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Abstract This work proposes a new hierarchical multiscale
optimization technique to improve the performance of life-
cycle production optimization. This approach represents a
combination of two previous multiscale approaches pre-
sented in the literature and is theoretically motivated by
the concept of refinement indicators. The new algorithm
is applied to two example problems, and its performance
is compared with other life-cycle production optimization
algorithms that have been proposed in the literature includ-
ing the two hierarchical multiscale optimization methods on
which it is based. In a separate paper (Oliveira and Reynolds
2015), the proposed algorithm is successfully applied to a
field case.
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1 Introduction

The life-cycle production optimization is applied in a gen-
eral framework called closed-loop reservoir management
(CLRM) to estimate optimal operational well settings based
on the updated knowledge of the reservoir [2, 4, 7, 10, 12,
14, 16–20, 23–25]. The optimization aims to maximize an
objective function for the remaining life of the reservoir,
which is typically defined as the hydrocarbon recovery or
the life-cycle net-present-value (NPV) of production.

In the standard optimization procedure, we divide the
reservoir lifetime into a fixed number of controls steps and
perform a single optimization. These control steps are usu-
ally uniformly distributed in time, and all wells usually are
assigned the same number of control steps. The choice of
the number and length for the control steps is ad hoc and
may affect the optimization result. Although widely applied
in the oil industry, the standard procedure of defining a fixed
set of control steps is not a straightforward task, since we
do not know a priori the best control parametrization for
each problem. A choice of few controls may not provide
enough degrees of freedom to estimate the optimum solu-
tion, whereas an excessively high number of controls may
lead to badly ill-conditioned problems, which are difficult
to solve.

Multiscale techniques are a possible optimization strat-
egy to overcome the inherent difficulty to determine a priori
the ideal set of control steps. In multiscale optimization
approaches, the control variable parametrization is pro-
gressively modified as the optimization proceeds, seeking
for an appropriate parametrization which leads to the best
estimate of the optimum well controls. For the life-cycle
optimization problem, multiscale optimization has already
been considered in the literature [1, 11, 14, 22].
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We previously proposed a hierarchical multiscale
approach [14] for adaptively selecting the lengths of control
steps during the optimization, which we refer to as Hi-MO.
With Hi-MO, we can merge and split the well controls as
the optimization proceeds, but the splitting procedure is sim-
ple and straightforward, where we simply refine the controls
eligible for splitting into a predetermined number of new
controls evenly distributed. We propose an extension of Hi-
MO where we keep the same merging step, but we propose
a refinement procedure based on the refinement indicator
concept following the ideas presented by Lien et al. [11].

This paper is organized as follows: first, we state the
waterflooding optimization problem which we apply to
evaluate the performance of our new hierarchical technique.
Thereafter, we present details of the refinement-indicator
based splitting procedure. Finally, we present the results for
two numerical examples, a channelized reservoir and the
Brugge field. Then, we summarize the results and present
the conclusions of this work.

2 Waterflooding optimization problem

Our focus in this work is on waterflooding optimization pro-
cesses, where we aim to maximize the net present value
(NPV) over the remaining life of the reservoir which is given
by

J (u) =
Nt∑

n=1
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where ro ($/STB) is the oil revenue; rw ($/STB) is the cost of
disposal of produced water; rwi ($/STB) is the water injec-
tion cost, and b is the discount rate for a particular reference
time τr. In the results presented here, we use τr = 365 days.
The time at the end of the nth time step is denoted by tn; �tn
is the size of the nth time step; and Nt is the total number of
time steps. P and I, respectively, are the number of produc-
ing and injecting wells; qn

o , j (STB/D) and qn
w, j (STB/D),

respectively, denote the average oil rate and the average
water rate at the j th producing well over the nth time step,
whereas qn

wi, j (STB/D) is the average water injection rate
at the j th injector well for the nth time step.

We let u denote the column vector of all well controls and
let Nu denote the total number of controls. Thus, u is a Nu-
dimensional column vector. To evaluate the NPV function
as defined in Eq. 1 for a given u, it is necessary to perform
a reservoir simulation run and compute the NPV from the
outcomes of the a simulation run. Here, we simply apply the

gradient-based steepest ascent method [13], thus the reser-
voir simulator used must be able to compute the gradient of
the objective function with respect to the vector of control
variables (∇uJ (u)) and the adjoint method is the only com-
putationally efficient method to obtain an accurate gradient
of the objective function. In this work, we use the commer-
cial simulator Eclipse 300 [21] to obtain both the objective
function and its gradient. However, Eclipse 300 does not
output gradients for nonlinear state-dependent constraints,
thus, only linear constraints are considered when apply-
ing the steepest ascent algorithm to solve the optimization
problem defined below by Eqs. 2a, 2b, and 2c.

The dynamic optimization of a waterflooding process
over the reservoir life-cycle subject to bound and linear
constraints can be expressed as

maximize
u∈RNu

J (u), (2a)

subject to ulowi ≤ ui ≤ u
up
i , i = 1, 2, . . . ,Nu (2b)

AI u − c ≤ 0 (2c)

where J (u) is the objective function given by Eq. 1.
The bound constraints are represented by Eq. 2b, where
the terms ulowi and u

up
i denote, respectively, the lower

and upper limits for the ith control variable. Equation 2c
denotes the set of linear inequality constraints, where c =
[c1, c2, . . . , cni]T is a ni-dimensional column vector of with
constant entries which represent the inequality constraint
values, ni denotes the number of inequality constraints, and
AI is the ni×Nu Jacobian matrix of the inequality constraint
functions. Since we do not have gradients of nonlinear
state-dependent constraints, here we consider only linear
constraints as in Eq. 2c. In this work, we enforce bound con-
straints by using a logarithm transformation [9, 23], and the
general inequality linear constraints (Eqs. 2c) are handled
with the augmented Lagrangian method [6, 13]. We denote
the objective function to be maximized as La , which refers
to the augmented Lagrangian function [6, 13]. Because the
log-transformation is applied to handle bound constraints, if
the optimization problem does not contain constraints in the
form of Eq. 2c, then we simply have that La(u) ≡ J (u).

2.1 Well control vector representation

For the life-cycle production optimization problem, the
optimization control variables are well operational settings
(typically either well fluid rates or flowing bottom-hole
pressures) at different times throughout the reservoir life-
time. Letting uw denote the vector of well controls at all
control steps for well w, the vector u can be written as

u =
[
(u1)T , (u2)T , · · · , (uNw)T

]T

, (3)
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where Nw is the total number of wells. Denoting the number
of control steps for a particular well w by Nw

c , u
w, w =

1, 2, . . . ,Nw, is a Nw
c -dimensional column vector and Nu =∑Nw

w=1 N
w
c .

A control step c for a particular well w is defined by an
interval of the form

Iw
c = [

twc−1, twc
)
, (4)

for c = 1, 2, . . . ,Nw
c and with tw0 = 0, where the control

variables are specified constant along each interval defined
in Eq. 4.

Considering the numerical aspects of reservoir simulators
which select time-steps adaptively, it is useful to specify the
finest time-scale that will be used to define controls steps.
To do so, we define the total number of fine-scale steps, Ns ,
and compute the fine-scale time interval

�t̂ = L

Ns

, (5)

where L (days) is the remaining life of the reservoir. Ns

must be a non-zero natural number. For convenience, we
should select Ns to be some power of two and require that
any coarser control step considered be the union of fine
scale steps.

Given �t̂ , the finest time-scale for control intervals
(steps) is defined by the times t̂n = t̂n−1 + �t̂ , where for
simplicity, we assume t̂0 = 0. The fine-scale time intervals
are given by În = [

t̂n−1, t̂n
)
, for n = 1, 2, . . . ,Ns . Note

that no two distinct fine-scale time intervals intersect and
the fine-scale steps (intervals) can be defined the same for
all wells so that we can also express any control step for
any well w in terms of an union of fine-scale time intervals.
Therefore, we can define the set of fine-scale intervals that
pertains to control step c of well w as

J w
c =

{
j

∣∣∣Îj ⊂ Iw
c

}
. (6)

We denote the number of elements of J w
c by nw

c , i.e.,
the coarse control step interval Iw

c contains nw
c contiguous

fine-scale intervals. Thus, given a specific uw
c for Iw

c , we
can define, for each fine-scale control interval contained in
Iw
c , a corresponding fine-scale control variable, ûw

j for j =
1, 2, . . . ,Ns , such that

ûw
j = uw

c ∀ j ∈ J w
c . (7)

By the adjoint method, we can compute all partial deriva-
tives ∂La

∂ûj
, for j = 1, 2, . . . ,Ns × Nw, where Ns is the

total number of fine-scale steps and Nw is the total num-
ber of wells. However, we need to compute ∂La

∂ui
, for i =

1, 2, . . . ,Nu. We can write La in terms of û, which allows
us to apply the chain rule to obtain

dLa =
Nu∑

k=1

nk−1∑

j=0

∂La

∂ûjk+j

dûjk+j , (8)

where jk is the index of the first fine-scale variable corre-
spondent to the kth control and nk is the number of fine-scale
control intervals contained in the interval which represents
the control step for the kth control variable. From Eq. 8, it
follows that

∂La

∂ui

=
Nu∑

k=1

nk−1∑

j=0

∂La

∂ûjk+j

∂ûjk+j

∂ui

. (9)

We know that
∂ûjk+j

∂ui
= 0, for j = 0, 1, . . . , nk − 1 and

k �= i. Moreover, from Eq. 7, we see that for k = i,
∂ûjk+j

∂ui
=

1 for j = 0, 1, . . . , nk − 1. It follows that

∂La

∂ui

=
ni−1∑

j=0

∂La

∂ûji+j

. (10)

3 Refinement-indicator based hierarchical
multiscale optimization

Oliveira and Reynolds [14] presented the hierarchical mul-
tiscale method (Hi-MO) for adaptively selecting the number
and the lengths of control steps as the overall optimization
proceeds and we begin by reviewing their procedure. After
maximizing La for a specific level of parametrization, they
then select the new set of control steps for the next level. The
reparametrization step consists of a merging procedure and
a splitting procedure. The coarsening procedure is based on
three criteria (see [14, 16] for details), which are checked
well-by-well as follows:

Control-Variation criterion For i = 2, 3, . . . ,Nw
c , verify

whether
∣∣∣uw

i − uw
i,ref

∣∣∣

u
up,w
i − u

low,w
i

< ξu, (11)

where ξu is the control-variation tolerance for merging well
controls; uw

i is the ith control at well w, and uw
i,ref is a refer-

ence control value corresponding to the average among all
consecutive controls previous to the ith control which were
merged, i.e.,

uw
i,ref = 1

ni−1
�

∑

j∈�w
i−1

uw
j , (12)

where �w
i−1 is the set of control steps which were merged

with the control step i−1 and ni−1
� is the number of elements

of �w
i−1.

Gradient-Variation criterion If after optimization at the
previous level of parametrization, two temporarily consecu-
tive controls are approximately equal (verified with Eq. 11)
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and the derivatives of La with respect to these two con-
trols are also approximately equal, these controls should be
merged. Specifically, to verify if a control step is eligible
for merging according to the gradient-variation criterion, we
check whether

∣∣∣gw
i − gw

i,ref

∣∣∣

max
{
gw
max, 1 × 10−2

} < ξg, (13)

where ξg is the gradient-variation tolerance for merging well

controls, gw
max = max{ |gw

j | }Nw
c

j=1 is the maximum mag-
nitude of the gradient components for well w, gw

i is the
component of the gradient vector (∇La) related to the ith

control at well w; gw
i,ref is a reference gradient defined by

gw
i,ref = 1

ni−1
�

∑

j∈�w
i−1

gw
j . (14)

Gradient-Magnitude criterion The third criterion
requires that we should not merge controls which cor-
respond to gradient components of large magnitude, so,
specifically, we require that

|gw
i |

max
{
gw
max, 1 × 10−2

} < ρg, (15)

where ρg is the gradient-magnitude tolerance for merging
well controls in order to merge the control interval for uw

i

with the set of control steps which were merged with the
control step i − 1 and ρg ≡ (1 − ξg).

A particular control step is merged with the preceding
control step only if all three criteria hold. Controls that were
not merged should be split in a predefined number of evenly
distributed new controls, which is the uniform splitting pro-
cedure for Hi-MO (see details in [14, 16]). This splitting
procedure is quite simple and straightforward but is heuris-
tic. The purpose of this work is to present a procedure for
splitting control steps which has a more theoretical founda-
tion. In the multiscale algorithm presented here, the merging
criteria is identical to the one outlined above [14, 16] but the
splitting criteria have a more fundamental basis.

3.1 Theoretical motivation of the refinement procedure

Based on the ideas discussed originally by Chavent and
Bissell [5] and Ben Ameur et al. [3], and applied to the opti-
mal well control problem by Lien et al. [11], we consider
using so-called Refinement Indicators (RI) to determine the
best way to split a particular control step at each refine-
ment level of our hierarchical multiscale algorithm. The
refinement-indicator concept is based on the equivalence of
two optimization solutions for two different parameteriza-
tions of control variables, or, for the problem of interest
here, two different levels of refinement.

Without loss of generality, consider for simplicity a prob-
lem with one single control variable ũ, which may be split
into two new control variables, ũ(1) and ũ(2). The one-
dimensional optimization problem based on ũ is given by

maximize
ũ∈R

La(ũ), (16)

which has a solution denoted by ũ�. Similarly, the two-
dimensional optimization problem based ũ(1) and ũ(2) can
be stated as

maximize
ũ(1),ũ(2)∈R

La(ũ
(1), ũ(2)), (17)

whose solution is denoted by ũ�,(1) and ũ�,(2). We may think
of ũ� as the optimal control for a time interval [0, L] when
only one control step is used for the entire time interval
and [ũ�,(1), ũ�,(2)]T as the optimal vector of controls when
[0, L] is split into two control steps [0, t1) and [t1, L] where
the optimal vector depends on the choice of t1. Let δũ� =
ũ�,(1) − ũ�,(2) be the difference (perturbation) between the
values of the two optimum controls for problem defined by
Eq. 17. Note that if δũ� = 0, the solutions of the problems
specified by Eqs. 16 and 17 are the same. On the other hand,
if we know a priori the optimum perturbation δũ�, that will
maximize La(ũ

(1), ũ(2)) over all t1 such that 0 < t1 < L,
then the solution of problem in Eq. 17 is the same as the
solution of the following constrained problem

maximize
ũ(1),ũ(2)∈R

La(ũ
(1), ũ(2)), (18a)

subject to ũ(1) − ũ(2) = δũ (18b)

where δũ = δũ�.
However, we do not know a priori the optimal pertur-

bation δũ�, so we instead consider the generic equality
constraint in Eq. 18b in terms of an unknown perturba-
tion, δũ, and investigate the sensitivity of the optimum value
of the objective function La to this perturbation. Chavent
and Bissell [5], and other authors who followed their ideas
[3, 11], derived the sensitivity of the optimum value of the
objective function La to the perturbation δũ and Lien et al.
[11] showed that the Lagrange multipliers associated with
the constrained problem in Eq. 18 represent the sensitiv-
ity of La to δũ. For the simple problem considered here,
the Lagrange multiplier at the optimal (ũ(1), ũ(2)) associated
with the equality constraint in Eq. 18b is given by

λ = ∂La

∂ũ(1)
= − ∂La

∂ũ(2)
, (19)

where λ must be nonnegative to satisfy the optimality
conditions. It follows that

2λ = ∂La

∂ũ(1)
− ∂La

∂ũ(2)
=

∣∣∣∣
∂La

∂ũ(1)
− ∂La

∂ũ(2)

∣∣∣∣ , (20)
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where the last equality of Eq. 20 follows from the fact that
λ ≥ 0 by standard optimality conditions [13]. Higher val-
ues of λ correspond to higher values of the sensitivity of
La(ũ

(1), ũ(2)) to ũ(1) − ũ(2) = δũ. This suggests that given
a set of choices for the splitting of a given ũ into two con-
trols, (ũ(1) and ũ(2)), i.e., given a set of choices for t1, a good
choice is to split the control step into the two steps that cor-
respond to the highest sensitivity. More specifically, given a
optimal control ũi for a control step [t̃i−1, t̃i ), the basic idea
of the splitting procedure is to consider the consequences of
splitting this control interval two control steps, [t̃i−1, t̃s) and
[t̃s , t̃i ) for a sequence of increasing values of t̃s . The values
considered for t̃s would be chosen from the set of endpoints
of fine scale time intervals that are contained in (t̃i−1, t̃i ).
For each t̃s , we let ũ(1),s correspond to the control variable
on [t̃i−1, t̃s ) and let ũ(2),s correspond to the control variable
on the control interval [t̃s , t̃i ). For each s, we evaluate the
refinement indicator which is defined by

πs ≡ π(t̃s) =
∣∣∣∣

∂La

∂ũ(1),s
− ∂La

∂ũ(2),s

∣∣∣∣ , (21)

where the derivatives required in Eq. 21 are evaluated at
(ũ(1),s , ũ(2),s) = (ũi , ũi ). Then we choose the value of t̃s
that gives the highest value of πs .

Consider a choice of t̃1 that divides [t̃i−1, t̃i ) into two
nonempty subintervals and let ũ(1) and ũ(2) denote the corre-
sponding partition of ũi such that ũi is the optimal based on
the non-partitioned control interval. It follows from Eqs. 10,
19 and the optimality of ũ(i) that

∂La

∂ũ
(ũi) = ∂La

∂ũ(1)
+ ∂La

∂ũ(2)
= ∂La

∂ũ(1)
− ∂La

∂ũ(1)
= 0. (22)

so if we try to perform an iteration of the steepest ascent
method based on ũi , the optimization will terminate because
∇ũLa = 0. However, Eq. 22 does not imply that ∇ũ(1),ũ(2)La

evaluated at (ũ(1), ũ(2)) = (ũi , ũi ) is equal to zero. Thus, if
one splits ũ into ũ(1) and ũ(2), it may be possible to obtain
at greater value of La based on the refined control steps. As
discussed in more detail immediately below, our choice is
to choose t̃1 to maximize the refinement indicator (Eq. 21)
as this choice maximizes the sensitivity of La to the new
control variables.

Similar to the above discussion, we now consider the ith

control variable of well w, uw
i , which is defined on the con-

trol step (interval) Iw
i = [

twi−1, twi

)
; see Eq. 4. Consider

that we cut Iw
i at a time twi,s ∈ (

twi−1, twi

)
to form the two

new potential control intervals given by

I
w,(1)
i = [

twi−1, t
w
i,s

)
, (23)

and

I
w,(2)
i = [

twi,s , twi
)
, (24)

which define, respectively, two new control variables u
w,(1)
i

and u
w,(2)
i . Then, based on Eq. 21, the refinement indicator

associated with the cut at twi,s is given by

πw
i,s =

∣∣∣∣∣
∂La

∂u
w,(1)
i

− ∂La

∂u
w,(2)
i

∣∣∣∣∣ , (25)

where the derivatives presented in Eq. 25 are evaluated at
(u

w,(1)
i , u

w,(2)
i ) = (uw

i , uw
i ). Note that the derivatives in

Eq. 25 are easily computed from the derivatives of the fine-
scale control variables as defined in Eq. 7, so computing the
refinement indicators, πw

i,s , is virtually cost free; thus, we
can compare a large number of potential cuts in uw

i without
increasing substantially the computational cost.

3.2 RI-based splitting procedure

As discussed previously, the multiscale method that we pro-
pose below incorporates refinement indicator (RI) values to
split control intervals but in all other details follows the steps
of the Hi-MO algorithm of [14, 16]. The new algorithm is
referred to as Refinement Indicator-based Hierarchical mul-
tiscale method (RHi-MO). Similar to Hi-MO, the RI-based
splitting procedure is applied only for the control steps that
were not obtained by merging two or more control intervals
in the merging procedure. We check the control step refine-
ment on a well-by-well basis, so for each control interval
eligible for splitting, Iw

i , which corresponds to the ith con-
trol step at well w, we find the time-cut, twi,s , which provides
the highest RI (πw

i,s) among all potential cuts considered for

Iw
i , denoting by nw

pot,i the number of potential cuts of the ith

control interval of well w. Lien et al. [11] proposed setting
npot = 6 for all controls. However, since the computational
cost required to evaluate the refinement indicators is neg-
ligible, we propose a procedure to specify the number of
potential cuts for each control interval by solving

2nw
pot,i = �twi

�t̂
(26)

for nw
pot,i , where�twi = twi −twi−1 and�t̂ is defined in Eq. 5.

Then, we define the potential time-cuts as

twi,s = twi−1 + s

(
�twi

nw
pot,i

)
, (27)

for s = 1, . . . , nw
pot,i , and compute the RI (πw

i,s) associated
with each time-cut twi,s using Eq. 25. To prevent suddenly
splitting a control step into an excessively small new control
interval, we add a safeguard that any new control interval
obtained by splitting cannot be smaller than a quarter of the
original control step. Thus, we set πw

i,s = 0 for any cut twi,s

Comput Geosci (2015) 19:1139–1157 1143



such that twi,s − twi−1 < �twi /4 or twi − twi,s < �twi /4. This
safeguard allows the hierarchical refinement to be devel-
oped more homogeneously, i.e., we do not implement any
abrupt reduction in length of any control interval. We com-

pute the highest RI as πw
i = max{πw

i,s}
nw
pot,i

s=1 . For those
controls not eligible for refinement, i.e., those which were
obtained by merging two or more controls steps, we simply
set πw

i = 0.
Once we have computed the best cut for each control step

of well w, we propose three options on how to implement
the best local split. The splitting procedure is performed
according to one option which defines the number of control
steps per well to be refined. Denoting the highest refine-
ment indicator value among all control steps of well w as
πw
max = max

{
πw

i

}Nw
c

i=1, the three options available are as
follows:

1. Split ONE: Only one single control step per well is split.
The control step selected for splitting corresponds to
the one with the highest refinement indicator at that
particular well (πw

max);
2. Split FEW: The ith control steps at a particular well w

will be split if and only if πw
i ≥ ρgπ

w
max where ρg ∈

(0, 1) and i = 1, 2, . . . ,Nw
c ;

3. Split ALL: All control steps that were not obtained by
merging two or more control intervals in the merging
step are split.

We set the scalar ρg required when the splitting option is
chosen as FEW equal to the gradient-magnitude tolerance
for merging well controls (see Eq. 15). Note that if ρg = 0,
then all control steps are selected for splitting, which is
equivalent to selecting the option ALL. On the other hand,
if ρg = 1, then only the control steps which have a refine-
ment indicator equal to maximum indicator are selected
for splitting, which is virtually always equivalent to select-
ing the option ONE. After defining the control steps at any
refinement level, the solution of the resulting optimization
problem is solved using the augmented Lagrangian method
where at each inner iteration, the augmented Lagrange func-
tion is maximized by the steepest ascent algorithm; see
[8, 13] for theoretical convergence results.

In terms of the initial set of control variables, similar
to the method of Lien et al., we always initialize RHi-MO
with one single control step per well. However, we perform
one RI-based splitting procedure before the first optimiza-
tion step is conducted followed by checking whether new
control steps should be remerged. This initialization may
provide a better initial set of control steps without introduc-
ing any additional cost since all required gradients can be
obtained from the fine-scale gradients already computed for
the initial guess.

For the sake of comparison, we also consider the other
multiscale methods defined in [14], namely, the Hi-MO
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Fig. 1 ln kh, three channel case

of Oliveira and Reynolds [14], the successive splitting mul-
tiscale optimization (SS-MO) [11, 22], and the method
proposed by Lein et al. [11] based on refinement indicators
(RI-MO); see [14] for details.

We specify ξu = 0.01, ξg = 0.10, and ρg = 0.90 as the
reparameterization tolerances for the examples presented
in this paper. The maximum number of allowable reser-
voir simulations is set equal to 150 for the problems with
only bound constraints, whereas we set 1000 as the maxi-
mum allowed number of simulation runs for the constrained
problems solved with the augmented Lagrangian method.
In terms of the tolerances for the change in the objective
function and for the change in the control variables, we use
ε0f = 0.1 and ε0u = 0.1, where ε0f and ε0u, respectively,
are the initial convergence tolerances for the change in the
objective function and for the change in the control vari-
ables. We also use ε�

f = 1×10−4 and ε�
u = 1×10−3, where

ε�
f and ε�

u, respectively, are the final convergence tolerances
for the change in the objective function and for the change
in the control variables.

Fig. 2 Relative permeability curves, three channel case
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Table 1 Reservoir properties, three channel case

Reservoir grid 25 × 25 × 1

Depth 4800 ft

Initial pressure 4000 psi

Porosity (φ) 0.20

Compressibility (ct ) 6.9 × 10−5 psi−1

Initial saturation (Swi ) 0.20

Viscosity (μ) 2.2 cP

4 Examples

In this section, we apply the refining and coarsening proce-
dures to two examples and the performance of RHi-MO is
compared to the performance of the other methods. In the
examples considered, the objective is to optimize the overall
NPV for a reservoir under waterflooding. The first example
pertains to a two-dimensional reservoir with a geologi-
cal heterogeneity represented by a channelized depositional
environment. The second example considers a large field-
scale reservoir with a complex geological description. The
reservoir contains several wells under control, both produc-
ers and injectors. The specified reservoir life is long enough
to observe significant water production in many production
wells. In all examples, we apply two possible constraint sce-
narios. First, we consider only bound constraints (Eq. 2b).
In the second scenario, in addition to the bound constraints,
we also consider linear inequality constraints (Eq. 2c).

4.1 Example 1: three-channel case

The three-channel model is based on a uniform grid with
25 × 25 × 1 grid blocks, �x = �y = 100 ft, and the
thickness of the reservoir is 20 ft. The permeability distribu-
tion, which is shown in Fig. 1 in terms of ln kh, represents
a channelized reservoir, which contains nine producers and

four injectors arranged in four five-spot patterns; the reser-
voir is produced under a waterflooding strategy with relative
permeability curves presented in Fig. 2, and properties
summarized in Table 1.

The total liquid rates of each producing well and the
water injection rate of each injector are controlled for the
waterflooding optimization problem during the anticipated
total project lifetime, which is 1800 days. The upper bounds
for the total liquid rate at the producers is 200 STB/D
and for the water injection rate at the injecting wells is
500 STB/D. For both producers and injectors, the lower
bound is 0 STB/D. We define 80 STB/D as the initial
guesses for the total liquid producing rates and 200 STB/D
as the initial guess at the injectors. In this example, we opti-
mize the NPV, considering the oil revenue is $50.0 /STB;
the water production cost is $5.0 /STB; the cost of injecting
water is $2.0 /STB; and an annual discount rate of 10.0 %.

Only bound constraints We optimize the three-channel
case using the steepest ascent method based on the
adjoint-gradient. The multiscale techniques SS-MO, Hi-
MO, RI-MO, and RHi-MO are compared against the base
parametrization case. For the base case, there are 10 fixed
control steps of 180 days duration for each well; i.e., there
are 130 control steps (and 130 control variables). We also
consider a fine parametrization such that each well contains
128 fixed control steps which results in 1664 control vari-
ables. We start SS-MO with two control steps per well, each
of duration equal to 900 days, and set nsplit = 2. For RI-
MO, we apply one initial control step per well as in Lien
et al. [11]. For Hi-MO, we consider the cases where either
nsplit = 2 or nsplit = 4 which are applied in two possibili-
ties for the initial set of control steps, 2 and 10 initial control
steps per well. In terms of RHi-MO application, we vary the
number of control steps actually split by using the options
ONE, FEW, and ALL.

Table 2 Summary; only bound
constraints, three channel case NPV,×107$ # Sim. Final Nu

Base parametrization: 10 fixed control steps 6.6924 33 130

Fine parametrization: 128 fixed control steps 6.6158 44 1664

SS-MO 6.7087 59 832

RI-MO (1 init. control step) 6.6560 39 34

Hi-MO (2 init. control steps; nsplit = 2) 6.7122 36 105

Hi-MO (2 init. control steps; nsplit = 4) 6.7368 49 197

Hi-MO (10 init. control steps; nsplit = 2) 6.6766 55 211

Hi-MO (10 init. control steps; nsplit = 4) 6.7389 43 217

RHi-MO (split ALL) 6.9037 81 252

RHi-MO (split ONE) 6.9262 36 56

RHi-MO (split FEW) 6.9264 33 60
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Fig. 3 Optimal control rates for
producing wells; only bound
constraints for base
parametrization (10 fixed control
steps), fine parametrization (128
fixed control steps), SS-MO,
RI-MO, Hi-MO with 10 initial
control steps (nsplit = 4), and
RHi-MO with option split FEW,
three-channel case
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Table 2 presents the summary of all results obtained for
the three-channel case. The results are compared in terms
of the final NPV obtained by each approach, the number of
reservoir simulation runs required to reach that final NPV,
and the number of control variables used by each technique.
We note from the results presented in Table 2 that, except
for RI-MO (method of Lien et al.) and for Hi-MO (10 initial
control steps; nsplit = 2), all multiscale techniques outper-
form the base parametrization. The results of SS-MO and
the majority of the Hi-MO applications are superior to the
base parametrization, however, by a small margin of 0.25 %
for SS-MO and at most 0.7 % for Hi-MO. For this exam-
ple, all Hi-MO schemes lead to results better than SS-MO
in terms of the final NPV and the number of simulation runs
required, except for the case with 10 initial control steps and
nsplit = 2, but the difference on the final NPV is small. On
the other hand, the results obtained with the three different
versions of RHi-MO give fairly close optimal values of NPV

and the final NPVs for these methods are more than 3 %
higher than the NPV obtained with the base parametrization
or any other method. Additionally, RHi-MO is particularly
efficient in terms of its computational cost for this exam-
ple, since the best result obtained with RHi-MO requires the
same number of simulation runs as the base parametrization
but leads to a final NPV that is 3.5 % higher.

We also note from the results presented in Table 2
that we do not obtain better results by introducing an
extremely refined set of control steps as we have for the
fine parametrization case. In fact, the fine parametrization
leads to a final NPV 1.1 % lower than the base parametriza-
tion and requires more simulation runs. This fact is not
unexpected since a certain level of ill-conditioning may
exist for large scale optimization problem, which can affect
the overall optimization performance in terms of both the
final objective function and the number of simulation runs
required.
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Fig. 4 Optimal control rates for
injecting wells; only bound
constraints, for base
parametrization (10 fixed control
steps), fine parametrization (128
fixed control steps), SS-MO,
RI-MO, Hi-MO with 10 initial
control steps (nsplit = 4), and
RHi-MO with option split FEW,
three-channel case
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In terms of the final number of control variables, RHi-
MO with splitting option ONE and FEW utilizes far fewer
control variables than all other methods except RI-MO
which yields a much lower NPV than the RHi-MO method.
Note that SS-MO leads to an extremely large number of con-
trols but results in essentially the same NPV as is obtained
with the base parameterization.

Although the final number of control variables is not
a performance criterion per se, it is important to high-
light that optimization approaches which require fewer well
controls are preferable from the operational point of view
as long as they still ensure a reasonably high final NPV.
Strategies which result in a small number of well con-
trols correspond to strategies which require few changes
in the well operational settings in the field production
operation.

Optimum well controls obtained by the methods con-
sidered are presented in Figs. 3 and 4, which depict the
controls obtained with the base parametrization (10 fixed

controls steps), the fine parametrization (128 fixed control
steps), SS-MO, RI-MO, Hi-MO with 10 initial control steps
(nsplit = 4), and RHi-MO with option split FEW. In Figs. 3
and 4, the well controls are presented in a color map, where
the horizontal axis represents the time (days) and the verti-
cal axis indicates the wells. The producer well controls are
displayed in Fig. 3, whereas Fig. 4 shows the controls for
the injecting wells.

Although the well controls depicted in Figs. 3 and 4 vary
as the algorithm used to generate them varies, there are some
qualitative similarities. For instance, we note that in the pair
PRO-02/INJ-01, which are connected through a highly per-
meable channel in the North part of the reservoir, we tend to
produce PRO-02 at high rates at early time, decreasing the
total liquid production at PRO-02 later; on the other hand,
we inject at low rates at the beginning, when the reservoir
still provides a good pressure support, then we increase the
water injection rate at INJ-01. All methods somehow cap-
ture this trend, except for RI-MO whose solution for the
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Table 3 Summary; bound plus
inequality constraints, three
channel case

NPV,×107$ # Sim. Final Nu

Base parametrization: 10 fixed control steps 6.0239 132 130

Fine parametrization: 128 fixed control steps 6.0570 92 1664

SS-MO 6.0687 375 1664

Hi-MO (2 init. control steps; nsplit = 2) 6.1049 814 117

Hi-MO (10 init. control steps; nsplit = 2) 6.1390 644 280

RHi-MO (split ALL) 6.0750 649 189

RHi-MO (split ONE) 6.0792 485 88

RHi-MO (split FEW) 6.1110 989 116

controls of well PRO-02 contains only one control step. It is
important to note that the controls at each well exhibit sig-
nificant temporal smoothness although we do not explicitly
impose any correlation between the well controls.

Bound plus linear inequality constraints We reconsider
here the three-channel model with the same bound con-
straints plus two linear inequality constraints. The first
linear inequality constraint is that the total liquid produc-
tion rate is less than or equal to 900 STB/D at all times. The
second linear inequality constraint is that the total injection
rate is less than or equal to 1000 STB/D at all times. The
constrained optimization problem is solved using the aug-
mented Lagrangian method applied with the adjoint-based
steepest ascent method.

We summarize in Table 3 the results obtained for
the constrained problem associated with the three-channel
case. Table 3 presents the results for the base and fine
parametrization, successive splitting, and the hierarchical
optimization methods (Hi-MO and RHi-MO). The original
method of Lien et al. [11] was not designed for constrained
optimization problems, particularly within the augmented
Lagrangian framework; so we do not apply RI-MO here or
in any other constrained optimization problem in this paper.
Similar to the problem with only bound constraints, the base
parametrization case has 10 fixed control steps per well (130
controls at total), whereas in the fine parametrization we
consider 128 control steps per well (1664 controls at total).
As usual, SS-MO starts with two control steps per well and
uses nsplit = 2 at every level of parametrization. We con-
sider two initialization strategies for Hi-MO, where in one
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Fig. 5 Optimum total liquid production rate; bound plus inequality constraints, three-channel case
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Fig. 6 Optimum total injection rate; bound plus inequality constraints, three-channel case

case we initialize with two control steps for each well and
in another case we use 10 initial control steps per well. In
both cases, we set nsplit = 2. For RHi-MO, we again apply

the initialization strategy based on the refinement indicators
and we consider again the splitting options ALL, ONE, and
FEW.

Fig. 7 Depth (ft) of the top of
the structure for the Brugge field
example

Comput Geosci (2015) 19:1139–1157 1149



Table 4 Summary; only
bound constraints, Brugge field

NPV,×109$ # Sim. Final Nu

Base parametrization: 40 fixed control steps 5.0730 71 3360

SS-MO 5.0922 55 1344

RI-MO (1 initial control step) 5.0481 87 246

Hi-MO (10 initial control steps; nsplit = 2) 5.1228 150 1720

Hi-MO (10 initial control steps; nsplit = 4) 5.1054 102 1926

RHi-MO (split ALL) 5.1298 150 753

RHi-MO (split ONE) 5.0725 58 256

RHi-MO (split FEW) 5.1005 56 501

From the results in Table 3, we note that the optimiza-
tion with fine-scale parametrization performs just slightly
better than the base parametrization, both in terms of the
final NPV and the number of simulation runs required to
obtain that final NPV. One might expect that the fine-
scale parametrization problem is more difficult to solve due
to the higher dimensionality of the problem, but for this
constrained case, the solution of the fine-scale problem is
particularly efficient in comparison to the base parametriza-
tion, leading to a higher final NPV with fewer reservoir
simulation runs. However, the excessive number of control
variables in the fine-scale parametrization would be more
difficult to implement in field operations than the base-case
controls. The results we observe from Table 3 implic-
itly suggest that ill-conditioning effects due to the high
dimensionality of the problem have a low impact for this
particular example. Because of this lack of ill-conditioning,
only very small increases in NPV can be obtained with the
hierarchical multiscale methods.

Regarding the linear constraints imposed for this prob-
lem, the total liquid production rates obtained with the
different methods are presented in Fig. 5, and the total injec-
tion rate is shown in Fig. 6. Figures 5 and 6 present the
rates cumulatively, i.e., they also show the individual contri-
bution of each well. We can clearly see from Figs. 5 and 6
that all inequality constrains are honored at all times within
the specified tolerance. In all results, the constraint on the
total liquid production rate remains active at almost all con-
trol steps, whereas the limit on the total injection rate is not
reached at any time by any method. Finally, we observe that
the optimum controls are in general quite smooth, but SS-
MO and Hi-MO with 10 initial control steps provide the
roughest set of well controls.

4.2 Example 2: Brugge field

The second example corresponds to the Brugge field, which
is a reservoir model built by TNO [17] as a benchmark
example to analyze different approaches to closed-loop
reservoir management. According to the available data, 104
geological realizations were generated and provided to the

participants in the benchmark study. A full description of
the Brugge field can be found in [17].

The reservoir simulation model was built based on the
geological information provided and it consists of a 138
× 48 areal grid and nine layers. The reservoir contains
only oil and water, and the initial reservoir pressure is
2465 psi (17 × 103 kPa). The Brugge reservoir contains
30 vertical wells, including 20 smart production wells and
10 smart water injection wells. Wells are equipped with
inflow control valves (ICVs) to individually control produc-
tion or injection from distinct geological zones. Most of the
producing wells are equipped with three ICVs, which are
completed in the top three zones, however, some producers
have only one or two ICVs. All the injectors are equipped
with three ICVs which are completed in the bottom three
geological formations. Considering all wells, we have 84
ICVs installed in the field.

The reservoir lifetime is 30 years, which includes a
history-matching step for the first 10 years. We focus exclu-
sively on the production optimization step for the last
20 years of the reservoir life. Moreover, instead of opti-
mizing well controls based on the unknown true model, we
optimize the well controls for years 10 through 30, based
on the reservoir properties of one particular realization
provided by TNO. We have selected the particular real-
ization FY-SF-KP-7-33, where the reservoir is subdivided
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Fig. 8 Optimization performance in terms of NPV vs. the number of
simulation runs required for bound constraints only, Brugge field
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Fig. 9 Only bound constraints;
optimum controls for well
segment I5–2, Brugge field
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into facies classes with associated poro-permeable charac-
teristics of the fluvial reservoir zone modeled as channel
objects in a shale background. The permeability was gen-
erated stochastically with co-Kriging on porosity. Figure 7
shows the top structure map as well as the well locations.

The control variables are the liquid production rate at
each individual segment for the producers and the water
injection rate at each individual segment for the injectors.
During optimization, the liquid production rate for each pro-
duction segment is constrained to the interval [0, 3000]

STB/D with a lower bound on bottom-hole pressure (BHP)
equal to 725 psi; the injection rate for each injector segment
is constrained to the interval [0, 4000] STB/D with an upper
bound on the injection pressure equal to 2611 psi. These
pressure constraints, which represent nonlinear constraints,
are not taken into account in the example in this paper. The
oil price is $80.0/STB and both the water production and
the injection costs are $5.0/STB. The annual discount rate is
0.1. For the base parametrization, there are 40 fixed control
steps, each one half-year long, and 84 control variables for
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Fig. 10 Only bound constraints;
optimum controls for well
segment P7-3, Brugge field
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each control step, so the total number of control variables
is 3360. The initial guess is 1333.3 STB/D for each inject-
ing segment and 700 STB/D for each producing segment.
Again, optimization is done in the log-transform domain.

Only bound constraints We optimize the Brugge exam-
ple using the base parametrization (40 fixed control steps
for each well segment), SS-MO, RI-MO, Hi-MO, and RHi-
MO. Since the control variables here are the production or

injection rates at each smart completion, the bound con-
straints refer to the rates at each well segment. Here, we
consider the steepest ascent method with adjoint-gradient
algorithm in our hierarchical multiscale framework.

Table 4 summarizes the adjoint-based steepest ascent
results obtained for the Brugge reservoir model when the
only constraints are bound constraints. The hierarchical
optimization method Hi-MO starts with 10 equally dis-
tributed control steps for each well segment and uses either
nsplit = 2 or nsplit = 4, whereas for RHi-MO we once more
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Fig. 11 Only bound
constraints; optimum well
controls for RI-MO [11] and
RHi-MO (ONE), Brugge field
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focus on the splitting options ALL, ONE, and FEW. SS-MO
starts with two uniform control steps at each well segment,
and for RI-MO, we consider only the case where we initial-
ize with one single control step per well as in Lien et al.
[11]. We note from the results in Table 4 that again the mul-
tiscale approaches achieve higher final values of NPV than
we obtain with the base parametrization, except for RHi-
MO (ONE), which reaches basically the same NPV as the
base case, and RI-MO of Lien et al., whose final NPV is
0.5 % lower than we obtain with the base parametrization.
Later, we present a comparative discussion on the results
obtained with RHi-MO (ONE) and RI-MO.

Both results obtained with Hi-MO lead to a NPV higher
than SS-MO; 0.2 % higher for nsplit = 4 and 0.6 % higher
for nsplit = 2, however, the number of simulation runs
required in both cases are larger than is required for SS-
MO. In terms of the results for RHi-MO with splitting
options ALL and FEW, we achieve a final NPV similar to the
results obtained with Hi-MO and also higher than the SS-
MO result. The best NPV is attained with RHi-MO using
option ALL, a result that is 0.74 % higher than SS-MO
and 1.1 % higher than the base parametrization. However,
RHi-MO (ALL) requires almost three times as many sim-
ulation runs as SS-MO. On the other hand, the result for

Table 5 Summary, bound plus
inequality constraints in
augmented Lagrangian method,
Brugge field

NPV,×109$ # Sim. Final Nu

Base parametrization: 40 fixed control steps 4.0749 46 3360

SS-MO 4.4587 508 5376

Hi-MO (2 initial control steps; nsplit = 2) 4.4766 936 918

Hi-MO (2 initial control steps; nsplit = 4) 4.5118 842 1727

Hi-MO (10 initial control steps; nsplit = 4) 4.5091 840 1349

RHi-MO (split ONE) 4.4756 883 599

RHi-MO (split FEW) 4.5258 992 752

Comput Geosci (2015) 19:1139–1157 1153



Fig. 12 Well I4: optimum
controls with bound plus
inequality constraints for base
case, SS-MO, Hi-MO and
RHi-MO, Brugge field
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RHi-MO with the splitting option FEW also gives a reason-
ably good result in terms of the NPV, 0.2 % higher than the
result with SS-MO and requires almost the identical number
of simulation runs as SS-MO.

The performance of the parametrization strategies is
compared in Fig. 8, which presents a plot of NPV versus
the number of simulation runs required to obtain that NPV.
Figure 8 contains the results for the base parametrization,
SS-MO, RI-MO, and the best results obtained with Hi-MO
and RHi-MO.We see that all SS-MO, Hi-MO, and RHi-MO
perform similarly at early iterations and then they asymp-
totically converge to their final NPV. We can also see that
the convergence rate becomes very slow at later iterations.
Hi-MO and RHi-MO terminate due to reaching the max-
imum allowable number of simulation runs, which in this
case is 150, whereas SS-MO terminates at its fourth level
of parametrization (with 16 control steps per well segment)
because the algorithm fails to find an optimum different
from the optimum at the end of the third level. We can also
note from the results depicted in Fig. 8 that RI-MO performs
poorly for this example.

In terms of the optimal solution, Figs. 9 and 10, respec-
tively, display the optimal well controls obtained for well
segments I5-2 and P7-3. Although the methods yield dis-
tinctly different well controls, the qualitative behavior of
the variation in the controls with time obtained with the

base parametrization, SS-MO, Hi-MO, and RHi-MO are
vaguely similar. In general, the well controls vary smoothly,
however, we can observe abrupt chances in the controls
for some cases, loosely resembling bang-bang responses.
We also observe for the Brugge example that the RHi-MO
approaches result in far fewer control variables than the
other techniques; few well control steps represents a poten-
tial advantage in terms of field implementation as fewer
controls steps means we avoid excessive changes in the well
settings.

As we note from the results presented in Table 4, RI-MO
and RHi-MO with splitting option ONE perform poorly in
comparison to the other multiscale methods. Even in com-
parison to the base parametrization, the results for RI-MO
and RHi-MO (ONE) are not satisfactory. Apparently for this
large-scale problem, the strategy of not performing many
refinements is not efficient. RI-MO requires that we refine
one single control variable per cycle/iteration and we note
that this is not sufficient to obtain a final NPV better than
the base case, although RI-MO leads to far fewer control
variables than the other multiscale techniques. In fact, the
optimization with RI-MO leads to a NPV 0.5 % lower than
we obtain with the base parametrization and 1.6 % lower
than the best NPV result.

The optimum well controls for segments I5-2 and P7-
3 obtained with RI-MO and RHi-MO (ONE) are presented
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Fig. 13 Well P7: optimum
controls with bound plus
inequality constraints for base
case, SS-MO, Hi-MO and
RHi-MO, Brugge field
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in comparison in Fig. 11. It is observed that for RI-MO
the controls for some well segments end up without any
refinement (see, e.g., the solution for well segment I-5-2 in
Fig. 11a). In fact, the controls obtained with RI-MO for 45
well segments end up with no refinement whatsoever. The
procedure we implemented for RHi-MO, where we split
one control step per well, rather than simply refine one sin-
gle control variable per cycle as in RI-MO, improves the
result of RI-MO both in terms of the optimum NPV and the
computational cost (see Table 4).

Bound plus linear inequality constraints The Brugge
example is reconsidered here; however, we add an inequal-
ity constraint that the total liquid production rate is less than
or equal to 3000 STB/D at each production well at all times
and that, at each water injection well, the total injection rate
is less than or equal to 4000 STB/D for all times. Thus,
when a particular well has multiple completions, we require
that the sum of the segment liquid rates at each producer
is less than or equal to 3000 STB/D and the sum of the
segment water injection rate at each injector is less than or
equal to 4000 STB/D. The bound constraints are that each
production segment rate is in the interval [0, 3000] STB/D
and each injection segment rate is in the interval [0, 4000]
STB/D. As in previous examples, we use the augmented

Lagrangian method to solve the constrained optimiza-
tion problem using the steepest ascent algorithm with the
adjoint-gradient.

Table 5 summarizes the results for base parametrization,
successive splitting, and hierarchical optimization (Hi-MO
and RHi-MO) considering the inequality constrained prob-
lem. Here, we use three strategies for Hi-MO. In the first
Hi-MO strategy, we initialize the multiscale optimization
using only two control steps for each well and set nsplit = 2,
reproducing the simplicity of SS-MO. The other two Hi-MO
strategies we set nsplit = 4 and vary the initial set of control
steps, using 2 or 10 initial control intervals per well seg-
ment. We applied RHi-MO with the splitting option FEW,
because results from the previous examples show that, in
terms of the three objectives of (i) maximizing final NPV,
(ii) minimizing the number of simulation runs required, and
(iii) minimizing the final number of control variables, it is
a highly competitive method. However, we also consider
RHi-MO with splitting option ONE for this example.

Again, all multiscale strategies outperform the base
parametrization in terms of the optimal NPV. We observe
an increase of 10.7 % in the final NPV over the base
parametrization when we use either Hi-MO strategy,
whereas RHi-MO (split FEW) leads to a NPV 11.2 %
higher than the base case. SS-MO also improves the optimal
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NPV by 9.4 % in comparison to the base parametrization.
The hierarchical technique based on refinement indicators
obtains the highest optimum NPV, which is $16 million
more than the best Hi-MO strategy and $67 million more
than SS-MO. Although the computational cost required
by all multiscale methods is considerable, an impressive
increase in the final NPV is obtained compared to the NPV
of the base case. Although the optimumNPV estimated with
Hi-MO using two initial control steps per well and nsplit = 2
is still higher than the result obtained with SS-MO, we
note that this Hi-MO strategy leads to a result inferior to
the other hierarchical approaches we applied. Note that,
for this example, when we initialize Hi-MO (nsplit = 4)
with only two control steps per well, the number of simu-
lation runs required is about the same as when we use 10
initial control steps for each well (nsplit = 4), and both
estimates for the optimum NPV are quite close. In terms
of the RI-based strategies, we see that using the splitting
option ONE is not as good as using the splitting option
FEW in terms of the final NPV obtained. RHi-MO (FEW)
requires about 20 % more simulation runs than both Hi-MO
approaches, but it also obtains a final NPV slightly higher
(about 0.3 % higher). SS-MO utilizes fewer simulation runs
than any other multiscale technique in this example. We
also observe from the results in Table 5 that all hierarchial
strategies (HI-MO and RHi-MO) require far fewer control
variables than the successive splitting approach and the base
parametrization. In particular, RHi-MO (split FEW) obtained
the highest final NPV requiring the smallest number of
control variables.

Figures 12 and 13 display the optimal total injection
rate for well I4 and the optimal total liquid rates for well
P7 obtained with the base parametrization, SS-MO, Hi-MO
with two initial control steps (nsplit = 4) and RHi-MO
(FEW). Rates are presented cumulatively in Figs. 12 to 13
which also show the individual contribution of each well
segment. We note that, for these three wells, the solutions
we obtain with the different methods are similar. In all cases,
the constraints are honored within 1 % tolerance and the
controls are reasonably smooth, which is preferable for field
implementation.

5 Remarks and conclusions

We proposed a new hierarchical multiscale optimization
strategy, RHi-MO, for adaptively selecting the number of
control steps and their lengths as the overall optimization
procedure progresses. Like the Hi-MO method of Oliveira
and Reynolds [14], RHi-MO can merge control intervals
when it is appropriate, but for the splitting step RHi-MO
uses refinement indicators which potentially result in a
better refinement because splitting based on refinement

indicators has a theoretical motivation. The new hierarchical
multiscale optimization method was successfully applied
to linearly constrained and unconstrained problems. Based
on the applications considered in this work, the following
conclusions are warranted:

1. The proposed multiscale methodology, RHi-MO,
always outperforms the base parametrization strategy
based on a fixed number of control steps which is set a
priori and used throughout the optimization;

2. We always obtain a higher NPV with Hi-MO and RHi-
MO than SS-MO. However, occasionally the NPVs
obtained with Hi-MO and RHi-MO will be insignifi-
cantly higher than the SS-MO’s final NPV;

3. Typically, the higher NPV obtained with Hi-MO will
come at a higher computational cost than the SS-MO
result; RHi-MO may also require more simulation runs
than SS-MO in some cases, although this happens less
often than it happens for Hi-MO;

4. RHi-MO consistently outperforms the method of Lien
et al. [11] (RI-MO) in terms of both the final NPV and
the number of simulation runs required for the examples
presented here as well as an addition example shown
in [16], even though both methods use refinement indi-
cators to drive the splitting procedure. In fact, since
RHi-MO can be viewed as a combination of RI-MO and
HI-MO, one should expect that RHi-MO will generally
outperform RI-MO and HI-MO;

5. In general, RHi-MO performs better than Hi-MO, both
in terms of the final NPV and the number of simulation
runs required;

6. The results obtained with the new proposed multiscale
technique, RHi-MO, usually lead to fewer control vari-
ables than other approaches. This aspect can be relevant
for field implementation, because a control strategy
with few interventions at the wells would be preferable
due to operational reasons.
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