑥, 𝑡) −
𝑘𝑤𝑘𝑓

𝑟ℎ(𝑘𝑤+𝑘𝑓)
𝐶𝑖(𝑥, 𝑡)                                                                    (2) 124 

 where, kb is the first order decay rate constant in the bulk flow (1/day), kw is the wall decay 125 

parameter (m/day), kf is the mass-transfer coefficient (m/day) and rh is the hydraulic radius of 126 

pipe (one half the pipe radius).  127 

More details about water quality modelling in WDS is available in the literature (Biswas et al. 128 

1993; Clark et al.1993 & 1995; Hallam et al. 2002; Grayman et al. 1988; Munavalli and 129 

Kumar 2005; Rossman et al. 1994; Vasconcelos et al. 1997). 130 

Accurate modelling of chlorine concentrations in a WDS needs accurate understanding of 131 

decay mechanisms in the bulk water and on the pipe walls. Uncertainty analysis of water 132 

quality models have established the wall decay coefficient as the most sensitive parameter for 133 

water quality model output (Pasha and Lansey 2010).  The wall decay coefficient in a WDS 134 

depends on the diameter of the pipe, flow in the pipe, concentration of chlorine, pipe service 135 

age etc. (Al-Jasser 2007; Fisher et al. 2017), whereas the bulk decay parameter mainly 136 

depends on the source water properties, and it seldom varies unless there is change in the 137 

source water quality. Along with decay parameters for chlorine in WDS, the water quality 138 

model output is sensitive to the source concentration value as well. The source chlorine 139 

concentration (C0) is usually monitored in WDS, but in case of measurement errors or sensor 140 

failure, the estimate of chlorine concentration across the system might vary and will lead to 141 

under or overdosing of the disinfectant. Hence, in this study, we are dealing with two 142 

different system uncertainties in water quality model development: (i) uncertainty in the input 143 

data or in this case, source concentration of chlorine (C0) and (ii) uncertainty in the wall 144 
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reaction parameter for chlorine reaction in pipelines (kw). In this study, the uncertainties 145 

related to the hydraulic model such as demand uncertainty, pipe roughness coefficient etc. are 146 

not considered, since accounting for these uncertainties make the problem more complex, and 147 

the EnKF based data assimilation methodologies adopted in this study cannot be directly 148 

applied to deal with these uncertainties.  149 

Data assimilation for water quality state and parameter estimation 150 

Data assimilation involves estimating the state of a particular system based on the predictions 151 

and observations leading up to the present time. EnKF (Evensen 1994; Burgers et al. 1998; 152 

Evensen 2003), is a Monte Carlo implementation of the Bayesian update problem. EnKF is a 153 

special case of Kalman Filter (Kalman 1960)  which  uses ensembles or stochastic realization 154 

(with different parameter and initial condition values) for approximating the states of the 155 

system. EnKF based data assimilation consists of two steps: (i) Prediction step and (ii) 156 

Update step. In the prediction step, a forward simulation model is used to predict the system 157 

state as in equation (3):  158 

𝑥𝑡+1
𝑖− = 𝑓(𝑥𝑡

𝑖 , 𝑢𝑡
𝑖 , 𝜃, 𝑡) + 𝜔𝑡 , 𝑖 = 1, … . , 𝑛                                                                              (3) 159 

According to equation (3), the 𝑥𝑡+1
𝑖−  is the ith ensemble member forecast at time t+1, and 𝑥𝑡

𝑖 is 160 

the ith updated ensemble member at time t. Here, f is the forward simulation model (in this 161 

case, EPANET water quality model of the system). 𝜔𝑡 is the process noise (assumed to be 162 

zero in this study),𝜃 is the system parameters, ut are the forcing data or the system inputs . 163 

Ensembles of the forcing data ( 𝑢𝑡 
𝑖 ) are created by adding noise 𝜀𝑡

𝑖, sampled from a 164 

distribution of mean zero and variance,  𝛴𝑡
𝑢 , to the input data 𝑢𝑡. 165 

 𝑢𝑡
𝑖 = 𝑢𝑡 +  𝜀𝑡

𝑖 ,   𝜀𝑡
𝑖~ 𝑁(0, 𝛴𝑡

𝑢)                                                                                               (4) 166 

https://journals.ametsoc.org/doi/full/10.1175/MWR-D-15-0440.1
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The parameters in this study are: pipe roughness coefficient (C), hourly demand multiplier 167 

(dm), initial concentration of chlorine (C0), chlorine reaction parameters. Among the above 168 

listed parameters, C and dm are assumed to be known, hence can be classified as system input 169 

u. Additional inputs required for predicting the system states are the network boundary 170 

conditions (tanks initial level, reservoir head etc.) and base demand values at the nodes.  .  171 

From 𝑥𝑡+1
𝑖− , the predicted states of the system, 𝑦̂𝑡+1

𝑖 , the predicted measurements are 172 

computed as 173 

𝑦̂𝑡+1
𝑖 = ℎ(𝑥𝑡+1

𝑖− , 𝜃)                                                                                                                    (5) 174 

where h shows the relationship between the system states, parameters and the 175 

observations/measurements. 176 

𝑦𝑡+1 is the field observation at the t+1th time step, for which ensembles are generated by 177 

adding a noise,  𝜆𝑡+1
𝑖 . 178 

 𝑦𝑡+1
𝑖 =  𝑦𝑡+1 +  𝜆𝑡+1

𝑖 , 𝜆𝑡+1
𝑖  ~ 𝑁 ( 0, 𝛴𝑡+1

𝑦
)                                                                           (6) 179 

The forecasted states ensembles (equation 3) are updated using a linear correction equation 180 

according to the standard Kalman filter (equation 7):  181 

𝑥𝑡+1
𝑖 =  𝑥𝑡+1

𝑖− + 𝐾𝑡+1(𝑦𝑡+1
𝑖 −  𝑦̂𝑡+1

𝑖 )                                                                                     (7) 182 

Here, 𝐾𝑡+1 is the Kalman gain matrix which is estimated from the covariance matrices as 183 

shown in equation 8 (Moradkhani et al.,2005):  184 

     𝐾𝑡+1 =  𝛴𝑡+1
𝑥𝑦

[𝛴𝑡+1
𝑦𝑦

+ 𝛴𝑡+1
𝑦

]
−1

                                                                                          (8) 185 

where, 𝛴𝑡+1
𝑥𝑦

is the forecast cross covariance of a priori state estimate  𝑥𝑡+1
𝑖−  and prediction 186 

𝑦̂𝑡+1
𝑖 , and 𝛴𝑡+1

𝑦𝑦
 is the forecast error covariance of prediction 𝑦̂𝑡+1

𝑖 .In equation (7), the term 187 

𝐾𝑡+1(𝑌𝑡 −  𝑌̂𝑡), is the perturbation vector (Hendricks Franssen and Kinzelbach 2008). In 188 
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equation (3), one of the key assumption is that the system parameter 𝜃 is deterministic. In 189 

scenarios, where the parameters 𝜃 are unknown or uncertain, non-iterative or iterative EnKF 190 

methods need to be used. These methods enable estimation of the uncertain system parameter 191 

along with states using the real time observations from the field. In this work, the system state 192 

and the model parameters (C0 and kw) are updated using two ensemble-based data 193 

assimilation methodologies: (i) Non-Iterative Restart EnKF (NIR-EnKF), and (ii) Iterative 194 

Restart EnKF (IR-EnKF).  195 

In non-iterative- EnKF method, the parameter and the system states are combined to form an 196 

augmented state vector, which enable simultaneous estimation of states and parameters 197 

(Naevdal et al. 2003; Hendriks Franssen 2008). Whereas, in an iterative-EnKF, first the 198 

parameters are updated using the current system measurements, and the updated parameters 199 

are used to predict and update the system states for the same time step (Moradkhani et al. 200 

2005). In both non-iterative and iterative EnKF methods, after updating the system 201 

parameter, the forward simulation model (equation 3) is restarted from t: 0. This technique of 202 

starting the simulation from t :0 is called Restart EnKF (Gu and Oliver 2007, Hendricks 203 

Franssen and Kinzelbach 2008, Song et al., 2014). In this study, Restart procedure was 204 

implemented to reduce the error in EnKF model output due to parameter and system 205 

initialization during intermediate water quality time steps.  206 

Non-Iterative Restart EnKF 207 

As mentioned earlier, in this approach, the states and the parameters are updated jointly. If 208 

there are N states and M parameters, the augmented state vector will be of size (N+M,1). 209 

Forecasted ensembles of system parameters are created by adding a noise   𝜁𝑡
𝑖 with covariance 210 

𝛴𝑡
0 to the updated parameter value of the previous timestep.  211 

 𝜃𝑡+1
𝑖− = 𝜃𝑡

𝑖 + 𝜁𝑡
𝑖  ,   𝜁𝑡

𝑖~ 𝑁(0, 𝛴𝑡
0)                                                                                          (9) 212 
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These forecasted parameter ensembles  𝜃𝑡+1
𝑖− , are updated (equation 10) simultaneously with 213 

the forecasted states 𝑥𝑡+1
𝑖−  (equation 7) 214 

𝜽𝒕+𝟏
𝒊 =  𝜽𝒕+𝟏

𝒊− +  𝑲𝒕+𝟏
𝜽 (𝒚𝒕+𝟏

𝒊 −  𝒚̂𝒕+𝟏
𝒊 )                                                                                 (10) 215 

Here,𝑲𝒕+𝟏
𝜽 , is the Kalman gain for updating the model parameter.   216 

𝑲𝒕+𝟏
𝜽 =  𝜮𝒕+𝟏

𝜽𝒚
[𝜮𝒕+𝟏

𝒚𝒚
+  𝜮𝒕+𝟏

𝒚
]

−𝟏
                                                                                             (11) 217 

Here 𝛴𝑡+1
𝜃𝑦

is the cross covariance of the predicted parameter and measurement ensembles. 218 

Rest of the terms are same as that of EnKF.  The state vector is updated using equation (8) 219 

and the corresponding Kalman gain is calculated as in equation (9). In this method, after each 220 

time step (after updating the states and parameter ensembles), the simulation is restarted from 221 

t:0 [ i.e. Equation 3 is run from t: 0 for this algorithm, making it a NIR-EnKF].  222 

Iterative Restart EnKF 223 

IR-EnKF involves sequential forecast and update of parameters, followed by forecast and 224 

update of system states for a particular time period. In this method, the updated parameters 225 

(calculated using equation (10)), 𝜃𝑡+1
𝑖 ,are used to forecast the system states for the same time 226 

step (t+1) (Equation 12). 227 

𝑥𝑡+1
𝑖− = 𝑓(𝑥𝑡

𝑖 , 𝑢𝑡
𝑖 , 𝜃𝑡+1

𝑖 , 𝑡)                                                                                                    (12) 228 

𝜃𝑡+1
𝑖 is the updated parameters for the time step t+1.The a priori water quality state of the 229 

system 𝑥𝑡+1
𝑖−  ,is updated using the Kalman gain for state correction (Equation 8). 230 

This two-step approach is supposed to limit the problems associated with the linearization of 231 

the relation between parameters and the observations.  232 

Filter Inbreeding 233 
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During data assimilation, if the number of realizations are small, there exists an error due to 234 

sampling, and it will be reflected in the error covariance matrix. When there are insufficient 235 

realizations to span the model state space, the estimated error covariance will degrade after 236 

each time step, and this process is known as Filter inbreeding (Houtekamer and 237 

Mitchell1998; Lorenc2003). Whitaker and Hamill (2002) had suggested that the perturbations 238 

introduced in observations can also result in filter inbreeding.  239 

Different methods are available in the literature for mitigating filter inbreeding effects 240 

(Anderson and Anderson 1999; Hamill et al. 2000; Anderson 2007). In this study, a 241 

mitigation approach based on a damping factor α is used to analyse the effect of measurement 242 

errors and measurement noise on the data assimilation model output. The value of 𝛼 varies 243 

between 0 and 1(Hendricks Franssen and Kinzelbach 2008), and the state update equation is 244 

modified as follows:  245 

𝑥𝑡+1
𝑖 =  𝑥𝑡+1

𝑖− + 𝛼𝐾𝑡+1
𝑥 (𝑦𝑡+1

𝑖 −  𝑦̂𝑡+1
𝑖 )                                                                               (13) 246 

The data assimilation algorithms were implemented using the EPANET Toolkit in 247 

MATLAB.  248 

Case Studies  249 

The EnKF based data assimilation methodologies developed for water quality state 250 

estimation in WDS is tested and validated in two WDS: (i) Brushy plains WDS and (ii) 251 

Bangalore inflow network. This section provides details on the two networks used in this 252 

study. 253 

Case Study 1: Brushy Plains WDS 254 

This network has been used in various studies related to water quality and WDS hydraulics 255 

(Rossman et al.1994; Boccelli et al. 1998; Nilsson et al. 2005; May et al. 2008; Clark 2015). 256 
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Details of this WDS are available in Rossman et al. (1994), in which chlorine concentration 257 

data from 8 sampling nodes across the network can be found. The estimated bulk reaction 258 

coefficient value for this WDS was found to be -0.55 /day, and the wall reaction coefficient 259 

value was found to be in the range of -0.45 to -0.15 m/day. The source concentration of 260 

chlorine is maintained at 1.1-1.16 mg/L, injected at a constant rate at the pumping station. 261 

Fig.1 shows the schematic of Brushy Plains WDS. Eight nodes were selected as measurement 262 

nodes for this network (in accordance with earlier research carried out on this network, 263 

Rossman et al. (1994)). Those measurement nodes are: 3,6,10,11,19, 25, 28 and 34. Synthetic 264 

chlorine measurements were generated every 15 minutes  for the total duration of simulation 265 

(16 hours). The hydraulic time step of the simulation was about 60 minutes.  266 

Data assimilation was carried out for scenario (i) and scenario (ii). Sub-scenarios (a), (b) and 267 

(c) were also studied for this case study. For scenario (i) and scenario (ii), the initial 268 

ensembles of parameters (C0 and kw) were sampled from a normal distribution, respectively. 269 

Both NIR-EnKF and IR-EnKF were tested for their application under (i) uncertainty in C0 270 

value and (ii) uncertainty in kw value, for this WDS. 271 

For sub-scenario (a), various sizes of stochastic realizations (n) ranging from 20 -100 were 272 

generated for studying the variation in model accuracy with ensemble sizes. Sub-scenario (b) 273 

is simulated by reducing the number of measurement nodes (m). The number of measurement 274 

nodes (m) in the system are varied from 4 to 8 nodes, there by varying the measurement 275 

density in the system from 22 to 11percent. Two different sets of measurements are studied, 276 

each with 4 data sets. Measurement set A consists of data from nodes 3,6, 10 and 11, 277 

concentrated near to the pumping station, and measurement set B consisting of data from 278 

nodes 19, 25, 28 and 34, concentrated near to the tank. Varying the measurement locations 279 

and the measurement density in the WDS gives an idea of its effect on data assimilation. 280 
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The model performance in the presence of measurement errors and Gaussian noise for n: 20 281 

is also studied in detail, using a damping factor α.(scenario (c)). In the sub-scenarios (a) and 282 

(b),  the measurements used were assumed to be perfect, i.e. without any systematic errors or 283 

random noise. In order to replicate field measurements, the simulated measurement values 284 

were corrupted to generate noisy measurements and bad measurements. Hence, in this sub-285 

scenario, two types of measurement ambiguities were considered: (i) systematic error, where 286 

a fixed value of 0.2 mg/L is added to a few of the measurements nodes (nodes 19, 25, 27 and 287 

33); (ii) random noise, where a Gaussian noise of mean zero and standard deviation 0.05 288 

mg/L is added to readings from all the measurement nodes. Presence of noise or error in the 289 

measurements usually induces filter inbreeding during data assimilation. Different values of 290 

damping factor α was used to mitigate the effects of these observational errors.  291 

Case Study 2: Bangalore Inflow Network 292 

The second case study is carried out as a verification problem, to validate the algorithm and 293 

to establish its applicability on a large WDS for a big city. The Bangalore water supply 294 

network is maintained and operated by Bangalore Water Supply and Sewerage Board 295 

(BWSSB) and was established by Karnataka Govt. during different time periods: Stage I of 296 

the system was established in year the 1974, Stage 2 was established in year the 1983, Stage 297 

3 (year 1993) and Stage 4 Phase 1 (year 2002). Stage 1 of this network supplies about 140 298 

MLD of water, Stage 2 supplies another 140 MLD, followed by 315 MLD by Stage 3 and 299 

315 MLD by Stage 4 Phase 1, all of it amounting to a total of 910 MLD of water for 300 

Bangalore city. Since the system was established in different stages, zoning of pipes are 301 

carried out for Hazen William C value and wall decay parameter kw. Further details of this 302 

network are available in Manohar and Kumar (2013). The hydraulic model of the WDS used 303 

was calibrated using field values.  304 
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A schematic of Bangalore inflow WDS is given in Fig. 2. In this network, the pipes are 305 

grouped into 4 different class: pipes 1-41, 42-69, 70-137 and 138-180 and the kw values are -1 306 

(Stage I), -0.75 (Stage II), -0.5 (Stage III) and -0.25 m/day (Stage IV Phase I). The first order 307 

bulk reaction coefficient is taken as 2.0 day-1, and a constant chlorine concentration of 0.75 308 

mg/L is assumed to be injected from all the four sources (Munavalli and Kumar, 2003 & 309 

2005). The consumer demands are loaded on the GLRs and are assumed to vary temporally 310 

based on a bi-modal demand pattern (peak factor: 1.6, and 1.2).  311 

A total of 60 measurement nodes are assumed to be present in this network. The chlorine 312 

measurements were generated  once every 15 minutes for a total duration of 16 hours. The 313 

hydraulic time step is about 60 minutes. As in the case study 1, two different scenarios are 314 

tested for this network: scenario (i) uncertainty in source concentration (C0) and scenario (ii) 315 

uncertainty in wall decay coefficients (kw1, kw2, kw3 and kw4) for all the pipe groups. In the 316 

previous case study, the global wall reaction coefficient is considered (kw value same for all 317 

the pipes in the WDS), where as in this study, a zoned wall reaction coefficient is considered. 318 

Complexity of this WDS is much higher than the previous case study owing to its size and 319 

multi-source supply. For this case study, the conclusions drawn from the previous case study 320 

are used to reduce the computational complexity, and to validate the developed algorithms.  321 

Performance criteria 322 

Two different performance measures are used in this study to assess the data assimilation 323 

accuracy: (i) Average Absolute Error (AAE) and (ii) Average Ensemble Standard Deviation 324 

(AESD) (Hendricks Franssen and Kinzelback 2008): 325 

𝐴𝐴𝐸 =
1

𝑀∗𝑇
∑ ∑ |𝑥̅𝑖,𝑡 − 𝑦𝑖,𝑡|𝑇

𝑡=1
𝑀
𝑖=1 , 𝑖: 1,2 … . . 𝑀                         (14) 326 

𝐴𝐸𝑆𝐷 =
1

𝑀∗𝑇
∑ ∑ √∑ (𝑥𝑖,𝑗,𝑡− 𝑥̅𝑖,𝑡)

2𝑛
𝑗=1

𝑛
𝑇
𝑡=1

𝑀
𝑖=1                                                      (15) 327 
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where, x is the simulated chlorine concentration for each realizations, y is the measured 328 

chlorine concentration at the node, 𝑥̅ indicate the ensemble average value, T is the total time 329 

of simulation, M is the number of non-measurement nodes in the WDS and n indicates the 330 

number of stochastic realizations (number of ensembles) [ j : 1,2..., n ]. Here, AAE and 331 

AESD indicate the overall performance of the EnKF based data assimilation techniques for 332 

the entire time of simulation, T, for the WDS.  333 

Visual comparison based on simulated and measured values of free chlorine at different 334 

measurement nodes in the WDS are also carried out to assess the model performance. Mean 335 

Average Percentage Error (MAPE) for the entire duration of simulation is also calculated to 336 

assess the WDS performance under different scenarios. 337 

Results and Discussions 338 

In this section, the results obtained for each case study and the corresponding scenarios are 339 

presented and discussed in detail. 340 

Case Study 1: Brushy Plains WDS 341 

Scenario (i) and scenario (ii)  were tested for this case study along with sub-scenarios (a), (b) 342 

and (c) .The results of this study is presented in the following sections.  343 

Scenario (i): Uncertainty in source chlorine concentrations (C0) 344 

The main observations of this study are summarised below: 345 

Comparison of NIR-EnKF and IR-EnKF: Fig.3 shows the variation of MAPE for the WDS 346 

for the duration of simulation. It can be deduced from Fig.3, that both NIR-EnKF and IR-347 

EnKF, reduced the prediction error to 10 % by the end of simulation (IR-EnKF reduced the 348 

MAPE to 5% by the end of simulation). The AAE values estimated at all the nodes in the 349 

WDS for the duration of simulation ranged from 0-0.19mg/L.  For this scenario, the 350 
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difference between NIR-EnKF and IR-EnKF is negligible. It is observed that, IR-EnKF is 351 

slightly more accurate than NIR-EnKF, whereas IR-EnKF takes more computational time 352 

than NIR-EnKF 353 

Sub-scenario (a): Simulations are carried for different values of n, and it is observed that, as 354 

the number of stochastic realizations (n) increased, the model output accuracy increased, but 355 

for n values greater than 20, change in the AAE values are negligible (Table 1). Filter 356 

inbreeding was not observed in any of these simulated results, even for n=20. As the n value 357 

was increased from 20 to 100, the estimated AESD values increased for each node for the 358 

duration of simulation.  The AESD values are higher than AAE values, for most of the nodes. 359 

This indicates adequate spread of the updated state ensemble. Similar results were observed 360 

in data assimilation studies in the groundwater domain. (Hendriks Franssen and Kinzelbach, 361 

2008). In Hendriks Franssen and Kinzelbach (2008), it was observed that AESD in the 362 

estimated log-transmissivity increased with the number of realizations.  363 

Sub-scenario (b): This sub-scenario was simulated for n=20. In this study, it was found that 364 

the location and number of measurements points were essential for reducing the AAE for the 365 

assimilated quality states in WDS (see Table 1). Fig.4 shows that, measurement set A is able 366 

to assimilate the water quality measurements for the entire WDS, and it is better than 367 

measurement set B, as set B gives higher values of MAPE (around 30-55%higher) at certain 368 

time steps. Among measurement sets A and B, measurement set A is able to estimate chlorine 369 

concentration at almost all the nodes with substantial accuracy. It might be due to the fact 370 

that, set A is very close to the pump station which is a boundary condition for Brushy Plains 371 

WDS, and it is the chlorine source as well.  372 

Sub-scenario (c): Table 2. illustrates the effect of damping factor on the model output, in 373 

presence of measurement error and measurement noise. Under C0 uncertainty, α :1 could 374 
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handle the measurement errors during data assimilation at all the nodes in the WDS, for the 375 

duration of simulation (Fig. 5(a)),but the AAE for this sub-scenario is higher than the 376 

scenario when no measurement error was present (Table 1).  377 

For mitigating the effects of measurement noise in the system, clearly α: 1 is better than all 378 

other values of α (see Fig.5(b)) . α : 0.1 and 0.01 have better model output at a few time steps 379 

(Fig. 5(b) and Table 2). Hence, it can be concluded that for a given WDS, the effect of 380 

measurement noise and measurement error on model performance is negligible and n: 20 is 381 

adequate to simulate the system state at all time periods, without covariance degradation.  382 

The quality of the state estimates were found to be affected by measurement noise and errors, 383 

but α : 1 provides a better estimate of the states compared to other values of the damping 384 

factor. Lower values of α gives better results during certain time-steps because, at these time-385 

steps, the impact of spurious numerical co-variances on the updating of states is reduced(i.e. 386 

the value perturbation vector( 𝑲(𝒀𝒕 − 𝒀̂𝒕) )is reduced at these time-steps  (Hendricks 387 

Franssen and Kinzelbach, 2008). 388 

Scenario (ii): Uncertainty in wall reaction coefficient, kw 389 

In this scenario, the wall reaction coefficient is used as the uncertain input to the water 390 

quality data assimilation model. The initial/source chlorine concentration is considered 391 

known (1.1-1.16 mg/L). NIR- EnKF and IR-EnKF methods are compared for chlorine 392 

concentration estimation by assimilating the field measurements under uncertainty in the kw 393 

value, for different sub-scenarios. 394 

Comparison of NIR-EnKF and IR-EnKF: Table 3 summarizes the AAE and AESD for the 395 

WDS, for the duration of study, for different scenarios. Also, the MAPE for the system 396 

reduced to < 5% for IR-EnKF at the end of simulation (see Fig.6). It can be observed that IR-397 

EnKF is better than NIR-EnKF when dealing with uncertainty in the wall reaction coefficient 398 
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during data assimilation. Due to the nonlinear relationship between the parameter and the 399 

observations, iterative filters are more appropriate for state estimation in WDS under reaction 400 

parameter uncertainty.  401 

Sub-scenario (a): The effect of the number of realizations on the model output was similar to 402 

scenario (i). When the number of ensembles was increased from 20-100, AAE values were 403 

found to reduce, but the reduction in AAE is not substantial for n>20 (Table 3). 404 

Sub-scenario (b) : Fig.7 shows the MAPE values of the estimated chlorine concentration for 405 

the WDS under kw uncertainty, for measurement set A and measurement set B. It is clear 406 

from Fig.7 that, for every time steps, set A performs better than set B. The overall 407 

performance of the data assimilation technique reduces with reduction in the number of 408 

measurement nodes.   409 

Sub-scenario (c) : It was found that model performance was unaffected by measurement 410 

error, though α: 1 and α: 0.1 had similar response at all nodes, at all time-steps (Table 2.). 411 

When measurement noise was introduced, it was found that, α: 0.1, performed better than α:1 412 

for most of the time-steps (see Fig.8(b)), but the improvement in model performance was not 413 

substantial (the change in MAPE was about 1-2%).   Hence, it can be deduced that, noise or 414 

error induced degeneration of the covariance matrix was not much in this WDS for n: 20.  415 

Based on the results from sub-scenario (c) (for both scenario (i) and scenario (ii)), it is 416 

observed that measurement noise and measurement error is not creating large variations in 417 

the perturbation vector (when compared with the case when no measurement error or noise is 418 

considered) [perturbation vector : 𝑲(𝒀𝒕 − 𝒀̂𝒕)].  But, it should be noted that , measurement 419 

error and measurement noise reduced the accuracy of the data assimilation model (Table 1, 420 

Table 2 and Table 3).      421 

Estimated Parameter Values  422 
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Table 4 show the computed mean values for the parameters, C0 and kw at the end of the 423 

simulation period. Mean values were computed for the simulation where n: 20. It is clear 424 

from the results that, data assimilation technique based on EnKF can be used for dynamic 425 

state estimation and parameter estimation (C0 and kw) in WDS under various uncertainty and 426 

measurement location scenarios. The values obtained using data assimilation techniques were 427 

found to be comparable to parameters estimated using inverse modelling methodologies 428 

(Munavalli and Kumar, 2005).  429 

Case Study 2: Bangalore Inflow System  430 

In this case study, data from 60 measurement nodes (30 network junctions and 30 tanks) were 431 

assimilated with the network water quality model. The number and location of these 60 432 

measurement nodes were chosen heuristically for an optimal concentration estimation across 433 

the WDS. Initially, 10 nodes were assigned across the network at random, such that they are 434 

uniformly distributed across the network. Data assimilation was carried out (for scenario (i)) , 435 

and based on the error in estimation of nodal chlorine concentration, nodes with higher error 436 

values were added to the measurement node set. The measurement nodes were added such 437 

that, no two measurements nodes were adjacent. Similar procedure was carried out for 438 

deciding the measurements tanks as well. The locations chosen include 30 tanks and 30 439 

junctions spread across the network. Fig.9  shows the variation of AAE with m value for this 440 

study. It was found that, as m value increased, the error in estimation reduced, but the 441 

reduction in error was not substantial after certain m value. For in-depth understanding of the 442 

sensitivity of the number and location of measurements nodes on the data assimilation model 443 

accuracy, a detailed analysis need to be carried out. A detailed sensitivity analysis is beyond 444 

scope of this paper, and will be carried out in future works.  445 
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In this analysis, the tank measurements were used to assimilate the chlorine concentration 446 

values at the tanks and junction measurements  were used to assimilate the chlorine 447 

concentration data at the junctions in the network, and the tank and junction states are 448 

updated simultaneously. The conclusions drawn from the previous case study was utilized 449 

here, as this case study is considered as a validation problem for water quality data 450 

assimilation application in large scale WDS. Scenario (i) and scenario (ii) are considered for 451 

this case study. The number of stochastic realizations, n is 50 , for this case study, since it 452 

was observed that the AESD and AAE values do not change significantly for values of n > 453 

50. No measurement errors are considered in this WDS. In this case study, the performance 454 

indicators (AAE and AESD) are slightly modified, since these values are calculated for each 455 

node, and are not averaged over all non-measurement nodes (i.e. in equation (14) and (15), 456 

averaging over M is not considered). 457 

Scenario (i): Uncertainty in source concentration (C0) 458 

NIR-EnKF is used for state estimation in this scenario. Fig.10 show the AAE (mg/L) for non-459 

measurement nodes and tanks in the WDS. It can be observed that NIR-EnKF is able to 460 

estimate the chlorine concentration estimate of the network with an AAE accuracy of about 461 

0.005 - 0.2 mg/L. It is observed that the AAE values at nodes upstream and downstream of 462 

valves and pumps were generally higher (AAE > 0.2 mg/L) compared to the error estimates 463 

at other nodes. This is due to the hydraulic modelling constraint associated with the forward 464 

simulation model. In the forward simulation model adopted (EPANET) in this work, valves 465 

and pumps are modelled as network links without length, i.e. the nodes upstream and 466 

downstream of these links are hypothetical. Due to of this constraint, the variation in flow 467 

velocity across the valves and pumps, generates an estimate of chlorine concentration, which 468 

is higher than the actual value. All the remaining nodes have AAE value below 0.18 mg/L, 469 

and about 75% of the nodes have AAE value below 0.12 mg/L (Fig.10). AAE for chlorine 470 
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estimates at the tanks of this network were found to be below 0.2 mg/L for all the non-471 

measurement tanks (Fig.10). This high level of accuracy might be due to a high measurement 472 

density with respect to tanks in the network. In Fig. 10, AAE values are presented only at the 473 

non-measurement nodes in the figure; Measurement nodes, and the nodes upstream and 474 

downstream of valves and pumps are not shown in the figure. 475 

Scenario (ii): Uncertainty in wall decay coefficient (kw) 476 

IR-EnKF was used to estimate the water quality state under uncertainty in reaction coefficient 477 

for case study 2. The kw parameters were zoned in the network according to the pipe age 478 

(dependent on the phase of development of the WDS). In this case study, IR-EnKF is able to 479 

estimate the chlorine concentration at the tanks and nodes of this network with an accuracy of 480 

≤0.2mg/L. Fig.11 shows the AAE for all the non-measurement nodes and tanks in the WDS 481 

(AAE values are not reported at the measurement nodes, and the nodes upstream and 482 

downstream of valves and pumps in the figure). It was observed that the number of nodes 483 

with AAE ~ 0.2 mg/L is greater than the previous scenario. Frequent flow reversal occurs in 484 

many pipes in this WDS, which along with disparity in kw value across the system contributed 485 

to a higher value of AAE in many nodes. As many as 36 nodes in the system have AAE 486 

values almost equal to 0.2 mg/L.   More than 75% of the nodes in this system have AAE 487 

value below 0.18 mg/L and it was observed that the tank estimates for chlorine concentration 488 

are good and all the tanks have AAE < 0.2 mg/L.  489 

Estimated Parameter Values 490 

The parameter values estimated at the end of the simulation are given in Table 5. The 491 

ensemble mean value of C0 was calculated to be 0.7534 mg/L. Mean value for kw2 and kw3 492 

were:  -0.7784 and -0.504 m/d respectively. The kw1 value for this case study was estimated to 493 

be lesser than the actual value, whereas, kw4 value was estimated to be higher than the actual 494 
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value. Frequent flow reversal happens in pipes in group 1 (kw1) and group 4 (kw4), and 495 

grouping of pipes solely based on the service age, are the reasons for this disparity between 496 

actual and estimated kw1 and kw4 values. The estimated values are compared with the steady 497 

state-inverse modelling study carried out by Munavalli and Mohan Kumar (2003) on an 498 

earlier version of the network, which had only Stage 1, 2 and 3. From these results it is 499 

concluded that the data assimilation method is able to achieve the same level of accuracy as 500 

that of inverse modelling.  501 

Summary and Conclusions 502 

This work introduces a novel method for estimating chlorine concentration across a WDS in 503 

real time using data assimilation techniques. Two variants of the EnKF are studied and 504 

applied on two WDS. The major conclusions drawn from this study are stated in this section.  505 

In this study, it was found that, the uncertainty in the source concentration can be dealt by 506 

both NIR-EnKF and IR-EnKF. However, the computational time required for NIR-EnKF 507 

method is lesser than IR-EnKF based data assimilation method.  508 

It was found that, the non-linear relationship between the parameters and the measurements 509 

cannot be addressed with non-iterative data assimilation methods, hence IR-EnKF was more 510 

accurate than NIR-EnKF for data assimilation in presence of kw uncertainty. For both the case 511 

studies, the data assimilation approach was able to accurately estimate the dynamic state and 512 

parameter of the system under different input parameter uncertainties- C0 uncertainty and kw 513 

uncertainty.  514 

The NIR-EnKF and IR-EnKF based data assimilation technique were able to reach the good 515 

output accuracy across Brushy plains network, for state estimation  under uncertainty in C0 516 

and kw. Since case study 2 was developed in stages, , the pipes in the WDS were grouped 517 

based on  wall reaction coefficients, to estimate accurate values of the chlorine concentrations 518 
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across the system. The results of this case study illustrate the capability of EnKF based 519 

assimilation methods to deal with system uncertainties  irrespective of the size of the 520 

network. The limited sensitivity analysis carried out in this study showed the variation  of 521 

model accuracy with the number and location of measurement nodes. For an in-depth 522 

understanding of the sensitivity of the number and location of measurements nodes on the 523 

data assimilation model, a detailed sensitivity analysis need to be carried out. 524 

With regard to the field application of this method, the model output will be influenced by 525 

uncertainties in the hydraulic model of the system. Uncertainties related to the hydraulic 526 

model induces additional non-linearity, in the forward  simulation model, hence, the output of 527 

the proposed data assimilation methods could become sub-optimal. Also, response of the data 528 

assimilation methods when the water quality reaction equation is of different order is not 529 

considered in this study. The data assimilation models will be sensitive to the order of water 530 

quality reactions, hence uncertainty in the order of reaction equation will also reduce the 531 

model accuracy. The results obtained in this paper could certainly be improved if these 532 

system constraints are also considered. 533 
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Fig. 1. Schematic of Brushy plains WDS - Case study 1 726 

Fig. 2. Schematic of Bangalore Inflow System - Case study 2 (with Tanks and Junction ID)  727 

Fig. 3. MAPE for the case study 1 under C0 uncertainty [n: 20, m: 8] 728 

Fig. 4: MAPE for the case study 1 under C0 uncertainty for m: 4 [n:20, using NIR-EnKF] 729 

Fig. 5. MAPE for case study 1 under C0 uncertainty (a) different α for measurement error[0.2 730 

mg/L]; (b) different α for measurement noise [Gaussian]; [ n :20 and m: 8, using NIR-EnKF] 731 

Fig. 6. MAPE for case study 1 under kw uncertainty [ n: 20, m: 8] 732 

Fig. 7. MAPE for case study 1 under kw uncertainty, for m :4 [n: 20, using IR-EnKF] 733 

Fig. 8. MAPE for case study 1 under kw uncertainty (a) different α for measurement error [ 734 

0.2 mg/L]; (b) different α for measurement noise [Gaussian]; [ n :20 and m: 8, using IR-735 

EnKF] 736 

Fig.9. AAE plots for different m values ( case study 2 - under C0 uncertainty, using NIR-737 

EnKF ) 738 

Fig. 10. AAE (mg/L) for non-measurement nodes and tanks in case study 2, using NIR-EnKF 739 

[n=50,m=60]  740 

Fig. 11. AAE (mg/L) for non-measurement nodes and tanks in case study 2, using IR-EnKF 741 

[n=50,m=60] 742 
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Tables 743 

Table 1. Performance of EnKF algorithms for different scenarios where C0 is uncertain 744 

No. of 

Measurements Method 

No. of Realizations, 

n AAE (mg/L) AESD(mg/L) 

8 

 

NIR-EnKF 20 0.071 0.159 

NIR-EnKF 50 0.064 0.167 

NIR-EnKF 100 0.06 0.17 

8 

 

IR-EnKF 20 0.065 0.124 

IR-EnKF 50 0.058 0.126 

IR-EnKF 100 0.058 0.131 

4-A 

 

NIR-EnKF 20 0.078 0.173 

NIR-EnKF 50 0.076 0.183 

NIR-EnKF 100 0.069 0.181 

4-B 

 

NIR-EnKF 20 0.124 0.185 

NIR-EnKF 50 0.112 0.192 

NIR-EnKF 100 0.111 0.193 

 745 

Table 2. Average Absolute Error (AAE (mg/L)) calculated for different scenarios and α values for dealing with 746 

measurement ambiguity during data assimilation  747 

Parameter α Value 

Measurement error 

(AAE in mg/L) 

Measurement 

noise (AAE in 

mg/L) 

C0 

1 0.083 0.239 

0.1 0.358 0.375 

0.01 0.225 0.2 

0.001 0.566 0.334 

kw 

1 0.063 0.064 

0.1 0.07 0.058 

0.01 0.138 0.126 

0.001 0.078 0.146 

 748 

 749 

 750 

 751 

 752 

 753 

 754 

 755 

 756 
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Table 3. Performance of EnKF algorithms for different scenarios where kwis uncertain 757 

No. of 

Measurements Method 

No. of Realizations, 

n AAE (mg/L) AESD(mg/L) 

8 

 

NIR-EnKF 20 0.175 0.075 

NIR-EnKF 50 0.157 0.08 

NIR-EnKF 100 0.157 0.08 

8 

 

IR-EnKF 20 0.056 0.075 

IR-EnKF 50 0.055 0.079 

IR-EnKF 100 0.054 0.08 

4-A 

 

IR-EnKF 20 0.063 0.081 

IR-EnKF 50 0.06 0.082 

IR-EnKF 100 0.06 0.085 

4-B 

 

IR-EnKF 20 0.08 0.101 

IR-EnKF 50 0.71 0.105 

IR-EnKF 100 0.69 0.107 

 758 

Table 4. Computed mean value of the parameters at the end of simulation for case study 1 (n:20) for different 759 

scenarios (Method inside the bracket is the method used for theparameter estimation) 760 

Parameter 

True 

Value 

NIR-

EnKF 

IR-

EnKF 

Measurement 

set A 

(Method) 

Measurement 

set B 

(Method) 

Measurement 

Error 

(Method) 

Measurement 

Noise 

(Method) 

Literature 

(Inverse 

Modelling) 

C0 (mg/L) 1.15 1.124 1.087 1.147 

(NIR-EnKF) 

1.297 

(NIR-EnKF) 

1.169 

(NIR-EnKF) 

1.131 

(NIR-EnKF) 

Not 

Available 

kw (m/d) -0.3 -1.538 -0.272 -0.211 

(IR-EnKF) 

-0.347 

(IR-EnKF) 

-0.228 

(IR-EnKF) 

-0.276 

(IR-EnKF) 

-0.365* 

*Munavalli and Kumar, 2005 761 

Table 5. Computed mean value of the parameters at the end of simulation for case study 2 (n:50) for different 762 

scenarios 763 

Parameter Unit Observed Value 

Computed 

Ensemble Mean 

Inverse 

Modelling 

C0 mg/L 0.75 0.753 0.71# 

kw1 m/d -1 -0.842 -1.1066* 

kw2 m/d -0.75 -0.766 -0.7993* 

kw3 m/d -0.5 -0.503 -0.4924* 

kw4 m/d -0.25 -0.327 Not Available 

*Munavalli and Kumar, 2003 764 
# Munavalli, 2002 765 

  766 

 767 
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