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SUMMARY

The theory of quantum mechanics describes many phenomena that may initially seem
to be counter-intuitive and, in some cases, impossible, given the understanding of clas-
sical mechanics that most of us are more intimately familiar with. Following its initial
introduction, there was a great deal of debate among scientists regarding the predic-
tions made by this theory. The strange nature of quantum mechanics has led to many
memorable quotes and the use of “spooky” to describe some of these predictions. Since
its initial introduction, quantum mechanics has been rigorously tested and has proven
to be quite a successful theory. Quantum mechanics has found many different appli-
cations and has led to the existence of devices and technologies we use daily. Another
potential application of quantum mechanics is quantum computation, which Richard
Feynman first put forward as an idea in 1982. Quantum computers have the potential to
solve specific problems that can be infeasible for even the most powerful (classical) su-
percomputers and have potential applications in many different areas, such as quantum
chemistry, cryptography, and optimization.

However, performing a quantum computation is challenging and requires overcom-
ing the inherent fragility of quantum systems. Storing information in a quantum system
requires it to be well isolated from the environment to avoid any unwanted interactions
that can corrupt the stored data. Unfortunately, at the same time, we need the ability
to control this system, make it interact with other such systems, and ultimately measure
it for us to perform an actual computation. This is a universal issue and all of the sys-
tems we have so far developed to be used as quantum bits (qubits) have been plagued
by noise. Each operation applied to the qubit or even the act of leaving the qubit idling
for some time generally leads to an error with a non-negligible probability. The impact
of this noise has so far prevented quantum computers from performing any practical
computation. While substantial efforts have been made to reduce these physical error
rates over the past several years, we are still far from the universal fault-tolerant quantum
computers we ultimately strive for.

Fortunately, quantum error correction can help us reach the low error rates neces-
sary for quantum computers to realize their potential applications in the future. This
can be achieved by storing the quantum information in a logical qubit instead of a noisy
physical one. When using a stabilizer code, which will be the focus of this dissertation,
this logical information is distributed over many (noisy) physical qubits, referred to as
data qubits. Another set of qubits, the so-called ancilla qubits, is used to perform indi-
rect parity measurements, which do not destroy the stored information but give some
information about whether an error has occurred. We then try to interpret this informa-
tion to identify what errors have happened and correct them, which is done by a classi-
cal algorithm referred to as the decoder. Increasing the number of physical qubits used
to encode the logical qubits allows more physical errors to be detected and corrected.
The number of correctable errors is captured by the distance of the code, defined as the

xi
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minimum number of physical single-qubit errors that constitute a logical error. One of
the critical properties of error correction is the ability to reduce the logical error rate by
increasing the code distance, which requires the physical error rates to be below some
threshold value.

The valiant experimental effort over the years has led to several recent experiments
that implement various error-correcting codes and demonstrate the reduction of the er-
ror rates promised by error correction. In particular, these experiments (and the exper-
iments leading up to them) identified several noise sources that had not been explored
in sufficient detail and could significantly impact the logical performance of the code. In
this dissertation, we explore the impact of the noise encountered in transmon-qubit de-
vices on the performance of error-correcting codes, namely the surface code. Transmon
qubits are, in practice, multi-level systems, and only the lowest two energy levels are
used for computation. Unfortunately, they are also weakly anharmonic, leading to the
applied operations having some probability of exciting the qubit outside of this compu-
tational subspace, referred to as a leakage error. We explore the impact of leakage in both
simulations and experiments and develop schemes to mitigate it. We also consider other
approaches to improve the logical performance or to reduce unwanted interactions.

In Chapter 2, we develop a realistic model of leakage induced by the two-qubit gates
between flux-tunable transmon qubits. We show that leaked qubits effectively spread
errors on their neighboring qubits, which are then detected by the parity measurements.
We show that a Hidden Markov model can detect the increased error rate due to leakage.
This enables us to post-select out runs during which any qubit has leaked to restore the
code performance.

Unfortunately, post-selection is ultimately not scalable. Instead, it is desirable to
have operations that return leaked qubits to the computational subspace. These op-
erations are called leakage-reduction units and convert leakage into a regular error. In
Chapter 3, we propose a leakage-reduction scheme, which does not require any over-
head in the time needed to perform the parity measurements or an overhead in the
quantum hardware. For data qubits, we propose an operation that transfers the leakage
to a dedicated readout resonator, where it can quickly decay. This operation is designed
to not disturb the computational states, allowing it to be applied unconditionally. For the
ancilla qubit, we use the fact that measurements can determine if a qubit is in the leaked
state. We then apply a conditional operation to return the qubit to the computational
subspace whenever it is measured to be leaked. Using detailed density-matrix simula-
tion, we show that this scheme can be easily implemented to remove qubit leakage from
the system, mitigating its impact on the logical performance of the code.

In Chapter 4, we realize the data-qubit leakage reduction unit in an experiment and
show it can also be used to remove ancilla-qubit leakage, removing the need for fast
conditional operations and readout that distinguishes the leaked states. We show that
these operations can remove most of the leaked population in about a hundred nanosec-
onds while having a negligible impact on the computational subspace. We also demon-
strate that these operations decrease the number of observed errors by a two-qubit par-
ity check, showing that the effect of leakage can be mitigated.

Chapter 5 considers an architecture employing two types of superconducting qubits,
the transmon qubit and the fluxonium qubit. These qubits have very different frequen-
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cies, making it unclear whether these qubits can even interact with each other in the
first place. We show that the interactions with the higher-excited states can be utilized to
perform operations between them, and we propose two types of gates. In practice, qubit
frequencies are targeted with only a certain precision in fabrication. In certain cases, this
can lead to unwanted interaction between qubits that increase the physical error rates,
referred to as frequency collisions. We show that the large detuning between these qubits
reduces the frequency of frequency collision, thereby increasing the expected fabrica-
tion yield.

In Chapter 6, we realize a distance-two surface code experiment and perform re-
peated parity measurements to detect and post-select errors, given that it’s impossible
to correct them when using such a small code. We implement a suite of logical opera-
tions for this code, including initialization, measurement, and several single-qubit gates.
In the context of error detection, a logical operation is said to be fault-tolerant if the er-
rors produced by each operation are detectable. We show that fault-tolerant variants of
operations perform better than non-fault-tolerant ones. We also characterize the impact
of various noise sources on the code performance.

In Chapter 7, we look at another small-distance code, in this case, the distance-seven
repetition code. We show that increasing the distance weakly suppresses the logical er-
ror rate of the code. We investigate the limiting factors behind the observed logical per-
formance by analyzing the correlation between the observed parity measurements and
performing simulations using noise models parameterized by the measured physical er-
ror rates.

Chapter 8 considers a decoder that can perform the error inference more accurately.
In particular, we implement a neural network decoder and investigate how it performs
on experimental data from surface code experiments. We show that the accuracy of
this decoder approaches what can be achieved by an optimal and computationally in-
efficient tensor network decoder. Transmon measurement produces analog outcomes.
These are then typically converted to binary ones, leading to some information loss. We
show how a neural network can also use this analog information to improve the achieved
logical performance further.

We have investigated the impact of non-conventional errors in simulation and in sev-
eral experiments, demonstrating the importance of characterizing and mitigating these
errors. We expect the methods introduced in this dissertation to lead to lower logical
error rates. In the short term, this can aid in demonstrations of the usefulness of error
correction. In the long term, addressing such errors is important to ensure the ability to
suppress logical error rates to sufficiently low levels. We finish this dissertation with a
brief conclusion of each chapter. We also outline several potential challenges that can
impact future error-correction experiments, namely how to reduce the larger qubit over-
head needed for fault-tolerant computation and several error sources that might become
a limiting factor for future error-correction experiments.
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De theorie van de kwantummechanica beschrijft veel verschijnselen die in eerste in-
stantie contra-intuïtief en in sommige gevallen zelfs onmogelijk lijken, uitgaande van
het begrip van de klassieke mechanica waar de meesten van ons beter bekend mee zijn.
Na haar introductie was er veel discussie onder wetenschappers over de voorspellin-
gen die deze theorie deed. De vreemde aard van de kwantummechanica heeft geleid
tot gedenkwaardige citaten en zelfs het gebruik van ‘spookachtig’ om sommige van deze
voorspellingen te beschrijven. Sinds haar introductie is de kwantummechanica uitvoe-
rig getest en een behoorlijk succesvolle theorie gebleken. Kwantummechanica heeft veel
verschillende toepassingen en heeft geleid tot het bestaan van apparaten en technolo-
gieën die we hedendaags gebruiken. Een mogelijke toepassing van de kwantummecha-
nica is de zogenaamde kwantumberekening, een idee dat voor het eerst geopperd werd
door Richard Feynman in 1982. Kwantumcomputers kunnen in potentie specifieke pro-
blemen oplossen die zelfs voor de krachtigste (klassieke) supercomputers onhaalbaar
zijn en hebben potentiële toepassingen op veel verschillende gebieden, zoals kwantum-
chemie, cryptografie en optimalisatie.

Het uitvoeren van een kwantumberekening is echter een uitdaging en vereist het
overkomen van de inherente kwetsbaarheid van kwantumsystemen. Het opslaan van in-
formatie in een kwantumsysteem vereist het systeem goed geïsoleerd is van de omgeving
zodat ongewenste interacties die de opgeslagen gegevens kunnen beschadigen voorko-
men kunnen worden. Helaas moeten we tegelijkertijd het systeem kunnen controleren,
het kunnen laten communiceren met andere soortgelijke systemen, en uiteindelijk het
kunnen meten om daadwerkelijk een berekening uit te voeren. Dit is een universeel
probleem en alle systemen die we tot nu toe hebben ontwikkeld om als kwantumbits
(qubits) te gebruiken, worden geplaagd door de aanwezigheid van ruis. Elke bewerking
die wordt toegepast op de qubit en zelfs het inactief laten van de qubit gedurende enige
tijd leidt over het algemeen tot een fout met een niet te verwaarlozen waarschijnlijkheid.
De gevolgen van deze ruis hebben er tot dusver voor gezorgd dat kwantumcomputers
geen enkele praktische berekening uit konden voeren. Hoewel er de afgelopen jaren
aanzienlijke inspanningen zijn geleverd om deze fysieke fouten te verminderen, zijn we
nog steeds ver verwijderd van de universele fouttolerante kwantumcomputers waar we
naar streven.

Gelukkig kan kwantumfoutcorrectie ons helpen de lage foutwaarschijnlijkheden te
behalen die nodig zijn voor het realiseren van de potentiële toepassingen van kwantum-
computers. Dit kan worden bereikt door de kwantuminformatie op te slaan in een zo-
geheten logische qubit in plaats van in een ruisachtige fysieke qubit. Bij het gebruik
van een zogeheten stabilizer code, waar dit proefschrift zich op zal richten, wordt deze
logische informatie verdeeld over vele (ruisachtige) fysieke qubits, de zogenaamde data-
qubits. Een andere set qubits, de zogenaamde ancilla qubits, wordt gebruikt om indi-
recte pariteitsmetingen uit te voeren, die de opgeslagen informatie niet vernietigen maar
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wel informatie opleveren over of er een fout is opgetreden. Vervolgens proberen we deze
informatie te interpreteren om te identificeren welke fouten zijn opgetreden en corri-
geren we ze. Dit wordt gedaan door een klassiek algoritme dat de textitdecoder wordt
genoemd. Door het vergroten van het aantal gebruikte fysieke qubits dat gebruikt wordt
om de logische qubits te coderen, kunnen we meer fysieke fouten detecteren en corri-
geren. Het aantal corrigeerbare fouten wordt vastgelegd door de afstand van de code,
gedefinieerd als het minimale aantal fysieke single-qubit-fouten dat een logische fout
vormt. Eén van de essentiele eigenschappen van foutcorrectie is het vermogen om het
aantal logische fouten te verminderen door het vergroten van de codeafstand, waarvoor
de fysieke foutwaarschijnlijkheden beneden een bepaalde drempelwaarde moeten lig-
gen.

De moedige experimentele inspanningen door de jaren heen hebben geleid tot ver-
schillende recente experimenten die verschillende foutcorrectiecodes implementeren
en reductie van de foutenwaarschijnlijkheden aantonen die door foutcorrectie worden
beloofd. In het bijzonder identificeerden deze experimenten (en de experimenten die
daaraan voorafgingen) verschillende ruisbronnen die nog niet voldoende waren onder-
zocht en mogelijk een aanzienlijke invloed kunnen hebben op de logische prestaties van
de code. In dit proefschrift onderzoeken we de impact van de ruis die wordt aangetrof-
fen in zogeheten transmon-qubit-apparaten op de prestaties van foutcorrectiecodes, na-
melijk de zogenaamde surface code. Transmon qubits zijn in de praktijk systemen met
meerdere niveaus, en alleen de laagste twee energieniveaus worden gebruikt voor bere-
keningen. Helaas zijn ze weinig anharmonisch, wat met enige waarschijnlijkheid leidt
tot het exciteren van de qubit naar buiten zijn rekendeelruimte wanneer een bewer-
king wordt toegepast, ook wel een leakage fout genoemd. We onderzoeken de impact
van leakage in zowel simulaties als experimenten en ontwikkelen methodes om deze te
matigen. Wij bekijken ook andere methodes om de logische prestaties te verbeteren of
ongewenste interacties te verminderen.

In hoofdstuk 2 ontwikkelen we een realistisch model van leakage veroorzaakt door
de twee-qubit gates tussen flux-afstembare transmon qubits. We laten zien dat gelekte
qubits in essentie fouten verspreiden naar aangrenzende qubits, die vervolgens worden
gedetecteerd door de pariteitsmetingen. We laten zien dat een Hidden Markov-model
het verhoogde foutenpercentage als gevolg van leakage kan detecteren. Hierdoor kun-
nen we runs achteraf selecteren waarin een qubit is gelekt om de codeprestaties te her-
stellen.

Helaas is deze na-selectie uiteindelijk niet schaalbaar. In plaats daarvan is het wen-
selijk om Bewerkingen uit te voeren die gelekte qubits terugbrengen naar de rekendeel-
ruimte. Deze bewerkingen worden leakage-reduction units genoemd en zetten leakage
om in een reguliere fout. In hoofdstuk 3 stellen we een leakage-reduction methode voor,
waarvoor geen overhead nodig is in duur van de pariteitsmetingen, noch in de kwantum-
hardware. Voor dataqubits stellen we een bewerking voor die de leakage overdraagt naar
een aangewezen uitleesresonator, waar het snel kan vervallen. Deze operatie is ontwor-
pen om de computationele toestanden niet te verstoren, waardoor het onvoorwaardelijk
kan worden toegepast. Voor de ancilla qubit maken we gebruik van het feit dat metin-
gen kunnen bepalen of een qubit in de leaked toestand zit. Vervolgens passen we een
voorwaardelijke bewerking toe om de qubit terug te brengen naar de rekendeelruimte
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wanneer gemeten is dat deze leaked is. Met behulp van gedetailleerde dichtheidsma-
trixsimulatie laten we zien dat dit schema eenvoudig kan worden geïmplementeerd om
qubit-leakage uit het systeem te verwijderen, waardoor de impact ervan op de logische
prestaties van de code wordt beperkt.

In hoofdstuk 4 realiseren we de data-qubit leakage-reduction unit in een experiment
en laten we zien dat het ook kan worden gebruikt om ancilla-qubit leakage te verwij-
deren, waardoor de noodzaak voor snelle voorwaardelijke bewerkingen en een uitlezing
die de leaked toestanden kan onderscheiden weggenomen wordt. Wij laten zien dat deze
operaties het grootste deel van de leaked populatie in ongeveer honderd nanoseconden
kunnen verwijderen, terwijl ze een verwaarloosbare impact hebben op de rekendeel-
ruimte. We laten ook zien dat deze bewerkingen het aantal waargenomen fouten ver-
minderen door een pariteitscontrole van twee qubits, wat aantoont dat het effect van
leakage kan worden beperkt.

In hoofdstuk 5 beschouwen we apparatuur die gebruik maakt van twee soorten su-
pergeleidende qubits, namelijk de transmon-qubit en de fluxonium-qubit. Deze qubits
hebben zeer verschillende frequenties, waardoor het onduidelijk is of deze qubits über-
haupt met elkaar kunnen interacteren. We laten zien dat de interacties met de hoger
geëxciteerde toestanden kunnen worden benut om operaties tussen hen uit te voeren,
en we stellen twee soorten gates voor. In de praktijk worden de frequenties van qubits
met slechts een bepaalde precisie gerealiseerd. In bepaalde gevallen kan dit leiden tot
ongewenste interactie tussen qubits waardoor de fysieke foutwaarschijnlijkheden toe-
nemen, frequentie botsingen genoemd. We laten zien dat de grote ontstemming tussen
deze qubits de frequentie van frequentiebotsingen kan verminderen, waardoor de ver-
wachte fabricageopbrengst toeneemt.

In hoofdstuk 6 voeren we een afstand-twee surface code experiment uit en voeren
we herhaalde pariteitsmetingen uit om fouten te detecteren en achteraf te selecteren,
aangezien het onmogelijk is om ze te corrigeren bij het gebruik van zo’n kleine code. We
implementeren een reeks logische bewerkingen voor deze code, waaronder initialisatie,
meting en verschillende single-qubit gates. In de context van foutdetectie wordt van een
logische bewerking gezegd dat deze fouttolerant is als de fouten die door elke bewerking
worden geproduceerd, detecteerbaar zijn. We laten zien dat fouttolerante varianten van
operaties beter presteren dan niet-fouttolerante varianten. Ook karakteriseren we de
impact van verschillende ruisbronnen op de codeprestaties.

In hoofdstuk 7 kijken we naar een andere code voor kleine afstanden, in dit geval de
afstand-zeven repetition code. We laten zien dat het vergroten van de afstand de logi-
sche foutwaarschijnlijkheid van de code zwak onderdrukt. We onderzoeken de beper-
kende factoren achter de waargenomen logische prestaties door de correlatie tussen de
waargenomen pariteitsmetingen te analyseren en door het uitvoeren van simulaties met
behulp van ruismodellen die zijn geparametriseerd door de gemeten fysieke foutwaar-
schijnlijkheden.

Hoofdstuk 8 behandelt een decoder die de foutinferentie nauwkeuriger kan uitvoe-
ren. In het bijzonder implementeren we een neurale-netwerk decoder en onderzoeken
we hoe deze presteert op experimentele gegevens uit surface code experimenten. We
laten zien dat de nauwkeurigheid van deze decoder de nauwkeurigheid die kan worden
bereikt door een optimale en computationeel inefficiënte tensor-netwerk decoder be-
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nadert. Transmon-meting levert analoge uitkomsten op. Deze worden vervolgens door-
gaans omgezet naar binaire uitkomsten, wat tot enig informatieverlies leidt. We laten
zien hoe een neuraal netwerk deze analoge informatie ook kan gebruiken om de be-
haalde logische prestaties verder te verbeteren.

We hebben de impact van niet-conventionele fouten in simulatie en in verschillende
experimenten onderzocht, waarbij we het belang aantonen van het karakteriseren en be-
perken van deze fouten. We verwachten dat de methoden die in dit proefschrift worden
geïntroduceerd, zullen leiden tot lagere logische foutwaarschijnlijkheden. Op de korte
termijn kan dit helpen bij het aantonen van het nut van foutcorrectie. Op de lange ter-
mijn is het aanpakken van dergelijke fouten belangrijk om ervoor te zorgen dat de logi-
sche foutwaarschijnlijkheden tot voldoende lage niveaus kunnen worden teruggebracht.
We sluiten dit proefschrift af met een korte conclusie van elk hoofdstuk. We schetsen
ook verschillende potentiële uitdagingen die van invloed kunnen zijn op toekomstige
foutcorrectie-experimenten, namelijk hoe de grotere qubit-overhead die nodig is voor
fouttolerante berekeningen kan worden verminderd en verschillende foutbronnen die
een beperkende factor kunnen worden voor toekomstige foutcorrectie-experimenten.
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INTRODUCTION

1.1. QUANTUM COMPUTING

1.1.1. A BRIEF HISTORY OF QUANTUM COMPUTERS
The field of quantum computing traces its roots back to the 1980s, with Richard Feyn-
man being commonly cited as the first person to propose using quantum mechanics to
perform simulations and computations that would otherwise be hard for classical com-
puters [1]. Shortly after, some of the first quantum algorithms that demonstrated the
potential of quantum computers were proposed. David Deutsch and Richard Jozsa pro-
posed a quantum algorithm in 1992 [2] for determining if a given boolean function map-
ping a bitstring to a single bit is either constant or balanced. While this was just a simple
toy problem, this algorithm was the first to show the potential speedup quantum com-
puters can provide over classical algorithms when solving specific problems. However,
the field of quantum computation truly gained momentum with Peter Shor’s ground-
breaking proposal in 1994 [3, 4] for a quantum algorithm that could factor large num-
bers exponentially faster than any classical computer. Previously, the problem of factor-
ing large numbers was considered very difficult. It was so difficult that it was used as
the basis of a key-encryption scheme proposed by Ron Rivest, Adi Shamir, and Leonard
Adleman, more commonly known as RSA encryption [5]. This scheme quickly became
widely used for secure data transmission online. Therefore, Shor’s algorithm posed a sig-
nificant threat to the protocols and applications utilizing this encryption scheme and, as
a result, sparked widespread interest in the potential of quantum computing. Of course,
this also led computer scientists to start developing public-key encryption algorithms
that do not rely on number factorization or other problems that are (currently) known
to be efficiently solvable by quantum computers. Alternatively, quantum encryption
schemes that rely on quantum entanglement have also been proposed [6, 7]. Regard-
less of whether Shor’s algorithm will eventually turn out to be the killer application of
quantum computing or not, it ultimately drew a lot of attention to the field and signifi-
cantly accelerated its development. Since these initial algorithms, many other potential
applications of quantum computers have been proposed in areas such as quantum sim-

1



1

2 1. INTRODUCTION

ulation [8] and quantum chemistry [9–12].

It was almost immediately realized that the noise experienced by quantum systems
(also called qubits) can be an obstacle to performing any practical quantum computa-
tion and that a quantum computer needs to be robust to these errors. Inspired by (clas-
sical) error correction, Peter Shor introduced the first quantum error correction (QEC)
scheme [13] and later showed that quantum computation could, in principle, be made
fault-tolerant [14]. Soon after, the theorem of fault tolerance was established [15–18],
showing that QEC can be used to achieve an arbitrarily low error rate at the expense of
an increase in the number of physical qubits required. This bolstered the confidence
researchers had in the feasibility of quantum computers, paving the way for the first
experimental realization of a quantum computer. Nowadays, QEC is considered the
most promising approach to realizing large-scale fault-tolerant quantum computers,
and many current experiments are aiming to utilize error correction to suppress the er-
ror rates [19–33].

Realizing error correction in experiments has proven to be rather challenging. In this
dissertation, we will focus on experiments using superconducting-qubit processors. On
the one hand, the physical error rates observed in even state-of-the-art experiments are
relatively high, often above or near the threshold required for error correction to lead to
a reduction of the logical error rate [20, 32, 34–36]. On the other hand, fabricating de-
vices with enough qubits to implement even small-distance codes was also a significant
hurdle. This was partially due to the limited precision with which the device parame-
ters (such as the qubit frequencies) could be targeted in fabrication, which could signif-
icantly impact the operational error rate and ultimately reduce the device yield [37–41].
Therefore, these initial demonstrations required improvements in the design and fabri-
cation of quantum devices, as well as the calibration of the various operations used in
these experiments. However, as devices became larger and error rates lower, it was re-
alized that the physical noise in these devices was much more complex than what was
typically considered in textbook QEC theory. Namely, performing multiple operations
in parallel increases the overall error rate due to various forms of crosstalk [20, 32, 42,
43]. Other types of errors present in physical systems, such as qubit leakage outside of
the computational subspace, were also found to have a significant impact on the code
performance [44–47]. Finally, more potential noise sources are discovered as physical
error rates continuously improve. One such example is the impact of ionizing radiation
from cosmic rays [48–50], which leads to bursts of correlated error across many qubits
of the device. Since error-correcting codes typically do not consider such correlated er-
rors, this is another important error source to consider in future experiments. Building a
large-scale error-corrected quantum computer will require scaling up to even larger de-
vices and further lowering the physical error rates, meaning that these non-conventional
errors must be eventually addressed for fault-tolerant computers to become a reality.

1.1.2. QUANTUM BITS

In classical computing, the basic unit of information is the bit, representing a logical
unit with only two possible states, most commonly labeled as 0 (or off) and 1 (or on).
Similarly, the unit of information used in a quantum computer is (most often) a quantum
two-level system called a quantum bit or simply a qubit. The states that a qubit can
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take can be described in terms of a pair of basis states, which are commonly labeled |0〉
and |1〉. While classical bits can either be in 0 or 1, qubits can be |0〉, |1〉 or any state
|ψ〉 =α |0〉+β |1〉 that is a linear combination (or superposition) of these two basis states,
where α,β ∈C are complex amplitudes. The probabilities of observing the qubit in |0〉 or

|1〉 upon measurement are given by |α|2 and
∣∣β∣∣2, respectively. Of course, since one must

observe one or the other upon measurement, these probabilities must be normalized,
such that |α|2 + ∣∣β∣∣2 = 1. Therefore, the qubit states are unit vectors that live in a two-
dimensional Hilbert space. The two basis states are vectors, typically defined as

|0〉 =
[

1
0

]
|1〉 =

[
0
1

]
,

also known as the computational basis states. We can also rewrite any superposition
state as |ψ〉 = cos(θ/2) |0〉+ e iφ sin(θ/2) |1〉, where θ and φ are the polar and azimuthal
angles that define the direction of a unit vector in a three-dimensional space. This allows
quantum states to be visualized as vectors lying on the surface of the Bloch sphere.

The real power of quantum information starts to become apparent only when we
consider multiple qubits. For example, suppose we have a system of 2 qubits, which
has four basis states |00〉, |01〉, |10〉, and |11〉. Here, |00〉 = |0〉⊗ |0〉, where ⊗ is the ten-
sor product operator. Similar as before, this system can be in any superposition state
involving these basis states |ψ〉 = c00 |00〉+ c01 |01〉+ c10 |10〉+ c11 |11〉, where ci j ∈ C are

the complex amplitudes, under the constraint that
∑

i , j

∣∣ci j
∣∣2 = 1. Therefore, a system

with n qubits can create superposition states involving 2n basis states and amplitudes.
This enormous computational space, when combined with other quantum phenomena,
such as quantum entanglement and quantum interference, enables quantum computers
to solve problems that are otherwise infeasible for classical computers to solve.

Quantum entanglement is perhaps the most defining feature of quantum computers
and also plays an essential role in QEC. Let us return to a system of two qubits and con-
sider the state |ψ〉 = (|00〉+|01〉) p(2). This state can be expressed as |ψ〉 = |i 〉⊗| j 〉, where
|i 〉 = |0〉 is the state of the first qubit, while | j 〉 = (|0〉 + |1〉)/

p
2 = |+〉 is the state of the

second one. States that can be written in this form are called product states or separable
states. Next, consider instead the state |ψ〉 = (|00〉+ |11〉)/

p
2, which cannot be written

as a product of two single-qubit states, making it an entangled state. Measuring these
two qubits will reveal that the two outcomes are perfectly correlated. Of course, if we
consider the state |00〉, the resulting measurement outcomes would also be correlated.
However, the correlations exhibited by entangled states are a much more powerful and
useful resource that can be exploited in quantum computation. It is also worth noting
that creating an entangled state using only single-qubit operations is impossible. In-
stead, the two qubits need to interact with each other to create these non-trivial states.

So far, we have expressed the state of a qubit using the state vector formalism. How-
ever, there is a different state representation, called the density matrix, which is more
convenient for describing quantum states that are not completely known. For example,
consider the case where a qubit is in the (pure) state |ψi 〉 with probability pi , where i
indexes each of these states and probabilities. In other words, the state of the qubit is
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described by the ensemble of states {pi , |ψi 〉}, which can be expressed as

ρ =∑
i

pi |ψi 〉〈ψi | ,

with ρ being the density matrix. Furthermore, ρ must be positive semi-definite, Hermi-
tian, and of unit trace, i.e., Tr

(
ρ
)= 1. Such a mixture of pure states is called a mixed state.

For comparison, the density matrix for a qubit in a pure state is in the form of ρ = |ψ〉〈ψ|.

1.1.3. QUANTUM OPERATIONS
Qubits are the units of information used in a quantum computer. However, to perform
quantum computations, we need the ability to perform various operations on these
qubits. In particular, quantum operations include initializing the qubit in a given ini-
tial state, measuring the qubit, and performing an n-qubit quantum gate. Implement-
ing a many-qubit interaction with high fidelity is very challenging in most platforms.
Luckily, having access only to single-qubit and two-qubit gates enables universal quan-
tum computation since gates involving three or more qubits can be decomposed into
single-qubit and two-qubit gates. In this section, we will introduce the most common
operations used in quantum computing.

An n-qubit quantum gate can be described by a 2n×2n unitary operator U , for which
it holds that UU † =U †U = I , where U † denotes the Hermitian conjugate of U . Applying
an operation U to a system initially is a state ρ maps the system to another state Λ

(
ρ
)=

UρU †. A unitary operation describes the evolution of a closed system. In practice, every
quantum system is open, meaning that, unfortunately, each system is coupled to and
interacting with some environment. It is possible to consider the unitary evolution of
a larger system, including both the environment and our original system, and perform
a partial trace over the environment to obtain the dynamics of the system of interest.
Under the assumption that the system and bath are initially decoupled, this leads to the
so-called Kraus operator representation.

More specifically, a general quantum process is a linear, completely positive map of
density operators ρ → Λ

(
ρ
)

that take a system initially in the state ρ to another state
Λ

(
ρ
)
. For any physical process, this map needs to be completely positive and trade-

preserving. Such an operation can be expressed in the form

Λ
(
ρ
)=∑

i
KiρK †

i ,

where Ki are the Kraus operators and for which it holds that
∑

i K †
i Ki = I , where I is the

identity. This representation is particularly useful when describing noise processes that
lead to errors.

Before going through the list of commonly used operations, we will first introduce
the Pauli matrices

I =
(
1 0
0 1

)
, X =σx =

(
0 1
1 0

)
, Y =σy =

(
0 −i
i 0

)
, Z =σz =

(
1 0
0 −1

)
. (1.1)

The n-qubit Pauli group Pn is defined as Pn = {I , X ,Y , Z }⊗n × {±1,±i }. Each element of
Pn is therefore of the formλP1⊗P2⊗. . .⊗Pn , i.e. the tensor product of n Pauli matrices Pi
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and an overall phase λ ∈ {±1,±i }. Note that each Pauli matrix is Hermitian and unitary,
with P 2

i = I for Pi ∈ {I , X ,Y , Z }. Taking the product of two Pauli matrices leads to another
Pauli matrix along with some phase prefactor i (or −i depending on the order of the
matrices), that is,

X Y = i Z , Z X = i Y , Y Z = i X .

Pauli matrices either commute or anti-commute with each other. In particular, the Pauli
matrices, excluding the identity, anti-commute with each other

{X ,Y } = 0, {Y , Z } = 0, {Z , X } = 0.

Of course, this means that these matrices do not commute with each other, and in par-
ticular, they lead to the following commutation relations

[X ,Y ] = 2i Z , [Y , Z ] = 2i X , [Z , X ] = 2i Y .

Each Pauli matrix commutes with both the identity operator and with itself.
The Pauli matrices form an orthogonal basis for any 2⊗2 Hermitian. In particular,

we can decompose any density matrix ρ as a linear combination of the Pauli matrices

ρ = 1

2
(I + rX X + rY Y + rZ Z ), (1.2)

where rX ,rY ,rZ ∈R and
∑

i r 2
i ≤ 1. Therefore, a density matrix can be represented by the

Pauli vector r = (rX ,rY ,rZ ).

SINGLE-QUBIT GATES

Each single-qubit gate can be visualized as a rotation of the Bloch sphere around some
axis. The first three commonly-seen single-qubit gates are given by X , Y , and Z unitary
operators, corresponding to π-rotations around the x̂, ŷ , and ẑ axes of the Bloch sphere,
respectively. Another set of commonly used gates are the Hadamard (H), S, and T gates,
defined as the operators

H = 1p
2

(
1 1
1 −1

)
, S =

(
1 0
0 e i π2

)
=
p

Z , T =
(
1 0
0 e i π4

)
=
p

S. (1.3)

The Hadamard gate can be visualized as a π-rotation around the (x̂ + ẑ)/
p

2 axis of the
Bloch sphere. This can also be seen as performing a change of basis, switching the x̂
and ẑ axes of the Bloch sphere. The S and T gates are types of phase-shift gates of the
form RZ (ϕ) = diag(1,e iϕ), where ϕ corresponds to the angle of rotation around the ẑ
axis. Therefore, S = RZ (π/2) and T = RZ (π/4), respectively. Similarly, the Z gate is also
a phase-shift gate with Z = RZ (π). Periods of qubit idling are equivalent to applying
an I gate. Unfortunately, this is only the case in an ideal world. In practice, the qubits
experience decoherence during idling periods, which we will discuss later in Sec. 1.2.2.
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TWO-QUBIT GATES

The most commonly used two-qubit gates are the controlled-not (CNOT) and controlled-
phase (CZ) gates, given by the unitary operators

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , CZ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 . (1.4)

The pair of qubits that these gates are applied to are called the control and target
qubits. The CNOT applies an X gate on the target qubit whenever the control qubit is
in state |1〉. The CZ gates applied a Z gate to the target qubit conditioned on the control
qubit being in state |1〉. More generally, we can introduce the controlled-phase rotation
gate of the form diag(1,1,1,e iϕ), whereϕ is the conditional phase picked up by the target
qubit depending on the state of the control qubit, with the CZ gate corresponding to ϕ
being an odd multiple of π.

MEASUREMENT

The most general kind of measurement is a positive operator-valued measurement, or
a POVM for short. Such a measurement is described by a set of measurement opera-
tors {Mi }, where i refers to the observed measurement outcome. These operators must
satisfy the completeness relation

∑
i M †

i Mi = I . Consider a qubit in a state ρ. The prob-

ability of observing outcome i is given by pi = Tr
(
M †

i Miρ
)
. The state of the system ρ′

immediately after a measurement with outcome i is ρ′ = MiρM †
i /pi . For a projective

measurement, the measurement operators Mi = Πi , where Πi is an orthogonal projec-
tor, i.e. Π2

i =Πi andΠ†
i =Πi . In this case, the probability of observing outcome i reduces

to pi = Tr
(
Πiρ

)
, with

∑
i Πi = I .

1.1.4. NOISE AND ERROR CHANNELS
As previously mentioned, quantum systems are never truly isolated, and the interactions
with their environment lead to qubit decoherence. Furthermore, quantum operations
are realized only with a limited fidelity. To model the errors resulting from these noise
processes, theorists typically consider error channels that apply Pauli errors with some
probability each. A commonly considered noise model is that of independent depolariz-
ing noise, where each qubit is affected by the single-qubit depolarizing channel

ρ 7→ E
(
ρ
)= (1−p)ρ+ p

3

(
XρX +Y ρY +ZρZ

)
. (1.5)

In this case, the channel applies an X , Y or a Z error each with probability p/3. Other-
wise, the state remains unchanged with probability 1−p. The choice that each of these
Pauli errors occurs with the same probability is an assumption typically made to reduce
the number of parameters describing the noise model. Alternatively, one can consider a
more general Pauli-noise channel of the general form

ρ 7→ E
(
ρ
)= p Iρ+pX XρX +pY Y ρY +pZ ZρZ , (1.6)
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with the constraints that 0 ≤ pi ≤ 1 and
∑

i pi = 1. There are a few channels commonly
considered in the literature that correspond to special subcases of this general channel.
The bit-flip channel applies an X error with probability p, corresponding to

ρ 7→ E
(
ρ
)= (1−p)ρ+p XρX . (1.7)

The phase-flip channel replaces the X error with a Z error. Another relevant error chan-
nel in the context of the surface code is the independent bit-flip and phase-flip error
channel, which independently applies an X or a Z error with probability p each, leading
to a probability of a Y error that is O

(
p2

)
.

When modeling noise, the choice of where the error channels are inserted plays a
significant role. Simpler models typically consider a set of independent single-qubit
channels affecting a subset of the qubits before a set of otherwise ideal operations. A
more realistic approach is to consider errors during each idling period and as a result
of each applied operation, commonly referred to as circuit-level noise models. In such
a model, a single-qubit noise channel (typically a depolarizing channel) is applied after
each single-qubit gate or idling period. Naturally, two-qubit operations are also con-
sidered noisy. It is essential to consider two-qubit error channels after two-qubit gates.
Typically, models consider the two-qubit depolarizing channel

E
(
ρ
)= (1−p)ρ+ p

15

∑
Pi∈{I ,X ,Y ,Z }⊗2/I I

PiρPi . (1.8)

However, similar to the single-qubit case, this channel can be generalized to a general
two-qubit Pauli noise channel. Such noise channels can be used when the noise in a
given system is biased towards a specific type of error, i.e., when some Pauli errors occur
with a higher probability than others. Finally, in a circuit-level noise model, single-qubit
noise channels are also applied following qubit initialization and before measurement
operations. Depending on the noise model, these are typically either depolarizing chan-
nels or either bit-flip or phase-flip channels, depending on the basis in which the qubit
was prepared or measured.

1.2. SUPERCONDUCTING QUANTUM PROCESSORS
Several experimental qubit platforms are currently being explored, with superconduct-
ing qubits and trapped-ion qubits perhaps being the most promising platforms nowa-
days. In this dissertation, we focus on superconducting qubits, particularly on the su-
perconducting transmon qubit [51]. In this section, we will give a brief summary of the
design and operation of this qubit.

1.2.1. THE TRANSMON QUBIT

One of the simplest and most fundamental circuits used in superconducting-qubit pro-
cessors is the linear LC-resonator, often referred to simply as a resonator. This system
consists of a capacitor with capacitance C in parallel with a linear inductor with an in-
ductance L, with the corresponding circuit shown in Fig. 1.1a. The energy stored in this
system oscillates between the electrical energy (analogous to the “kinetic energy” of a
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Figure 1.1: a Circuit diagram for a linear resonator consisting of a capacitance C in parallel with an inductance
L. b Circuit diagram for a transmon qubit, consisting of a shunting capacitance Cs in parallel with a Joseph-
son junction (yellow), characterized by a nonlinear inductance L J and a self-capacitance C J . c The energy
potential of the resonator as a function of the superconducting phase φ. The energy levels of the resonator are
equidistant, with an energy separation of ħωr . d The energy potential of the transmon qubit (solid red line).
The anharmonicity introduced by the Josephson junction transforms the quadratic potential of the resonator
(dashed blue lines) into a cosine potential, resulting in non-equidistant energy levels. In particular,ω0→1 =ωq ,

while ω1→2 =ωq +α. Since ω0→1 ̸=ω1→2, the states |0〉 and |1〉 can be used to encode a qubit.

system) stored in the capacitor and the magnetic energy stored in the inductor (analo-
gous to the “potential energy”). The Hamiltonian for this system can be expressed as

Hr = Q2

2C
+ Φ

2

2L
, (1.9)

where Q andΦ are the charge and flux operators, which can be interpreted as the charge
on the capacitor and the flux threading the inductor. These operators satisfy the com-
mutation relation [Φ,Q] = iħI , where ħ is the reduced Planck’s constant h/(2π). By intro-
ducing the reduced (dimensionless) charge q ≡ Q/(2e) and flux φ ≡ 2πΦ/Φ0 operators,
we can rewrite the Hamiltonian as

Hr = 4EC q2 + 1

2
ELφ

2, (1.10)

where EC = e2/(2C ) is the charging energy, EL = (Φ0/2π)2/L is the inductive energy,Φ0 =
h/(2e) is the magnetic flux quantum, and e is the electron charge.
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Following standard circuit quantization theory [52, 53], we can introduce the stan-
dard creation a† and annihilation a operators, which allows us to express the resonator
Hamiltonian in the form

Hr =ħωr (a†a +1/2), (1.11)

where ωr =
p

8ELEC /ħ= 1/
p

LC is the resonant frequency of the resonator. These oper-
ators are related to the charge and flux operators by the relations

q = i qzpf(a† −a), φ=φzpf(a† +a),

where qzpf = [EL/(32EC )]1/4 and φzpf = (2EC /EL)1/4 are the magnitudes of zero-point
fluctuations of the charge and flux, respectively. The eigenstates |k〉 of this Hamilto-
nian satisfy a†a |k〉 = k |k〉 for k = 0,1,2, . . ., with each eigenstate having a correspond-
ing eigenenergy of Ek = ħωr (k +1/2), or equivalently a frequency ωk = Ek /ħ. In other
words, there are infinitely many eigenstates, each separated by an energy Ek+1 −Ek =
ħωr , where ωr is the resonant frequency of the resonator, with ωr /(2π) typically in the
3 − 9 GHz range (though it can also be as high as 20 GHz, for example). This energy
potential is illustrated in Fig. 1.1c.

Let us consider whether we can use such a resonator as a qubit, for example, by
using the two lowest-energy states |0〉 and |1〉. While these two states indeed define
a computational subspace, the equidistant level spacing makes driving specific transi-
tions impossible without exciting the qubit to |2〉, |3〉, and other higher-excited states.
Some degree of non-linearity is therefore required to define a qubit that we can actually
use. Such a non-linearity is also commonly referred to as anharmonicity. Let us define
ωi→ j =ω j −ωi = (E j −Ei )/ħ as the transition frequency between state |i 〉 and | j 〉. There-
fore, we require the transition frequency ω0→1 and ω1→2 to be sufficiently different to
avoid driving any of the population outside the computational subspace defined by the
lowest two energy levels, which is more commonly referred to as leakage.

Fortunately, we can introduce such an anharmonicity using a Josephson junction [54,
55], a non-linear circuit element that is at the heart of many superconducting qubits. A
Josephson junction consists of two pieces of superconductor coupled by a thin insulat-
ing barrier. In particular, the Josephson junction behaves as a non-linear inductor, which
can be derived by considering the Josephson relations

I = Ic sin(φ), V = ħ
2e

dφ

d t
,

where Ic is the critical current of the junction andφ is the superconducting phase differ-
ence across the junction. We can then introduce the Josephson energy E J = Φ0Ic /(2π)
and the Josephson inductance L J =Φ2

0/
(
4π2E J

)
. Finally, by replacing the linear inductor

of an LC resonator circuit with a Josephson junction (see Fig. 1.1b), we then obtain the
Hamiltonian [53]

Htr = 4EC q2 −E J cos(φ), (1.12)

withφnow being an operator. The Josephson junction typically has some self-capacitance
C J , while the parallel capacitor has a capacitance Cs , typically referred to as the shunting
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capacitance. The total capacitance is then given by CΣ =Cs +C J , which also defines the
charging energy in this case EC = e2/(2CΣ). Including this non-linear element makes the
energy levels of this system no longer equivalent, making it possible for specific energy
transitions to be addressed, which is illustrated in Fig. 1.1d. A qubit defined by such a cir-
cuit is commonly known as a transmon qubit [51, 56]. The transmon is typically designed
to be in the limit of E J ≫ Ec , which allows for charge noise to be exponentially sup-
pressed. This is typically achieved by using a larger shunting capacitance Cs , such that
Cs ≫C J (typically E J /EC ≥ 30). However, in this regime, the circuit is only weakly anhar-
monic. We can define the qubit transition frequency as ωq =ω0→1 = (

√
8E J EC −EC )/ħ,

with ωq /(2π) typically being the range between 3− 7 GHz. We can also define the an-
harmonicity α = ω1→2 −ω0→1 = −EC /ħ, with α/(2π) typically chosen to be in the range
200−400 MHz. Performing a power series expansion of the potential term of Eq. (1.12),
keeping the terms up to fourth order, introducing the creation and annihilation opera-
tors, and performing a rotating-wave approximation allows us to rewrite the transmon
Hamiltonian as that of a Duffing oscillator

Htr ≈ħωq a†a +ħα
2

a†a†aa. (1.13)

Since |α| ≪ ωq , this more clearly illustrates that the transmon can be seen as a weakly-
anharmonic resonator. Unfortunately, the weak anharmonicity means each operation
applied to the transmon will have some probability of exciting the qubit to the higher-
excited states.

The transmon frequency can be made flux-tunable by replacing the Josephson junc-
tion with a superconducting quantum interference device (SQUID) consisting of a pair
of Josephson junctions connected in a loop [51]. Tunability is achieved by considering
the external fluxΦe threading the SQUID loop. The Hamiltonian is then given by

Htr = 4Ec q2 −E J1 cos
(
φ

)−E J2 cos
(
φ−φe

)
, (1.14)

where φe = 2πΦe /Φ0 is the reduced external flux, while E J1 and E J2 are the Josephson
energies of two junctions. By performing the change of variables φ→ φ−φe /2 and by
using some trigonometric identities, the expression for the Hamiltonian can be rewritten
as [51, 53]

Htr = 4Ec q2 −E JΣ
(
φe

)
cos

(
φ−ϕe

)
, (1.15)

where the angle ϕe is defined by tanϕe = d tan
(
φe /2

)
, d = ∣∣E J2 −E J1

∣∣/
(
E J1 +E J2

)
is the

junction asymmetry, and

E JΣ
(
φe

)
:= (E J1 +E J2)

√
cos2

(
φe

2

)
+d 2 sin2

(
φe

2

)
. (1.16)

For a constant magnetic flux, ϕe can be ignored by a change of variable [51], which
brings Eq. (1.15) in the form of Eq. (1.12). We see that E JΣ

(
φe

)
plays the role of an ef-

fective and tunable E J . When the two junctions are symmetric i.e. when E J1 = E J2 = E J

such that d = 0, the expression E JΣ
(
φe

)
further simplifies to E JΣ

(
φe

) = 2E J
∣∣cos

(
φe /2

)∣∣.
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Introducing the SQUID loop makes the qubit transition frequency ωq flux-tunable, i.e.,

ωq →ωq (φe ) ∝
√∣∣cos

(
φe /2

)∣∣.
Flux tunability allows for great flexibility when operating a transmon qubit. For ex-

ample, transmon qubits can be fluxed away to avoid interactions with two-level systems
that lead to lower coherence times [57]. Qubits can also be fluxed away to avoid any un-
wanted interactions when executing operations in parallel [58, 59]. Finally, conditional
operations can be performed by flux-pulsing qubits close to interaction points [60] or by
parametrically driving the interaction using a flux modulation [61]. However, this flexi-
bility comes at the price of an increased sensitivity to flux noise. Transmons qubits are
typically operated at a frequency sweet spot [56], where the qubit is first-order insensi-
tive to flux noise. The most commonly used sweet spot is where the transmon frequency
ωq is at its maximum, typically at φe = 0. Therefore, flux-pulsing a qubit to a lower
frequency reduces the qubit dephasing time due to an increased flux-noise sensitivity,
which we will discuss in the following section.

1.2.2. QUBIT DECOHERENCE

The interactions between the qubit and its environment lead to the decoherence of the
quantum state. For transmon qubits, the dominant sources of decoherence are the en-
ergy relaxation, characterized by a timescale T1, and the dephasing, characterized by a
timescale T2. We will assume that the dynamics of the system are Markovian, which en-
ables us to describe the time evolution of the system using a Lindblad master equation

ρ̇ = dρ

d t
=− i

ħ
[
H ,ρ

]+∑
k

LkρL†
k −

1

2

{
L†

k Lk ,ρ
}

, (1.17)

where H is the Hamiltonian of the system, ρ is the density matrix describing the state,
and {Lk } are the Lindblad operators (also called the quantum jump operators). The first
term describes the coherent evolution of the system, while the second term, involving
the Lindblad operators, models the decoherence experienced by the qubit due to the en-
vironment. For the sake of simplicity, we will first treat the transmon qubit as a two-level
system to investigate the impact of decoherence on the computational subspace and
then extend the results to the higher-excited states. In particular, the transmon Hamil-
tonian is then given by H =−ħωqσz /2.

Thermal relaxation typically refers to the tendency of a transmon qubit prepared in
the excited state |1〉 to relax back to the ground state |0〉, corresponding to the process
of losing energy to the environment. Generalizing this, we can consider the energy ex-
change with an environment in thermal equilibrium at some finite temperature T . This
process can be modeled by the Lindblad operators L↓ =p

γ↓σ− and L↑ =p
γ↑σ+, where

σ− = |0〉〈1| and σ+ = |1〉〈0|. Here, L↓ models energy relaxation, while L↑ corresponds to
energy excitation. The relaxation γ↓ and excitation γ↑ are related to the relaxation time
T1 via

1

T1
= γ1 = γ↓+γ↑. (1.18)
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These rates also obey a detailed balance condition

γ↑
γ↓

= e
− ħωq

kB T , (1.19)

where kB is the Boltzmann constant. These operators are also commonly expressed in
the form

γ↓ = γ
[
1+ n̄(ωq )

]
, (1.20)

γ↑ = γn̄(ωq ), (1.21)

where n̄(ωq ) is the thermal photon number of the environment, given by

n̄(ωq ) = 1

e
ħωq
kB T −1

. (1.22)

Transmon qubits are relatively high-frequency qubits (in the range 3− 7 GHz) and are
typically operated at low temperatures (about 20 mK). For example, a transmon qubit
with a frequency of ωq /(2π) = 6 GHz and a temperature of T = 20 mK is expected to
have a n̄(ωq ) ≈ 6×10−7. In other words, in the limit of limT→0 n̄(ωq ) = 0 the relaxation
rate γ↓ dominates over the excitation rate γ↑ and γ ≃ γ1 in this case. Because of this,
most error models neglect the impact of excitation and only model the relaxation that
the qubit experiences. In practice, n̄(ωq ) is not typically negligible, which leads to the
residual excitation of the qubit [62–65]. The other major noise source that qubits experi-
ence is dephasing, which can be attributed to a dispersive coupling to the environment
or fluctuations of the external flux field that controls the qubit frequency. This process is
modeled by the Lindblad operator L2 = √

γφ/2σz , where γφ is the pure dephasing rate.
This is related to the decoherence time T2 (sometimes referred to as the dephasing time)
via

1

T2
= γ2 = γ1

2
+γφ, (1.23)

with γ2 being the decoherence rate, which includes contributions from both the pure
dephasing and the relaxation. The time Tφ = 1/γφ is referred to as the pure-dephasing
time. Combining the effects of relaxation and assuming that n̄(ωq ) = 0, an initial density
matrix ρ (t = 0) evolves as

ρ (t = 0) =
(
1−α β

β∗ α

)
7→ ρ (t ) =

(
1−αe−tγ1 βe iωq t e−tγ2

β∗e−iωq t e−tγ2 αe−tγ1

)
. (1.24)

So far, we considered the transmon to be an ideal two-level system, which, at this
point, we know that it isn’t. In particular, let us also consider the second-excited state
in our model. The transmon is weakly anharmonic, which allows approximating the re-
laxation experienced by the higher-excited states with the Lindblad operator L↓ =p

γ↓a,
with a being the annihilation operator. Similarly, the excitation can be modeled with the
operator L↑ = p

γ↑a†. The dephasing experienced by the higher-excited states is typi-
cally modeled by considering the operator L2 = √

2γφa†a [53]. However, in Ref. [66], it
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was observed that the scaling of the dephasing rate with the flux-noise sensitivity (see
below) predicted by this model does not match what was observed in the experiment.
A different set of operators was instead proposed, which are given in Chapter 2, more
specifically in Sec. 2.4.2.

Away from the frequency sweet spot, the transmon qubit becomes first-order sen-
sitive to flux noise, which increases the pure dephasing rate. Flux noise has a power
spectral density

S
(

f
)∼ A/ f ,

where f is a frequency and
p

A is a constant that is typically in the range 1−10 µΦ0. The
sensitivity away from the sweet spot is given by

Dφ = 1

2π

∣∣∣∣∂ωq

dΦe

∣∣∣∣ , (1.25)

with Φe being the external flux threading the SQUID loop. The high-frequency compo-
nents of the noise (relative to the time the qubit spends away from the sweet spot) lead
to an increase in γφ, given by [67]

γφ = 2π
p

ln2
p

ADφ. (1.26)

The value of
p

A can be extracted experimentally by fluxing the qubit away and mea-
suring the increase in the dephasing time. Note that the dephasing rate might not in-
crease linearly with the sensitivity if the qubit is fluxed far away from the sweet spot
since second-order effects might become important. If the qubit is fluxed to only a few
different frequencies, the dephasing rate at those points can also be directly measured
and included in the error model. The low-frequency components of flux noise can be
modeled as quasi-static over the duration of an operation or an individual run of an ex-
periment but fluctuating across repetitions of this operation/experiment. In particular,
the quasi-static components of the flux noise can be modeled as a random shift to the
external flux field [66, 68]. Fortunately, these slow components can often be mitigated
using dynamical decoupling methods [69, 70] or be compensated for in calibration (de-
pending on the time scale that they actually change over).

We note that T2 refers to the intrinsic decoherence time of a qubit. In practice, two
different decoherence times are measured in experiments,T ∗

2 and T E
2 . If the decoher-

ence time is measured using a standard Ramsey experiment, it refers to T ∗
2 . Since there is

no dynamical decoupling used in this experiment, one typically measures a time T ∗
2 ≤ T2

that might fluctuate over some time. Instead, if the decoherence time is measured us-
ing an Echo experiment, it refers to T E

2 . The echo pulse is then expected to remove the
impact of these noise components, leading to T E

2 ≥ T ∗
2 and perhaps closer to the value

of T2. The exact improvement in the dephasing time from using echo pulses depends
on the power spectrum of the noise. However, since an improvement is typically ob-
served, most experiments employ operations with built-in echo effects [66] and further
include dynamical decoupling during periods of qubit idling or between operations [20,
30]. Because of this, we normally consider the measured T E

2 for our dephasing models.
Finally, for a more detailed overview of the physical noise sources encountered in

superconducting circuits, we refer the reader to Refs. [71, 72].
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1.2.3. NOISE MODELS IN THIS DISSERTATION

In this section, we briefly comment on our approach to modeling errors in the simula-
tions performed in this dissertation. In particular, we perform both density-matrix simu-
lations and Clifford simulations, which are simulations of circuits involving only Clifford
operations and measurements in the Pauli basis, making them efficient to simulate using
the Gottesman-Knill theorem [73, 74].

When performing Clifford simulation, we are generally restricted in the noise we can
consider, and typically, only Pauli error channels are included in such simulations. In
this work, we either consider a standard circuit-level depolarizing noise model or at-
tempt to parameterize the Pauli noise model using the physical error rates to construct a
more physically realistic model. In particular, we consider the relaxation and dephasing
that the qubit experiences during idling and Pauli-twirl the resulting channel to make it
compatible with the simulation, see Chapter 7. For operations, we consider depolarizing
channels parameterized by the measured error rates. In the case of the measurements,
we model the assignment error rate and the quantum non-demolition probability by
introducing bit-flip error channels before and after an otherwise ideal measurement op-
eration, see Sec. 7.4.2.

For the density-matrix simulations, we consider more physically motivated error mod-
els. However, in many cases, we want to investigate the behavior of some specific error
(namely, leakage) or to capture the most significant error sources impacting an experi-
ment. Therefore, we make several simplifying assumptions and neglect certain physical
noise sources. This also reduces the simulation’s complexity and the time required to
perform the numerical scans. In particular, we don’t typically consider the slow compo-
nents of the flux noise (or other noise sources) since we assume they are echoed out. The
impact of the fast components is included by considering the relaxation and dephasing
experienced by the qubits (including the increased dephasing away from the sweet spot)
during periods of idling or operations. In particular, we normally consider the ideal op-
eration and symmetrically introduce amplitude-phase damping operations for half of
the duration. This is described in more detail in Chapter 2, see also Ref. [68]. Although
we typically only consider the decoherence occurring during readout, the measurement
error model used in Chapter 6 is instead directly parameterized by the assignment error
rates benchmarked in the experiment. Finally, we consider leakage due to the two-qubit
controlled-phase gates, following the model introduced in Chapter 2.

Generally, we have neglected several non-conventional error sources that might have
a considerable impact, particularly residual Z Z crosstalk or other types of crosstalk, and
the impact that two-level-system defects can have on the operational error rates or co-
herence times [43, 57]. Finally, we do not consider leakage in our Clifford simulations,
even though a stochastic leakage model can still be simulated efficiently and capture the
impact of this error [20].

1.2.4. OPERATING A TRANSMON QUBIT

INITIALIZATION AND RESET

The most straightforward way to initialize a transmon qubit is simply by leaving the qubit
idle for several times longer than the relaxation time T1. For transmon qubits, this typ-
ically leads to the qubit being in the ground state with high probability. This is more
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commonly known as passive initialization. However, there is still some probability of
the qubit being excited, widely referred to as a residual excitation [62–65]. Furthermore,
idling for an extended period can become inefficient for qubits with higher T1 [63]. If a
high-fidelity, quantum non-demolition (QND) readout is available, the qubit can be ini-
tialized by measurement and post-selection on the qubit being in the ground state [63].
This is sometimes referred to as a heralded initialization. To avoid any post-selection, a
conditional operation can be used to transfer the population in |1〉 to |0〉 whenever the
qubit is measured to be excited [75, 76]. However, the latency between the measurement
and the conditional operation should be low to maximize the initialization fidelity. Fi-
nally, initialization may be performed using an unconditional reset operation [47, 77–
79]. Resetting the state of a qubit is one of the slower operations, with a typical duration
being in the range 100−500 ns range. These operations reset a qubit to the ground state
with a typical fidelity of around 99% or higher.

READOUT

Transmon measurement is typically based on dispersive readout [80–82]. We consider a
transmon qubit capacitively coupled to a dedicated readout resonator. In the dispersive
regime, when the qubit frequency is far detuned from the resonator frequency (relative
to the coupling strength), there is a state-dependent shift of the resonator frequency.
This can be used to infer the qubit’s state by probing the resonator. The Hamiltonian of
this system is given by [71]

H ≈ħωr a†a +ħωq b†b +ħα
2

b†b†bb +ħg (ab† +a†b), (1.27)

where a (a†) and b (b†) are the annihilation (creation) operators for the resonator and
transmon qubit, respectively,ωr andωq are the resonator and qubit frequencies,α is the
transmon anharmonicity, and g is the coupling strength. Here, we have approximated
the transmon Hamiltonian as that of a Duffing oscillator and taken a rotating-wave ap-
proximation. To further simplify the discussion, it is useful to restrict this Hamiltonian
to the computational levels by taking b† →σ+ and b →σ−, which leads to the infamous
Jaynes-Cumming Hamiltonian [51, 83]

HJC =ħωr a†a +ħωq

2
σz +ħg (aσ++a†σ−). (1.28)

This Hamiltonian is exactly solvable and can accurately describe many interactions and
processes where the interactions with the higher-excited states do not play a significant
role. The dispersive regime is obtained when the qubit-resonator detuning ∆=ωq −ωr

is much larger than the coupling strength g , i.e., when
∣∣g /∆

∣∣≪ 1. In this regime, there is
no direct exchange interaction between the transmon qubit and the readout resonator.
This means that we can accurately approximate the Hamiltonian to second order using
perturbation theory in terms of g /∆, resulting in [53, 80, 81]

Hdisp ≈ħωr a†a +ħ
(
ωq +χ)

2
σz +ħχσz a†a, (1.29)

where χ= g 2/∆ is the qubit-state dependent shift of the resonator frequency, commonly
known as the dispersive shift. If the qubit is in |0〉, the frequency of the resonator isωr −χ.
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Alternatively, if the qubit is in |1〉, the frequency is shifted toωr +χ. Measurement can be
performed by applying a microwave tone to the resonator at some probe frequency. This
populates the resonator with photons, resulting in a state-dependent coherent state. The
output field of the resonator is typically measured using heterodyne detection, extract-
ing the "in-phase" (I) and "quadrature" (Q) components of the signal. These signal com-
ponents are combined and integrated over time to produce the final analog outcome in
the IQ plane, which contains information about the qubit’s state. This value can then be
converted to a binary outcome by using a threshold that maximizes the measurement
fidelity, which is determined during calibration.

In the dispersive regime, the interactions between the qubit and the resonators are
virtual processes. However, these processes can involve the higher-excited states, which
we have ignored so far but are important to consider. Accounting for these interac-
tions [53] leads to a dispersive shift of χ= g 2α/(∆(∆+α)). The qubit frequency is shifted
to ω̃q =ωq +g 2/∆, and the resonator frequency is shifted to ω̃r =ωr −g 2/(∆+α), which
together lead to the Hamiltonian

Hdisp ≈ħω̃r a†a +ħ ω̃q

2
σz +ħχσz a†a. (1.30)

Since σz commutes with Hdisp, dispersive readout constitutes a QND measurement,
meaning that any subsequent measurement should lead to the same outcome as the
initial measurement. For the dispersive approximation to be accurate, the number of
photons n in the resonator should be well below the critical photon number ncrit, i.e.,
n ≪ ncrit, where ncrit = ∆2/

(
4g 2

)
[53]. We refer the reader to Refs. [53, 71] for a more

detailed discussion on the readout and the detection of the outgoing resonator field.
The readout of transmon qubits is one of the slowest operations and typically exhibits

a higher error rate. In most cases, the readout is done in around 500 ns [20, 29, 30, 32],
though there have been demonstrations of optimized setups that can measure a qubit in
about 100 ns or less [84–87]. The readout fidelity is typically around 99% [20, 29, 30, 32,
84, 86, 88], with some measurements approaching 99.9% [85, 87]. As with other opera-
tions, the readout can also induce leakage [89–91]. Finally, we note that there are meth-
ods for improving the readout performance by using a flux pulse [87] or a microwave
pulse [92, 93] that are typically not employed in most current experiments.

SINGLE-QUBIT GATES

Single-qubit gates are typically performed using a microwave drive. Typically, each trans-
mon qubit has a dedicated microwave-drive line (see Ref. [59]) that is capacitively cou-
pled to the qubit and a time-dependent voltage Vd (t ) used to perform rotations. This
introduces a drive term to the Hamiltonian of the form Hd = iħξd (t )

(
a† −a

)
, with ξd

being proportional to the voltage Vd (t ). In particular, choosing the form of the applied
voltage such that ξd (t ) = 2εd (t )cos

(
ωd t +φd

)
results in

Hd = iħεd (t )
[

e i (ωd t+φd ) +e−i (ωd t+φd )
](

a† −a
)

, (1.31)

whereωd is the drive frequency,φd is the phase of the drive, εd (t ) is the time-dependent
drive amplitude. Such a microwave drive can be used to perform rotations around any
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axis in the equatorial plane of the Bloch sphere. More specifically, the axis of rotation is
determined by the phase φd , while the angle of rotation is determined by the duration t
and amplitude εd (t ).

Since transmon qubits are weakly anharmonic, these microwave pulses can lead to
leakage outside the computational subspace due to a non-zero spectral overlap with the
ω12 transition frequency. Note that this can also lead to phase errors as the drive may
lead to a repulsion of |1〉 and |2〉. This results in a shift ofω01, leading to the accumulation
of a relative phase between these states. To mitigate this, the so-called DRAG (Derivative
Reduction Adiabatic Gate) [94, 95] pulse-shaping technique can minimize both types of
errors. This technique has enabled single-qubit gates to be routinely realized with high
fidelity (99.9% or higher [35, 96]), with typical gate times being about 20 ns.

Phase gates, or more generally, rotations around the ẑ axis of any angle, can be per-
formed “in software” by updating the phase of the microwave drive [71, 97]. This method
is preferred over realizing these rotations by flux-pulsing the qubit away from the fre-
quency sweet spot for a fixed duration. This is because performing these virtual gates
does not require additional microwave or flux pulses, meaning that they can be applied
instantly (by being realized together with other pulses) and with no error rate.

TWO-QUBIT GATES

The interactions between pairs of transmon qubits are enabled by introducing a cou-
pling between them. While this can be a direct capacitive coupling, typically, the cou-
pling is mediated by a resonator instead [80, 81, 98]. This allows the transmon qubits to
be placed further apart on the device. The resonator mediating this interaction is typi-
cally called the coupling bus resonator. Here, we will focus on such a coupling.

Let us consider a system of two transmon qubits, each coupled to the same bus res-
onator. The Hamiltonian corresponds to this system can be written as

H ≈
2∑

i=1

[
ħωqi b†

i bi +ħαi

2
b†

i b†
i bi bi

]
+ħωr a†a +

2∑
i=1

ħgi (ab†
i +a†bi ), (1.32)

where ωqi and αi are the frequency and anharmonicity of each transmon qubit, with
i ∈ {1,2}. The frequency of the resonator isωr , gi is the coupling between each transmon
with the resonator. Finally, a is the annihilation operator for the resonator, and bi is
the annihilation operator for each transmon. Here, we have once again modeled each
transmon as a Duffing oscillator and performed a rotating-wave approximation. Next,
we consider the dispersive regime, where both qubits are far detuned from the resonator,
i.e., when

∣∣gi /∆i
∣∣ ≪ 1 with ∆i = ωqi −ωr for i ∈ {1,2}. In this regime, the two transmon

qubits can interact by only virtually populating the resonator [53, 80, 81, 98].
The Hamiltonian can be rewritten by using the approximate dispersive transforma-

tion and an expansion to second order in gi /∆i , leading to [53]

H̃ ≈
2∑

i=1

[
ħω̃qi b†

i bi +ħαi

2
b†

i b†
i bi bi

]
+ħω̃r a†a +ħJ

(
b†

1b2 +b1b†
2

)
+

2∑
i=1

ħχi a†ab†
i bi +

∑
i ̸= j

ħΞi j b†
i bi

(
b†

i b j +b†
j bi

)
,

(1.33)
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where the frequencies ω̃qi and ω̃r include Lamb shifts, χi ≃ 2αi g 2
i /∆2

i is a cross-Kerr
coupling strength between each qubit and the resonator, while Ξi j = −αi gi g j /

(
2∆i∆ j

)
is the strength of a coupling interaction that depends on the qubit excitation number
and that is small and can therefore be ignored. Importantly, J is the resonator-induced
coupling strength between the two qubits that enables their interaction, which is given
by

J = g1g2

2

(
1

∆1
+ 1

∆2

)
. (1.34)

If the resonator is in the ground state, then the cross-Kerr coupling and the resonator
Hamiltonian terms can be ignored, leading H̃ to be in the same form as the Hamiltonian
that can be obtained when considering a direct capacitive coupling, see Refs. [53, 71].
We can expand the coupling term in the form

ħJ
(
b†

1b2 +b1b†
2

)
=ħ

[
J (|01〉〈10|+h.c.)+

p
2J (|11〉〈02|+h.c.)+ . . .

]
, (1.35)

where |i j 〉 = |i 〉⊗ | j 〉 denotes the product state of the first and second transmon qubits,
respectively. Expressing the coupling term in this form reveals exchange interactions
in the different excitation manifolds that scale with (approximately) a factor of

p
2 with

the excitation number. Therefore, interactions involving the higher-excited states are
expected to lead to shorter two-qubit gate times. Note that the frequencies of the two
coupled transmon qubits are chosen such that when they are at their respective fre-
quency sweet spots, this interaction is significantly suppressed. However, there is still
some residual coupling, which is an important error source that we discuss in more de-
tail later in this section.

Next, we consider both of these transmon qubits to be flux-tunable and explore the
frequency spectrum of this system as a function of the applied flux. In particular, we will
consider using the interactions between the computational and higher-excited states to
perform a two-qubit controlled-phase gate [60], which is also the two-qubit gate we will
consider throughout this dissertation. We assume that ωq2 > ωq1 such that an external
flux is applied only to the second transmon to bring its frequency down to an interaction
point while the first transmon remains at its frequency sweet spot.

When the two transmon qubits are coupled to each other, the exchange interac-
tions result in an avoided crossing between the states |11〉 and |02〉 at the interaction
point where ω2 =ωq1 −α2. Without a coupling, these states would be degenerate at this
point. However, the coupling mediated by the resonator lifts this degeneracy and shifts
the frequency ω1 of the state |11〉 (relative to the single-excitation states) by an amount
ζ=ω11−ω01−ω10+ω00, typically referred to as the Z Z coupling strength. This frequency
shift can be exploited to realize a conditional-phase gate [60, 99].

Flux-pulsing the higher-frequency qubit down from its maximum frequency at the
sweet spot to the interaction point ωint =ωq1 −α2, i.e., to the |11〉↔ |02〉 avoided cross-
ing, for some fixed time leads to an accumulation a conditional phase. More specifically,
restricting ourselves to the computational subspace, this interaction leads to a phase-
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gate of the form

UCZ =


e iφ00 0 0 0

0 e iφ01 0 0
0 0 e iφ10 0
0 0 0 e iφ11

 ,

where φi j = ∫
d tωi j (t ) represents the dynamical phase accumulated by |i j 〉 over the

frequency excursion, withωi j being the frequency of this state. Using single-qubit phase
(Z ) rotations, this gate can be brought to the form of

UCZ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 e iφ2Q

 ,

whereφ2Q =φ11−φ01−φ10+φ00 =
∫

d tζ (t ) is the acquired two-qubit conditional phase.
Control over φ2Q enables the realization of any controlled-phase gate. In particular, for
φ2Q = (2m +1)π this leads to a CZ gate (see Eq. (1.4)), with m being an integer. An accu-
rate expression for ζ is given in Ref. [60].

Given that these gates rely on an interaction between the computational and higher-
excited states, it is vital to consider the leakage induced when calibrating this gate. Per-
haps the most successful approach for realizing this gate uses slower ("baseband") flux
pulses that bring the higher-frequency qubit to the interaction point. These flux pulses
can be adiabatic with respect to the avoided crossing, in which case the eigenstate |11〉
at the qubit sweet spot is allowed to slowly evolve into the instantaneous eigenstate
|11〉 = (|11〉+ |02〉)/

p
2 of the Hamiltonian at the avoided crossing. At the avoided cross-

ing, the frequency of this state is shifted, allowing it to pick up the conditional phase. The
flux pulse is then again slowly turned off, adiabatically returning the state |11〉 back to
|11〉. Such a trajectory aims to minimize the leakage to |02〉 and can be further optimized
using a fast-adiabatic approach [100]. An alternative approach is to use a non-adiabatic
flux pulse, which quickly brings |11〉 to the avoided crossing [101]. There, |11〉 is allowed
to rotate to |02〉 and back, picking up a conditional phase of φ2Q =π at the end of the full
rotation. The goal, in this case, is to calibrate the gate duration such that the population
returns to the computational subspace at the end of the gate. In practice, calibrations of
this gate aim to minimize the gate duration and generally fall in between these two ap-
proaches. When using bi-polar flux pulses, leakage interference can also be exploited to
minimize the leakage induced by this gate [66, 102]. In particular, Ref. [102] outlines the
possible strategies to minimize leakage when using relatively fast flux pulses. In Chap-
ter 2, we develop a parameterized error model for the leakage induced by this gate and
further discuss the interactions between leaked and computational qubits.

Another challenge when performing such gates are the distortions of the flux pulse
applied to the higher-frequency qubit. These can be partially resolved by using pre-
distortion corrections and by using bi-polar flux pulses that exploit the symmetry around
the frequency sweet spot [66, 102, 103]. Flux-pulsed CZ gates are routinely implemented
in 20−60 ns and can achieve high fidelities (around 99.9% and possibly higher) and low



1

20 1. INTRODUCTION

leakage rates (roughly 0.1%) [43, 66, 102, 104]. However, in larger devices, the gate fideli-
ties are often closer to 99% [20, 30, 32]. Apart from the possible crosstalk problems, the
performance of these gates can be impacted by the presence of two-level-system defects
that can become resonant with one of the qubits at some point during the frequency
excursion, leading to lower fidelities and higher leakage [43].

When both qubits are at their sweet spots and sufficiently detuned from each other,
the Z Z interaction strength is significantly suppressed. However, there is still some
residual coupling left, with ζ/2π typically being ∼ 100 kHz, but it can be as high as
∼ 1 MHz [29]. This is commonly called the residual Z Z coupling or crosstalk. Note
that this coupling is a function of the qubit frequencies. Pulsing either of the two trans-
mon qubits away to avoid an interaction can lead to an increase or a decrease in this
coupling. This residual Z Z coupling can lead to coherent and correlated Z Z errors dur-
ing qubit idling and spectator errors [105, 106]. Replacing the coupling resonator with a
tunable coupler [107–115] enables the suppression of the residual Z Z crosstalk, but this
comes at the price of more complicated gate calibration and the introduction of addi-
tional control lines. In fact, when performing multiple operations simultaneously, it is
challenging to cancel out the residual crosstalk fully. However, crosstalk errors can also
be a significant error source, especially in the context of quantum error correction.

The controlled-phase gate is not the only two-qubit gate possible with the coupling
considered in this section. For an overview of the possible two-qubit gates, we refer the
reader to Ref. [71].

1.2.5. OTHER SUPERCONDUCTING QUBITS

While the transmon qubit is arguably the most successful superconducting qubit, many
other qubits can be defined using superconducting circuits. One particularly promising
candidate is the fluxonium qubit [116], which is designed to overcome some of the lim-
itations of the transmon design. The circuit of the fluxonium is similar to the transmon,
where in addition to the capacitance and Josephson junction in parallel, it also features
a large shunting inductance (see Fig. 5.1 for a schematic of the circuit). This leads to the
Hamiltonian

H = 4EC q2 −E J cos
(
φ−φe

)+ 1

2
ELφ

2, (1.36)

where the symbols and operators were introduced when discussing the harmonic res-
onator and transmon Hamiltonians earlier in this chapter. The large shunting induc-
tance leads to an insensitivity to charge noise without sacrificing the anharmonicity like
the transmon qubit. These large inductances can be realized using an array of Josephson
junctions [117, 118] or materials like granular aluminum [119] with high kinetic induc-
tance. The large inductance allows fluxonium qubits to be highly anharmonic, which
is one aspect in which this can be seen as an improvement over the transmon design.
The large inductance also suppresses the sensitivity to flux noise, while a large capac-
itance further localizes the lowest energy states, increasing the coherence times. The
fluxonium parameters are typically chosen such that 2 ≤ E J /EC ,E J /EL ≤ 10 [120]. This
leads to a low qubit transition frequency, typically below 1 GHz, and to remarkably high
coherence times, which have surpassed the millisecond barrier [121, 122]. However, this
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comes with the price that operations are generally not as straightforward to implement.
We discuss the fluxonium qubit in more detail in Chapter 5.

We refer the reader to Ref. [53] for a review of superconducting circuits and circuit
quantum electrodynamics and Ref. [71] for a review of superconducting qubits and their
operation.

1.3. QUANTUM ERROR CORRECTION
Quantum systems are inherently susceptible to noise due to the decoherence resulting
from interactions with their environment or the finite fidelity with which qubit opera-
tions can be realized. Even the current state-of-the-art quantum processors typically
exhibit error rates that are significantly higher than the low error rates necessary to per-
form practical quantum computation [10, 123]. Lowering the physical error rates has
proven to be a formidable engineering challenge, and it is unlikely that an inherently
protected qubit exhibiting sufficiently low error rates will emerge over the coming years.

Once the concept of quantum computation started to gain ground and the first po-
tentially useful algorithms began to emerge, researchers soon realized that the fragility
of quantum systems is a fundamental problem and that for a quantum computer to ever
exist in practice, some robustness to noise will most likely be necessary. Similar con-
cerns were also raised when classical processors were still being developed, which ulti-
mately led to introducing the theory of (classical) error correction [124]. Error correc-
tion schemes generally revolve around introducing some redundancy and encoding the
information to enable the detection and subsequent correction of the errors that have
occurred.

Translating the concepts of error correction from the classical setting to the quantum
one turned out to be non-trivial. This can be mainly attributed to the following reasons:

• The no-cloning theorem [125–127] states that it is impossible to copy the quantum
information in the qubits. This contrasts with the classical case, where a bit can be
copied when introducing redundancy.

• Qubit measurements lead to the collapse of the quantum state, meaning it is im-
possible to directly observe the state of a qubit encoding the quantum informa-
tion. For comparison, the state of a classical bit can be measured.

• Quantum information is continuous. Classical bits of information can only take
one of two discrete states for all intents and purposes, and an error typically flips
the state of the bit. Qubits, on the other hand, use continuous phases and ampli-
tudes to encode information. This also implies that small shifts in these continu-
ous variables can accumulate over time and are not trivial to detect.

These obstacles made it seem that error correction would not be possible in the
quantum case. This changed when researchers realized that quantum information could
be redundantly encoded in highly entangled states involving many physical qubits. Fur-
thermore, it was realized that it was possible to measure the parity of subsets of these
without disturbing the encoded state. Importantly, these parity measurements can de-
tect whether errors have occurred on the encoding qubits. These measurements also
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lead to the discretization of continuous errors. This ultimately led to Peter Shor propos-
ing the first QEC code [13].

1.3.1. STABILIZER CODES
Many error-correcting codes, including the code that Peter Shor first proposed [13], fall
under the category of stabilizer codes [128]. The surface code [129–131], which is the
focus of this dissertation, is another example of a stabilizer code. Generally, stabilizer
codes are attractive due to the relative simplicity of their formalism, which makes it sim-
pler to characterize their distance and define their logical operators.

An [[n,k,d ]] stabilizer code encodes k logical qubits into a system of n physical qubits
in a 2n-dimensional Hilbert space H . These physical qubits are typically called the data
qubits. The code is defined by a stabilizer group S , which is an Abelian subgroup of
the n-qubit Pauli Pn group such that −I ∉ S . The stabilizer group S can be charac-
terized by n −k independent generator S1,S2, . . . ,Sn−k , i.e. S = 〈S1,S2, . . . ,Sn−k〉. These
generators define a subspace HL ⊆ H , referred to as the code space or the logical sub-
space, which is spanned by the states |ψ〉 (also called code words) that are stabilized by
the elements of S , i.e.

HL = {|ψ〉 ∈H | s |ψ〉 = |ψ〉∀s ∈S
}

.

For simplicity, the generators are often just referred to as the stabilizers of the code. One
can always find a pair of logical operators for each encoded logical qubit. These logical
operators (in the Pauli group) commute with each stabilizer but are not in S . In other
words these operators belong to the centralizer of S , defined as C (S ) = {P ∈Pn | sP =
Ps∀s ∈ S }. Therefore the set of logical operators is given by C (S )/S . In this disserta-
tion, we will commonly denote a logical operator as PL , where P is some Pauli operator.
The distance d of the code is then defined as d = minPL∈C (S )/S |PL |, i.e., the minimum
weight of any logical operator. Since the logical operators commute with the stabilizers,
it should be clear that an error that is in C (S )/S (or in other words, it happens to be
a logical operator) will not be detectable by the stabilizer checks. Therefore, the code
distance d is related to the maximum weight of an error correctable by a given code. For
a more thorough description of the stabilizer formalism, we refer the user to Ref. [132].

There is some freedom in choosing these generators, and they are typically chosen to
make their measurement in experiments easier, which involves considering the weight
of each of these generators and their locality given a specific device layout and connec-
tivity. These measurements are usually done with the help of additional qubits, called
the ancilla qubits that are generally interspersed with the data qubits encoding the log-
ical information. The measurements are typically performed using several two-qubit
gates to map the data-qubit parity to the state of the ancilla qubit, after which the ancilla
qubit is measured and ideally reset to the ground state in preparation for the following
round of error correction.

THE SURFACE CODE

One of the most promising and popular stabilizer codes is the surface code [130, 131],
which is derived from the toric code that Alexei Kitaev initially proposed [129]. One of
the main advantages of the surface code over other codes is that it can be implemented
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Figure 1.2: a Schematic depicting the fabric of the surface code, in this case, for a distance-seven surface code
patch. The data qubits are shown as white circles. The ancilla qubits performing the X -type (blue plaque-
ttes) and Z -type (green plaquettes) stabilizer measurements are shown as blue and green circles, respectively.
Representatives of the XL and ZL logical operators are shown in yellow and red, respectively. The standard
circuits measuring the X -type and Z -type stabilizers are shown in b and c, respectively. The data qubits are
labeled according to their position relative to the ancilla qubit performing the measurement (NW=northwest,
NE=northeast, SW=southwest, SE=southeast). The single-qubit operations labeled H, M, and R correspond to
Hadamard gates, measurement, and qubit reset, respectively.

on a planar layout and requires only nearest-neighbor coupling between the physical
qubits. This makes the surface code relatively straightforward to realize in an experi-
ment. In addition to the surface code’s modest requirements on the quantum hardware,
the surface code is highly resilient to physical error, as exhibited by the high thresholds
(defined in the following subsection) achieved for realistic error models [130, 133–135].
These characteristics make the surface code an ideal choice for near-term demonstra-
tions of quantum memory experiments [20, 32]. The good logical performance that the
surface code can achieve also makes it a promising candidate for future fault-tolerant
architectures [130, 136].

The fabric of the rotated surface code is depicted in Fig. 1.2a and consists of data
qubits and ancilla qubits arranged in a square 2D array. A distance d rotated surface code
is composed of n = d 2 data qubits and d 2 −1 ancilla qubits. The stabilizers of the sur-
face code are typically defined as the X -type and Z -type plaquette operators of the form
X X X X and Z Z Z Z , respectively (or X X and Z Z at the boundary of the code). The XL

and ZL logical operators of the surface code correspond to chain-like products of X and
Z operators connecting the vertical or horizontal boundaries of the code, see Fig. 1.2a
for examples of these logical operators. The X -type stabilizers are used to detect phase-
flip (Z ) errors, while the Z -type stabilizers are used to identify bit-flip (X ) errors. Since
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Y ∼ X Z , these stabilizers can also detect Y errors occurring on the data qubits.

Typically, a dedicated ancilla qubit measures each stabilizer, commonly called the
X -type and Z -type ancilla qubits. These ancilla qubits are positioned in the center of
each plaquette and are, therefore, coupled to two or four data qubits each. The circuits
used to perform these measurements are illustrated in Fig. 1.2b,c. These circuits use the
controlled-phase gate as the two-qubit gate of choice, which is typical for flux-tunable
transmon-qubit processors. The order of the two-qubit gates in each circuit is chosen to
minimize the logical error rates [59, 137]. This order also allows for the stabilizers to be
measured in parallel, reducing the overall time it takes to perform these measurements.
However, executing these measurements in parallel is impossible in some architectures
(namely, architectures not employing tunable couplers such as Ref. [20]) since perform-
ing the two-qubit gates in parallel also drives unwanted interactions between qubits [59].
In these cases, the two types of stabilizers can either be measured sequentially or in a
pipelined fashion [59], where the measurement of the X -type stabilizers begins while
the Z -type ancilla qubits are still being measured or vice versa. This pipelined approach
uses the fact that qubit readout is typically much slower than performing single-qubit or
two-qubit gates to reduce the duration of an error-correction cycle. Finally, while ancilla
qubits are typically reset to the ground state after each measurement [47, 77–79], this
is not required for measuring the stabilizers of the surface code, and many experiments
that do not have access to a fast and high-fidelity reset do not include this operation [32].

The stabilizer measurement outcomes ma,r measured by ancilla qubit a at QEC round
r are typically referred to as the syndromes. While these contain information about the
errors that have occurred, they are generally harder for a decoder to process. For ex-
ample, consider a single X error on one of the data qubits in the bulk of the code be-
fore several rounds of otherwise ideal stabilizer measurements are done. This error will
anti-commute with the two neighboring Z -type stabilizers, flipping their measurement
outcomes. However, unless corrected, this error will also flip all subsequent outcomes
(in the absence of any other error). This means that a single error flips the outcome of
multiple syndrome outcomes. For this reason, decoders typically consider the syndrome
defects da,r = ma,r ⊕ma,r−1, where ⊕ is the binary addition operator. This can effectively
be considered as taking the time derivative of the syndromes. The syndrome defects iso-
late an error’s location in space and time, and in particular, a detectable error leads to
one or more da,r = 1. For example, the X error that we previously considered will now
only flip the syndrome defects measured by the two neighboring Z -type ancilla qubits in
the following round. The syndrome outcomes required for calculating the defects at the
first round of QEC can be inferred from the prepared initial state (or assumed to be trivial
if, for example, they are not well defined). Finally, the above equations hold if the ancilla
qubits are reset after each QEC round. However, if these reset operations are omitted
from the circuit, the defects are instead calculated using da,r = ma,r ⊕ma,r−2. We note
that the concept of the syndrome defects can be generalized to that of detectors and de-
tection events [123]. In particular, in error-correction experiments, it is generally possible
to identify sets of measurement outcomes, referred to as the detectors, that should ide-
ally have a deterministic parity. Errors will then lead to observing a different parity than
the expected one, referred to as a detection event. For more information, we refer the
reader to Refs. [123, 138].
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1.3.2. FAULT-TOLERANCE

QEC is currently the most promising approach to achieving fault-tolerant quantum com-
putation by suppressing the logical error rates to a sufficiently low level. However, QEC
might seem counter-intuitive at first. In particular, we have already emphasized that
it introduces an enormous qubit overhead, depending on the code distance needed to
achieve a sufficiently low error rate. However, repeated stabilizer measurements also
introduce many single-qubit gates, two-qubit gates, and measurements. Each of these
physical operations is itself noisy and can induce errors, which can propagate through
the circuit and either directly lead to a logical error or to a detectable one that could be-
come a logical error when incorrectly decoded. Therefore, it is not immediately apparent
whether measuring the stabilizers will ultimately allow for removing more errors than it
introduces. Similar considerations should also be made for the logical operations per-
formed during the computation, which are much more involved than any single physical
operation.

The theory of fault tolerance [132, 139] considers this problem and provides design
principles for constructing circuits that can tolerate the errors induced by the noisy op-
erations employed in these circuits. Of course, whether a circuit is fault tolerant is a func-
tion of the gates and the order in which they are performed, the code, the noise model
considered, and the decoder. Because of this, defining if an operation is fault-tolerant is
often challenging. Instead, fault-tolerance principles should be considered a design phi-
losophy when constructing circuits or algorithms. In particular, one should ensure that
single faults do not lead to logical errors (especially for codes with d > 3), as that would
mean the logical error rate will be comparable to the physical error rate. More generally,
circuits should be designed to minimize their logical error rate. This typically involves
considering each fault location in the circuit and ensuring that as many faults as possible
are correctable. In an analogy to the code distance, the circuit distance dc refers to the
minimum number of faults that lead to an undetectable logical error [140]. By definition,
dc ≤ d and the circuit should ideally be distance-preserving, such that dc = d .

Transversality becomes a useful tool for designing such circuits when considering
logical operations. A transversal logical single-qubit gate is realized by performing a
physical operation on each data qubit (or a subset of these qubits) in parallel. Similarly,
a transversal logical two-qubit gate is realized by doing two-qubit gates between pairs of
data qubits (that are in separate code blocks) in parallel. Transversal gates are typically
much easier to implement in practice. A fault in such a gate is guaranteed to propagate
to, at most, a single error in each code block, meaning that errors remain localized. Since
the physical gates are ideally executed in parallel, performing transversal gates takes as
long as doing a single physical operation. Therefore, transversal gates are generally ex-
pected to achieve lower logical error rates than non-transversal ones. Unfortunately, a
no-go theorem states that quantum codes that can detect any single-qubit error do not
allow for a universal set of transversal gates [141]. It was also shown in Ref [142] that for
2D stabilizer codes, only Clifford gates can be performed in constant depth using only
local gates.

So far, we considered the number of faults in a circuit that can lead to a logical er-
ror. However, it is also essential to ensure that the logical error rate is suppressed when
increasing the code distance d (or equivalent, the number of encoding qubits n). When
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the physical error rates are high, we expect that the operations introduced by QEC will
induce more errors than they can correct, such that increasing the distance d will likely
increase the logical error rate. On the other hand, when the physical error rates are low,
and error events are sparse, we expect to be able to correct more errors than those in-
troduced by the stabilizer measurements, such that the logical error rate goes down with
the code distance. The threshold is the physical error rate corresponding to the crossover
between these two regimes. Note that this threshold is a property of the noise model, the
code, and the decoder.

To simplify the discussion, let us assume that each fault occurs with the same prob-
ability p and let the threshold error probability be pth. We will also consider the case
where we store the logical information and perform repeated rounds of QEC. Let εL (d)
be the logical error probability per round of QEC for a fixed p. Then, for p ≪ pth it should
hold that

lim
d→∞

εL (d) = 0.

Note that for p near the threshold, there might be an initial suppression of the logical
error rate for some lower code distances, followed by an increase for larger distances due
to finite-size effects [20]. In the regime of asymptotically low physical error rates, we only
need to consider the logical error rates due to the minimum-weight error chains. For a
surface code of an odd distance d , these are chains of weight (d +1)/2. In this regime,
the logical error rate is expected to scale with p according to [130]

εL (d) ∼ A (d) p(d+1)/2, (1.37)

where A (d) is the entropic contribution to the error rate, i.e., it corresponds to the num-
ber of low-weight error chains that lead to a logical error. This entropic factor is an im-
portant contribution to the error rate. For example, the rotated version of the surface
code uses fewer physical qubits than the unrotated one for the same distance d . Naively,
one might assume that the rotated code will have the same or lower logical error rate.
However, it has been shown that the rotated code has a much larger entropic contribu-
tion to the error rate, which can result in it performing worse than the unrotated version
for certain error rates and code distances [143].

Thresholds are not an ideal metric for comparing the performance of different codes,
as they not only depend on the decoder but can also have a strong dependence on the
assumptions made in the error model. Furthermore, the threshold is hard to estimate
experimentally, as it would require varying the physical error rates (which are all differ-
ent in the first place). Instead, the ability to suppress the logical error rate is typically
characterized by increasing the code distance and performing a fit to

εL (d) =C /Λ(d+1)/2, (1.38)

where Λ is the error-suppression factor and C is some fitting constant [19, 20, 30]. The
factorΛ attempts to capture how far below the threshold you are, withΛ≈ 1 correspond-
ing to being near the threshold. It should also be clear thatΛ is a function of the physical
error rates and circuit used. The goal of many current experiments is to demonstrate
Λ≫ 1, which is desirable as a higher value of Λ will reduce the qubit overhead required
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to reach sufficiently low logical error rates. Finally, note that while the suppression of
εL is typically expressed in terms of the code distance d , a more suitable choice is the
circuit distance dc [140].

1.3.3. ERROR CORRECTION IN PRACTICE

Realizing fault tolerance in practice is considerably more challenging. While circuit-level
depolarizing noise models are fairly realistic, the physical noise is often much more com-
plex. For example, increasing the scale of a processor may lead to a reduction in the co-
herence times [144]. Performing more operations in parallel may also increase the phys-
ical error rates due to the crosstalk [20, 43]. Although there have been some promising
demonstrations of logical error suppression [20, 30], unfortunately, there is no guarantee
that QEC will be sufficient to enable fault-tolerant computation, even if each operation
is designed to be theoretically fault-tolerant. Therefore, it is vital to follow the princi-
ples behind fault tolerance and to characterize the limiting factors behind the achieved
logical error rates in the experiment.

When describing the formalism of stabilizer codes, we assumed that each physical
qubit is a two-level system. Since transmon qubits are weakly anharmonic, operations
can induce leakage outside the computational subspace. Leakage is an example of a
non-conventional error that falls outside of stabilizer formalism, meaning that a stabi-
lizer code is not guaranteed to detect and correct such errors. This makes leakage a po-
tentially very threatening error that can increase the logical error rates or possibly even
prevent the suppression of the logical error rate by increasing the code distance [45]. In
Chapter 2, we develop a realistic model for leakage in flux-tunable transmon-qubit pro-
cessors and investigate the impact of leakage on the logical performance of a surface
code. We observe that leakage can lead to significantly higher error rates. In Chapters 3
and 4, we propose and experimentally implement operations to remove leakage outside
the computational subspace. We expect these operations can lead to lower logical error
rates and ensure the ability of these codes to suppress the logical error rate to sufficiently
low levels.

1.3.4. BEYOND THE SURFACE CODE

The performance of the surface code has been extensively explored for depolarizing
noise models, where each Pauli error occurs with the same probability. However, in
many experimental platforms, the noise experienced by the qubits is instead biased to-
ward one type of error. For example, flux-tunable transmon qubits typically exhibit ap-
proximately the same relaxation and dephasing rates when operated at the sweet spot,
where the qubit is insensitive to flux noise. However, transmon qubits may be fluxed
away to interact with other qubits [60] or avoid any unwanted interactions [59], increas-
ing the dephasing rate experienced by the qubit.

Several modifications to the standard surface code to deal with biased noise have
been proposed in the past [145–147]. For physical error rates that are well below the
threshold, rectangular surface codes with optimized aspect ratios have also been shown
to achieve good logical performance in the presence of biased noise [148]. The X Z Z X
surface code has been shown to have remarkably high thresholds under biased noise
models [149–151]. The X Z Z X surface code is a variant of the surface code, where the
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stabilizers of the code are of the form X Z Z X instead of the standard X X X X or Z Z Z Z
stabilizers used in the conventional surface code. The excellent performance of the
X Z Z X surface code has motivated proposals for architectures that are engineered to
exhibit a high noise bias [150, 152–154] and that have access to a bias-preserving CNOT
gate [152], allowing them to maintain the noise bias during the measurement of the sta-
bilizers.

While the surface code is generally promising, it has several downsides that might be
particularly relevant when considering future fault-tolerant architectures. This code has
a low encoding rate, requiring significantly more physical qubits for each logical one,
especially compared to certain quantum low-density parity check (LDPC) codes [140,
155–158]. Therefore, architectures based on the surface code will need a significant
qubit overhead to realize. Engineering such an extensive system can be challenging, as
it might require a very high fabrication accuracy, developing dilution refrigerators that
can accommodate these large processors, and possibly interconnecting multiple such
refrigerators.

It is also essential to consider the ease with which logical operations can be per-
formed using a given code. The surface code allows X , Z , and CNOT logical gates to
be performed transversally [159]. Hadamard gates are nearly transversal but require a
subsequent rotation of the code patch. However, other codes, such as two-dimensional
color code [160, 161], allow all logical Clifford operations to be done transversally [162,
163]. Therefore, it is possible for the surface code to ultimately perform worse than other
codes when performing a computation despite them having lower thresholds than the
surface code [164].

1.4. DECODERS
The measured syndromes, and by extension, the syndrome defects, contain information
about the errors that have occurred during the computation. It is then the task of a de-
coder to process this information to infer the most probable correction, hopefully restor-
ing the encoded logical information. Most decoders also require information about the
physical error rates to determine the most likely correction or error consistent with the
measured syndromes.

One of the essential characteristics of a decoder is the accuracy with which it can
predict the necessary corrections, as this directly impacts the logical performance of the
code. A more accurate decoder results in higher thresholds, reducing the qubit overhead
required to reach a sufficiently low logical error rate. However, the speed with which
the decoder can process the syndromes is also essential for ensuring scalability. In par-
ticular, a decoder must be able to decode the syndromes in real-time, i.e., the rate with
which the decoder processes the syndromes should be equal to or lower than the rate
with which they are generated. Otherwise, the decoding may lead to an exponential
slowdown of the computation due to an increasing backlog volume of syndromes that
need to be processed, more commonly known as the backlog problem [132, 165, 166].
How fast a decoder needs to be depends on the QEC cycle duration, which can differ sig-
nificantly depending on the physical platform. For transmon-qubit processors, a round
of QEC can typically be performed in ∼ 1 µs [165]. This also happens to be the tightest
constraint imposed by any platform, leading to this time being often used when bench-
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marking these decoders. Unfortunately, there is a general trade-off between the speed
and the accuracy of the decoder. Therefore, the goal is to design a decoder that is as
accurate as possible while still being fast enough for real-time decoding.

In practice, the reliance of a decoder on an error model can also be a practical prob-
lem. Constructing such a model in the first place requires an accurate characteriza-
tion of the operational error rates, typically using tomographic reconstruction (e.g., pro-
cess [167, 168] or gate-set [169–171] tomography) or partial characterization protocols
(e.g., randomized benchmarking [172–178]). However, each of these techniques has cer-
tain downsides. For example, tomographic protocols struggle to scale past a few qubits
and might fail to capture the impact of crosstalk when performing operations in paral-
lel. While randomized benchmarking protocols are more scalable, they do not provide
detailed information about the noise. Therefore, it is desirable for the decoder or some
protocol to infer the physical noise from the measured syndromes directly [30, 179–185].
However, these models still rely on certain assumptions and might not capture certain
physical errors, such as leakage. Unfortunately, the error rates fluctuate over time in real
physical systems [43, 57], which can further impact the accuracy of the decoder. Hence,
another desirable feature is the ability to adapt to such fluctuations as the computation
is being performed, the feasibility of which naturally depends on the timescale of these
fluctuations [180].

1.4.1. MAXIMUM-LIKELIHOOD DECODERS
A maximum-likelihood (ML) decoder finds the most likely correction given the observed
syndromes and a physical error model (typically only considering Pauli errors), making it
an optimal decoder by definition. In particular, this decoder considers all possible errors
consistent with the observed syndrome and divides them into several sets depending on
whether they correspond to a certain logical error. It then calculates the probability of
each set occurring and chooses the correction corresponding to the most probable one.
In particular, let us consider a stabilizer code that encodes a single logical qubit in n data
qubits. For any Pauli operator P ∈ Pn , we can define the (left) coset of S that contains
P , that is PS ≡ {Ps : s ∈ S }. Let s be the vector of observed syndrome outcomes and
let E be some representative Pauli operator that is consistent with s. The set of all Pauli
operators consistent with this syndrome is then given by the coset EC (S ), which can
further be partitioned as [186]

EC (S ) =C I ∪CX ∪CY ∪CZ ,

where CP = EPLS with PL being one of the logical operators of the code. The optimal
correction is, therefore, any Pauli operator belonging to the most likely coset of this par-
tition. This can be expressed as

C∗ = argmax
C∈{CI ,CX ,CY ,CZ }

P (C ) ,

where C∗ is the most likely coset, with the most likely correction being any c ∈ C∗. The
probability of the coset CP is given by P (CP ) = ∑

s∈S P (EPL s), with P ∈ {I , X ,Y , Z }. The
ML decoder achieves higher accuracy than decoders that find the most likely error given
the observed syndrome because it considers the degeneracy of errors. In particular, it
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is possible that the most probable coset does not correspond to the one containing the
most probable error.

Unfortunately, the general problem of ML decoder is inefficient to solve and has been
proven to be #P-complete [187]. However, certain codes under some specific noise mod-
els allow for an efficient implementation of ML decoding [186]. For more general noise
models, tensor network (TN) contraction can be used to solve an approximation of ML
decoding, resulting in a nearly optimal decoder [20, 148, 186]. In particular, TN de-
coders are most commonly seen and often referred to as ML decoders instead. While
technically more computationally efficient than general ML decoding, TN decoders are
still very computationally expensive, making them too slow for real-time decoding. As a
matter of fact, TN decoders are so computationally expensive that they are typically only
considered for small-distance to medium-distance codes [20, 148].

1.4.2. PERFECT-MATCHING DECODERS
The minimum-weight perfect matching (MWPM) decoder [131, 188] is perhaps the most
popular decoding algorithm for the surface code. Historically, some of the first explo-
rations of the performance of this code considered independent bit-flip and phase-flip
error models [131], where these errors could occur on each qubit before an otherwise
ideal round of stabilizer measurement. Under such a model, each error leads to at most
two syndrome defects measured either by the X -type or the Z -type stabilizers. This led
to the simple and intuitive idea of pairwise matching these defects based on the likeli-
hood of the shortest error chain leading to them. In other words, finding the most likely
pairing is equivalent to finding the most likely errors consistent with the measured syn-
dromes, which can be expressed as:

E∗ = argmax
E∈Pn

P (E | s) .

Unlike the ML decoder, MWPM does not consider any error degeneracy. Errors on any
data qubits on the code’s boundary (see Fig. 1.2) can lead to a single syndrome defect.
While this might first seem incompatible with pairwise matching, MWPM decodes can
deal with such an error by introducing a virtual defect when solving the matching prob-
lem.

The problem of minimum-weight perfect matching is well-known in graph theory
and is solvable in polynomial time using the Blossom algorithm [189], making the MWPM
a theoretically fast and efficient decoder. In particular, the worst-case complexity of the
MWPM decoder is O

(
N 3 log(N )

)
, where N is the number of nodes in the matching graph,

corresponding to the number of observed non-trivial syndrome defects (and potentially
a virtual boundary defect) [190]. Unfortunately, this complexity can potentially make
the decoder too slow for real-time decoding, especially in the case of superconducting-
qubit processors and when decoding large-distance surface codes. However, several im-
plementations of this algorithm have been shown to run with close to linear complexity
and possibly in constant average time [190–193].

In addition to the computational efficiency it boats, MWPM decoders lead to gener-
ally good logical performance. In the case of independent bit-flip and phase-flip errors,
the code-capacity threshold was found to be very high (approximately 10.3% [133]), ap-
proaching the threshold obtained using an ML decoder (about 10.9% [131]). For more
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realistic error models, such as phenomenological or circuit-level noise models consid-
ering depolarizing errors, MWPM decoders continue to demonstrate good logical per-
formance [130, 133–135] relative to other decoders. Note that some of the results above
are for the unrotated surface code, which performs similarly to the rotated version. Ulti-
mately, the exact values of the thresholds are not too important since they ultimately de-
pend on the error model considered. Importantly, the MWPM decoder achieves thresh-
olds in the range 0.5− 1.1% for circuit-level noise models [135], which are values that
seem feasible to achieve in experiments.

Despite their popularity, MWPM decoders have several downsides that ultimately
limit the accuracy that they can achieve. In particular, this decoder does not consider
the degeneracy of errors. Most implementations of MWPM also assume that the bit-flip
and phase-flip errors are uncorrelated. That is, if X and Z errors are happening with a
probability of O

(
p

)
each, it is assumed that Y errors are happening with a probability

of O
(
p2

)
. However, this isn’t the case when considering the depolarizing noise model.

More importantly, the noise observed in physical transmon-qubit processors also does
not follow this assumption. Ultimately, this contributes to MWPM decoders being less
accurate than ML decoders or other decoding algorithms that consider Y errors [20, 148,
186, 194, 195], which we further discuss in Chapter 8.

Another practical downside of MWPM is that it requires a physical error model, specif-
ically the probability of each independent error mechanism leading to one or two syn-
drome defects. While this can be extracted from a physical noise model, obtaining such a
model for experimental devices is not a trivial task (see the discussion in Sec. 1.4). There
are algorithms for estimating these probabilities directly from the measured syndrome
defects [30, 180, 184], bypassing the need for benchmarking operations. However, these
algorithms are also based on some assumptions about the errors. In particular, errors
such as crosstalk or leakage that can lead to multiple non-trivial syndrome defects vio-
late the typical assumptions behind these algorithms and potentially lead to inaccurate
estimates [184]. We discuss this in greater detail in Chapter 7.

1.4.3. BEYOND PERFECT-MATCHING DECODERS

Naturally, many other decoding algorithms have been proposed that improve the speed
or accuracy achieved by MWPM decoders. The Union-find (UF) decoder [196, 197] is
an example of another computationally efficient and fast algorithm that outperforms
MWPM in terms of speed. In particular, the UF decoder has a worst-case runtime that is
nearly linear in the number of syndrome defects [196, 197]. However, UF decoders lead
to slightly worse logical performance, such as the lower thresholds achieved under inde-
pendent bit-flip and phase-flip noise (around 9.9% for the surface code [196]). Efficient
hardware architectures for this decoder based on Field Programmable Gate Arrays (FP-
GAs) or Application Specific Integrated Circuits (ASICs) have been either proposed [198]
or implemented [199]. Other clustering-based decoders similar to the UF decoder have
also been realized and implemented on FPGA and ASIC [200]. In either case, these im-
plementations have demonstrated runtimes enabling real-time decoding in future ex-
periments (up to considerable code distances).

As previously mentioned, one of the more significant issues with the standard MWPM
decoder is its inability to deal with Y errors. In particular, Y errors lead to three or four
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non-trivial syndrome defects, which are, therefore, incompatible with pairwise match-
ing. More generally, X or Z errors can be represented as edges in a graphical representa-
tion of the physical error model. On the other hand, Y errors correspond to hyperedges
instead, transforming the graph into a hypergraph. Unfortunately, the MWPM algorithm
can only be executed on graphs, forcing it to ignore the correlations between the X -type
and the Z -type syndrome defects that Y errors lead to, ultimately leading to an increase
in the logical error rate [148].

There have been modifications to MWPM based on a two-pass correlation strategy to
better deal with these errors at the expense of increased decoder runtime [20, 194]. How-
ever, several other decoding algorithms have also been shown to achieve higher accuracy
than the MWPM decoder while still being efficient enough to be considered a possible
candidate for real-time decoding. For example, decoders based on belief-propagation
(BP) have shown that they can achieve good logical performance when applied to the
surface code [20, 148, 201]. These decoders use an iterative message-passing algorithm
to estimate the marginal probability of each error mechanism occurring based on the
observed syndrome defects and a hypergraph, where each hyperedge represents an er-
ror mechanism. The estimated marginal probabilities are then used to infer the most
likely error that has occurred. Unfortunately, the BP algorithm is not guaranteed to con-
verge to a solution when applied to the quantum setting due to the degeneracy of the
errors [201]. Instead, these decoders employ a secondary algorithm that uses the esti-
mated marginal error probabilities to find the solution whenever BP fails to converge.
One notable example of such an algorithm is ordered-statistics decoding (OSD), leading
to the BP-OSD decoder [140, 156, 202]. Alternatively, the marginal probabilities can be
translated to a set of edge weights, after which MWPM can be used to find the most likely
errors, leading to the so-called belief-matching decoder [20, 148, 201, 203]. Neural net-
work (NN) decoders have also achieved significantly higher accuracy than MWPM [195,
204]. These decoders can be trained directly on the measured syndromes, bypassing
the need to estimate the physical error rate accurately. We discuss such a decoder in
Chapter 8 and note that, in some cases, these decoders can demonstrate an accuracy
matching or even exceeding that of an ML decoder [195].

1.4.4. DECODER EXTENSIONS

In the discussion about the decoders so far, we have assumed that the stabilizer mea-
surement outcomes and, by extension, the syndrome defects are binary. In practice,
measurements of transmon qubits lead to continuous analog outcomes [53, 71]. It has
been shown that the information available in these analog outcomes, commonly re-
ferred to as the soft information, can be useful to a decoder and lead to lower logical error
rates [205, 206]. In particular, there have been extensions of the MWPM decoder [206]
and BP decoder [207] using the analog outcomes. In Chapter 8, we incorporate the ana-
log outcome into an ML decoder, again demonstrating an improvement in the logical
performance. Ref. [195] also provided the soft information to a transformer-based NN
decoder, again showing decreased logical error rates. In addition to the analog out-
comes, information about non-conventional errors such as leakage can also improve
the accuracy of the decoder. Ref. [195] also demonstrated that providing information
about the qubit leakage to their ML decoder improves the logical performance of the
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code. Therefore, extending other decoders to utilize this information is an open research
question.

1.5. DISSERTATION OUTLINE
In this dissertation, we focus on the challenges encountered when implementing error-
correcting codes in practice and how logical performance is affected by the noise en-
countered in transmon-qubit processors. We focus on the surface code, the most promis-
ing approach to achieving fault tolerance at the time of writing. Though we consider sev-
eral different error sources, we focus on the impact of non-conventional errors, namely
on leakage outside of the computational subspace. By performing simulations using re-
alistic error models or directly analyzing experimental data, we characterize the impact
and signatures of leakage in the surface code and develop schemes to detect and remove
this error. In addition to mitigating leakage, we investigate more accurate decoding al-
gorithms and heterogenous qubit architectures that can reduce the frequency crowding
problem.

In Chapter 2, we develop a physically realistic leakage error model for flux-tunable
transmon qubits and use density-matrix simulations to study how leakage behaves in a
distance-three surface code. We observe that leakage exhibits a stochastic behavior and
that a leaked qubit leads to an increase in the number of non-trivial syndrome defects
observed by the neighboring stabilizers. This can be interpreted as a signature of leak-
age, enabling the indirect detection by a set of computationally efficient Hidden Markov
models. We show that these models can detect the location and time of leakage events
with considerable accuracy, allowing us to post-select out the runs where leakage oc-
curred to restore the logical performance of the code.

While post-selection can be useful in some near-term experiments, leakage-reduction
units that bring leaked qubits back to the computational subspace are required to deal
with leakage in a scalable way. In Chapter 3, we present a leakage-reduction scheme
for the surface code that does not introduce a significant in either hardware or the time
required to perform a round of error correction. For data qubits, we propose using a
microwave pulse to transfer the population in the second-excited state to a readout res-
onator, which then quickly decays back to the ground state. We use another microwave
pulse that transfers the population between the second- and first-excited states of the
ancilla qubits, which we only apply when the qubit is measured to be in the second-
excited state. We show that these leakage-reduction units are effective in removing leak-
age and can reduce the impact of this error on the logical error rate of the code.

In Chapter 4, we realize the data-qubit leakage-reduction unit proposed in Chapter
3 in an experiment, where we demonstrate that this operation can be implemented to
remove most of the leaked population while having a minimal impact on the computa-
tional subspace. Furthermore, we demonstrate that this operation can be extended to
remove the population in the third-excited state and that it can also be applied to the
ancilla qubits. We show that incorporating these operations in a repeated weight-2 sta-
bilizer measurement experiment suppresses the build-up of leakage and the associated
signatures observed in the measurement outcomes.

We next take a closer look at another superconducting qubit, the fluxonium. Chap-
ter 5 explores how two-qubit gates between a transmon qubit and a fluxonium qubit can
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be realized. In particular, we propose a microwave-activated cross-resonance gate and
a controlled-phase gate between these qubits that rely on interactions with the higher-
excited states. By performing density-matrix simulations, we show that these gates can
be implemented with high fidelity and low leakage in a few hundred nanoseconds. The
controlled-phase gate is optimal for low-frequency fluxonium qubits, while the cross-
resonance gate achieves better performance over a large range of medium-range fre-
quencies. Finally, we show that an architecture employing both types of qubits and us-
ing the cross-resonance gate as the two-qubit gate of choice mitigates the problem of
frequency crowding and can have significantly higher fabrication yield compared to ar-
chitectures using only fixed-frequency transmon qubits and employing the same type of
gate.

Next, we consider some error-correction experiments implementing small-distance
codes. In Chapter 6, we realize a distance-two surface code and perform repeated rounds
of error detection to post-select out the detectable errors. We implement a suite of logical
operations, including arbitrary state initialization, measurement, and a universal single-
qubit gate set. We observe that the fault-tolerant variants of these operations achieve
a lower logical error rate than non-fault-tolerant ones. In addition, we explore the im-
pact of several error sources on the observed logical performance using density-matrix
simulations.

In Chapter 7, we implement a distance-seven quantum repetition code and demon-
strate the ability to suppress the logical error rate of the code when increasing the code
distance. However, we observe that going from distance three to distance seven leads to
only a slight decrease in the logical error rate. We study the reasons behind this perfor-
mance by performing circuit-level noise simulations of this experiment and by analyzing
the correlations between the observed stabilizer measurement outcomes.

Finally, we consider improving the logical performance of the surface code by using
a decoder that can more accurately infer the errors that have occurred given the ob-
served syndrome defects. Neural network decoders are particularly promising as they
have been shown to achieve good logical performance without requiring any prior infor-
mation about the physical error rates. In Chapter 8, we explore the performance of such
a decoder on both simulated data using circuit-level noise models and experimental data
from recent surface-code experiments. We demonstrate that this decoder can achieve
logical error rates approaching those possible with approximate maximum-likelihood
decoders. We furthermore show that incorporating the additional information available
from the analog measurement outcomes obtained in practice when reading out trans-
mon qubits to the decoder allows it to achieve even lower logical error rates.

We conclude this dissertation by providing a summary of each chapter and providing
an outlook on some challenges that can significantly impact the logical performance of
error-correcting codes in near-term and long-term experimental realization, or that can
help reduce the qubit overhead required to reach the low logical error rates required for
performing useful computation.
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2
LEAKAGE DETECTION FOR A

TRANSMON-BASED SURFACE CODE

Leakage outside of the qubit computational subspace, present in many leading experi-
mental platforms, constitutes a threatening error for quantum error correction (QEC) for
qubits. In this chapter, we develop a leakage-detection scheme via Hidden Markov mod-
els (HMMs) for transmon-based implementations of the surface code. By performing re-
alistic density-matrix simulations of the distance-3 surface code (Surface-17), we observe
that leakage is sharply projected and leads to an increase in the surface-code defect prob-
ability of neighboring stabilizers. Together with the analog readout of the ancilla qubits,
this increase enables the accurate detection of the time and location of leakage. We restore
the logical error rate below the memory break-even point by post-selecting out leakage,
discarding less than half of the data for the given noise parameters. Leakage detection via
HMMs opens the prospect for near-term QEC demonstrations, targeted leakage reduction
and leakage-aware decoding and is applicable to other experimental platforms.

This chapter, with minor modifications, has been published in npj Quantum Inf. 6, 102 (2020) [1]. B.M.V. per-
formed the density-matrix simulations as well as the HMM analysis. Furthermore, B.M.V. contributed exten-
sively to the writing.
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2.1. INTRODUCTION
Recent advances in qubit numbers [2–5], as well as operational [6–14] and measure-
ment [15–17] fidelities have enabled leading quantum computing platforms, such as
superconducting and trapped-ion processors, to target demonstrations of quantum er-
ror correction (QEC) [18–24] and quantum advantage [3, 25–27]. In particular, two-
dimensional stabilizer codes, such as the surface code, are a promising approach [24, 28]
towards achieving quantum fault tolerance and, ultimately, large-scale quantum com-
putation [29]. One of the central assumptions of textbook QEC is that any error can
be decomposed into a set of Pauli errors that act within the computational space of
the qubit. In practice, many qubits such as weakly-anharmonic transmons, as well as
hyperfine-level trapped ions, are many-level systems which function as qubits by re-
stricting the interactions with the other excited states. Due to imprecise control [13, 30,
31] or the explicit use of non-computational states for operations [6, 7, 10, 12, 32–36],
there exists a finite probability for information to leak from the computational subspace.
Thus, leakage constitutes an error that falls outside of the domain of the qubit stabilizer
formalism. Furthermore, leakage can last over many QEC cycles, despite having a fi-
nite duration set by the relaxation time [37]. Hence, leakage represents a menacing error
source in the context of quantum error correction [18, 37–44], despite leakage probabil-
ities per operation being smaller than readout, control or decoherence error probabili-
ties [7, 9, 10, 45].

The presence of leakage errors has motivated investigations of its effect on the code
performance and of strategies to mitigate it. A number of previous studies have focused
on a stochastic depolarizing model of leakage [39, 41–44], allowing the exploration of
large-distance surface codes and the reduction of the code threshold using simulations.
These models, however, do not capture the full details of leakage, even though a spe-
cific adaptation has been used in the case of trapped-ion qubits [42–44]. Complemen-
tary studies have considered a physically realistic leakage model for transmons [37, 40],
which was only applied to a small parity-check unit due to the computational cost of
many-qutrit density-matrix simulations. In either case, leakage was found to have a
strong impact on the performance of the code, resulting in the propagation of errors, in
the increase of the logical error rate and in a reduction of the effective code distance. In
order to mitigate these effects, there have been proposals for the introduction of leakage
reduction units (LRUs) [38, 40, 41, 46] beyond the natural relaxation channel, for modi-
fications to the decoding algorithms [18, 39, 41], as well as for the use of different codes
altogether [43]. Many of these approaches rely on the detection of leakage or introduce
an overhead in the execution of the code. Recently, the indirect detection of leakage in a
3-qubit parity-check experiment [21] was realized via a Hidden Markov Model (HMM),
allowing for subsequent mitigation via post-selection. Given that current experimental
platforms are within reach of quantum-memory demonstrations, detailed simulations
employing realistic leakage models are vital for a comprehensive understanding of the
effect of leakage on the code performance, as well as for the development of a strategy to
detect leakage without additional overhead.

In this chapter, we demonstrate the use of computationally efficient HMMs to detect
leakage in a transmon implementation of the distance-3 surface code (Surface-17) [47].
Using full-density-matrix simulations [28, 48] we first show that repeated stabilizer mea-
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surements sharply project data qubits into the leakage subspace, justifying the use of
classical HMMs with only two hidden states (computational or leaked) for leakage de-
tection. We observe a considerable increase in the surface-code defect probability of
neighboring stabilizers while a data or ancilla qubit is leaked, a clear signal that may be
detected by the HMMs. For ancilla qubits, we further consider the information available
in the analog measurement outcomes, even when the leaked state |2〉 can be discrim-
inated from the computational states |0〉 and |1〉 with limited fidelity. We demonstrate
that a set of two-state HMMs, one HMM for each qubit, can accurately detect both the
time and the location of a leakage event in the surface code. By post-selecting on the
detected leakage, we restore the logical performance of Surface-17 below the memory
break-even point, while discarding less than half of the data for the given error-model
parameters. Finally, we outline a minimal set of conditions for our leakage-detection
scheme to apply to other quantum-computing platforms. Although post-selection is
not scalable due to an exponential overhead in the number of required experiments,
these results open the prospect for near-term demonstrations of fault tolerance even in
the presence of leakage. Furthermore, HMM-based leakage detection enables the pos-
sibility of scalable leakage-aware decoding [18, 41] and real-time targeted application of
LRUs [38, 40, 41].

2.2. RESULTS

2.2.1. LEAKAGE ERROR MODEL

We develop an error model for leakage in superconducting transmons, for which two-
qubit gates constitute the dominant source of leakage [6, 7, 10, 12, 13, 30–35], while
single-qubit gates have negligible leakage probabilities [9, 45]. We thus focus on the
former, while the latter is assumed to induce no leakage at all. We assume that single-
qubit gates act on a leaked state as the identity. Measurement-induced leakage is also
assumed to be negligible.

We use full-trajectory simulations to characterize leakage in the Net-Zero implemen-
tation [10] of the controlled-phase gate (CZ), considered as the native two-qubit gate
in a transmon-based Surface-17, with experimentally targeted parameters (see Tab. 2.1
and Tab. 2.2). This gate uses a flux pulse such that the higher frequency qubit (Qflux)
is fluxed down from its sweetspot frequency ωmax to the vicinity of the interaction fre-
quency ωint = ωstat −α, where ωstat is the frequency of the other qubit (Qstat), which
remains static, and α is the transmon anharmonicity. The inset in Fig. 2.1 a shows a
schematic diagram of the frequency excursion taken by Qflux. A (bipolar) 30 ns pulse
tunes twice the qubit on resonance with the |11〉↔ |02〉 avoided crossing, corresponding
to the interaction frequency ωint. This pulse is followed by a pair of 10 ns single-qubit
phase-correction pulses. The relevant crossings around ωint are shown in Fig. 2.1 a and
are all taken into account in the full-trajectory simulations. The two-qubit interactions
give rise to population exchanges towards and within the leakage subspace and to the
phases acquired during gates with leaked qubits, which we model as follows.

The model in Fig. 2.1 b considers a general CZ rotation, characterized by the two-
qubit phase φ11 for state |11〉 and φ = 0 for the other three computational states. The
single-qubit relative phases φ01 and φ10 result from imperfections in the phase correc-
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Figure 2.1: CZ error model for two transmon qubits. Schematic of the relevant interactions and the CZ error
model for two transmons, a higher frequency one Qflux and a lower frequency one Qstat. The inset of a shows
the frequency excursion taken by Qflux from its sweetspot frequency ωmax to the interaction frequency ωint,
corresponding to the |11〉 ↔ |02〉 avoided crossing, followed by weaker single-qubit phase-correction pulses.
During this excursion, the frequency ωstat of Qstat remains static at ωstat = ωint − |α|, where α is the anhar-
monicity. a Sketch of all the considered avoided crossings, with the two-qubit system energy E on the verti-
cal axis versus the frequency ωflux of Qflux on the horizontal axis. b The parametrized CZ error model. An
ideal CZ is constructed with the two-qubit phase φ11 and the single-qubit phases φ01 and φ10. It is followed
by single-qubit rotations with phases φL

flux and φL
stat, conditioned on the other transmon being leaked, and by

the SWAP-like exchanges with leakage probability L1 and leakage-mobility probability Lm (see Sec. 2.2.1 for
precise definitions). Relaxation and decoherence, indicated by the orange arrows, are taken into account as
well.
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tions. The conditional phase is defined as φCZ = φ11 −φ01 −φ10 +φ00, which for an
ideal CZ is φCZ = π. In this chapter, we assume φ00 = φ01 = φ10 = 0 and φCZ = φ11 = π.
We set φ02 =−φ11 in the rotating frame of the qutrit, as it holds for flux-based gates [36].

Interactions between leaked and non-leaked qubits lead to extra phases, which we
call leakage conditional phases. We consider first the interaction between a leaked Qflux

and a non-leaked Qstat. In this case the gate restricted to the {|02〉 , |12〉} subspace has the
effect di ag

(
e iφ02 ,e iφ12

)
, which up to a global phase corresponds to a Z rotation on Qstat

with an angle given by the leakage conditional phaseφL
stat :=φ02−φ12. Similarly, if Qstat is

leaked, then Qflux acquires a leakage conditional phaseφL
flux

:=φ20−φ21. These rotations

are generally non-trivial, i.e., φL
stat ̸= π and φL

flux ̸= 0, due to the interactions in the 3-
excitation manifold which cause a shift in the energy of |12〉 and |21〉 (see Sec. 2.5.1).
If the only interaction leading to non-trivial φL

stat, φ
L
flux is the interaction between |12〉

and |21〉, then it can be expected that φ12 = −φ21 in the rotating frame of the qutrit,
leading to φL

stat =π−φL
flux.

Leakage is modeled as an exchange between |11〉 and |02〉, i.e., |11〉 7→p
1−4L1 |11〉+

e iφp4L1 |02〉 and |02〉 7→ −e−iφp4L1 |11〉 +p
1−4L1 |02〉, with L1 the leakage probabil-

ity [49]. We observe that the phaseφ and the off-diagonal elements |11〉〈02| and |02〉〈11|
do not affect the results presented in this chapter, so we set them to 0 for computational
efficiency (see Sec. 2.4.2). The SWAP-like exchange between |12〉 and |21〉 with probabil-
ity Lm, which we call leakage mobility, as well as the possibility of further leaking to |3〉,
are analyzed in Fig. 2.9 and Sec. 2.5.1.

The described operations are implemented as instantaneous in the quantumsim pack-
age (introduced in [48]), while the amplitude and phase damping experienced by the
transmon during the application of the gate are symmetrically introduced around them,
indicated by light-orange arrows in Fig. 2.1 b. The dark-orange arrows indicate the in-
creased dephasing rate of Qflux far away from ωmax during the Net-Zero pulse. The error
parameters considered in this chapter are summarized in Sec. 2.4.2. In particular, unless
otherwise stated, L1 is set to 0.125% and φL

flux and φL
stat are randomized for each qubit

pair across different batches consisting of 2×104 or 4×104 runs of 20 or 50 QEC cycles,
respectively. This choice is motivated by our expectation that these phases are deter-
mined by the frequencies and anharmonicities of the two transmons as well as by the
parameterization of the flux pulse implementing each CZ between the pair, which is
fixed when tuning the gate experimentally. Since φL

flux and φL
stat have not been char-

acterized in experiment, we instead choose to randomize them in order to capture an
average behavior.

Some potential errors are found to be small from the full-trajectory simulations of the
CZ gate and thus are not included in the parametrized error model. The population ex-
change between |01〉↔ |10〉, with coupling J1, is suppressed (< 0.5%) since this avoided
crossing is off-resonant by one anharmonicity α with respect to ωint. While |12〉 ↔ |21〉
is also off-resonant by α, the coupling between these two levels is stronger by a fac-
tor of 2, hence potentially leading to a larger population exchange (see Sec. 2.5.1). The
|11〉↔ |20〉 crossing is 2α away from ωint and it thus does not give any substantial phase
accumulation or population exchange (< 0.1%). We have compared the average gate fi-
delity of CZ gates simulated with the two methods and found differences below ±0.1%,
demonstrating the accuracy of the parametrized model.
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2.2.2. EFFECT OF LEAKAGE ON THE CODE PERFORMANCE

We implement density-matrix simulations [48] to study the effect of leakage in Surface-
17 (Fig. 2.2). We follow the frequency arrangement and operation scheduling proposed
in [47], which employs three qubit frequencies for the surface-code lattice, arranged as
shown in Fig. 2.2 a. The CZ gates are performed between the high-mid and mid-low
qubit pairs, with the higher frequency qubit of the pair taking the role of Qflux (see Fig. 2.1).
Based on the leakage model in Sec. 2.2.1, only the high and mid frequency qubits are
prone to leakage (assuming no leakage mobility). Thus, in the simulation, those qubits
are included as three-level systems, while the low-frequency ones are kept as qubits.
Ancilla-qubit measurements are modeled as projective in the {|0〉 , |1〉 , |2〉} basis and an-
cilla qubits are not reset between QEC cycles. As a consequence, given the ancilla-qubit
measurement m [n] at QEC cycle n, the syndrome is given by m [n]⊕m [n −1] and the
surface-code defect d [n] by d [n] = m [n]⊕m [n −2]. For the computation of the syn-
drome and defect bits, we assume that a measurement outcome m [n] = 2 is declared
as m [n] = 1. The occurrence of an error is signaled by d [n] = 1. To pair defects, we
use a minimum-weight perfect-matching (MWPM) decoder, whose weights are trained
on simulated data without leakage [28, 50], and we benchmark its logical performance
in the presence of leakage errors. The logical qubit is initialized in |0〉L and the logi-
cal fidelity is calculated at each QEC cycle, from which the logical error rate εL can be
extracted [28]. The physical error rate of a single transmon qubit under the effect of de-
coherence is defined in [28].

Fig. 2.2 b shows that the logical error rate εL is sharply pushed above the memory
break-even point (the physical error rate) by the leakage. We compare the MWPM de-
coder to the decoding upper bound (UB), which uses the complete density-matrix infor-
mation to infer a logical error. A strong increase in εL is observed for this decoder as well.
Furthermore, the logical error rate has a dependence on the leakage conditional phases
for both decoders, as shown in Fig. 2.2 c,d. While not included in these simulations, we
do not expect the inclusion of leakage mobility or the possibility of further leaking to |3〉
to have a considerable effect on the logical performance (see Sec. 2.5.7).

2.2.3. PROJECTION AND SIGNATURES OF LEAKAGE

We now characterize leakage in Surface-17 and the effect that a leaked qubit has on its
neighboring qubits. From the density matrix (DM), we extract the probability pL

DM (Q) =
P(Q ∈L ) = 〈2|ρQ |2〉 of a qubit Q being in the leakage subspace L at the end of a QEC cy-
cle, after the ancilla-qubit measurements, where ρQ is the reduced density matrix of Q.

In the case of data-qubit leakage, pL
DM (Q) sharply rises to values near unity, where it

remains for a finite number of QEC cycles (on average 16 QEC cycles for the considered
parameters, given in Tab. 2.1). We refer to this sharp increase of pL

DM (Q) as projection
of leakage. An example showing this projective behavior (in the case of qubit D4), as
observed from the density-matrix simulations, is reported in Fig. 2.3 a. This is the typ-
ical behavior of leakage, as shown in Fig. 2.3 b by the bi-modal density distribution of
the probabilities pL

DM (Q) for all the high-frequency data qubits Q. As data-qubit leak-
age is associated with defects on the neighboring ancilla qubits (due to the use of the
|02〉 ↔ |11〉 crossing by the CZ gates) and with the further propagation of defects in the
following QEC cycles (as shown below), we attribute the observed projection to a back-
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Figure 2.2: The effect of leakage on the performance of Surface-17. a Schematic overview of the Surface-
17 layout [47]. Pink (resp. red) circles with D labels represent low- (high-) frequency data qubits, while
blue (resp. green) circles with X (Z ) labels represent ancilla qubits of intermediate frequency, performing
X -type (Z -type) parity checks. b Dependence of the logical error rate εL on the leakage probability L1 for
a MWPM decoder (green) and for the decoding upper bound (red). The black solid line shows the physical
error rate of a single transmon qubit. The dashed line corresponds to the recently achieved L1 in experi-
ment [10]. Logical error rate εL for MWPM (c) and upper bound (UB) (d) as a function of the leakage con-
ditional phases φL

flux and φL
stat (for L1 = 0.5%). Here, these phases are not randomized but fixed to the given

values across all runs. The logical error rates are extracted from an exponential fit of the logical fidelity over
20 QEC cycles and averaged over 5 batches of 2×104 runs for b and one batch of 2×104 runs for c,d. Error bars
correspond to 2 standard deviations estimated by bootstrapping (not included in b due the error bars being
smaller than the symbol size).
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Figure 2.3: Projection and signatures of qubit leakage. a-b Projection of data-qubit leakage. a Example real-
ization of a data-qubit leakage event, extracted from the density-matrix simulations. b Density histogram of all
data-qubit leakage probabilities over 20 bins, extracted over 4×104 runs of 50 QEC cycles each. c-e Signatures
of data-qubit leakage. c Sketch of how leakage on a data qubit, e.g. D4, alters the interactions with neighboring
stabilizers, leading to their anti-commutation (see Sec. 2.5.6). d The average projection of the leakage proba-
bility pL

DM of D4 over all events, where this probability is first below and then above a threshold of pL
th = 0.5 for

at least 5 and 8 QEC cycles, respectively. e The average number of defects on the neighboring stabilizers of D4
over the selected rounds, showing a jump when leakage rises above pL

th . f-h Signatures of ancilla-qubit leakage.
f Sketch of how leakage on an ancilla qubit, e.g. Z1, effectively disables the stabilizer check and probabilistically
introduces errors on the neighboring data qubits. g We select realizations where Z1 was in the computational
subspace for at least 5 QEC cycles, after which it was projected into |2〉 by the readout and remained in that
state for at least 5 QEC cycles. h The corresponding defect rate on neighboring stabilizers during the period of
leakage. The error bars, which were estimated by bootstrapping, are smaller than the symbol sizes.
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action effect of the repetitive stabilizer measurements (see Fig. 2.10 and Sec. 2.5.2). Given
this projective behavior, we identify individual events by introducing a threshold pL

th (Q),
above which a qubit is considered as leaked. Here we focus on leakage on D4, sketched
in Fig. 2.3 c. Based on a threshold pL

th (D4) = 0.5, we select leakage events and extract
the average dynamics shown in Fig. 2.3 d. Leakage grows over roughly 3 QEC cycles fol-
lowing a logistic function, reaching a maximum probability of approximately 0.8. We
observe this behavior for all three high-frequency data qubits D3,D4,D5. Each of the
high-frequency data qubits equilibrates towards a steady-state population (extracted by
averaging pL

DM (Q) over all runs without selecting individual events) after many QEC cy-
cles (see Fig. 2.11 and Sec. 2.5.3).

We observe an increase in the defect probability of the neighboring ancilla qubits
during data-qubit leakage. We extract the probability pd of observing a defect d = 1
on the neighboring stabilizers during the selected data-qubit leakage events, as shown
in Fig. 2.3 e. As pL

DM (D4) reaches its maximum, pd goes to a constant value of approx-
imately 0.5. This can be explained by data-qubit leakage reducing the stabilizer checks
it is involved in to effective weight-3 anti-commuting checks, illustrated in Fig. 2.3 c
and as observed in [21]. This anti-commutation leads to some of the increase in εL

for the MWPM and UB decoders in Fig. 2.2 b. Furthermore, we attribute the observed
sharp projection of leakage (see Fig. 2.3 d) to a back-action effect of the measurements
of the neighboring stabilizers, whose outcomes are nearly randomized when the qubit
is leaked (see Sec. 2.5.6 and Sec. 2.5.2). The weight-3 checks can also be interpreted as
gauge operators, whose pairwise product results in weight-6 stabilizer checks, which can
be used for decoding [51–54], effectively reducing the code distance from 3 to 2.

We also find a local increase in the defect probability during ancilla-qubit leakage.
For ancilla qubits, pL

DM is defined as the leakage probability after the ancilla projec-
tion during measurement. Since in the simulations ancilla qubits are fully projected,
pL

DM (Q) = 0,1 for an ancilla qubit Q, allowing to directly obtain the individual leakage
events, as shown in Fig. 2.3 g. We note that an ancilla qubit remains leaked for 17 QEC cy-
cles on average for the considered parameters (given in Tab. 2.1). We extract pd dur-
ing the selected events, as shown in Fig. 2.3 h. In the QEC cycle after the ancilla qubit
leaks, pd abruptly rises to a high constant value. We attribute this to the Z rotations ac-
quired by the neighboring data qubits during interactions with the leaked ancilla qubit,
as sketched in Fig. 2.3 f and described in Sec. 2.2.1 The angle of rotation is determined
by φL

flux or φL
stat, depending on whether the leaked ancilla qubit takes the roles of Qstat

or Qflux, respectively (see Sec. 2.4.1). In the case of Z -type parity checks, these phase er-
rors are detected by the X -type stabilizers. In the case of X -type checks, the phase errors
on data qubits are converted to bit-flip errors by the Hadamard gates applied on the data
qubits, making them detectable by the Z -type stabilizers. Furthermore, while the ancilla
qubit is leaked, the corresponding stabilizer measurement does not detect any errors on
the neighboring data qubits, effectively disabling the stabilizer, as sketched in Fig. 2.3 f.
This, combined with the spread of errors, defines the signature of ancilla-qubit leak-
age and explains part of the observed increase in εL for the MWPM and UB decoders
in Fig. 2.2 b.

For both data and ancilla qubits, a leakage event is correlated with a local increase in
the defect rate, albeit due to different mechanisms. However, interpreting the spread of
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defects as signatures of leakage suggests the possible inversion of the problem, allowing
for effective leakage detection.

2.2.4. HIDDEN MARKOV MODELS
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Figure 2.4: Schematic representation of an HMM for leakage detection. For both ancilla and data qubits only
two hidden states are considered, corresponding to the qubit being either in the computational (teal) or leak-
age subspace (orange). Transitions between these states occur each QEC cycle, depending on the leakage and
seepage probabilities. The state-dependent observables are the defects d (Q) on the neighboring stabilizers.
For ancilla qubits, the in-phase component Im of the analog measurement is also used as an observable.

We use a set of HMMs, one HMM for each leakage-prone qubit, to detect leakage.
This approach is similar to what recently demonstrated in a 3-qubit parity-check ex-
periment [21], but we use simpler HMMs to make them computationally efficient. In
general, an HMM (see Fig. 2.4 and Sec. 2.4.3) models the time evolution of a discrete set
of hidden states, the transitions between which are assumed to be Markovian. At each
time step a set of observable bits is generated with state-dependent emission probabil-
ities. Depending on the observed outcomes, the HMM performs a Bayesian update of
the predicted probability distribution over the hidden states.

We apply the concept of HMMs to leakage inference and outline their applicabil-
ity for an accurate, scalable and run-time executable leakage-detection scheme. This is
made possible by two observations. The first is that both data- and ancilla-qubit leakage
are sharply projected (see Sec. 2.2.3) to high pL

DM (Q). This justifies the use of classi-
cal HMMs with only two hidden states, corresponding to the qubit being in the compu-
tational or leakage subspace.

The second observation is the sharp local increase in pd associated with leakage
(see Sec. 2.2.3), which we identify as the signature of leakage. This allows us to consider
only the defects on the neighboring stabilizers as relevant observables and to neglect
correlations between pairs of defects associated with qubit errors. In the case of ancilla-
qubit leakage, in addition to the defects, we consider the state information obtained
from the analog measurement as input to the HMMs. Each transmon is dispersively
coupled to a dedicated readout resonator. The state-dependent shift in the single-shot
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readout produces an output voltage signal, with in-phase and quadrature components
(see Sec. 2.5.5).

The transition probabilities between the two hidden states are determined by the
leakage and seepage probabilities per QEC cycle, which are, to lowest order, a function
only of the leakage probability L1 per CZ gate and of the relaxation time T1 (see Sec. 2.4.3).
We extract the state-dependent emission probabilities from simulation. When a qubit is
not leaked, the probability of observing a defect on each of the neighboring stabilizers
is determined by regular errors. When a data qubit is leaked, the defect probability is
fixed to a nearly constant value by the stabilizer anti-commutation, while when an an-
cilla qubit is leaked, this probability depends on φL

flux and φL
stat. Furthermore, the ana-

log measurement outcome can be used to extract a probability of the transmon being
in |0〉 , |1〉 or |2〉 using a calibrated measurement (see Sec. 2.2.6 and Sec. 2.5.5).

2.2.5. DATA-QUBIT LEAKAGE DETECTION
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Figure 2.5: Data-qubit leakage detection. a Average response in time of the HMMs (diamonds) to leakage,
in comparison to the actual leakage probability extracted from the density-matrix simulations (dashed lines).
The average is computed by selecting single realizations where pL

DM (Q) was below a threshold pL
th = 0.5 for at

least 5 QEC cycles and then above it for 5 or more rounds. Error bars, estimated by bootstrapping, are smaller
than the symbol sizes. b Precision-recall curves for the data qubits over 4× 104 runs of 50 QEC cycles each
using the HMM predictions (solid) and the leakage probability from the density matrix (dashed). The dotted
line corresponds to a random guess classifier for which P is equal to the fraction of leakage events (occurring
with probability given by the density matrix) over all QEC cycles and runs.
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We assess the ability of the data-qubit HMMs to accurately detect both the time and
the location of a leakage event. We recall that these HMMs take the defects on neigh-
boring stabilizers as input. The average temporal response pL

HMM (Q) of the HMMs to an

event is shown in Fig. 2.5 and compared to the leakage probabilities pL
DM (Q) extracted

from the density-matrix simulation. Events are selected when crossing a threshold pL
th ,

as described in Sec. 2.2.3, and the response is averaged over these events. For the data-
qubit HMMs, the response pL

HMM (Q) closely follows the probability pL
DM (Q) from the

density matrix, reaching the same maximum leakage probability but with a smaller lo-
gistic growth rate. This slightly slower response is expected to translate to an average
delay of about 1 QEC cycles in the detection of leakage.

We now explore the leakage-detection capability of the HMMs. The precision P of
an HMM tracking leakage on a qubit Q is defined as

PHMM (Q) =P
(
Q ∈L | pL

HMM (Q) > pL
th (Q)

)
(2.1)

and can be computed as

PHMM (Q) =
∑

i pL
DM (Q, i )θ

[
pL

HMM (Q, i )−pL
th (Q)

]∑
i θ

[
pL

HMM (Q, i )−pL
th (Q)

] , (2.2)

where i runs over all runs and QEC cycles and θ is the Heaviside step function. The preci-
sion is then the fraction of correctly identified leakage events (occurring with probability
given by the density matrix), over all of the HMM detections of leakage. The recall R of
an HMM for a qubit Q is defined as

RHMM (Q) =P
(
pL

HMM (Q) > pL
th (Q) |Q ∈L

)
, (2.3)

and can be computed as

RHMM (Q) =
∑

i pL
DM (Q, i )θ

[
pL

HMM (Q, i )−pL
th (Q)

]∑
i pL

DM (Q, i )
. (2.4)

The recall is the fraction of detected leakage by the HMM over all leakage events (occur-
ring with probability given by the density matrix). The precision-recall (PR) of an HMM
(see Fig. 2.5 b) is a parametric curve obtained by sweeping pL

th (Q) and plotting the value

of P and R. Since the PR curve is constructed from pL
HMM (Q) over all QEC cycles and

runs, it quantifies the detection ability in both time and space. The detection ability of
an HMM manifests itself as a shift of the PR curve towards higher values of P and R

simultaneously. We define the optimality O (Q) of the HMM corresponding to qubit Q as

O (Q) = AUCHMM (Q)/AUCDM (Q) , (2.5)

where AUCHMM (Q) is the area under the PR curve of the HMM and AUCDM (Q) is the
area for the optimal model that predicts leakage with probability pL

DM (Q), achieving the
best possible PDM and RDM. An average optimality of O (Q) ≈ 67.0% is extracted for
the data-qubit HMMs. Given the few QEC-cycle delay in the data-qubit HMM response
to leakage, the main limitation to the observed HMM optimality O (Q) is false detection
when a neighboring qubit is leaked (see Fig. 2.12 and Sec. 2.5.4).
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2.2.6. ANCILLA-QUBIT LEAKAGE DETECTION
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Figure 2.6: Ancilla-qubit leakage detection. a-d Precision-recall curves for the ancilla-qubit HMMs over
4×104 runs of 50 QEC cycles each. In a,b the HMMs rely only on the observed defects on the neighboring stabi-
lizers. In c-f the HMMs further get the in-phase component Im of the analog readout as input, from which pL

m
is extracted. The dotted line corresponds to a random guess classifier for which P is equal to the fraction of
leakage events over all QEC cycles and runs. As ancilla-qubit leakage is directly measured, PDM = 1 for all val-
ues of R (not shown). Insets in c,d: the HMM optimality O as a function of the discrimination fidelity F L be-
tween |1〉 and |2〉. The corresponding error bars (extracted over 2×104 runs of 20 QEC cycles each) are smaller
than the symbol size. The vertical dashed line corresponds to the experimentally measured F L = 88.4%. e,f Av-
erage response in time of the ancilla-qubit HMMs (diamonds) to leakage, in comparison to the actual leakage
probability extracted directly from the readout (dashed), extracted over 4×104 runs of 50 QEC cycles each. The
average is computed by selecting single realizations where the qubit was in the computational subspace for at
least 3 QEC cycles and then in the leakage subspace for 5 or more.

We now assess the ability of the ancilla-qubit HMMs to accurately detect both the
time and the location of a leakage event. These HMMs take as observables the defects
on the neighboring stabilizers at each QEC cycle as well as the analog measurement out-
come of the ancilla qubit itself.

We first consider the case when the HMMs rely only on the increase in the defect
probability pd and show their PR curves in Fig. 2.6 a,b. Given that projective mea-
surements are used in the simulations, AUCDM (Q) = 1 for ancilla qubits. Bulk ancilla
qubits have a moderate O (Q) ≈ 47%, while boundary ancilla qubits possess nearly no
ability to detect leakage. We attribute this to the boundary ancilla qubits having only a
single neighboring stabilizer, compared to bulk ancilla qubits having 3 in Surface-17.
The HMMs corresponding to pairs of same-type (X or Z ) bulk ancilla qubits exhibit
visibly different PR curves (see Fig. 2.6 a,b), despite the apparent symmetry of Surface-
17. This symmetry is broken by the use of high- and low-frequency transmons as data
qubits, leading to differences in the order in which an ancilla qubit interacts with its
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neighboring data qubits (see [47] and Fig. 2.8), together with the fact that CZs with L1 ̸= 0
do not commute in general. In addition to a low O (Q), the errors propagated by the
leaked ancilla qubits (and hence the signatures of ancilla-qubit leakage) depend on φL

stat
and φL

flux (randomized in the simulations). The values of these phases generally lead to

different pd than the ones parameterizing the HMM. The latter is extracted based on
the average pd observed over the runs (see Sec. 2.4.3). In the worst-case (for leakage
detection), these phases can lead to no errors being propagated onto the neighboring
data qubits, resulting in the undetectability of leakage. The mismatch between the fluc-
tuating pd (over φL

stat and φL
flux) and the average value hinders the ability of the ancilla-

qubit HMMs to detect leakage. Even if these phases were individually controllable, tun-
ing them to maximize the detection capability of the HMMs would also lead to an unde-
sirable increase in εL of a (leakage-unaware) decoder (see Fig. 2.2).

To alleviate these issues, we consider the state-dependent information obtained from
the analog measurement outcome. The discrimination fidelity between |1〉 and |2〉 is de-
fined as

F L = 1− P (1 | 2)+P (2 | 1)

2
, (2.6)

where P
(
i | j

)
is the conditional probability of declaring the measurement outcome i

given that the qubit has been prepared in state | j 〉, assuming that no excitation or re-
laxation occur during the measurement (accounted for in post-processing). Here we
assume that P (0 | 2) = P (2 | 0) = 0, as observed in experiment (see Fig. 2.13). We focus
on the discrimination fidelity as in our simulations relaxation is already accounted for
in the measurement outcomes (see Sec. 2.4.2). We extract F L from recent experimen-
tal data [21], where the readout pulse was only optimized to discriminate between the
computational states. By taking the in-phase component of the analog measurement,
for each state | j 〉 a Gaussian distribution N j is obtained, from which we get F L = 88.4%
(see Sec. 2.5.5).

In order to emulate the analog measurement in simulation, given an ancilla-qubit
measurement outcome m ∈ {0,1,2}, we sample the in-phase response Im from the cor-
responding distribution Nm . The probability of the ancilla qubit being leaked given Im

is computed as

pL
m = N2 (Im)∑

j∈{0,1,2} N j (Im)
. (2.7)

The ancilla-qubit HMMs use the sampled responses Im , in combination with the ob-
served defects, to detect leakage.

The PR curves of the HMMs using the analog readout are shown in Fig. 2.6 c,d, from
which an average O (Q) ≈ 97% can be extracted for the ancilla-qubit HMMs. The tempo-
ral responses of the HMMs to leakage are compared to the leakage probabilities extracted
from measurement in Fig. 2.6 e,f, showing a relatively sharp response to a leakage event,
with an expected delay in the detection of at most 2 QEC cycles. While F L = 88.4%
might suggest an even sharper response, this is not the case as the HMM update de-
pends on both the prior pL

HMM (which is low when the qubit is not leaked) and on the
likelihood of the sampled Im together with the observed defects on the neighboring an-
cilla qubits (see Sec. 2.4.3). While the initial response is not immediately high, given a
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(not too) low threshold, corresponding to a high R, the HMMs still achieve a high P ,
leading to the high O observed (see Fig. 2.6 c, d). A further benefit of the inclusion of the
analog-measurement information is that the detection capability of the HMMs is now
largely insensitive to the fluctuations in φL

stat and φL
flux.

We explore O (Q) as a function of F L , as shown in the inset of Fig. 2.6 c,d. To do
this, we model N j for each state as symmetric and having the same standard devia-
tion, in which case F L is a function of their signal-to-noise ratio only (see Sec. 2.5.5).
At low F L

(
≲ 60%

)
the detection of leakage is possible but limited, especially for the

boundary ancilla qubits. On the other hand, even at moderate values of F L (≈ 80%),
corresponding to experimentally achievable values, ancilla-qubit leakage can be accu-
rately identified for both bulk and boundary ancilla qubits. Furthermore, relying solely
on the analog measurements would allow for the potential minimization of the error
spread associated with ancilla-qubit leakage, given controllability over φL

stat and φL
flux,

without compromising the capability of the HMMs to detect leakage. In Sec. 2.5.8 we ex-
plore an alternative scheme for increasing the performance of the ancilla-qubit HMMs
without using the analog measurements, which comes at the cost of a lower optimality
for data-qubit HMMs.

2.2.7. IMPROVING CODE PERFORMANCE VIA POST-SELECTION
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Figure 2.7: Restoring code performance by post-selecting on leakage detection. Improvement in the logical
error rate εL via post-selecting on the detection of leakage for a MWPM decoder (green) and the decoder upper
bound (red). The post-selection is based on the probabilities predicted by the HMMs (solid) or on those ex-
tracted from the density-matrix simulation (dashed), for 2×104 runs of 20 QEC cycles each. The physical error
rate of a single transmon qubit under decoherence is also given (solid black). Detection of leakage allows for
the restoration of the performance of the MWPM decoder, reaching the memory break-even point by discard-
ing about ≈ 28% of the data. The logical error rates obtained from simulations without leakage (and without
post-selection) are indicated by diamonds.

We use the detection of leakage to reduce the logical error rate εL via post-selection
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on leakage detection, with the selection criterion defined as

max
Q,n

pL (Q,n) ≥ pL
th (Q) . (2.8)

We thus post-select any run for which the leakage probability of any qubit exceeds the
defined threshold in any of the QEC cycles. We note that post-selection is not scalable
for larger-scale QEC, due to an exponential overhead in the number of required experi-
ments, however, it can be useful for a relatively small code such as Surface-17. Further-
more, note that, while the criterion above is insensitive to overestimation of the leakage
probability due to a leaked neighboring qubit (see Sec. 2.5.4), it is sensitive to the correct
detection of leakage in the first place and to the HMM response in time (especially for
short-lived leakage events).

We perform the multi-objective optimization

min
pL

th (Q)

(
f ,εL

)
,

subject to 0.02 ≤ pL
th (Q) ≤ 1,

where f is the fraction of discarded data. The inequality constraint on the feasible space
is helpful for the fitting procedure, required to estimate εL. This optimization uses an
evolutionary algorithm (NGSA-II), suitable for conflicting objectives, for which the out-
come is the set of lowest possible εL for a given f . This set is known as the Pareto front
and is shown in Fig. 2.7 for both the MWPM and UB decoders. In Fig. 2.7 we also compare
post-selection based on the HMMs against post-selection based on the density-matrix
simulation. Here we use the predictions of the HMMs which include the analog mea-
surement outcome with the experimentally extracted F L (see Sec. 2.2.6). The observed
agreement between the two post-selection methods proves that the performance gain
is due to discarding runs with leakage instead of runs with only regular errors. The per-
formance of the MWPM decoder is restored below the quantum memory break-even
point by discarding f ≈ 28%. The logical error rates extracted from simulations without
leakage are achieved by post-selection of f ≈ 44% of the data for both the MWPM and
UB decoders, when leakage is included.

2.3. DISCUSSION
We have investigated the effects of leakage and its detectability using density-matrix sim-
ulations of a transmon-based implementation of Surface-17. Data and ancilla qubits
tend to be sharply projected onto the leakage subspace, either indirectly by a back-action
effect of stabilizer measurements for data qubits or by the measurement itself for an-
cilla qubits. During leakage, a large, but local, increase in the defect rate of neighboring
qubits is observed. For data qubits we attribute this to the anti-commutation of the in-
volved stabilizer checks, while for ancilla qubits we find that it is due to an interaction-
dependent spread of errors to the neighboring qubits. We have developed a low-cost and
scalable approach based on HMMs, which use the observed signatures together with the
analog measurements of the ancilla qubits to accurately detect the time and location of
leakage events. The HMM predictions are used to post-select out leakage, allowing for
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the restoration of the performance of the logical qubit below the memory break-even
point by discarding less than half of the data (for such a relatively small code and for the
given noise parameters), opening the prospect of near-term QEC demonstrations even
in the absence of a dedicate leakage-reduction mechanism.

A few noise sources have not been included in the simulations. First, we have not
included readout-declaration errors, corresponding to the declared measurement out-
come being different from the state in which the ancilla qubit is projected by the mea-
surement itself. These errors are expected to have an effect on the performance of the
MWPM decoder, as well as a small effect on the observed optimality of the HMMs. We
have also ignored any crosstalk effects, such as residual couplings, cross-driving or de-
phasing induced by measurements on other qubits. While the presence of these crosstalk
mechanisms is expected to increase the error rate of the code, it is not expected to affect
the HMM leakage-detection capability. We have assumed measurements to be perfectly
projective. However, for small deviations, we do not expect a significant effect on the
projection of leakage and on the observation of the characteristic signatures.

We now discuss the applicability of HMMs to other quantum-computing platforms
subject to leakage and determine a set of conditions under which leakage can be effi-
ciently detected. First, we assume single- and two-qubit gates to have low leakage prob-
abilities, otherwise QEC would not be possible in general. In this way, single- and two-
qubit leakage probabilities can be treated as perturbations to block-diagonal gates, with
one block for the computational subspace C and one for the leakage subspace L . We
focus on the gates used in the surface code, i.e., CZ and Hadamard H (or RY (π/2) rota-
tions or equivalent gates). We consider data-qubit leakage first. We have observed that it
is made detectable by the leakage-induced anti-commutation of neighboring stabilizers.
The only condition ensuring this anti-commutation is that H acts as the identity in L or
that it commutes with the action of CZ within the leakage block (see Sec. 2.5.6), regard-
less of the specifics of such action. Thus, data-qubit leakage is detectable via HMMs if
this condition is satisfied. In particular, it is automatically satisfied if L is 1-dimensional.
We now consider ancilla-qubit leakage. Clearly, ancilla-qubit leakage detection is possi-
ble if the readout discriminates computational and leakage states perfectly or with high
fidelity. If this is not the case, the required condition is that leaked ancilla qubits spread
errors according to non-trivial leakage conditional phases, constituting signatures that
can be used by an HMM. If even a limited-fidelity readout is available, it can still be
used to strengthen this signal, as demonstrated in Sec. 2.2.6. An issue is the possibility
of the readout to project onto a superposition of computational and leakage subspaces.
In that case, the significance of ancilla-qubit leakage is even unclear. However, for non-
trivial leakage conditional phases, we expect a projection effect to the leakage subspace
by a back-action of the stabilizer measurements, due to leakage-induced errors being
detected onto other qubits, similarly to what observed for data qubits.

The capability to detect the time and location of a leakage event demonstrated by
the HMMs could be used in conjunction with leakage-reductions units (LRUs) [38]. These
are of fundamental importance for fault tolerance in the presence of leakage, since in [41]
a threshold for the surface code was not found if dedicated LRUs are not used to reduce
the leakage lifetime beyond the one set by the relaxation time. While the latter consti-
tutes a natural LRU by itself, we do not expect it to ensure a threshold since, together
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with a reduction in the leakage lifetime, it leads to an increase in the regular errors due
to relaxation. A few options for LRUs in superconducting qubits are the swap scheme
introduced in [37], or the use of the readout resonator to reset a leaked data-qubit into
the computational subspace, similarly to [55, 56]. An alternative is to use the |02〉 ↔
|11〉 crossing to realize a “leakage-reversal” gate that exchanges the leakage population
in |02〉 to |11〉. An even simpler gate would be a single-qubit π pulse targeting the |1〉 ↔
|2〉 transition. All these schemes introduce a considerable overhead either in hardware
(swap, readout resonator), or time (swap, readout resonator, leakage-reversal gate), or
they produce leakage when they are applied in the absence of it (leakage-reversal gate,
π pulse). Thus, all these schemes would benefit from the accurate identification of leak-
age, allowing for their targeted application, reducing the average circuit depth and min-
imizing the probability of inadvertently inducing leakage. We also note that the swap
scheme, in conjunction with a good discrimination fidelity for |2〉, could be used for de-
tecting leakage not only on ancilla qubits but also on data qubits by alternatively mea-
suring them. Still, this scheme would require 5 extra qubits for Surface-17 and would
make the QEC-cycle time at least ∼ 50% longer, together with more gate and idling er-
rors, thus requiring much better physical error rates to achieve the same logical error
rate in near-term experiments.

We discuss how decoders might benefit from the detection of leakage. Modifica-
tions to MWPM decoders have been developed for the case when ancilla-qubit leakage
is directly measured [18, 41], and when data-qubit leakage is measured in the LRU cir-
cuits [41]. Further decoder modifications might be developed to achieve a lower logical
error rate relative to a leakage-unaware decoder, by taking into account the detected
leakage and the probability of leakage-induced errors, as well as the stabilizer infor-
mation that can still be extracted from the superchecks (see Sec. 2.5.6). In the latter
case, a decoder could switch back and forth from standard surface-code decoding to
e.g. the partial subsystem-code decoding in [51–53]. Given control of the leakage con-
ditional phases, the performance of this decoder can be optimized by setting φL

stat = π

and φL
flux = 0, minimizing the spread of phase errors on the neighboring data qubits by

a leaked ancilla qubit, as well as the noise on the weight-6 stabilizer extraction in the
case of a leaked data qubit (see Fig. 2.14 and Sec. 2.5.6). Given a moderate discrimina-
tion fidelity of the leaked state, this is not expected to compromise the detectability of
leakage, as discussed in Sec. 2.2.6. At the same time, for such a decoder we expect the
improvement in the logical error rate to be limited in the case of low-distance codes such
as Surface-17, as single-qubit errors can result in a logical error. This is because leakage
effectively reduces the code distance, either because a leaked data qubit is effectively
removed from the code, or because of the fact that a leaked ancilla qubit is effectively
disabled and in addition spreads errors onto neighboring data qubits. Large codes, for
which leakage could be well tolerated (depending on the distribution of leakage events),
cannot be studied with density-matrix simulations, as done in this chapter for Surface-
17. However, the observed sharp projection of leakage and the probabilistic spread of
errors justify the stochastic treatment of this error [41]. Under the assumption that am-
plitude and phase damping can be modeled stochastically as well, we expect that the
performance of decoders and LRUs in large surface codes can be well approximated in
the presence of leakage.
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2.4. METHODS

2.4.1. SIMULATION PROTOCOL
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Figure 2.8: The quantum circuit for a single QEC cycle employed in simulation. The unit-cell scheduling is
defined in [47]. The qubit labels and frequencies correspond to the lattice arrangement shown in Fig. 2.2. Gray
elements correspond to operations belonging to the previous or the following QEC cycle. The X -type parity
checks are performed at the start of the cycle, while the Z -type parity checks are executed immediately after
the Z -type stabilizer measurements from the previous cycle are completed. The duration of each operation is
given in Tab. 2.1. The arrow at the bottom indicates the repetition of QEC cycles.

For the Surface-17 simulations we use the open-source density-matrix simulation
package quantumsim [28], available at [48]. For decoding we use a MWPM decoder [28],
for which the weights of the possible error pairings are extracted from Surface-17 simu-
lations via adaptive estimation [50] without leakage (L1 = 0) and an otherwise identical
error model (described in Sec. 2.4.2).

The logical performance of the surface code as a quantum memory is the ability to
maintain a logical state over a number of QEC cycles. We focus on the Z -basis logi-
cal |0〉L, but we have observed nearly identical performance for |1〉L. We have not per-
formed simulations for the X -basis logical states |±〉L = 1p

2
(|0〉L ±|1〉L), as previous stud-

ies did not observe a significant difference between the two bases [28]. The state |0〉L is
prepared by initializing all data qubits in |0〉, after which it is maintained for a fixed num-
ber of QEC cycles (maximum 20 or 50 in this chapter), with the quantum circuit given
in Fig. 2.8. The first QEC cycle projects the logical qubit into a simultaneous eigenstate
of the X - and Z -type stabilizers [29], with the Z measurement outcomes being +1 in the
absence of errors, while the X outcomes are random. The information about the oc-
curred errors is provided by the stabilizer measurement outcomes from each QEC cycle,
as well as by a Z -type stabilizer measurements obtained by measuring the data qubits
in the computational basis at the end of the run. This information is provided to the
MWPM decoder, which estimates the logical state at the end of the experiment by track-
ing the Pauli frame. For decoding, we assume that the |2〉 state is measured as a |1〉, as in
most current experiments. In Sec. 2.2.6 we considered the discrimination of |2〉 in read-
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Parameter Value

Relaxation time T1 30 µs

Sweetspot dephasing time Tφ,max 60 µs

High-freq. dephasing time at interaction point Tφ,int 8 µs

Mid-freq. dephasing time at interaction point Tφ,int 6 µs

Mid-freq. dephasing time at parking point Tφ,park 8 µs

Low-freq. dephasing time at parking point Tφ,park 9 µs

Single-qubit gate time tsingle 20 ns

Two-qubit interaction time tint 30 ns

Single-qubit phase-correction time tcor 10 ns

Measurement time tm 600 ns

QEC-cycle time tc 800 ns

Table 2.1: The parameters for the qubit decoherence times and for the gate, measurement and QEC-cycle
durations used in the density-matrix simulations.

out, which can be used for leakage detection. While this information can be also useful
for decoding, we do not consider a leakage-aware decoder in this chapter.

The logical fidelity FL (n) at a final QEC cycle n is defined as the probability that the
decoder guess for the final logical state matches the initially prepared one. The logical
error rate εL is extracted by fitting the decay as

FL (n) = 1

2

[
1+ (1−2εL)n−n0

]
, (2.10)

where n0 is a fitting parameter (usually close to 0) [28].

2.4.2. ERROR MODEL AND PARAMETERS
In the simulations we include qubit decoherence via amplitude-damping and phase-
damping channels. The time evolution of a single qubit is given by the Lindblad equation

dρ

d t
=−i

[
H ,ρ

]+∑
i

LiρL†
i −

1

2

{
L†

i Li,ρ
}

, (2.11)

where H is the transmon Hamiltonian

H =ωa†a + α

2
(a†)2a2, (2.12)

with a the annihilation operator, ω and α the qubit frequency and anharmonicity, re-
spectively, and Li the Lindblad operators. Assuming weak anharmonicity, we model am-
plitude damping for a qutrit by

Lamp =
√

1

T1
a. (2.13)
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The |2〉 lifetime is then characterized by a relaxation time T1/2. Dephasing is described
by

Ldeph,1 =
√

8

9Tφ


1 0 0

0 0 0

0 0 −1

 , (2.14)

Ldeph,2 =
√

2

9Tφ


1 0 0

0 −1 0

0 0 0

 , (2.15)

Ldeph,3 =
√

2

9Tφ


0 0 0

0 1 0

0 0 −1

 , (2.16)

leading to a dephasing time Tφ between |0〉 (resp. |1〉) and |1〉 (|2〉), and to a dephasing
time Tφ/2 between |0〉 and |2〉 [10]. The Lindblad equation is integrated for a time t to ob-
tain an amplitude- and phase-damping superoperator R↓,t , expressed in the Pauli Trans-
fer Matrix representation. For a gate Rgate of duration tgate, decoherence is accounted by
applying R↓,tgate/2RgateR↓,tgate/2. For idling periods of duration tidle, R↓,tidle is applied.

For single-qubit gates we only include the amplitude and phase damping experi-
enced over the duration tsingle of the gate. These gates are assumed to not induce any
leakage, motivated by the low leakage probabilities achieved [9, 45], and to act trivially
in the leakage subspace. For two-qubit gates, namely the CZ, we further consider the
increased dephasing rate experienced by qubits when fluxed away from their sweetspot.
In superconducting qubits, flux noise shows a typical power spectral density S f = A/ f ,

where f is the frequency and
p

A is a constant. In this chapter we consider
p

A = 4 µΦ0,
whereΦ0 is the flux quantum. Both low- and high-frequency components are contained
in S f , which we define relative to the CZ gate duration tCZ. Away from the sweetspot fre-

quencyωmax, a flux-tunable transmon has first-order flux-noise sensitivity Dφ = 1
2π

∣∣∣ ∂ω∂Φ ∣∣∣.
The high-frequency components are included as an increase in the dephasing rate Γφ =
1/Tφ (compared to the rate at sweetspot), given by Γφ = 2π

p
ln2ADφ [57], while the

low-frequency components are not included due to the built-in echo effect of Net-Zero
pulses [10]. High- and mid-frequency qubits are fluxed away to different frequencies,
with dephasing rates computed with the given formula. Furthermore, during a few gates
low-frequency qubits are fluxed away to a “parking” frequency in order to avoid un-
wanted interactions [47]. The computed dephasing times at the interaction point are
given in Tab. 2.1. For the CZ gates, we include this increased dephasing during the
time tint spent at the interaction point, while for the phase-correction pulses of dura-
tion tcor we consider the same dephasing time as at the sweetspot. We do not include
deviations in the ideal single-qubit phases of the CZ gate φ01 = 0 and φ10 = 0 and the



2

74 2. LEAKAGE DETECTION FOR A TRANSMON-BASED SURFACE CODE

two-qubit phase φ11 = π, under the assumption that gates are well tuned and that the
low-frequency components of the flux noise are echoed out [10].

We now consider the coherence of leakage in the CZ gates, which in the rotating
frame of the qutrit is modeled as the exchanges

|11〉 7→
√

1−4L1 |11〉+e iφ
√

4L1 |02〉 , (2.17)

|02〉 7→
√

1−4L1 |02〉−e−iφ
√

4L1 |11〉 , (2.18)

with L1 the leakage probability [49]. The phase φ can lead to an interference effect be-
tween consecutive applications of the CZ gate across pairs of data and ancilla qubits. In
terms of the full density matrix, the dynamics of Eqs. (2.17) and (2.18) leads to a coherent
superposition of computational and leaked states

ρ =
(

ρC ρcoh

ρcoh ρL

)
, (2.19)

where ρC (resp. ρL ) is the density matrix restricted to the computational (leakage) sub-
space, while ρcoh are the off-diagonal elements between these subspaces. We observe
that varying the phaseφdoes not have an effect on the dynamics of leakage or on the log-
ical error rate. We attribute this to the fact that each ancilla qubit interacts with a given
data qubit only once during a QEC cycle and it is measured at the end of it (and as such
it is dephased). Thus, the ancilla-qubit measurement between consecutive CZ gates be-
tween the same pair prevents any interference effect. Furthermore, setting ρcoh = 0, does
not affect the projection and signatures of leakage nor the logical error rate (at least for
the logical state prepared in the Z basis), leading to an incoherent leakage model. We
attribute this to the projection of leakage itself, which leaves the qubit into a mostly in-
coherent mixture between the computational and leakage subspaces. In the harmonic
rotating frame, |2〉 is expected to acquire an additional phase during periods of idling,
proportional to the anharmonicity. However, following the reasoning presented above,
we also believe that this phase is irrelevant.

An incoherent leakage model offers significant computational advantage for density-
matrix simulations. For the case where ρcoh ̸= 0, the size of the stored density matrix at
any time is 46 ×94 (6 low-frequency data qubits, 3 high-frequency data qutrits plus 1 an-
cilla qutrit currently performing the parity check). Setting ρcoh = 0 reduces the size of
the density matrix to 46×54, since for each qutrit only the |2〉〈2| matrix element is stored
in addition to the computational subspace. Thus, for the simulations in this chapter we
rely on an incoherent model of leakage.

Measurements of duration tm are modeled by applying R↓,tm/2RprojR↓,tm/2, where
R↓,tm/2 are periods of amplitude and phase damping and Rproj is a projection opera-
tor. This projector is chosen according to the Born rule and leaves the ancilla qubit in
either |0〉, |1〉 or |2〉. We do not include any declaration errors, which are defined as the
measurement outcome being different from the state of the ancilla qubit immediately af-
ter the projection. Furthermore, we do not include any measurement-induced leakage,
any decrease in the relaxation time via the Purcell effect or any measurement-induced
dephasing via broadband sources. We do not consider non-ideal projective measure-
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ments (leaving the ancilla in a superposition of the computational states) due to the in-
creased size of the stored density matrix that this would lead to.

2.4.3. HMM FORMALISM
An HMM describes the time evolution of a set S = {s} of not directly observable states s
(i.e., “hidden”), over a sequence of independent observables o = {oi }. At each time step n
the states undergo a Markovian transition, such that the probability p s [n] of the system
being in the state s is determined by the previous distribution p s [n −1] over all s ∈ S.
These transitions can be expressed via the transition matrix A, whose elements are the
conditional probabilities As,s′ := P

(
s [n] = s | s [n −1] = s′

)
. A set of observables is then

generated with state-dependent probabilities Boi [n],s := P (oi [n] = oi | s [n] = s). Invert-
ing this problem, the inference of the posterior state probabilities p s [n] from the realized
observables is possible via

p s [n] =P (s [n] | o [n] ,o [n −1] , . . . ,o [1]) (2.20)

=
P (o [n] | s [n]) p s

prior [n]

P (o [n])
(2.21)

=
∏

i P (oi [n] | s [n]) p s
prior [n]∏

i P (oi [n])
(2.22)

=
∏

i Boi [n],s p s
prior [n]∑

s′
∏

i Boi [n],s′p
s′
prior [n]

, (2.23)

where p s
prior [n] is the prior probability

p s
prior [n] =

∑
s′

As,s′p
s′ [n −1] . (2.24)

We define Bo[n],s = ∏
i Boi [n],s , which for discrete oi constitute the entries of the emis-

sion matrix B . In addition to the transition and emission probabilities, the initial state
probabilities p s [n = 0] are needed for the computation of the evolution.

In the context of leakage detection, we consider only two hidden states, S = {C ,L },
namely whether the qubit is in the computational (C ) or the leakage subspace (L ).
The transition matrix is parameterized in terms of the leakage and seepage probabili-
ties per QEC cycle. The leakage probability is estimated as ΓC→L ≈ NfluxL1 (for low L1),
where Nflux is the number of CZ gates for which the qubit is fluxed during a QEC cycle
and L1 is the leakage probability per CZ gate. The seepage probability is estimated by

ΓL→C ≈ NfluxL2 +
(
1−e

tc
T1/2

)
, where tc is the QEC cycle duration and T1 the relaxation

time (see Tab. 2.1), while L2 is the seepage contribution from the gate, where L2 = 2L1

due to the dimensionality ratio between C and L for a qubit-qutrit pair [49]. The tran-
sition matrix A is then given by

A =
(

1−ΓC→L ΓL→C

ΓC→L 1−ΓL→C

)
. (2.25)
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We assume that all qubits are initialized in C , which defines the initial state distribu-
tion pC [n = 0] = 1 used by the HMMs.

The HMMs consider the defects d (Qi ) ≡ di on the neighboring ancilla qubits Qi at
each QEC cycle, occurring with probability pdi , as the observables for leakage detection.
Explicitly, the emission probabilities are parameterized in terms of the conditional prob-
abilities Bdi [n],s = P (di [n] | s) of observing a defect when the modeled qubit is in s = C

or s = L . We extract Bdi [n],C directly from simulation, by averaging over all runs and
all QEC cycles, motivated by the possible extraction of this probability in experiment.
While this includes runs when the modeled qubit was leaked, we observe no significant
differences in the HMM performance when we instead post-select out these periods of
leakage, which we attribute to the low L1 per CZ gate. We extract Bdi [n],L from simu-
lation over the QEC cycles when the leakage probability pL

DM (Qi ) as observed from the

density matrix is above a threshold of pL
th = 0.5. In the case of ancilla-qubit leakage,

Bdi [n],L depends on the values of the leakage conditional phasesφL
stat andφL

flux. Thus, in
the case of randomized leakage conditional phases, the HMMs are parameterized by the
average Bdi [n],L . In the case of data-qubit leakage, the extracted Bdi [n],L is ≈ 0.5 regard-
less of the leakage conditional phases, as expected from the anti-commuting stabilizers
(see Sec. 2.2.3).

For ancilla-qubit leakage detection, the analog measurement outcome Im can be ad-
ditionally considered as an observable, in which case o = {di , Im}. In this case, the state-
dependent probability is further parametrized by BIm [n],C =P (Im [n] |C ) =N0 (Im [n])+
N1 (Im [n]) and by BIm [n],L =P (Im [n] |L ) =N2 (Im [n]), where Ni are the Gaussian dis-
tributions of the analog responses in the IQ plane, projected along a rotated in-phase
axis I , following the same treatment as in Sec. 2.5.5.

2.5. SUPPLEMENTARY MATERIAL

2.5.1. SECOND-ORDER LEAKAGE EFFECTS

Parameter D low Dmid Dhigh

ω/2π at sweet spot (GHz) 4.9 6.0 6.7

α/2π (MHz) −300 −300 −300

J1/2π at int. point (MHz) 15 15

Table 2.2: Parameters used in the CZ full-trajectory simulations, withα the anharmonicity and J1 the coupling.
We follow the frequency scheme of [47] with the arrangement shown in Fig. 2.2.

In this section, we consider exchanges between states in the leakage subspace as a
result of a CZ gate acting on an already leaked qubit. We focus on the exchange be-
tween |12〉 and |21〉, referred to as “leakage mobility” in Sec. 2.2.1. We also expand the
model to include |3〉on the fluxing qubit and consider the exchange between |03〉 and |12〉,
which we call “superleakage”.

The Hamiltonian of two transmons dispersively coupled via a bus resonator in the
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Figure 2.9: Heatmaps obtained from CZ full-trajectory simulations. a,b,d include |3〉 in the Hilbert space of
the fluxing qubit, while (c) does not. The conditional phase φCZ (a), L1 (b) and Lm (c,d) are plotted versus the
flux-pulse parameters (see [10, 34] for definitions). The interaction point is located at θ f = 90 ◦. The inset (top-
right) schematically shows the direct and effective couplings between levels in the 3-excitation manifold at the
interaction point. The states |03〉 and |21〉 are on resonance, while |12〉 is detuned by one anharmonicity α.
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rotating-wave approximation is given by [10]

H(t ) = ωstata†
statastat + αstat

2
(a†

stat)
2a2

stat

+ωflux(Φ(t )) a†
fluxaflux +

αflux

2
(a†

flux)2a2
flux

+ J1(Φ(t )) (astata†
flux +a†

stataflux), (2.26)

where a is the annihilation operator,ω andα are the qubit frequency and anharmonicity,
respectively, and J1 is the effective coupling mediated by virtual excitations through the
bus resonator. We assume that this Hamiltonian is a valid approximation up to the in-
cluded states. For this Hamiltonian, multiple avoided crossings are found when sweep-
ing ωflux, as schematically shown in Fig. 2.1. We perform full-trajectory simulations (fol-
lowing the same structure as in [10], excluding distortions and quasi-static flux noise)
using the parameters reported in Table 1 and Tab. 2.2. Note that extending these simula-
tions to |3〉 does not affect the leakage probability L1 from the computational (C ) to the
leakage subspace (L ), nor the fidelity within C .

We define the superleakage probability L3 as

L3 := |〈03|SCZ(|12〉〈12|)|03〉|2 , (2.27)

where SCZ is the superoperator corresponding to the simulated noisy CZ. L3 can be high
depending on the specific parameters of the flux pulse and of the system, as Fig. 2.9 b
shows for the high-mid qubit pair, even whenφCZ =π (see Fig. 2.9 a). We attribute this to
the avoided crossing between |12〉↔ |03〉 occurring atωint+|α|, whereωint is the fluxing-
qubit frequency at the interaction point. For fast-adiabatic flux pulses [34] (with respect
to the |11〉↔ |02〉 avoided crossing), pulsing the higher frequency qubit to the interaction
point results in the near-diabatic passage through |12〉↔ |03〉, inducing a Landau-Zener
transition in which a small but finite population is transferred from |12〉 to |03〉. At the
CZ interaction point, the off-resonant interaction between |12〉 and |03〉 leads to a fur-
ther population exchange, with a coupling strength

p
3J1. Compared to the off-resonant

exchange between |01〉 and |10〉, this interaction is stronger by a factor
p

3, which can
lead to large values of L3 when combined with the initial population transfer to |03〉 on
the way to the avoided crossing. Furthermore, the phases acquired during the two halves
of a Net-Zero pulse can lead to interference [10], increasing or decreasing the |12〉↔ |03〉
exchange population. Including the |12〉 ↔ |03〉 crossing leads also to differences in the
values of the leakage conditional phases.

We now focus on leakage mobility, which occurs with probability Lm, defined as

Lm := |〈21|SCZ(|12〉〈12|)|21〉|2 . (2.28)

If |3〉 is not included, Lm takes small but non-negligible values, as shown in Fig. 2.9 c.
We attribute this to the off-resonant interaction between |12〉 and |21〉, with coupling
strength 2J1. Even though this coupling is stronger than for |12〉 ↔ |03〉, Lm is gener-
ally smaller than L3 due to the fluxing qubit not passing through the |12〉↔ |21〉 avoided
crossing (located at ωint − |α|) on its way to the CZ interaction point. Including |3〉, Lm

can take higher values, as shown in Fig. 2.9, which we associate to a two-excitation ex-
change between |03〉 and |21〉, virtually mediated by |12〉. While this is a two-excitation
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process, |21〉 and |03〉 are on resonance at the interaction point, in which case the ef-
fective coupling can be estimated as the product of the bare couplings divided by the
detuning with |12〉, i.e.

1

2π

(2J1)(
p

3J1)

α
≈ 2.6 MHz, (2.29)

in analogy to the excitation exchange between a pair of transmons mediated virtually
via the bus resonator. Since |03〉 and |21〉 are on resonance exactly at the interaction
point only when αflux = αstat, differences in the anharmonicities affect the strength of
this exchange.

2.5.2. PROJECTION OF DATA-QUBIT LEAKAGE BY STABILIZER-MEASUREMENT

BACK-ACTION
In this section we discuss how leakage is projected by the stabilizer measurements and
in particular by the observed defects. First, we consider a simple 3-qubit parity-check
circuit, for which an analytical formula can be derived for the projection of leakage af-
ter the observation of a single defect. We consider the circuit in Fig. 2.10 a. An ancilla
qubit A is used to measure the stabilizer Z Z on two data qubits Q1,Q2. This is the same
circuit as for one of the boundary Z -type ancilla qubits in Surface-17. Here we consider
the initial state of the two qubits to be the Bell state |Φ+〉Q1Q2 = (|00〉+ |11〉)/

p
2, that is,

the +1-eigenstate for both Z Z and X X . For simplicity, the CZs are considered ideal apart
from the one between A and Q1 which has a leakage probability L1 for Q1, hence only
this qubit can leak. To emulate relaxation in the actual system, we consider an incoming
X error occurring with probability p on Q1 (Z errors are not detected by a Z Z measure-
ment, so we do not consider them here). Prior to the measurement, the system can be
either in state

|ψ1〉Q1Q2 A = 1

2
p

2

([
2 |00〉+ (1+a) |11〉+b |21〉] |0〉
+ [

(1−a) |11〉+b |21〉] |1〉), (2.30)

with probability 1−p, where a =p
1−4L1 and b =p

4L1, or in state

|ψ2〉Q1Q2 A = 1

2
p

2

([
(1−a) |10〉+b |20〉] |0〉
+ [

(1+a) |10〉+2 |01〉+b |20〉] |1〉), (2.31)

with probability p.
Here the measurement of the ancilla qubit in |1〉 leads to the observation of a defect.

In that case, the back-action of this measurement gives the overall density-matrix:

ρ||1〉 = 1

2(1−a)+4p(1+a)

(
(1−p)

[
(1−a)2 |11〉〈11|+b2 |21〉〈21|]

p
[
(1+a)2 |10〉〈10|+4 |01〉〈01|+b2 |20〉〈20|
+2(1+a)(|10〉〈01|+ |01〉〈10|)]), (2.32)
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Figure 2.10: Projection of data-qubit leakage. a Inset: an ancilla qubit A, initialized in |0〉, measures Z Z on
two data qubits Q1,Q2, initialized in the Bell state |Φ+〉, and we assume that the measurement projects A
onto |1〉 (thus resulting in a defect here). All operations are noiseless except for a leakage probability L1 in
the first CZ. A Pauli X error occurs with probability p on Q1. Main plot: post-measurement leakage proba-
bility pL

DM (Q1) versus p. The black vertical line corresponds to the physical error rate of a transmon in the
Surface-17 simulations. b Schematic overview of the Surface-17 layout, where pairs of high-frequency data
qubits share two ancilla qubits as nearest neighbors. c-d Example realizations of data-qubit leakage projec-
tions, extracted from the density-matrix simulations. For each run we plot pL

DM for all three high-frequency

data qubits. e The average projection of the leakage probability pL
DM of all three high-frequency data qubits in

the absence of relaxation and decoherence (D3 and D4 are mostly obscured by D5). This average is computed
by selecting realizations where pL

DM (Q) was below a threshold pL
th = 0.5 for at least 5 QEC cycles and then

above it for 8 or more cycles. f Density histogram of all data-qubit leakage probabilities over 20 bins, in the ab-
sence of relaxation and decoherence, extracted over 2×104 runs of 20 QEC cycles each. Error bars, estimated
by bootstrapping, are smaller than the symbol sizes.
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where we have set the off-diagonal terms containing a |2〉 to 0, consistently with the
simulations in this chapter (in any case, they do not matter for the present discussion),
see Sec. 2.4.2. Tracing out Q2, the leakage probability of Q1 is

pL
DM (Q1) = 4L1

2(1−p
1−4L1)+4p(1+p

1−4L1)
, (2.33)

where the denominator is just the probability of observing a defect. Thus, the product of
this probability and of pL

DM (Q1) is a constant equal to 4L1. This means that the average
leakage probability of Q1, sampled over many measurements, is expected to grow to-
wards the steady state proportionally to L1, as observed in Sec. 2.5.3 for Surface-17. How-
ever, Eq. (2.33), plotted in Fig. 2.10 a, shows that pL

DM (Q1), conditioned on the observa-
tion of a defect, can be much higher than L1. In particular, when p → 0, Q1 becomes (al-
most) fully leaked. This is due to the fact that, if there are no regular Pauli errors causing
defects, but leakage is possible and leads to defects (here due to the use of the |11〉↔ |02〉
avoided crossing), then the observation of a defect indicates that the qubit is leaked.
When p is larger, the projection of leakage is less sharp since it is more likely that a de-
fect is caused by a regular error rather than by leakage. For example, for p equal to the
physical error rate considered in the Surface-17 simulations (T1 = T2 = 30 µs), indicated
by a black line in Fig. 2.10 a, pL

DM (Q1) = 4.5%, which is still much larger than L1 = 0.125%.
Since the error model we consider for Surface-17 is more realistic and there are more

leakage-prone interactions between qubits, we further analyze the data-qubit leakage
projection using numerics. We first focus on the behavior observed across individual re-
alizations, where pL

DM (Q) of any of the data qubits sharply increases. An example of a

leakage event of D3 is shown in Fig. 2.10 c, where pL
DM (D3) is sharply projected to a high

value. However, during the initial projection, pL
DM (D4) simultaneously rises to values

around 0.5, where it remains for a few QEC cycles. We attribute this uncertainty to the
fact that ancilla qubits X1 and Z2 are nearest neighbors of both data qubits, as illustrated
in Fig. 2.10 b. The observation of defects on either one or both of these ancilla qubits
can be roughly equally likely to be due to either data qubit being leaked. As leakage is
projected via a back-action effect of the observation of defects, unambiguous defect ob-
servations lead to finite pL

DM (Q) of both data qubits. A second example of a realization of
data-qubit leakage is shown in Fig. 2.10 d, where both D3 and D4 exhibit sharp and brief
projections to pL

DM (Q) ≈ 0.5 at different QEC cycles. These jumps can be either due to
very short-lived leakage events, or due to the observations of multiple defects, which can
eventually be attributed to one or more regular errors, but which also have a significant
overlap with the signatures of leakage of D3 or D4, respectively. We note that we have ob-
served multiple instances of the example realizations discussed above. Thus across in-
dividual realizations of leakage, pL

DM (Q) for the high-frequency data qubits is not always
monotonically increasing (resp. decreasing) to high (low) probabilities in the case of a
qubit leaking outside of (relaxing back to) the computational subspace. Similarly, there
are fluctuations in pL

DM (Q) throughout leakage events across individual realizations. The
observed bi-modal density distribution shown in Fig. 2.3 b shows that these small jumps
and fluctuations are relatively rare, which we attribute to the repetitive stabilizer mea-
surements and the observed strong signatures of leakage (see Sec. 2.2.3). To make the
selection of leakage events (in Fig. 2.3 d, 2.5 a, 2.14 b, c, 2.10 e, 2.12 a, b) less sensitive to
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such fluctuations, we apply a Savitzky-Golay filter with a window length of 5 QEC cycles
and a first-order polynomial for the sample fitting. This filter smooths out the traces, to
which we then apply our selection criterion. However, when computing the average pro-
jection from the selected realizations, we do not use the smoothed leakage probabilities,
but directly the values extracted from simulation.

We finally analyze how the projection of data-qubit leakage in Surface-17 is affected
by the physical error rates considered in this chapter. Fig. 2.10 e shows that, in the ab-
sence of relaxation and decoherence (T1 = T2 = ∞), the average pL

DM (Q) of any of the
high-frequency data qubits is projected to near unity in two QEC cycles whenever a
qubit leaks. This projection is sharper than in the case with relaxation and decoherence,
shown in Fig. 2.3 d, in agreement with the expectation based on Fig. 2.10 a for p = 0
and Eq. (2.33). The density distribution of all pL

DM (Q) of the three high-frequency data
qubits, shown in Fig. 2.10 f, while highly bi-modal is still supported on intermediate val-
ues between 0 and 1 of pL

DM (Q), contrarily to what Fig. 2.10 a would suggest for p = 0. We
attribute this to the uncertainty associated with the observations of ambiguous defects
through the leakage events, as suggested by Fig. 2.10 c-d.

2.5.3. LEAKAGE STEADY STATE IN THE SURFACE CODE
Given leakage and seepage probabilities per QEC cycle, it is expected that each qubit in
the surface code equilibrates to a steady-state leakage population after many QEC cycles.
Here we do not consider leakage mobility, which is generally small (see Sec. 2.5.1), allow-
ing to consider a model for a single qubit. We construct a Markovian model to estimate
the steady-state populations pC (resp. pL ) in the computational subspace C (leakage
subspace L ).

We define Γi→ j as the population-transfer probabilities per QEC cycle. The popula-
tions are subject to the constraint pC +pL = 1. The rate of change of these populations
is given by the exchanges from and to each subspace:

ṗC =−pC ΓC→L +pL ΓL→C ,

ṗL = pC ΓC→L −pL ΓL→C . (2.34)

The steady-state condition is ṗ i = 0 for i = C ,L , resulting in the steady-state popula-
tions p i

ss :

pC
ss =

ΓL→C

ΓC→L +ΓL→C
,

pL
ss = ΓC→L

ΓC→L +ΓL→C
. (2.35)

Considering the CZ error model in Sec. 2.2.1, for a qubit it approximately holds that

ΓC→L ≈ NfluxL1, (2.36)

ΓL→C ≈ NfluxL2 + (1−e
− tc

T1/2 ), (2.37)

where Nflux is in how many CZ gates the qubit is fluxed during a QEC cycle, tc is the
duration of a QEC cycle and L1 (resp. L2) is the average leakage (seepage) probability
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between C and L [49]. The use of the average leakage and seepage probabilities per
gate is justified for the surface code because, in the case of data-qubit leakage, ancilla
qubits are put in an equal superposition during the parity checks, while, in the case of
ancilla-qubit leakage, data qubits are in simultaneous entangled eigenstates of the code
stabilizers. The seepage probability (Eq. (2.37)) has one contribution from the unitary
CZ-gate interaction and one from relaxation during the entire QEC cycle. Regarding the
gate contribution, one has L2 = 2L1 due to the dimensionality ratio between C and L

for a qubit-qutrit pair [49].
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Figure 2.11: Evolution of the average leakage population pL towards the steady state over 50 QEC cycles
for the high-frequency data qubits in Surface-17. The leakage populations extracted from the density-matrix
simulation (dots) agree well with the predicted one (black lines). The extracted populations are averaged over
4×104 runs. Error bars correspond to 2 standard deviations estimated by bootstrapping.

The expected steady-state populations in the simulations can be now computed. We
focus on high-frequency data qubits since the low-frequency ones cannot leak without
leakage mobility. We have NCZ = Nflux = 4 (for D4) or 3 (for D3,D5), L1 = 0.125%, tc =
800 ns and T1 = 30 µs. The result is pL

ss (D4) = 7.5% and pL
ss (D3) = pL

ss (D5) = 5.9%.
Furthermore, Eq. (2.34) can be solved to find that the time evolution of pL towards the
steady state is

pL (n) = ΓC→L

ΓC→L +ΓL→C
(1−e−(ΓC→L +ΓL→C )n), (2.38)

where n is the QEC cycle number, shown in Fig. 2.11 for the three high-frequency data
qubits. We find a good agreement (within error bars) between these predictions and the
average leakage population extracted from the density matrix (see Fig. 2.11).

We now extend the model to the |3〉 state, despite the fact that we have not included
it in simulation due to computational constraints. To do this, we divide the leakage sub-
space L into the sub-parts L2 and L3 corresponding to leakage in |2〉 and |3〉, respec-
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tively. The rate equations (Eq. (2.34)) are extended to

ṗC =−pC ΓC→L2 +pL2ΓL2→C ,

ṗL2 = pC ΓC→L2 −pL2 (ΓL2→C +ΓL2→L3 )+pL3ΓL3→L2 ,

ṗL3 = pL2ΓL2→L3 −pL3ΓL3→L2 . (2.39)

The steady-state populations {p i
ss } then become:

pC
ss =

ΓL2→C ΓL3→L2

ΓC→L2ΓL3→L2 +ΓL2→C ΓL3→L2 +ΓC→L2ΓL2→L3

,

pL2
ss = ΓC→L2ΓL3→L2

ΓC→L2ΓL3→L2 +ΓL2→C ΓL3→L2 +ΓC→L2ΓL2→L3

,

pL3
ss = ΓC→L2ΓL2→L3

ΓC→L2ΓL3→L2 +ΓL2→C ΓL3→L2 +ΓC→L2ΓL2→L3

. (2.40)

In addition to Eqs. (2.36) and (2.37), in this model we have

ΓL2→L3 ≈ NfluxL3/2, (2.41)

ΓL3→L2 ≈ NfluxL3/2+ (1−e
− tc

T1/3 ). (2.42)

The factor of 1/2 in Eq. (2.41) comes from the fact that superleakage from L2 to L3 is
possible only when the qubit pair performing the CZ is in |12〉 and not in |02〉. For L3 =
10%, for example, the expected steady-state populations are pL2

ss (D4) = 7.1%, pL3
ss (D4) =

5.1% and pL2
ss (D3) = pL2

ss (D5) = 5.7%, pL3
ss (D3) = pL3

ss (D5) = 3.8%. While pL2
ss is almost

unchanged with respect to the case without superleakage, pL3
ss has a comparable magni-

tude to pL2
ss , suggesting that superleakage needs to be taken into account in optimizing

the surface-code performance over many QEC cycles.

2.5.4. HMM ERROR BUDGET
In this section we explore the limiting factors behind the remaining suboptimality of
the HMMs presented in this chapter. The HMMs consider the probability of observing
a defect at a given QEC cycle on each stabilizer independently, thus they do not take
into account the correlations between defects due to regular errors. Data-qubit errors
or hook errors (which are data-qubit errors propagated due to a single ancilla-qubit er-
ror during the parity-check circuit) give rise to a pair of correlated defects on different
stabilizers either in the same QEC cycle or in two consecutive ones. Ancilla-qubit er-
rors or measurement-declaration errors instead give rise to pairs of correlated defects
on the same stabilizer and for one or two QEC cycles, respectively. As the HMMs take an
increase in the defect probability as a signature of leakage, this is expected to result in
the HMMs overestimating the probability of the tracked qubit being leaked. In addition,
each HMM only takes the defects on the neighboring stabilizers as observables. Despite
each HMM sharing observables with the neighboring ones, the probability of leakage at
each QEC cycle is estimated independently by each HMM. While this choice minimizes
the computational overhead, as a result each HMM is additionally prone to overestimat-
ing the probability of leakage when a neighboring qubit is leaked instead (leading to an
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Figure 2.12: The crosstalk between the HMMs. a Average responses of all HMMs 1 QEC cycle after a given
qubit leaks. We select individual realizations where the leakage probability pL is first below and then above a
threshold pL

th = 0.5 for 5 and 8 QEC cycles, respectively. b The extracted data-qubit HMM optimality O . A: op-
timality of the HMMs including all error sources. B: runs where ancilla-qubit leakage was present (according
to density matrix) are discarded. C: leakage on any of the other data qubits (not tracked by the given HMM) is
discarded as well.

increased defect probability observed on only a subset of the stabilizers taken as observ-
ables by the HMM). The HMMs can be expanded to account for these limitations, either
by increasing the number of hidden states to model regular errors [21] or by expanding
the set of observables to include next-nearest neighbor stabilizers, in order to account for
leakage on neighboring qubits, in which case the HMMs would be still local and hence
scalable. As either solution would increase the complexity and overhead of the models,
we evaluate the contributions of each of these limitation to the detection capabilities of
the HMMs.

We first focus on the overestimation of the leakage probability predicted by the HMMs
in the presence of leakage on a neighboring qubit, which we refer to as “HMM crosstalk”.
We consider the detection scheme taking into account the analog measurements (with
the currently achieved experimental discrimination fidelity F L , see Sec. 2.2.6). The av-
erage responses of all HMMs to leakage events on any qubit and the predicted leakage
probability 1 QEC cycle after detection (defined by the predicted probability crossing a
threshold of 0.5) are shown in Fig. 2.12 b. The responses of the neighboring HMMs im-
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mediately (1-2 QEC cycles) after crossing this threshold is indicative of the likelihood of
leakage being declared on a neighboring qubit (based on the extracted HMM responses
shown in Figs. 5 and 6). Across individual runs, these parasitic responses can lead to false
detections. Ancilla-qubit HMMs are insensitive to leakage on other data or ancilla qubits
(see Fig. 2.12). We attribute this to the use of the analog measurement outcomes which
discriminate between |1〉 and |2〉with moderate fidelity and between |0〉 and |2〉with very
high fidelity. Instead, data-qubit HMMs are prone to overestimating the response in the
case of leakage on other qubits. The crosstalk is proportional to the number of shared
observables between the pairs of HMMs and depends on the expected defect probabili-
ties during leakage by each model.

We further break down the relative contributions to the optimality O (defined in
Sec. 2.2.5) of each of the data-qubit HMMs due to the crosstalk, shown in Fig. 2.12 b.
Post-selecting out runs where ancilla-qubit leakage is detected from the density matrix
increases the average O of the three data-qubit HMMs from O ≈ 67.0% to O ≈ 83.3%.
Further post-selecting out events where leakage is detected on any of the other data
qubits (which are not tracked by the given HMM) increases the average optimality to O ≈
95.9%. The larger contribution from neighboring data-qubit leakage is consistent with
the higher crosstalk (see Fig. 2.12 a) between data-qubit HMMs relative to the ancilla-
qubit ones and constitutes the dominant limitation behind the HMM optimality. We
attribute the remaining suboptimality to the presence of regular errors, caused by qubit
relaxation and dephasing, and to the parametrization of the transition and output prob-
abilities.

2.5.5. TRANSMON MEASUREMENTS IN EXPERIMENT
We consider the measurements of transmons in experiment [21], which is enabled by
the dispersive coupling between a transmon and a dedicated readout resonator. The
resonator is connected to a common feedline via a dedicated Purcell filter [17]. Mea-
surement is performed by applying a readout pulse to the feedline, populating the res-
onator with photons. Each transmon induces a state-dependent shift of the frequency
of the readout resonator, changing the amplitude and phase of the outgoing photons.
This outgoing signal is amplified and the in-phase (I ) and quadrature (Q) components
are extracted. For calibration of the single-shot readout, the transmon is prepared in ei-
ther |0〉, |1〉 or |2〉 and subsequently measured. Repeating this experiment characterizes
the spread of the I and Q components of each state |i 〉, which typically follow a two-
dimensional Gaussian distribution Ni with mean µ⃗i and standard deviation σ⃗i in the
IQ plane [17, 58], as exemplified in Fig. 2.13 a.

Given an analog measurement of I and Q, the probability of a transmon being in
state |i 〉 can be expressed as

P (i | I ,Q) = P (I ,Q | i )P (i )

P (I ,Q)
, (2.43)

where

P (I ,Q) =
∑

j∈{0,1,2}
P

(
I ,Q | j

)
P

(
j
)

. (2.44)
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Figure 2.13: The analog measurement of transmons as extracted from experiment. a Histograms of the in-
phase I and quadrature Q components of the measured readout for a transmon prepared in |0〉, |1〉 or |2〉.
b The histograms of the responses for the transmon initially prepared in |0〉 or |1〉, projected along the rotated
quadrature maximizing the discrimination fidelity F 01 = 99.6%. c The histograms of the responses for the
transmon initialized in |1〉 or |2〉, projected along the I axis, in which case discrimination is achieved with a
fidelity F 12 = 88.4%.

We assume that the prior state probabilities are equally likely. Furthermore, given the
typically observed Gaussian distributions, it holds thatP (I ,Q | i ) =Ni (I ,Q), which leads
to

P (i | I ,Q) = Ni (I ,Q)∑
j∈{0,1,2} N j (I ,Q)

. (2.45)

In experiment, one is typically interested in discriminating between pairs of states |i 〉
and | j 〉, for which the discrimination fidelity is defined as

F i j = 1−P(
j | i

)
P (i )−P(

i | j
)
P

(
j
)

, (2.46)

where P
(
i | j

)
is the probability of declaring a measurement outcome i given a pre-

pared state | j 〉, under the assumption of no excitation or relaxation during the measure-
ment (accounted for in post-processing), and where P (i ) is the prior probability of the
qubit being in state |i 〉. Hence, the discrimination fidelity corresponds to the proba-
bility of correctly declaring the projected state. We focus on the discrimination fidelity
as in our simulations relaxation is already accounted for in the measurement outcomes
(see Sec. 2.4.2). We assume P (i ) =P(

j
)= 1

2 , which leads to

F i j = 1− P
(

j | i
)+P(

i | j
)

2
. (2.47)



2

88 2. LEAKAGE DETECTION FOR A TRANSMON-BASED SURFACE CODE

This can be related to the signal-to-noise ratio SNR = ∣∣µ⃗i − µ⃗ j
∣∣/2σ, assuming symmetric

Gaussian distributions, as

F i j = 1− 1

2
erfc

(
SNRp

2

)
. (2.48)

The IQ response can be projected onto the axis joining the centers of a pair of two-
dimensional Gaussian distributions, allowing to consider a single quadrature while max-
imizing the discrimination fidelity. Without loss of generality, we consider this optimal
axis to be along I . This allows to express Eq. (2.45) as

P (i | I ) = Ni (I )∑
j∈{0,1,2} N j (I )

, (2.49)

where Ni (I ) is the marginal of Ni (I ,Q). In experiment, in order to declare a binary
measurement outcome, a threshold value for I is introduced, separating the regions for
declaring either outcome. Following this approach, for a 3-outcome measurement, three
projection axes are needed in general. However, since the Gaussian distributions for |1〉
and |2〉 are typically well-separated from the one for |0〉, it is possible to use only two
axes, i.e., one to discriminate |0〉 from |1〉, and one to further discriminate |2〉 from the
rest. For the measurement calibration from experiment [21], shown in Fig. 2.13 a, the
discrimination between |0〉 and |1〉 can be achieved by projecting the analog responses
along a rotated quadrature axis which maximizes the discrimination fidelity F 01 = 99.6%.
Discriminating between |1〉 and |2〉 is performed with F 12 = 88.4% by projecting along a
rotated in-phase axis, maximizing this fidelity.

2.5.6. LEAKAGE-INDUCED ANTI-COMMUTATION
We study the behavior of neighboring stabilizers in the presence of a leaked data qubit.
We focus on a parity-check operator in the bulk of the surface code. For the frequency
scheme of Fig. 2.2, this involves two leakage-prone high-frequency transmons and two
low-frequency transmons, modeled as qutrits and qubits, respectively. The ancilla qubit
used to perform the parity checks is leakage prone as well. However, here we do not con-
sider this possibility, given the low probability of a pair of neighboring data and ancilla
qubits to be leaked simultaneously.

We consider the CZ for transmons described in Sec. 2.2.1, without including any de-
coherence. In the limit of the leakage probability L1 → 0 (and leakage mobility Lm → 0),
for an ancilla qubit A and a high-frequency data qubit D , the CZ can be decomposed as

|0〉〈0|A ⊗


1 0 0

0 1 0

0 0 −1


D

+|1〉〈1|A ⊗


1 0 0

0 −1 0

0 0 −e−iφL
stat


D

(2.50)

=: |0〉〈0|A ⊗ ĨD +|1〉〈1|A ⊗ Z̃D . (2.51)
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Figure 2.14: The effects of data-qubit leakage on the stabilizers of the code. a Sketch of how data-qubit leak-
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during leakage on D4 (defined by the leakage probability being above a threshold of 0.5) as a function of the
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stat.

Note that Ĩ |C = I and Z̃ |C = Z , where I and Z are the standard identity and Pauli Z
operators, respectively, and C is the qubit computational subspace. For a CZ between an
ancilla qubit and a low-frequency data qubit, it simply holds |0〉〈0|A ⊗ ID +|1〉〈1|A ⊗ZD .
Small values of L1, as observed in experiment [10], can be treated as a perturbation to
this.

For a parity-check measurement, the back-action on the state of the data qubits is
given by either one of two operators, depending on the outcome. In the case of a Z -type
parity-check unit, these operators are given by

M Z
± = Ĩabcd ± Z̃abcd

2
, (2.52)

where Ĩabcd := Ĩa Ĩb Ic Id and Z̃abcd := Z̃a Z̃b Zc Zd . Under the assumption that single-qubit
gates, namely the Hadamard gate, do not induce any leakage and act trivially on the
leakage subspace, for the X -type parity-check unit these operators are instead given by

M X
± = Ĩabcd ± X̃abcd

2
, (2.53)

where X̃abcd := X̃a X̃b Xc Xd and

X̃ =


0 1 0

1 0 0

0 0 −e−iφL
stat

 , (2.54)
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in which case X̃ |C = X with X the standard Pauli operator.
The X -type and Z -type parity checks commute if and only if M Z

± and M X
± commute,

as it holds [
M Z

± , M X
±

]= 1

4

[
Z̃abcd , X̃abcd

]
(2.55)

(and also
[
M Z

± , M X
±

]=−[
M Z

± , M X
∓

]
). To compute the commutator we first evaluate

[
Z̃ , X̃

]= 2i


0 −i 0

i 0 0

0 0 0

 , (2.56)

{
Z̃ , X̃

}= 2


0 0 0

0 0 0

0 0 e−2iφL
stat

 . (2.57)

It follows that {
Z̃ , X̃

}∣∣∣
C
= {Z , X } = 0, (2.58)[

Z̃ , X̃
]∣∣∣

L
= 0, (2.59)

when restricted to the computational and leakage subspaces, respectively. Notice that,
when all data qubits are in the computational subspace, it holds{

Z̃abcd , X̃abcd
}∣∣∣

C
= {Zabcd , Xabcd } = 0 (2.60)

as in the standard qubit case, where Zabcd = Za Zb Zc Zd and Xabcd = Xa Xb Xc Xd . Fur-
thermore, we note that Eq. (2.59) holds solely because H acts trivially in L (as we as-
sume) and it would continue to hold as long as H commutes with CZ on L .

We now consider the case in which one of the high-frequency data qubits is in L

(say a) and the remaining ones are in C . In this case{
Z̃abcd , X̃abcd

}∣∣∣
La

=
{
−e−iφL

stat Zbcd ,−e−iφL
stat Xbcd

}
= e−iφL

stat {Zbcd , Xbcd } = 0. (2.61)

This shows that, in the presence of data-qubit leakage, M Z
± and M X

± do not commute. In
particular, Z̃abcd and X̃abcd anti-commute and this result is independent of the leakage
conditional phase. Furthermore, it holds

M Z
± |La = Ibcd ±e−iφL

stat Zbcd

2
(2.62)

and similarly for M X
± |La .

For φL
stat = 0,π, M X

± |La are projectors onto the ±-eigenspaces of Zbcd or Xbcd , con-
stituting effective weight-3 parity checks. In this case the anti-commutation [Eq. (2.61)]
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leads to fully randomized ancilla-qubit measurement outcomes, corresponding to a prob-
ability pd = 50% of observing a defect each QEC cycle on each of the neighboring stabi-
lizers. However, the product of two weight-3 same-type checks is a weight-6 stabilizer of
the surface code, thus the product of the two ancilla-qubit measurement outcomes cor-
responds to the parity of the 6 data qubits involved. In particular, the stabilizer group can
be redefined as including the standard weight-4 checks which do not involve the leaked
qubit, together with the defined weight-6 “superchecks”, while the weight-3 checks are
gauge operators [51–54], as illustrated in Fig. 2.14 a. For the superchecks to be correctly
obtained, both X -type gauge operators need to be measured before any of the two Z -
type gauge operators (or viceversa), which already holds true for the circuit schedule we
consider [47]. In the case of a leaked qubit on the boundary, only one supercheck oper-
ator can be defined (for a rotated surface code, this is a weight-4 X - or Z -type boundary
supercheck), while the other one must be ignored for decoding [51–53]. In the case of
one leaked data-qubit in Surface-17, the minimum weight of a dressed logical operator
is 2, reducing the code distance by 1. For example, if D4 is leaked, two X errors on D2

and D7 constitute a logical X . In a larger surface code, the reduction of the distance
depends on the number of leaked qubits, as well as their distribution on the lattice [51].

In the general case where φL
stat ̸= 0,π, while the anti-commutation still holds, M Z

± |La

and M X
± |La are not projectors and thus the ancilla-qubit measurement outcomes are

not fully randomized, which is expected to have an effect on the observed pd . How-
ever, in the simulations pd ≈ 50% for both the case when φL

stat is randomized across
runs (see Fig. 2.3) or when it is fixed, independently of the specific value. Since the de-
fects d are computed as d [n] = m [n]⊕m [n −2], where m [n] is the measurement out-
come at QEC cycle n, even a moderate imbalance between the probabilities of mea-
suring m [n] = 0 and m [n] = 1 (fluctuating across QEC cycles) can lead a defect prob-
ability pd ≈ 50%. Furthermore, the phase rotations depending on φL

stat affect the mea-
surement of each of the two weight-3 gauge operators independently, which in turn un-
dermines the correct extraction of the weight-6 stabilizer parity. This effect is observed
in Fig. 2.14 b,c, where in the case of φL

stat = 0,π the observed defect probability roughly
corresponds to the expected one from a weight-6 check (relative to the observed one for
the standard weight-4 and weight-2 checks in the absence of leakage), while a higher de-
fect probability is observed otherwise, reaching up to 50%. Hence, the control of φL

stat
in experiment would be beneficial for decoding in the presence of data-qubit leakage
whenever the superchecks are considered.
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2.5.7. EFFECTS OF LEAKAGE MOBILITY AND SUPERLEAKAGE ON LEAKAGE

DETECTION AND CODE PERFORMANCE
We include leakage mobility in simulations, exploring the range of leakage-mobility prob-
abilities Lm ∈ [0,1.5%] for a fixed leakage probability L1 = 0.125% and randomized leakage-
conditional phasesφL

stat andφL
flux (see Sec. 2.2.1). Due to constraints imposed by the size

of the density matrix, we only include leakage mobility between the high-frequency data
qubits and the ancilla qubits. Thus, we have neglected the possibility of leakage being
transferred to the low-frequency data qubits.

Leakage mobility has a negligible effect on the logical performance of the code and
the optimality of the HMMs. This is because leakage mobility is only significant in the
case of an already leaked qubit, which occurs with a low probability across QEC cycles,
given the low L1 per CZ gate. Thus, the leakage swapping between neighboring qubits
can be considered as a second-order effect and has a negligible impact on the logical
error rate and HMM optimality extracted from the simulations. We also observe that the
average duration of a leakage event on a given qubit is reduced in the presence of leakage
mobility.

We now consider the effect of superleakage (see Sec. 2.5.1) on the logical fidelity and
the detection of leakage. We have not performed Surface-17 simulations including |3〉 on
any qubit, since this increases the simulation cost prohibitively. Superleakage is a result
of the coherent exchange between |03〉 and |12〉, thus individual events are accompanied
by a bit flip on a neighboring qubit. The frequency of these events is proportional to the
superleakage probability L3. Superleakage can result in an increase in the observed de-
fect probabilities, increasing the logical error rate of the code, especially without mod-
ifications of the decoder to take this into account [18]. However, we do not expect su-
perleakage to significantly affect the detection of leakage. This is because in the case
of a leaked data qubit, the anti-commutation of the neighboring stabilizers still holds,
leading to a defect probability of 0.5 regardless of the qubit being in |2〉 or |3〉 (under the
assumption that single-qubit gates act trivially on the leakage subspace). In the case of
a leaked ancilla qubit, the propagated bit flips due to superleakage can be considered
as a signature of leakage, in addition to the phase errors due to the leakage conditional
phases.

2.5.8. AN ALTERNATIVE SCHEME FOR ENHANCING ANCILLA-QUBIT LEAK-
AGE DETECTION

We consider an alternative scheme (to the one considering the analog measurement out-
comes) allowing for enhancing ancilla-qubit leakage detection beyond that achievable
by only considering the increase in the defect probability on neighboring stabilizers. In
this scheme a π pulse is applied to each ancilla qubit every other QEC cycle, accounted
for in post-processing. Under the assumption that a π rotation has a trivial effect on
a leaked qubit, the post-processed measurement outcomes (in the absence of errors)
would show a flip every other QEC cycle during the period of leakage, which corresponds
to a defect every QEC cycle. This scheme would require minimal overhead, as these rota-
tions can be integrated with the existing single-qubit gates applied to the ancilla qubits
at the start of each QEC cycle. A downside is that ancilla qubits would spend more time
in the first excited state on average, increasing the effect of amplitude damping. We have
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not simulated this scheme, but we have investigated it entirely in post-processing by
only applying flips to the measurement outcomes during periods of ancilla-qubit leak-
age (as extracted from the density matrix). Although this does not capture the increase
in the ancilla-qubit error rate due to amplitude damping, we expect that it captures the
effect of the scheme on the detection of leakage.

The average HMM optimality for the bulk X and Z ancilla qubits is O (X ) ≈ 64.9%
and O (Z ) ≈ 50.3%, respectively. For the boundary X and Z ancilla qubits, it is O (X ) ≈
73.9% and O (Z ) ≈ 46.4%, respectively. This constitutes an increase in optimality rela-
tive to the scheme relying only on the observed defects (see Fig. 2.6 a,b). However, the
artificially induced defects on leaked ancilla qubits lead to the increase in the crosstalk
between ancilla- and data-qubit HMMs. This has the effect of lowering the average data-
qubit HMM optimality from O (D) ≈ 67.0% (see Sec. 2.2.5) to O (D) ≈ 31.2%. While such
scheme may be beneficial for the post-selection-based scheme defined in Sec. 2.2.7 (as
in that case leakage detected on any qubits leads to discarding the run), it would be detri-
mental for leakage-aware decoding or targeted leakage-reduction units as these rely on
the accurate detection in both time and space.
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3
A HARDWARE-EFFICIENT

LEAKAGE-REDUCTION SCHEME FOR

QUANTUM ERROR CORRECTION

WITH SUPERCONDUCTING

TRANSMON QUBITS

Leakage outside of the qubit computational subspace poses a threatening challenge to
quantum error correction (QEC). In this chapter, we propose a scheme using two leakage-
reduction units (LRUs) that mitigate these issues for a transmon-based surface code, with-
out requiring an overhead in terms of hardware or QEC-cycle time as in previous propos-
als. For data qubits we consider a microwave drive to transfer leakage to the readout res-
onator, where it quickly decays, ensuring that this negligibly disturbs the computational
states for realistic system parameters. For ancilla qubits we apply a |1〉↔ |2〉π pulse condi-
tioned on the measurement outcome. Using density-matrix simulations of the distance-3
surface code we show that the average leakage lifetime is reduced to almost 1 QEC cycle,
even when the LRUs are implemented with limited fidelity. Furthermore, we show that
this leads to a significant reduction of the logical error rate. This LRU scheme opens the
prospect for near-term scalable QEC demonstrations.

This chapter, with minor modifications, has been published in PRX Quantum 2, 030314 (2021) [1]. B.M.V.
implemented support for conditional operations in the quantumsim package and contributed to developing
the theoretical concepts presented. B.M.V. provided input and feedback on the writing.
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3.1. INTRODUCTION
Quantum computing has recently achieved the milestone of quantum supremacy [2]
thanks to a series of improvements in qubit count [3, 4], gate fidelities [5–16] and mea-
surement fidelities [17–19]. The next major milestones include showing a quantum ad-
vantage [20–23] and demonstrating quantum error correction (QEC) [4, 24–32]. Errors
accumulate over time in a quantum computer, leading to an entropy increase which
severely hinders the accuracy of its output. Thus QEC is necessary to correct errors and
remove entropy from the computing system. If the overall physical error rate is below
a certain noise threshold for a given QEC-code family, the logical error rate decreases
exponentially with the code distance d at the price of a poly(d) overhead, thus allowing
to extend the computational time. Recently, small-size instances of error-detecting [31,
32] and error-correcting [4] codes have been experimentally realized. To further demon-
strate fault tolerance it is crucial to scale up these systems and show that larger distance
codes consistently lead to lower logical error rates than smaller distance codes [25].

Leakage outside of the computational subspace [12–14, 16, 33–38], present in lead-
ing quantum-computing platforms such as superconducting qubits and trapped ions,
poses a particularly threatening challenge to fault tolerance [24, 39–49]. Leakage can
increase entropy by making measurement outcomes no longer point to the underlying
errors and can effectively reduce the code distance [40]. Furthermore, leakage can last
for many QEC cycles [44], making operations on a leaked qubit fail and possibly spread
correlated errors through the code [25, 40, 43]. In particular, leakage falls outside the sta-
bilizer formalism of QEC as it cannot be decomposed in terms of Pauli errors. Stabilizer
codes [50, 51] and their decoders are thus typically ill-suited to deal with leakage, leading
to a significant increase of the logical error rate [40, 46, 49]. If the average leakage life-
time lL

avg, that is, the average number of QEC cycles that a qubit stays leaked (after leak-

ing in the first place), fulfills lL
avg = O (1) QEC cycles and lL

avg ≪ d , then for low-enough
error rates a threshold is likely to exist [43] as leakage would have a relatively local ef-
fect in space and time. Due to a finite energy-relaxation time, leakage does indeed last
for lL

avg = O (1) QEC cycles. However, in practice it is important how large lL
avg is, since if

it is low the noise threshold is expected to be higher. Shortening the relaxation time to
reduce lL

avg is not effective as this increases the physical error rate as well.
A leakage-reduction unit (LRU) [39, 41–43, 45, 46, 52, 53] is an operation introducing

a seepage mechanism besides that of the relaxation channel. A LRU converts leakage
into regular (Pauli) errors and shortens the average leakage lifetime, ideally to 1 QEC cy-
cle. As discussed above, this is expected to lead to a higher noise threshold, but not as
high as for the case without leakage, since the leakage rate effectively adds to the regular
error rate thanks to the LRU. As an alternative to the use of LRUs, post-selection based
on leakage detection has been adopted [40] as a near-term method to reduce the logical
error rate. While leakage detection could also be used to apply LRUs in a targeted way,
post-selection is not scalable. By shortening the lifetime to lL

avg = O (1) ≪ d , the use of
LRUs is instead a scalable approach.

In its imperfect experimental implementation a LRU can either introduce extra Pauli
errors or mistakenly induce leakage on a non-leaked qubit. Furthermore, in the con-
text of the surface code the LRUs investigated so far [41, 45, 46] introduce an overhead
in terms of hardware and QEC-cycle time. Specifically, these LRUs are variants of the
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swap-LRU, in which the qubits are swapped at the end of each QEC cycle, taking alter-
natively the role of data and ancilla qubits. In this way every qubit is measured every
2 QEC cycles. The core of the swap-LRU is the fact that the measured qubits are reset
to the computational subspace after the measurement. This can be accomplished by
a scheme which unconditionally maps |1〉 and |2〉 (and possibly |3〉 [42]) to |0〉 [54–56],
or conditionally using real-time feedback [30, 57]. Under the standard assumption that
the SWAP gates swap the states of two qubits only if none of them is leaked (which does
not necessarily hold in experiment [42]), lL

avg is ideally shortened to 2 QEC cycles. On
the downside, for the pipelined surface-code scheme in [58], the pipeline is disrupted as
qubits cannot be swapped until the measurement and reset operations are completed,
leading overall to an increase up to 50% of the QEC-cycle time depending on the re-
set time. The extra CZ gates, needed to implement the SWAPs, can cause additional
errors or leakage as the CZ is the major source of leakage in transmons [12–14, 16, 33,
35–37]. Moreover, in the surface code an extra row of qubits is needed to perform all the
SWAPs [45], which is a non-negligible overhead in the near term. All these issues increase
the physical error rate by a considerable amount, thus requiring to increase the system
size to compensate for that (assuming that the error rates are still below threshold).

In this chapter we propose two separate LRUs for data and ancilla qubits which use
resources already available on chip, namely the readout resonator for data qubits (res-
LRU) and a |1〉↔ |2〉πpulse conditioned on the measurement outcome for ancilla qubits
(π-LRU). In particular, the use of the res-LRU avoids the necessity to swap data and an-
cilla qubits to be able to reset the data qubits. The res-LRU is a modification of the two-
drive scheme in [54–56] to a single drive to deplete only the population in |2〉 but not |1〉,
making it a LRU rather than a reset scheme. We additionally show that this negligibly
affects the coherence within the computational subspace in an experimentally accessi-
ble regime, with a low probability of mistakenly inducing leakage as long as the thermal
population in the readout resonator is relatively small. This allows us to unconditionally
use res-LRU in the surface code in every QEC cycle. In the pipelined scheme [58] the
res-LRU easily fits within the time in which the data qubits are idling while the ancilla
qubits are finishing to be measured. As the π-LRU can be executed as a short pulse at
the end of the measurement time with real-time feedback, our LRU scheme overall does
not require any QEC-cycle time overhead. Using density-matrix simulations [40, 51, 59]
of the distance-3 surface code (Surface-17), we show that the average leakage lifetime is
reduced to almost 1 QEC cycle when res-LRU and π-LRU with realistic performance are
employed. Furthermore, compared to the case without LRUs, the logical error rate is re-
duced by up to 30%. The proposed res-LRU andπ-LRU can be straightforwardly adapted
to QEC-code schemes other than [58] and the res-LRU is potentially applicable to su-
perconducting qubits with higher anharmonicity than transmons. The demonstrated
reduction serves as evidence of scalability for our LRU scheme, even though we cannot
estimate a noise threshold as we have simulated only one size of the surface code. To ex-
plore larger codes it is necessary to use less computationally expensive simulations [24,
43, 46] that use a simplified version of our error model at the cost of losing some infor-
mation contained in the density matrix. Furthermore, to optimize the noise threshold
the LRUs can be supplied with a leakage-aware decoder [24, 43, 46, 60–62] that uses
measurement information about leakage to better correct leakage-induced correlated
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errors.

3.2. READOUT-RESONATOR LRU
The readout resonator has been used [54–56] to reset a transmon qubit to the |0〉 state,
depleting the populations in |1〉 and |2〉. Targeting the |20〉↔ |01〉 transition, with the no-
tation |transmon,resonator〉, those populations are swapped onto the readout resonator,
where they quickly decay due to the strong coupling to the transmission-line environ-
ment. Ref. [54] uses two drives simultaneously while Refs. [55, 56] use these drives in a
three-step process. Here we adapt these techniques to use a single drive in a single step
to deplete the population in |2〉 only.

A LRU is defined [39] as an operation such that 1) the incoming leakage population
is reduced after the application of the LRU, 2) the induced leakage when applied to a
non-leaked state is ideally 0. We thus ensure below that not only leakage is reduced but
also that the effect that the drive has on a non-leaked transmon is as small as possible.

3.2.1. TRANSMON-RESONATOR HAMILTONIAN
We consider a transmon capacitively coupled to a resonator and to a dedicated mi-
crowave drive line. The resonator possibly employs a Purcell filter which we do not in-
clude explicitly. In a frame rotating at the transmon-drive frequency ωd for both the
resonator and the transmon, the Hamiltonian is time-independent and is given by

H = H0 +Hc +Hd (3.1)

H0 = δr a†a +δq b†b + α

2
(b†)2b2 (3.2)

Hc = g (ab† +a†b) (3.3)

Hd = Ω
2

(e iφb +e−iφb†) (3.4)

where a and b are the creation operators for the resonator and the transmon, respec-
tively; δr = ωr −ωd and δq = ωq −ωd with ωr and ωq the resonator and transmon fre-
quencies, respectively; α < 0 is the transmon anharmonicity; g corresponds to the ca-
pacitive coupling; Ω and φ are the transmon-drive amplitude and phase, respectively.
The phase is not relevant for the results in this work and we fix it to φ= 0.

We can qualitatively understand (see Fig. 3.1(a)) that H contains an effective cou-
pling g̃ between |20〉 and |01〉. Ifωd matches the transition frequency between the “bare”
|20〉 and |01〉, these two states are degenerate in the rotating frame and they are con-
nected by two paths (at lowest order) via either |11〉 or |10〉. If∆ :=ωq −ωr ≫ g and δq ≫
Ω, then |11〉 and |10〉 are occupied only “virtually” and one gets purely an effective |20〉↔
|01〉 coupling. Modulo a constant term, in the 2D subspace S = span{|20〉 , |01〉} we can
write H in Eq. (3.1) as H |S ≡ −η(ωd )Z /2+ g̃ (ωd )X for an appropriate function η (an
approximation can be extracted from Eq. (3.62)). As a function of ωd this Hamiltonian
gives rise to a |20〉 ↔ |01〉 avoided crossing centered at a frequency ω∗

d (see Fig. 3.1(b))
where η(ω∗

d ) = 0. The energy separation at the center of the avoided crossing is then
2g̃ (ω∗

d ).
In order to quantitatively study the action of H , we unitarily transform it using a
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Figure 3.1: Concept of the readout-resonator LRU. (a) The state |20〉 (with the notation |transmon,resonator〉)
is connected to |01〉 by two main paths via either |11〉 or |10〉, due to the capacitive coupling g or the transmon-
drive amplitude Ω, respectively. This generates an effective coupling g̃ which can be used to swap |20〉 ↔
|01〉. The latter quickly decays to |00〉 due to the typically high coupling κ of the readout resonator to the
transmission-line environment, overall removing leakage from a leaked transmon. (b) In the rotating frame of
the drive, |20〉 and |01〉 show an avoided crossing as a function of the drive frequency ωd , centered at ω∗

d . The

effective coupling g̃ (ω∗
d ) is equal to half the energy separation at that point. (c),(e) ∆ω∗

d
:=ω∗

d − (2ωq +α−ωr )

and g̃ (ω∗
d ) are respectively evaluated either exactly by full numerical diagonalization of H in Eq. (3.1), or by

approximate analytical formulas (see Sec. 3.2.1 and Sec. 3.5) for the parameters in Tab. 3.1. The absolute errors
with respect to the exact curves are shown in (d),(f) respectively.

Schrieffer-Wolff transformation eS [63–66]. Let {|i j 〉D } be the basis of eigenvectors of H0+
Hc (the transmon-resonator “dressed” basis). In the dispersive regime (g ≪ ∆), with
respect to a 1st-order Schrieffer-Wolff transformation S1 in the perturbation parame-
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ter g /∆, such that e−S1 |ml〉 ≈ |ml〉D , we get (see Sec. 3.5)

H D := eS He−S ≈ eS1 He−S1 (3.5)

= H D
0 +H D

d1 +H D
d2 (3.6)

with

H D
0 =

(
δr −

∞∑
m=0

g 2∆−1

∆m∆m−1
|m〉〈m|

)
a†a

+
∞∑

m=1

(
mδq + α

2
m(m −1)+ g 2m

∆m−1

)
|m〉〈m| (3.7)

H D
d1 =

Ωe iφ

2
b +h.c. (3.8)

H D
d2 =

Ωe iφ

2

(
a

∞∑
m=0

g∆−1

∆m∆m−1
|m〉〈m|

+a†
∞∑

m=0

gα
p

m +1
p

m +2

∆m∆m+1
|m〉〈m +2|

)
+h.c., (3.9)

where ∆m := ∆+αm and {|m〉} are transmon states. H D
0 is diagonal and contains the

dispersive shifts, H D
d1 is the transmon drive now in the unitarily transformed frame,

H D
d2 contains an indirect resonator drive and couplings of the kind a† |m〉〈m +2|. In

particular, for m = 0 in Eq. (3.9) we get a lowest order approximation of g̃ :

g̃ ≈ Ωgαp
2∆(∆+α)

. (3.10)

Notice that at this order there is no dependence on ωd . Furthermore, g̃ would van-
ish for α = 0, since the two paths in Fig. 3.1(a) fully destructively interfere in that case.
Since α is low for transmons, one can expect that Ω needs to be relatively large for g̃ to
be substantial.

For the drive to be most effective it is important that ωd matches ω∗
d . If g = 0 = Ω,

there is no avoided crossing but |20〉 and |01〉 simply cross at ω∗
d ,0 ≡ 2ωq +α−ωr as

can be straightforwardly computed from H0 in Eq. (3.2). This value is shifted due to
the capacitive coupling (as can be seen from Eq. (3.7)), as well as due to the possibly
strong drive. For g ̸= 0 and Ω ̸= 0 one can either compute ω∗

d by full numerical di-
agonalization of H and find the avoided crossing as a function of ωd , or one can find
an (approximate) analytical expression. For the latter we use another Schrieffer-Wolff
transformation (rather than the resolvent method in [55], which does not give the full
Hamiltonian) to account for the effect of the transmon drive H D

d1 and to compute ω∗
d

up to order Ω4/(δq )3, see Sec. 3.5. We also use this transformation to compute g̃ up to
order Ω3/(δq )2. Figs. 3.1(c),(e) compare the analytical approach with the exact numeri-
cal results for ∆ω∗

d =ω∗
d −ω∗

d ,0 and g̃ (ω∗
d ), respectively, given the parameters in Tab. 3.1.

We consider 6 energy levels for the transmon and 3 for the resonator as we see that the
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Parameter Transmon Readout resonator

Frequency ω/2π 6.7 GHz 7.8 GHz

Anharmonicity α/2π −300 MHz n.a.

Coupling g /2π 135 MHz

Avg. photon number n̄ n.a. 0.005

Relaxation time T1 30 µs 16 ns

(κ/2π= 10 MHz)

Dephasing time T2 30 µs 32 ns

(flux noise)

Table 3.1: Parameters used both in the analysis and Lindblad simulations of the readout-resonator LRU, simi-
lar to the experimental ones in [29]. The transmon parameters correspond to the target parameters of a high-
frequency data qubit in Sec. 3.3.

exact curves converge for such choice. In Fig. 3.1(c)(d) we see that the two approxima-
tions are both pretty good, while in Fig. 3.1(e)(f) we see that Eq. (3.10) deviates by up
to 1 MHz from the exact value at high Ω and that the absolute error with respect to the
exact g̃ (ω∗

d ) scales in a seemingly quadratic way. Instead, the higher order approximation
stays closer to the exact curve and the error scales linearly. We expect that the remaining
gap would be mostly filled by considering also higher orders in g /∆ in the first Schrieffer-
Wolff transformation, since increasing only the order of approximation inΩ/δq does not
provide a significant improvement in Fig. 3.1(d).

3.2.2. PERFORMANCE OF THE READOUT-RESONATOR LRU
Given the theoretical understanding of the transmon-resonator system, we devise a pulse
to minimize the population in |2〉 on a leaked transmon. We consider the pulse shape

Ω(t ) =


Ω sin2(π t

2trise
) for 0 ≤ t ≤ trise

Ω for trise ≤ t ≤ tp − trise

Ω sin2(π
tp−t
2trise

) for tp − trise ≤ t ≤ tp

(3.11)

similarly to [55], where tp is the total pulse duration, at a fixed frequency ωd (t ) = ωd .
Hence, there are four parameters to optimize over, i.e. Ω,ωd , tp and trise. We fix trise =
30 ns since we observe that this strongly suppresses non-adiabatic transitions out of the
manifold of interest: for example, |20〉 is coupled to |10〉 by the drive but they are quite
off-resonant, so only a fast pulse can cause “non-virtual” transitions between them. In-
deed, for trise ≲ 10 ns there appear ripples (for an example see [55]) in e.g. the |20〉
and |10〉 populations when the drive is turned on and off, leading to a reduction in per-
formance. We expect that an improved pulse shape can shorten trise. However, we do
not explore this given the long maximum tp allowed in our surface-code scheme (tp ≤
Tslot = 440 ns, see Sec. 3.3.1).

We use Lindblad simulations of the transmon-resonator system to optimize overΩ,ωd
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Figure 3.2: Lindblad simulations of the transmon-resonator system for the readout-resonator LRU. In (a),(b)
the initial state is |2〉〈2| ⊗σth, while in (c),(d) it is |0〉〈0| ⊗σth, where σth is the resonator thermal state.
(a),(c) Transmon leakage population p |2〉 = 〈2|Trr (ρ(Tslot))|2〉 at the end of the time slot of Tslot = 440 ns.
For each choice of (Ω,ωd ) we optimize the total pulse duration tp ≤ Tslot to minimize p |2〉 given the initial
state |2〉〈2|⊗σth, for fixed trise = 30 ns. The white star indicates the chosen operating point (Ω/2π≈ 204 MHz,

ωd /2π ≈ 5.2464 GHz, tp = 178.6 ns) with p |2〉
op. ≈ 0.5% in (a). The induced leakage in (c) is p |2〉 ≈ 0.48% at the

operating point. The purple line corresponds to the higher order estimate of the optimal drive frequency ω∗
d

as a function of Ω (see Fig. 3.1(c)). The heatmaps are sampled using the adaptive package [67]. (b),(d) Time
evolution of the populations in a few selected states for the operating point. The vertical dashed line indicates
the used tp. The inset in (d) shows a schematic of the pulseΩ(t ).

and tp. The Lindblad equation is given by

ρ̇ =−i
[
H D ,ρ

]+∑
j

(
K jρK †

j −
1

2
{K †

j K j ,ρ}
)

(3.12)

with {K j } the quantum jump operators. We express (and solve) this equation in the ex-
act unitarily transformed frame. That is, while in Sec. 3.2.1 we have used a first-order
Schrieffer-Wolff transformation eS1 (see Eq. (3.5)), in the numerics we compute the full
transformation eS (see also Eq. (3.5)). In this way we find the basis that exactly diago-
nalizes H0 +Hc and express Hd in this basis as well, without any further Schrieffer-Wolff
transformation like in Sec. 3.2.1. In other words, the simulations reproduce the dynam-
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ics under the Hamiltonian in Eqs. (3.1) to (3.4) without any approximation.
The Hamiltonian parameters are the same as in Sec. 3.2.1 and are reported in Tab. 3.1,

including the noise parameters. In particular, while we neglect the transmon thermal
population, we include it for the resonator since it determines the leakage that the pulse
induces when the transmon was not leaked, as we discuss below. The resonator thermal
state is given by [68]

σth ≈
(
1− n̄

1+2n̄

)
|0〉〈0|+ n̄

1+2n̄
|1〉〈1| (3.13)

for low average photon number n̄. We consider dressed relaxation and dephasing, as
given below, assuming that this is a good model in the dispersive regime. In the unitarily
rotated frame, the employed jump operators {K j } are explicitly given by

1√
T r

1

a =p
κa,

√
n̄

1+ n̄

p
κa†,

√
2

T r
φ

a†a, (3.14)

1√
T q

1

b,

√√√√ 2

T q
φ

b†b, (3.15)

where Tφ = (1/T2 − 1/2T1)−1 and where we consider 6 energy levels for the transmon
and 3 for the resonator. Note that e.g. for a, going back to the original frame it holds
that e−S aeS = ∑1

l=0

p
l +1 |l〉D 〈l +1|D = aD by definition of eS , corresponding indeed

to relaxation in the dressed basis. By considering dressed relaxation and dephasing, the
effective relaxation time T q

1 of the transmon is not shortened by the fact that it is coupled
to a lossy resonator (Purcell effect). We assume that this is a good approximation also
during driving as the drive couples eigenstates which mostly have the same number of
excitations in the resonator (except for |20〉 and |01〉 when the drive is near-resonant with
this transition and causes a strong mixing of these states). We thus mimic the use of a
Purcell filter but without including it in the simulations since that would increase the
Hilbert-space dimension in a computationally expensive way.

For each choice of (Ω,ωd ) we optimize tp such that, given the initial state |2〉〈2|⊗σth,
the leakage population p |2〉 = 〈2|Trr (ρ(Tslot))|2〉 at the end of the available time slot is
minimized (see Fig. 3.2(a)). The states |20〉 and |01〉 approximately form a two-level sys-
tem with additional damping from |01〉 to |00〉, thus the drive effectively induces damped
Rabi oscillations [69] between them. Oscillations occur only for g̃ > κ/4 [69] (under-
damped regime), while for g̃ = κ/4 (critical regime) or g̃ < κ/4 (overdamped regime) the
populations in |20〉 and |01〉 simply decay in an exponential-like way without forming
any minimum. For the parameters in Tab. 3.1 the critical drive amplitude that gives g̃ =
κ/4 isΩcr/2π≈ 143 MHz. Thus forΩ≤Ωcr the best strategy is to drive until p |2〉 reaches a
(low) practically-stable value (which is in general not 0 when the full system is taken into
account). Here with the given κ we find that this occurs in a time comparable to Tslot

only from aboutΩ=Ωcr, so forΩ≤Ωcr we drive for the entire Tslot. ForΩ>Ωcr the opti-
mization has many local minima as a function of tp, corresponding to the minima of the
|20〉↔ |01〉 oscillations induced by the drive. Here we choose to target the first minimum
as in [55, 56] since it is the fastest approach. For a sudden pulse this minimum would oc-
cur around π/2g̃ for sufficiently small κ, whereas we find heuristically that a good initial
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guess for the optimization is π/2g̃damp with g̃damp :=
√

g̃ 2 − (κ/4)2 e−κ/7g̃ for larger κ.
Then for the optimization over tp we use the bounds tp −2trise ∈ [0,1.1×π/2g̃damp] (us-
ing the bounded Brent method in scipy; see [70] for the code). While using a longer tp

in the underdamped regime (possibly even greater than the allotted Tslot) would even-
tually lead to an even lower leakage population [54], it is not necessarily desirable as a
longer tp may mean that the disturbance to a non-leaked transmon is greater as well
(see Sec. 3.6.2).

While the procedure above optimizes tp given a certain pair (Ω,ωd ), we use the pack-
age adaptive [67] to choose the next pair to sample and we iterate this process. This pack-
age searches a given parameter space (hereΩ/2π ∈ [0,500 MHz],ωd /2π ∈ [5.19,5.26 GHz])
in a finer way where the given cost function changes faster. Here we use (log p |2〉)2 as the
cost function since it changes faster where p |2〉 is small, allowing us to get both a high-
resolution heatmap (see Fig. 3.2) and a good first estimation of the p |2〉 minima in a single
run. Then we run a local optimization with tight bounds around some of these candidate
points for fine tuning.

In Fig. 3.2(a) one can observe a band with low p |2〉 as desired. This band occurs at
drive frequencies slightly above ω∗

d (Ω), which one would expect to be optimal based
on Sec. 3.2.1. We attribute this to the fact that a significant share of the time is taken
by the rise and fall of the pulse, where Ω(t ) is smaller than the maximum. We find that
one can choose a broad range of Ωs to achieve a p |2〉 ≳ 0.5%, from 130 MHz (slightly
below the critical point) to deep in the underdamped regime. However, other consid-
erations apply, namely, on the high end using a very high Ω poses strong experimental
requirements on the drive, while on the low end the pulse takes much longer and it is
not a priori given that driving at the critical point would be best. Actually, notice that
driving at the critical point with good performance is possible only due to the relatively
high Tslot for the given κ. In the following we choose the point marked by a star in Fig. 3.2
as the operating point (Ω/2π≈ 204 MHz, ωd /2π≈ 5.2464 GHz, tp = 178.6 ns). This point

reaches p |2〉
op. ≈ 0.5% while affecting the least the coherence within the computational

subspace (see Sec. 3.6.1). We attribute the fact that this minimum does not reach 0 to
re-heating from |00〉 to |01〉, as well as transmon decoherence (resonator pure dephasing
would contribute as well but here T r

φ = ∞) and interactions with higher energy levels.

We note that in Fig. 3.2(a) we find good p |2〉 ≲ 5% up to Ω/2π≳ 100 MHz, which could
be used to further ease the requirements on the drive (see Sec. 3.3).

The time evolution for a few selected states is shown in Fig. 3.2(b) for the operating
point, given the initial state |2〉〈2|⊗σth. The first few ns make |20〉 rotate into |01〉, while
the latter decays relatively fast to |00〉 due to the large relaxation rate κ of the readout
resonator. Already after ≈ 220 ns the remaining |01〉 population has practically returned
to the thermal state. The repetition of the pulse, such as in the surface code (see Sec. 3.3)
at every QEC cycle, thus does not lead to heating of the resonator with these system
parameters (see Sec. 3.4 for a discussion about other parameter regimes).

We now evaluate the effect of the pulse on a non-leaked transmon (see Fig. 3.2(c),(d)).
There should ideally be no effect, except for an acquired single-qubit phase which can
easily be determined and corrected by either a real or virtual Z rotation. First, if the
transmon is in |0〉 and there is some thermal population in the resonator, part of the
state is supported on |01〉, which rotates into |20〉 in the same way as the opposite pro-
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cess by unitarity. Fig. 3.2(c) shows that indeed the induced leakage is greater where p |2〉
is lower in Fig. 3.2(a). However, due to the low n̄ = 0.005, the induced leakage is also
overall low (p |2〉 ≈ 0.48% in Fig. 3.2(c) at the operating point, which is comparable to
state-of-the-art CZ leakage rates, see Sec. 3.3.2) and can be made even lower by engi-
neering colder resonators. If the initial state is |1〉〈1| ⊗σth there is little induced leak-
age (p |2〉 ≈ 0.02% at the operating point and p |2〉 ≲ 0.04% across the whole landscape) as
the drive is off-resonant with transitions from this state. Second, the pulse might affect
the coherence times of the transmon by driving transitions within or outside the com-
putational subspace (and back), as the small but non-negligible transitory population
in |10〉 in Fig. 3.2(b),(d) seems to suggest. However, we find that both the effective T q

1
and T q

2 are only marginally affected as a function of Ω (see Sec. 3.6.1). This is because
stronger pulses cause a somewhat stronger disturbance to the qubit, but they are shorter
so that in total the effect is small.

3.3. SURFACE CODE WITH LRUS

3.3.1. LAYOUT AND OPERATION SCHEDULING

We study the distance-3 rotated surface code (see Fig. 3.3(a)), nicknamed Surface-17,
in the presence of leakage and LRUs. We follow the frequency and pipelined scheme
in [58], in which the 9 data qubits are subdivided into 3 high- and 6 low-frequency ones.
The 4 X and the 4 Z ancilla qubits have an intermediate frequency. We consider the flux-
pulse implementation of the CZs [13, 14, 33, 35, 36] for tunable-frequency transmons, in
which the transmon with the greater frequency is lowered towards the other one with a
flux pulse. With this technique fluxed transmons are prone to leakage. This means that
the high-frequency data qubits and all the ancilla qubits can leak. As shown in [40], leak-
age can last for many QEC cycles and be quite detrimental to the logical performance of
the code. Here we address these issues with the res-LRU for high-frequency data qubits
and with the π-LRU for ancilla qubits, as described below. If due to a different imple-
mentation of the CZs (or due to leakage mobility [40, 42]) also the low-frequency data
qubits can leak, one can apply the res-LRU to them as well but we do not explore this
here.

The circuit executed for each QEC cycle is shown in Fig. 3.3(b). The X -type and Z -
type parity-check units are implemented in an interleaved way, with the CZs for one
unit being applied while the other ancilla-qubit type is measured. The duration of each
operation is summarized in Sec. 3.7.1, with a total QEC-cycle duration of 800 ns. The
data qubits are idling for a considerable amount of time, namely Tslot = 440 ns, while the
ancilla qubits are measured. We choose this time slot as the ideal place to apply the res-
LRUs, introduced in Sec. 3.2, to the high-frequency data qubits. Notice that the optimal
pulse selected in Sec. 3.2.2, which was simulated for the target parameters of the high-
frequency data qubits, takes about tp = 180 ns and thus easily fits within this time slot
(see Sec. 3.4 for a discussion about other parameter regimes).

For the ancilla qubits there is no available time slot to apply the res-LRU. A possibility
would be to make the QEC-cycle time longer by inserting these LRUs when the measure-
ment is completed. However, this approach would lower the logical error rate of the code
by a non-negligible amount. On the other hand, ancilla qubits are measured and the
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Figure 3.3: (a) Schematic overview of the Surface-17 layout [40, 58]. Pink (resp. red) circles with D labels rep-
resent low- (high-) frequency data qubits, while blue (resp. green) circles with X (Z ) labels represent ancilla
qubits, which have an intermediate frequency. Ancilla qubits and high-frequency data qubits are prone to
leakage during the CZ gates. (b) The quantum circuit for a single QEC cycle employed in simulation, for the
unit-cell scheduling defined in [58], in which we insert the LRUs. The res-LRUs (orange) are applied uncon-
ditionally on the high-frequency data qubits after the CZs, while the π-LRUs (teal) are applied on the ancilla
qubits depending on the measurement outcome. Gray elements correspond to operations belonging to the
previous or the following QEC cycle. The duration of each operation is given in Sec. 3.7.1. The arrow at the
bottom indicates the repetition of QEC cycles.

(analog) measurement outcome contains information about leakage [40]. We choose
to use a different type of LRU altogether which uses this information. Specifically, we
consider a |1〉 ↔ |2〉 π pulse, conditioned on the measurement outcome reporting a |2〉.
Below we discuss further details of the implementation of this π-LRU.

3.3.2. IMPLEMENTATION OF THE LRUS IN THE DENSITY-MATRIX SIMULA-
TIONS

We use density-matrix simulations [51] using the open-source package quantumsim [59]
to study Surface-17 with res-LRUs and π-LRUs. We include relaxation and dephasing (T1

and T2), as well as flux-dependent T2 and leakage rate L1 during the CZs, following the
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same error model as in [40]. L1 is defined as the average leakage from the computa-
tional to the leakage subspace [71]. The state of the art is L1 ≈ 0.1% [13, 14], although the
actual L1 is expected to be higher when operating a multi-transmon processor [32, 72],
thus here we consider up to L1 = 0.5%. We assume that single-qubit gates do not induce
any leakage as their leakage rates are typically negligible compared to the CZs [9, 34, 38].
The noise parameters used are reported in Sec. 3.7.1. Furthermore, during a CZ with a
leaked transmon, the non-leaked transmon acquires a phase called the leakage condi-
tional phase [40]. We select these phases uniformly at random (see Sec. 3.7.3) and, in
contrast to [40], we then keep them fixed for every Surface-17 simulation in this chapter.
This makes it easier to recognize trends as a function of the LRU parameters. In Sec. 3.7.3
we discuss the variability of the logical error rate depending on the leakage conditional
phases. We do not consider further leakage from |2〉 to |3〉 in subsequent CZ gates [40] as
we expect it to be negligible when LRUs make |2〉 short-lived.

RES-LRU FOR DATA QUBITS

In the simulations, leakage-prone transmons are modeled as 3-level systems and non-
leakage-prone ones as 2-level systems, leading to an already computationally expensive
size for the density matrix. As a consequence, we do not include the readout resonator
explicitly in these simulations. The resonator is initially in the ground state and is re-
turned to it at the end of the time slot, approximately. We can thus trace the resonator
out and model the res-LRU on the transmon qubit as an incoherent |2〉 7→ |0〉 relaxation
(see Sec. 3.7.1 for details). Furthermore, in Sec. 3.2.2 we have observed that the res-
LRU can also cause a non-leaked transmon to partially leak, so we include that as an
incoherent |0〉 7→ |2〉 excitation.

Calling p | j 〉
i , p | j 〉

f the populations before and after the res-LRU, we define the leakage-

reduction rate 0 ≤ R ≤ 1 as R = 1− p |2〉
f conditioned on an initially fully leaked trans-

mon, i.e. for p |2〉
i = 1. Furthermore, we define the average res-LRU leakage rate LLRU

1
as the average of the induced leakage starting from either |0〉 or |1〉 (consistently with
the definition for CZ [71]), with probability 1/2 each. Since almost all induced leakage
comes from |0〉 (see Sec. 3.2.2), this means that p |2〉

f ≈ 0 for p |1〉
i = 1 and that p |2〉

f ≈ 2LLRU
1

for p |0〉
i = 1 (neglecting relaxation effects as the used T1 = 30 µs is relatively long). Com-

bining these two definitions one gets the expression

p |2〉
f ≈ (1−R) p |2〉

i +2LLRU
1 p |0〉

i (3.16)

for an arbitrary incoming state. Notice that, given these definitions, Fig. 3.2(a),(c) re-
spectively show a heatmap of 1−R and 2LLRU

1 for the considered transmon-resonator
parameters. In particular, the operating point achieves R ≈ 99.5% and LLRU

1 ≈ 0.25%.
The achieved leakage reduction can be compared with the one given purely by relaxation
during Tslot, namely RT1 = 1− e−Tslot/(T1/2) = 2.9%, which shows that the LRU provides a
much stronger additional seepage channel.

π-LRU FOR ANCILLA QUBITS

The dispersive readout of a transmon qubit is in general performed by sending a pulse
to the readout resonator, integrating the reflected signal to obtain a point in the IQ plane
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and depleting the photons in the resonator (either passively by relaxation or actively with
another pulse) [17–19]. The measured point is compared to one or more thresholds to
declare the measurement outcome. These thresholds are determined as to optimally
separate the distributions for the different outcomes, which have a Gaussian(-like) form.
Here we assume that the distribution for |2〉 is sufficiently separated from |0〉 and |1〉 [17].
This is generally expected to be possible thanks to the different dispersive shift. Then one
uses three thresholds in the IQ plane to distinguish between |0〉, |1〉 and |2〉 (or two if |2〉
is well-separated from e.g. |0〉). We also assume that an outcome can be declared during
photon depletion, thus enabling real-time conditional feedback. This is challenging to
perform in 200-300 ns in experiment due to the classical-postprocessing requirements,
but it has been previously achieved [30, 57]. We can then apply the π-LRU right at the
end of the depletion time. The |1〉 ↔ |2〉 π pulse is expected to be implementable as a
simple pulse in the same way and time as single-qubit gates (20 ns) and with compara-
ble, coherence-limited fidelity.

If conditional feedback is not possible in the allotted time, one can either increase the
QEC-cycle duration (at the cost of extra decoherence for all qubits, scaling as 1−e−textra/T2

per qubit per QEC cycle) or postpone the conditional gate to the next QEC cycle. In the
latter case, one source of error corresponds to the ancilla qubit already seeping before
the application of the π-LRU, which then causes it to leak instead. The probability of
this error is already low and is expected to become even lower with longer T1s and lower-
leakage CZs. The other errors are the Z rotations (depending on the leakage conditional
phases) that the leaked ancilla qubit spreads for at least 1 extra QEC cycle, as well as
the fact that the parity-check stays disabled. We do not simulate these variants and we
expect a relatively low logical-performance loss, corresponding to an average leakage
lifetime of about 2 QEC cycles (see Figs. 3.4 and 3.9).

Readout-declaration errors are expected to affect the performance of the π-LRU. On
one hand, an incorrect declaration of |1〉 as a |2〉 makes the π pulse induce leakage.
On the other hand, declaring a |2〉 as a |1〉 would lead to leakage not being corrected
and lasting for at least one extra QEC cycle. We define the readout matrix M with en-
tries Mi j =: pM (i | j ) being the probability that the actual state | j 〉 resulting from the pro-
jective measurement is declared as an |i 〉. In the simulations we use

M =


1 0 0

0 pM (1|1) 1−pM (1|1)

0 1−pM (2|2) pM (2|2)

 . (3.17)

In particular, this means that we do not consider declaration errors within the compu-
tational subspace. While that would change the value of the logical error rate since the
error syndrome gets corrupted, it is not relevant for evaluating the performance of the
π-LRUsince a |0〉 mistaken for a |1〉 or vice-versa does not trigger theπ-LRU anyway. Fur-
thermore, we assume that a |0〉 cannot be mistaken as a |2〉 since their readout signals are
often much more separated than the signals of |1〉 and |2〉. Note that if a |0〉 (rather than
a |1〉, as we assume in this chapter) could be mistakenly declared as a |2〉, then a |1〉↔ |2〉
π pulse does not induce leakage, so here we consider the worst-case scenario for the
π-LRU.
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3.3.3. AVERAGE LEAKAGE LIFETIME AND STEADY STATE
Once a qubit leaks, it tends to remain leaked for a significant amount of time, up to 10-15
QEC cycles on average [40]. Starting from an initial state with no leakage, the probability
that a qubit is in the leaked state tends towards a steady state within a few QEC cycles.
It was shown in [40] that this evolution is well captured by a classical Markov process
with leakage (resp. seepage) rate ΓC→L (ΓL→C ) per QEC cycle, where C (resp. L ) is the
computational (leakage) subspace. Note that here L is 1-dimensional, corresponding
to |2〉. In our error model, without accounting for LRUs, these rates are approximately
given by

ΓC→L ≈ NfluxL1, (3.18)

ΓL→C ≈ NfluxL2 + (1−e
− tc

T1/2 ), (3.19)

where Nflux is in how many CZ gates the transmon is fluxed during a QEC cycle, tc is the
duration of a QEC cycle and L1 (resp. L2) is the average leakage (seepage) probability of
a CZ [71]. Thus the two native mechanisms that generate seepage are the CZs themselves
and relaxation.

The major effect of a LRU is to effectively increase ΓL→C in Eq. (3.19) by introducing
an extra seepage mechanism. Hence we expect that ΓLRU

L→C
∼ ΓL→C +R for data qubits

and ΓLRU
L→C

∼ ΓL→C +pM (2|2) for ancilla qubits, preventing leakage from accumulating
and lasting long for large R or pM (2|2).

The average leakage lifetime lL
avg is the average duration of leakage and for a Markov

process it is calculated as

lL
avg =

∞∑
n=1

nP(stay in L for n QEC cycles) (3.20)

=
∞∑

n=1
n(1−ΓL→C )n−1ΓL→C = 1

ΓL→C
, (3.21)

thus assuming that the qubit starts in L . The evolution of the leakage probability p̄L (n),
averaged over surface-code runs, as a function of the number of QEC cycles n is well-
approximated by [40]

p̄L (n) = ΓC→L

ΓC→L +ΓL→C
(1−e−(ΓC→L +ΓL→C )n). (3.22)

The steady state is the long-time limit and is given by

p̄L
ss = lim

n→∞ p̄L (n) = ΓC→L

ΓC→L +ΓL→C
. (3.23)

For ancilla qubits p̄L (n) can be computed directly from the “true” measurement out-
comes (i.e. without declaration errors on top). For data qubits it can be computed from
the density matrix. Specifically, for data qubits we evaluate p̄L (n) right after the CZs.

Fig. 3.4 shows lL
avg and p̄L

ss extracted from the Surface-17 simulations by fitting p̄L (n)
to Eq. (3.22) for each qubit. We can indeed observe that these quantities drop substan-
tially for both data and ancilla qubits. The decays follow an inverse proportionality as
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e.g. for data qubits

lL
avg =

1

ΓLRU
L→C

∼ 1

ΓL→C +R
∼ 1

R
(3.24)

p̄L
ss = ΓLRU

C→L

ΓLRU
C→L

+ΓLRU
L→C

∼ Γ
LRU
C→L

ΓLRU
L→C

∼ Γ
LRU
C→L

R
(3.25)

for sufficiently large R and smallΓLRU
C→L

. For ancilla qubits we expect, similarly, a 1/pM (2|2)
dependence. The lifetime drops from values ≳ 10 to ≈ 1, which is the minimum value it
can achieve (some points drop below 1 within error bars as it is difficult for the fit to esti-
mate such a short lifetime). As of course the LRUs do not prevent leakage from occurring
during the CZs in the first place, one cannot expect the steady state to reach 0 even for a
perfect LRU (R = 1), but rather p̄L

ss ∼ ΓLRU
C→L

≈ NfluxL1 (+LLRU
1 if the LRU can mistakenly

induce leakage). Figs. 3.4(b),(d) show that this is indeed the case.
Fig. 3.4 also demonstrates that both lL

avg and p̄L
ss get close to their minimum values

already for R, pM (2|2)≳ 80%. This suggests that res-LRU and π-LRU may not necessarily
need to be perfect to provide a good logical performance in Surface-17. This means that
one could use e.g. a weaker pulse to implement the res-LRU or that the readout of |2〉
may not need to be particularly optimized in practice.
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Figure 3.4: Average leakage lifetime lL
avg [(a),(c)] and leakage steady state p̄L

ss [(b),(d)] as a function of the
leakage-reduction rate R for data qubits [(a),(b)] and as a function of the readout probability pM (2|2) for ancilla
qubits [(c),(d)]. Here we fix the CZ leakage rate to L1 = 0.5%. The insets in (b),(d) show that p̄L

ss tends to ≈
NfluxL1 (Nflux = 4 for D4, 3 for D3,D5, 1 for Z0, Z3 and 2 for the remaining ancilla qubits). The vertical dashed
lines correspond to the values used in Sec. 3.3.4. These results are extracted from 2×104 runs of 20 QEC cycles
each per choice of parameters. Error bars are estimated using bootstrapping and are mostly smaller than the
symbol size.
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3.3.4. LOGICAL PERFORMANCE
In the simulations the logical qubit is initialized in |0〉L and the logical fidelity FL(n)
is computed at the end of each QEC cycle as the probability that the decoder correctly
determines whether a logical error has occurred or not. We do not perform a similar
analysis with initial state |+〉L or other states as the density-matrix simulations are com-
putationally expensive and we expect a similar performance. The logical error rate εL per
QEC cycle can be extracted by fitting FL(n) = [1+ (1−2εL)n−n0 ]/2, where n0 is a fitting
parameter (usually close to 0) [51]. We evaluate εL for the upper bound decoder (UB)
which uses the complete density-matrix information to infer a logical error, and for the
minimum-weight perfect-matching decoder (MWPM). Detailed information about these
decoders can be found in [51, 73] and an overview is given in Sec. 3.7.1.

By mapping a leaked qubit back to the computational subspace, a LRU does not fully
remove a leakage error but can at most convert it into a regular (Pauli) error. Hence,
it is not to be expected that εL in the presence of leakage can be restored to the value
at L1 = 0. We consider realistic parameters for the LRUs. Specifically, we use R = 95%,
LLRU

1 = 0.25%, pM (2|2) = 90% and pM (1|1) = 99.5%. We have shown in Sec. 3.2.2 that the
first two parameters can be attained with realistic parameters for the transmon-readout
system, while the last two are close to be achievable in experiment [7, 54]. In particu-
lar, while the operating point has R = 99.5%, we conservatively choose R = 95% here.
Notice that pM (1|1) = 99.5% is quite high. We argue that the state of the art can be
squeezed as the threshold to distinguish between |1〉 and |2〉 in the IQ plane could be
moved towards |2〉, rather than placing it in the middle as is common practice. In this
way one would slightly reduce pM (2|2) in favor of pM (1|1) if pM (1|1) is not high enough.
A broader study of the logical performance as a function of the LRU parameters can be
found in Sec. 3.7.2.

Fig. 3.5 shows the reduction in εL as a function of the CZ leakage rate L1 when LRUs
with the given parameters are employed. Using only the res-LRU or the π-LRU low-
ers εMWPM

L by basically the same amount, while εUB
L is lower for the π-LRU than for the

res-LRU. We attribute this to the fact that UB directly uses the information in the density
matrix, while MWPM relies on the measured syndrome, thus being more susceptible to
ancilla-qubit leakage. When both LRUs are used, we see that εL is reduced by an amount
which is close to the sum of the reductions when only one kind of LRU is used. As ex-
pected, εL is not restored to the value at L1 = 0, but the reduction is overall significant
and can reach up to 30% for both MWPM and UB compared to the case without LRUs.

3.4. DISCUSSION
In this chapter we have introduced a leakage-reduction scheme using res-LRUs and π-
LRUs which does not require any additional hardware or a longer QEC cycle. Further-
more, while the scheme in [42] is applicable only to ancilla qubits, our combination of
res-LRU for data qubits andπ-LRU for ancilla qubits enables to significantly reduce leak-
age in the whole transmon processor. We have shown with detailed simulations using
realistic parameters that the reset scheme in [54–56] can be adapted to be a LRU without
significantly affecting the states in the computational subspace, allowing to uncondi-
tionally apply the res-LRU in the surface code. The use of the res-LRU for data qubits,
as well as the use of the π-LRU for ancilla qubits, leads to a substantial reduction of
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Figure 3.5: Logical error rate εL per QEC cycle for the upper bound (UB, red) and minimum-weight perfect-
matching (MWPM, green) decoders versus the CZ leakage rate L1, in the cases with: no LRUs, only res-LRU,
only π-LRU and both LRUs (the point without leakage at L1 = 0 is always without LRUs as well). These results
are extracted from 2×104 runs of 20 QEC cycles each per choice of parameters. Error bars are estimated using
bootstrapping and are smaller than the symbol size.

the average leakage lifetime and leakage steady state, preventing leakage from lasting
more than ≈ 1 QEC cycles on average, even when the LRUs are imperfect and can intro-
duce leakage themselves. Using full density-matrix simulations of Surface-17 we have
demonstrated that this leads to a significant reduction of the logical error rate for both
the UB and MWPM decoders.

Regarding the practical implementation of the res-LRU, the required drive ampli-
tude is relatively strong, similarly to the one used in the experiments in [54–56]. It is
thus important that the microwave crosstalk is minimized by careful engineering of the
drive lines. Furthermore, in a multi-transmon processor, it is relevant that the drive fre-
quency does not accidentally match any two-qubit or neighboring single-qubit transi-
tions. E.g., in the original scheme in [58] that we followed, the target frequencies are
6.7, 6.0 and 4.9 GHz for high-, mid- and low-frequency qubits, respectively, and 7.8 GHz
for the readout resonator [29]. In particular, the mid-frequency qubits (the ancilla qubits)
are parked around 5.4-5.5 GHz during measurement, with their |1〉↔ |2〉 transition around
5.1-5.2 GHz. This is close to the optimal drive frequency found in Sec. 3.2.2 (≈ 5.25 GHz),
which can lead to an indirect ancilla-qubit drive mediated by the bus resonator, albeit
weaker. The difficulty of precise frequency targeting in fabrication can further lead to
undesired frequency collisions. These issues can be alleviated by choosing slightly dif-
ferent transmon/resonator frequencies and anharmonicities to make the drive more off-
resonant with that transition (combined with better frequency targeting [74]), or they
can be mitigated altogether by using tunable couplers [2, 7, 15]. The res-LRU is com-
patible with tunable-coupler schemes and their possibly different operation scheduling
than in [58], as well as potentially applicable to superconducting qubits which use a res-
onator for dispersive readout other than the transmon. Tunable couplers would also be
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advantageous to fully protect the res-LRU performance from residual Z Z crosstalk, even
though we find that a cumulative Z Z interaction up to ∼ 2 MHz can be tolerated with
fixed couplers (see Sec. 3.6.3). Beside this, if the low-frequency data qubits can leak de-
pending on the implementation of the CZ, the res-LRU can be applied to them in the
same time slot as the high-frequency ones. If the thermal population in the readout res-
onator is relatively high in a given experiment, the effect of a correspondingly high LLRU

1
can potentially be mitigated by applying res-LRU conditionally on the detection of leak-
age by a set of hidden Markov models [40].

Regarding the viability of inserting the res-LRU in the surface-code time schedul-
ing, the necessary condition is that tp ≤ Tslot. We can express Tslot as Tslot = tm −4tCZ,
where tm is the measurement time for the ancilla qubits. Slower CZs might make Tslot

too short, although CZs even faster than 40 ns (as assumed here) have been realized
in 15 ns [16]. The measurement time can be further broken down into readout-pulse
time and photon-depletion time, tm = tread + tdepl. Both of these would be reduced by a
larger κ, however, assuming that the κ’s of ancilla- and data-qubit resonators are com-
parable, tp would be reduced as well. Even if we keep tp and tCZ fixed to the values in
this chapter, we get tm ≥ 340 ns, which is significantly lower than tm = 580 ns as consid-
ered here. A desirable, additional condition to the necessary one is that Tslot − tp ≥ 4/κ,
i.e. that there is enough leftover time in Tslot to allow for the data-qubit resonator to re-
turn the thermal state, where we estimate that 4 decay constants would suffice (together
with the fact that the resonator was already relaxing during tp). Assuming similar deple-
tion time for data- and ancilla-qubit resonators, this roughly means that the res-LRU is
easily applicable if tp is smaller or similar to tread. Note that in this chapter we have
Tslot − tp ∼ 16/κ and tp < tread. If the additional condition above is not satisfied, one
could demand that at least the resonator has returned to the thermal state before the
res-LRU in the following QEC cycle, i.e. Tslot − tp +8tCZ +2tH ≥ 4/κ. In this case the dis-
advantage would be that the presence of a fraction of a photon in the resonator would
cause additional data-qubit dephasing especially during the first few CZs. As the extra
photon is present only when the qubit was previously leaked, we expect this disadvan-
tage to be small as long as the overall leakage rate is small. If even the relaxed additional
condition is violated, on top of the additional dephasing the resonator would also heat
up, effectively leading to a higher LLRU

1 in the QEC cycle(s) following the one in which
the qubit leaked. As also this effect scales with L1, we expect that it would not be an is-
sue as long as κ is not very low (allowing for at most 1 extra QEC cycle to thermalize we
get κ/2π≥ 1 MHz). Otherwise, leakage would not really be removed from the system but
would be largely moved back and forth from the transmon to the resonator.

The demonstrated reduction in the average leakage lifetime and in the logical error
rate is expected to lead to a higher noise threshold for the surface code in the presence of
leakage, compared to the case without LRUs. Furthermore, for error rates below thresh-
old (both regular and leakage) we believe that the logical error rate would be exponen-
tially suppressed with increasing code distance when employing LRUs. Without LRUs
this might hold only when the code distance is sufficiently larger than the average leak-
age lifetime (d ≫ lL

avg). For smaller distances the relatively long correlated error chains
induced by leakage might lead to a sub-exponential scaling. To study the noise thresh-
old and sub-threshold behavior it is necessary to implement simulations of large code
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sizes which use a simplified error model, such as a stochastic error model for leakage
and Pauli errors [24, 43, 46]. We expect that the demonstrated MWPM logical error rate
can be further lowered by the use of decoders [24, 43, 46, 60–62] that use information
about leakage extracted directly or indirectly (e.g. with hidden Markov models [40]) from
the measurement outcomes.

3.5. APPROXIMATE TRANSMON-RESONATOR HAMILTONIAN

3.5.1. SCHRIEFFER-WOLFF TRANSFORMATION
In this section we explain the concept of the Schrieffer-Wolff transformation (SWT) [63–
65] and derive the equations that we use in the following sections.

Consider a Hamiltonian
H = H0 +ϵV (3.26)

expressed in a certain basis {|ψn〉}, where H0 is block diagonal with respect to this ba-
sis and the perturbation V can be taken as block off-diagonal without loss of generality
(block-diagonal terms can be included in the definition of H0). Furthermore, we as-
sume ||V || = O (1) and ϵ ≪ ∆i j , where we set ∆i j as the minimum energy separation
between blocks i and j .

The SWT corresponds to finding an anti-hermitian matrix S such that

H ′ := eS He−S (3.27)

is block diagonal. In other words, using {|ψ̄n〉} to refer to the basis of eigenstates of H ,
eS =∑

n |ψn〉〈ψ̄n |. The matrix S can be expanded in a series

S =
∞∑

k=1
ϵk Sk (3.28)

where each Sk is block off-diagonal. If ϵ≪∆i j one can expect the first order (S1) to pro-
vide a good approximation, otherwise one needs to consider higher orders depending
on ϵ (although the series does not always converge for extensive systems [64]). Using the
Baker-Campbell-Hausdorff formula one gets

H ′ = eS He−S =
∞∑

k=0

1

k !
[S, [S, . . . [S,︸ ︷︷ ︸

k times

H ] . . . ]]. (3.29)

The procedure for the SWT is to group terms of the same order in ϵ in this formula and
set the block off-diagonal part of H ′ to 0, thus getting equations for {Sk }, in the usual case
with two blocks [64]. One uses the relationships[

diagonal,diagonal
]= diagonal, (3.30)[

diagonal,off-diagonal
]= off-diagonal, (3.31)[

off-diagonal,off-diagonal
]= diagonal. (3.32)

However, the last line only holds for the case with two blocks. In the following we con-
sider the generalization of the SWT to the case with an arbitrary number of blocks [65].
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We use the notation OD and OOD for the block diagonal and off-diagonal parts of an
operator O =OD +OOD, respectively.

Here we expand H and S up to k = 3 in Eq. (3.29), assuming that the 4th-order block
off-diagonal term is negligible. We get the following pieces:

0th order : H0 (3.33)

1st order : V + [S1, H0] (3.34)

2nd order : [S1,V ]+ 1

2
[S1, [S1, H0]]+ [S2, H0] (3.35)

3rd order : [S2,V ]+ 1

2

(
[S2, [S1, H0]]+ [S1, [S1,V ]]+ [S1, [S2, H0]]

)
+ 1

6
[S1, [S1, [S1, H0]]]+ [S3, H0] (3.36)

4th order : [S3,V ]+ 1

2

(
[S1, [S3, H0]]+ [S2, [S2, H0]]+ [S3, [S1, H0]]+ [S1, [S2,V ]]

+ [S2, [S1,V ]]
)

+ 1

6

(
[S1, [S1, [S1,V ]]]+ [S2, [S1, [S1, H0]]]+ [S1, [S2, [S1, H0]]]

+ [S1, [S1, [S2, H0]]]
)

+ 1

24
[S1, [S1, [S1, [S1, H0]]]] . (3.37)

Setting the block off-diagonal parts at 1st, 2nd and 3rd order to 0 we get

[H0,S1] =V (3.38)

[H0,S2] = 1

2
[S1,V ]OD (3.39)

[H0,S3] = 1

2
[S2,V ]OD + 1

3
[S1, [S1,V ]D]OD

+ 1

12

[
S1, [S1,V ]OD

]
OD , (3.40)

where we have used the first equation to simplify the following ones. These equations
can be solved iteratively for Sk (given knowledge of the eigenstates of H0). The Hamilto-
nian H ′ is then block diagonal up to 4th order and is explicitly given by

H ′ =H0 + ϵ2

2
[S1,V ]D

+ϵ3
(1

2
[S2,V ]D + 1

12

[
S1, [S1,V ]OD

]
D

)
+ϵ4

(1

2
[S3,V ]D − 1

24

[
S1, [S1, [S1,V ]D]OD

]
D

− 1

6

[
S2, [S1,V ]OD

]
D + 1

12

[
S1, [S2,V ]OD

]
D

)
. (3.41)

This expression has been simplified using Eqs. (3.38) to (3.40), together with the fact that
e.g. [Sk , [. . . , . . .]D]D = 0 since Sk is block off-diagonal.
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3.5.2. SWT OF THE CAPACITIVE COUPLING
We consider the Hamiltonian H = H0 +Hc +Hd of a driven transmon capacitively cou-
pled to a resonator, as given in Eqs. (3.1) to (3.4).

The SWT of Hc up to 1st order in the perturbation parameter ϵ = g /∆, where ∆ =
ωq −ωr , is implemented using the matrix [66]

S1 = g
∞∑

m=1

p
m

∆+α(m −1)

(
a |m〉〈m −1|−h.c.

)
, (3.42)

where {|m〉} are transmon states and where we have absorbed ϵ in the definition of S1.
The Hamiltonian in the unitarily transformed frame as defined in Sec. 3.2.1 is then given
by

H D ≈ eS1 He−S1 = eS1 (H0 +Hc )e−S1 +eS1 Hd e−S1 (3.43)

with

eS1 (H0 +Hc )e−S1 = H0 + 1

2
[S1, Hc ] (3.44)

≈ δr a†a +
∞∑

m=1

(
mδq + α

2
m(m −1)+ g 2m

∆m−1

)
|m〉〈m|

−a†a
∞∑

m=0

g 2∆−1

∆m∆m−1
|m〉〈m| (3.45)

:= H D
0 (3.46)

where we define∆m =∆+αm =∆−|α|m asα< 0 for transmons. The second term above
contains a Stark shift of the transmon frequency and the last term is the state-dependent
dispersive shift. The approximation in Eq. (3.45) is due to the fact that we have ig-
nored a double-excitation exchange term coming from [S1, Hc ], since it is proportional
to gα/(∆m∆m−1). This is negligible for low anharmonicity and, secondly, for ωr > ωq

as then ∆ < 0 and |∆m | increases with m. If instead ωr < ωq , ∆ > 0 and |∆m | decreases
with m, so even if the approximation is good for the two lowest levels, there can be some
higher level which does not sit well within the dispersive regime. However, in this chap-
ter we consider a system with ωr >ωq , hence we do not need to take this into account.

The drive Hamiltonian in the unitarily transformed frame takes the form

eS1 Hd e−S1 = H D
d1 +H D

d2 (3.47)

where

H D
d1 := Ωe iφ

2
b +h.c. (3.48)

H D
d2 := Ωe iφ

2

(
a

∞∑
m=0

g∆−1

∆m∆m−1
|m〉〈m|+a†

∞∑
m=0

gα
p

m +1
p

m +2

∆m∆m+1
|m〉〈m +2|

)
+h.c.

(3.49)

The last term contains a 1st-order approximation in g /∆ of the |20〉↔ |01〉 effective cou-
pling g̃ , which is linear inΩ. However, the “pure” drive term H D

d1 can be quite strong, so
we need to evaluate how it affects g̃ and the rest of the Hamiltonian.
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3.5.3. SWT OF THE PURE DRIVE HAMILTONIAN
Summarizing, in the unitarily transformed frame the original Hamiltonian H takes (ap-
proximately) the form

H D ≈ H D
0 +H D

d1 +H D
d2, (3.50)

where H D
0 is given in Eq. (3.45) and H D

d1, H D
d2 are given in Eq. (3.47).

We now want to find an additional SWT transformation S′ = S′
1 + S′

2 + S′
3, with H D

d1
taking the role of V in Sec. 3.5.1, defining a “double-dressed” Hamiltonian

H DD := eS′
H D e−S′

(3.51)

= eS′
(H D

0 +H D
d1)e−S′︸ ︷︷ ︸

=:H DD
0

+eS′
H D

d2 e−S′︸ ︷︷ ︸
=:H DD

d

(3.52)

such that H DD
0 is fully diagonal up to 3rd order in the perturbation parameter ϵ=Ω/δq .

Then H DD
d gives the couplings within the manifold of interest (|20〉 , |01〉) and outside of

it. We absorb ϵk in the definition of S′
k so it does not explicitly appear below.

Following Sec. 3.5.1, to find S′
1 we need to solve Eq. (3.38), i.e.[

H D
0 ,S′

1

]= H D
d1 (3.53)

in this specific case. Bracketing it with the eigenstates {|ml〉} of H D
0 , with the notation

|transmon,resonator〉, we get the matrix elements of S′
1 as

〈ml |S′
1|nk〉 = 〈ml |H D

d1|nk〉
E D

ml −E D
nk

, (3.54)

where {E D
ml } are the eigenenergies of H D

0 , which can be easily inferred from Eq. (3.45).
We neglect the dispersive shift since it is proportional to α/∆. Then

〈ml |S′
1|nk〉 =Ω

2

(
−
p

m +1δm,n−1δl ,k

δq +αm + g 2∆−1
∆m−1∆m

e iφ

+
p

mδm,n+1δl ,k

δq +α(m −1)+ g 2∆−1
∆m−2∆m−1

e−iφ
)
, (3.55)

where δi , j is the Kronecker delta. From this equation one can infer that

S′
1 =−Ω

2
e iφ

∞∑
m=0

p
m +1

δ
q
m

|m〉〈m +1|−h.c., (3.56)

where we have defined δq
m = δq +αm + g 2∆−1

∆m−1∆m
.

Having derived S′
1, we can compute S′

2 from Eq. (3.39), i.e.

[
H D

0 ,S′
2

]= 1

2

[
S′

1, H D
d1

]
OD (3.57)



3

124
3. A HARDWARE-EFFICIENT LEAKAGE-REDUCTION SCHEME FOR QUANTUM ERROR

CORRECTION WITH SUPERCONDUCTING TRANSMON QUBITS

with

[
S′

1, H D
d1

]=− Ω
2

2

∞∑
m=0

δ̃
q
m

δ
q
mδ

q
m−1

|m〉〈m|

− Ω
2

4

∞∑
m=0

p
m +1

p
m +2

( 1

δ
q
m

− 1

δ
q
m+1

)
(e2iφ |m〉〈m +2|+h.c.), (3.58)

where δ̃q
m = δq −α+ g 2∆−1∆3m

∆m∆m−1∆m−2
. Clearly the first term is the diagonal part while the

second term is the off-diagonal one. With a similar procedure as the one used for S′
1, it

follows that

S′
2 =

Ω2

8
e2iφ

∞∑
m=0

p
m +1

p
m +2

δ
q
m +δq

m+1

( 1

δ
q
m

− 1

δ
q
m+1

)
|m〉〈m +2|−h.c. (3.59)

We can then compute S′
3 from Eq. (3.40), i.e.

[
H D

0 ,S′
3

]= 1

2

[
S′

2, H D
d1

]
OD + 1

3

[
S′

1,
[
S′

1, H D
d1

]
D

]
OD

+ 1

12

[
S′

1,
[
S′

1, H D
d1

]
OD

]
OD

. (3.60)

The result is

S′
3 =Ω3e iφ

∞∑
m=0

|m〉〈m +1|
(

1

12

p
m +1

(δq
m)3

( δ̃q
m+1

δ
q
m+1

− δ̃
q
m

δ
q
m−1

)
+ 1

96δq
m

(
(m +2)

p
m +1

δ
q
m +4δq

m+1

δ
q
m+1(δq

m +δq
m+1)

( 1

δ
q
m

− 1

δ
q
m+1

)
−p

m +1m
4δq

m−1 +δ
q
m

δ
q
m−1(δq

m−1 +δ
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We can eventually use Eqs. (3.56), (3.59) and (3.61) together with Eq. (3.41) to ob-
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tain H DD
0 (defined in Eq. (3.52)):
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We note that this expression implicitly contains all cross terms between the perturbative
parameters g /∆ andΩ/δq up to the chosen orders. The approximate coupling Hamilto-
nian H DD

d (defined in Eq. (3.52)) up to 2nd order inΩ/δq is instead given by

H DD
d = H D

d2 +
[
S′

1, H D
d2

]+ [
S′

2, H D
d2

]+ 1

2

[
S′

1,
[
S′

1, H D
d2

]]
(3.63)

=: H DD
eff.coupl. +H DD

resid., (3.64)
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with

g̃m := gαΩ
p
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p

m +2

2∆m∆m+1
(3.66)

g ′
m := gΩ∆−1

2∆m∆m−1
, (3.67)
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and

H DD
resid. = (e iφa +h.c.)

∞∑
m=0

|m〉〈m|
(

g ′
m

(
1− Ω

2

4

( m +1

(δq
m)2

+ m

(δq
m−1)2

))
+ Ω

2

4

( m +1

(δq
m)2

g ′
m+1 +

m

(δq
m−1)2

g ′
m−1

)
+ Ω

2

4

(pm +1
p

m +2g̃m

δ
q
m(δq

m +δq
m+1)

+
p

m
p

m +1g̃m−1

δ
q
mδ

q
m−1

+
p

m −1
p

mg̃m−2

δ
q
m−1(δq

m−2 +δ
q
m−1)

))

− Ω
2

e2iφa
∞∑

m=0
|m〉〈m +1|

p
m +1

δ
q
m

(g ′
m+1 − g ′

m)+h.c.

− Ω
2

a†
∞∑

m=0
|m〉〈m +1|

(pm +1

δ
q
m

(g ′
m+1 − g ′

m)+
p

m +2

δ
q
m+1

g̃m −
p

m

δ
q
m−1

g̃m−1

)
+h.c.

+ Ω
2

4
e3iφa

∞∑
m=0

|m〉〈m +2|pm +1
p

m +2

(
g ′

m+2

δ
q
m(δq

m +δq
m+1)

− g ′
m+1

δ
q
mδ

q
m+1

+ g ′
m

δ
q
m+1(δq

m +δq
m+1)

)
+h.c.

− Ω
2

e2iφa†
∞∑

m=0
|m〉〈m +3|

(pm +1

δ
q
m

g̃m+1 −
p

m +3

δ
q
m+2

g̃m

)
+h.c.

+ Ω
2

4
e3iφa†

∞∑
m=0

|m〉〈m +4|
(p

m +1
p

m +2g̃m+2

δ
q
m(δq

m +δq
m+1)

−
p

m +4
p

m +1g̃m+1

δ
q
mδ

q
m+3

+
p

m +3
p

m +4g̃m

δ
q
m+3(δq

m+3 +δ
q
m+2)

)
+h.c. (3.68)

All terms in H DD
resid. are relatively small and off-resonant with the |20〉 ↔ |01〉 transition

so we expect them to have a small effect and we do not proceed with higher orders of
SWTs.

3.5.4. ANALYSIS OF THE |20〉↔ |01〉 AVOIDED CROSSING
In this section we give the methods used to calculate the curves in Fig. 3.1(c),(e).

We define ω∗
d as the drive frequency corresponding to the center of the |20〉 ↔ |01〉

avoided crossing of the full Hamiltonian H as given in Eq. (3.1). Then the exact value of
the effective |20〉 ↔ |01〉 coupling g̃ is given by half the energy separation at that point.
The avoided crossing can be found numerically by exact diagonalization as a function
of ωd .

In the subspace S = span{|20〉 , |01〉} we can write H as

H |S ≡−η(ωd )Z /2+ g̃ (ωd )[cos(φ)X + sin(φ)Y ] =−η(ωd )Z /2+ g̃ (ωd )X

for φ = 0 as in Sec. 3.2.1. As we want to implement a |20〉 ↔ |01〉 π rotation, we notice
that the choice of φ, i.e. the choice of rotation axis in the equator of the Bloch sphere,
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is irrelevant. We have also ignored a term proportional to the identity I , which gives a
phase difference with respect to states outside of S , in particular between the compu-
tational and leakage subspaces of the transmon. However, this phase is irrelevant if |20〉
is swapped entirely onto |01〉 since the latter decays and dephases fast, thus suppressing
any phase coherence. As demonstrated in Sec. 3.2.2 the res-LRU can reach a very high R,
for which the effect of this phase is then minimal. Assuming that H DD

resid. in Eq. (3.68) is
negligible, an analytical approximation of η is given by

η(ωd ) ≈ 〈20|H DD
0 (ωd )|20〉−〈01|H DD

0 (ωd )|01〉 , (3.69)

where we have made the dependence of H DD
0 in Eq. (3.62) on ωd explicit. This holds

since then H DD
0 accounts for all the Stark shifts of |20〉 and |01〉 due to the capacitive

coupling and the drive (up to the given orders). The center of the avoided crossing is
found by imposing the condition η(ωd ) = 0. As the explicit expression that can be ex-
tracted from Eq. (3.62) is not analytically solvable, we use the secant method available
in scipy to find ω∗

d that fulfills this condition in Eq. (3.69). It is then straightforward
to compute the (approximate) analytical estimate for the effective coupling as g̃ (ω∗

d ) =
|〈01|H DD

eff.coupl.(ω
∗
d )|20〉 | from Eq. (3.65), which is plotted in Fig. 3.1(e).

3.6. FURTHER CHARACTERIZATION OF THE READOUT-RESONATOR

LRU
3.6.1. EFFECTIVE T1 AND T2 DUE TO THE DRIVE
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Figure 3.6: Effective T1 (a) and T2 (b) which account for the extra decoherence caused by the drive dur-
ing the time slot Tslot = 440 ns. We can see that the variation is small as a function of the drive amplitude
compared to the values at Ω = 0. The white star indicates the chosen operating point (Ω/2π ≈ 204 MHz,
ωd /2π ≈ 5.2464 GHz, tp = 178.6 ns, see Sec. 3.2.2). The purple line corresponds to the higher order estimate
of the optimal drive frequency ω∗

d as a function of Ω (see Fig. 3.1(c)). The heatmaps are sampled using the
adaptive package [67].
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In this section we discuss the effects of the readout-resonator LRU within the compu-
tational subspace when applied to a non-leaked transmon. As pulses at different (ωd ,Ω)
points have a different duration tp, it would not be fair to report an effective T1 and T2

during tp. That is, stronger pulses potentially produce lower T1 and T2, but they also
take less time to implement the LRU. However, the overall disturbance to the qubit is a
combination of these two factors. We thus report an effective T1 and T2 during the whole
time slot of Tslot = 440 ns, leading to a uniform metric for the whole (ωd ,Ω) landscape.
Specifically, to estimate T1 we prepare the state |1〉〈1| ⊗σth, we simulate the Lindblad
equation in Eq. (3.12) and we evaluate the remaining population p |1〉 in |1〉 at the end
of the time slot after tracing out the resonator. Assuming that p |1〉 = e−Tslot/T1 we then
compute T1 by inverting this formula. To estimate T2 we prepare |+〉〈+|⊗σth and we
evaluate the decay of the off-diagonal transmon matrix element |0〉〈1| as this is directly
available in simulation (rather than simulating a full Ramsey experiment). We then in-
vert

∣∣〈0|Trr (ρ(Tslot))|1〉∣∣= e−Tslot/T2 /2 to get T2.

Fig. 3.6 shows the resulting effective T1 and T2. In Fig. 3.6(a) one can see that T1

decreases by at most 15% as a function ofΩ, showing that a short tp mostly counterbal-
ances the effect of a strong Ω. In particular, T1 ≈ 27.1 µs at the operating point. On the
other hand, one can notice that T1 dips aroundΩcr/2π= 143 MHz, where the pulses are
very long, suggesting that driving slightly into the underdamped regime is favourable.
In Fig. 3.6(b) one can see that the value of T2 is about 7.7 µs at Ω= 0, i.e. when no pulse
is applied. This has to be contrasted with the input T2 parameter of 30 µs inserted in the
Lindblad equation (see Tab. 3.1). We assume that that implicitly accounts for dephasing
caused by flux noise only. Photon-shot noise from the resonator is a further dephasing
source which is explicitly included in these simulations. The combination of flux and
photon-shot noise leads to the actual effective T2 reported in Fig. 3.6(b). We note that
if n̄ = 0 then the effective T2 at Ω = 0 would exactly match the input of 30 µs. While the
effective T2 can be restored from 7.7 µs to 30 µs with colder resonators or by engineer-
ing different system parameters altogether, the important information from Fig. 3.6(b) is
that T2 barely changes as a function of Ω. Combined with the similar result for T1, this
means that the drive causes only a marginal effect within the computational subspace.
Notice that in the region where the readout-resonator LRU is most effective (just above
the purple line in Fig. 3.6(b)), T2 is even slightly higher than at Ω= 0 (7.9 versus 7.7 µs).
We attribute this to the fact that the pulse temporarily reduces the excited-state popula-
tion in the resonator (see Fig. 3.2(d)). In this way photon-shot noise is reduced until the
resonator re-thermalizes, however at the cost of some leakage of the transmon.

In Fig. 3.2(d) one can notice that a non-negligible amount of population ends up
in |10〉 from the initial state |0〉〈0|⊗σth. This corresponds to an excitation rate T ↑

1 ≈ 256µs
at the operating point. We backtrack this source of error to a combination of the drive
and the jump operator a†, corresponding to the drive inducing a transmon excitation
rate based on the resonator excitation rate. However, as here T ↑

1 ≫ max{T1,T2}, it is not
a limiting factor and we have not included it in the Surface-17 simulations.
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Figure 3.7: Time evolution from the initial state |2〉〈2| ⊗σth for trise = 30 ns and for an otherwise always-
on drive during Tslot. This is simulated with the same Ω/2π ≈ 204 MHz and ωd /2π ≈ 5.2464 GHz as at the
operating point in Fig. 3.2.

3.6.2. LONG-DRIVE LIMIT IN THE UNDERDAMPED REGIME AND ITS DRAW-
BACK AS A LRU

In this section we compare the reset schemes in [55, 56] versus [54] in terms of their
performance as a LRU in the underdamped regime. The approach of [55, 56], which we
have adopted in Sec. 3.2.2, aims at swapping |20〉 and |01〉 by targeting the first minimum
of the oscillations induced by the drive (switching the drive off afterwards). As shown
in Sec. 3.2.2, this approach allows for a residual leakage population p |2〉

op. ≈ 0.5% at the
operating point (see Fig. 3.2(a)), given our parameters (see Tab. 3.1). While this already
reaches thermal-state levels (here n̄ = 0.5%) with the considered system parameters, the
approach in [54] could be used in general to achieve an even lower or similar p |2〉 (in
particular for lower κ’s).

The approach in [54] keeps the drive on for a much longer period of time (at least
one more oscillation) allowing both the populations in |20〉 and |01〉 to decay to almost 0,
modulo thermal excitations. Fig. 3.7 shows that it is indeed possible to suppress these
populations to thermal-state levels, where we use the same (Ω,ωd ) as at the operating
point (see Sec. 3.2.2). However, we see that for the operating point there is almost no
gain by using this approach. Furthermore, this approach costs much more time and
could exceed Tslot = 440 ns if κ is not as high as assumed here. In particular, in that
case the first few minima after the first one could be slightly higher, due to transmon
decoherence, and one would need to wait even longer to overcome this effect.

Another disadvantage of the approach in [54] is that the disturbance to the qubit
is stronger as the drive is kept on for a longer period of time. E.g., in Fig. 3.7 one can
see that |00〉 and |10〉 reach an equilibrium thanks to the drive (even in the presence of
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relaxation), where the population in |10〉 is higher than in Fig. 3.2(b). By evaluating T1

we find T1 ≈ 23 µs instead of 27 µs (see Sec. 3.6.1). Furthermore, if one would have to
use a tp > Tslot when κ is lower than here, then the QEC cycle would get longer, affecting
the coherence of all qubits, not only of the high-frequency data qubits to which the res-
LRU is applied.

3.6.3. SENSITIVITY TO RESIDUAL Z Z CROSSTALK
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Figure 3.8: Sensitivity of the leakage-reduction rate R of the readout-resonator LRU as a function of the over-
all residual Z Z coupling ζ. (a) Underdamped regime, specifically at the operating point (Ω/2π ≈ 204 MHz,
ωd /2π ≈ 5.2464 GHz, tp = 178.6 ns, see Sec. 3.2.2). (b) Critical regime (Ω/2π ≈ 143 MHz, ωd /2π ≈ 5.252 GHz,
tp = 440 ns).

In a multi-transmon chip, each transmon is coupled to one or more neighbors. In
general, if the coupling is not tunable there can be some residual Z Z crosstalk, i.e. a
shift of the transmon frequency by an amount ζ based on whether each neighboring
transmon is in |1〉 instead of |0〉. In this section we study the effect of this Z Z coupling
on the readout-resonator LRU, which we assume being tuned up when all neighbors are
in |0〉. We do not include neighboring transmons in our simulations, so we mimic it by
shifting the transmon frequency (while keeping the drive parameters fixed).

In Fig. 3.8 we perform the analysis for the operating point (see Sec. 3.2.2), which re-
sides in the underdamped regime, and for the critical point. In both cases, the leakage-
reduction rate R scales seemingly quadratically. In the underdamped regime, the pulse
targets the first minimum of the damped Rabi oscillations, so it is more sensitive to a
variation in frequency than in the critical regime. However, we observe that for |ζ|/2π≲
2 MHz (note that this is the cumulative Z Z coupling over all neighbors) R stays above 95%,
which is the conservative value we have used in Sec. 3.3.4 and for which the logical error
rate was already close to optimal in Surface-17 (see Sec. 3.7.2). Regarding other perfor-
mance parameters of the LRU, we find that LLRU

1 scales in the same relative way as R by

unitarity, whereas T1,T2 and T ↑
1 vary by ≲ 1%.
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3.7. FURTHER SURFACE-17 CHARACTERIZATION

3.7.1. DETAILS ABOUT THE DENSITY-MATRIX SIMULATIONS

The parameters used in this chapter are reported in Tab. 3.2.

Parameter Value

Relaxation time T1 30 µs

Sweetspot pure-dephasing time Tφ,max 60 µs

High-freq. pure-dephasing time

at interaction point Tφ,int 8 µs

Mid-freq. pure-dephasing time

at interaction point Tφ,int 6 µs

Mid-freq. pure-dephasing time

at parking point Tφ,park 8 µs

Low-freq. pure-dephasing time

at parking point Tφ,park 9 µs

Single-qubit gate time tgate 20 ns

Two-qubit interaction time tint 30 ns

Single-qubit phase-correction time tpc 10 ns

Readout-resonator LRU time tres-LRU 100 ns

|1〉↔ |2〉 π-pulse time tπ-LRU 20 ns

Measurement time tm 580 ns

QEC-cycle time tc 800 ns

Table 3.2: The parameters for the qubit coherence times and for the gate, LRU, measurement and QEC-cycle
durations used in the density-matrix simulations. The interaction point corresponds to the frequency to which
a transmon is fluxed to implement a CZ, whereas the parking point to the frequency at which the ancilla qubits
are parked during measurement [58].

RES-LRU IN quantumsim

A comprehensive review of the density-matrix simulations and the use of the quantum-
sim package [59] is available at [40, 51]. In this section we explain the specific implemen-
tation of the newly introduced res-LRU, expressed in the Pauli Transfer Matrix formal-
ism.

We construct a “phenomenological” Lindblad model with input parameters R,LLRU
1

and tres-LRU. We use the Pauli Transfer Matrix Sres-LRU = S↑S↓, where S↓ is the Pauli Trans-
fer Matrix of the superoperator S↓ = e tres-LRUL↓ and the Lindbladian L↓ has the quantum
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Figure 3.9: Logical error rate εL per QEC cycle as a function of various LRU parameters. (a),(b) use only the res-
LRU, while (c),(d) the π-LRU. We fix L1 = 0.5% for all. Vertical dashed lines indicate the values considered
in Sec. 3.3.4. These results are extracted from 2× 104 runs of 20 QEC cycles each per choice of parameters.
Error bars are estimated using bootstrapping and are smaller than the symbol size.

jump operator

K↓ =
1√

tres-LRU
− log(1−Rsim)

|0〉〈2| (3.70)

with Rsim to be determined. Besides this, L↓ has the standard qutrit jump operators for
relaxation and dephasing [40]. On the other hand, S↑ is the Pauli Transfer Matrix of the
superoperator S↑ = eL↑ and the Lindbladian L↑ has a single jump operator

K↑ =
1√

1
− log(1−2LLRU

1 )

|2〉〈0| (3.71)

since relaxation and dephasing during tres-LRU are already accounted for by S↓. In this

way, calling p | j 〉
i , p | j 〉

f the populations before and after the res-LRU, if we apply Sres-LRU

on a non-leaked transmon we get p |2〉
f = 2LLRU

1 p |0〉
i , consistently with Sec. 3.3.2. Instead,

if we apply Sres-LRU to a leaked transmon (p |2〉
i = 1) we get p |2〉

f ≈ 1−Rsim + 2LLRU
1 . By

fixing Rsim = R+2LLRU
1 we match the definition of R in Sec. 3.3.2 as well. The approxima-

tion is very good for large R and low LLRU
1 , which is precisely the interesting regime for

res-LRU that we have explored.

DECODING

In this section we provide additional information on the UB and MWPM decoders [51,
73].
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UB considers the 32 computational states that differ by a purely X error on top of |0〉L

and that are independent (i.e. they cannot be obtained from each other by multiplica-
tion with an X -type stabilizer). At the end of each QEC cycle n, each possible final Z syn-
drome is compatible with a pair of these states, where one can be associated with |0〉L

and the other with |1〉L as they differ by the application of any representation of XL. The
largest overlap of these two states with the diagonal of the density matrix at QEC cycle n
corresponds to the maximum probability of correctly guessing whether a XL error has
occurred or not upon performing a logical measurement of ZL. The latter is assumed
to be performed by measuring all data qubits in the {|0〉 , |1〉 , |2〉} basis and computing
the overall parity. To compute the parity we assume that a |2〉 is declared as a |1〉 since
decoders usually do not use information about leakage (and since measurements often
declare |2〉 as a |1〉 rather than as a |0〉). Then UB computes FL(n) by weighing this prob-
ability with the chance of measuring the given final Z syndrome (conditioned on the
density matrix) and by summing over all possible syndromes. In other words, UB always
finds the correction that maximizes the likelihood of the logical measurement returning
the initial state, here |0〉L. As UB uses information generally hidden in the density matrix,
it gives an upper bound to the performance of any realistic decoder, which can at most
use the syndrome information extracted via the ancilla qubits.

MWPM tries to approximate the most likely correction by finding the lowest weight
correction, which is a good approximation when physical error rates are relatively low.
As the ancilla qubits can be faulty, the decoding graph is three dimensional. In particular,
we allow for space-like edges corresponding to data-qubit errors, time-like edges corre-
sponding to ancilla-qubit errors and spacetime-like edges corresponding to data-qubit
errors occurring in the middle of the parity-check circuit. The weights are extracted with
the adaptive algorithm in [75] from a simulation (105 runs of 20 QEC cycles each) without
leakage and an otherwise identical error model. Similarly to UB, for decoding we assume
that a |2〉 is declared as a |1〉 since the standard MWPM does not account for leakage.

3.7.2. LOGICAL ERROR RATE AS A FUNCTION OF THE LRU PARAMETERS

We study the variation in the logical error rate εL per QEC cycle as a function of the
performance parameters of the LRUs. Here we fix L1 = 0.5% as it is easier to visual-
ize variations in εL with a relatively large L1. The leakage-reduction rate R and the
readout probability pM (2|2) play similar roles for the res-LRU and π-LRU, respectively.
In Fig. 3.9(a),(c) one can see that this is the case and that the values of εL at the param-
eters used in Sec. 3.3.4 (R = 95% and pM (2|2) = 90%) are very close to their best values
(at least for this system size). This shows that the advantages of a larger R or pM (2|2)
are marginal. We attribute this to the fact that leakage is exponentially suppressed with
an already quite large exponent. Furthermore, the parameters LLRU

1 and 1− pM (1|1) =
pM (2|1), regulating the induced leakage, play similar roles as well, as Fig. 3.9(b),(d) show.
We see that εL is more sensitive to LLRU

1 and 1−pM (1|1) compared to R and pM (2|2). In
particular we see that εL is slightly larger at the parameters used in Sec. 3.3.4 (LLRU

1 =
0.25% and 1−pM (1|1) = 0.5%) rather than at 0, although the difference is small.
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Figure 3.10: Variation of the logical error rate εL for different choices of leakage conditional phases φL . (a) εL
per QEC cycle for UB (shades of red) and MWPM (shades of green) versus L1, in the cases with: no LRUs
and both LRUs, each for all φL set to 0, π/2 or uniformly random in [0,π]. These results are extracted from
2×104 runs of 20 QEC cycles each per choice of parameters. Error bars are estimated using bootstrapping and
are mostly smaller than the symbol size. (b) The random values forφL used across this work. These values are
extracted from a uniform distribution in [0,π]. We have excluded negative values as ±φL corresponds to the
same chance of spreading a Z error under the twirling action of the parity-check measurements.

3.7.3. EFFECT OF THE LEAKAGE CONDITIONAL PHASES ON THE LOGICAL ER-
ROR RATE

As defined in the main text the leakage conditional phases are the phases that a non-
leaked transmon acquires when interacting with a leaked one during a CZ. Here we de-
note them as φL

flux and φL
stat depending on whether the lower or the higher frequency

transmon of the pair is leaked, respectively, and we use φL to indicate either of them.
Furthermore, in this section we use the notation |low-f. transmon,high-f. transmon〉.
Note that for a controller-phase gate between two qutrits in principle there are 9 phases
(φ00,φ01,φ10,φ11,φ02,φ20,φ21,φ12,φ22), where the first 4 are fixed to 0,0,0,π, respec-
tively. Of the 5 phases containing a |2〉 we consider only two of them here, i.e. φL

stat =
φ02−φ12 andφL

flux =φ20−φ21 as defined above. This is because in our leakage model [40]
we set to 0 the coherence between the computational and leakage subspace of each
qutrit, motivated by the fact that leakage is projected relatively fast and that the stabi-
lizer measurements ideally prevent any interference effect. This means that the individ-
ual phases are global phases, whereas their difference cannot be gauged away when the
non-leaked qubit is in a superposition of |0〉 and |1〉.

For a flux-based CZ with conditional phase π for |11〉, ideally one should have φL
flux =

0 and φL
stat = π [40] as |02〉 acquires a conditional phase equal and opposite to |11〉. If

only |12〉 and |21〉 are coupled in the 3-excitation manifold, it holds φL
stat =π−φL

flux. The

strength of the repulsion times the CZ duration gives e.g. φL
flux ∼ π/4 for the parameters

in [40]. However, |03〉 interacts with |12〉 and |21〉 and breaks the relationship above,
for which we can consider φL

flux and φL
stat as effectively unconstrained. The randomized

values used across the main text are reported in Fig. 3.10(b). We use 14 values, of which
3 for φL

stat and 3 for φL
flux when each high-frequency data qubit is leaked or interacts with

a leaked ancilla qubit, respectively, and 8 only for φL
stat when each ancilla qubit is leaked

and interacts with a low-frequency data qubit (as low-frequency data qubits cannot leak
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themselves).
In this section we study the dependence of the logical error rate εL on the leakage

conditional phases, without discussing how one would engineer the system to tune them
to certain values. The best-case scenario to minimize εL is to set all φL = 0, since no
Z rotations are spread then. Instead, the worst-case scenario corresponds to all φL =
π/2, since under the twirling effect of the parity-check measurements this corresponds
to spreading a Z error with 50% chance. Notice that, if all φL = π, overall the spread
errors amount to a stabilizer (except in the QEC cycle in which leakage occurs), so it is
close to the best-case scenario.

Fig. 3.10(a) compares the logical performance for both UB and MWPM in the cases
where φL = 0, φL = π/2 and when they are random as in Fig. 3.5 and in the rest of
this work. First, one can notice that the performance of random φL is very close to
the worst-case scenario (φL = π/2). This is due to the fact that it is not necessary to
spread an error on every qubit with 50% chance each to cause a logical error with high
probability. Second, one can see that just tuning all φL = 0 without implementing LRUs
is almost as good (or even better) as using the LRUs when φL are random. We attribute
this to the fact that one of the major effects of the LRUs is to prevent correlated errors
being spread by a leaked qubit for many QEC cycles. Tuning φL = 0 achieves this as
well, but it still does not address the fact that the code distance is effectively reduced if
a data qubit stays leaked and that the full stabilizer information is not accessible as long
as an ancilla qubit is leaked. Indeed, using LRUs even when φL = 0 always allows for a
lower logical error rate (see Fig. 3.10(a)). Furthermore, the reduction in distance and the
corruption of the stabilizer information suggest that a threshold would still likely be low
without using LRUs.
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4
ALL-MICROWAVE LEAKAGE

REDUCTION UNITS FOR QUANTUM

ERROR CORRECTION WITH

SUPERCONDUCTING TRANSMON

QUBITS

Minimizing leakage from computational states is a challenge when using many-level sys-
tems like superconducting quantum circuits as qubits. In this chapter. we realize and
extend the quantum-hardware-efficient, all-microwave leakage reduction unit (LRU) for
transmons in a circuit QED architecture proposed in Chapter 3 [2]. This LRU effectively re-
duces leakage in the second- and third-excited transmon states with up to 99% efficacy in
220 ns, with minimum impact on the qubit subspace. As a first application in the context
of quantum error correction, we show how multiple simultaneous LRUs can reduce the
error detection rate and suppress leakage buildup within 1% in data and ancilla qubits
over 50 cycles of a weight-2 stabilizer measurement.

This chapter has been published in Phys. Rev. Lett. 130, 250602 (2023) [1]. B.M.V. contributed to devel-
oping the measurement-induced transition and effective coupling characterizations described in Sec. 4.4.7
and Sec. 4.4.3, respectively. B.M.V. made minor contributions and provided feedback to the writing.
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4.1. INTRODUCTION
Superconducting qubits, such as the transmon [3], are many-level systems in which a
qubit is represented by the two lowest-energy states |g 〉 and |e〉. However, leakage to
non-computational states is a risk for all quantum operations, including single-qubit
gates [4], two-qubit gates [5–7] and measurement [8, 9]. While the typical probability of
leakage per operation may pale in comparison to conventional qubit errors induced by
control errors and decoherence [7, 10], unmitigated leakage can build up with increas-
ing circuit depth. A prominent example is multi-round quantum error correction (QEC)
with stabilizer codes such as the surface code [11]. In the absence of leakage, such codes
successfully discretize all qubit errors into Pauli errors through the measurement of sta-
bilizer operators [12, 13], and these Pauli errors can be detected and corrected (or kept
track of) using a decoder. However, leakage errors fall outside the qubit subspace and
are not immediately correctable [14–16]. The signature of leakage on the stabilizer syn-
drome is often not straightforward, hampering the ability to detect and correct it [17,
18]. Additionally, the build-up of leakage over QEC rounds accelerates the destruction of
the logical information [10, 19]. Therefore, despite having low probability per operation,
methods to reduce leakage must be employed when performing experimental QEC with
multi-level systems.

Physical implementations of QEC codes [20–25] use qubits for two distinct functions:
Data qubits store the logical information and, together, comprise the encoded logical
qubits. Ancilla qubits perform indirect measurement of the stabilizer operators. Han-
dling leakage in ancilla qubits is relatively straightforward as they are measured in every
QEC cycle. This allows for the use of reset protocols [19, 26] without the loss of logical
information. Leakage events can also be directly detected using three- or higher-level
readout [21] and reset using feedback [27, 28]. In contrast, handling data-qubit leakage
requires a subtle approach as it cannot be reset nor directly measured without loss of
information or added circuit complexity [29–31]. A promising solution is to interleave
QEC cycles with operations that induce seepage without disturbing the qubit subspace,
known as leakage reduction units (LRUs) [2, 14, 15, 29, 30, 32–35]. An ideal LRU returns
leakage back to the qubit subspace, converting it into Pauli errors which can be detected
and corrected, while leaving qubit states undisturbed. By converting leakage into con-
ventional errors, LRUs enable a moderately high physical noise threshold, below which
the logical error rate decreases exponentially with the code distance [15, 30]. A more
powerful operation called ’heralded leakage reduction’ would both reduce and herald
leakage, leading to a so-called erasure error [36, 37]. Unlike Pauli errors, the exact lo-
cation of erasures is known, making them easier to correct and leading to higher error
thresholds [38–41].

In this chapter, we present the realization and extension of the LRU scheme proposed
in Ref. [2]. This is a highly practical scheme requiring only microwave pulses and the
quantum hardware typically found in contemporary circuit QED quantum processors: a
microwave drive and a readout resonator dispersively coupled to the target transmon (in
our case, a readout resonator with dedicated Purcell filter). We show its straightforward
calibration and the effective removal of the population in the first two leakage states of
the transmon (| f 〉 and |h〉) with up to > 99% efficacy in 220 ns. Process tomography
reveals that the LRU backaction on the qubit subspace is only an AC-Stark shift, which
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Figure 4.1: Leakage reduction unit scheme. (a) Schematic for the driven transmon-resonator system. A trans-
mon (T, yellow) with three lowest-energy levels |g 〉, |e〉, and | f 〉 is coupled to a readout resonator (R) with
strength g . The latter is coupled to a frequency-matched Purcell resonator (P) with strength J . The Purcell
resonator also couples to a 50 Ω feedline through which its excitations quickly decay at rate κ. The transmon
is driven with a pulse of strength Ω applied to its microwave drive line. (b) Energy level-spectrum of the sys-
tem. Levels are denoted as |T,R,P〉, with numbers indicating photons in R and P. As the two resonators are
frequency matched, the right-most degenerate states split by 2J , and g is shared equally among the two hy-
bridized resonator modes |1−〉 and |1+〉. An effective coupling g̃ arises between | f 00〉 and the two hybridized
states |g 1±〉 via |e00〉 and |e1±〉. (c) Spectroscopy of the | f 00〉 ↔ |g 1±〉 transition. Measured transmon popu-
lation in | f 〉 versus drive frequency, showing dips corresponding to the two transitions assisted by each of the
hybridized resonator modes.

can be easily corrected using a Z -axis rotation. As a first application in a QEC setting, we
interleave repeated measurements of a weight-2 parity check [18, 28] with simultaneous
LRUs on data and ancilla qubits, showing the suppression of leakage and error detection
rate buildup.

4.2. RESULTS

Our leakage reduction scheme [Fig. 4.1(a)] consists of a transmon with states |g 〉, |e〉
and | f 〉, driven by an external driveΩ, coupled to a resonant pair of Purcell and readout
resonators [42] with effective dressed states |00〉 and |1±〉. The LRU scheme transfers
leakage population in the second-excited state of the transmon, | f 〉, to the ground state,
|g 〉, via the resonators using a microwave drive. It does so using an effective coupling, g̃ ,
mediated by the transmon-resonator coupling, g , and the driveΩ, which couples states
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| f 00〉 and |g 1±〉. Driving at the frequency of this transition,

ω f 00 −ωg 1± ≈ 2ωQ +α−ωRP, (4.1)

transfers population from | f 00〉 to |g 1±〉, which in turn quickly decays to |g 00〉 pro-
vided the transition rate, g̃ , is small compared to κ. Here, ωQ and α are the transmon
qubit transition frequency and anharmonicity, respectively, while ωRP is the resonator
mode frequency. In this regime, the drive effectively pumps any leakage in | f 〉 to the
computational state |g 〉. We perform spectroscopy of this transition by initializing the
transmon in | f 〉 and sweeping the drive around the expected frequency. The results
[Fig. 4.1(c)] show two dips in the f -state population corresponding to transitions with
the hybrized modes of the matched readout-Purcell resonator pair. The dips are broad-
ened by ∼ κeff/2π ≈ 8 MHz, where κeff = κ/2 is the effective linewidth of the dressed
resonator (see Sec. 4.4.1 and Tab. 4.1), making them easy to find. We achieve typical
couplings of g̃ /2π∼ 1 MHz for this transition, see Sec. 4.4.3.

To make use of this scheme for a LRU, we calibrate a pulse that can be used as a
circuit-level operation. We use the pulse envelope proposed in Ref. [2]:

A(t ) =


A sin2

(
π t

2tr

)
for 0 ≤ t ≤ tr,

A for tr ≤ t ≤ tp − tr,

A sin2
(
π

tp−t
2tr

)
for tp − tr ≤ t ≤ tp,

(4.2)

where A is the amplitude, tr is the rise and fall time, and tp is the total duration. We con-
servatively choose tr = 30 ns to avoid unwanted transitions in the transmon. To measure
the fraction of leakage removed, R, we apply the pulse on the transmon prepared in | f 〉
and measure it [Fig. 4.2(a)], correcting for readout error using the measured 3-level as-
signment fidelity matrix [Fig. 4.2(c)]. To optimize the pulse parameters, we first measure
R while sweeping the pulse frequency and A [Fig. 4.2(d)]. A second sweep of tp and A
[Fig. 4.2(e)] shows that R > 99% can be achieved by increasing either parameters. This
value is limited by thermal population in the resonator modes. We estimate values of
P (n = 1) ≈ 0.5%, see Sec. 4.4.4. Simulation [2] suggests that R ≈ 80% is already sufficient
to suppress most of the impact of current leakage rates, which is comfortably achieved
over a large region of parameter space. For QEC, a fast operation is desirable to mini-
mize the impact of decoherence. However, one must not excessively drive the transmon,
which can cause extra decoherence (see Fig. 6 in Ref. [2]). Considering the factors above,
we opt for tp = 220 ns and adjust A such that R ≳ 80%. Additionally, we benchmark the
repeated action of the LRU and verify that its performance is maintained over repeated
applications, thus restricting leakage events to approximately a single cycle (see Fig. 4.6).

With the LRU calibrated, we then benchmark its impact on the qubit subspace us-
ing quantum process tomography. The results (Fig. 4.3) show that the qubit incurs a
Z -axis rotation. We find that the rotation angle increases linearly with tp [Fig. 4.3(g)],
consistent with a 71(9) kHz AC-Stark shift induced by the LRU drive. This phase error in
the qubit subspace can be avoided using decoupling pulses or corrected with a virtual
Z gate. Figures 4.3(h) and 4.3(i) show the Pauli transfer matrix (PTM) for the operation
before and after applying a virtual Z correction, respectively. From the measured PTM
[Fig. 4.3(i)] and enforcing physicality constraints [43], we obtain an average gate fidelity
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Favg = 98.(9)%. Compared to the measured 99.(2)% fidelity of idling during the same
time (tp = 220 ns), there is evidently no significant error increase.

Finally, we implement the LRU in a QEC scenario by performing repeated stabi-
lizer measurements of a weight-2 X -type parity check [18, 28] using three transmons
(Fig. 4.4). We use the transmon in Figs. 1-3, D1, plus an additional transmon (D2) as
data-qubits together with an ancilla, A. LRUs for D2 and A are tuned using the same
procedure as above. A detailed study of the performance of this parity check and of the
impact of simultaneous LRUs is shown in Figs. 4.10 and 4.9. Given their frequency con-
figuration [44], D1 and A are most vulnerable to leakage during two-qubit controlled-Z
(CZ) gates, as shown by the avoided crossings in Fig. 4.4(a). Additional leakage can oc-
cur during other operations: in particular, we observe that leakage into states above | f 〉
can occur in A due to measurement-induced transitions [8] (see Fig. 4.14). Therefore, a
LRU acting on | f 〉 alone is insufficient for A. To address this, we develop an additional
LRU for |h〉 (h-LRU), the third-excited state of A (see Fig. 4.13). The h-LRU can be em-
ployed simultaneously with the f -LRU without additional cost in time or impact on the
| f 〉 removal fraction, R. Thus, we simultaneously employ f -LRUs for all three qubits and
an h-LRU for A [Fig. 4.4(a)]. To evaluate the impact of the LRUs, we measure the error
detection probability (probability of a flip occurring in the measured stabilizer parity)
and leakage population of the three transmons over multiple rounds of stabilizer mea-
surement. Without leakage reduction, the error detection probability rises ∼ 8% in 50
rounds. We attribute this feature to leakage build-up [19, 24, 35]. With the LRUs, the rise
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stabilizes faster (in ∼ 10 rounds) to a lower value and is limited to 2%, despite the longer
cycle duration (500 versus 720 ns without and with the LRU, respectively). Leakage is
overall higher without LRUs, in particular for D1 and A [Fig. 4.4(c)], which show a steady-
state population of ≈ 10%. Using leakage reduction, we lower the leakage steady-state
population by up to one order of magnitude to ≲ 1% for all transmons. Additionally, we
find that removing leakage on other transmons leads to lower overall leakage, suggesting
that leakage is transferred between transmons [17, 35]. This is particularly noticeable in
A [Fig. 4.4(c)], where the steady-state leakage is always reduced by adding LRUs on D1

and D2.

4.3. DISCUSSION
We have demonstrated and extended the all-microwave LRU for superconducting qubits
in circuit QED proposed in Ref. [2]. We have shown how these LRUs can be calibrated
using a straightforward procedure to deplete leakage in the second- and third-excited
states of the transmon. This scheme could potentially work for even higher transmon
states using additional drives. We have verified that the LRU operation has minimal im-
pact in the qubit subspace, provided one can correct for the static AC-Stark shift induced
by the drive(s).

This scheme does not reset the qubit state and is therefore compatible with both data
and ancilla qubits in the QEC context. We have showcased the benefit of the LRU in a
building-block QEC experiment where LRUs decrease the steady-state leakage popula-
tion of data and ancilla qubits by up to one order of magnitude (to ≲ 1%), and thereby
reduce the error detection probability of the stabilizer and reaching a faster steady state.
We find that the remaining ancilla leakage is dominated by higher states above | f 〉 (see
Fig. 4.14) likely caused by the readout [8, 9]. Given the observation leakage transfer
between transmons, which can result in higher excited leakage states [35], data qubits
can also potentially benefit from h-LRUs. Compared to other LRU approaches [19, 35],
we believe this scheme is especially practical as it is all-microwave and very quantum-
hardware efficient, requiring only the microwave drive line and dispersively coupled res-
onator that are already commonly found in the majority of circuit QED quantum proces-
sors [21, 22, 24]. Extending this leakage reduction method to larger QEC experiments can
be done without further penalty in time as all LRUs can be simultaneously applied. How-
ever, we note that when extending the LRU to many qubits, microwave crosstalk should
be taken into account in order to avoid driving unwanted transitions. This can be easily
avoided by choosing an appropriate resonator-qubit detuning.

4.4. SUPPLEMENTAL MATERIAL

4.4.1. DEVICE
The device used (Fig. 4.5) has 17 flux-tunable transmons arranged in a square lattice
with nearest-neighbor connectivity (as required for a distance-3 surface code). Trans-
mons are arranged in three frequency groups as prescribed in the pipelined architecture
of Ref. [44]. Each transmon has a dedicated microwave drive line used for single-qubit
gates and leakage reduction, and a flux line used for two-qubit gates. Nearest-neighbor
transmons have fixed coupling mediated by a dispersively coupled bus resonator. Each
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Figure 4.5: Circuit QED device. Optical image of the 17-transmon quantum processor, with added falsecolor
to highlight different circuit elements. The shaded area indicates the three transmons used in this experiment.

transmon has a dedicated pair of frequency-matched readout and Purcell resonators
coupled to one of three feedlines, used for fast multiplexed readout in the architecture
of Ref. [42]. Single-qubit gates are realized using standard DRAG pulses [4]. Two-qubit
controlled-Z gates are implemented using sudden net-zero flux pulses [7]. Characteris-
tics and performance metrics of the three transmons used in the experiment are shown
in Tab. 4.1.

4.4.2. REPEATED LRU APPLICATION

For QEC we require that the LRU performance remains constant over repeated applica-
tions. To assess this, we perform repeated rounds of the experiment shown in Fig. 4.6
while idling or using the LRU. In each round apply an e- f rotation with rotation angle θ
to induce a leakage rate

L1 = sin2(θ/2)

2
, (4.3)

and choose θ such that L1 = 2%. For the purpose of this experiment, we lower the read-
out amplitude in order to suppress leakage to higher states during measurement [8], The
results (Fig. 4.6) show that while idling, leakage in | f 〉 builds up to a steady-state popula-
tion of about 16%. Using the LRU, it remains constant at P f = L1 throughout all rounds.
This behavior shows that LRU performance is maintained throughout repeated applica-
tions and suggests that leakage events are restricted to a single round.
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Transmon D1 A D2

Frequency at sweetspot, ωQ/2π (GHz) 6.802 6.033 4.788

Anharmonicity, α/2π (MHz) -295 -310 -321

Resonator frequency, ωR/P/2π (GHz) 7.786 7.600 7.105

Purcell res. linewidth, κ/2π (MHz) 15.5 22.5 12.6

Qubit-res. coupling, g /2π (MHz) 172 212 301

f -LRU drive frequency (GHz) 5.498 4.135 2.152

h-LRU drive frequency (GHz) - 3.496 -

T1 (µs) 17 26 37

T2 (µs) 19 22 27

Single-qubit gate error (%) 0.1(0) 0.0(7) 0.0(5)

Two-qubit gate error (%) 1.(1) 1.(9)

Two-qubit gate leakage (%) 0.3(7) 0.1(1)

f -LRU removal fraction, R f (%) 84.(7) 99.(2) 80.(3)

h-LRU removal fraction, Rh (%) - 96.(1) -

Operation Duration (ns)

Single-qubit gate 20

Two-qubit gate 60

Measurement 340

LRU 220

Table 4.1: Device metrics. Frequencies and coherence times are measured using standard spectroscopy and
time-domain measurements [45]. Gate errors are evaluated using randomized benchmarking protocols [46–
48].

4.4.3. ESTIMATING EFFECTIVE TRANSITION COUPLING

In order to assess the effective transition coupling, g̃ f , we study the system described in
Fig. 1(a). Excluding the drive, the total Hamiltonian of this system is given by

H =HR +HP +HQ +
J (a†

RaP +aRa†
P)+ g (a†

Rb +aRb†), (4.4)

where HR/P = ωR/Pa†a and HQ = ωQb†b + α
2 b†b†bb are the resonators and transmon

Hamiltonians, respectively. When the two resonator modes are resonant, i.e., ωR =ωP,

H =H+
R +H−

R +HQ +
gp

2
[(a†

+b +a+b†)+ (a†
−b +a−b†)], (4.5)

where a± = (aR ±aP)/
p

2 and H±
R = (ωR ± J )a†

±a± describe the dressed resonator modes.
In this basis, we find that g is shared by the dressed resonator modes with effective
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strength geff = g /
p

2. Because of this, each dresssed resonator mode approximately in-
herits an effective linewidth κeff = κ/2. We then study the dynamics of this system in the
three-level manifold {|g 00〉 , |g 1±〉 , | f 00〉} by solving the Lindblad equation

ρ̇ =−i
[
H ,ρ

]+LρL† − 1

2
{L†L,ρ}, (4.6)

where L = p
κeff |g 00〉〈g 1±| is the decay operator modeling loss in the resonator mode

and

H =


0 0 0

0 0 g̃ f

0 (g̃ f )∗ 0

 (4.7)

is the approximate Hamiltonian of the system in the drive frame on resonance with
| f 00〉↔ |g 1±〉. In this model, an initial state | f 00〉 evolves as (Eq. S2 of Ref. [26]),

P| f 00〉(t ) = e−
κeff

2 t
∣∣∣∣cosh

(
ζ

2
t

)
+ κeff

2ζ
sinh

(
ζ

2
t

)∣∣∣∣2

, (4.8)

where, ζ =
√
−(2g̃ f )2 + (κeff/2)2. To estimate g̃ f , we measure P| f 〉 as function of pulse

duration, tp , as shown in Fig. 4.7 and fit

P| f 〉(tp ,κeff, g̃ f , t0) = P| f 00〉(tp − t0), (4.9)

where t0 is introduced to account for the finite rise and fall time of the LRU drive. We fix
κeff ≡ κ/2 (shown in Tab. 4.1) leaving only two parameters to fit g̃ f , and t0. The results
[Fig. 4.7(c)] show g̃ f /2π lies between 1 and 3 MHz. Additionally, we find t0 ≈ 20 ns similar
to the rise time, tr = 30 ns, used in experiment. From these results, one can also estimate
the drive strengthΩ used for each transmon using (Eq. A35 of Ref. [2]),

g̃ f =Ω geffαp
2∆(∆+α)

, (4.10)
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where∆≡ωQ−ωR and geff ≡ g /
p

2. We find drive strengths,Ω/2π, lying between 100 and
300 MHz depending on the qubit. This disparity occurs because the drives are synthe-
sized at distinct frequencies (from 2 to 5.5 GHz) and therefore use different RF compo-
nents and experience different attenuation. We note that the amplitudes used in Fig. 4.7
are slightly different from the ones used in the experiments reported in the main text
however they lead to similar removal fractions.
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Figure 4.9: Cross-driving induced AC Stark shift from LRU drives. (a) Measured drive isolation between the
qubits. For each element in the matrix Si j , we measure the isolation of qubit i to a driveΩ j driven through the

drive line of qubit j such that its effective strength isΩeff
i = 10−Si j /20

Ω j . (b) Estimated AC Stark shift induced
by the LRU drive between qubits based on the drive amplitudes calculated in Fig. 4.7(c). We plot absolute
frequency shifts, however, actual estimated values are negative.

4.4.4. POPULATION IN THE READOUT RESONATORS
In this section, we consider the impact of population in the resonator modes. Ther-
mal population in the resonators can converted into leakage during the LRU [2]. As
shown in Fig. 2(d) of Ref. [2], when there is no leakage, the system will evolve such that
P| f 00〉 = P|g 1±〉 in the steady state. It is thus important that the mean photon number,
n̄, characterising the thermal field in the resonators is low, n̄ ≪ 1. One can estimate an
upper bound of n̄ assuming that the pure dephasing rate of the transmon, Γφ, is limited
by photon shot noise in the readout resonators using [45], namely

Γφ = η4χ2

κ
n̄, (4.11)

where η = κ2/(κ2 + 4χ2). Using this estimate, we find P (n = 1) ≈ 0.5%. Therefore, one
can expect at most P| f 00〉 ≈ 0.5% in the steady state, which will limit the removal fraction
R < 99.5%. Another important aspect to consider when using the LRU repeatedly, is
the amount of population left in |g 1±〉 after a leakage event. If significant population
is left in the resonator, errors can occur in subsequent operations. We investigate this
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by numerically solving Eq. 4.6 taking into account the rise time of the LRU pulse and
using the g̃ estimated in Fig. 4.7. Figure 4.8 shows the evolution of state |g 1±〉 for the
three transmons. We find that the population in this level never exceeds 15%. Moreover,
Fig. 4.8(b) reveals that the leftover population by the end of the pulse is below 5%. In
particular, we see that population is significantly suppressed during the pulse fall time
tr . Therefore, we do not expect errors following the LRU to be significant after a leakage
event.

4.4.5. DRIVE CROSSTALK
Given the relatively high strength of the drives required to drive the LRUs, we consider
the impact of drive crosstalk. In particular, we study the impact of each LRU drive on
each qubit. By coupling off-resonantly, cross-drives may shift the qubit frequency which
could lead to lower performance of the LRUs when driven simultaneously. To investigate
this, we first characterize drive crosstalk between the three transmons used by measur-
ing the drive isolation,

Si j = 20log10(Ω j /Ωeff
i ), (4.12)

between a drive, Ω j , on qubit j and the effective drive, Ωeff
i , felt on qubit i . The re-

sults [Fig. 4.9(a)] show that drive isolation is at least 28 dB and crosstalk is most signifi-
cant when driving via the drive lines of D1 and A. Using the drive strength estimated in
Fig. 4.7, we then calculate the AC Stark shift, δ, induced by an effective driveΩeff using,

δ= αΩ2
eff

2∆d (∆d +α)
, (4.13)

where ∆d = ωdrive −ωQ. The results [Fig. 4.9(b)] show that crosstalk induced shifts are
at most ≈ 17 kHz. This is much smaller than the typical linewidth of the | f 00〉 ↔ |g 1±〉
transition ∼ 10 MHz [as shown in Fig. 1(c)]. Therefore, one does not expect lower si-
multaneous performance of LRUs due to cross-drive Stark shifts. One can also verify
this experimentally by measuring simultaneous leakage removal fractions, R, and com-
paring them to individual ones. Performing this experiment, we find the same removal
fractions, as expected.

4.4.6. BENCHMARKING THE WEIGHT-2 PARITY CHECK
We benchmark the performance of the weight-2 parity check using three experiments
assessing different error types. First, we assess the ability to accurately assign the par-
ity of the data-qubit register by measuring the ancilla outcome for all data-qubit input
computational states. The results [Fig. 4.10(a)] show an average parity assignment fi-
delity of 95.6%. Next, we look at errors occurring on the data qubits when projecting
them onto a Bell state using a X -type parity check [Fig. 4.10(b)]. From data-qubit state
tomography conditioned on ancilla outcome, we obtain an average Bell-state fidelity of
97.7% (96.9% for m = +1 and 98.5% for m = −1). For each reported density matrix, we
apply readout corrections and enforce physicality constraints via maximum likelihood
estimation [43]. Finally, we look at the backaction of two back-to-back parity checks
[Fig. 4.10(c)]. Here, we measure the correlation of the two parity outcomes. Ideally, the
first parity outcome should be random while the second should be the same as the first.
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Figure 4.10: Benchmarking of the weight-2 parity check. (a) Quantum circuit of the weight-2 X -type parity
check and bar plot of the average measured ancilla outcome for the different input computational states of the
data-qubit register. Dashed bars show ideal average outcome: 〈m〉 = +1(−1) for even (odd) data-qubit input
parity. (b) Generation of Bell states via stabilizer measurement (top) and corresponding data-qubit state to-
mography (bottom) conditioned on the ancilla outcome. The obtained fidelity to the ideal Bell states (shaded
wireframe) is 96.9% and 98.5% for m =+1 and m =−1, respectively. (c) Repeated stabilizer experiment. (Bot-
tom left) Average measured ancilla outcome 〈m〉 for each round of stabilizer measurement. Ideally, the first
outcome should be random and the second always +1. The measured probability is P (m2 = +1) = 90.0%.
(Bottom right) Reconstructed data-qubit states conditioned on the first ancilla outcome. The obtained Bell-
state fidelities are 90.6% and 91.5% for m1 =+1 and m1 =−1, respectively.

Since our ancilla is not reset after measurement, the probability of both parities being
correlated is P (m2 = +1) = 90.0% [bar plot in Fig. 4.10(c)]. We can also reconstruct the
data qubit state after the experiment. Here, we find that the average Bell-state fidelity
drops to 91.0% (90.6% for m1 =+1 and 91.5% for m1 =−1). This drop in fidelity is likely
due to decoherence from idling during the first ancilla measurement.

4.4.7. MEASUREMENT-INDUCED TRANSITIONS
Previous studies have observed measurement-induced state transitions that can lead to
leakage [8, 9]. To evaluate the backaction of ancilla measurement, we model the mea-

surement as a rank 3 tensor ϵm, j
i which takes an input state i , declares an outcome m

and outputs a state j with normalization condition,∑
m

∑
j
ϵ

m, j
i = 1. (4.14)

To find ϵm, j
i , we perform the experiment in Fig. 4.11(a). For each input state i , the prob-

ability distribution of the measured results Pi (M0, M1) follows

Pi (M0 = mk , M1 = mℓ) =∑
s

∑
j
ϵ

mk ,s
i ϵ

mℓ, j
s . (4.15)

This system of 27 second-order equations is used to estimate the 27 elements of ϵm, j
i

through a standard optimization procedure. In this description, the assignment fidelity
matrix Mi ,m [Fig. 4.11(b)] is given by

Mi ,m =∑
j
ϵ

m, j
i . (4.16)
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Figure 4.11: Characterizing measurement-induced transitions. (a) Quantum circuit used to characterize
transmon measurement. A transmon is initialized into states |g 〉, |e〉 and | f 〉 after a heralding (dashed) mea-
surement (blue panel). Following prepration, two consecutive measurements M0 and M1 are performed,
yielding three-level outcomes. (b) Illustration of the extracted measurement model. The model is described

by a rank 3 tensor ϵ
m, j
i , where input states i are connected to measurement outcomes m and output states j .

From it, the assignment probability matrix (c) and the QNDness matrix (d) can be extracted.
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Figure 4.12: Four state readout. (a) Single-shot readout data for the four lowest-energy transmon states |g 〉,
|e〉, | f 〉 and |h〉 of A. Data are plotted for the first 3× 103 from a total of 215 shots for each input state. The
dashed lines show decision boundaries obtained from fitting a linear discrimination classifier to the data. The
mean (white dot) and 3σ standard deviation (white dashed circles) shown are obtained from Gaussian fits
to each input state distribution. (b) Assignment probability matrix obtained from classification of each state
into a quaternary outcome. (c) Histogram of shots for qubit states taken along the projection maximizing the
signal-to-noise ratio. (d) The average assignment errors for 2-, 3- and 4-state readout are 1.(3), 1.(9) and 7.(2)%,
respectively.
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Furthermore, this model allows us to assess the probability of transitions occurring dur-
ing the measurement. This is given by the QNDness matrix

Qi , j =
∑
m
ϵ

m, j
i . (4.17)

The results [Fig. 4.11(b)] show an average QNDness of 95.4% across all states. The aver-
age leakage rate ((Qg , f +Qe, f )/2) is 0.06%, predominantly occurring for input state |e〉.

4.4.8. READOUT OF TRANSMON STATES
In order to investigate leakage to higher states in the ancilla, we need to discriminate
between the first two leakage states, | f 〉 and |h〉. To do this without compromising the
performance of the parity check, we simultaneously require high readout fidelity for the
qubit states |g 〉 and |e〉. We achieve this for the ancilla for the states |g 〉 through |h〉 using
a single readout pulse. Figure 4.12(a) shows the integrated readout signal for each of
the states along with the decision boundaries used to classify the states. Any leakage
to even higher states will likely be assigned to |h〉 since the resonator response at the
readout frequency is mostly flat for |h〉. The average assignment error for the four states
is 7.(2)% [Fig. 4.12(b)] while the average qubit readout error is 1.(3)% [Fig. 4.12(c)]. Here,
we assume that state preparation errors are small compared to assignment errors.

4.4.9. LEAKAGE REDUCTION FOR HIGHER STATES
Although most common leakage mechanisms usually populate the second-excited state
of the transmon, | f 〉, some operations such as the measurement can leak into higher-
excited states [8]. We observe the build-up of population in these higher states in the
repeated parity-check experiment (Fig. 4). Figure 4.14 shows the fraction of total leakage
to these higher states for the ancilla. Therefore, leakage reduction for higher states is
necessary for ancillas. Similar to the leakage reduction mechanism that drives | f 〉 →
|g 〉 [with effective coupling g̃ f in Fig. 4.13(a)], one can drive |h〉 → |e〉 (with effective
coupling g̃ h in Fig. 4.13(b)]. This transition can be induced much like the former, with
an extra drive at frequency

ωh00 −ωe1± ≈ 2ωQ +3α−ωR/P, (4.18)

2α below the f -LRU transition. The effective coupling for each LRU is given by (Eq. A35
of Ref. [2]):

g̃ f ≈Ω geffαp
2∆(∆+α)

(4.19)

and

g̃ h ≈Ω
p

3geffαp
2(∆+α)(∆+2α)

, (4.20)

where ∆=ωQ −ωR/P and geff = g /
p

2 (see section S3). As g̃ h/g̃ f =p
3∆/(∆+α) > 1, one

should be able to drive |h〉 → |e〉 with comparable performance using similar drive am-
plitudes. We then have two LRU mechanisms, f -LRU and h-LRU, increasing seepage
from | f 〉 and |h〉, respectively. We drive both of these transitions simultaneously using
two independent drives. Following the same calibration procedure shown in Fig. 2 for
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Figure 4.13: Leakage reduction for | f 〉 and |h〉. (a, b) Transmon-resonator system level structure showing the
relevant couplings for the f -LRU (a) and h-LRU (b). Each effective coupling, g̃ f and g̃ h , is mediated by its
respective drive Ω1 and Ω2 and transmon-resonator coupling g . (c, d) Readout data (213 shots) of leakage
states | f 〉 (c) and |h〉 (d) after applying both LRU pulses simultaneously. The white dots and dashed cicles
show the mean and 3σ standard deviation obtained from fitting calibration data for each state.
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the f -LRU, we tune up a pulse for the h-LRU. Figures 4.13(c) and 4.13(d) show readout
data for states | f 〉 and |h〉 after performing both LRUs simultaneously. The correspond-
ing removal fraction for each state is R f = 99.(2)% and Rh = 96.(1)% for tp = 220 ns.
Using this scheme, we can effectively reduce leakage in both states (Fig. 4.14). In partic-
ular, leakage in | f 〉 is effectively kept under 0.2%, while that in |h〉 sits below 0.4% (red
curves in Fig. 4.14). The former shows a flat curve and therefore corresponds to the L1 of
the cycle (similar to Fig. 4). The apparent remaining leakage in |h〉 could possibly be due
to higher-excited states, which are naively assigned as |h〉 by the readout as they cannot
be distinguished. One could potentially address these with additional drives. The gen-
eral expression for the effective coupling of the transition targeting the mth leakage state
(with m f = 0, mh = 1, etc.) is given by (Eq. A35 of Ref. [2])

g̃ m/Ω≈
p

(m +1)(m +2)geffα

2(∆+mα)(∆+ (m +1)α)
, (4.21)

which increases monotonically with m. Therefore, one could expect comparable perfor-
mances for LRUs acting on higher states.
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5
MICROWAVE-ACTIVATED GATES

BETWEEN A FLUXONIUM AND A

TRANSMON QUBIT

We propose and analyze two types of microwave-activated gates between a fluxonium and
a transmon qubit, namely a cross-resonance (CR) and a CPHASE gate. The large frequency
difference between a transmon and a fluxonium makes the realization of a two-qubit gate
challenging. For a medium-frequency fluxonium qubit, the transmon-fluxonium system
allows for a cross-resonance effect mediated by the higher levels of the fluxonium over a
wide range of transmon frequencies. This allows one to realize the cross-resonance gate by
driving the fluxonium at the transmon frequency, mitigating typical problems of the cross-
resonance gate in transmon-transmon chips related to frequency targeting and residual
Z Z coupling. However, when the fundamental frequency of the fluxonium enters the low-
frequency regime below 100MHz, the cross-resonance effect decreases leading to long gate
times. For this range of parameters, a fast microwave CPHASE gate can be implemented
using the higher levels of the fluxonium. In both cases, we perform numerical simulations
of the gate showing that a gate fidelity above 99% can be obtained with gate times between
100 and 300ns. Next to a detailed gate analysis, we perform a study of chip yield for a sur-
face code lattice of fluxonia and transmons interacting via the proposed cross-resonance
gate. We find a much better yield as compared to a transmon-only architecture with the
cross-resonance gate as native two-qubit gate.

This chapter has been published in Phys. Rev. Research 4, 043127 (2022) [1] B.M.V. contributed to developing
the software and error model used. B.M.V. investigated the frequency collision and simulated the expected
device yield, described in Sec. 5.5.2. Furthermore, B.M.V contributed to the writing.
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5.1. INTRODUCTION
The transmon qubit [2, 3] is the most successful superconducting qubit to date, with
superconducting chips of around a hundred qubits currently being realized [4–6]. The
success of the transmon is due to its resilience to charge noise, the relative simplicity of
the circuit and its fabrication, the straightforward control and readout using microwave
pulses, and the possibility to couple transmons either via direct capacitances [7] or via
bus resonators [8, 9]. Coherence times between 10 and 100µs are routinely reported in
two-dimensional transmon chips [6, 10, 11], and even longer T1 times have been ob-
tained by using different superconducting materials [12, 13]. High-fidelity two-qubit
gates have been successfully demonstrated for transmon architectures using several dif-
ferent schemes that rely on either flux pulses [9, 14–18], microwave drives [19–23] or
tunable couplers [24–31].

Despite its success, the fact that transmons are essentially slightly anharmonic oscil-
lators is a limiting factor in transmon architectures. Apart from the problem of leakage
out of the computational subspace [32], the small anharmonicity of the transmon im-
plies that the transmons must be separated in frequency by, at most, their anharmonic-
ity to enable fast entangling gates. As observed in Ref. [33], this is intuitively due to the
fact that when the transmons are far away from each other in frequency, they behave as
uncoupled harmonic oscillators. Notice, however, that in this frequency range, the un-
wanted, spurious Z Z coupling is relatively large, and this limits the performances of the
gates [19, 33, 34]. These problems affect fixed, non-tunable coupling architectures such
as those based on the cross-resonance (CR) gate [19, 33, 35], giving rise to the problem of
frequency collisions [36]. The consequence is a low chip yield when qubit connectivity
is as required for the surface code [37], prompting research into optimizing the choice
of qubit frequencies [38], improving the accuracy with which qubit frequencies are tar-
geted via laser annealing [36, 39, 40] or pursuing alternative heavy-hexagonal codes that
require a lower qubit connectivity [36, 41]. Another issue in transmon chips is the prob-
lem of Z Z crosstalk [42] for which some solutions have been discussed [20, 22, 23, 31,
43–45].

The fluxonium qubit [46, 47] is a suitable candidate to go beyond the limitations of a
transmon-only architecture. The circuit of the fluxonium is similar to that of the trans-
mon in being composed of a capacitance and a Josephson junction in parallel, but it
also features an additional large, shunting inductance. The fluxonium is operated in
the regime where the characteristic impedance of the parallel LC -circuit ZLC =p

L/C is
larger than, say, a few kΩs. To achieve this regime, the high impedance can be realized ef-
fectively as an array of hundreds of Josephson junctions [47, 48] or using a material such
as granular aluminum [49] or niobium-titanium-nitrate [50, 51]. The inductive shunt
provides intrinsic protection against charge noise without the need for a large capaci-
tance, as in transmon qubits. Crucially, this breaks the tradeoff between anharmonicity
and charge noise sensitivity that limits the transmon qubit. The large inductance also
suppresses the sensitivity to flux noise in the loop formed with the Josephson junction
(see Fig. 5.1a), and moreover, the fluxonium is usually operated in the double well con-
figuration, where the qubit frequency is first-order insensitive to flux noise. In this con-
figuration, the fluxonium qubit shows large coherence times [52], which have surpassed
the millisecond barrier in 3D devices [53].
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The enhanced protection of the fluxonium comes at the price of requiring a more
involved scheme for the manipulation of its quantum state. The low fundamental fre-
quency of the fluxonium (below 1GHz) complicates the execution of single-qubit gates
due to the lesser accuracy of the rotating wave approximation compared to the trans-
mon case [54]. In addition, the reduced matrix elements of charge and flux operators
that control the strength of the coupling between the computational levels need to be
compensated using higher drive power. At very low frequencies of around 10MHz, new
schemes have to be devised for state preparation (reset) and single-qubit gates [55]. On
the other hand, the measurement of a fluxonium qubit can have advantages as com-
pared to a transmon qubit. The off-resonant fluxonium-resonator coupling can give rise
to relatively large dispersive shifts [54, 56], which enable fast measurement. For gran-
ular aluminum-based fluxonium qubits, highly accurate quantum measurements using
strong drive power – populating the read-out cavity with a large number of photons –
have been reported [57, 58].

Despite this increased complexity, the higher coherence times reached by the fluxo-
nium still pay off in terms of single-qubit gate fidelity [53]. Recently, several two-qubit
gate schemes between fluxonia have been proposed and experimentally realized in two-
qubit chips [59–65]. A whole architecture for fluxonium qubits has been analyzed in
Ref. [54] with two-qubit gates implemented using either the CR gate or the CPHASE gate
induced by the differential AC-Stark shift effect [20].

In most superconducting qubit research, the focus is on coupling ‘same-type’ qubits,
i.e., coupling two or more transmon qubits or, alternatively, coupling fluxonia. Excep-
tions where different types of qubits are coupled are, for example, Refs. [44, 66, 67]. In
this chapter, we consider the idea of using chips with heterogeneous qubits. In particu-
lar, we analyze how to realize microwave-activated two-qubit gates between capacitively
coupled transmons and fluxonia. For fluxonia with medium frequencies, between 0.25-
1.0GHz, we show that the CR gate activated by driving the fluxonium at the transmon
frequency is an ideal two-qubit gate candidate. In order to achieve similar gate times,
the coupling capacitance needs to be large as compared to the transmon-transmon case
[33], but smaller than the fluxonium-fluxonium case [65] due to the transmon being the
better antenna. A purely capacitive coupling is easier to engineer than the inductive
(combined with a small capacitive) coupling proposed in [54].

By means of a Schrieffer-Wolff analysis [68], we show that the CR effect is mainly
mediated by the higher levels of the fluxonium and that it stays large over a wide range
of transmon frequencies. Importantly, the frequency of the |1〉− |2〉 and |0〉− |3〉 transi-
tions of the fluxonium should be designed to be relatively far away from the transmon
frequency in order to limit residual, static Z Z interactions and leakage in the fluxonium
during the gate operation. By means of numerical simulations, which include noise, we
show that the CR gate can be realized with leakage below 10−4 and gate fidelity above
99% with gate times between 100 and 200ns. On the other hand, we show that when the
fluxonium frequency decreases to around 10MHz, the CR effect vanishes. In this case,
we find that a possible way of implementing a CPHASE gate is to drive to the higher levels
of the fluxonium, similar to Ref. [60]. The entangling power of the gate is then due to the
coupling-induced hybridization between the bare |13〉0 and |04〉0 levels of the transmon-
fluxonium system, where the subscript denotes that these are the bare states. We argue
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that despite the drawback of using the higher levels of the fluxonium, which have coher-
ence times comparable to that of the transmon, the CPHASE gate can be implemented
in 100 to 200ns with arbitrary conditional phases and fidelities above 99%.

This chapter is organized as follows: In Sec. 5.2, we introduce the transmon-fluxonium
system. Sec. 5.3 presents the CR gate between a transmon and medium-frequency flux-
onium. We provide a comparison with the transmon-transmon CR gate, highlighting the
advantage of the transmon-fluxonium case with respect to the frequency crowding prob-
lem. We substantiate our understanding by explicit numerical simulations. In Sec. 5.4,
we study a low-frequency fluxonium coupled to a transmon and propose a CPHASE gate
similar to the one implemented in Ref. [60] between two fluxonia. Also, in this case, we
perform a numerical simulation of the gate, showing that, by changing the pulse pa-
rameters, CPHASE gates with arbitrary conditional phases can be implemented. Sec. 5.5
presents two possible transmon-fluxonium surface-code-like architectures based on ei-
ther the CR or the CPHASE gate. We also perform a yield fabrication analysis for the CR
gate architecture, similar to those in Ref. [36, 38] for the transmon-transmon case and
in Ref. [54] for the fluxonium-fluxonium case. We conclude in Sec. 5.6.

5.2. THE TRANSMON-FLUXONIUM SYSTEM

(a)

(b)

Figure 5.1: (a) Symbolic representation of a fixed-frequency transmon (top left), a flux-tunable transmon (top
right) and a fluxonium (bottom). (b) Capacitively coupled (fixed-frequency) transmon and fluxonium qubits.

The basic circuit of the coupled transmon-fluxonium system is shown in Fig. 5.1b.
Following standard circuit quantization [69, 70] and directly approximating the trans-
mon as a Duffing oscillator, the Hamiltonian can be written as

H =ħωt b†b +ħδt

2
b†b†bb

+4EC , f q2
f +

1

2
EL, f φ

2
f −E J , f cos

(
φ f −φext, f

)
+ JC qt q f ,

(5.1)
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with EC , f ,EL, f ,E J , f the fluxonium charging, inductive and Josephson energy respec-
tively,ωt /2π the fundamental transmon frequency and δt /2π< 0 its anharmonicity. The
transmon operators b and b† satisfy commutation relations [b,b†] = I , while the fluxo-
nium (dimensionless) reduced charge q f and reduced fluxφ f operators satisfy [φ f , q f ] =
i I , with I the identity. The transmon charge operator qt can be expressed in terms of b
and b† as

qt = i
( E J ,t

32ħ|δt |
)1/4

︸ ︷︷ ︸
qzpf

(b† −b), (5.2)

where the transmon Josephson energy E J ,t is related to the qubit energy and anhar-
monicity by

E J ,t = ħ(ωt −δt )2

8|δt |
. (5.3)

The coefficient qzpf represents the charge zero-point fluctuations of the transmon. In the
usual Duffing approximation, the charging energy of the transmon is simply EC ,t =ħ|δt |.

Fluxonium Transmon

Parameter set
EC , f

h (GHz)
EL, f

h (GHz)
E J , f

h (GHz)
ω f ,01

2π (MHz) T 1 7→0
1 (µs) T 3 7→0

1 (µs) ωt
2π (GHz) T1 (µs) JC

h (MHz)

CR 1.0 1.0 4.0 582 126 20 ∈ [4.2,5.8] ≈ 130 20

CPHASE 1.0 0.5 8.0 30 3700 7 4.37 130 30

Table 5.1: Parameter sets used in the chapter. The transmon always has anharmonicity δt /2π = −300MHz.
The relaxation times correspond to dielectric losses as described in Sec. 5.7.4. The dielectric loss tangent
for the transmon is taken to be tanδdiel,t = 3 × 10−7 and assumed to be frequency independent. For the
fluxonium, similar as in Ref. [52], we take a frequency-dependent dielectric loss tangent tanδdiel, f (ω) =
3.5× 10−6(ω/ωref)0.15 with ωref/2π = 6.0GHz. This is needed to take into account the various frequencies
that are present in the fluxonium. The temperature of the environment is always assumed to be T = 20mK.
Additional relaxation and excitation times for other relevant fluxonium transitions are reported in Table 5.3 in
Sec. 5.7.4.

In what follows we will assume the fluxonium to be biased with a reduced external
flux φext, f = π so that it is operated in the double-well potential configuration. We will
denote by |kl〉0 the bare, uncoupled energy levels of the two qubits, where the first label
k identifies the transmon level, while the second label l the fluxonium level. The symbol
|kl〉 denotes the dressed, coupled energy level obtained by adiabatic continuation of the
bare level |kl〉0 when JC goes from 0 to a nonzero value. The computational basis is
defined as the dressed basis and the projector onto the computational subspace equals
Pc = ∑1

k,l=0 |kl〉〈kl |. The projector onto the leakage subspace is then Pl = I −Pc . We
define ω f ,kl as the transition frequency between the bare fluxonium levels k and l (not
to be confused with ωkl in, say, Eq. (5.15) which denote the dressed energy levels of the
transmon-fluxonium system). Also, let

q f ,k>l = Im(〈k|q f |l〉 f ) =−i 〈k|q f |l〉 f , (5.4)

be the imaginary part of the fluxonium matrix element with respect to the bare levels.
Note that 〈k|q f |k〉 f = 0. In addition, since at φext, f =π the fluxonium Hamiltonian, just
like the transmon, has a parity symmetry, we also have 〈k|q f |k +2m〉 f = 0 for m ∈N.
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Figure 5.2: An example of a typical energy level diagrams for a capacitively coupled transmon-fluxonium sys-
tem. The arrows denote the levels that show non-zero matrix elements of the coupling Hamiltonian JC qt q f :
the darker the color of the arrow the larger the matrix element. The figure corresponds to the parameter set CR
in Table 5.1 with ωt /2π= 5.3GHz and φext, f =π.

For the parameters listed in Table 5.1, the energy levels |02〉0 and |03〉0 have frequen-
cies of the same order of magnitude as the |10〉0 , |11〉0 levels as seen in the level diagram
in Fig. 5.2. Due to the relatively large matrix elements of the two lowest levels of the fluxo-
nium with the higher levels (see Fig. 5.3), the q f qt term in the Hamiltonian directly cou-
ples levels |10〉0 ↔ |03〉0 and levels |11〉0 ↔ |02〉0. As we show in Sec. 5.7.1, the coupling
to these levels induces a spurious Z Z coupling, but also gives rise to the CR interaction.

The gates considered in this chapter will be activated by a microwave drive on the
fluxonium. A drive at carrier frequency ωd can be modelled by the time-dependent
Hamiltonian

Hdrive(t ) =ħg (t )εd cos(ωd t +θd )q f , (5.5)

with 0 ≤ g (t ) ≤ 1 a dimensionless envelope function and εd the maximum drive ampli-
tude that characterizes the drive strength and θd the phase of the drive.

5.3. THE CROSS-RESONANCE GATE FOR MEDIUM FREQUENCY

FLUXONIA
The CR effect manifests itself when we drive one of the qubits (the control) at the fun-
damental frequency of the other (the target). The effect arises due to the presence of the
coupling term, which enables the drive operator of the control qubit to drive transitions
between energy levels of the target qubit. Importantly, the drive on the target qubit de-
pends on the state of the control. Here we take the fluxonium as the control qubit and the
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Figure 5.3: (Left) Matrix elements of the fluxonium charge operator (α = f ) for the fluxonia in Table 5.1 and
of the transmon charge operator (α= t ) with corresponding transition frequency on the y axis. The transmon
is taken to have fundamental frequency ωt /2π= 5.3GHz and anharmonicity δt /2π=−300MHz. (Right) First
4 eigenfunctions and potential energy for the fluxonia with parameter set CR (top) and CPHASE (bottom) in
Table 5.1. The dotted lines represent the energy corresponding to each level.

transmon as the target qubit, so we drive the fluxonium at the fundamental frequency
of the transmon. This choice is motivated by the fact that we can have large CR effect
leading to a gate time around 100ns, while the same does not hold if we take the trans-
mon as control and the fluxonium as target. At low drive strengths [33, 71], the CR effect
can be simply understood by looking at the matrix elements of the charge operator in
the dressed basis. We provide a perturbative analysis of the CR coefficient in Sec. 5.7.1.

Including the envelope function, the fundamental CR Hamiltonian is

HCR(t ) =ħg (t )µCRX t Z f , (5.6)

with X t the transmon Pauli X operator and Z f the fluxonium Pauli Z operator. As re-
marked in Sec. 5.7.1, by changing the phase of the drive we can always make µCR posi-
tive. The CR gate with the fluxonium as control and the transmon as target is given by
the unitary

UCR = e−i π4 X t Z f , (5.7)

and thus, it is implemented by letting HCR(t ) act for a time tgate such that

µCR

ħ
∫ tgate

0
d t g (t ) = π

4
. (5.8)

If g (t ) is a constant equal to 1 we obtain the simple formula

t (id)
gate =

ħπ
4µCR

. (5.9)
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Figure 5.4: Comparison of the gate time (top) and the residual, static Z Z coupling (bottom) for the transmon-
transmon and the transmon-fluxonium CR gate. The frequency of the control transmon in the transmon-
transmon case is fixed to ωc /2π = 5.0GHz and both transmons have anharmonicity δt /2π = δc /2π =
−300MHz. The coupling between the transmons is set to JC /h = 2MHz. In the transmon-fluxonium case
the parameters are taken as in parameter set CR in Table 5.1. In the top figure the drive on the control trans-
mon in the transmon-transmon case is set to εd /2π= 30MHz, while the drive on the control fluxonium in the
transmon-fluxonium case is taken to be εd /2π = 300MHz. We use Eqs. (5.10) and (5.11) to estimate the ideal
gate time in Eq. (5.9). The Z Z coupling ξZ Z is evaluated via numerical diagonalization using Eq. (5.12). For
the transmon-transmon case we see the Z Z coupling blowing up at the resonances |11〉↔ |02〉 and |11〉↔ |20〉
(not at the resonance |01〉↔ |10〉!), while the gate time blows up at the resonances |01〉↔ |10〉 and |11〉↔ |02〉,
leaving a narrow frequency window of opportunity.

Using additional single-qubit gates the CR gate can be turned into a CNOT gate [71].
In Sec. 5.7.1 we derive an approximate formula for the CR coefficient in the transmon-

fluxonium case, using a second-order Schrieffer-Wolff transformation, which reads

µCR = JC qzpf

4ħ
[ q2

f ,30

ωt −ω f ,30
−

q2
f ,21

ωt −ω f ,21

]
εd . (5.10)
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This expression has to be compared with the standard expression for the transmon-
transmon case with control qubit c and target qubit t [33, 72] :

µ(t t )
CR =−

JC qzpf,t q2
zpf,c

ħ(ωc −ωt )

[ δc

δc +ωc −ωt

]εd

2
, (5.11)

where qzpf,t (qzpf,c ), ωt /2π (ωc /2π) are the charge zero point fluctuation and the funda-
mental frequency of the target (control) transmon, respectively, and δc /2π the anhar-
monicity of the control transmon.

We show a comparison between the transmon-transmon and transmon-fluxonium
CR gate in Fig. 5.4. Due to the small anharmonicity of the transmons, Eq. (5.11) predicts
that the CR coefficient is only large enough to lead to a gate time below 300ns when
the conditionωc +δc ≤ωt ≤ωc is satisfied, see Fig. 5.4 (top). Outside this region the gate
time quickly increases to values above 1µs. Thus, the CR gate for transmon-only systems
requires careful frequency engineering and the constraints leads to frequency crowding
[36, 38].

In contrast, the transmon-fluxonium CR gate can be activated for a large range of tar-
get transmon frequencies and presents more stable CR gate times. While a larger drive
strength εd is necessary for the transmon-fluxonium case in order to compensate for the
smaller charge matrix elements of the fluxonium, we show below, via numerical simula-
tions, that small leakage and high-fidelities can be achieved. In Fig. 5.4 (bottom) we also
plot the residual, static Z Z coupling defined as

ξZ Z

2π
= E11 −E10 −E01 +E00

h
, (5.12)

with Ekl the dressed eigenenergy of level |kl〉. While the transmon-transmon case achieves
a smaller minimum Z Z coupling, the transmon-fluxonium case shows a more stable
ξZ Z without resonant peaks.

In addition, we observe that the average leakage L1 (see Sec. 5.7.3 for a definition) in
the CR gate for the transmon-fluxonium case is generally lower than for the transmon-
transmon case for different target transmon frequencies, see Fig. 5.5. In the transmon-
fluxonium case, and in the frequency range 4.2−5.8GHz, we identify two peaks in the
leakage at ωt /2π ≈ 4.41GHz and at ωt /2π ≈ 4.93GHz. The former is due to a three-
photon transition between the levels |0〉 and |5〉 of the fluxonium qubit with frequency
ω f ,05/2π= 13.23GHz, while the latter is caused by a two-photon transition between lev-
els |0〉 and |4〉 of the fluxonium with frequencyω f ,04/2π= 9.86GHz. These are frequency
collisions that one must avoid in order for the CR gate to achieve high fidelities (see also
the discussion in Sec. 5.5). Away from these frequencies the leakage can be as low as 10−7

and this happens for a wide target frequency range. In contrast, the transmon-transmon
case achieves leakage below 10−5 only close toωt /2π=ωc /2π= 5.0GHz, where however
a problem of qubit addressability emerges. Moreover, the leakage increases when the
two-photon transition between levels |0〉 and |2〉 of the control is triggered at ωt /2π =
4.85GHz and when ωt matches the |1〉-|2〉 transition of the control at ωt /2π= 4.7GHz.

In Fig. 5.6 we plot gate infidelities in the noiseless and noisy case as a function of
the drive strength for the four target transmon frequencies that we consider in the yield
analysis in Sec. 5.5. We refer the reader to Sec. 5.7.3 for the definition of gate fidelities
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and to Sec. 5.7.4 for details of the dielectric loss error model used for the noisy simula-
tions. We consider a simple piece-wise Gaussian pulse and its echo version, where two
piece-wise Gaussian pulses on the fluxonium at frequency ωd /2π=ωt /2π and with op-
posite phase, are interleaved with single-qubit π rotations around the X axis on the flux-
onium qubit (as for the transmon-transmon case [73]). We provide more details about
the pulses in Sec. 5.7.5. We see that for the chosen target frequency range, the echo
pulse generally outperforms the simple Gaussian pulse, especially at low drive strengths.
This is because the echo pulse ideally cancels the effect of the unwanted Z Z interaction
(besides canceling the X -rotation on the transmon qubit), while the smaller the drive
strength the larger the effect of the Z Z interaction is compared to the CR effect [34],
which explains the lower fidelities in the simple pulse case. In all cases, we observe
that with the echo pulse gate fidelities can be at least 99.5% in the noiseless case and
at least 99.3% in the noisy case for all target frequencies. We remark that these were
obtained without any pulse optimization and simply by matching the CR condition in
Eq. (5.8) and the corresponding one for the echo pulse (see Sec. 5.7.5). Optimal control
techniques developed for the CR gate [74] and more detailed techniques to understand
the sources of error [75, 76] for the transmon-transmon case can also be applied to the
transmon-fluxonium case to achieve higher fidelities.
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Figure 5.5: Average leakage for a simulated, noiseless CR gate for the transmon-transmon and the transmon-
fluxonium case as a function of the target frequency. In both cases parameters are taken as in Fig. 5.4 and we set
ωd =ωt . We numerically simulate the gates using a piece-wise Gaussian envelope (see Sec.5.7.5) with rise time
trise = 10ns and gate time chosen to satisfy the CR condition in Eq. (5.8). We plot the result for the transmon-
transmon case only in the relevant, blue-shaded region such that ωc +δc ≤ ωt ≤ ωc . In the simulations we
include 3 bare levels for the transmons and 8 for the fluxonium.

5.4. THE CPHASE GATE FOR LOW FREQUENCY FLUXONIA
If we keep the fluxonium charging energy EC , f fixed and decrease the ratio between
EL, f /E J , f , the energy barrier between the two lowest minima of the fluxonium poten-
tial increases, while the kinetic term stays constant. In this limit, the two lowest eigen-
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Figure 5.6: Gate infidelity as a function of the drive strength for four different target transmon frequencies in the
transmon-fluxonium case. The piece-wise Gaussian envelope are always taken to have rise time trise = 10ns.
We also plot in gray the infidelities in the presence of dielectric loss. When εd /2π= 300MHz, gate times for the
simple Gaussian pulse (no echo) are tgate = 233,297,330,295ns for ωt /2π = 4.3,4.7,5.3,5.7GHz, respectively.
In the simulations we include 3 bare levels for the transmons and 6 for the fluxonium.

states of the fluxonium are an even and odd superpositions of two states that are more
and more localized in the left and right well of the potential, respectively, see Fig. 5.3(b).
As a result, the fundamental frequency of the fluxonium, i.e., the energy splitting be-
tween the two lowest levels, decreases, as well as the magnitude of the matrix elements
〈0|q f |1〉, 〈0|φ f |1〉 of the charge and flux operators between the two lowest levels, see
Fig. 5.3(a). This naturally leads to longer coherence times, although the control of the
quantum state of the fluxonium becomes more involved [55]. In this scenario, the fre-
quencies of the transmon and of the fluxonium are extremely different, since the funda-
mental frequency of the fluxonium can be smaller than 100MHz.
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Moreover, the CR scheme that we analyzed in Sec. 5.3 is not applicable in this case be-
cause of a vanishing cross-resonance coefficient µCR. We can understand this by looking
at the approximate, analytical formula for µCR in Eq. (5.10). In the limit of low fluxonium
frequency the difference between the frequencies ω f ,30 and ω f ,21 becomes smaller (see
the energy levels in Fig. 5.7 for an example). In order to have a large µCR the two terms on
the right-hand side of Eq. (5.10) need to constructively interfere, i.e., the transmon fre-
quency must be chosen between ω f ,30 and ω f ,21, leading to a small range of transmon
frequencies with a sizable cross-resonance coefficient. Outside this transmon frequency
range the µCR goes to zero also because |q f ,21| ≈ |q f ,30| in the low fluxonium frequency
limit.

In this section we show that the scheme proposed in Ref. [60] to realize a CPHASE
gate between two fluxonia can be adapted using different fluxonium levels. In Fig. 5.7
we show the energy level diagram for parameter set CPHASE which we will use in this
section, see Table 5.1. We see that the system is chosen to have (approximately) a reso-
nance between the transmon frequency and the |3〉−|4〉 transition of the fluxonium, i.e.,
ωt ≈ω f ,34. Denoting by Ekl the dressed energies of level |kl〉 and by E (0)

kl the bare energy

Figure 5.7: Energy level diagram for a low frequency fluxonium coupled to a transmon corresponding to pa-
rameter set CPHASE in Table 5.1. The blue wavy lines identify the levels that are driven. The dashed lines above
the level |13〉0 and below the level |04〉0 represent the dressed levels |13〉 and |04〉, respectively.

of level |kl〉0, we will thus have E13 −E04 ̸= E (0)
13 −E (0)

04 due to the coupling term. This en-
ergy shift in turn gives rise to a difference between the frequencies associated with the
|00〉− |03〉 transition and with the |10〉− |13〉 transition, expressed by a parameter ∆:

∆

2π
= (E13 −E10)− (E03 −E00)

h
̸= 0. (5.13)

For parameter set CPHASE in Table 5.1 we have∆/2π= 14.0MHz. This effect can be used
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to implement a microwave-activated CZ gate and more generally a CPHASE gate with an
arbitrary phase φ given by the general unitary

CPHASE(φ) =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 e iφ

 . (5.14)

As schematically shown in Fig. 5.7, the idea is to apply a drive on the fluxonium qubit
with a frequency approximately given by the |0〉−|3〉 transition frequency. More precisely,
the drive amplitude and the drive frequency is chosen so that the generalized Rabi fre-
quencies of the |00〉− |03〉 and |10〉− |13〉 transitions are matched to a certain value Ω,
which is expressed in the condition√

ε2
d q2

f ,10−13 + (ω13 −ω10 −ωd )2 =
√
ε2

d q2
f ,00−03 + (ω13 −ω10 −ωd −∆)2 =Ω, (5.15)

where q f ,10−13 = |〈10|q f |13〉 | and q f ,00−03 = |〈00|q f |03〉 |.
This condition leads to drive frequencies that are between the frequencies of the

|00〉− |03〉 and |10〉− |13〉 transition, which for parameter set CPHASE in Table Tab. 5.1
is ωd /2π≈ 7.26GHz. Also, the typical drive strength is εd /2π≈ 10MHz.

Eq. (5.15) guarantees that, assuming g (t ) = 1, after a time tgate = 2π/Ω both transi-
tions give rise to a Rabi oscillation which ideally induces no leakage. The nonzero∆ gives
rise to a differential phase φ≈π∆/Ω which is acquired by the state |11〉, see the detailed
analysis of the gate in Sec. 5.7.2. By means of single-qubit Z rotations the implemented
gate can be turned into the CPHASE gate in Eq. (5.14).

Crucial for the implementation of the gate is that the system undergoes a Rabi os-
cillations for both the involved transitions, inducing little leakage. We investigate this
property in Fig. 5.8, where the average leakage L1 (see its definition in Sec. 5.7.3) is plot-
ted as a function of gate time for different target conditional phases. We see that in the
coherent case there is a very sharp minimum where the leakage is minimized. Also, the
minimum value of the leakage decreases for larger conditional phases, which have larger
optimal gate time since tgate ≈ 2φ/∆.

However, comparing Figs. 5.5 and 5.8, we notice that the leakage is much higher than
that achievable with the CR gate discussed in Sec. 5.3 due to the fact that the CPHASE
gate is directly populating non-computational states during the gate. While lower leak-
age could be potentially achieved with optimized pulses, leakage is definitely more pro-
nounced for this CPHASE gate as compared to the CR gate, assuming the CR gate is oper-
ated away from frequency collisions. In addition, in Fig. 5.8 we observe (unsurprisingly)
that the presence of noise increases the leakage compared to the noiseless case, and
makes the leakage-minima less sharp. Also, the use of higher levels of the fluxonium in-
evitably exposes the system to the shorter decay times of these levels. Despite these facts,
we obtain optimal gate fidelities in the noise free case of {99.76%,99.87%,99.93%,99.96%}
and in the noisy case of {99.36%,99.44%,99.51%,99.61%} for the conditional phases φ=
{π,5π/4,2π/2,7π/4}, respectively. The noise free gate fidelity is limited by leakage. In
particular, in the noiseless case and when the condition Eq. (5.15) is matched, the state
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Figure 5.8: Leakage as a function of gate time for different target conditional phases. We use a piece-wise
Gaussian envelope g (t ) with rise time trise = 10ns. Drive frequencies and drive strengths are chosen to satisfy
Eq. (5.15) with Ω = ∆/(πφ) which depends on the target conditional phase φ. Minimum leakage (approxi-

mately) corresponds to the condition
∫ tgate

0 d t g (t ) = 2φ/∆. Solid lines represent the coherent results, while
the dashed lines represent the noisy ones in the presence of dielectric losses. In the simulations we include 3
bare levels for the transmons and 5 for the fluxonium.

with the highest probability of leakage is |04〉. This state accounts for approximately 95%
of the leakage. Due to the hybridization of the bare levels |13〉0 and |04〉0, the dressed
state |04〉 also acquires a non-zero fluxonium charge matrix element, and thus the drive
can stimulate the |10〉−|04〉 transition, although it is more off-resonant than the |10〉−|13〉
transition. This also explains the decrease of leakage with the increase of the target con-
ditional phase in Fig. 5.8. In fact, the larger the target conditional phase, the larger the
ideal gate time and the smaller the drive amplitude, which causes the unwanted |04〉 to
be less populated. The remaining 5% of the leakage is due to the imperfect cancellation
of the |13〉 population. We believe that these two main sources of leakage can be both
reduced by further pulse optimization. Finally, we remark that in the noisy case we see
an increase in the population of |13〉 as well as of |03〉. The latter seems due to a direct
relaxation from the |04〉 state (see Table 5.3 in Sec. 5.7.4 for the relaxation time).

When the drive is turned off, the static, residual Z Z coupling is small and it is eval-
uated to be 40kHz for parameter set CPHASE in Table 5.1 used in this section. As can
be seen from Fig. 5.7, the bare levels |11〉0 and |02〉0 have a non-zero matrix element in-
duced by the capacitive coupling. However, these levels are far detuned in frequency, by
more than 2GHz, and as a result have small level hybridization. The same holds for the
pair of bare levels |10〉0 , |03〉0. As shown in Sec. 5.7.1, these transitions are the main cause
of Z Z coupling in this system, which is suppressed given the large detuning between the
levels.
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5.5. ARCHITECTURES BASED ON FLUXONIUM AND TRANSMON
In this section we provide some architectural considerations for multi-qubit transmon-
fluxonium chips based on either the CR gate or the CPHASE gate analyzed in the previous
sections. For concreteness, we focus on a surface code architecture, where each qubit is
directly coupled to at most four neighbors [10, 11, 37]. In this case, either the transmons
or the fluxonia play the role of the data or ancilla qubit in the surface code. For both the
CR and CPHASE gate, we drive the fluxonium qubit and since up to four transmons cou-
ple to the same fluxonium qubit we need to examine how to avoid operation crosstalk.
We then explore the expected yield for the architecture based on the CR gate, for which
we expect frequency collisions to impact the fidelity of operations.

5.5.1. FREQUENCY ALLOCATION AND OPERATIONS

For the CR gate we can make use of the wide range of transmon frequencies over which
the gate can be implemented. A possible frequency setup is shown in Fig. 5.9. In this case
the architecture is fully microwave, without the need of frequency tunable transmons or
tunable couplers, thus, flux control is only needed for static biasing of the fluxonia.

The fixed-frequency transmons are well-separated in frequency by at least 400MHz.
With these parameters the gate times, assuming JC = 20MHz and εd /2π = 300MHz,
would be roughly between 200 and 350ns and the residual Z Z coupling between 100
and 150kHz. In this range of frequencies the Z Z coupling is quite stable and does not
have any sharp peaks (see Fig. 5.4).

Figure 5.9: Surface code archtitecture for fixed frequency transmons (blue) and medium frequency fluxo-
nia (red) based on the CR gate. We choose transmons at four different fundamental frequencies ωt /2π =
{4.3,4.7,5.3,5.7}GHz and anharmonicity δt /2π = −0.3GHz, while all the fluxonia have target parameters as
in parameter set CR in Table 5.1 with fundamental frequency ω f ,01/2π≈ 0.6GHz.
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In Fig. 5.10 we show a fundamental unit cell for a transmon-fluxonium chip based
on the CPHASE gate described in Sec. 5.4. In this case we require frequency-tunable
transmons, since we need the ability to selectively tune the transmons to a frequency
that matches approximately that of the |3〉− |4〉 transition of the fluxonium. This is an
inevitable consequence of the fact that the gate relies on a single resonance. The trans-
mons can all be placed approximately at the same frequency taken to be 4.8GHz in the
example, while the fluxonium has target parameters equal to parameter set CPHASE in
Table 5.1. Thus, in order to activate the gate, we first apply a static flux to the desired
transmon, in order to bring its frequency close to ω f ,34/2π = 4.3GHz. Then we apply a
microwave tone to the fluxonium as detailed in Sec. 5.4. Typical gate times depend on
the conditional phase and are estimated between 50 and 150ns (not including the time
to flux-tune the qubit back), with static Z Z of 60kHz 1. Thus after the gate is completed,
the transmon is brought back to the sweet spot at its normal frequency. In an all flux-
onium multi-qubit chip where the CPHASE gate is implemented using the scheme of
Ref. [60], one would need to flux the fluxonia away from their flux sweet spots, i.e., the
double-well configuration, in order to implement the gate selectively. This could lead to
complications because additional fluxonium transitions are activated when the system
is moved out of the double-well configuration. In contrast, in our scheme the fluxonia
always remain at their flux sweet spots.

We remark that our procedure to selectively activate the CPHASE gate is different
than the scheme used for the flux-activated CPHASE gate between two transmons [14] in
multi-qubit architectures [37]. There the flux pulse is used to implement the gate, while
in addition, a neighbor qubit is parked at a different frequency to avoid a frequency col-
lision during the gate operation. In our case, the qubits that are not involved in the gate
are left untouched and the gate is activated by the microwave pulse on the fluxonium. A
disadvantage is that moving the transmon away from a flux sweet spot triggers 1/ f flux
noise during the gate operation, which impacts leakage and the gate fidelity. This prob-
lem can be mitigated using Net-Zero flux pulses [14]. The fluxonium instead always re-
mains at its sweet spot. Another disadvantage is that while a transmon and a fluxonium
are interacting via the CPHASE gate, the other transmons coupled to the fluxonium need
to remain at their sweet spots to avoid cross-driving. Therefore, these transmons cannot
simultaneously interact with other fluxonia during the activation of the CPHASE gate,
limiting the number of gates that can be executed in parallel in this architecture.

5.5.2. FREQUENCY COLLISIONS AND CHIP YIELD STUDY
The transmon-fluxonium architecture based on the CR gate that we propose employs
only fixed-frequency qubits. Thus, the impact of frequency crowding and the possible
frequency collisions on the chip yield is an important consideration when describing
the scalability of the system. In contrast, transmons are flux-tunable in the architecture
using the CPHASE gate and we do not expect frequency collisions to be an issue in that
case. Therefore we focus on exploring the problem of frequency crowding only in the
fixed-frequency architecture. In this section, we discuss the fluctuations in the parame-
ters of both fluxonia and transmons that we expect due to fabrication imprecision.

1By increasing the coupling, the gate times can be further reduced, at the price of a higher static Z Z interac-
tion.
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Figure 5.10: Surface code architecture for flux-tunable transmons (blue) and low frequency fluxonia (red)
based on the CPHASE gate. All transmons are chosen at the same sweet spot fundamental frequency ωt /2π=
4.8GHz and anharmonicity δt /2π=−0.3GHz, while the fluxonia and the JC parameter are taken as in param-
eter set CPHASE in Table 5.1.

We outline a set of frequency collisions that we expect to degrade the device perfor-
mance. To identify the dominant collisions we numerically explore the CR gate perfor-
mance as a function of the target transmon frequencies ωt and extract the regions of
increased leakage or crosstalk. We associate each region to a specific transition that is
driven and that corresponds to a collision condition. We then define a window around
each collision, inside of which the increase in crosstalk or leakage is expected to sig-
nificantly degrade the gate fidelity. We perform a detailed scan in the vicinity of each
collision to extract the corresponding bound by requiring that the resulting error is be-
low a given threshold, which we specify below. For collisions involving a spectator qubit
we simulate the gate using the full three-qubit system instead. Given these bounds, we
simulate the zero-collision yield over a range of variation in the tunnel junction resis-
tance, which determines the qubit frequencies, for surface code lattices up to distance 7
and different drive amplitudes.

The transition frequencies of the transmon are determined by EC ,t and E J ,t , while for
the fluxonium the frequencies are a function of EC , f , EL, f , and E J , f . We do not assume
any variation in the targeted EC ,t or EC , f as the shunting capacitance can be consistently
reproduced [36, 54, 77]. On the other hand, it is hard to fabricate the Josephson junction
reliably, thus leading to large fluctuations in the critical current Ic , which can be related
to the tunnel barrier resistance at room temperature R via the Ambegaokar-Baratoff for-
mula Ic = π∆

2eR , where∆ is the superconducting energy gap. Since R is readily measurable
experimentally, we define the variation due to the fabrication of the Josephson junction



5

188 5. MICROWAVE-ACTIVATED GATES BETWEEN A FLUXONIUM AND A TRANSMON QUBIT

in terms of the standard deviation σR of the resistance. Given that the Josephson energy

can be expressed as E J = ħIc
2e we expect a variation in E J , f of

σE J , f

E J , f
≈ σR

R for the fluxonium

qubit. For EL, f , we consider the superinductance to be realized via a Josephson-junction
array consisting of approximately N ≈ 100 junctions. Therefore, independent fluctua-
tions in the Josephson energy of each junction would lead to a variation in the inductive

energy of
σEL, f

EL, f
= σRp

N R
, using the approximation that the effective inductance due to the

array is Leff = N L J [47]. When the fluctuations are too large, this simple approximation
may break down and one expects spectral shifts due to the coupling of the fluxonium
mode with other modes of the array [78].

The transmon frequency ωt is approximately given by ωt ≈ √
8EC ,t E J ,t /ħ and we

thus expect a deviation in the transmon frequency of
σωt
ωt

= σR
2R . Given that EC ,t ≈ ħ|δt |

we do not expect any variation in δt . A resistance variation as low asσR /R ≈ 2% has been
previously reported [77] and a variation of σR /R ≈ 0.5% has been obtained after the use
of laser annealing [36].

Type Frequency Collision
Bounds

εd /2π= 100MHz εd /2π= 300MHz εd /2π= 500MHz

1 ωt =ω f ,12 or ωt =ω f ,03 ±100MHz ±100MHz ±100MHz

2 ωt <ω f ,12 or ωt >ω f ,03 – – –

3 2ωt =ω f ,04 ±15MHz ±40MHz ±60MHz

4 2ωt =ω f ,15 ±5MHz ±40MHz ±50MHz
5 2ωt =ωt +δt +ω f ,03 ±9MHz

6 3ωt =ω f ,05 – ±17MHz ±35MHz

7 ωt =ωs ±5MHz ±15MHz ±15MHz

8 ωt =ωs +δs ±7MHz ±20MHz ±20MHz

9 ωt +ωs =ω f ,04 ±10MHz ±25MHz ±50MHz

Table 5.2: Frequency collisions and chosen bounds (on ω/2π) on forbidden windows around the collision at
three different drive amplitudes εd for the fixed-frequency transmon-fluxonium architecture employing the
CR gate. The bounds on the forbidden windows for each collision are estimated from numerical simulations
with the exception of collision type 7, which is taken to be a similar ratio relative to collision type 8 as the
ratio between collisions types 5 and 6 reported in [36]. Collision types 1-6 involve a fluxonium acting as the
control qubit and a transmon at a frequency ωt acting as the target qubit. Collision types 7-9 further consider
a spectator transmon at a frequency ωs that is coupled to the fluxonium. The other transmon and fluxonium
parameters are given in Ref. [36].

Frequency collisions generally lead to an increase in the infidelity or time-duration
of the targeted two-qubit gate due to an increase in leakage and crosstalk. Based on
our (noiseless) numerical simulations, we have identified the 9 most likely frequency
collisions for our architecture, listed in Tab. 5.2. Each collision involves either only the
control fluxonium and target transmon or it further involves a spectator transmon, cou-
pled to the fluxonium. The impact of each collision can be understood as follows: Type 1
collisions lead to a high residual Z Z coupling between the transmon and the fluxonium
qubit. This has to be avoided as it gives strong Z Z crosstalk when we do not want to
couple the qubits. We define the bound around this collision such that ξZ Z /2π≤ 1MHz.
Collision type 2 defines conditions leading to a relatively long CR gate time tgate ≫ 100ns,
as it breaks the condition in Eq. (5.29). Type 3 (resp. type 4) collisions are two-photon
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transitions due to the drive at frequency ωd = ωt which lead to the fluxonium leaking
from |0〉 to |4〉 (resp. |1〉 to |5〉). Collision type 5 represents the drive causing the trans-
mon to leak from |1〉 to |2〉 while the fluxonium leaks from |0〉 to |3〉. Collision type 6 leads
to the fluxonium leaking from |0〉 to |5〉 via a three-photon transition due to the drive at
frequency ωt . To bound each of these collisions, we require that the average leakage L1

to satisfy L1 ≤ 10−3. The next collisions consider the impact of driving a CR gate between
a fluxonium and a target transmon on a spectator transmon at frequency ωs . Collisions
type 7 leads to the drive of the CR gate addressing the neighboring spectator transmon,
while type 8 collisions instead cause the spectator transmon to leak from |1〉 to |2〉. Col-
lision type 9 describes a transition involving both the target and spectator transmon and
leading to the fluxonium leaking from |0〉 to |4〉. To extract the bounds around colli-
sion type 7, we prepare the spectator transmon in |0〉 and the control and target qubits
in the state Pc /2 and require that the population in |1〉 of the spectator qubit after the
gate to be below 10−3. Finally, to bound collisions type 8 and 9, we require again that
the resulting average leakage from the computational states is sufficiently small, that is,
L1 ≤ 10−3. We note that collision types 4 and 5 are separated by only ≈ 50MHz for the
targeted fluxonium parameters. A sufficiently strong drive (εd /2π≥ 300MHz) leads to a
(drive-strength dependent) detuning of the qubit frequencies, which can lead to the fre-
quencies of these two collisions to shift closer to each other. In such a case, we instead
place a single bound around collision type 4, which also includes collision type 5, and
ensures that the resulting leakage L1 ≤ 10−3 outside of this window.

To simulate the expected zero-collision yield, we consider a transmon-fluxonium
surface code lattice of distance d and take the fluxonia to be the ancilla qubits and
the transmons to be the data qubits. We sample a ωt for each transmon and EL, f and
E J , f for each fluxonium drawing from a Gaussian distribution characterized by a stan-
dard deviation determined by σR (as described above) and centered around the tar-
geted parameter value. We then evaluate the transition frequencies of each fluxonium
via numerical diagonalization and check if any collisions have occurred across the lat-
tice. We perform 6000 repetitions of this process for each lattice and drive amplitude.
In Fig. 5.11 we show the results for lattices of distance d = 3,5,7 and for drive ampli-
tudes εd /2π = 100,300,500MHz (with the corresponding bounds given in Tab. 5.2) as a
function of σR /R. We observe that for a resistance variation of σR /R = 2%, we expect all
lattices up to d = 7 to be producible with a yield ⪆ 10% when εd /2π = 100MHz. When
the drive amplitude is increased to εd /2π ≥ 300MHz, the d = 7 yield lattice drops to
⪆ 1%. In the case of a strong drive of εd /2π= 500MHz, the yield for the d = 5 and d = 7
lattices drops to be above 1% and 0.1% respectively. If we instead consider the resistance
variation ofσR /R ≈ 0.5% achieved following laser annealing, we see that any lattice up to
d = 7 can be fabricated with a yield > 99% for each drive amplitude considered here. In
Ref. [36], a transmon-transmon architecture utilizing a CR gate of duration 200−400ns
is explored. At the same resistance variation of σR /R ≈ 0.5%, there is no transmon-
transmon surface code lattice achieving a yield > 10%, while for a heavy-hexagon code
lattice, only code distances d = 3,5 lead to a yield > 10%. The high yield demonstrates
that the frequency crowding issue is greatly mitigated in a transmon-fluxonium architec-
ture by the large detuning between the qubit frequencies. In Sec. 5.7.6, we show the av-
erage number of collisions observed for a d = 3 lattice at εd /2π= 300MHz, demonstrat-
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Figure 5.11: Zero-collision yield as a function of the tunnel barrier resistance dispersion for a fixed-frequency
transmon-fluxonium surface code lattice of distance d = 3,5,7 (light, medium and dark red respectively) and
for drive amplitudes εd /2π = 100MHz (top), εd /2π = 300MHz (middle) and εd /2π = 500MHz (bottom). The
solid-gray line shows the state-of-the-art resistance variation measured, while the dashed-gray line shows the
achieved variation following laser annealing. The yield is extracted over 6000 resamples of the lattice parame-
ters.

ing that the loss in yield is dominated by frequency collisions involving next-nearest-
neighboring transmons. We expect a more optimal assignment of the transmon frequen-
cies to further increase the zero-collision yield. Furthermore, a factor of 2 improvement
in the resistance variation achieved from fabrication would enable a ⪆ 10% yield on
transmon-fluxonium lattices up to distance 7, mitigating the need for post-fabrication
adjustments.
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5.6. CONCLUSIONS
In this chapter we have studied two-qubit gates between transmons and fluxonia to be
used in a multi-qubit architecture. Despite the typical large fundamental frequency dif-
ference between transmons and fluxonia, two-qubit gates are still possible thanks to the
direct or indirect use of the higher levels of the fluxonium. We have analyzed two dif-
ferent microwave-activated gates: the CR gate and the CPHASE gate. The CR gate is
suited for medium frequency fluxonia and, compared to its transmon-transmon coun-
terpart, it can be implemented over a wider range of transmon frequencies, mitigating
the frequency crowding problem. For low frequency fluxonia, the CR effect decreases
and therefore we have studied a different scheme that implements a CPHASE gate using
the third level of the fluxonium. While this gate is more prone to leakage, one can get ar-
bitrary conditional phases with gate times around 100 to 200ns and have small residual
Z Z coupling. We have also provided some architectural considerations for a surface-
code-like architecture where each qubit is coupled to up to four neighbors. In case the
architecture is based on the CR gate, it can be fully microwave-activated, while some flux
control on the transmons is needed for the CPHASE case. We have shown that the fixed-
frequency architecture based on the CR gate between transmons and fluxonia greatly
mitigates the problem of frequency crowding. We show that a tunnel barrier resistance
variation achieved by laser-annealing enables a yield of near unity for surface codes up
to distance 7 and possibly higher: this is a yield which is considerably higher as com-
pared to fixed-frequency transmon-transmon architectures using the CR gate. It would
be interesting to also make a multi-qubit chip yield comparison between our transmon-
fluxonium architecture and a fluxonium-fluxonium architecture as in [54].

5.7. SUPPLEMENTARY INFORMATION

5.7.1. SCHRIEFFER-WOLFF AND CR GATE ANALYSIS
In this section we perform a perturbative analysis of the coupled transmon-fluxonium
system based on the Schrieffer-Wolff transformation, following closely Ref. [33, 68, 72].
We first execute the analysis without the drive and obtain perturbative formulas for the
frequency shifts of the levels as well as for the residual Z Z coupling. In our analysis, we
include the first 3 levels of the transmon and the first 4 levels of the fluxonium. Within
this subspace the Hamiltonian in Eq. (5.1) reads

H = H0 +V , (5.16)

with the Hamiltonians H0 and V which, in the bare basis, are

H0

ħ =ωt |1〉〈1|t + (2ωt +δt ) |2〉〈2|t +
3∑

k=1
ω f ,k |k〉〈k| f , (5.17)

and

V
RWA= JC qzpf

(
σt

01 +
p

2σt
12

)× (
q f ,10σ

f
10 +q f ,30σ

f
30 +q f ,21σ

f
21 +q f ,32σ

f
32

)+h.c. (5.18)

Here |k〉〈k|t = |k〉〈k|0 ⊗ I0 f and |k〉〈k| f = I0t ⊗ |k〉〈k|0, with I0t and I0 f the identity on

the transmon and fluxonium, respectively. Analogously, σt
kl = |k〉〈l |0 ⊗ I0 f and σ

f
kl =
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I0t ⊗ |k〉〈l |0, while the q f ,kl are given in Eq. (5.4) in the main text. Furthermore, the
ω f ,k /2π are the frequencies associated with the fluxonium levels, i.e., with respect to
the ground state of the fluxonium, while ωt /2π and δt /2π the fundamental frequency
and the anharmonicity of the transmon, respectively. So in this section, for notational
simplicity, ω f ,0 is set as 0 (while the explicit dependence is given in expressions in the
main text and Eq. (5.29)).

In Eq. (5.18) we performed a rotating wave approximation (RWA) neglecting terms

σt
klσ

f
k ′l ′ with k > k ′, l > l ′, and their Hermitian conjugate.

In order to proceed with the Schrieffer-Wolff analysis let us define the relevant pro-
jectors in the bare basis

P0 =
1∑

k,l=0
|kl〉〈kl |0 , (5.19a)

Q0 = I −P0, (5.19b)

and in the dressed basis

P =
1∑

k,l=0
|kl〉〈kl | , (5.20a)

Q = I −P. (5.20b)

The Schrieffer-Wolff transformation is defined as the unitary U that transforms the pro-
jectors in the bare basis to those in the dressed basis:

U †P0U = P, U †Q0U =Q. (5.21)

The unitary U exists and is unique if and only if ∥P −P0∥ < 1 and in this case it is given
by [68]

U =
√

(I −2P0)(I −2P ). (5.22)

In addition, U can be written as U = exp(S) with S being anti-Hermitian, S = −S†, and
block-off-diagonal with respect to P0, i.e., P0SP0 = (I −P0)S(I −P0) = 0. The goal of the
Schrieffer-Wolff transformation is to obtain an effective Hamiltonian Heff that has the
same spectrum as PHP , that is, the projection of H onto the subspace associated with
P , i.e., the computational subspace in our case. The effective Hamiltonian is given by

Heff = P0U HU †P0. (5.23)

Eq. (5.22) provides a numerical method to obtain the Schrieffer-Wolff unitary and thus
also the effective Hamiltonian [79]. However, the standard use of the Schrieffer-Wolff
is to find an analytical, perturbative expansion of the effective Hamiltonian. The norm
of the coupling operator ∥V ∥ quantifies the strength of the coupling, and thus plays the
role of the coupling parameter. Following Ref. [68], the second-order expansion of the
effective Hamiltonian is given by

H (2)
eff = P0(H0 +V )P0 + 1

2
P0[S1,Vod]P0, (5.24)
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where Vod = P0V Q0 +Q0V P0 is the off-diagonal part of V . In our case V is fully off-
diagonal, i.e. Vod =V , and the anti-Hermitian operator S1 reads

S1 =
JC qzpfq f ,30

ħ(ω f ,3 −ωt )
σt

01σ
f
30 +

JC qzpfq f ,21

ħ[(ω f ,2 −ω f ,1)−ωt ]
σt

01σ
f
21

+
p

2JC qzpfq f ,10

ħ[ω f ,1 − (ωt +δt )]
σt

12σ
f
10 −h.c..

(5.25)

This gives the effective Hamiltonian

H (2)
eff

ħ =ωt |1〉〈1|t +ω f ,1 |1〉〈1| f + JC qzpfq f ,10
[
σt

01σ
f
10 +h.c.

]
+ζ10 |10〉〈10|0 +ζ11 |11〉〈11|0 ,

(5.26)

where we define the coefficients

ħζ10 =−
J 2

C q2
zpfq

2
f ,30

ω f ,3 −ωt
, (5.27a)

ħζ11 = J 2
C q2

zpf

[ 2q2
f ,10

ω f ,1 − (ωt +δt )
−

q2
f ,21

(ω f ,2 −ω f ,1)−ωt

]
, (5.27b)

We note that the first contribution in ζ11 is due to the |11〉0 −|20〉0 transition. It is quite
small as q f ,10 is small (see Fig. 5.3), and the levels are fairly off-resonant (see Fig. 5.2).
The second term is dominant and due to the (more resonant) |11〉0 − |02〉0 transition
with larger q f ,21 in Fig. 5.2. The sign of the contributions is opposite as |20〉0 is higher
than |11〉0 while |02〉0 is lower. The coefficient ζ10 is due to the |10〉0 −|03〉0 transition.

From Eq. (5.26) we see that we still have the exchange coupling term proportional
to JC that couples levels |10〉0 and |01〉0. This could be further removed with a second
Schrieffer-Wolff transformation that would give two effective Hamiltonians: one for the
subspace {|00〉0 , |01〉0} and one for the subspace {|10〉0 , |11〉0}. However, we remark that
the second-order corrections due to this flip-flop term are very small in our typical setup
because |q f ,10|≪ 1 and, in addition, the transmon and fluxonium frequency always dif-
fer by at least 3.5GHz. Thus, we can simply neglect the effect of this term. Within this
approximation, the Z Z coupling in second-order Schrieffer-Wolff is given by

ħξ(SW)
Z Z = 〈11|H (2)

eff |11〉0 +〈00|H (2)
eff |00〉0 −〈01|H (2)

eff |01〉0 −〈10|H (2)
eff |10〉0

=ħ(ζ11 −ζ10).
(5.28)

Thus the Z Z coupling is enhanced in strength when the signs of ζ11 and ζ10 are opposite.
Neglecting the first term in Eq. (5.27b), this is achieved when the transmon frequency is
chosen as

ω f ,2 −ω f ,1 <ωt <ω f ,3 −ω f ,0. (5.29)

In a multi-qubit architecture where all qubits are capacitively coupled, the SW trans-
formation to the dressed, computational basis, will not only slightly entangle nearest-
neighbor capacitively-coupled qubits but also entangle non-nearest neighbors. That is,
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i S1 will be a 2-local many-qubit Hamiltonian with non-commuting 2-local terms each
representing the nearest-neighbor qubit couplings. This implies that the computational
qubits, on which we also apply single-qubit gates and which we measure, are repre-
sented by two-level subspaces which are partially multi-qubit entangled. As a conse-
quence, a drive on one qubit in the bare basis, will be transferred not only to its nearest-
neighbor qubits, but also, more weakly, to non-nearest neighbor qubits.

DRIVE AND CR COEFFICIENT

In the presence of a drive on the fluxonium the Hamiltonian gets an additional term
given in Eq. (5.5). We can use the previous analysis to get an expression for the CR effect
by simply applying the Schrieffer-Wolff transformation to the drive Hamiltonian [33, 72,
80] so we see the effect of the drive in the dressed, computational, basis.

In what follows we assume, for simplicity, that the envelope function is a constant,
i.e., g (t ) = 1, and set θd = π/2, but we will comment on what happens when we change
θd .

After obtaining the effective Hamiltonian in Eq. (5.26), we switch to a rotating (or
interacting) frame at the drive frequency for both qubits defined by the reference Hamil-
tonian Href/ħ=ωd (|1〉〈1|t +|1〉〈1| f ), for the purpose of analysis. In general, for a Hamil-

tonian H , moving to rotating frame set by Uref = e−i Hreft/ħ results in the dynamics being
given by a Hamiltonian H̃ given by

H̃(t ) =U †
refHUref + i

(
d

d t
U †

ref

)
Uref (5.30)

= e i Hreft/ħHe−i Hreft/ħ−Href. (5.31)

We then approximate and calculate

H̃drive,eff(t )

ħ = e i Hreft/ħP0eS1
Hdrive(t )

ħ e−S1 P0e−i Href/ħt

≈ e i Href/ħt P0
(Hdrive(t )+ [S1, Hdrive])

ħ P0e−i Href/ħt

RWA≈ µX f X f +µCRX t Z f +µX t X t .

(5.32)

Here the first term is simply due to Hdrive(t ) and [S1, Hdrive] gives the other two terms,
i.e. the (fluxonium-controlled) rotation on the transmon qubit. Here X f (X t ) is the Pauli
X operator acting on the fluxonium (transmon), and Z f the Pauli Z acting on the fluxo-
nium.

The coefficients within this approximation read

ħµX f =
1

2
q f ,10εd (5.33a)

and

ħµX t =
JC qzpf

4

[ q2
f ,30

ωt −ω f ,3
+

q2
f ,21

ωt − (ω f ,2 −ω f ,1)

]
εd , (5.33b)
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while the CR coefficient is

ħµCR = JC qzpf

4

[ q2
f ,30

ωt −ω f ,3
−

q2
f ,21

ωt − (ω f ,2 −ω f ,1)

]
εd . (5.34)

As for the strength of the CR coefficient µCR, we can observe the following. Simi-
lar as for the Z Z coupling, the largest coefficient µCR is obtained when the two terms
in Eq. (5.34) add constructively, i.e. we choose the transmon frequency according to
Eq. (5.29). Naturally, the more entangling the Schrieffer-Wolff unitary eS1 to the dressed
basis is, the more the drive on the bare transmon qubit becomes transferred to a cou-
pling term and this entangling power of eS1 with S1 in Eq. (5.25) is proportional to JC .
Additionally, our perturbative formula Eq. (5.34) predicts a linear increase of µCR with
the drive amplitude εd . As for the transmon-transmon case, a more refined analysis that
includes the drive in the perturbation would predict a saturation of the cross-resonance
coefficient with the drive amplitude [33]. By adapting this analysis to our case, we ver-
ified that for the parameters used in this chapter the linear approximation Eq. (5.34) is
quite accurate and reproduces the “exact" result with error below 5% for all the consid-
ered drive amplitudes.

Notice that if µCR is negative for θd = π/2, we can always change its sign by taking
θd = 3π/2 instead in Eq. (5.5). Thus, µCR can always be assumed to be positive. By choos-
ing a different phase θd of the drive, say θd = 0, one can go through the math behind
Eq. (5.32) and observe that Pauli X t → Yt and X f → Y f as one may expect.

In the rotating frame set by Href, Eq. (5.26) equals

H̃ (2)
eff

2ħ ≈ (ωt −ωd ) |1〉〈1|t + (ω f ,1 −ωd ) |1〉〈1| f +ζ10 |10〉〈10|+ζ11 |11〉〈11| , (5.35)

neglecting the flip-flop coupling in the computational subspace. Hence, we see that if
ωd is chosen asωt , one drives the fluxonium at the frequency of the transmon qubit, H̃ (2)

eff
contains no single-qubit Zt and the effect of the µCRX t Z f and µX t X t terms in Eq. (5.32)
is maximal. If instead the drive frequency and the transmon frequency are sufficiently
different, the (fluxonium-controlled) X t -rotation is very small as compared to Zt , and
hence would induce at most some renormalization of the transmon frequency and the
Z Z -coupling.

In order to completely understand the dynamics, we can re-evaluate this Hamilto-
nian in the standard computational rotating frame where the precession of each (dressed)
qubit at its eigenfrequency is undone. For the transmon qubit, Href already selects this
frame (as ωd = ωt ), but for the fluxonium qubit we can undo the first rotation frame
and use the first computational one for the fluxonium by picking a new H ′

ref/ħ= (ω1, f −
ωd ) |1〉〈1| f . This ensures that H̃ (2)

eff has no more single-qubit Zt or Z f terms, and note it
does not affect the relevant X t Z f term. At the same time it introduces a time-dependence

e±2i (ω1, f −ωd )t in the single-qubit term µX f X f in Eq. (5.32). Both due to the smallness of
q f ,10 as well as the difference in frequency between the transmon and the fluxonium
(Fig. 5.3), the effect of this off-resonant term is thus very small.

In Fig. 5.12 we compare the results obtained with the perturbative Schrieffer-Wolff
analysis and the exact numerical values for the Z Z coupling in Eq. (5.28). We see good
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Figure 5.12: Residual Z Z coupling as a function of the transmon frequency at zero drive strength. The solid
lines represent the exact numerical value, while the dashed line shows the result obtained from the second-
order Schrieffer-Wolff transformation in Eq. (5.28). We use the fluxonium parameters of parameter set CR in
Table 5.1.

agreements between the numerics and the results from the perturbative Schrieffer-Wolff
analysis. We notice that the Z Z coupling is relatively constant over a wide range of fre-
quencies. This is due to the fact that the transmon frequency is always in between the
transition frequencies of the |1〉− |2〉 and the |0〉− |3〉 transition of the fluxonium, as in
Eq. (5.29).

We conclude this section by commenting on the role of the coupling parameter JC on
the gate implementation. The unwanted Z Z coupling coefficient depends quadratically
on JC , while the cross-resonance coefficient scales linearly with JC . This suggests that
smaller JC should decrease the error associated with the coherent Z Z interaction. How-
ever, smaller JC also means longer gate times, which we would like to limit in order to
have small errors from decoherence processes. We remark that the transmon-transmon
implementation of the cross-resonance gate faces exactly the same trade-off.

5.7.2. CPHASE GATE ANALYSIS

In this section we provide a simplified analysis of the CPHASE gate, restricting ourselves
to the computational subspace plus the higher (dressed) levels |03〉 and |13〉 to under-
stand the idea behind the gate. We will work in the dressed computational basis |kl〉
which can be obtained from the bare basis |kl〉0 by a Schrieffer-Wolff transformation
which is discussed in Sec. 5.7.1. This transformation gives a Z Z coupling between the
qubits (and a very off-resonant flip-flop interaction which we neglect here) which is used
for the CPHASE gate.

We assume that the drive Hdrive(t ) in Eq. (5.5) has g (t ) = 1 and the phase is chosen as
θd =π/2. We solely focus on the drive enacting the transitions |00〉↔ |03〉 and |10〉↔ |13〉
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where |kl〉 are dressed energy levels, so we write

Hdrive(t )

ħ ≈ εd q f ,00−03

2
(|00〉〈03| (−e iωd t +e−iωd t )+h.c.)

+εd q f ,10−13

2
(|10〉〈13| (−e iωd t +e−iωd t )+h.c.), (5.36)

with q f ,kl−mn = |〈kl |q f |mn〉 |. The rest of the Hamiltonian of the transmon-fluxonium
system, restricted to this six-dimensional subspace equals

H |6
ħ =ω01P01 +ω11P11 +ω00P00 +ω03P03 +ω10P10 +ω13P13,

where Pi j = |i j 〉〈i j |. Due to the Z Z coupling, ∆ defined in Eq. (5.13) is unequal to zero
and the entangling rate of the gate is (roughly) determined by ∆ since driving an uncou-
pled fluxonium qubit could not generate a CPHASE entangling gate. Going to a rotating
(interaction) frame with reference Hamiltonian Href/ħ = ωd (P03 +P13) (and neglecting
fast-rotating terms depending on e±2ωd t ) gives a time-independent Hamiltonian

H̃

ħ =ω01P01 +ω11P11

+ω00P00 + (ω03 −ωd )P03 −
εd q f ,00−03

2
(|00〉〈03|+h.c.)

+ω10P10 + (ω13 −ωd )P13 −
εd q f ,10−13

2
(|10〉〈13|+h.c.).

(5.37)

Thus we see that one is driving Rabi oscillations in two effective qubit subsystems, namely
the two-level subsystem |00〉− |03〉 and the two-level subsystem |10〉− |13〉. For a qubit

Hamiltonian Hqubit/ħ=
(
α γ/2

γ/2 β

)
, one can use that

U (t ) = e−i Hqubitt/ħ = e−i Tr(Hqubit)t/(2ħ)e−iθn̂ ·⃗σ/2, (5.38)

with angle θ = t
√

(α−β)2 +γ2. A full Rabi oscillation, which induces no leakage, occurs
for θ = 2π, so that e−iπn̂ ·⃗σ =−I , tgate = 2πp

(α−β)2+γ2
and U (tgate) =−e−i (α+β)tgate/2I . Apply-

ing this to the simultaneous Rabi oscillations in the two subspaces, we see that one needs
to fulfill the condition in Eq. (5.15) to get a full Rabi oscillation in both qubit subspaces.
For this tgate = 2π/Ω, the phases picked up by the computational states are

φ00 =π− (ω00 +ω03 −ωd )tgate/2,

φ01 =−ω01tgate

φ10 =π− (ω10 +ω13 −ωd )tgate/2

φ11 =−ω11tgate.

(5.39)

A CPHASE gate can be brought to the form in Eq. (5.14) by single-qubit Z gates with

φ = φ11 −φ10 −φ01 +φ00 ≈ tgate

2 (ω13 −ω10 −ω03 +ω00) = tgate

2 ∆ = π∆
Ω where we have ne-

glected the effect of the Z Z coupling in the computational subspace. Hence φ≈ π∆/Ω.
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A given targeted phase φ thus leads to a targeted Ω (which sets the gate time tgate), and
the targetedΩ is used to solve for a drive-frequency ωd and a drive-power εd which sat-
isfies Eq. (5.15). The frequency ωd is chosen to be close to ω03 −ω00 and ω13 −ω10, say
midway between those transitions. The spectrum of the fluxonium and transmon qubit
should be such that this choice ofωd avoids it being close to other fluxonium transitions,
such as |01〉↔ |04〉.

We note that changing the phase θd of the drive has no effect on the gate as it simply
changes the Rabi driving to be around an axis in the X Y -plane instead of around the
X -axis. We also note that if the transmon qubit is flux-tunable, one can vary ∆ (letting it
range from, say, negative to positive), and hence get a varying phase at a fixed tgate.

5.7.3. FIDELITY AND LEAKAGE DEFINITIONS
We take the definitions of gate fidelity and leakage from Ref. [81]. We report them here
for completeness with some notational adaptation. Let Pc denote the projector onto the
computational subspace encoding n qubits and dc = 2n be its dimension. Let U be the
quantum operation associated with a target unitary U that we want to implement within
the computational subspace and that acts as the identity on the leakage subspace, i.e.
U (ρ) =UρU † and U † is its inverse. Let E be the quantum operation we actually apply
to the system. The average gate fidelity within the computational subspace is given by

Fgate =
∫

dψc 〈ψc |U †E (|ψc〉〈ψc |)U |ψc〉 , (5.40)

where dψc denotes the Haar measure over states in the computational subspace. The
process or entanglement fidelity in the computational subspace equals

Fent = 〈Ψc | I ⊗U † ◦E (|Ψc〉〈Ψc |) |Ψc〉 , (5.41)

where |Ψc〉 = 1p
dc

∑dc
i=1 |i , i 〉 is the maximally-entangled state in the computational sub-

space. The average leakage is defined as

L1 = 1− 1

dc
Tr

[
Pc U † ◦E (Pc )

]
. (5.42)

For any trace-preserving channel S on a dc -dimensional system we have the relation
F = dc Fent+1

dc+1 where F is the fidelity. Here, the effective channel on the computational

space is S (ρ) = Pc [U † ◦E (PcρPc )]Pc which is not trace-preserving but trace-decreasing
and TrS (I /dc ) = 1−L1. Incorporating this trace-decreasing property into the standard
derivation [82] of the relation between process fidelity and gate fidelity gives

Fgate = dc Fent +1−L1

dc +1
. (5.43)

Thus to compute the gate fidelity, one computes the entanglement or process fidelity
Fent and L1. In turn, Fent can be re-expressed, using |Ψc〉〈Ψc | = 1

dc

∑
µPµ⊗Pµ with (nor-

malized) Pauli matrices Pµ (TrPµPν = δµν) as

Fent = 1

d 2
c

d 2
c∑

µ=1
Tr(U PµU †E (Pµ)). (5.44)
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So one evaluates E on the Pauli eigenstates of Pµ and takes the expectation value with
the appropriate observable U PµU † etc. to compute Fent. L1 can be computed similarly,
resulting through Eq. (5.43) in the evaluation of Fgate.

Fluxonium

Parameter set T 0 7→1
1 (µs) T 2 7→1

1 (µs) T 4 7→1
1 (µs) T 3 7→2

1 (µs) T 4 7→3
1 (µs)

CR 510 9 60 8 4

CPHASE 3976 7 90 81 4

Table 5.3: Relaxation and excitation times for other relevant fluxonium transitions for the CR and CPHASE
parameter set in Table 5.1. The dielectric loss tangent and the temperature of the environment are taken as
described in the caption of Table 5.1.

5.7.4. ERROR MODEL
In the main part of the chapter we have shown results of simulations under coherent
and noisy evolutions. In this section we detail our noise model. As noise source we
considered only relaxation due to dielectric losses. We do not include the effect of 1/ f
flux noise in the fluxonium since it is always assumed to be biased at φext, f = π, which
is a flux sweet spot. Clearly in a multi-qubit architecture with tunable transmons that
could be biased away from the flux-insensitive point this source of error would play a
role, similarly to the CPHASE gate in transmon-transmon architectures [14]. We do not
include pure dephasing mechanisms, since the model of dephasing highly depends on
the experimental setup one considers. Thus, while this noise source should be included
when modeling an experiment, we left it out from our analysis.

Errors are assumed to be Markovian and modelled via a Lindblad master equation of
the following form [83]

dρ

d t
= 1

iħ [H(t ),ρ]+∑
k

D[Lk ](ρ), (5.45)

where ρ is the density matrix for the system, H(t ) is a general time-dependent Hamilto-
nian and D is the Lindblad dissipator

D[Lk ](ρ) = LkρL†
k −

1

2
L†

k Lkρ−
1

2
ρL†

k Lk , (5.46)

with Lk the so-called jump operators. In the following we specify the form of the jump
operators modeling dielectric loss.

For both transmon as well as fluxonium qubits, dielectric loss can be modelled by
adding a real part to the admittance (in the frequency domain) of the shunting capaci-
tance [52]. More precisely, this admittance is assumed to be of the following form

YC (ω) = ωC

Qdiel
+ iωC , (5.47)

with Qdiel the quality factor related to the dielectric loss tangent, namely Qdiel = 1/tanδdiel.
The dielectric loss tangent can in turn be frequency-dependent [52] and we consider this
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in the case of the fluxonium, so Qdiel =Qdiel(ω) (see caption of Table 5.1 in the main text).
The following discussion applies to both transmon and fluxonium. Let |k〉 and |l〉 be a
pair of (bare) energy levels with transition frequency ωkl = (Ek −El )/ħ with Ek and El

the energies associated with the levels and k > l . The decay rate from level |k〉 to |l〉 at
temperature T = 0 reads

γkl =
Φ2

0

ħ2π2 |〈k|φ |l〉|2ωkl Re
[
YC (ωkl )

]
, (5.48)

with Φ0 = h/2e the superconducting flux quantum and φ the reduced (dimension-
less) flux operator of the system. At finite temperature T > 0, this is replaced by a relax-
ation rate

γ↓kl = γkl [1+ n̄(ωkl )], (5.49)

and an excitation rate
γ↑kl = γkl n̄(ωkl ), (5.50)

with average photon number

n̄(ω) = 1

eβħω−1
, (5.51)

where β = 1/kbT . The relaxation times from level k to level l with k > l reported in
Tab. 5.1 are

T k 7→l
1 = 1

γ↓kl

, (5.52)

while the excitation times are defined as

T l 7→k
1 = 1

γ↑kl

. (5.53)

Thus, for any pair of energy levels we take two jump operators L↓
kl =

√
γ↓kl |l〉〈k| and

L↑
kl =

√
γ↑kl |k〉〈l |, which model relaxation and excitation between the two levels. While

for transmon qubits the excitation rate between the first two levels can be neglected at
the typical operating temperatures of few mK, this is not the case for the fluxonium.
For low frequency fluxonia, the excitation rate γ↑01 can be comparable to the relaxation
rate. Table 5.3 shows some relevant relaxation and excitation times for the fluxonia we
considered in this chapter.

5.7.5. DETAILS OF THE MICROWAVE PULSE AND ECHO
In the simulations in the main text we use a piece-wise Gaussian envelope which is de-
fined as

g (t ) =



1

1−e−t2
rise/2σ2

[
e−(t−trise)2/2σ2 −e−t 2

rise/2σ2
]

, 0 ≤ t < trise

1, trise ≤ t < tpulse − trise
1

1−e−t2
rise/2σ2

[
e−(t−(tpulse−trise))2/2σ2 −e−t 2

rise/2σ2
]

, tpulse − trise ≤ t ≤ tpulse,

0 otherwise.

(5.54)
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using σ= trise/
p

2π and tpulse the total pulse duration.
In Sec. 5.7.1 we have shown that, as in the transmon-transmon case, the CR effect

comes with an additional X drive on the transmon. This term commutes with the CR
term X t Z f and gives rise to an unwanted X -rotation on the transmon during the gate.
After each simulated gate, we undo this X rotation on the transmon by applying its
(noiseless) inverse quantum operation. While an X drive is also present on the flux-
onium, the large detuning between the drive frequency and the fluxonium frequency
makes the effect of this term negligible.

In addition, we also consider an echo pulse similar to Refs. [19, 34, 73] with the goal
to cancel the Z Z coupling and the X -rotation on the transmon qubit during the gate. Let
UGP (tpulse,εd ,ω) be the time evolution operator when a Gaussian pulse as in Eq. (5.54)
with total pulse time tpulse, amplitude εd and frequency ω is applied to the control flux-
onium. The echo pulse consists of two pulses with opposite sign of the drive amplitude
applied on the fluxonium at chosen frequencyω=ωt of the target transmon, interleaved

with single-qubit π rotations around the X -axis on the control, fluxonium, qubit R( f )
X (π).

This gives the time evolution operator

Uecho = R( f )
X (π)UGP (tpulse,−εd ,ωt )×R( f )

X (π)UGP (tpulse,εd ,ωt ). (5.55)

In order to implement a CR gate the pulse time of each Gaussian pulse is chosen such
that

|µCR|
ħ

∫ tpulse

0
d t g (t ) = π

8
, (5.56)

so applying essentially half the CR gate. Note that εd → −εd changes the sign µC R →
−µC R in Eq. (5.34) and conjugation by π-pulses causes Z f →−Z f , so that Uecho imple-
ments the CR gate. When we apply Uecho, both terms µX f X f and µX t X t in (5.32) cancel
due to εd →−εd .

In our simulation we take the single-qubit π-rotations R( f )
X (π) to be perfect. As dis-

cussed in Ref. [34], the echo pulse ideally cancels the effect of the Z Z coupling and the
additional X -rotations but can also introduce some other unwanted terms in the effec-
tive time evolution operator although the overall effect is positive. In all cases, we always
undo the accumulated single-qubit phases via virtual Z gates.

5.7.6. AVERAGE NUMBER OF COLLISIONS
In Sec. 5.5 we obtained the zero-collision device yield based on the frequency collisions
and bounds outlined in Tab. 5.2. In this section we explore the average number of col-
lisions for each type that have occurred for a d = 3 surface code lattice using a drive
amplitude of εd /2π = 300MHz, shown in Fig. 5.13. We observe that most collisions in-
volve a spectator transmon, specifically, these are collisions of type 8 or 9. Together,
these collisions account for most of the reduction in the zero-collision yield observed in
Fig. 5.11. Collision type 8 results in the excitation of a spectator transmon from |1〉 to
|2〉 during a CR gate. Given the target frequencies in Fig. 5.9, there exist pairs of trans-
mons (ωt /2π and ωs /2π at 4.3 GHz and 4.7 GHz, or 5.3 GHz and 5.7 GHz, respectively)
whose frequencies are ideally 100MHz away from this collision. Collision type 9 results
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Figure 5.13: Average number of collisions of each type as a function of the resistance variation σR /R for a
fixed-frequency transmon-fluxonium d = 3 surface code lattice and drive amplitudes εd /2π = 300MHz. The
number of collisions are collected over 6000 resamples of the lattice parameters. Collision type 5 is disabled
due to the proximity of the transition to that of type 4. Instead the window around collision type 4 accounts for
collision 5 as well.

in the fluxonium qubit leaking from |0〉 to |4〉, corresponding to a transition frequency of
ω f ,04/2π = 9.86GHz for the target fluxonium parameters in Tab. 5.1. In this case, there
are pairs of transmon frequencies (ωt /2π andωs /2π at 4.3 GHz and 5.7 GHz, or 4.7 GHz
and 5.3 GHz, respectively) the sum of which is 140MHz away from this transition. In ei-
ther case, the variation in the tunnel resistance of σR /R = 2% translates to a variation in
ωt and ωs of about 1% each, which translates to a standard deviation of approximately
50MHz, leading to the onset of these types of collisions. Collision type 6, which is the
next most dominant collision, does not involve any spectator transmons and leads to the
|0〉 to |5〉 transition on the fluxonium that happens at a frequency ω f ,05/2π= 13.23GHz.
For the ideal transmon frequencies, this collision is ideally about 110MHz away from the
transmon at frequency ωt = 4.3GHz and detuned by 300MHz or more from any other
transmon. The relatively large number of collisions of type 8 or 9 compared to any other
types indicates that the target frequency allocation of the transmons is the main limiting
factor behind the current yield.
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6
LOGICAL-QUBIT OPERATIONS IN AN

ERROR-DETECTING SURFACE CODE

Future fault-tolerant quantum computers will require storing and processing quantum
data in logical qubits. In this chapter, we realize a suite of logical operations on a distance-
two surface code qubit built from seven physical qubits and stabilized using repeated error
detection cycles. Logical operations include initialization into arbitrary states, measure-
ment in the cardinal bases of the Bloch sphere, and a universal set of single-qubit gates.
For each type of operation, we observe higher performance for fault-tolerant variants over
non-fault-tolerant variants, and quantify the difference. In particular, we demonstrate
process tomography of logical gates, using the notion of a logical Pauli transfer matrix.
This integration of high-fidelity logical operations with a scalable scheme for repeated
stabilization is a milestone on the road to quantum error correction with higher-distance
superconducting surface codes.

This chapter has been published in Nat. Phys. 18, 80–86 (2022) [1]. B.M.V. performed the numerical simula-
tions and contributed to the writing.
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6.1. INTRODUCTION
Two key capabilities will distinguish an error-corrected quantum computer from present-
day noisy intermediate-scale quantum (NISQ) processors [2]. First, it will initialize, trans-
form, and measure quantum information encoded in logical qubits rather than physi-
cal qubits. A logical qubit is a highly entangled two-dimensional subspace in the larger
Hilbert space of many more physical qubits. Second, it will use repetitive quantum par-
ity checks to discretize, signal, and (with aid of a decoder) correct errors occurring in the
constituent physical qubits without destroying the encoded information [3]. Provided
the incidence of physical errors is below a code-specific threshold and the quantum
circuits for logical operations and stabilization are fault-tolerant, the logical error rate
can be exponentially suppressed by increasing the distance (redundancy) of the quan-
tum error correction (QEC) code employed [4]. At present, the exponential suppression
for specific physical qubit errors (bit-flip or phase-flip) has been experimentaly demon-
strated [5–8] for repetition codes [9–11].

Leading experimental quantum platforms have taken key steps towards implement-
ing QEC codes protecting logical qubits from general physical qubit errors. In particular,
trapped-ion systems have demonstrated logical-level initialization, gates and measure-
ments for single logical qubits in the Calderbank-Shor-Steane [12] and Bacon-Shor [13]
codes. Most recently, entangling operations between two logical qubits have been demon-
strated in the surface code using lattice surgery [14]. However, except for smaller-scale
experiments using two ion species [15], trapped-ion experiments in QEC have so far
been limited to a single round of stabilization.

In parallel, taking advantage of highly-non-demolition measurement in circuit quan-
tum electrodynamics [16], superconducting circuits have taken key strides in repetitive
stabilization of two-qubit entanglement [17, 18] and logical qubits. Quantum memo-
ries based on 3D-cavity logical qubits in cat [19, 20] and Gottesman-Kitaev-Preskill [21]
codes have crossed the memory break-even point. Meanwhile, monolithic architectures
have focused on logical qubit stabilization in a surface code realized with a 2D lattice
of transmon qubits. Currently, the surface code [22] is the most attractive QEC code for
solid-state implementations owing to its practical nearest-neighbor-only connectivity
requirement and high error threshold. Recent experiments [6, 23] have demonstrated
repetitive stabilization by post-selection in a surface code which, owing to its small size,
is capable of quantum error detection but not correction. In particular, Ref. [23] has
demonstrated the preparation of logical cardinal states and logical measurement in two
cardinal bases. In this chapter, we go beyond previous work by demonstrating a com-
plete suite of logical-qubit operations for this small (distance-2) surface code while pre-
serving multi-round stabilization. Our logical operations include initialization anywhere
on the logical Bloch sphere (with significant improvement over previously reported fi-
delities), measurement in all cardinal bases, and a universal set of single-qubit logi-
cal gates. For each type of operation, we quantify the increased performance of fault-
tolerant variants over non-fault-tolerant ones. We use a logical Pauli transfer matrix to
describe a logical gate, analogous to the procedure commonly used to describe gates on
physical qubits [24]. Finally, we perform logical state stabilization by means of repeated
error detection where we compare the performance of two scalable, fault-tolerant stabi-
lizer measurement schemes compatible with our quantum hardware architecture [25].
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The distance-2 surface code (Fig. 6.1a) uses four data qubits (D1 through D4) to en-
code one logical qubit, whose two-dimensional codespace is the even-parity (i.e., eigen-
value +1) subspace of the stabilizer set

S = {ZD1ZD3, XD1XD2XD3XD4, ZD2ZD4}. (6.1)

This codespace has logical Pauli operators

ZL = ZD1ZD2, ZD3ZD4, ZD1ZD4, and ZD2ZD3, (6.2)

XL = XD1XD3 and XD2XD4, (6.3)

that anti-commute with each other and commute with S , and logical computational
basis

|0L〉 = 1p
2

(|0000〉+ |1111〉) , (6.4)

|1L〉 = 1p
2

(|0101〉+ |1010〉) . (6.5)

Measuring the stabilizers using three ancilla qubits (A1, A2 and A3 in Fig. 6.1a) allows
detection of all physical errors that change the outcome of one or more stabilizers to
m = −1. This list includes all errors on any one single qubit. However, no error syn-
drome is unique to a specific physical error. For instance, a phase flip in any one data
qubit triggers the same syndrome: mA2 =−1. Consequently, this code cannot be used to
correct such errors. We thus perform state stabilization by post-selecting runs in which
no error is detected by the stabilizer measurements in any cycle. In this error-detection
context, an operation is fault-tolerant if any single-fault produces a non-trivial syndrome
and can therefore be post-selected out [26] (see Sec. 6.5.4 and Sec. 6.5.6).

6.2. RESULTS

6.2.1. STABILIZER MEASUREMENTS
Achieving high performance in a code hinges on performing projective quantum par-
ity (stabilizer) measurements with high assignment fidelity, meaning one can accurately
discriminate parity, and low additional backaction such that the state of the qubits after
the measurement is properly projected onto the parity subspace. We implement each
of the stabilizers in S using a standard indirect-measurement scheme [27, 28] with a
dedicated ancilla. We benchmark the accuracy of each parity measurement by prepar-
ing the data-qubits in a computational state and measuring the probability of ancilla
outcome mA =−1. As a fidelity metric, we calculate the average probability to correctly
assign the parity ZD1ZD3, ZD1ZD2ZD3ZD4 and ZD1ZD3, finding 94.2%, 86.1% and 97.2%,
respectively (see Fig. 6.6).

6.2.2. LOGICAL STATE INITIALIZATION USING STABILIZER MEASUREMENTS
A practical means to quantify the backaction of stabilizer measurements is using them
to initialize logical states. As proposed in Ref. [23], we can prepare arbitrary logical states
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by first initializing the data-qubit register in the product state

|ψ〉 = (Cθ/2 |0〉+Sθ/2 |1〉) |0〉
(
Cθ/2 |0〉+Sθ/2e iφ |1〉

)
|0〉 (6.6)

using single-qubit rotations Rθ
y on D1 and Rθ

φ
on D3 acting on |0000〉 (Cα = cosα and

Sα = sinα). A follow-up round of stabilizer measurements ideally projects the four-qubit
state onto the logical state

|ψL〉 =
(
C 2
θ/2 |0L〉+S2

θ/2e iφ |1L〉
)

/
√

C 4
θ/2 +S4

θ/2 (6.7)

with probability

P = 1

2

(
C 4
θ/2 +S4

θ/2

)
. (6.8)

We use this procedure to target initialization of the logical cardinal states |0L〉, |1L〉, |+L〉 =( |0L〉 + |1L〉
)
/
p

2, and |−L〉 =
( |0L〉 − |1L〉

)
/
p

2. For the first two states, the procedure is
fault-tolerant according to the definition above. We characterize the produced states
using full four-qubit state tomography including readout calibration and maximum-
likelihood estimation (MLE) (Fig. 6.1c-f). The fidelity F4Q to the ideal four-qubit target
states is 90.0 ± 0.3%, 92.9 ± 0.2%, 77.3 ± 0.5%, and 77.1 ± 0.5%, respectively. For each
state, we can extract a logical fidelity FL by further projecting the obtained four-qubit
density matrix onto the codespace [23], finding 99.83 ± 0.08%, 99.97 ± 0.04%, 96.82 ±
0.55%, and 95.54±0.55%, respectively (see Sec. 6.4.2). This sharp increase from F4Q to FL

demonstrates that the vast majority of errors introduced by the parity check are weight-1
and detectable. A simple modification makes the initialization of |+L〉 (|−L〉) also fault-
tolerant: initialize the data-qubit register in a different product state, namely |++++〉
(|++−−〉), before performing the stabilizer measurements. With this modification, F4Q

increases to 85.4±0.3% (84.6±0.3%) and FL to 99.78±0.09% (99.64±0.17%), matching
the performance achieved when targetting |0L〉 and |1L〉.

6.2.3. LOGICAL MEASUREMENT OF ARBITRARY STATES
A key feature of a code is the ability to measure logical operators. In the surface code, we
can measure XL (ZL) fault-tolerantly, albeit destructively, by simultaneously measuring
all data qubits in the X (Z ) basis to obtain a string of data-qubit outcomes (each +1 or
−1). The value assigned to the logical operator is the computed product of data-qubit
outcomes as prescribed by Eq. 6.3 (6.2). Additionally, the outcome string is used to com-
pute a value for the stabilizer(s) XD1XD2XD3XD4 (ZD1ZD3 and ZD2ZD4), enabling a final
step of error detection (Fig. 6.2a). Measurement of YL = +i XLZL = YD1ZD2XD3 is not
fault-tolerant. However, we lower the logical assignment error by also measuring D4 in
the Z basis to compute a value for ZD2ZD4 and thereby detect bit-flip errors in D2 and
D4.

We demonstrate ZL, XL and YL measurements on logical states prepared on two or-
thogonal planes of the logical Bloch sphere. Setting θ = π/2 and sweeping φ, we ideally
prepare logical states on the equator (Fig. 6.2d)

|ψL〉 =
( |0L〉+e iφ |1L〉

)
/
p

2. (6.9)
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of data-qubit measurements used to evaluate logical operators ZL, XL and YL with additional error detection.
(d) Initialization of logical states using the procedure described in Eq. 6.6. (c, e) ZL, XL and YL logical mea-
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We measure the produced states in the ZL, XL and YL bases and obtain experimental
averages 〈ZL〉, 〈XL〉 and 〈YL〉. As expected, we observe sinusoidal oscillations in 〈XL〉 and
〈YL〉 and near-zero 〈ZL〉. The reduced range of the 〈YL〉 oscillation evidences the non-
fault-tolerant nature of YL measurement. A second manifestation is the higher fraction
P of post-selected data for YL (Fig. 6.2b). To quantify the logical assignment fidelity F R

L
with correction for initialization error, it is tempting to apply the formula

〈OL〉max −〈OL〉min

2
= (2F R

L −1)(2FL −1), O ∈ {X ,Y } (6.10)

inspired by the standard method to quantify readout fidelity of physical qubits from Rabi
oscillations with limited initialization fidelity (described in Sec. 6.5.7). This method sug-
gests F R

L = 95.8% for XL and 87.5% for YL. However, this method is not accurate for a log-
ical qubit because not all input states outside the codespace are rejected by the limited
set of stabilizer checks computable from the data-qubit outcome string and, moreover,
detectable initialization errors can become undetectable when compounded with data-
qubit readout errors. An accurate method to extract F R

L based on the measured 16×16
data-qubit assignment probability matrix (detailed in Sec. 6.5.7) gives F R

L = 98.7% for XL

and 91.4% for YL.
Setting φ = 0 and sweeping θ, we then prepare logical states on the XL-ZL plane

(Fig. 6.2e), ideally

|ψL〉 =
(
C 2
θ/2 |0L〉+S2

θ/2 |1L〉
)

/
√

C 4
θ/2 +S4

θ/2. (6.11)

Note that due to the changing overlap of the initial product state with the codespace, P
is now a function of θ (Eq. 6.8). The approximate extraction method based on the range
of 〈ZL〉 suggests F R

L = 99.4%, while the accurate method gives 99.8%. Note that while
both are fault-tolerant, the ZL measurement has higher fidelity than the XL measure-
ment as the former is only vulnerable to vertical double bit-flip errors while the latter is
vulnerable to both horizontal and diagonal double phase-flip errors.

6.2.4. LOGICAL GATES
Finally, we demonstrate a suite of gates enabling universal logical-qubit control (Fig. 6.3).
Full control of the logical qubit requires a gate set comprising Clifford and non-Clifford
logical gates. Some Clifford gates, like Rπ

ZL
and Rπ

XL
(where Rθ

OL
= e−iθOL/2), can be im-

plemented transversally and therefore fault-tolerantly (Fig. 6.3d). We perform arbitrary
rotations (generally non-fault-tolerant) about the ZL axis using the standard gate-by-
measurement circuit [29] shown in Fig. 6.3a. In our case, the ancilla is physical (A2),
while the qubit transformed is our logical qubit. The rotation angle θ is set by the ini-
tial ancilla state |Aθ〉 = (|0〉 + e iθ |1〉)/

p
2. Since we cannot do binary-controlled ZL ro-

tations, we simply post-select runs in which the measurement outcome is mA2 = +1.
However, we note that these gates can be performed deterministicaly using repeat-until-
success [30]. Choosing θ = π/4 implements the non-Clifford TL = Rπ/4

ZL
gate. A sim-

ilar circuit (Fig. 6.3b) can be used to perform arbitrary rotations around the XL axis.
We compile both circuits using our hardware-native gateset (Figs. 6.3c,d). To assess
logical-gate performance, we perform logical process tomography using the procedure
illustrated in Fig. 6.3e for TL. First, we initialize into each of the six logical cardinal
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arbitrary rotations around the Z (a) and X (b) axis of the Bloch sphere. (c) Process tomography experiment of
the TL gate. Input cardinal logical states are initialized using the method of Fig. 6.2. Output states are measured
following a second round of stabilizer measurements. (d) Logical Rπ/2

XL
, RπZL

and RπXL
gates compiled using our

hardware-native gateset. (e) Logical state tomography of input and output states of the TL gate. These logical
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states {|0L〉 , |1L〉 , |+L〉 , |−L〉 , |+iL〉 , |−iL〉}. We characterize each actual input state by four-
qubit state tomography and project to the codespace to obtain a logical density matrix.
Next, we similarly characterize each output state produced by the logical gate and a sec-
ond round of stabilizer measurements to detect errors occurred in the gate (full data
in Fig. 6.7). Using this over-complete set of input-output logical-state pairs, combined
with MLE (see Sec. 6.4.3), we extract a logical Pauli transfer matrix (LPTM). The resulting
LPTMs for the non-fault-tolerant TL and Rπ/2

XL
gates as well as the fault-tolerant Rπ

ZL
and

Rπ
XL

are shown in Fig. 6.3e. From the LPTMs, we extract average logical gate fidelities F G
L

(Eq. 6.19) 97.3%, 95.6%, 97.9%, and 98.1%, respectively.

6.2.5. PIPELINED VERSUS PARALLEL STABILIZER MEASUREMENTS
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Figure 6.4: Repetitive error detection using pipelined and parallel stabilizer measurement schemes. (a, b)
Gate sequences used to implement the pipelined (a) and parallel (b) stabilizer measurement schemes. Gate
duration is 20 ns for single-qubit gates, 60 ns for controlled-Z (CZ) gates and parking [17, 25], and 540 ns for
ancilla readout. The order of CZs in the XD1 XD2 XD3 XD4 stabilizer (blue shaded region) prevents the propaga-
tion of ancilla errors into logical qubit errors [26]. The total cycle duration for the pipelined (parallel) scheme
is 840 ns (1000 ns). (c) Estimated ZL expectation value, 〈ZL〉, measured for the |0L〉 state versus the duration
of the experiment using the pipelined (blue) and the parallel (orange) schemes. We also plot the excited-state
probability (right axis) set by the maximum and minimum physical qubit T1. (d) Post-selected fraction of data
versus the number of error detection cycles n for the pipelined (blue) and parallel (orange) scheme.

A scalable control scheme is fundamental to realize surface codes with large code
distance. To this end, we now compare the performance of two schemes suitable for
the quantum hardware architecture proposed in Ref. [25]. These schemes are scalable in
the sense that their cycle duration remains independent of code distance. The pipelined
scheme interleaves the coherent operations and ancilla readout steps associated with
stabilizer measurements of type X and Z by performing the coherent operations of X
(Z ) type stabilizers during the readout of Z (X ) type stabilizers (Fig. 6.4a). The paral-
lel scheme performs all ancilla readouts simultaneously (Fig. 6.4b). The pipelined cycle
scheme duration is shorter than the parallel scheme by 16% which can potentially in-
crease the performance of the code. This only occurs if the interleaved readout of an-
cillas does not result in increased measurement-induced dephasing between them. To
compare their performance, we initialize and stabilize |0L〉 for up to n = 15 cycles. We
perform refocusing pulses (Rπ

ϕi
) on the data qubits to correct for coherent errors during

the measurement of ancilla qubits. We also separately calibrate the equatorial rotation
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axis of this gate for each scheme to extract the best performance. At each n, we take data
back-to-back for the two schemes in order to minimize the effect of parameter drift, re-
peating each experiment up to 256×103 times. Figure 6.4c shows the ZL measurement
outcome averaged over the post-selected runs. We extract the error-detection rateγ from
the n-dependence of the fraction of post-selected data P (Fig. 6.4d) using the procedure
described in Sec. 6.4.4. We observe that the error rate is slightly lower for the pipelined
scheme (γpip ∼ 45%), most likely due to the shorter duration of the cycle. This superi-
ority is consistent across different input logical states (see Fig. 6.8) with an average ratio
γpip/γpar ∼ 97%.

6.3. DISCUSSION

We have demonstrated a suite of logical-level initialization, gate and measurement op-
erations in a distance-2 superconducting surface code undergoing repetitive stabilizer
measurements. For each type of logical operation, we have quantified the increased per-
formance of fault-tolerant variants over non-fault-tolerant variants. Table 6.1 summa-
rizes all the results. We can initialize the logical qubit to any point on the logical Bloch
sphere, with logical fidelity surpassing Ref. [23]. In addition to characterizing initialized
states using full four-qubit tomography, we also demonstrate logical measurements in
all logical cardinal bases. Finally, we demonstrate a universal single-qubit set of logi-
cal gates by performing logical process tomography, using the concept of a logical-level
Pauli transfer matrix. As expected, the fidelity of the fault-tolerant gates is higher than
the non-fault-tolerant ones. However, one would expect a sharper difference given the
typical error rates of the operations envolved. We believe this could be due to errors in-
troduced by the stabilizer measurements which might be dominant over the errors of
the logical gate itself.

With a view towards implementing higher-distance surface codes using our quantum-
hardware architecture [25], we have compared the performance of two scalable stabi-
lization schemes: the pipelined and parallel measurement schemes. In this comparison,
two main factors compete. On one hand, the shorter cycle time favors pipelining. On
the other, the pipelining introduces extra dephasing on ancilla qubits of one type dur-
ing readout of the other. The performance of both schemes is comparable, but slightly
higher for the pipelined scheme. From detailed density-matrix simulations discussed
in Sec. 6.5.8, we further understand that conventional qubit errors such as energy relax-
ation, dephasing and readout assignment error alone do not fully account for the net
error-detection rate observed in the experiment (see Fig. 6.14 and also not for the P re-
duction in Figs. 6.2b,f; see Fig. 6.15). We believe that the dominant error source is instead
leakage to higher transmon states incurred during CZ gates. Our data (Fig. 6.13) shows
that the error detection scheme successfully post-selects leakage errors in both the an-
cilla and data qubits. Learning to identify these non-qubit errors and to correct them
without post-selection is the subject of ongoing research [31–33] and an outstanding
challenge in the quest for quantum fault-tolerance with higher-distance superconduct-
ing surface codes [34], which to this date have yet to be implemented with repeated error
correction.
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Logical operation Characteristic Logical fidelity metric value (%)

In
it

.
|0L〉 FT

FL

99.83

|1L〉 FT 99.97

|+L〉 Non-FT/FT 96.82/99.78

|−L〉 Non-FT/FT 95.54/99.64

M
ea

s.

ZL FT

F R
L

99.8

XL FT 98.7

YL Non-FT 91.4

G
at

e

Rπ
XL

FT

F G
L

97.9

Rπ
ZL

FT 98.1

Rπ/2
XL

Non-FT 95.6

TL Non-FT 97.3

Table 6.1: Summary of logical initialization, measurement, and gate operations and their performance.
Fault-tolerant operations are labelled FT and non-fault tolerant ones Non-FT. Quoted F R

L values are those ex-
tracted with the accurate method described in Sec. 6.5.7.

6.4. METHODS

6.4.1. DEVICE
We use a superconducting circuit-QED processor (Fig. 6.1b) featuring the quantum hard-
ware architecture proposed in Ref. [25]. Seven flux-tunable transmons are arranged in
three frequency groups: a high-frequency group for D1 and D2; a middle-frequency
group for A1, A2 and A3; and a low-frequency group for D3 and D4. Similar to the de-
vice in Ref. [23], each transmon is transversely coupled to its nearest neighbors using a
coupling bus resonator dedicated to each pair. This simplest and minimal connectivity
minimizes multi-qubit crosstalk. Also, every transmon has a dedicated flux line for two-
qubit gating, and a dispersively coupled readout resonator with Purcell filter enabling
frequency-multiplexed readout [18, 35] using two feedlines. In contrast to Ref. [23], ev-
ery transmon has a dedicated microwave drive line for single-qubit gating, avoiding the
need to drive any via a feedline and thus reducing driving crosstalk.

All transmons are flux biased to their maximal frequency (i.e., flux sweetspot [36]),
where measured qubit relaxation (T1) and dephasing (T2) times lie in the range 27—102 µs
and 55—117 µs, respectively. Detailed information on the implementation and perfor-
mance of single- and two-qubit gates for this same device can be found in Ref. [37]. De-
vice characteristics are also summarized in Table S1.

The device was fabricated on a high-resistivity intrinsic Si<100> wafer that was first
descummed using UV-ozone cleaner and stripped of native oxides using buffered ox-
ide etch solution (BOE 7:1). The wafer was subjected to vapor of hexamethyldisilazane
(HMDS) at 150◦C and sputtered with 200 nm of niobium titanium nitride (NbTiN). Post
dicing into smaller dies, a layer of hydrogen silsesquioxane (HSQ) was spun and baked at
300◦C to serve as an inorganic sacrificial mask for wet etching of NbTiN. This layer was
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removed post base-patterning steps. The quantum plane was defined using electron-
beam (e-beam) lithography of a high-contrast, positive-tone resist spun on top of the
NbTiN-HSQ stack. Post development, the exposed region was first dry etched using
SF6/O2 mixture and then wet etched to remove any residual metal. Dolan-bridge-style
Al/AlOx/Al Josephson junctions were then fabricated using standard double-angle e-
beam evaporation. Airbridges and crossovers were added using a two-step process. The
first step involved patterning galvanic contact using e-beam resist (∼ 6 µm thick) sub-
jected to reflow. In the second step, the airbridges and crossovers were patterned with
e-beam evaporated Al (450 nm thick). Finally, the device underwent dicing, resist lift-off
and Al wirebonding to a printed circuit board.

6.4.2. STATE TOMOGRAPHY

To perform state tomography on the prepared logical states, we measure the 44−1 expec-
tation values of data-qubit Pauli observables, pi = 〈σi 〉,σi ∈ {I , X ,Y , Z }⊗4 (except I⊗4).
Interleaved with this measurement we also characterize the measurement POVM used
to correct for readout errors in pi . These are then used to construct the density matrix

ρ =
44−1∑
i=0

piσi

24 (6.12)

with p0 = 1, corresponding to σ0 = I⊗4. Due to statistical uncertainty in the measure-
ment, the constructed state, ρ, might lack the physicality characteristic of a density ma-
trix, that is, Tr(ρ) = 1 and ρ ≥ 0. Specifically, ρ might not satisfy the latter constraint,
while the former is automatically satisfied by p0 = 1. To enforce these constraints, we
use a maximum-likelihood method [24] to find the physical density matrix, ρph, that is
closest to the measured state, where closeness is defined in terms of best matching the

measurement results. We thus minimize the cost function
∑44−1

i=0 |pi −Tr(ρphσi )|2, sub-

ject to Tr(ρph) = 1 and ρph ≥ 0. We find the optimal ρopt
ph using the convex-optimization

package cvxpy via cvx-fit in Qiskit [38]. The fidelity to a target pure state, |ψ〉, is then
computed as

F = 〈ψ|ρopt
ph |ψ〉 . (6.13)

One can further project ρph onto the codespace to obtain a logical state ρL using

ρL = 1

2

∑
i

Tr(ρphσ
L
i )

Tr(ρphIL)
σL

i , σL
i ∈ {IL, XL,YL, ZL} (6.14)

where IL is the projector onto the codespace. Here, we can compute the logical fidelity
FL using Eq. 6.13.

6.4.3. PROCESS TOMOGRAPHY IN THE CODESPACE
A general single-qubit gate can be described [24] by a Pauli transfer matrix (PTM) R that
maps an input state described by pi = 〈σi 〉,σi ∈ {I , X ,Y , Z }, with p0 = 1, to an output
state p ′:

p ′
j =

∑
i

Ri j pi . (6.15)
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To construct the PTM R in the codespace, we use the overcomplete set of input states,
{|0L〉 , |1L〉 , |+L〉 , |−L〉 , |+iL〉 , |−iL〉}, and their corresponding output states and perform lin-
ear inversion. The input and output logical states are characterized using state tomog-
raphy of the data qubits to find the four-qubit state ρ, which is then projected to the
codespace using:

pL
i = Tr(ρσL

i )

Tr(ρIL)
, σL

i ∈ {IL, XL,YL, ZL}, (6.16)

We find that all the measured logical states already satisfy the constraints of a physical
density matrix. This is likely to happen as one-qubit states that are not very pure usu-
ally lie within the Bloch sphere even within the uncertainty in the measurement. The
constructed LPTM, however, might not satisfy the constraints of a physical quantum
channel, that is, trace preservation and complete positivity (TPCP). These are better ex-
pressed by switching from the PTM representation to the Choi representation. The Choi
state ρR can be computed as

ρR = 1

4

∑
i , j

Ri j σ
T
j ⊗σi , (6.17)

where the first tensor-product factor corresponds to an auxiliary subsystem. The TPCP
constraints are Tr(ρR

ph) = 1, ρR
ph ≥ 0 and Tr1(ρR

ph) = 1/2, where Tr1 is the partial trace over

the auxiliary subsystem. In other words, ρR
ph is a density matrix satisfying an extra con-

straint. We then find the optimal ρR,opt
ph using the same convex-optimization methods

as for state tomography and adding this extra constraint [24, 39]. We compute the corre-
sponding LPTM via

(Ropt
ph )i j = Tr(ρR,opt

ph σT
j ⊗σi ). (6.18)

and the average logical gate fidelity using

F G
L =

Tr(R†
idealR

opt
ph )+2

6
, (6.19)

where Rideal is the LPTM of the ideal target gate.

6.4.4. EXTRACTION OF ERROR-DETECTION RATE
The fraction of post-selected data P in the repetitive error detection experiment ( Fig. 6.4b)
decays exponentially with the number of cycles n. This is consistent with a constant
error-detection rate per cycle γ. We extract this rate by fitting the function

P (n) = A(1−γ)n . (6.20)

6.5. SUPPLEMENTAL MATERIAL

6.5.1. DEVICE CHARACTERISTICS
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Qubit D1 D2 D3 D4 A1 A2 A3

Qubit transition frequency at sweetspot, ωq /2π (GHz) 6.433 6.253 4.535 4.561 5.770 5.881 5.785

Transmon anharmonicity, α/2π (MHz) -280 — -320 — -290 -285 —

Readout frequency, ωr /2π (GHz) 7.493 7.384 6.913 6.645 7.226 7.058 7.101

Relaxation time, T1 (µs) 27 44 32 102 38 58 43

Ramsey dephasing time, T ∗
2 (µs) 44 55 51 103 55 60 52

Echo dephasing time, T2 (µs) 59 70 55 117 69 79 73

Best multiplexed readout fidelity, FRO, (%) 98.6 98.9 96.0 96.5 98.6 94.2 98.9

Single-qubit gate fidelity, FSQ, (%) 99.95 99.86 99.83 99.98 99.95 99.91 99.95

Table 6.2: Summary of frequency, coherence and readout parameters of the seven transmons. Coherence
times are obtained using standard time-domain measurements [40]. Note that temporal fluctuations of sev-
eralµs are typical for these values. The multiplexed readout fidelity, FRO, is the average assignment fidelity [41]
extracted from single-shot readout histograms after mitigating residual excitation using initialization by mea-
surement and post-selection [42, 43].
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Figure 6.5: Residual Z Z -coupling matrix. Measured residual Z Z coupling between all transmon pairs at the
bias point (their simultaneous flux sweetspot [36]). Each matrix element denotes the frequency shift that the
target qubit experiences due to the spectator qubit being in the excited state, |1〉. The procedure used for this
measurement is similar to the one described in Ref. [44].
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6.5.2. PARITY-CHECK PERFORMANCE
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Figure 6.6: Characterization of the assignment fidelity of Z -type parity checks. (a) ZD1 ZD3, (b)
∗ZD1 ZD2 ZD3 ZD4, and (c) ZD2 ZD4 parity checks implemented using A1, A2, and A3, respectively. Each parity
check is benchmarked by preparing the relevant data qubits in a computational state and then measuring the
probability of ancilla outcome mAi = −1. Measured (ideal) probabilities are shown as solid blue bars (black
wireframe). From the measured probabilities we extract average assignment fidelities 94.2%, 86.1% and 97.2%,
respectively. ∗This parity check implements the XD1 XD2 XD3 XD4 stabilizer measurement with the addition of
single-qubit gates on data qubits to perform a change of basis.



6

226 6. LOGICAL-QUBIT OPERATIONS IN AN ERROR-DETECTING SURFACE CODE

6.5.3. PROCESS TOMOGRAPHY
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Figure 6.7: Full set of logical states measured in the logical process tomography procedure. Measured in-
put and output logical states for each logical gate. Each state is measured using the procedure described
in Sec. 6.4.3.
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6.5.4. LOGICAL STATE STABILIZATION
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Figure 6.8: Stabilization of logical cardinal states by repetitive error detection using the pipelined and par-
allel schemes. From left to right, the stabilized logical states are |0L〉, |1L〉, |+L〉 and |−L〉. For each logical state,
the top panel shows the evolution of the relevant logical operator as a function of number of cycles, n, plotted
versus wall-clock time. Error bars are estimated based on the statistical uncertainty given by P (n). The shaded
area indicates the range of physical qubit T1 values (a and b) and T2 values (c and d) plotted on the right-axis.
Each bottom panel shows the corresponding post-selected fraction of data, P (n).
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Figure 6.9: Logical error probability versus number of error detection cycles. Logical error probability after
n cycles of error detection for states |0L〉, |1L〉 (a) and |+L〉, |−L〉 (b) measured using the pipelined scheme. For
comparison, the grey dashed curves in (a) and (b) correspond to the physical error probability of the best T1
and T2 respectively. The logical error rate per round of detection, extracted by fitting the data (colored dashed
lines), is 0.43%, 0.67%, 0.49% and 0.15% respectively.

6.5.5. LOGICAL ERROR RATE
Here, we study the error rate of the logical qubit and compare it to that of a physical
qubit. The probability for a logical error on an eigenstate of OL after n cycles is given by

P L
error =

1−|〈OL〉(n)|
2

. (6.21)

For eigenstates of ZL we compare the measured error rate to the error experienced due
to T1 on a physical qubit (Fig. 6.9a). In a physical qubit in the excited state, |1〉, this error
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is given by
Perror = 1−e−t/T1 . (6.22)

For eigenstates of XL (Fig. 6.9b) we now consider the error experienced due to T2. This
error for physical qubits whose state lies on the equator of the Bloch sphere is

Perror = 1−e−t/T2

2
. (6.23)

We find that the logical error rates for all states, corresponding to the slopes of the col-
ored dashed curves in Fig. 6.9, are lower than the corresponding best physical error rates.

6.5.6. FAULT TOLERANCE OF LOGICAL OPERATIONS

FAULT TOLERANCE OF AN OPERATION

We begin by elaborating the definition of a fault-tolerant logical operation. We consider
a single fault occurring during the circuit implementing the logical operation, where a
fault can refer to any single-qubit Pauli error following a single-qubit gate or an idling
step, or any two-qubit Pauli error following a two-qubit gate or a measurement error.
Furthermore, a single fault can also refer to any single-qubit error on the input state of
the logical operation. Thus we consider the performance of the logical operation either
when there is a single error at input or a fault in the logical operation. In the context
of error detection, the logical operation such as state initialization or gate execution, is
fault-tolerant if any such fault either produces a non-trivial syndrome (in case the circuit
involves the measurement of the stabilizers) and is thus post-selected out or leads to an
outgoing state that is either the desired logical state or any logical state together with a
detectable error. This implies that if the logical operation is followed up by a fictitious
and ideal measurement of the stabilizers, the detectable error would lead to a non-trivial
syndrome and be post-selected out, ensuring that the outgoing state could only be the
desired logical state. For a fault-tolerant logical measurement we require that the logical
measurement outcome is correct, i.e. if it is applied to a logical state with single error or
a fault happens during the logical measurement, we either post-select or get the correct
outcome.

LOGICAL STATE INITIALIZATION USING STABILIZER MEASUREMENTS

We perform fault-tolerant initialization of the logical cardinal states |0L〉, |1L〉, |+L〉 and
|−L〉. We focus on the initialization of |0L〉 and |1L〉 and then extend these arguments to
|+L〉 and |−L〉.

To prepare |0L〉 (|1L〉) the data-qubit register is prepared in the state |0000〉 (|1010〉)
and a single round of stabilizer measurements is performed. Consider any single-qubit
error occurring during the initialization of the data qubits. Any such error will be de-
tected by the following stabilizer measurement and post-selected out.

Then, consider a fault occurring during the stabilizer measurement, implemented
by the circuits shown in Fig. 6.4. Any single-qubit error on the data qubits following an
idling step either leads to non-trivial syndrome (if it occurs before the two-qubit gate) or
constitutes a detectable error (if it occurs after the two-qubit gate). A single-qubit error
following any of the single-qubit gates will similarly either produce non-trivial syndrome
or lead to an error that is either detectable or an element in S .
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A measurement error on ancilla qubits A1 or A3 will always produce a non-trivial
syndrome (since the input state is an eigenstate of the measured Z type stabilizers) and
will thus be post-selected out. However, a measurement error on A2 can still lead to
trivial syndrome (as the input state is not an eigenstate of the X -type stabilizer). This will
result in the preparation of the desired logical state together with a detectable phase-flip
error on any of the qubits.

Any two-qubit Pauli error after each CZ gate involved in the measurement of the Z -
type stabilizers will lead to the preparation of the desired logical state together with an
error that is either in S (for example in the case when a bit-flip error occurs on the
ancilla qubit and phase-flip error on the data-qubit following the first CZ gate of the
circuits) or one that is detectable. The same statement holds for any two-qubit error
after each of the CZ gates involved in the X type stabilizer check. Here the order of the
gates is crucial to ensure that any two-qubit error after the second CZ gate of the circuit
is detectable [26].

The fault-tolerant preparation of |+L〉 (|−L〉) involves initializing the data-qubit reg-
ister in the state |++++〉 (|++−−〉) instead. The arguments for the fault-tolerance of this
operation follow closely the ones presented for |0L〉 (|1L〉) with the only difference be-
ing that a single measurement error on ancilla qubits A1 or A3 can now lead to a trivial
outcome and an outgoing state that involves a detectable (bit-flip) error, while a mea-
surement error on A2 will instead always lead to a non-trivial syndrome.

When initializing arbitrary logical states by preparing the data qubit register in the
state given by Eq. 6, the procedure is fault-tolerant only when preparing |0L〉 (corre-
sponding to θ = 0 and φ = 0) or |1L〉 (corresponding to θ = π and φ = 0), which are
discussed above. When preparing |+L〉 (corresponding to θ =π/2 andφ= 0) or |−L〉 (cor-
responding to θ =π/2 andφ=π), the input states are |+0+0〉 and |+0−0〉 respectively. In
these cases a single fault (for example a phase-flip error on qubit D3 on the input state)
is not detectable by the stabilizer measurement and instead leads to the initialization of
(the opposite states) |−L〉 and |+L〉, respectively. The preparation of any other state on
the equator of the Bloch sphere is not fault-tolerant either, following the same reasoning:
an under- or overrotation of φ will directly translate to an error at the logical level.

FAULT-TOLERANT LOGICAL MEASUREMENTS

We now consider the fault-tolerance of the logical measurement, which is performed
following the procedure described in Sec. 6.2.3 (see Fig. 6.2). The only fault to consider
in these circuits is a measurement error on one of the data qubits. When measuring XL

or ZL, any such error will result in a non-trivial syndrome (given the assumption that the
input state is in the codespace) and the logical measurement outcome is post-selected
out. When the fault is instead a single-qubit error on the input state, bringing this state
outside of the codespace, the fault-free logical measurement will either detect this error
or this error will not have an affect on the logical measurement outcome.

For the non-fault-tolerant measurement of YL only the value for the ZD2ZD4 stabilizer
can be computed and used to detect errors on D2 and D4. Thus a single fault (for example
a measurement error on either D1 or D3) can lead to an incorrect logical measurement
outcome, making this operation non-fault-tolerant.
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TRANSVERSAL LOGICAL GATES AND NON-FAULT-TOLERANT GATE INJECTION

The logical gates Rπ
XL

and Rπ
ZL

(shown in Fig. 6.3d) are clearly fault-tolerant as any single-
qubit error following any of the single-qubit gates involved in the circuits is detectable.
At the same time the transversal execution of these gates ensures that no single qubit
error on the input state can spread to two or more qubits, ensuring that any such fault
is detectable. These fault-tolerant properties do not hold when we consider the TL and
Rπ/2

XL
logical gates implemented by the gate-by-measurement circuits shown in Fig. 6.3b

(and Fig. 6.3d). For example a bit-flip error on A2 following the first single-qubit gate of
the circuit will result in a logical error. More generally, any under- or over-rotation in
the rotation angle θ used in preparing the ancilla qubit in |Aθ〉 translates to a different
rotation at the logical level than desired.

6.5.7. QUANTIFYING THE LOGICAL ASSIGNMENT FIDELITY

We start this section reviewing how the readout fidelity F R of a physical qubit is stan-
dardly quantified from the contrast of a Rabi oscillation when the input states ρ± closest
to the eigenstates |Ψ±〉 of the measured observable O have limited fidelity F (assumed
equal for both). Evidently, we want F R to quantify the performance of readout only, in-
dependent of errors in the input state. To this end, consider the probability flow diagram
of Fig. 6.10. We define F R as the average probability of proper assignment for perfect in-
put states |Ψ±〉. Therefore, F R = 1− (ϵ++ϵ−)/2, where ϵ± is the probability of wrongly
assigning outcome ∓1 for input state |Ψ±〉. The positive and negative extremes of the
Rabi oscillation are

〈O〉max = F ϵ̄++ F̄ϵ−−Fϵ+− F̄ ϵ̄−. (6.24)

〈O〉min =−F ϵ̄−− F̄ϵ++Fϵ−+ F̄ ϵ̄+, (6.25)

where F̄ = 1−F and ϵ̄± = 1− ϵ±. Combining these expressions and simplifying terms, it
follows that the contrast of the Rabi oscillation (defined as half the peak-to-peak range),
is

〈O〉max −〈O〉min

2
= (2F −1)

(
2F R −1

)
. (6.26)

Turning over to the logical qubit, we similarly define the logical readout fidelity F R
L as

the average probability of proper assignment for perfectly prepared logical states |ΨL±〉
i.e., the logical states that are eigenstates of the measured observable OL with eigenvalue
±1. To this end, it is tempting to apply the above equation to the oscillations in Fig. 6.2,
simply substituting F → FL and F R → F R

L . However, this approach is not accurate. This is
because the probability flow diagram for the logical qubit, shown in Fig. 6.11, is more
complex. The quantities we seek to determine are those inside the dashed box, de-
scribing logical readout on perfect input logical states: pR± is the probability that the
experimental logical measurement on |Ψ±L〉 is rejected (R), which occurs whenever the
data-qubit outcome string produces a value of −1 on at least one of the stabilizers com-
putable from the string; ϵL± is the probability of wrongly assigning logical outcome ∓1
for |ΨL±〉, conditioned on no rejection. Using these definitions, F R

L = 1− (ϵL++ϵL−)/2.
Outside the dashed box, ρ± is the experimental input state closest to |ΨL±〉. This imper-
fect input state has probability pL± of being in the codespace and its projection onto the
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Figure 6.10: Probability flow diagram for physical qubit readout. Please see text for the definition of all vari-
ables shown. The characterization of physical qubit readout robust to initialization errors determines the
probabilities within the dashed box.

codespace, ρL±, has fidelity FL± to |ΨL±〉. Finally, ρ⊥± is the projection of ρ± outside the
codespace.

We now discuss the more accurate method used to quantify F R
L that does not rely

on Eq. 6.26. We first consider the transformation of |ΨL±〉 by the pre-rotations that we
perform when measuring in each cardinal logical basis, OL ∈ {ZL, XL,YL}. For ZL there
are no measurement pre-rotations, so the states are

|0L〉 = 1p
2

(|0000〉+ |1111〉) , (6.27)

|1L〉 = 1p
2

(|0101〉+ |1010〉) . (6.28)

For XL, the transformed states are

R−π/2
1y R−π/2

2y R−π/2
3y R−π/2

4y |+L〉 = 1

2
(|0000〉+ |0101〉+ |1010〉+ |1111〉) , (6.29)

R−π/2
1y R−π/2

2y R−π/2
3y R−π/2

4y |−L〉 = 1

2
(|0011〉+ |0110〉+ |1001〉+ |1100〉) . (6.30)

Finally, for YL, these are

Rπ/2
1x R−π/2

3y |+iL〉 = 1

2
(|0000〉− i |0111〉+ i |1010〉+ |1101〉) , (6.31)

Rπ/2
1x R−π/2

3y |−iL〉 = 1

2
(−|0010〉− i |0101〉− i |1000〉+ |1111〉) . (6.32)

The above expressions make clear, for each logical cardinal basis, which data-qubit
outcome strings are rejected and which ones are accepted with declared logical outcome
+1 or −1. For completeness, all cases are detailed in Table 6.3.
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is the primary reason why using Eq. 6.26 with the substitutions F → FL and F R → F R
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Data-qubit outcome Logical assignment Data-qubit outcome Logical assignment

(mD1,mD2,mD3,mD4) ZL XL YL (mD1,mD2,mD3,mD4) ZL XL YL

(+1,+1,+1,+1) +1 +1 +1 (−1,+1,+1,+1) R (S1) R (S2) −1

(+1,+1,+1,−1) R (S3) R (S2) R (S3) (−1,+1,+1,−1) R (S1,S3) −1 R (S3)

(+1,+1,−1,+1) R (S1) R (S2) −1 (−1,+1,−1,+1) −1 +1 +1

(+1,+1,−1,−1) R (S1,S3) −1 R (S3) (−1,+1,−1,−1) R (S3) R (S2) R (S3)

(+1,−1,+1,+1) R (S3) R (S2) R (S3) (−1,−1,+1,+1) R (S1,S3) −1 R (S3)

(+1,−1,+1,−1) −1 +1 −1 (−1,−1,+1,−1) R (S1) R (S2) +1

(+1,−1,−1,+1) R (S1,S3) −1 R (S3) (−1,−1,−1,+1) R (S3) R (S2) R (S3)

(+1,−1,−1,−1) R (S1) R (S2) +1 (−1,−1,−1,−1) +1 +1 −1

Table 6.3: Logical assignments from data-qubit measurement outcomes. When measuring in the specified
logical cardinal basis (as shown in Fig. 6.2a), the final string of data-qubit outcomes is rejected (R) whenever at
least one of the computable stabilizers has value -1 (indicated within parentheses). The computable stabilizers
are S1 and S3 when measuring ZL, S2 when measuring XL, and S3 when measuring YL. When the data-
qubit outcome string is accepted, the logical assignment (+1 or -1) is given by the appropriate product of data-
qubit outcomes: mD1 ×mD2 for ZL, mD1 ×mD3 for XL, and mD1 ×mD2 ×mD3 for YL.
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The key experimental input needed to proceed is the data-qubit assignment proba-
bility matrix A, shown in Fig. 6.12. Each element of this 16×16 matrix gives the experi-
mental probability of measuring a string of data outcomes (mD1,mD2,mD3,mD4) ,mDi ∈
{−1,1} (varying across rows) when performing simultaneous readout of the data qubits
having prepared them in physical computational state |nD1nD2nD3nD4〉, nDi ∈ {0,1} (vary-
ing across columns). These computational states are prepared by applying the needed
parallel combination of Rπ

i x pulses on data qubits starting with all qubits (including an-
cillas) initialized in |0〉.
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Figure 6.12: Experimental data-qubit assignment probability matrix. Each element of A gives the experi-
mental probability of measuring outcome string

(
mD1,mD2,mD3,mD4

)
(varying across rows) when perform-

ing simultaneous measurement of the data qubits prepared in |nD1nD2nD3nD4〉, nDi ∈ {0,1} (varying across
columns).

With A in hand, it is straightforward to compute the probabilities for all strings of
data-qubit outcomes for each choice of OL and |ΨL±〉. This is given by Ap⃗, where p⃗ is vec-
tor (size 16) whose elements are the probabilities (in the physical data-qubit computa-
tional basis) of the corresponding state in Eqs. 6.27-6.32. For example, p⃗ = (1/2,0, . . . ,0,1/2)T

for ZL and |0L〉, and p⃗ = (1/4,0,0,0,0,1/4,0,0,0,0,1/4,0,0,0,0,1/4)T for XL and |+L〉. From
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Logical measurement basis OL ZL XL YL

|ΨL+〉 |0L〉 |+L〉 |+iL〉
|ΨL−〉 |1L〉 |−L〉 |−iL〉
pR+ 0.184 0.164 0.078

pR− 0.170 0.118 0.073

ϵL+ 0.003 0.016 0.089

ϵL− 0.002 0.010 0.083

F R
L 0.998 0.987 0.914

Table 6.4: Quantified performance of logical measurement. Final results of the analysis performed to quantify
logical measurement in the logical cardinal bases without corruption from initialization errors. See Fig. 6.11
for reference. The extracted logical readout fidelities are those quoted in the main text.

Ap⃗ and the rejection and logical assignment rules in Table 6.3, it is straightforward to
compute all the probabilities within the dashed box of Fig. 6.11. The final results are
presented in Table 6.4. The key assumption behind this analysis is that errors induced
by single-qubit gates (both during preparation of the physical data-qubit computational
states needed for determination of A and the measurement pre-rotations when perform-
ing logical measurement in XL and YL) are small compared to the errors induced by data-
qubit readout. This assumption is safe given the performance metrics summarized in
Table 6.2.

6.5.8. NUMERICAL ANALYSIS

LEAKAGE IN EXPERIMENT

We observe a clear signature of leakage accumulation with the increasing number of
error-detection cycles in the single-shot readout histograms obtained at the end of each
experiment. In Fig. 6.13 we show examples of this accumulation for D2, D3 and A3 at
cycles n = 1, n = 8 and n = 15. For dispersive readout, a transmon in state |2〉 induces
a different frequency shift in the readout resonator compared to state |0〉 or |1〉. The in-
creased number of data points at n = 8 and n = 15 shown in Fig. 6.13, following a Gaus-
sian distribution with a mean and standard deviation different from those observed at
n = 1 is thus a clear manifestation of leakage to the higher-excited states (mostly to |2〉).
We believe that the dominant source of leakage in our processor are the CZ gates [37,
45]. However, the leakage rate L1 for each gate has not been experimentally character-
ized, e.g., by performing leakage-modified randomized benchmarking experiments [46,
47]. This is because our CZ tune-up procedure is performed in a parity-check block unit.
This maximizes the performance of the parity-check but makes the gate unfit for ran-
domized benchmarking protocols. We can estimate the population pL (n) in the leak-
age subspace L at cycle n from the single-shot readout histograms. We perform a fit of
a triple Gaussian model to the histograms from which we extract the voltage that allows
for the best discrimination of |2〉 from |1〉 and |0〉. The leaked population pL (n) is then
given by the fraction of shots declared as |2〉 over the total number of shots. Assuming
that leakage is only induced by the CZ gates (on the transmon being fluxed to perform
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Figure 6.13: Signature of transmon leakage in experimental data. Single-shot readout histograms obtained at
cycle n over all shots (red) and the post-selected shots based on detecting no error in any cycles up to n (blue)
for D2 (left), D3 (middle) and A3 (right) and at cycle n = 1 (top row), n = 8 (middle row) and n = 15 (bottom
row). The dashed black lines indicate the thresholds used to discriminate |0〉 from |1〉.

the gate) and that each CZ gate has the same leakage rate L1, we can use the Markovian
model presented in Ref. [31] to estimate the L1 value leading to the observed population
pL (n). This analysis gives a L1 estimate in the approximate range 1−4% for most trans-
mons. However, we do not consider these estimates to be accurate due to the low fidelity
with which |2〉 can be distinguished from |1〉 and instead treat L1 as a free parameter in
our simulations (see below).

The histograms of the post-selected shots in Fig. 6.13 demonstrate that post-selection
rejects runs where leakage on those transmons occurred. Thus, while leakage may con-
siderably impact the error-detection rate in the experiment [31], we do not expect it to
significantly affect the fidelity of the logical initialization, and gates.

DENSITY-MATRIX SIMULATIONS

We perform numerical density-matrix simulations using the quantumsim package [48]
to study the impact of the expected error sources on the performance of the code. We
focus on repetitive error detection using the pipelined scheme and with the logical qubit
initialized in |0L〉. In Fig. 6.14a, we show the post-selected fraction P (n) as a function
of the number n of error-detection cycles for a series of models. Model 0 is a no-error
model, which we take as the starting point of the comparison. Model 1 adds amplitude
and phase damping experienced by the transmon. Model 2 adds the increased dephas-
ing away from the sweetspot arising from flux noise. Model 3 adds residual qubit ex-
citation and readout (SPAM) errors. Finally, Model 4 adds crosstalk due to the residual
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Figure 6.14: Simulation of error-detection rate. Post-selected fraction P as a function of the number n of
error-detection cycles for |0L〉. The experimental P (blue dots) is compared to numerical simulation under
various models (solid curves). (a) Simulated P obtained by incremental addition of error sources starting from
the no-error (Model 0, gray); qubit relaxation and dephasing (Model 1, yellow); extra dephasing due to flux
noise away from the sweetspot (Model 2, amber); state preparation and measurement errors (Model 3, orange);
and crosstalk due to residual Z Z interactions (Model 4, red). (b) Simulated P for Model 5 adding CZ gate
leakage with 4 different values of L1, the leakage per CZ gate, assumed equal for all CZ gates.

Z Z coupling during the coherent operations of the stabilizer measurement circuits. The
details of each model and their input parameters drawn from experiment are detailed
below. We find that the dominant contributors to the error-detection rate are SPAM er-
rors and decoherence. However, we also observe that the noise sources included through
Model 4 clearly fail to quantitatively capture the decay of the post-selected fraction ob-
served in experiment.

We believe that an important factor behind the observed discrepancy is the presence
of leakage, as suggested by the single-shot readout histograms in Fig. 6.13. We consider
the leakage per CZ gate L1 as a free parameter and assume the same value for all CZ gates.
We simulate the post-selected fraction for a range of L1 values, shown in Fig. 6.14b. We
observe that L1 ≈ 5% produces a good match with experiment, suggesting that leakage
significantly impacts the error-detection rate observed. We perform a similar analysis
now considering the logical measurement of ZL experiment depicted in Fig. 6.2f which
also finds similar agreement with experimental data (Fig. 6.15). This value of L1 is signifi-
cantly higher than achieved in Ref. [37], which used the same device. However, note that
in this earlier experiment CZ gates were characterized while keeping all other qubits in
|0〉. Spectator transmons with residual Z Z coupling to either of the transmons involved
in a CZ gate can increase L1 when not in |0〉 (which is certainly the case in the present
experiment). Note that leakage may also be further induced by the measurement [49],
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Figure 6.15: Simulated post-selected fraction. Post-selected fraction P of Fig. 6.2f for the ZL measurement
with the same error models used in Fig. 6.14.

an effect that we do not consider in our simulation. However, the assumption that all CZ
gates have the same L1, the approximations used in our models, and other error sources
that we have not considered here may lead to an overestimation of the true L1.

Leakage is an important error source to consider in quantum error correction exper-
iments of larger distance codes, requiring either post-selection based on detection [31]
or the use of leakage reduction units [33]. We leave the detailed investigation of the exact
leakage rates in our experiment and the mechanisms leading to them to future work.

6.5.9. ERROR MODELS
Lastly, we detail the error models used in the numerical simulations in Fig. 6.14.

MODEL 1
We take into account transmons decoherence by including an amplitude-damping chan-
nel parameterized by the measured relaxation time T1 and a phase-damping channel
parameterized by the pure-dephasing time at the sweetspot

1

T max
φ

= 1

T2
− 1

2T1
,

where T2 is the measured echo dephasing time (see Table 6.2). The qutrit Kraus oper-
ators defining these channels are detailed in Ref. [31] and we similarly introduce these
channels during idling periods and symmetrically around each single-qubit or two-qubit
gate (each period lasting half the duration of the gate).
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MODEL 2

We consider the pure-dephasing rate 1/Tφ = 2π
p

ln2ADφ+1/T max
φ away from the sweetspot

due to the fast-frequency components of the 1/ f flux noise, where Dφ is the flux sensi-
tivity at a given qubit frequency and A is the scaling parameter for the flux-noise spec-
tral density. We use a

p
A ≈ 3 µΦ0, the average of the extracted

p
A values for D3, A1

and A2 obtained by fitting the measured decrease of T2 as a function of the applied flux
bias, following the model described above. This allows us to estimate the dephasing
time at the CZ interaction and parking frequencies, which then parameterize the ap-
plied amplitude-phase damping channel inserted during those operations [31]. We ne-
glect the slow-frequency components of the flux noise due to the use of sudden Net Zero
pulses, which echo out this noise to first order [37, 45].

MODEL 3
We further include state-preparation and measurement errors. We consider residual
qubit excitations, where instead of the transmon being initialized in |0〉 at the start of the
experiment, it is instead excited to |1〉 with probability pe. We extract pe for each trans-
mon from a double-Gaussian fit to the histogram of the single-shot readout voltages
with the transmon nominally initialized in |0〉 [43]. We model measurement errors via

the POVM operators Mi =∑2
j=0

√
P

(
i | j ) | j 〉〈 j | for i ∈ 0,1,2 being the measurement out-

come, while P
(
i | j ) is the probability of measuring the qubit in state |i 〉 when having pre-

pared state | j 〉. We extract the probability P (Q = |i 〉) = Tr
(
M †

i Miρ
)

of measuring qubit Q

in state |i 〉 from simulation, where ρ is the density matrix, while application of the POVM
transforms ρ→ MiρM †

i /P (Q = |i 〉). In our simulations we condition on the detection of
no error and thus we calculate P (Q = |0〉) and then apply M0 to the state ρ. We obtain
P

(
0| j ) for j ∈ 0,1 from the experimental assignment fidelity matrix [35] (where a her-

alded initialization protocol was used to prepare the qubits in |0〉 [42]) and we assume
P (0|2) = 0, consistent with the observed histograms in Fig. 6.13. At the end of each exper-

iment with n error-detection cycles we calculate the probability P f
n of obtaining trivial

syndromes from the final measurements of the data qubits (see Sec. 6.2.5). From this
and from the probability Pn (Ai = |0〉) of measuring ancilla Ai in |0〉 at cycle n, we calcu-

late the post-selected fraction of experiments defined as P (n) = P f
n

∏
n

∏3
i=1 Pn (Ai = |0〉).

MODEL 4
We consider the crosstalk due to residual Z Z interactions between transmons. The CZ
gates involved in a parity check are jointly calibrated to minimize phase errors for the
whole check as one block (see Fig. 6.6). Instead of modeling this crosstalk as an always-
on interaction and taking into account the details of the check calibration, we instead
capture the net effect of this noise by including it as single-qubit and two-qubit phase
errors in each CZ gate. This assumes that the crosstalk only occurs between transmons
that are directly coupled, which the measured frequency shifts observed in Fig. 6.5 val-
idate. We characterize the phases picked up during the CZ gates using k × 2k−1 Ram-
sey experiments for a check involving a total of k transmons (including the ancilla). In
each experiment, we perform a Ramsey experiment on one transmon labelled Qk . Qk

is initialized in a maximal superposition using a R−π/2
x pulse, while the remaining k −1
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transmons are prepared in each of the 2k−1 computational states |l〉. Following this ini-
tialization, the parity check is performed, followed by a rotation of R−π/2

φ
(while the other

transmons are rotated back to |0〉) and by a measurement of Qk . By varying the axis of
rotation φ, we extract the phase φk

Ram (l ) picked up by Qk with the remaining transmons
in state |l〉. We perform this procedure for each of the k transmons of the check, resulting
in a total of k ×2k−1 measured phases, which are arranged in a column vector φ⃗Ram. We
parameterize each CZ gate used in the parity check by a matrix diag

(
1,e iφ01 ,e iφ10 ,e iφ11

)
.

The column vector φ⃗CZ then contains all of the phases parameterizing each of the k −1
CZ gates involved in the parity checks, with k = 3 for the ZD1ZD3 and ZD2ZD4 checks
and k = 5 for the ZD1ZD2ZD3ZD4 check. We can express each of the measured phases in
the Ramsey experiment as a linear combination of the acquired phases as a result of the
CZ interactions between transmons, i.e., φ⃗Ram = Aφ⃗CZ, where the matrix A encodes the
linear dependence. Given the measured φ⃗Ram we perform an optimization to find the
closest φ⃗CZ as given by

min
φ⃗CZ

∑
i

(∑
j

Ai j φ⃗
CZ
j − φ⃗Ram

i

)2

,

subject to 0 ≤ φ⃗CZ
j < 2π.

The optimal φ⃗CZ then captures the net effect of the Z Z crosstalk during the parity checks,
which we include in the simulation. We do not model phase errors accrued during the
ancilla readout, since in our simulation we condition on each ancilla being measured in
|0〉.

MODEL 5
We model leakage due to CZ gates following the model and numerical implementation
presented in Ref. [31]. Here, we do not consider the phases picked up when non-leaked
transmons interact with leaked ones (the leakage-conditional phases [31]) and we set
them to their ideal values. We also neglect higher-order leakage effects, such as excita-
tion to higher-excited states or leakage mobility. Thus, we only consider the exchange
of population between |11〉 and |02〉 given by 4L1, except for the CZ between A1 and
D3, where the population is instead exchanged with |20〉 as we use the |11〉-|20〉 avoided
crossing for this gate [37].

There remain several relevant error sources beyond those included in our numerical
simulation. For example, we do not include dephasing of data or other ancilla qubits
induced by ancilla measurement, which we expect to be a relevant error source for com-
paring the performance of the pipelined and parallel schemes. Also, we only consider
the net effect of crosstalk due to residual Z Z interactions during coherent operations of
the parity-check circuits, which we include via errors in the single-qubit and two-qubit
phases in the CZ gates. Thus, we do not capture the crosstalk present whenever an an-
cilla is projected to state |1〉by the readout but declared to be in |0〉 instead. Furthermore,
as Z Z crosstalk does not commute with the amplitude damping included during the ex-
ecution of the circuit, we are not capturing the increased phase error rate that this leads
to.
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Pechal, M. Mondal, M. Oppliger, C. Eichler, and A. Wallraff, Rapid High-Fidelity
Single-Shot Dispersive Readout of Superconducting Qubits, Phys. Rev. App. 7,
054020 (2017).

[44] R. Sagastizabal, S. P. Premaratne, B. A. Klaver, M. A. Rol, V. Negîrneac, M. S. Mor-
eira, X. Zou, S. Johri, N. Muthusubramanian, M. Beekman, C. Zachariadis, V. P.
Ostroukh, N. Haider, A. Bruno, A. Y. Matsuura, and L. DiCarlo, Variational prepa-
ration of finite-temperature states on a quantum computer, npj Quantum Inf. 7,
130 (2021).

[45] M. A. Rol, F. Battistel, F. K. Malinowski, C. C. Bultink, B. M. Tarasinski, R. Vollmer,
N. Haider, N. Muthusubramanian, A. Bruno, B. M. Terhal, and L. DiCarlo, Fast,
high-fidelity conditional-phase gate exploiting leakage interference in weakly an-
harmonic superconducting qubits, Phys. Rev. Lett. 123, 120502 (2019).

[46] C. J. Wood and J. M. Gambetta, Quantification and characterization of leakage
errors, Phys. Rev. A 97, 032306 (2018).

[47] S. Asaad, C. Dickel, S. Poletto, A. Bruno, N. K. Langford, M. A. Rol, D. Deurloo, and
L. DiCarlo, Independent, extensible control of same-frequency superconducting
qubits by selective broadcasting, npj Quantum Inf. 2, 16029 (2016).

[48] T. E. O’Brien, B. M. Tarasinski, and L. DiCarlo, Density-matrix simulation of small
surface codes under current and projected experimental noise, npj Quantum In-
formation 3 (2017).

[49] D. Sank, Z. Chen, M. Khezri, J. Kelly, R. Barends, B. Campbell, Y. Chen, B. Chiaro,
A. Dunsworth, A. Fowler, E. Jeffrey, E. Lucero, A. Megrant, J. Mutus, M. Neeley, C.
Neill, P. J. J. O’Malley, C. Quintana, P. Roushan, A. Vainsencher, T. White, J. Wen-
ner, A. N. Korotkov, and J. M. Martinis, Measurement-induced state transitions
in a superconducting qubit: beyond the rotating wave approximation, Phys. Rev.
Lett. 117, 190503 (2016).

https://doi.org/10.5281/zenodo.2562111
https://doi.org/10.5281/zenodo.2562111
http://resolver.tudelft.nl/uuid:39258a70-a347-40bb-a2f9-9ca301a71652
http://resolver.tudelft.nl/uuid:39258a70-a347-40bb-a2f9-9ca301a71652
https://doi.org/10.1063/1.5089550
https://doi.org/10.1063/1.5089550
https://doi.org/10.1063/1.5015954
https://doi.org/10.1103/PhysRevLett.109.050507
https://doi.org/10.1103/PhysRevLett.109.050507
https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.7.054020
https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.7.054020
https://doi.org/10.1038/s41534-021-00468-1
https://doi.org/10.1038/s41534-021-00468-1
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.120502
https://doi.org/10.1103/PhysRevA.97.032306
https://www.nature.com/articles/npjqi201629
https://iopscience.iop.org/article/10.1088/1367-2630/aafb8e/pdf
https://iopscience.iop.org/article/10.1088/1367-2630/aafb8e/pdf
https://doi.org/10.1103/PhysRevLett.117.190503
https://doi.org/10.1103/PhysRevLett.117.190503




7
ERROR SUPPRESSION WITH A

TRANSMON-BASED REPETITION

CODE

Quantum error correction enables the suppression of the logical error rate by increasing
the code distance d, an essential ingredient for realizing fault-tolerant computation. In
this chapter, we implement a d = 7 repetition code experiment and perform up to 15
rounds of error correction. We show that by increasing the distance from d = 3 to d = 7,
we are able to decrease the logical error rate per round, albeit at a low rate. We perform
simulations to show that the logical performance is mainly limited by the qubit relaxation
times and measurement error rates. By analyzing the correlations between the measured
syndrome defects, we characterize the errors observed in the experiment and observe signa-
tures of crosstalk and leakage errors, which lead to an increase in the defect rate through-
out the experiment and a higher logical error rate.

This chapter has not been submitted to or published in a journal. B.M.V. performed the simulations, the
perfect-matching decoding, and contributed to the theoretical concepts presented. Furthermore, B.M.V. did
the writing with input from all co-authors.
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7.1. INTRODUCTION
Quantum error correction (QEC) is considered essential for the practical realization of
fault-tolerant quantum computation [1–9], which is required for any potentially use-
ful application of a quantum computer [10–12]. Two-dimensional stabilizer codes [13],
such as the surface codes [10, 14], have emerged as one of the promising frameworks
for implementing QEC on current quantum processors [15–29]. In this framework, the
quantum information is encoded into a logical qubit consisting of many physical qubits,
referred to as the data qubits. Ancilla qubits perform repeated measurements of the
parity of their respective neighboring data qubits. These projective measurements ide-
ally discretize the decoherence experienced by the physical qubits and provide informa-
tion about any errors that may have occurred without disturbing the encoded informa-
tion [9]. A classical decoder then attempts to infer the most likely physical or logical
corrections based on the observed measurement outcomes. Ultimately, the logical error
rate is a function of the physical error rates, the choice of stabilizer code, and the decod-
ing algorithm used to infer the corrections. Minimum-weight perfect matching (MWPM)
decoding has emerged as a promising decoding method for several codes, such as the
repetition code and the surface code, due to the overall good logical performance it can
achieve and its computational efficiency [30–34]. Provided that the physical error rate
is below a certain threshold, the logical error rate can be exponentially suppressed by
increasing the code distance [1, 5, 8, 10].

The repetition code is the simplest stabilizer code that holds fundamental impor-
tance and illustrates the principles behind error correction. Implementing a distance-d
repetition code requires only 2d−1 physical qubits arranged in a linear chain, consisting
of d data qubits and d −1 ancilla qubits interspersed between them, with each one mea-
suring the parity of the two neighboring data qubits. This makes large-distance repeti-
tion code experiments substantially easier to implement on near-term hardware, where
only a limited number of qubits are available. The high threshold of around 3% for a
circuit-level depolarizing noise model [35] that this code exhibits allows for good logi-
cal performance to be achieved even when the physical error rates are relatively high,
as is typically the case in near-term experiments. The simplicity of the repetition code
comes at the expense that it can correct either only bit-flip or phase-flip errors, mak-
ing it inadequate for realizing fault tolerance. Despite this, repetition code implemen-
tations can still be used to benchmark the ability of a quantum processor to perform
repeated parity-check measurements, especially as this will also explore the impact of
error sources not typically considered by textbook error corrections, such as leakage,
crosstalk or other non-Markovian noise [27, 36]. So far, many small-distance repetition
code experiments have been realized in various platforms to demonstrate the ability to
perform parity measurements and correct errors [22, 37–43]. On the other hand, repeti-
tion codes of distances as large as d = 30 have been realized in both trapped-ion [21] and
superconducting-qubit processors [15, 19, 27, 36, 44], demonstrating the ability to sup-
press errors by scaling the code distance. Such experiments are often a direct precursor
to more complex QEC experiments using stabilizer codes that can correct both bit-flip
and phase-flip errors, such as the surface code [17, 19].

In this chapter, we implement a distance-7 repetition code in a 17-qubit transmon
processor and perform repeated parity measurements. We use an MWPM decoder to
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process the collected measurements and correct the bit-flip errors that have occurred
during the experiment. By subsampling the measurement outcomes collected in the
experiment, we extract the performance of three distance-5 and five distance-3 codes
possible within our linear chain layout. Averaging the logical performance of each of the
distance-d codes, we show that the logical error rate is exponentially suppressed with
the code distance d , albeit with a low suppression factor due to the high physical error
rates. We infer these error rates directly from the correlations between the experimen-
tally observed syndrome measurement outcomes. We observe a significant discrepancy
between the estimated error probabilities and those predicted by a circuit-level Pauli-
noise model based on the qubit relaxation and dephasing times, the single-qubit and
two-qubit gate error rates measured by randomized benchmarking experiments, the as-
signment error probability, and the probability of qubit relaxation or excitation during
readout. In particular, we find significant probabilities of errors that lead to pairs of de-
fects in non-consecutive QEC rounds or measured by ancilla qubits that do not share
any neighbors. These errors are a signature of non-conventional errors, such as leak-
age, that are not considered in our error model and further degrade the code’s logical
performance.

7.2. RESULTS

7.2.1. MEMORY EXPERIMENTS USING THE REPETITION CODE

D1D2

D3

D4 D5 D6

D7

A1

A2

A3

A4

A5 A6

data qubit
ancilla qubit
unused

Figure 7.1: Schematic of a distance-7 repetition code embedded into a 17-transmon processor. The logical
information is encoded into seven data qubits (white circles, labeled Di ). There are six ancilla qubits (green
circles, labeled Ai ) used to measure the parity of the neighboring data qubits, indicated by the green lines.
Unused transmon qubits are shown as gray circles.

We implement a distance-7 repetition code embedded into a 17-transmon supercon-
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ducting processor, with the layout of the code shown in Fig. 7.1. The logical information
is encoded into a chain of 7 data qubits, which are labeled as Di for i = 1,2, . . . ,7. In ad-
dition, interspersed between the data qubits are six ancilla qubits, labeled as Ai for i =
1,2, . . . ,6, each measuring the Zi Zi+1 parity operator on the neighboring data qubits.
Additional information about the design of the processors is presented in Sec. 7.4.1. The
logical states of the code are typically defined by the total parity of all data qubits and
are typically defined as |0〉L = |0000000〉 and |1〉L = |1111111〉. Repeatedly measuring the
parity operators allows bit-flip (X ) errors on the data qubits to be detected and corrected.
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Figure 7.2: Schematic of the circuits used for the repetition-code memory experiments. At the start of each
run, all the qubits are first prepared in their ground state (a) using heralded initialization. Several X gates are
then applied to some of the data qubits in order to prepare either the |0〉L = |1010101〉 (b) or |1〉L = |0101010〉 (c)
logical states. Each QEC cycle begins by putting some of the ancilla qubits into a superposition using three H
(Hadamard) gates (d), after which a pair of CZ (controlled-phase) gates map the parity of the neighboring data
qubit to the state of the corresponding ancilla qubit (e and f). In step (g), a set of H gates rotates these ancilla
qubits back, while the remaining ancilla qubits that have been idling so far are instead put into a superposition.
The parity of the neighboring qubits is similarly mapped to the state of these ancilla qubits using two CZ gates
(h and i), after which these qubits are also rotated back by a set of H gates (j). The cycle ends with each ancilla
qubit being measured simultaneously (k). At the same time, an X gate is applied to each data qubit halfway
through the measurement period to dynamically decouple these qubits. This QEC round (d-k) is repeated
several times. At the end of each experiment, all data qubits are measured on the Z-basis simultaneously,
which also measures the value of the ZL logical operator. For the definition of the qubits, see this Fig. 7.1.

In practice, however, the energy relaxation that transmon qubits experience during
operations or periods of idling leads to a much higher probability of the qubit in the ex-
cited state |1〉 decaying to |0〉 as opposed to a qubit in the ground state |0〉 getting excited
to |1〉. This results in the typically-chosen |1〉L to have a much higher logical error rate
than |0〉L and for |1〉L to naturally tend to decay to |0〉L after many rounds of QEC. To
symmetrize the logical error rates of the two logical states, we instead define the logical
states as |0〉L = |1010101〉 and |1〉L = |0101010〉, such that each state has approximately
the same number of excited qubits. Furthermore, at the end of each cycle, we apply an
X gate on each data qubit to prevent data qubits from simply decaying to |0〉 after many
QEC rounds. In each memory experiment, we first prepare one of the two logical states,
after which we perform several rounds of parity check measurements. At the end of
each experiment, we measure all data qubits, which allows us to extract a final set of par-
ity outcomes that can be used in decoding and determining the total parity of the final
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state, which we refer to as the logical observable. The full circuits that realize these exper-
iments are shown in Fig. 7.2, while the device itself is described in Sec. 7.4.1. The logical
states we have chosen will lead to odd parity measurement outcomes in the absence of
errors, leading to the state of the ancilla qubits being flipped every QEC round. In com-
parison, even-parity states lead to the ancilla qubits typically remaining in their initially
prepared ground states over the first several rounds. As a result, the ancilla qubits have a
higher error rate due to the asymmetric nature of energy relaxation. To compensate for
this, we include a virtual π-phase correction with the final Hadamard gates applied to
each ancilla qubit, flipping the measured parity outcomes and reducing the error rates.

7.2.2. UNDERSTANDING THE DEVICE PERFORMANCE FROM THE SYNDROME
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Figure 7.3: Syndrome defect analysis. a The probability of observing a non-trivial defect as a function of the
number of QEC rounds for the d = 7 code, evaluated on simulated data (gray) and experimental data (red).
The last QEC round r = 16 corresponds to syndrome defects calculated using the final data qubit measure-
ment outcomes. The defect probability for each ancilla qubit extracted from the experimental data is also
shown (light red). b Schematic of the decoding graph shown for r = 2 rounds. Each node (light gray point) in
this graph corresponds to a syndrome defect being measured at some round r by ancilla qubit a = A1, . . . , A6.
Error events that lead to a pair of non-trivial defects are represented as edges (black lines) between the cor-
responding nodes. An example of a time-like (yellow line), a space-like (pink line), and a diagonal (blue line)
error are highlighted. Edges connecting the shown nodes to nodes correspond to defects measured in the pre-
vious or the following QEC rounds are shown as dashed light gray lines. c The error probabilities pm associated
with each possible edge in the graph over the first r = 7 QEC rounds of the experiment, inferred from either
simulated data (gray, upper triangle) or experimental data (red, lower triangle). The axes correspond to the
measured defects da,r , with the minor ticks marking the rounds r while major ticks mark the ancilla qubits a.
The probabilities associated with the error type examples shown in b are also highlighted in the upper triangle
of this matrix.

The information about which errors have occurred is contained in the measurement
outcomes ma,r of each ancilla qubit a at QEC round r = 1,2, . . . , Nr . However, these are
typically first pre-processed to the syndrome defects, which contain the same amount
of information but are more directly useful for decoding. In particular, non-trivial syn-
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drome defects (sometimes referred to simply as defects) correspond to the points where
the parity measurements change between consecutive QEC rounds, indicating the oc-
currence of an error.

One of the typical assumptions of textbook QEC is that the ancilla qubits are reset
following each measurement. In this case, the measurement outcomes ma,r directly
correspond to measurements of the stabilizers, also referred to as the syndromes sa,r .
However, in our experiment and many others, the ancilla qubits are not reset after the
readout due to the difficulty of implementing a fast and high-fidelity qubit reset proto-
col, like the ones proposed in [45–47]. In this case, the syndromes are instead given by
sa,r = ma,r−1 ⊕ma,r . The data qubit measurement outcomes {md } obtained at the end
of entire experiment can be used to extract a final set of syndromes sa,Nr +1 = md ⊕md+1,
where d and d + 1 correspond to the two data qubits for which ancilla a is measuring
the parity. The syndrome defects are then given by the differences in the observed syn-
dromes in consecutive rounds, i.e., da,r = sa,r−1 ⊕ sa,r . The values of sa,0 correspond to
the expected parity measurement outcomes given the prepared data qubit state, which
is typically chosen such that sa,0 = 0. Similarly, ma,0 = 0 is taken when calculating sa,1

when the ancilla qubits are not reset.

The physical error rates directly determine the probability of observing a non-trivial
defect at each QEC round. Some other standard assumptions behind QEC experiments
are that physical errors can be decomposed into a set of Pauli errors and that the corre-
sponding error rates do not change over time. Under these assumptions, the non-trivial
defect probability is expected to be some constant value at each QEC round, except for
the first two rounds and the final one. The defects in the last round are calculated using
the data-qubit measurement outcomes, while the defects in the first two rounds depend
on the initial data-qubit state.

Note that when the ancilla qubits are reset, the average defect probability is instead
expected to reach a constant value after only the first QEC round. In Fig. 7.3a, we show
the average defect probabilities in our experiment over r = 1,2, . . . ,16 rounds of QEC.
Aside from the expected rate changes in the first few and final rounds, we observe a rela-
tive increase in the probabilities of approximately 30% over the 13 QEC rounds, towards
a steady-state value of approximately 0.4. This increase can be due to qubit leakage
outside the computational subspace and the increase in the average leakage popula-
tion over the course of the experiment. A similar increase in the defect probability has
also been observed in other QEC experiments [15, 17, 19, 27, 48]. A leaked qubit can re-
main outside the computational subspace for several QEC rounds before decaying back.
During this time, the leaked qubit can spread correlated errors, increasing the defect
probability on its neighboring ancilla qubits [47–50]. Notably, a single leakage event can
give rise to many correlated non-trivial defects and, therefore violate the assumption
that errors lead to at most two defects that MWPM decoders rely on, which, in turn, can
lead to a severe impact on the logical performance of the code [47, 49].

To further investigate the presence of such correlated errors in our data, we next
consider the correlations between the defects observed in the measured defects, fol-
lowing closely the analysis done in [27]. We consider a circuit-level noise model, where
each operation, preparation, or idling period is followed by any of the possible Pauli er-
rors (sometimes referred to as a fault on the involved qubit(s) with some probability.
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Note that this also includes two-qubit Pauli errors following two-qubit gates. Given this
model, it can be shown that for the repetition code, any single error leads to either one
(if the error involves a data qubit on the boundary of the code) or two non-trivial defects
da,r = 1. These errors can be classified into several groups depending on which defects
they lead to. Errors involving only an ancilla qubit will lead to a pair of non-trivial de-
fects measured by the ancilla qubit in two consecutive QEC rounds, i.e., a da,r = 1 to-
gether with a da,r+1 = 1, which we refer to as a time-like error. If ancilla qubits were reset
after each measurement, these time-like errors would also include errors after the re-
set operations and classical readout errors, where the declared measurement outcome
does not correspond to the measured state. However, when the ancilla qubits are not
reset, the classical readout errors instead lead to defects that are two QEC rounds apart,
namely da,r = 1 and da,r+2 = 1. On the other hand, errors involving only a data qubit
typically lead to a pair of non-trivial defects measured by the two neighboring ancilla
qubit a and a′ in the same QEC round, i.e., da,r = 1 together with a da′,r = 1, which we
refer to as space-like errors. Exceptions to this rule are certain errors involving a data
qubit on the code’s boundary that lead only to a single non-trivial defect measured by
the only neighboring ancilla qubit of that data qubit, which we refer to as a boundary
error. Other exceptions are the errors involving a data qubit in the bulk of the code that
happen between the two controlled-phase (CZ) gates used to map the parity of the data
qubit when measuring the checks involving that qubit. These errors instead lead to non-
trivial defects measured by the neighboring ancilla qubits in consecutive rounds, da,r = 1
and a da′,r+1 = 1, which we refer to as diagonal errors. Errors following each CZ gate in
our stabilizer measurement circuit can lead to a space-like, time-like, boundary-like, or
diagonal error.

These single errors can be represented as edges in an undirected graph, where the
nodes correspond to the possible syndrome defects measured in each experiment. We
refer to this graph as the decoding graph, and it is illustrated for our repetition code ex-
periment in Fig. 7.3b. For a precise definition of this graph, see Sec. 7.4.3. Note that
several faults in the circuit may lead to the same pair of non-trivial defects and corre-
spond to the same edge in this graph. Each edge hm can then be associated with a total
probability pm for the errors that lead to the defects at the endpoints of this edge, where
m is the index of this edge. The fact that the possible errors lead to, at most, two defects
is important in the context of decoding. Namely, it enables mapping the problem of in-
ferring the most likely error consistent with the observed syndromes to the problem of
minimum-weight perfect matching on a graph [30–32].

The total physical error probabilities can be directly inferred from the average cor-
relations between the observed defects in each repetition of the experiment, as derived
in [27, 28, 51]. Given the error model discussed above, the probability pm associated
with an edge hm = {

vi , v j
}
, where the nodes correspond to defects di and d j , is given by

pm = 1

2
−

√√√√1

4
−

〈
di d j

〉−〈di 〉
〈

d j
〉

1−2〈di 〉−2
〈

d j
〉+4

〈
di d j

〉 , (7.1)

assuming that pm < 0.5 and where each syndrome defect is labeled by a single index i =
(a,r ) and j = (

a′,r ′). For a full derivation of this equation, see Sec. 7.4.4. This equation
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can be used to estimate the error probability associated with any edge except for those
corresponding to boundary errors. Instead, the probability of these is estimated using

pm = 〈di 〉−q i
m

1−2q i
m

, (7.2)

where q i
m is the total probability of observing an odd number of errors that together lead

to di = 1, excluding the boundary error associated with hm itself. Calculating q i
m requires

first obtaining the probabilities of all non-boundary errors that lead to a defect on di as
well. For a full derivation of these equations, please see Sec. 7.4.5.

In Fig. 7.3c, we show the matrix of estimated error probabilities between any two
syndrome defects from both the experimental data (bottom triangle) and from simu-
lated data (upper triangle) using the circuit-level noise models used, see Sec. 7.4.2. Note
that the decoding graph is undirected, meaning that all the edge probabilities pm ex-
tracted from each dataset are fully contained in the corresponding triangle. In the sim-
ulation, given our error model, we observe the exact types of errors that we expected
in the first place. These probabilities associated with these errors appear along diago-
nal lines in the matrix, as illustrated in Fig. 7.3c. Note that this matrix does not include
any of the boundary error probabilities, which we discuss in more detail in the following
section. We can see that the most prominent errors, according to the constructed error
model, are the time-like errors corresponding to ancilla-qubit and measurement errors,
see Tab. 7.1 and Tab. 7.2 for the exact parameters used in our simulations. The proba-
bilities estimated from the experimental data reach much higher values by the end of
the experiment, consistent with the observed increase in the average defect probabili-
ties over the QEC rounds. While time-like errors remain the most prominent type, we
observe that many errors that are not expected from the circuit-level noise model are
being estimated to occur with a relatively high probability. Some of these include errors
leading to non-trivial defects on non-adjacent ancilla qubits, suggesting the presence
of crosstalk errors. On the other hand, we also observe errors leading to non-trivial de-
fects measured by the same ancilla qubit or by adjacent qubits that occur more than two
QEC rounds apart, which can be attributed to leakage. The defects that a leaked data
qubit can propagate depend on the phase error propagated from the interaction with
the ancilla qubits in the computational subspace, referred to as the leakage-conditional
phase errors in [49]. Let us first consider the case when the controlled-phase gate acts
as the identity whenever one of the interacting qubits is leaked, corresponding to no
leakage-conditional errors being propagated. We also assume that single-qubit gates act
trivially on any leaked qubits, which is typically the case in experiments. In this case,
the X gates applied to the data qubits at the end of each round will flip the parity mea-
sured between the leaked and the computational data qubits, leading to a defect at every
round until the leaked qubit seeps back into the computational subspace. If the inter-
action with the leaked data qubit leads to non-trivial leakage-conditional errors, then
a defect is propagated with a probability depending on the phase error. In the case of
a leaked ancilla qubit, these leakage-conditional phases do not lead to defects as they
remain undetected by the repetition code. Instead, the propagated defects depend on
what outcomes the measurements of leaked ancilla qubits lead to. Leaked qubits typi-
cally remain outside the computational subspace for several rounds, during which time
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they can generate multiple defects. This, combined with the increase of the average
leakage population of the qubits towards a steady-state population over the first several
rounds of the experiment, can also explain the observed increase of the average defect
probability observed in Fig. 7.3a.

Errors leading to three or more non-trivial defects can be represented as hyperedges
in a decoding hypergraph, each again associated with a corresponding probability. We
discuss this generalization of the decoding graph in Sec. 7.4.3 and Sec. 7.4.6. Such er-
rors can also lead to the inaccurate estimation of the expected edge probabilities and, in
some cases, even non-physical (negative) probability estimates. In particular, we have
found that this to be the case for the estimation of the boundary edges, which rely on
the accurate inference of the probabilities associated with all other edges, see Eq. (7.2)
and Sec. 7.4.5. Specifically, we find that many boundary edge probabilities are estimated
to be negative when using the experimental dataset, see Sec. 7.4.5 for an explanation and
additional details.

Assuming that one can identify a set of expected hyperedges, their probabilities can
also be inferred from the measured syndrome defects and accounted for when estimat-
ing the edge probabilities, leading to more accurate estimates [28]. However, we were
not able to correct the estimated edge probabilities due to the complexity of identifying
the set of hyperedges required to model the observed defect correlations. Therefore, we
opted not to use these probabilities for the weights of the MWPM decoder and instead
extracted these weights from the circuit-level noise model that we use in our simula-
tions, which is described in Sec. 7.4.2 and which is based on the measured coherence
times and operational error rates.

7.2.3. LOGICAL PERFORMANCE
Next, we characterize the logical performance of the code and demonstrate an exponen-
tial suppression of the logical error rate with increasing code distance. After applying
the corrections obtained from the MWPM decoder, we compare the corrected logical
qubit parity to the initially prepared state to determine if a logical error occurred. Each
experiment performing r rounds of QEC is then repeated many times to calculate the
logical error probability pL (r ) at round r . Repeating this procedure for r = 0,1,2, . . . ,15
enables us to extract the logical error rate per round εL by fitting the decay of pL (r ) over
the QEC rounds, using

pL (r ) = 1

2

[
1− (1−2εL)r−r0

]
,

where r0 is a fitting constant [52]. We perform this series of experiments only for the
d = 7 repetition code. To extract the performance of the d = 3 or d = 5 code, we instead
follow the procedure used in [15, 27] and subsample the measured defects into a set of
smaller datasets corresponding to the possible codes that can be defined in our linear
layout, see Fig. 7.1. This leads to five and three datasets for the possible d = 3 and d = 5
codes, respectively.

The logical performance of the d = 3,5,7 codes extracted from either simulated or
experimental data are shown in Fig. 7.4a and Fig. 7.4b, respectively. The logical error
rates obtained by fitting the decay of average pL over the subsampled datasets are shown
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Figure 7.4: Logical performance. a The probability of a logical error pL as a function of the number of
QEC rounds r extracted from simulated data for the d = 3 (light gray), d = 5 (gray), and d = 7 (dark gray) rep-
etition codes. In contrast, b shows the probabilities extracted from experimental data for the d = 3 (light red),
d = 5 red, and d = 5 (dark red) codes. The logical performance of the d = 3,5 codes is obtained by subsampling
the d = 7 dataset. The small transparent dots in these subfigures show the probabilities of each subsampled
code individually, while the large dots show their averages. The solid lines show the fits to the average error
probabilities from r = 3 used to extract the logical error rates per round, plotted in c and d. The fits start from
round r = 3 to avoid any time-boundary effects. c, d The logical error rate εL per round versus the code dis-
tance for the simulated (c, gray) and experimental (d, red) data, demonstrating suppression of the error rate.
The solid lines show the fits used to extract the error suppression factors.

in Fig. 7.4c and Fig. 7.4d, respectively. Assuming that the physical error rate is below the
threshold, εL is exponentially suppressed with increasing code distance d , modeled by

εL (d) =C /Λ(d+1)/2,

whereΛ is the suppression factor and C is a fitting constant [27]. The fits to the extracted
εL and the obtained factors Λ are shown in Fig. 7.4c and Fig. 7.4d. While we observe a
suppression of εL with increasing distance d in both the simulation and experiment, the
suppression factors achieved are moderate in either case and lower than those achieved
in other repetition code experiments [15, 19, 27]. This performance is largely a result of
the relatively high operational error rates, especially in the case of the readout. Further
lowering these error rates remains paramount for achieving better logical performance
for the repetition code and, ultimately, the surface code. The discrepancy in the logi-
cal performance between the simulation and the experiment is likely due to the impact
that non-conventional errors, particularly leakage, have on the decoding and logical er-
ror rate. While this conclusion is motivated by the strong signatures of leakage observed
in the error probabilities inferred from the measured syndrome defects, a more detailed
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error model will be required to determine the precise impact of leakage and whether it
can explain the observed discrepancy. However, it is worth noting that other repetition-
code experiments have observed similar signatures and discrepancies, attributing them
to leakage or crosstalk errors [19, 27]. We discuss the possible improvements and exten-
sions to our error model in Sec. 7.3.

7.3. DISCUSSION
We have demonstrated a repetition code experiment performing up to 15 rounds of sta-
bilizer measurements. We have also shown that our system can suppress the logical error
rate by increasing the distance of the code despite the moderate logical performance of
the code. However, implementing a surface code memory experiment is much more
challenging and will require several challenges to be addressed. In particular, the high
physical error rates lead to the overall poor logical performance observed in this experi-
ment. The low relaxation and dephasing times, together with the qubit readout and the
two-qubit gate error rates, are the dominant error sources in this experiment, see Tab. 7.1
and Tab. 7.2. Achieving lower operational error rates will be necessary for any break-even
quantum memory demonstration and, eventually, scaling up the code size to reduce the
error rate.

On the other hand, the measured syndrome defects analysis revealed signatures of
leakage and crosstalk errors. These non-conventional errors, in particular, can severely
impact the logical performance of code and interfere with estimating the weights used
by the MWPM decoder directly from the experimental data [49]. Addressing these errors
will also be essential for any future implementation. Several leakage reduction schemes
have been proposed and already integrated into some QEC experiments [47, 48, 50,
53], where they have been shown to significantly improve the system’s stability, lead to
lower defect probabilities, and possibly lower logical error rates. Addressing crosstalk
errors might require the inclusion of tunable couplers between the transmon qubits or
a more precise optimization of the qubit and pulse frequencies in the case of microwave
crosstalk. However, further research and characterization are needed to address the
crosstalk issues in the device. Finally, as we scale up to larger systems, we expect two-
level system defects also to become another important source of errors that must be
considered in greater detail.

Next, we discuss possible improvements to the error models we used in our simu-
lations that might lead to a better match between simulation and experiment. We have
implemented an approximate Pauli-noise model (described in detail in Sec. 7.4.2) that
enables us to use a Pauli-frame simulation (otherwise referred to as stabilizer simula-
tion), making the simulations scalable to large code distances. Similar models have
shown to be able to achieve an overall good match with experimental results [19, 27],
demonstrating that such models can still accurately capture the impact of the various
physical error sources to a large degree. In our model, we consider a Pauli-twirled ap-
proximation of the amplitude-phase damping channel during periods of qubit idling.
However, we only include depolarizing channels after single-qubit and two-qubit gates,
parameterized by the operational error rate extracted from randomized benchmarking
experiments. A possible improvement to our model would be to model the impact of
decoherence throughout the operation by including a pair of twirled amplitude-phase



7

258 7. ERROR SUPPRESSION WITH A TRANSMON-BASED REPETITION CODE

damping channels for half the gate time around the ideal operation, similar to the er-
ror model presented in [49]. As these channels typically do not fully capture the mea-
sured error rate in randomized benchmarking experiments, we would likely also need
to consider a depolarizing channel after the second twirled amplitude-phase damping
channel, such that the noisy operation has the same fidelity as the one measured.

A more accurate model of the readout would consider a pair of bitflip channels before
and after the ideal projective measurement, approximating the relaxation or excitation
that the qubit experiences during the readout, as well as a probability to flip the mea-
surement outcome. In the model we consider here, we assume that there is no process
that leads to classical declaration errors. These three probabilities can be extracted from
measurement butterfly characterizations, see [50] for a description of this procedure. Fi-
nally, an error source we did not consider in this work but that can easily be included is
the residual excitations when the qubits are prepared at the start of each experiment,
which can be modeled as bitflip channels following the initial preparation of the qubits.

The models described above consider only the errors within the qubit computational
subspace. However, leakage to non-computational states is typically a significant er-
ror source in current experiments, especially considering the impact it can have on the
logical error rate of a quantum code. An incoherent leakage model could capture the
effect of qubit leakage with a reasonable degree of accuracy by considering a stochas-
tic leakage process following different operations and tracking whether each qubit is
leaked in the simulation, as demonstrated in [19]. In such a model, qubits have a cer-
tain probability of leaking after each operation. In the case of a leakage event, the qubit
is flagged as leaked, and the gates applied to this leaked qubit either act trivially or in-
duce errors. In particular, the phase errors due to the interactions between qubits in
the computational and leaked subspaces can be modeled as a probability of Z error be-
ing applied to the computational qubit, conditioned on the other qubit being leaked. A
stabilizer simulation, including such a stochastic leakage model, can maintain a simula-
tion cost scaling quadratically with the number of qubits and linearly with the number
of QEC rounds [19].

Estimating the error probabilities from the measured syndrome defects helps avoid
the need for complex error models and makes matching-based decoders, such as MWPM
decoders or belief-matching decoders [54], a lot more flexible. However, errors that lead
to more than two defects directly impact the accuracy of the estimated probabilities,
leading to unphysically small or negative probabilities in some instances. Resolving this
typically involves either introducing a minimal value that these probabilities can take
based on some error model [19] or explicitly considering a subset of these errors in the
estimation procedure [28]. One problem is that estimating the probability of the errors
leading to any possible combination of four or more defects directly from the data is a
very computationally expensive task, mainly due to the large number of combinations
needed to be considered, see Sec. 7.4.6 for a further discussion.

Leakage-reduction operations can reduce the leakage lifetime to about a single cycle,
limiting the number of defects these errors can lead to. Therefore, these operations will
likely be necessary to extend the estimation procedure to include leakage errors in this
model while keeping the computational complexity feasible. However, another issue is
that these probabilities might not be immediately helpful for a decoder since there is
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no clear, logical correction associated with these non-conventional errors. Neural net-
work decoders [55–65] can instead be used to directly infer the most likely logical correc-
tions from the measured syndrome defects, generalizing the process of estimating these
weights and then providing them to a matching decoder.

7.4. SUPPLEMENTAL INFORMATION

7.4.1. DEVICE
The device follows the frequency arrangement scheme proposed in [66], which employs
three frequency groups. Data qubits D3 and D7 are part of the high-frequency group,
while the remaining data qubits and the ancilla qubits are in the low-frequency and
mid-frequency groups, respectively. Each transmon qubit is capacitively coupled to its
nearest-neighboring qubits via a coupling bus resonator, even if they are unused in this
experiment. Control of the transmon qubits is achieved via individual microwave-drive
lines used for single-qubit gates and dedicated flux lines for two-qubit gates. Each qubit
is also dispersively coupled to a Purcell-filtered readout resonator, enabling the disper-
sive readout of these qubits.

7.4.2. ERROR MODELS

Qubit
Relaxation,

time T1 (µs)

Dephasing,

time T2 (µs)

Single-qubit gate

error, εg (%)

Assignment,

error pa (%)

QND prob.,

pQND (%)

D1 18.16 14.40 0.21 5.63 -

D2 11.27 14.26 0.12 5.02 -

D3 11.51 10.68 0.04 1.35 -

D4 13.97 7.18 0.06 2.81 -

D5 14.46 12.20 0.08 11.82 -

D6 10.24 15.77 0.30 2.75 -

D7 5.86 9.74 0.17 2.16 -

A1 7.06 11.12 0.17 3.02 93.70

A2 8.72 11.48 0.16 1.82 92.39

A3 5.11 4.47 0.46 1.98 92.90

A4 9.90 6.59 0.14 3.10 88.40

A5 12.42 13.41 0.25 1.56 89.59

A6 10.61 18.04 0.11 3.81 92.65

Table 7.1: A summary of the measured coherence times, single-qubit gate error rates, and readout error rates
for each qubit used in the experiment. The coherence times are measured using standard time-domain mea-
surements [67], with the dephasing time measured using a Hahn echo experiment. The gate error is extracted
using randomized benchmarking experiments [68–70]. The readout parameters include the assignment er-
ror [71] and quantum non-demolition probability [28].
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The error model we consider here makes several simplifying assumptions about the
noise and ultimately considers Pauli-error channels before or after operations. For such
an error model, the circuits we consider here can be simulated by propagating the Pauli
frame through the circuit, making these simulations computationally efficient and, there-
fore, scalable. Of course, the model’s approximations make it less accurate in its predic-
tions compared to a density-matrix simulation, for example. However, similar approxi-
mate models have been shown to be capable of capturing the dominant error sources in
some experiments with reasonable accuracy [19, 27]. In particular, we use stim [72] to
perform the simulations done in this chapter and pymatching [33] to perform MWPM de-
coding. Using these packages also allows us to directly extract the weights used by the
MWPM-decoder from the constructed circuits using the error model described above.
More specifically, each edge hm = {

vi , v j
}

in the decoding graph is assigned a weight
wm = log

(
(1−pm)/pm

)
, where pm is the probability of the error event leading to defects

di = 1 and d j = 1 that is associated with that edge.

Interacting qubits Two-qubit gate error εg (%)

A1, D1 2.18

A1, D2 1.35

A2, D2 1.12

A2, D3 2.55

A3, D3 1.92

A3, D4 2.02

A4, D4 1.34

A4, D5 1.62

A5, D5 1.94

A5, D6 1.07

A6, D6 0.93

A6, D7 2.50

Table 7.2: The controlled-phase error rates measured in the experiment using randomized benchmarking [68–
70, 73]

We model the decoherence experienced by transmon qubits during periods of idling
by including a Pauli-twirled amplitude-phase damping channel after each such opera-
tion. Whenever a transmon qubit idles for a time t , it undergoes an amplitude-damping
channel parameterized by the relaxation time T1 and described by the Pauli-transfer ma-
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trix (PTM)

Ramp =


1 0 0 0

0
√

1−γ 0 0

0 0
√

1−γ 0

γ 0 0 1−γ

 ,

where γ = 1− e−t/T1 . At the same time, the qubit also undergoes dephasing, which is
parameterized by the pure-dephasing time Tφ and described by the transfer matrix

Rdeph =


1 0 0 0

0 1−λ 0 0

0 0 1−λ 0

0 0 0 1

 ,

where λ= 1−e−t/Tφ . The pure-dephasing time Tφ is related to the dephasing time T2 by

1

Tφ
= 1

T2
− 1

2T1
.

The transfer matrix corresponding to the amplitude-phase damping channel is then
given by R = RampRdeph. We then apply the Pauli-twirling approximation over the Pauli
basis to R to obtain the twirled transfer matrix R̃, which is diagonal. The twirled single-
qubit process then corresponds to a Pauli-noise channel that applies an X , Y , or Z with
probabilities pX , pX and pX , respectively. For the amplitude-phase channel defined
above, one finds

pX = pY = γ

4
,

pZ = 1

2
− γ

4
− (1−λ)

√
1−γ

2
.

Single-qubit gates are followed by a depolarizing channel, which, with a probabil-
ity pg /3, applies an error X ,Y and Z . This probability is related to the gate error εg

measured from randomized benchmarking (also referred to as the gate infidelity) by
pg = (2n +1)εg /2n , n is the number of qubits involved in the gate, with n = 1 in this
case [68, 69]. Similarly, controlled-phase gates are followed, with probability pg , by an
error drawn uniformly from the 15 elements in the set {I , X ,Y , Z }⊗2 \ I I . Here pg is again
determined by its relation with the infidelity ϵg with n = 2.

In our model, each measurement is preceded by a symmetric bitflip channel that
leads to an X error with probability pa , where pa is the average assignment error prob-
ability of the readout. To estimate this probability, we prepare each qubit in a state s
and then measure it. By repeating this experiment and preparing |0〉 and |1〉 an equal
number of times, we can estimate

pa = P (m = 0 | s = 1)+P (m = 1 | s = 0)

2
,
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with m being the observed measurement outcome. In our model, each measurement
operation can also be followed by an X error with probability pq , which is derived from
an experimentally estimated quantum non-demolition (QND) probability pQND. To es-
timate this probability, we follow the experiment outlined in [28] and prepare each qubit
in the state |+〉 = (|0〉+ |1〉)/

p
2 after which we perform two consecutive measurements

that produce outcomes m1 and m2, respectively. In this case, the first outcome should
be ideally random, while the second outcome should be the same as the first in the ab-
sence of errors. In practice, the measurement can have some back-action on the state of
the ancilla, which can be captured as

pQND = P (m2 = 0 | m1 = 0)+P (m2 = 1 | m1 = 1)

2
,

see Tab. 7.1 for the measured values. We assume that the initial state is prepared per-
fectly, that each measurement is projective, and that the measurement outcome always
corresponds to the state of the qubit. In this case, the QND probability captures the im-
pact of both the assignment error in the second measurement as well as any back-action
on the qubit from the first measurement that changes its state, but that does not affect
m1. Here, we model this error by a bitflip channel after each measurement that flips the
state with probability pq . Therefore

pQND = pa pq + (
1−pa

)(
1−pq

)
,

which can be rearranged to give

pq = 1−pQND −pa

1−2pa
,

where pa < 1/2 given that one has the freedom to swap the declared outcomes for each
state otherwise. All of the experimentally measured coherence times and operational
error rates used in our model are listed in Tab. 7.1 and Tab. 7.2.

7.4.3. THE DECODING GRAPH
Here we define the decoding hypergraph G = (V , H) that represents the effective physical
error model, where V is the set of nodes and H is the set of hyperedges connecting two
or more nodes (even though typically error models consider only edges in this graph).
First, we define a single index i = (a,r ) to label each possible syndrome defect da,r by
ancilla qubit a in QEC round r , such that there are a total of N = Na Nr defects, with
Na being the number of ancilla qubits and Nr the total number of QEC rounds. Thus,
each syndrome defect will be represented as a node vi in the hypergraph. Note that
these nodes are included in this hypergraph regardless of the specific non-trivial or trivial
defects measured in each experiment. Each Pauli error that occurs at some location in
the circuit and leads to one or more non-trivial syndrome defects will be associated with
a hyperedge h ∈ H in the hypergraph.

Specific errors will lead to only a single non-trivial defect, such as some errors on data
qubits on the boundary of a code. We refer to the set of nodes corresponding to these
syndrome defects as the boundary nodes Vbound. In contrast, the nodes corresponding to



7.4. SUPPLEMENTAL INFORMATION

7

263

syndrome defects that always occur together with one or more other defects, including
the boundary defects, are referred to as the bulk nodes Vbulk. We will also introduce a
single “image” node v0 and a corresponding defect d0 that is not actually being measured
in any experiment. Note that this is not a unique choice, and one can also introduce
such an image node for each boundary node in the hypergraph. The errors leading to
only a single non-trivial syndrome defect will be represented as edges between v0 and
the boundary nodes vi ∈Vbound. The full set of nodes included in the hypergraph is then
V =Vbulk ∪Vbound ∪ {v0}, with |V | = N +1.

The hyperedge set H of the hypergraph G is defined as follows. If a single error oc-
curring at some location in the circuit leads to two or more non-trivial syndrome defects
di , . . . ,d j , then there is a corresponding hyperedge hm = {

vi , . . . , v j
}

in the hypergraph
between the relevant nodes, where m is the index of the edge. Not that these edges do
not include the image node v0. Instead, if an error leads only to a single non-trivial de-
fect di , then there is an edge hm = {vi , v0} between the corresponding boundary node
and the image node. We refer to the latter set of edges as the boundary edges. It is pos-
sible for multiple errors occurring at different locations in the circuit to lead to the same
defects (thus, these errors are indistinguishable from each other). We associate each hy-
peredge hm with a single independent error event that happens with a probability pm

and leads to the non-trivial defects corresponding to the nodes connected by the hyper-
edge. Therefore, this error event probability combines the probabilities of the errors in
the circuit that lead to the same set of non-trivial defects.

7.4.4. ESTIMATING THE BULK EDGE PROBABILITIES
We first consider the standard case, where G is just a graph, meaning that every hm ∈ H
is simply an edge, i.e., such that hm = {

vi , v j
}
. We discuss the extension to a hypergraph

in Sec. 7.4.6 and discuss some of the difficulties that come when working with hyper-
edges at the end of that section. Let us introduce a random binary variable em associ-
ated with each edge hm that has possible outcomes ym ∈ {0,1} and that corresponds to
whether the corresponding error event occurred or not. These hidden variables influ-
ence the observed non-trivial defects di , which we also treat as a random variable with
possible outcome xi ∈ {0,1}. To simplify the notation, we define the random defect vec-
tor d = (d0,d1,d2, . . . ,dN ) with possible outcomes x = (x0, x1, x2, . . . , xN ). Similarly, define
the random error event vector e = (e1,e2, . . . ,eM ) with corresponding outcomes y ∈ Ω,
where Ω is the outcome sample space and M = |H | is the size of the graph. We can now
consider the probability distribution

p(x) = P (d = x)

= ∑
y∈Ω

P
(
d = x | e = y

)
P

(
e = y

)
= ∑

y∈Ω
p(x | y)p(y).

(7.3)

We assume that the error events are independently distributed such that

p(y) =
M∏

m=1
p(ym) =

M∏
m=1

p ym
m

(
1−pm

)1−ym , (7.4)
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where, we used that error event P (em = 1) = pm , while P (em = 0) = 1−pm .
Next, consider a subset of the nodes VS ⊆V and their corresponding possible defect

outcome xS . We can then define the set of edges HS = {h ∈ H | h ⊆ N [VS ]} together with
their corresponding event outcomes yS , where N [VS ] denotes the closed neighborhood
of VS . It then follows that p(xS | y) = p(xS | yS ), which simply says that the defects dS are
only affected by the edges in H that involve the nodes VS , namely the edges in HS . In
particular, if we consider the subset VS to be the pair of vertices connected via an edge
hm , then HS will contain hm and any other edge that is incident to any of these two
nodes. For later convenience, we define:

Definition 1. Let us introduce the edge set Am = {h ∈ H | h ⊆ N [hm] and h ̸= hm}, i.e., Am

is the set of edges which are adjacent to edge hm , excluding hm itself. For an edge hm ={
vi , v j

}
, we also define Ai

m ⊆ Am as the set of edges which are incident to node vi and

similarly the subset A j
m for those incident to node v j , such that Am = Ai

m ∪ A j
m .

Now, we shall consider a specific edge hm and let us denote yi
m ∈Ωi

m to be the event

outcomes corresponding to the edges in Ai
m , and analogously for the edges in A j

m . The
error model that we consider here implies that

p(xi , x j | ym ,yi
m ,y j

m) = δxi ,ym
⊕

l
(
yi

m
)

l
δ

x j ,ym
⊕

l

(
y j

m

)
l

. (7.5)

This expresses that observing a defect outcome di = xi and d j = x j is deterministically
determined by the error event outcomes corresponding to edge hm as well as the other
edges that are incident to vi and v j . Particularly, observing a non-trivial defect di = 1
requires an odd number of events that lead to a defect at di to have occurred.

Next, we consider the experimentally observable outcomes and how to infer the edge
probabilities from these statistics. Namely, we have access to the expectation values〈

di d j
〉= ∑

xi ,x j

p(xi , x j )xi x j

= P
(
di = 1,d j = 1

)
= ∑

y∈Ω
P

(
di = 1,d j = 1 | e = y

)
P

(
e = y

)
,

(7.6)

for any pair of defects di and d j . Similarly, we have

〈di 〉 =
∑
xi

p(xi )xi = P (di = 1)

= ∑
y∈Ω

P
(
di = 1 | e = y

)
P

(
e = y

)
,

(7.7)

where p(xi , x j ) and p(xi ) are, of course, the marginal distributions of Eq. (7.3). Note
that we do not have access to the expectation value for 〈di d0〉, where d0 is the defect
corresponding to the image node v0. Furthermore, we also do not have access to 〈d0〉,
which ultimately complicates the estimation of the probabilities for the boundary edges,
which are treated separately, see Sec. 7.4.5.
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Considering Eq. (7.6) we can see that the edges that influence di and d j are only the
edge hm and the edges in Am . The defects in Am influence either di or d j , but not both.

Splitting Am into the two subsets Ai
m and A j

m , we can use Eq. (7.5) to obtain〈
di d j

〉= pm
∑

yi
m∈Ωi

m⊕
l
(
yi

m

)
l=0

p(yi
m)

∑
y j

m∈Ω j
A⊕

l

(
y j

m

)
l
=0

p(y j
m)

+ (
1−pm

) ∑
yi

m∈Ωi
m⊕

l
(
yi

m

)
l=1

p(yi
m)

∑
yi

m∈Ω j
m⊕

l

(
y j

m

)
l
=1

p(y j
m).

(7.8)

We can analogously derive the equations for the expectation value 〈di 〉, given by

〈di 〉 = pm
∑

yi
m∈Ωi

m⊕
l
(
yi

m

)
l=0

p(yi
m)+ (

1−pm
) ∑

yi
m∈Ωi

m⊕
l
(
yi

m

)
l=1

p(yi
m).

(7.9)

These expressions hold for any edge hm in the decoding graph. Using Eq. (7.4) we can
define the probability

q i
m ≡ ∑

yi
m∈Ωi

m⊕
l
(
yi

m

)
l=1

p(yi
m)

= ∑
yi

m∈Ωi
m⊕

l
(
yi

m

)
l=1

∏
l

p yl
l

(
1−pl

)1−yl ,
(7.10)

where yl is a shorthand for
(
yi

m

)
l . Thus q i

m is the probability of observing di = 1 due to
an odd number of errors which each trigger di , excluding the error event em that cor-
responds to the edge hm that we are specifically considering. Since either an even or
an odd number of errors must have occurred, we can also define the complementary
probability.

1−q i
m = ∑

yi
m∈Ωi

m⊕
l
(
yi

m

)
l=0

p(yi
m)

= ∑
yi

m∈Ωi
m⊕

l
(
y i

m
)

l=0

∏
l

p yl
l

(
1−pl

)1−yl ,
(7.11)

corresponding to an even number of events happening and (thus not triggering di ) (note
that this also includes the case where none of these error events occurred, i.e., yi

m = 0).
Using these two new definitions, we can rewrite Eq. (7.8) and Eq. (7.9) as〈

di d j
〉= pm

(
1−q i

m

)(
1−q j

m

)
+ (

1−pm
)

q i
m q j

m , (7.12)
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and

〈di 〉 = pm

(
1−q i

m

)
+ (

1−pm
)

q i
m . (7.13)

This leads to a system of three equations for
〈

di d j
〉

, 〈di 〉,
〈

d j
〉

which involve three vari-

ables, pm , q i
m , and q j

m . More generally, such a system of equations can be constructed
for every edge hm , with the exception of the boundary edges. The system of equations
is straightforward to solve analytically, resulting in an expression for the probability pm

associated with edge hm (which is not a boundary edge)

pm = 1

2
−

√√√√1

4
−

〈
di d j

〉−〈di 〉
〈

d j
〉

1−2〈di 〉−2
〈

d j
〉+4

〈
di d j

〉 . (7.14)

We note that this procedure was also derived in [27, 51].

If a pair of defect variables di and d j are uncorrelated, then the evaluation of Eq. (7.14)
leads to pm = 0. If di and d j are instead correlated, we expect to observe a pm > 0. How-
ever, if these variables are instead anti-correlated, then evaluating the above expression
becomes a problem as the term under the square root is negative.

As observed in our experiment or in [27] one finds a pm > 0 for more edges than ex-
pected from a circuit-level Pauli-noise error model. Although this analysis allows us to
estimate the probability of the error leading to any pair of defects, using these proba-
bilities in decoding requires also to assign a correction corresponding to each edge in
the decoding graph. This correction is not immediately obvious based on the analy-
sis presented so far. A common strategy is to only consider the edges expected from a
circuit-level noise model and assign them the corresponding corrections [19, 28]. An-
other strategy would be to assign the minimum-weight correction.

A different complication is that some errors lead to more than two non-trivial defects.
For many codes, these can be certain Pauli errors happening at some location in the cir-
cuit. For example, the Y errors when running a surface code memory experiment lead
to three or four non-trivial defect outcomes, as they affect both X -and Z -parity check
outcomes. However, they can also be due to the presence of non-conventional errors,
namely crosstalk and leakage errors. These errors are associated with hyperedges in a
hypergraph, and the presence of these hyperedges can lead to an inaccurate estimation
of the edge probabilities if not accounted for, as demonstrated in [28]. In certain cases,
this can even lead to the estimation of negative probabilities, which is the case in our
experiment. The probabilities of these hyperedges can also be estimated from the data.
However, it requires solving a larger system of equations that scales with the number of
nodes that the hyperedge connects, see Sec. 7.4.6. Practically, this means that estimat-
ing the probability of very large hyperedges will be too computationally expensive. A
procedure for calculating these hyperedge probabilities and for correcting the estimated
edge probabilities was also given in [19, 28]. Since solving a larger system of equations
quickly becomes too computationally expensive, the probabilities for hyperedges of a
certain size are typically not calculated for all possible node combinations.
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7.4.5. ESTIMATING THE BOUNDARY EDGE PROBABILITIES

Now let us now consider an edge hm = {di ,d0} between a defect di and the image defect
d0, for which the error probability cannot be estimated using Eq. (7.14). As a reminder,
the main issue when dealing with these edges is that one does not have access to 〈di d0〉
or 〈d0〉 in order to construct the system of equations that can be solved to obtain the edge
probability. Instead, we can only estimate 〈di 〉, for which Eq. (7.13) holds. Rearranging
that equation yields

pm = 〈di 〉−q i
m

1−2q i
m

, (7.15)

with the expression for q i
m being given in Eq. (7.10). In particular, q i

m can be determined
from the probabilities pl of all edges hl incident to node vi , excluding hm itself. Note that
in our definition, there is only a single image node v0, meaning that vi can have only one
edge connecting it to v0. In turn, this means that we can calculate q i

m after estimating pl

for all the non-boundary edges in the graph, and this will yield the probability pm of the
boundary edge hm that we are after.

In practice, we find that estimating the boundary edge probabilities using this method
can be prone to errors. In the first place, both 〈di 〉 and

〈
di d j

〉
are estimated with some

sampling noise, which translates to some error in the estimates for the non-boundary
edge probabilities pl . Unless we consider a certain set of edges expected from some er-
ror model, we can generally estimate an edge probability pm between any possible pair of
nodes. In that case, each vi will have n−1 edges connecting to the other possible nodes,
excluding v0. Since estimating q i

m requires summing over all of these edges, the errors in
the edge probabilities are propagated to the estimate of the boundary edge probability.
Furthermore, errors leading to more than two defects lead to further errors in the edge
estimates, which we discuss in more detail in Sec. 7.4.6. In our experiment, this leads
to all boundary edge probabilities being estimated to be negative. Considering only the
edges corresponding to the errors expected from a circuit-level depolarizing noise re-
duces the number of unphysical boundary edge probabilities, as discussed in [74]. How-
ever, even in that case, we still estimate approximately half of the boundary edges to be
negative, which we associate primarily with the non-conventional errors present in the
experiment instead of the sampling noise due to the large number of runs used for these
estimates.

7.4.6. HYPEREDGES

It is clear that excluding the hyperedges and the errors they correspond to can consid-
erably impact the estimated edge probabilities, especially for the boundary edges, as is
the case in our experiment. Therefore, it is necessary to extend the above analysis to in-
clude any hyperedges in the decoding graph corresponding to non-conventional errors
not considered in our error model to get accurate edge estimates.

Here, we first consider hyperedges of size three and outline a procedure for estimat-
ing their corresponding edge probabilities from the experimentally measured syndrome
defects. One can then use these hyperedge probabilities to obtain more accurate esti-
mates for the edge probabilities, namely using the procedure outline in [28], which is
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Figure 7.5: The discrepancies Di , j ,k extracted from experimental data that involve the defect di measured by

ancilla qubit A4 at QEC round 4 i.e., i = (A4,4), and all other pairs of defects d j and dk . Here,
〈

di d j dk

〉
edge

corresponds to the expectation value inferred from the measured syndrome defects assuming that all errors
lead either to a single defect or a pair of defects. A positive discrepancy Di , j ,k > 0 indicates that there are
errors triggering these three (and possibly more) defects. Note that the matrix is symmetric along the main
anti-diagonal.

based on a clustering algorithm. Furthermore, we propose a procedure for determin-
ing what hyperedges should be included when there isn’t a set of expected hyperedges
given some error model. While this offers a general approach to including hyperedges
based on the correlations between the measured syndrome defects, it quickly becomes
too computationally expensive for hyperedges of size four or more.

Before introducing any hyperedges to the graph, let us first consider the expecta-
tion value

〈
di d j dk

〉
that solely the edges in the graph lead to, which we will refer to as〈

di d j dk
〉

edge for clarity. The possible edges between the nodes corresponding to these

defects are hm = {
vi , v j

}
, hn = {

v j , vk
}
, ho = {vi , vk }. We then define the probability

q i
m,n for a non-trivial defect di = 1 being observed due to the possible error events corre-

sponding to all edges incident to node vi with the exception of hm and hn . This is simply
an extension of the definition of q i

l given in Eq. (7.10), which can also be expressed as

q i
m,n = q i

m −pn

1−2pn
, (7.16)

where pn is the probability associated with edge hn . This can also be expressed in a
similar fashion to Eq. (7.10), by instead considering an incident set of edges Ai

m,n to node

vi which excludes both hm and hn and the corresponding possible outcomes yi
m,n ∈

Ωi
m,n . To estimate

〈
di d j dk

〉
edge in particular, we need to consider the probabilities q i

m,o ,

q j
m,n and qk

n,o of observing a non-trivial value on each of these three defects, excluding
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the errors associated with the two edges connecting the corresponding node to any of
the remaining nodes. We can then write

〈
di d j dk

〉
edge = pm qk

n,o

(
1−pn

)(
1−po

)(
1−q i

m,o

)(
1−q j

m,n

)
+pn q i

m,o

(
1−pm

)(
1−po

)(
1−qk

n,o

)(
1−q j

m,n

)
+po q j

m,n
(
1−pm

)(
1−pn

)(
1−q i

m,o

)(
1−qk

n,o

)
+pm pn q j

m,n
(
1−po

)(
1−q i

m,o

)(
1−qk

n,o

)
+pm po q i

m,o

(
1−pn

)(
1−q j

m,n

)(
1−qk

n,o

)
+pn po qk

n,o

(
1−pm

)(
1−q j

m,n

)(
1−q i

m,o

)
+q i

m,o q j
m,n qk

n,o

(
1−pm

)(
1−pn

)(
1−po

)
+pm pn po q j

m,n q i
m,o qk

n,o ,

which we have obtained by going over all combinations of errors leading to three
non-trivial defects, analogously to Eq. (7.8), since

〈
di d j dk

〉 = P
(
di = 1,d j = 1,dk = 1

)
.

We then introduce Di , j ,k =
∣∣∣〈di d j dk

〉−〈
di d j dk

〉
edge

∣∣∣ as the discrepancy between the

observed
〈

di d j dk
〉

that is calculated from the measured syndrome defects and the pre-
dicted

〈
di d j dk

〉
edge for a model that does not consider a hyperedge between nodes

vi , v j , and vk . Calculating
〈

di d j dk
〉

edge involves solving a system of six equations for

each of the expectation values
〈

di d j
〉

, 〈di dk〉,
〈

d j dk
〉

, 〈di 〉,
〈

d j
〉

, and 〈dk〉 that involves
six variables, which we solve numerically using a least-squares algorithm. The expres-
sions for each of these expectation values can be derived analogously to the equation for〈

di d j dk
〉

edge by considering the possible combinations that would lead to only one or

two defects. If the hypothesis that hyperedges do indeed not exist is indeed true, then
one would observe Di , j ,k ≈ 0. In turn, finding a Di , j ,k > 0 suggests that there is a hy-
peredge connecting at least these three nodes and possibly even more nodes beyond
that. We show an example of the discrepancies extracted from experimental data that
involve defect di measured by ancilla qubit A4 at round r = 4, i.e., i = (A4,4), and any
other pair of defects in Fig. 7.5. For comparison, the same discrepancies extracted from
the simulated data for the same number of shots are all Di , j ,k ≲ 10−3 (not shown in the
figure), unless we specifically consider some crosstalk error which, say, with some prob-
ability, induces a pair of correlated X errors on two data qubits that do not share a neigh-
bor. In particular, if one of those data qubits is on the boundary of the code, this error
would lead to exactly three defects. In that case, we only observe a significant discrep-
ancy exactly between those defects, demonstrating that this technique can, in principle,
accurately detect the presence of errors associated with hyperedges. In contrast, we see
multiple Di , j ,k > 10−3 extracted from the experimental data, with the largest values being
≈ 2×10−2, indicating the presence of many errors that lead to at least three non-trivial
defects in our experiment. These hyperedges would mainly involve the nodes corre-
sponding to defects measured by A4 at other rounds r ̸= 4 or to the defects measured
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by the two ancilla qubits A3 and A4. However, we also observe discrepancies involving
the defects measured by the next-nearest neighboring ancilla qubit A6, corresponding to
crosstalk errors. We note that we observe a similar number of significant discrepancies
when considering defects di other than the one considered in this example.

Now, let us assume that the hyperedge hl =
{

vi , v j , vk
}

corresponding to some error
that triggers the defects di ,d j ,dk exists in the hypergraph and occurs with a probability
pl . Including this edge in our analysis and considering the possible error event combi-
nations that can lead to three non-trivial defects, we find

〈
di d j dk

〉= pl
(
1−pm

)(
1−pn

)(
1−p0

)(
1−q i

m,o,l

)(
1−q j

m,n,l

)(
1−qk

n,o,l

)
+pm qk

n,o,l

(
1−pl

)(
1−pn

)(
1−po

)(
1−q i

m,o,l

)(
1−q j

m,n,l

)
+pn q i

m,o,l

(
1−pl

)(
1−pm

)(
1−po

)(
1−qk

n,o,l

)(
1−q j

m,n,l

)
+po q j

m,n,l

(
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)(
1−pm

)(
1−pn

)(
1−q i

m,o,l

)(
1−qk

n,o,l

)
+pm pn q j
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(
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)(
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)(
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)(
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)
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(
1−pl
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)(
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)(
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n,o,l
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(
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)(
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)(
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)(
1−q i
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+q i

m,o,l q j
m,n,l qk
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(
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)(
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)(
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)(
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+pl pm q i
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(
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)(
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)
,

where we have once again extended the definition of q i
m,n to now exclude three edges,

leading to q i
m,n,l . Calculating the hyperedge probabilities involves numerically solving

the system of seven equations for each of the seven expectation values
〈

di d j dk
〉

,
〈

di d j
〉

,
〈di dk〉,

〈
d j dk

〉
, 〈di 〉,

〈
d j

〉
, and 〈dk〉 that are expressed in terms of seven variables. When

the decoding graph has multiple hyperedges, the q i
m,n,l obtained by solving this system

of equations will also include the probabilities of the hyperedges that trigger di together
with any other defects, excluding d j and dk . Similarly, the estimated pm will not corre-
spond to the error event probability associated with the edge hm , but will account for
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hyperedges that lead to both di = 1 and d j = 1 along with any other defects, excluding
dk . Therefore, solving this system of equations can be used to obtain the probability pl

associated with the hyperedge hl . We can estimate all the size-3 hyperedge probabili-
ties by considering the possible triples of defects, which can then be accounted for when
solving for the edge probabilities, following the procedure outlined in [28].

It is also possible to observe Di , j ,k > 0 when there is instead a hyperedge of size four
or more that connects nodes vi , v j and vk . However, a caveat to considering larger hy-
peredges is that a system of 2s −1 equations has to be solved to estimate the hyperedge
probability, where s is the size of the hyperedge. Considering all possible hyperedges
of size s in the decoding graph leads to a total of

(N
s

)
hyperedge probabilities to be esti-

mated. This quickly becomes too computationally expensive for hyperedges of size s ≥ 4
when considering experiments executing more than just a few rounds of error correc-
tion. Another caveat of this approach is that some errors might not deterministically
lead to certain non-trivial defects. For example, a leaked qubit can remain outside the
computational subspace for several QEC rounds and lead to potentially many non-trivial
defects measured by the neighboring ancilla qubits, each happening with some proba-
bility. This means that leakage errors are associated with a set of possible defects, each
occurring with some probability. Therefore, extending this analysis to estimate the prob-
ability of leakage errors is more complex than considering all possible hyperedges up to
some given size. In particular, keeping this analysis computationally feasible would re-
quire including leakage-reduction operations that limit the lifetime of leakage events to
only a few rounds, thereby limiting the number of correlated non-trivial defects that a
single leakage event can lead to.
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8
NEURAL NETWORK DECODER FOR

NEAR-TERM SURFACE-CODE

EXPERIMENTS

Neural-network decoders can achieve a lower logical error rate compared to conventional
decoders, like minimum-weight perfect matching, when decoding the surface code. Fur-
thermore, these decoders require no prior information about the physical error rates, mak-
ing them highly adaptable. In this chapter, we investigate the performance of such a de-
coder using both simulated and experimental data obtained from a transmon-qubit pro-
cessor, focusing on small-distance surface codes. We first show that the neural network
typically outperforms the matching decoder due to better handling errors leading to mul-
tiple correlated syndrome defects, such as Y errors. When applied to the experimental
data of Ref. [2], the neural network decoder achieves logical error rates approximately
25% lower than minimum-weight perfect matching, approaching the performance of a
maximum-likelihood decoder. To demonstrate the flexibility of this decoder, we incorpo-
rate the soft information available in the analog readout of transmon qubits and evaluate
the performance of this decoder in simulation using a symmetric Gaussian-noise model.
Considering the soft information leads to an approximately 10% lower logical error rate,
depending on the probability of a measurement error. The good logical performance, flex-
ibility, and computational efficiency make neural network decoders well-suited for near-
term demonstrations of quantum memories.

This chapter (with minor modifications) has been submitted to PRX Quantum. The preprint can be found
in arXiv:2307.03280 (2023) [1]. B.M.V. performed the simulations under biased noise and for larger code dis-
tances and contributed to the data analysis. Furthermore, B.M.V. performed the writing with input from all
co-authors.
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8.1. INTRODUCTION
Quantum computers are anticipated to outperform classical computers in solving spe-
cific problems, such as integer factorization [3] and quantum simulation [4]. However,
for a quantum computer to perform any meaningful computation, it has to be able to
execute millions of operations, requiring error rates per operation lower than 10−10 [5,
6]. Despite a valiant experimental effort aimed at enhancing operational performance,
state-of-the-art processors typically exhibit error rates per operation around 10−3 [7–16],
which is far from what is needed to perform any useful computation.

Fortunately, quantum error correction (QEC) provides a means to reduce the error
rates, albeit at the cost of additional overhead in the required physical qubits [17–20].
Two-dimensional stabilizer codes [21], such as the surface codes [22], have emerged as
a prominent approach to realizing fault-tolerant computation due to their modest con-
nectivity requirements and high tolerance to errors [23–25]. These codes encode the log-
ical information into an array of physical qubits, referred to as data qubits. Ancilla qubits
are used to repeatedly measure parities of sets of neighboring data qubits. Changes be-
tween consecutive measurement outcomes, which are typically referred to as syndrome
defects, indicate that errors have occurred. A classical decoder processes this informa-
tion and aims at inferring the most likely correction.

The increased number of available qubits [2, 26–28] and the higher fidelities of phys-
ical operations [7–16, 29–34] in modern processors have enabled several experiments
employing small-distance codes to demonstrate the capacity to detect and correct er-
rors [2, 28, 35–47]. In a recent milestone experiment, the error rate per QEC round of a
surface-code logical qubit was reduced by increasing the code distance [2], demonstrat-
ing the fundamental suppression achieved by QEC.

The performance of the decoder directly influences the performance of a QEC code.
Minimum-weight perfect matching (MWPM) is a good decoding algorithm for the sur-
face code, which is computationally efficient and, therefore, scalable [23, 48–51]. Its
good performance is ensured under the assumption that the errors occurring in the ex-
periment can be modeled as independent X and Z errors [23]. This leads to the MWPM
decoder performing worse than decoders based on belief propagation [52–55] or a (more
computationally-expensive) approximate maximum-likelihood decoder based on tensor-
network (TN) contraction [56, 57]. A more practical concern is that a decoder relies on a
physical error model to accurately infer the most likely correction. Typically, this requires
constructing an approximate model and a series of benchmarking experiments to extract
the physical error rates. While there are methods to estimate the physical error rates
based on the measured defects [2, 44, 58, 59], they typically ignore non-conventional er-
rors like crosstalk or leakage. The presence of these errors can impact both the accuracy
with which the physical error rates are estimated from the data and the performance of
the decoder itself [59].

An alternative approach to decoding is based on using neural networks (NN) to in-
fer the most likely correction given a set of measured defects [60–80]. These decoders
do not require any prior information about the error model and therefore alleviate the
need to construct any error model, making them highly adaptable. This flexibility comes
at the cost of requiring a significant amount of data for training the network and op-
timizing the hyper-parameters to ensure that the optimal performance of the decoder
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is reached during training. Despite the potential issues during the training, it has been
shown that they can match and generally exceed the performance of MWPM decoders,
in several cases achieving near-optimal performance [75, 77]. Depending on the NN ar-
chitecture employed, these decoders can be scalable and run in real time [68–70, 72, 79].
While decoders based on recurrent NNs are more computationally expensive, they en-
able the decoding of experiments performing a variable number of stabilizer measure-
ment rounds [62, 75, 77], making them well-suited for decoding near-term memory [75]
and stability experiments [81].

In this chapter, we assess the performance of a neural-network decoder using both
simulated and experimental data. Our work goes beyond [75] and previous NN decoding
works in applying and partially training a NN decoder for the first time on data from a
surface-code experiment [2], thus capturing realistic performance and showing the ver-
satility of NN decoders. In addition, we go beyond [75] in training the NN decoder for
a distance-7 surface code and extract its exponential error suppression factor on simu-
lated data. Thirdly, we show that our NN decoder can be trained with (simulated) soft
measurement data and get a performance enhancement.

We begin by simulating the performance of a d = 3 surface code using a circuit-level
noise model to show that the NN decoder outperforms MWPM by learning to deal with
Y errors, as previous studies have suggested [75].

Next, we investigate the performance of the NN decoder when applied to data from a
recent surface code experiment [2]. Due to the limited volume of available experimental
data, we train the NN decoder on simulated data generated using an error model based
on the measured physical error rates. However, we evaluate the decoder’s performance
on simulated and experimental data. The NN decoder significantly outperforms MWPM
when decoding simulated data and achieves a lower logical error rate for the d = 5 code
than the constituent d = 3 codes. When evaluated on experimental data, the NN de-
coder achieves a performance approaching that of a tensor-network decoder, which ap-
proximates a maximum-likelihood decoder. However, contrary to the finding in [2], the
logical error rate observed in the d = 5 experiment is higher than the average of each
of the d = 3 experiments, which we attribute to either a sub-optimal choice of hyper-
parameters or the mismatch between the simulated data that the decoder was trained
on and the experimental data.

To further explore the performance of NNs, we consider the continuous information
available in the measurement outcomes of transmon qubits [82, 83], typically referred to
as soft information [84]. By calculating the defect probabilities given the soft outcomes
and providing them to the neural network during training and evaluation, we demon-
strate that the soft decoder can achieve an approximately 10% lower logical error rate if
the measurement error probability is sufficiently high.

8.2. BACKGROUND

8.2.1. THE SURFACE CODE

A (rotated) surface code encodes a single logical qubit into a two-dimensional array
of n = d ×d physical qubits, referred to as data qubits, where d is the distance of the
code. The logical state of the qubit is determined by the stabilizers of the code, which
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Figure 8.1: a Schematic of a distance d = 3 surface-code logical qubit, where 9 data qubits (white circles) store
the logical information. 8 ancilla qubits (blue and green circles) are used to measure the Z -type (green pla-
quettes) and X -type (blue plaquettes) stabilizers of the code. Examples of the XL (yellow) and ZL (red) logical
operators of the code. b Illustration of the Z -type plaquette (left, green) and X -type (right, blue) plaquette
corresponding to the Z Z Z Z and X X X X stabilizer operators measured by each ancilla qubit.

are the weight-four or weight-two X -type (blue plaquettes) or Z -type (green plaque-
ttes) Pauli operators, see Fig. 8.1. In addition to the stabilizers, the code is given by a
pair of anti-commuting logical operators, XL and ZL , which commute with the code sta-
bilizers. The stabilizers are typically measured indirectly with the help of n − 1 ancilla
qubits. To perform this measurement, each ancilla coherently interacts with its neigh-
boring data qubits in a specific order [85], after which the ancilla qubit is measured and
reset. The stabilizer measurement outcomes are typically referred to as the syndromes
and hold information about the errors that have occurred. The full circuits used to per-
form these measurements are shown in Fig. 8.8. In particular, we use the circuits used
in [2], which feature several echo gates used for dynamical decoupling in the experiment,
see Sec. 8.5.1 for additional details.

To characterize the performance of the code, we perform a series of logical memory
experiments. In each experiment, the physical qubits are prepared in an eigenstate of
either the XL (resp. ZL) logical operator, after which N −1 rounds of stabilizer measure-
ments are executed. The experiment is concluded by reading out each data qubit in the
X (resp. Z basis), which also performs a logical XL (resp. ZL) measurement. The goal of
each experiment is to maintain the logical state for as many QEC rounds as possible by
using error correction, see Sec. 8.5.1 for more details.

The information about errors is contained in the stabilizer measurement outcome
mr,a of ancilla a at round r . The final data qubit measurements can also be used to
infer a final set of outcomes mr=N ,a for either the X -type or Z -type stabilizers. The
defects dr,a = mr,a ⊕mr−1,a isolate the changes in mr,a such that an error is signaled
by an observation of one or more dr,a = 1. The choice of initial state and the dynam-
ical decoupling gates can also flip some of the measured mr,a , which is accounted for
when calculating dr,a . A decoder processes the observed dr,a to infer a correction for
the measured logical observable. By repeating each experiment many times, we extract
the probability of a logical error pL (r ) at QEC round r , from which we calculate the logi-
cal fidelity FL (r ) = 1−2pL (r ), which decays exponentially with the number of executed
QEC rounds. We model this decay as FL (r ) = (1−2εL)r−r0 , where εL is the logical error
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rate per QEC round and r0 is a fitting constant. When fitting the decay of FL (r ) to extract
εL , we start the fit at r = 3 to avoid any time-boundary effects that might impact this
estimate.

8.2.2. ERROR MODELS
To explore the performance of the NN decoder, we perform simulations using circuit-
level Pauli-noise models. For most of our simulations, we consider a depolarizing circuit-
level noise, which is defined as

1. After each single-qubit gate or idling period, with a probability p/3, we apply an
error drawn from {X ,Y , Z }.

2. After each two-qubit gate, with a probability p/15, we apply an error drawn from
{I , X ,Y , Z }⊗2 \ {I I }.

3. With a probability p, we apply an X error before each measurement.

4. With a probability p, we apply an X error after each reset operation or after the
qubits are first prepared at the start of an experiment.

In some of our simulations, we consider noise models that are biased to have a higher
or a lower probability of applying Y errors. To construct this model, we define a Y-bias
factor η and modify the standard depolarizing circuit-level noise model, as follows:

1. After each single-qubit gate or idling period, there is a probability ηp/(η+ 2) to
apply a Y error and a probability p/(η+2) to apply an X or a Z error.

2. After each two-qubit gate, there is a probability ηp/(7η+ 8) of applying an error
drawn from PB = {I Y , X Y ,Y I ,Y X ,Y Y ,Y Z , Z Y } and a probability p/(7η+ 8) of
applying an error drawn from {I , X ,Y , Z }⊗2 \ (PB ∪ {I I }).

This biased error model is a generalization of the depolarizing model. In particular,
choosing η= 1 makes this noise model equivalent to the depolarizing one. On the other
hand, when η= 0, the model leads to only X or Z errors applied after operations. In the
other limiting case, as η→∞, the model applies only Y errors after idling periods and
gates. Given that the error probability is the same across all operations of the same type,
we will refer to these error models as uniform circuit-level noise models.

Finally, we also perform simulations of the recent experiment conducted by Google
Quantum AI, using the error model which they provided together with the experimental
data [2]. This is once again a circuit-level Pauli-noise model similar to the ones presented
above, but the probability of a depolarizing error after each operation is based on the
measured physical error rates. We will refer to this model as the experimental circuit-
level noise model.

We use stim [86] to perform the stabilizer simulations. We have written a wrapper
package that helps with constructing the circuit for each experiment, which is avail-
able in [87]. We use pymatching [50] for the MWPM decoding. The weights used in
the MWPM decoder are directly extracted from the sampled circuit using the built-in
integration between stim and pymatching



8

286 8. NEURAL NETWORK DECODER FOR NEAR-TERM SURFACE-CODE EXPERIMENTS

8.2.3. NEURAL NETWORK ARCHITECTURE
Here we describe the NN architecture that we employ in this chapter, which nearly ex-
actly follows the one proposed in [75, 77]. Many NN decoders studied previously are
based on feed-forward or convolutional NN architecture. These decoders can gener-
ally decode experiments running a fixed number of QEC rounds. Decoders based on
recurrent NN architectures, on the other hand, can learn the temporal correlations in
the data, allowing them to directly process experiments performing a variable number
of QEC rounds. We have used the TensorFlow library [88] to implement the NN architec-
ture, with the source code of the decoder available in [89], the parameters used for each
training are listed in Tab. 8.1, while the scripts that perform the training are available
upon request.

The NN architecture takes as input the defects da,r with r = 1,2, . . . , N . The decoder
solves a binary classification problem and determines whether a correction of the logical
observable is required based on the observed defects. In practice, the architecture is
based on a two-headed network that makes two predictions pmain and paux, which are
used to improve the training of the network, see Fig. 8.2. To train a decoder, a series
of memory experiments are performed. Since the logical qubit is prepared in a known
logical state and measured at the end of each experiment, it is possible to extract the
actual value ptrue ∈ {0,1} of whether a correction is required or not. In particular, the cost
function I that the network attempts to minimize during training is the weighted sum of
the binary cross-entropies between each prediction and ptrue, expressed as

I = H(pmain, ptrue)+wa H(paux, ptrue),

where wa is a weight that is typically chosen as wa = 0.5 in our runs, while

H(pi , p j ) =−pi log p j − (1−pi ) log(1−p j )

is the binary cross-entropy function. The choice behind this loss function is elaborated
below.

LSTM LSTM ReLU
Concat Eval

Eval

pmain

paux
{da, r}

{da, N}

Figure 8.2: Schematic of the recurrent NN architecture used in this chapter, following the design proposed
in [77]. The inputs to the network are the set of defects {da,r }, which are calculated from the measurement
outcomes of each ancilla qubit a at QEC round r = 1,2, . . . , N − 1, and the final defects {da,N }, which are in-
ferred from data qubit measurements. The time-invariant input {da,r } is provided to the recurrent part of the
network, consisting of two stacked LSTM layers (yellow rectangles) and a ReLU activation layer (orange rectan-
gle). The recurrent output is then passed to the two heads of the decoder, which consist of an evaluation layer
(blue rectangle) that predict a probability of a logical error. The lower head takes as input only the recurrent
output and outputs a probability paux. The upper head, on the other hand, combines (teal rectangle) the re-
current output with {da,N } and outputs a probability pmain. Arrows indicate the flow of information through
the network.

Fig. 8.2 schematically illustrates the architecture of the recurrent network. The recur-
rent body of the neural network consists of two stacked long short-term memory (LSTM)
layers. Each LSTM layer is defined by a pair of internal memory states: a short-term
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memory, referred to as the hidden state, and a long-term memory, referred to as the cell
state. Here, we use the same internal states size NL for both LSTM layers [90, 91], with
NL = 64,96,128 for surface codes of distance d = 3,5,7, unless otherwise specified. The
LSTM layers receive the defects for each QEC round as input, calculated from both the
X -type and the Z -type stabilizer measurement outcomes. The first LSTM layer outputs
a hidden state for each QEC round, which is then provided as input to the second LSTM
layer, which outputs only its final hidden state. A rectified linear unit (ReLU) activation
function is applied to the output of the second LSTM layer before being passed along to
each of the two heads of the network.

The heads of the network are feed-forward evaluation networks consisting of a sin-
gle hidden layer of size NL using the ReLU activation function and an output layer using
the sigmoid activation function, which maps the hidden layer output to a probability
used for binary classification. The output of the recurrent part of the network is directly
passed to the lower head of the network, which uses this information to predict a prob-
ability paux of a logical error. The upper head also considers the defects inferred from
the data qubit measurements, which are combined with the recurrent output and pro-
vided as input. Therefore, unlike the lower head, the upper one uses the full information
about the errors that have occurred when making its prediction pmain of whether a logi-
cal error occurred. Both pmain and paux are used when training the network, which helps
the neural network to generalize to handle longer input sequences. However, only pmain

is used when evaluating the performance of the decoder. We provide additional details
about the training procedure in Sec. 8.5.2 and list the hyper-parameters of the network
in Tab. 8.1.

8.3. RESULTS

8.3.1. PERFORMANCE ON CIRCUIT-LEVEL NOISE SIMULATIONS

We first demonstrate that the NN decoder can achieve a lower logical error rate than
the MWPM decoder by learning error correlations between the defects, which are other-
wise ignored by the MWPM decoder. We consider the Y -biased circuit-level noise model
described previously, parameterized by the bias η towards Y errors and a probability
p = 0.001 of inserting an error after each operation. We use this noise model to simulate
the performance of a d = 3 surface-code quantum memory experiment in the Z -basis,
initially preparing either |0〉⊗n or |1〉⊗n . To train the NN decoder, we generated datasets
of r = 1,5, . . . ,37 QEC rounds, sampling 5× 105 shots for each round and initial state.
When evaluating the decoder’s performance, we simulate the code performance over
r = 10,30, . . . ,290 QEC rounds and sample 2×104 shots instead.

To benchmark the logical performance, we calculate the logical fidelity FL at the end
of each experiment. Averaging FL over each initial state, we fit the exponential decay
of FL with the number of QEC rounds to extract the logical error rate per round εL .
Fig. 8.3 shows that the NN decoder maintains a constant εL when evaluated on datasets
going up to 300 QEC rounds, demonstrating the ability of the decoder to generalize to
significantly longer sequences than those used for training. On the other hand, the NN
decoder achieves about 20% lower εL compared to the MWPM decoder. We then evalu-
ate the trained NN decoder on simulated data using η ∈ {0,0.5,1,2,10,100} and keep all
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Figure 8.3: a Logical fidelity FL as a function of the number of QEC rounds r for the MWPM (blue) and the NN
decoders (red) using a uniform circuit-level depolarizing noise model. Each data point is averaged over 4×104

shots. Solid lines show the fits to the data used to extract the logical error rate per round εL . b The logical error
rate εL as a function of the bias η towards Y errors for the MWPM decoder (blue) and a NN decoder trained
on simulated data using depolarizing noise (red), corresponding to η= 1. The performance of an adapted NN
decoder at a bias of η= 0 or η= 100 is shown in dark red. Each point is extracted from a fit of the decay of the
logical fidelity over 300 QEC rounds. The error bar is smaller than the marker size. The error bars are smaller
than the marker sizes.

other parameters the same without training any new neural networks, with the resulting
error rates shown in Fig. 8.3b. At η = 0, corresponding to an error model leading to X
and Z errors, the NN decoder displays a higher εL than the MWPM decoder. For η≥ 0.5,
the NN decoder instead demonstrates a lower logical error, with the relative reduction
increasing with the bias. This demonstrates that the NN decoder can achieve a lower
logical error rate by learning the correlations between the defects caused by Y errors,
consistent with the results presented in [75]. The NN decoder can achieve an even lower
logical error rate at a bias of η = 100 by being trained on a dataset generated using this
bias (referred to as the adapted NN decoder in Fig. 8.3). On the other hand, training a
model for η= 0 does not lead to any improvement in εL of the NN decoder, showing that
the MWPM decoder is more optimal in this setting.
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Figure 8.4: Logical fidelity FL as a function of the number of QEC rounds r for the NN decoder evaluated on
simulated data (shown in a) and on experimental data (shown in b). The average performance of the d = 3
surface code (red triangle), which is the average of the performance of each of the four constituent codes
(bright red triangles), is compared to the d = 5 code (orange hexagons). Each data point is averaged over
5×104 shots for both experiment and simulation. Solid lines show the fits to the data used to extract the logical
error rate per round εL . The error bars are smaller than the marker sizes.

8.3.2. PERFORMANCE ON EXPERIMENTAL DATA

Next, we evaluate the performance of the NN decoder on experimental data available
from the recent experiment executed by Google Quantum AI [2], where a 72-qubit quan-
tum processor was used to implement a d = 5 surface code as well as the four d = 3
surface codes which use a subset of the qubits of the larger code. The stabilizer mea-
surement circuits used in that experiment are the same as those shown in Fig. 8.8. For
each distance-d surface code, the data qubits are prepared in several random bitstrings,
followed by r = 25 rounds of stabilizer measurement, followed by a logical measurement,
with experiments performed in both the X -basis and Z -basis. The experiment demon-
strated that the d = 5 surface code achieves a lower εL compared to the average of the
four constituent d = 3 patches when using a tensor-network (TN) decoder, an approxi-
mation to a maximum-likelihood decoder.

We find that training a NN decoder to achieve good logical performance requires a
large number of shots (approximately 107 in total or more) obtained from experiments
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preparing different initial states and running a different number of rounds. As the amount
of experimental data is too small to train the NN decoder (the total number of shots be-
ing 6.5× 105), we instead opt to simulate the experiments using the Pauli error model
based on the measured error rates of each operation, available in [2]. Keeping the same
number of rounds and prepared state, we generate a total of 2× 107 shots for training
the decoder for each d = 3 experiment and 6× 107 to train the decoder for the d = 5
experiment, see Tab. 8.1. While we train the network on simulated data, we still eval-
uate the decoder performance on both simulated and the experimental data, with the
results shown in Fig. 8.4a and Fig. 8.4b respectively. Both the training and evaluation
data consist of r = 1,3, . . . ,25 rounds of QEC and consider the same initial states. When
evaluating the NN decoder on simulated data, we observe that the d = 5 code achieves
a lower εL compared to the average of the d = 3 codes, see Fig. 8.4a. Evaluating the de-
coder on the experimental data leads to an approximately 15% (40%) higher εL for the
d = 3 (d = 5) code, demonstrating that the approximate error model used in simulation
fails to fully capture the errors in the experiment. Furthermore, we observe that the d = 5
has a higher εL instead, see Fig. 8.4a, contrary to what was demonstrated in [2] using a
tensor-network decoder.

In order to put the performance of the NN decoder in perspective, in Fig. 8.5, we
compare the logical performance of the NN decoder to the performance of several other
decoders that were also implemented in [2]. We perform this comparison both on sim-
ulated (see Fig. 8.5a) and experimental (see Fig. 8.5b) data. We find that the NN decoder
consistently outperforms the standard MWPM decoder in either case. On the experi-
mental dataset, the NN decoder performs equivalent to the TN decoder when decoding
the d = 3 surface codes. However, when decoding the d = 5 surface code experiment,
the NN decoder displays a higher εL than the TN decoder and the computationally effi-
cient belief-matching (BM) decoder [54]. When evaluated on simulated data, the NN and
BM decoders exhibit similar error rates, with the NN decoder again demonstrating bet-
ter performance when decoding the d = 3 code but worse when dealing with the d = 5
code. The BM decoder we use for the simulated data is described in [55] and uses the
belief propagation implemented in [93]. The higher error rate of the NN decoder for the
d = 5 code in both simulation and experiment can be related to the difficulty of optimiz-
ing the performance of the substantially larger NN model used (see Tab. 8.1 for the model
hyper-parameters). However, the discrepancy in the experiment can also be attributed
to a mismatch between the simulated data used for training (based on an approximate
error model) and the experimental data used for evaluation. Compared to the d = 3 sur-
face code data, the accumulation of qubit leakage can cause the d = 5 performance to
degrade faster over the QEC rounds [2]. We expect that training on experimental data
and a better hyper-parameter optimization to enable a NN performance comparable to
state-of-the-art decoders like BM and TN while offering additional flexibility to the de-
tails of the noise model. Compared to the TN decoder, both NN and BM can achieve
similar logical performance while remaining significantly faster, and if their implemen-
tation is optimized, they can potentially be used to decode experiments in real time.
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Figure 8.5: The logical error rate per round εL for the d = 3 (red triangle) and d = 5 (orange hexagon) for
several decoder implementations applied to either simulated data (shown in a) or experimental data (shown
in b). These correspond (from left to right) to minimum-weight perfect matching (MWPM), a correlated mod-
ification of MWPM (Corr. MWPM) [92], our neural network (NN) decoder, belief matching (BM) [54], and a
tensor network (TN) decoder, which approximates maximum-likelihood decoding. We did not run the corr.
MWPM or TN decoder on the simulated data so fewer data points appear in a. All logical error rates on the
experimental data, except for the NN decoder, are taken from [2]. The error bars are smaller than the marker
sizes.

8.3.3. LOGICAL ERROR RATE SUPPRESSION

An exponential suppression of the logical error rate, assuming that the physical error
rates are below ‘threshold’, is vital for realizing a fault-tolerant quantum computer. We
explore the error suppression achieved when using the NN decoder. We characterize the
logical performance of d = 3,5,7 surface codes simulated using a uniform depolarizing
circuit-level noise model with an error probability of p = 0.1%, close to the state-of-the-
art physical error rates achieved in the experiment. To train the NN decoder, we use data
generated using this error probability. We find that also training using a higher prob-
ability of p = 0.2% leads to a significantly lower logical error rate for the d = 7 code.
Furthermore, we evaluate the performance of the NN decoder on data simulated using
p = 0.05%, which is an example of the physical error rate needed to achieve practical
sub-threshold scaling of the error rate. For each distance d and error probability p, we
perform simulations of memory experiments in the Z -basis with varying numbers of
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Figure 8.6: The logical error rate per round εL for surface codes of distance d = 3,5,7 for an MWPM decoder,
shown in a, and our NN decoder, shown in b. This is evaluated on datasets using a uniform depolarizing
circuit-level noise model with error probabilities of p = 0.1% (blue for the MWPM, red for the NN decoder)
and p = 0.05% (teal for the MWPM, orange for the NN decoder). Solid lines show the fits to the data used to
extract the logical error suppression factor Λ. Each data point is extracted from a fit to the FL as a function
of QEC rounds. The logical fidelities are extracted over 105 shots. The error bars are smaller than the marker
sizes.

QEC rounds, going up to 600 rounds for the d = 7 code with an error rate of p = 0.05%
to extract the logical error per round εL . The logical error rates obtained when using
an MWPM decoder are shown in Fig. 8.6a, while those achieved by the NN decoder are
shown in Fig. 8.6b. If the physical error rate is below threshold, εL is expected to de-
cay exponentially with the code distance d , following εL (d) = C /Λ(d+1)/2, where Λ is
the suppression factor and C is a fitting constant. The data shows an apparent expo-
nential suppression of the error rates by either decoder for the considered error rates,
which we fit to extract the suppression factorΛ, shown in Fig. 8.6. In either case, the NN
decoder achieves better logical performance compared to the MWPM decoder. While
for p = 0.1%, the NN decoder achieves an approximately 13% higher Λ, for p = 0.05%,
the more accurate NN decoder leads roughly twice as high Λ. The higher suppression
factors Λ obtained from using better decoders significantly reduces the code distance
required to achieve algorithmically-relevant logical error rates. For example, for an error
rate of p = 0.05%, realizing εL ≈ 10−10 would require a d = 19 surface code when using
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the MWPM decoder and d = 15 when using the NN decoder, corresponding to roughly
40% less physical qubits required. However, whether the NN can continue to exhibit
similar performance when decoding higher distance codes remains to be demonstrated.

8.3.4. DECODING WITH SOFT INFORMATION
Measurements of physical qubits generally produce a continuous signal that is subse-
quently converted into declared binary outcomes by classical processing and thresh-
olding. For example, transmon qubits are dispersively coupled to a dedicated readout
resonator, which itself is connected to a readout feedline. Readout is performed by ap-
plying a microwave pulse to the feedline, populating the readout resonator. Due to a
state-dependent shift of the resonator frequency, the outgoing signal is phase-shifted
depending on whether the qubit is in the state |0〉 or |1〉. This leads to a change in the
real and imaginary components of the outgoing signal, which is experimentally mea-
sured. This two-dimensional output can be transformed into a single continuous real
variable and converted to a binary outcome by applying some threshold calibrated us-
ing a separate experiment [33, 82, 83].

While binary variables are convenient to work with and store, continuous measure-
ment outcomes hold much more information about the state of the qubit, referred to as
soft information. It has been demonstrated that an MWPM-based decoder which con-
siders the soft information of the individual measurements when decoding, offers higher
thresholds and lower logical error rates than a hard decoder, which only considers the
binary outcomes [84]. To demonstrate the flexibility of machine-learning decoders, we
consider providing the soft information available from readout when training and eval-
uating the NN decoder.

In our simulations, measurements project the qubit into either |0〉 or |1〉. A measure-
ment outcome mr,q = i of qubit q at round r corresponds to the ancilla qubit being in |i 〉
directly after the measurement. Given mr,q = i , we model the soft outcome m̃r,q ∈ R to
follow a Gaussian distribution Ni with mean µi and standard deviation σ. The soft out-
come m̃r,q can then be converted to a binary outcome m̄r,q by introducing a threshold
t , such that

m̄r,a =
{

0 if m̃r,a ≤ t ,

1 otherwise.

For the symmetric Gaussian distributions that we consider, this process leads to an as-
signment error probability P (m̄r,q = 0 | mr,q = 1) = P (m̄r,q = 1 | mr,q = 0) = pm . This
assignment error is added to the errors considered in our circuit-level noise models,
specifically the X error before each measurement that happens with a probability p. The
assignment error probability can related to the signal-to-noise ratio SNR = ∣∣µ0 −µ1

∣∣/2σ

as pm = 1
2 erfc

(
SNRp

2

)
. We fix µ0 =−1 and µ1 = 1 such that a given probability pm fixes the

standard deviation σ of the two distributions.
The most straightforward approach to incorporating the soft information into the

NN decoder is to directly provide the soft measurement outcomes m̃r,q as input during
training and evaluation. However, we find that doing this leads to an overall poor logical
performance. Instead, we estimate the probability of a defect P (dr,a = 1 | m̃r,a ,m̃r−1,a),
given the soft measurement outcomes of an ancilla qubit a in consecutive QEC rounds
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Figure 8.7: a The logical fidelity FL as a function of the number of QEC rounds r for an MWPM decoder (blue
circles), a soft NN decoder (gray diamonds) that uses the probability of observing defects and a hard NN de-
coder (red pentagons) that uses the defects obtained from the hard measurement outcomes. This performance
is estimated on simulated data using a uniform depolarizing circuit-level noise model with an error probability
p = 0.1%. The soft outcome distributions are such that ancilla and data qubits have a probability of assignment
errors of pa

m = 1% and pd
m = 0.1%, respectively. Solid lines show the fits to the data used to extract the logical

error rate per round εL . Each data is averaged over 105 shots. b The extracted logical error rate εL for each of
the three decoders as a function of the ancilla qubit assignment error probability pa

m , keeping pd
m = 0.1% and

p = 0.1%. The error bars are smaller than the marker sizes.

and provide this as input to the decoder. Given a soft outcome m̃r,q , the probability of
the measured qubit ‘having being in the state’ |i 〉 can be expressed as

P (i | m̃r,q ) = P (m̃r,q | i )P (i )∑
j∈{1,2} P (m̃r,q | j )P ( j )

.

The soft outcomes follow a Gaussian distribution, that is, P (m̃r,q | i ) =Ni (m̃r,q ). Finally,
we make the simplifying assumption that the prior state probabilities P (i ) = P ( j ) = 1

2 ,

We note that we discovered a software bug affecting the performance of the soft NN and hard NN decoders,
shown in Fig. 8.7. We have since corrected this bug and are currently re-evaluating the performance of the
decoders at the time of writing. We believe the resulting logical error rates achieved by these decoders are
similar, but not identical, to the ones reported in this chapter.
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such that

P (i | m̃r,q ) = Ni (m̃r,q )∑
j∈{1,2} N j (m̃r,q )

.

The probability of observing a defect can then be expressed as

P (dr,a = 1 | m̃r,a ,m̃r−1,a) =
1− ∑

i∈{0,1}
P (i | m̃r,a)P (i | m̃r−1,a).

The expression for the defect probability inferred from using the soft (final) data qubit
measurement outcomes can be derived similarly.

To explore the performance of the soft NN decoder, we simulate the d = 3 surface-
code memory experiment using a circuit-level noise model with an error rate per op-
eration of p = 0.1%. We consider two separate assignment error probabilities pa

m and
pd

m for ancilla qubit and data qubit measurements. We motivate this choice by the fact
that data qubits remain idling while the ancilla qubits are being measured. A shorter
measurement time can reduce the decoherence experienced by the data qubits but will
typically lead to a higher pa

m . The data qubit measurements at the end of the experiment,
on the other hand, can be optimized to minimize pd

m . Therefore, we focus on how a soft
decoder can help with decoding when pa

m is higher, similar to the discussion in [84].
We train the NN decoder using datasets of r = 1,5, . . . ,37 QEC rounds, sampling 5×105

shots for each round and initial logical state. When evaluating the performance, we use
simulate r = 10,30, . . . ,150 QEC rounds, sampling 5×104 shots instead.

The results for pa
m = 1% are shown in Fig. 8.7a. The hard NN decoder achieves an

approximately 20% lower logical error rate compared to an MWPM decoder, consistent
with the results shown in Fig. 8.3. In comparison, the soft NN decoder leads to an approx-
imately 30% lower logical error rate instead, demonstrating the ability of the decoder to
adapt to the provided soft information. In Fig. 8.7b the logical error rate εL of the three
decoders is shown for pa

m ∈ {0,0.1%,1%,10%}, where both NN decoders are trained at
the corresponding pa

m . For low pa
m , the performance of the soft NN decoder is essen-

tially equivalent to the hard NN decoder, with a moderate reduction in εL achieved for
pa

m ≥ 1%.
It is possible that the probability of defects is not the optimal way to provide the soft

information to the decoder. One downside of this representation is that for a high as-
signment error probability pa

m ≥ 20%, the probability of observing a defect is close to
50%, which also impacts the training and leads the soft NN decoder to exhibit a higher
logical error rate compared to the hard one (not shown in Fig. 8.7). Optimizing the per-
formance of the soft NN decoder and comparing it to alternative approaches, namely
the soft MWPM decoder proposed in [84], remains an open question.

8.4. DISCUSSION
We now discuss in more detail the performance of the NN decoder on the experimen-
tal data. Unfortunately, we only use simulated data to train the NN decoder throughout
this work. These simulations use approximate Pauli-noise models that account for the
most significant error mechanisms in the experiment, such as decoherence and read-
out errors. However, they do not include several important error sources present in the



8

296 8. NEURAL NETWORK DECODER FOR NEAR-TERM SURFACE-CODE EXPERIMENTS

actual experiments, such as leakage, crosstalk, and stray interactions. The exclusion of
these error mechanisms leads to the Pauli-noise models underpredicting the logical er-
ror rate compared to the rates observed in the experiment, as observed in Fig. 8.4. Fur-
thermore, it was shown that the d = 5 code is more sensitive to errors like leakage and
crosstalk, which can lead to a more significant deviation relative to simulations of the
d = 3 codes [2]. Despite using these approximate models for training, when evaluat-
ing the NN decoder on experimental data, we observe that it outperforms MWPM and
can achieve logical error rates comparable to those obtained using maximum-likelihood
decoding, which is approximated by the TN decoder. The TN decoder requires infor-
mation about the error probabilities, what defects they lead to, and their corresponding
corrections, which can be encoded into a hypergraph, where the nodes correspond to
defects and the hyperedges represent errors. Importantly, this hypergraph also does not
explicitly include hyperedges corresponding to non-conventional errors, such as leakage
or crosstalk. We expect that training on experimental data and optimizing the hyper-
parameters of the network will enable it to match the performance of the TN decoder
closely and potentially exceed it by learning about errors not included in the hypergraph.

Despite the large volume of training data required to achieve good performance, we
don’t expect that generating sufficient experimental data for training will be an issue.
Assuming that the QEC round duration is 1 µs and that it takes 200 ns to reset all qubits
between subsequent runs, we estimate that it would take approximately three minutes
to generate the datasets with 107 shots running r = 1,5, . . . ,37 rounds of QEC that were
used for training the d = 3,5,7 surface codes, see Tab. 8.1.

The soft NN decoder used in this chapter achieves only a moderate performance
increase. A direct comparison of this decoder with the soft MWPM decoder [84] will
be useful to put this performance into perspective. It is possible that using the defect
probabilities as the decoder input is not an optimal choice. An alternative approach to
incorporating the soft information into the decoder is to estimate the likelihood of an
assignment error Lr,a = N¬i (m̃r,a)/Ni (m̃r,a) given a soft outcome m̃r,a that leads to a
hard outcome of m̄r,a = i , which is used by the soft MWPM decoder proposed in [84].
The likelihoods Lr,a can then be provided as input to the NN decoder together with the
binary defects dr,a that were measured. In addition to the representation of the input
data, it is an open question whether using a soft NN decoder will be useful in practice,
where assignment error rates are typically low. Specifically, it would be interesting to see
if using a soft NN decoder will enable using a shorter measurement time that might lead
to a higher assignment error rate but maximize the logical performance overall, as dis-
cussed in [84]. The symmetric Gaussian distributions of the continuous measurement
outcomes we consider here are only very simple approximations of the distributions
seen in experiments, and in our modeling we could adapt these. In particular, the relax-
ation that the qubit experiences during the readout leads to an asymmetry between the
distributions and a generally higher probability of an assignment error when the qubit
was prepared in |1〉. Furthermore, the continuous outcomes observed in the experiment
can also contain information about leakage [29, 94, 95] or correlations with other mea-
surements. Therefore, it will be essential to investigate and optimize the performance of
the soft decoders using experimental data.

Finally, we outline some possible directions for future research necessary to use these
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decoders for decoding large-distance experiments. Decoders based on feedforward and
convolutional architectures have been shown to achieve low-latency decoding, making
them a possible candidate for being used in real time [68–70, 72]. On the other hand,
recurrent networks generally have a larger number of parameters and carry out more
complex operations when processing the data. However, recurrent NN decoders have
been shown to achieve higher accuracy and be more easily trainable than other archi-
tectures, especially when considering realistic noise models [62]. Therefore, whether
hardware implementations of recurrent NN decoders can be used for real-time decod-
ing is an open question. In addition to the latency, the scalability of NN decoders is an
open question. Decoding higher-distance codes will require larger neural networks and
larger training datasets, which will most likely be more challenging to train, given that
approaches based on machine learning generally struggle when the dimension of the
input becomes very large. Practically, one might be interested in whether the NN de-
coder can be trained and used to decode some finite code distance, which is expected to
lead to algorithmically-relevant logical error rates given the processor’s performance. Al-
ternatively, there exist approaches that enable scalable NN decoders. These are typically
based on convolutional neural networks that learn to infer and correct the physical er-
rors that have occurred while a secondary global decoder handles any possibly remain-
ing errors [68, 70], but a purely convolutional NN method has been explored as well [79].
The recurrent NN decoder used in this chapter is not scalable, and adapting it to work
with larger code distances and using it to decode through logical operations is another
open research venue.

8.5. SUPPLEMENTAL MATERIAL

8.5.1. QUANTUM MEMORY EXPERIMENTS

To characterize the logical performance of a surface code, we look at its ability to main-
tain an initial logical state as a function of the number of QEC rounds, commonly re-
ferred to as a quantum memory experiment. The circuits used to perform these experi-
ments are illustrated in Fig. 8.8 and follow the ones used in the recent d = 5 surface code
experiment done by Google Quantum AI [2]. Removing some of the Hadamard gates
when compiling the stabilizer measurement circuits leads to each ancilla qubit measur-
ing the Z X X Z operator instead of the standard X X X X and Z Z Z Z stabilizers of the sur-
face code. Implementing this Z X X Z variant of the surface code symmetrizes the logical
error rates between experiments done in the logical X -basis or Z -basis [2]. Despite this
modification, we use notations associated with the traditional stabilizers measured by
the surface code.

Each experiment begins by preparing a given logical state, performed by the circuits
in Fig. 8.8 a-d. The data qubits are first initialized in the ground state and then prepared
in either |0〉 or |1〉 by a layer of conditional X gates. A subset of the data qubits is then
rotated and transforms the initial state into an eigenstate of the X - or Z -type stabilizers.
The parity of the initial bitstring state determines whether |0〉L or |1〉L (|+〉L or |−〉L) is
prepared if the experiment is done in the Z -basis (X -basis). In simulation, we prepare
either |0〉⊗n or |1〉⊗n when using uniform circuit-level noise models. In the experiment,
several random bitstring states are used in order to symmetrize the impact of amplitude
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Figure 8.8: Schematic of the circuits used in the quantum memory experiments for a d = 3 surface code. a-
d are used to initialize the logical state at the start of each experiment. The qubits are first prepared in the
ground state (a), after which a set of conditional X gates (gray) are used to prepare the data qubits in a bit-
string state (b). Afterward, a set of H (Hadamard) gates transform this into an eigenstate of the X -type (c) or
Z -type (d) stabilizers. e-o show the circuits used to measure the stabilizers. The ancilla qubits are first placed
in a superposition by a set of H gates (c or d in the first round, e otherwise). The parity of the neighboring
data qubits is then mapped using four CZ gates (f, h, j, and l). The order of the gates used to measure the
X - and Z -type stabilizers are chosen to avoid any “hook” errors propagating to a logical error. Two layers
of H gates are applied to the data qubits (g and k) to measure the parity in the X -basis. In the middle of
this sequence, X gates are applied to all qubits (i) for dynamical decoupling. Finally, the ancilla qubits are
rotated back (m) using a set of H gates, measured (n, denoted by M) and reset (o, denoted by R). Several X
gates are applied to the data qubit throughout this sequence for dynamical decoupling. In the final round,
all data qubits are measured p-r, which is also a logical measurement. Some of the data qubits are rotated
depending on whether the experiment is done in the X (p) or Z (q) logical basis. This step replaces m in the
final round. Afterward, all qubits are measured simultaneously (r), replacing n in the final round. Data qubits
are denoted with white circles, while ancilla qubits are illustrated as blue and green circles. For the definition
of the plaquettes, see Fig. 8.1. The circuits we run follow the ones used in [2].

damping [2].

The prepared logical state is then maintained over a total of r ∈ {1,2, . . . , N −1} QEC
rounds, with the circuit given by Fig. 8.8 e-o. The first QEC round then projects this
initial state into a simultaneous eigenstate of both the X - or Z -type stabilizers. Each cy-
cle involves a series of four interactions between each ancilla qubit and its neighboring
data qubits, which map the X or Z parity onto the state of the ancilla qubit. The order
in which these two-qubit operations are executed is carefully chosen to minimize the
impact of errors occurring during the execution of the circuit [85]. At the end of each
QEC round, all of the ancilla qubits are measured and reset. The stabilizer measurement
circuits also contain several X gates on either the data or ancilla qubits, which dynam-
ically decouple the qubits in the experiment [2]. Naturally, these gates do not improve
the logical performance for the simulations using approximate Pauli-error models that
we consider here. In the final QEC round, the data qubits rotated during the state prepa-
ration are rotated back and measured in the Z -basis together with the ancilla qubits,
illustrated in Fig. 8.8 p-r. The data qubit measurement outcomes are then used to cal-
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culate the value of the XL or ZL logical observable as well as to infer a final set of X - or
Z -type stabilizer measurement outcomes.

8.5.2. DECODER TRAINING AND EVALUATION

Distance Shots Rounds Dim. NL
Learning

rate

Batch

size

Dropout

rate

Experimental circuit-level noise

3 2×107 [1, 25, 2] 64 5×10−4 64 5%

5 6×107 [1, 25, 2] 253 5×10−4 256 5%

Uniform circuit-level noise

3 107 [1, 37, 4] 64 10−3 256 20%

5 107 [1, 37, 4] 96 10−3 256 20%

7 107 [1, 37, 4] 128 10−3 256 20%

Table 8.1: The hyper-parameters used for training the NN decoders. Different parameters are used for simu-
lations based on the uniform circuit-level noise model and the experimental circuit-level noise, which models
the experiments done in [2]. The internal state size of the network layers NL is chosen to scale with the code
distance d . The QEC round parameters [i , j ,k] for each dataset refer to performing experiments starting with i
QEC rounds and going up to j rounds in steps of k. The total number of shots used for training is given, which
is equally divided over the QEC rounds and prepared states (not shown in the table). The learning rate, batch
size, and dropout rate are the hyper-parameters we tune to help the network to train.

Here we provide additional details about how we train the NN decoder and the hyper-
parameters we use. We use the Adam optimizer typically with a learning rate of 10−3 or
5× 10−4 for training. In addition, we apply dropout after the hidden layer of the feed-
forward network of each head and, in some cases, after the second LSTM layer with a
dropout rate of either 20% or 5% to avoid over-fitting and assist with the generalization of
the network. We use a batch size of 256 or 64, which we found to lead to a smoother min-
imization of the loss. After each training epoch, we evaluate the loss of the network on a
separate dataset that considers the same number of QEC rounds and prepared states as
the training dataset but samples fewer shots for each experiment. After each epoch, we
save the networks’ weights if a lower loss has been achieved. Furthermore, we use early
stopping to end the training if the loss has not decreased over the last 20 epochs to reduce
the time it takes to train each model. We have observed that not using early-stopping
and leaving the training to continue does not typically lead the network to reach a lower
loss eventually. For some datasets, we lower the learning rate after the initial training
has stopped early and train the network once more to achieve better performance. The
hyper-parameters we have used for training each network and the parameters of the
training datasets used are presented in Tab. 8.1.

The NN architecture we employ in this chapter uses two stacked LSTM layers to pro-
cess the recurrent input [77]. We observe poor logical performance for a d = 3 surface
code when using only a single LSTM layer. On the other hand, we see no significant im-
provement in the logical error rate when using four layers instead, motivating the choice
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to use only two. This network architecture also performs well when decoding d = 5
and d = 7 surface code experiments. However, we expect that a deeper recurrent net-
work might improve the logical error rates when decoding larger-distance codes or when
training on and decoding experimental data. We have also practically observed that
training the NN decoder for larger distances is more challenging, especially if the physi-
cal error rates are small. Training the neural network on a dataset with a higher physical
error rate (in addition to data using the same error rate as the evaluation dataset) can
also improve the performance of the decoder, as we also discussed in Sec. 8.3.3.

The training of our neural networks was performed on the DelftBlue supercomput-
ing cluster [96] and was carried out on an NVIDIA Tesla V100S GPU. Once trained, the
decoder takes approximately 0.7 seconds per QEC round for a d = 3 surface code (cor-
responding to an internal state size of NL = 64) using a batch size of 50000 shots on an
Intel(R) Core(TM) i7-8850H CPU @ 2.60GHz. For a d = 5 surface code (NL = 96), it takes
about 0.8 seconds per round, while for a d = 7 surface code (NL = 128), it takes about
1.1 seconds per round, using the same batch size of 50000 shots. We note that using
smaller batch sizes leads to a higher overall runtime due to parallelism when the net-
work processes the inputs. Therefore, larger batch sizes are preferable as long as they fit
into the memory. Each runtime was extracted by decoding simulated datasets running
r = 10,30, . . . ,290 rounds of QEC and averaging the runtime per QEC round over all the
datasets.
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9
CONCLUSION

9.1. SUMMARY AND DISCUSSION
This dissertation focuses on some of the challenges in implementing error correction
using the surface code in superconducting processors and how to characterize them
and potentially resolve them. We have explored these issues using realistic error models
and detailed simulations or by analyzing the performance of experiments implementing
small stabilizer codes.

- In Chapter 2, we demonstrated that leakage can significantly impact the logical
performance of a stabilizer code. We observed that leakage on both data and
ancilla qubits behaves stochastically and increases the defect rate observed on
the neighboring stabilizers. Data-qubit leakage effectively decreases the code dis-
tance, combined with the corruption of the neighboring stabilizers due to the anti-
commutation of the stabilizers involving this data qubit. Ancilla-qubit leakage in-
hibits the parity measurements typically performed by the ancilla qubit and can
instead propagate errors on the neighboring data qubits. The higher defect rates
can also be interpreted as a signature of leakage, enabling the indirect detection
of leakage. We show that a set of independent Hidden Markov models can accu-
rately detect leakage events and ultimately allow restoring the code performance
using post-selection. In practice, ancilla-qubit leakage can often be detected ac-
curately from the readout signal, at least when the measurement is calibrated to
distinguish the second-excited state. The signal produced by data-qubit leakage
generally depends on the code chosen and how the individual operations inter-
act with the leaked data-qubit. In the surface code, data-qubit leakage leads to
the anti-commutation of the neighboring stabilizers if the Hadamard gates act as
the identity of the leaked qubit. A leaked data qubit in the bulk of the surface
code will, therefore, lead to an increase in the defect rate observed on the four
neighboring ancilla qubits, constituting a strong signal that an HMM can detect.
In the repetition code, which measures only a single type of stabilizer, data-qubit
leakage will not lead to anti-commutation. The signatures of this leakage event
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will generally depend on the leakage-conditional phases. If echoing pulses are
applied at the end of each cycle, these can also lead to a strong signal, similar to
what was observed in Ref. [1]. While data-qubit leakage detection can be helpful in
some near-term experiments, post-selection is not a scalable approach to dealing
with leakage. Instead, a scalable error correction scheme will require a dedicated
leakage-reduction mechanism.

- In Chapter 3, we proposed a leakage reduction scheme using separate operations
for data qubits and ancilla qubits that can enable scalable computation. In the
case of data qubits, the population in |2〉 is transferred to a readout resonator us-
ing a microwave pulse, where it can quickly decay. For ancilla-qubits, a condi-
tional microwave pulse moves the population in |2〉 to |1〉 whenever the qubit is
measured to be in |2〉. We showed that even when implemented with limited fi-
delity, these two operations can reduce the lifetime of leakage events to a single
QEC round and substantially reduce the logical error rate.

In Chapter 4, we realize one of these leakage reduction operations in a three-qubit
parity-check experiment. In particular, we implement the microwave pulse that
transfers the leakage to the readout resonator and apply it to both data and an-
cilla qubits. We find that these LRUs can be implemented in about 200 ns with a
fidelity exceeding 80% and as high as 99% while having a negligible impact on the
computational subspace (provided we corrected for the phase shifts induced by
the strong drive). In the case of the ancilla qubits, this has the benefit of no longer
requiring fast classical feedback, which is challenging to realize in practice and
necessary for our initial proposal. Finally, we extend the LRU to simultaneously
reduce the population in both |2〉 and |3〉. These operations lead to steady-state
leakage populations below 1% on all three qubits and remove the increase in the
defect probability associated with leakage. The ancilla-qubit LRU increases the
duration of the QEC round, which also increases the logical error rate. Therefore,
either optimizing the effective coupling strength to reduce the duration of this op-
eration or implementing sufficiently low-latency feedback to enable the initially
proposed π-LRU is expected to improve the logical performance. Applying these
LRUs to large codes will also require optimizing the qubit and resonator frequen-
cies to avoid any possible microwave crosstalk. Therefore, these LRUs can also
reduce the expected device yield when using fixed-frequency transmon qubits.

- In Chapter 5, we considered a heterogeneous qubit architecture that employed
transmon and fluxonium qubits. We showed that fast, high-fidelity, and low-leakage
two-qubit gates could be realized between these two qubits. We have proposed
a microwave-activated cross-resonance gate for fluxonium qubits with frequen-
cies ranging from approximately 250 MHz to about 1 GHz. The strength of this
cross-resonance interaction vanishes when the frequency of the fluxonium is be-
low this range. In that case, we show that a flux-pulsed controller-phase gate can
instead be realized using interactions involving higher-excited states. Using the
cross-resonance gate, we demonstrated that this homogeneous architecture can
significantly reduce the frequency crowding problem compared to homogeneous
qubit architectures using fixed-frequency transmon architectures. However, it is
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unclear whether our architecture offers any advantage regarding the expected de-
vice yield compared to an architecture employing only fluxonium qubits. More
generally, a heterogeneous architecture can be a particularly natural choice for re-
alizing error-correcting codes, where ancilla qubits should be designed to enable
a fast readout. In contrast, data qubits can be designed to have a slower readout if
this ultimately allows them to have higher coherence times or other better single-
qubit or two-qubit gates.

- In Chapter 6, we realized a suite of logical operations in an error-detecting distance-
two surface code. In particular, we demonstrate the ability to initialize arbitrary
initial states, to measure in the cardinal bases of the Bloch sphere, and to perform a
universal set of two-qubit gates. We characterized these logical gates using process
tomography on the logical level and constructed the logical Pauli transfer matri-
ces corresponding to each operation. Logical process tomography will be essential
for the characterization of the logical operations in near-term experiments, where
codes can not perform logical randomized benchmarking. We also observe that
the fault-tolerant operations achieve higher fidelity, demonstrating the benefits of
error detection and correction. For the logical non-Clifford gate, we implemented
TL using a gate-by-measurement scheme. Due to the small distance of the code,
we were able to use a single ancilla qubit to implement this operation, avoiding
the need for qubit swapping. However, implementing non-Clifford gates becomes
much more challenging for larger-distance codes, with one of the more promising
approaches being magic-state distillation protocols.

- In Chapter 7, we implemented a repetition code experiment and demonstrated
an exponential suppression of the logical error rate with increasing code distance.
However, we achieve this with a low error suppression factor, suggesting that the
physical error rates are only slightly below the threshold. Achieving error suppres-
sion or memory-break-even performance with the surface code will likely require
several improvements, including lower readout and two-qubit error rate and the
inclusion of leakage reduction operations discussed in this thesis. We also outlined
some difficulties in estimating the physical error probabilities from the observed
syndrome defects, namely when these errors lead to three or more non-trivial de-
fects. In principle, these errors must be explicitly accounted for to achieve ac-
curate probability estimates and avoid any potential increase in the logical error
rates if the decoder is calibrated using these probabilities. In practice, however,
the impact of excluding these errors from the estimation procedure depends on
the likelihood of these errors and the number of defects they can lead to. For ex-
ample, experiments in which the leakage rates are relatively low and in which leak-
age reduction operations are employed such that the lifetime of leakage events is
limited to around a single QEC cycle will likely be able to ignore the presence of
these errors when inferring the conventional error rates.

- In Chapter 8, we explored the performance of a recurrent neural network when
decoding surface code experiments, using both experimental data and simulated
data based on a circuit-level noise model with physical error rates in the range of
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what is achievable in near-term experiments. We found that this decoder can ef-
fectively deal with errors leading to more than two non-trivial syndrome defects,
leading it to outperform perfect-matching decoders and achieve error rates ap-
proach maximum-likelihood decoders. Furthermore, these decoders are adaptive
to the physical noise and can be modified to use the soft information in the read-
out. A practical problem when using these decoders is that the size of the networks
generally scales with the code distance. Training these larger models becomes
more challenging and can lead to sub-optimal performance. It might be necessary
to develop a procedure for optimizing the model hyperparameters or to consider
possible modifications to the architecture that can enable easier training. For ex-
ample, one can extend the model to predict the defects in the next QEC round and
modify the loss function accordingly. It also needs to be determined whether these
decoders can be used for real-time decoding, especially considering the increase
in the runtime with the size of the recurrent layers. Finally, it can be helpful to in-
vestigate how well such a decoder can adapt to non-conventional noise sources,
such as leakage or crosstalk, present in experimental data.

9.2. OUTLOOK
Throughout this dissertation, we have outlined several challenges encountered in real-
izing error correction experiments, mainly focusing on the problem of leakage. Over
the past few years, there has been significant progress in improving the quantum hard-
ware, leading to modern superconducting processors featuring anywhere from around
50 to more than 100 qubits [2–5]. At the same time, significant progress has been made
towards lowering the gate [6–15] and measurement [16–22] error rates. In the case of
transmon qubits, the dispersive readout is slower than the other operations and typically
exhibits higher error rates. However, there are some proposals based on qubit cloaking
that can lead to lower error rates and faster readout times [23, 24]. Furthermore, several
schemes have been proposed to mitigate non-conventional errors in these processors,
such as crosstalk [7, 25–32] and leakage [33–41]. This has led to several impressive exper-
iments demonstrating the ability of error correction to suppress the logical error rate [5,
42]. I believe there are several challenges that will be crucial to overcome in the next gen-
eration of experiments and, ultimately, to realize scalable fault-tolerant computation.

• Improving the qubit coherence times. Quantum error correction can suppress
the logical error rates by increasing the code distance, assuming that the physical
error rates are below the threshold. This suppression comes at the expense of a
significant overhead in the required qubits. This overhead is typically captured by
the encoding rate k/n, which is the number of encoded logical qubits k over the
number of required physical qubits n. For example, the surface code, arguably the
most promising stabilizer code, encodes only a single logical qubit (k = 1) using
n = d 2 physical data qubits, where d is the code distance. This poor encoding rate
means that fault-tolerant algorithms based on the surface code will likely require
millions of qubits.

This qubit overhead imposes considerable engineering challenges when consid-
ering the possible errors in fabrication, the heating that the control pulses induce
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in the refrigerator, and the challenge of either engineering larger dilution refriger-
ators or interconnecting multiple smaller ones (or possibly both). Therefore, it is
vital to reduce the number of physical qubits required for fault-tolerant computa-
tion as much as possible.

One of the ways to achieve this is by increasing the qubit coherence times and,
therefore, lowering the physical error rates, assuming that the applied operations
generally are coherence-limited. The lower physical error rates, in turn, lead to a
larger error suppression factor, enabling a lower-distance code to achieve a suf-
ficiently low logical error rate. While this does not improve the encoding rate of
the code, it ultimately reduces the number of physical qubits necessary for fault-
tolerant computation.

The typical relaxation times that transmons are typically on the order of 20 µs to
50 µs [43]. However, there has been significant progress in understanding the dif-
ferent loss mechanisms and mitigating them. Using lower-loss materials has led
to a substantial increase in the transmon relaxation times. Specifically, using sap-
phire substrates and tantalum films as the base superconductor has been shown
to reduce the bulk dielectric and surface losses, respectively. This has led to trans-
mons qubits with relaxation times as high as 500 µs and average values on the
order of 100 µs [44–46].

These high coherence times are typically achieved in few-qubit devices. In con-
trast, the relaxation times measured in a 50-qubit processor made using the same
fabrication methods were about an order of magnitude lower, with an average of
T1 ≈ 30 µs, partially attributed to decoherence caused by the control lines [45].
Therefore, increasing the number of qubits available while maintaining high co-
herence times also requires careful thermal engineering.

Finally, while a T1 ≈ 500 µs is an impressive number, the design of the transmon
qubit has several downsides, including a low anharmonicity and a sensitivity to
flux noise. The fluxonium qubit is an alternative design that addresses some of
these limitations [47]. There have been fluxonium qubits with a relaxation time
T1 ⪆ 1 ms [48, 49]. Exploring the noise sources limiting these coherence times and
how they can be mitigated is worthwhile, given that the fluxonium qubit may be a
superior choice for superconducting processors.

• Two-level-system defects and relaxation time fluctuations. In addition to in-
creasing the qubit-coherence times, it is also essential to consider their stability
throughout the experiment. In particular, the transmon relaxation times have
been shown to exhibit significant fluctuations on a timescale of several minutes
to a few hours [50–52]. These fluctuations are typically attributed to two-level sys-
tems (TLS) that couple electrically to the transmon and lead to additional loss.
The TLS frequencies can fluctuate in time, leading to fluctuations in the relaxation
time. These relaxation time fluctuations can impact the performance of the logical
qubit, especially if the decoder is not re-calibrated frequently enough to account
for the changes in the physical error rates.

Besides impacting the coherence times at the operational point, TLS can also lead
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to significantly higher gate error rates. Flux-tunable transmon qubits can be fluxed
away from the operating point to perform a controlled-phase gate with a neighbor-
ing qubit. TLS that are close in frequency to the interaction point or that interact
with the qubit while it is being fluxed to that point will lead to higher two-qubit
gate error rates [32]. During dispersive readout, the transmon-qubit frequency is
broadened and shifted, which can lead to strong interactions with TLS that would
only be weakly coupled to the transmon qubit at the operating point, leading to
a typical decrease of T1 during readout [53]. Since this effect is largely due to the
broadening of the qubit frequency during the readout, this effect can also be ex-
pected to occur for other superconducting qubits. Furthermore, the drift in TLS
frequencies would require the operations to be re-calibrated [32, 51, 54]. There-
fore, lowering the density of TLS will be critical, especially for larger transmon
processors.

• Ionizing radiation. It has been proposed that gamma rays emitted by radioactive
impurities in building materials such as concrete and high-energy cosmic rays ion-
ize the substrate of the processor, generating phonons that can ballistically travel
throughout the substrate for several millimeters [55–57]. These phonons can ul-
timately reach the superconductor at the surface of the substrate, where they can
break Cooper pairs and lead to a burst of quasiparticles. This leads to a correlated
decrease in the relaxation times of potentially many qubits on the device, which
has been recently observed in experiments [56–58]. It has also been observed that
this can lead to the frequencies of multiple TLS in the vicinity of the radiation im-
pact to shift in frequency, which can, in some instances, also impact the relaxation
times of the qubits [54]. Interestingly, that same experiment did not observe a de-
crease in the relaxation time due to the generated quasiparticles, the reason for
which has yet to be entirely determined. Regardless, ionizing radiation can si-
multaneously impact many qubits, leading to correlated errors that are hard for
error-correcting codes to handle [57]. Such an event occurs once every 10 seconds
on average [57], meaning that this is an important error source that will eventu-
ally impact large-scale fault-tolerant computation. Even though this error might
not be devastating for a very large-distance code [59], it still affects the logical per-
formance of the code, increasing the code size required to achieve a sufficiently
low logical error rate throughout the entire computation. Therefore, it might be
necessary to introduce additional shielding [60] or quasiparticle traps [61–65] to
mitigate this noise on the hardware level instead.

• Stabilizer codes that lead to lower overhead. Apart from lowering the physical
error rates, the significant qubit overhead required for fault-tolerant computation
can be addressed more fundamentally by considering error-correcting codes that
can achieve better logical performance or a higher encoding rate than the surface
code. In most cases, these codes will also require adapting the quantum hardware
to enable their experimental implementation.

Recent work has shown that a significant improvement in the logical performance
of the code can be achieved by some tailored codes in the case of biased physical
noise [66–72]. Maintaining the bias during the parity-check measurements also
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requires a bias-preserving CNOT gate [73]. Typically, most superconducting qubits
either do not exhibit a bias in their noise or have an interaction that enables this
bias-preserving gate. However, both biased noise and the required gates can be
engineered in superconducting cat qubits [70, 73–75]. Another example of noise
that can enable a better logical performance is that of erasure errors, which can
also be engineered in superconducting or ion-qubits [76–82].

Another, more promising, direction towards reducing the qubit overhead is using
codes with a higher encoding rate. In particular, codes with a constant encoding
rate can lead to a constant overhead [83, 84]. Low-density parity-check (LDPC)
codes are particularly promising, as they limit the number of parity checks each
qubit participates in and the number of qubits each check acts on [85]. These
are experimentally desirable properties, as high-weight parity measurements are
hard to measure indirectly with an ancilla qubit, while a lower number of checks
that each qubit participates in leads to shorter measurement circuits. More im-
portantly, families of good LDPC codes have been discovered that offer both a
constant encoding rate k/n and a distance d scaling linearly with the number of
qubits n [86, 87]. Note that this definition of the encoding rate does not consider
the additional ancilla qubits needed to perform the parity checks.

However, several challenging problems still need to be solved to realize an LDPC
code in an experiment. Firstly, the logical performance of these codes remains to
be explored in detail, especially under realistic circuit-level noise models. More
importantly, LDPC codes require some non-local and possibly high-degree qubit
connectivity, which is challenging to implement in planar layouts. Regardless,
a few recent results demonstrate LDPC codes that achieve higher encoding rate
thresholds comparable to the surface code for circuit-level noise while requiring
connectivity compatible with bi-layer layouts [88–90].

It is, therefore, of considerable interest to investigate the advantages of other codes
and their feasibility. For LDPC codes, a few open problems include finding code
families with better encoding rates or distance scaling, developing real-time de-
coders that achieve good logical performance, as well as performing logical opera-
tions with these codes. Developing the required connectivity or qubit engineering
to implement these more optimal codes is also an outstanding design and fab-
rication challenge. Constructing models that consider the expected crosstalk for
these new connectivity layouts can also be useful to evaluate how practical a cer-
tain LDPC code is to realize in practice.

• Simulations and error modelling. There has been a considerable effort in devel-
oping accurate physical error models that can accurately predict the logical perfor-
mance observed in experiments, with some simulations achieving an impressive
agreement with the measured results [5]. The performance of the small-distance
codes realized in recent experiments can still be numerically explored with signifi-
cant accuracy using density matrix simulations [91, 92]. Therefore, this is an excel-
lent opportunity to gain an in-depth understanding of the impact of various error
sources on the logical performance of these codes. Achieving a good agreement
between the defect rates or logical error rates predicted by such simulations and
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the experimental observations when employing leakage reduction units can give
new insights into the impact of leakage in this setting and whether the decoder
can be adapted to handle this error better. For example, in some recent distance-
three surface code experiments performing only a single type of stabilizer mea-
surements (referred to as Surface-13), it was observed that data-qubit LRUs lead
to lower defect rates but higher logical error rates (unpublished). It is not imme-
diately obvious why this is the case and whether it is due to some specific errors
induced by these LRUs or due to suboptimal decoding.

On the other hand, the number of qubits available in current processors is quickly
progressing outside of the range of what can be explored using density-matrix sim-
ulations. Therefore, developing stochastic and scalable error models that can still
make relatively accurate predictions on the code performance and the expected
thresholds is very important. Recently, this effort has been extended to include
stochastic models of non-conventional errors, namely leakage and crosstalk [5].
Other important error sources that can significantly impact the code performance
include TLS interactions and ionizing radiation, the impact of which was described
above. A straightforward way to capture the effect of these error sources is to cre-
ate a model that captures the increase in the qubit relaxation rates that these error
sources generally lead to. In particular, TLS can impact the relaxation rates at the
operating point, during the readout, or during operations that involve moving the
qubit to a lower frequency. However, this might not accurately capture the impact
of strongly coupled TLS, which can sometimes interact coherently with a qubit,
potentially leading to non-Markovian qubit dynamics. Therefore, a better under-
standing of the impact of TLS on the operations and the overall impact of TLS and
ionizing radiation on the code performance can lead to better mitigation strategies
for these errors.

• Accurate real-time decoders. Real-time decoding is particularly challenging for
superconducting-qubit processors due to the fast gate durations, leading to an
error correction round typically taking on the order of 1 µs [93]. Notably, this
window also includes the time it takes to process the readout signal and send the
observed binary outcome to the decoder, leaving even less time for a decoder to
process the measured syndromes. Unfortunately, real-time decoding is necessary
for scalable fault-tolerant computation to avoid the possibility of exponential in-
crease in the computation time, known as the backlog problem [94, 95]. There have
been a few real-time decoder implementations, typically based on the minimum-
weight perfect-matching [96] on union-find algorithms [97] that run on field pro-
grammable gate arrays or application-specific integrated circuits, which can deal
with codes of large distances. However, these algorithms are based on certain ap-
proximations, such as the assumption that the physical errors can be modeled as
independent X and Z errors [98]. This typically is not the case in reality, which
results in higher logical error rates when compared to more complex decoders,
such as belief-matching [5, 99] or neural network decoders [100–102]. More gen-
erally, decoders should be able to deal with errors that lead to more than two non-
trivial defects that may arise from Y errors, for example. These more accurate
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algorithms can substantially decrease the qubit overhead, depending on the de-
tails of the physical error model. Another feature that might be important in the
future is the ability of the decoder to adapt to fluctuations in the noise, which can
be achieved by retraining a neural network or via the adaptive estimation of the er-
ror rates from the measured data [103]. Therefore, it is essential to investigate and
optimize the runtime of these more accurate and flexible decoders and determine
whether they can be used for real-time correction.

Naturally, these are only some challenges that must be solved to build a fault-tolerant
computer. Exploring alternative qubit platforms with better noise resilience or more
flexible connectivity is extremely valuable. Furthermore, engineering interactions that
enable lower two-qubit and readout error rates remain essential for reducing the over-
head required by error corrections. Another key challenge is developing more accurate
fabrication or post-fabrication correction methods that will allow precise targeting of the
design parameters. Finally, none of these issues consider the applications of these com-
puters, which will require optimized algorithms that outperform their classical coun-
terparts. Ultimately, implementing error correction in the first place seems a daunting
challenge for current experiments. I hope this dissertation has made a small contribu-
tion towards making fault-tolerant computation a reality in the future.
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Pechal, M. Mondal, M. Oppliger, C. Eichler, and A. Wallraff, Rapid High-Fidelity
Single-Shot Dispersive Readout of Superconducting Qubits, Phys. Rev. App. 7,
054020 (2017).

[17] C. C. Bultink, M. A. Rol, T. E. O’Brien, X. Fu, B. C. S. Dikken, C. Dickel, R. F. L. Ver-
meulen, J. C. de Sterke, A. Bruno, R. N. Schouten, and L. DiCarlo, Active resonator
reset in the nonlinear dispersive regime of circuit QED, Phys. Rev. App. 6, 034008
(2016).

[18] J. Heinsoo, C. K. Andersen, A. Remm, S. Krinner, T. Walter, Y. Salathé, S. Gas-
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