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Abstract

When processing a trace DNA sample at the Netherlands Forensic Institute, an STR electrophero-
gram can be created. An analyst uses this electropherogram and analysis software to read out peaks
signifying DNA. After analysis, the DNA profile is used in the interpretation process, which can include
the comparison to a reference DNA profile of a person of interest. The software that is currently being
used for profile analysis is threshold-based and the process includes the intervention of trained analysts.
To further automate (allelic) peak identification in STR electropherograms, as well as to increase effi-
ciency and uniformity, neural networks were studied and applied. Previous work by Duncan Taylor and
David Powers provided a proof of concept using a simple fully connected neural net. After reviewing
literature, the U-net was selected to be used in this thesis. Training U-net on electropherograms proved
successful and achieved a ∼ 95% accuracy on the per-pixel labels. However, translating the per-pixel
output to alleles was more difficult than expected, so an upper bound on the score was calculated. The
upper bound got close to an analyst’s performance and demonstrated the potential of this method.
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Preface

This thesis was written at the Netherlands Forensic Institute as a graduation thesis from TU Delft. Its goal
is to explore deep learning methods to apply on forensic DNA analysis. Hence, the topic of this thesis is
multidisciplinary: both the fields of biology (division Biological Traces at the NFI) and computational mod-
elling (team Forensic Big Data Analysis at the NFI) are visited. The thesis committee members are Leo van
Iersel (supervisor at TU Delft), Rolf Ypma (supervisor at NFI) and Joana Gonçalves (Delft Bioinformatics
Lab).

This specific application of neural networks to STR electropherograms is quite new, so the number of peer
reviewed articles regarding comparable research was limited. Based on the few articles available, and fol-
lowing advice from experts in deep learning at the NFI, a U-net was selected. To implement this, the DNA
composition (alleles) had to be translated to per-pixel labels on the full electropherograms (which can be seen
as a set of 6 graphs). The U-net was trained and achieved ∼ 95% accuracy on the per-pixel labels. Translat-
ing this back to DNA composition (alleles) proved challenging, because of the raw type of electropherogram
data used. While future research may focus on improving this translation, we decided to calculate an upper
bound of how well this method could possibly perform if the translation were optimised. The upper bound
on the score performed similarly to that of a trained analyst. This shows the potential of U-nets, and deep
learning in general, when analysing electropherograms for forensic DNA analysis.

The NFI was an amazing host institute. During my time there, they organised a multitude of meetings and
presentations where their scientists gave talks about their research. As someone who is interested in all fields
of forensic science, this was a great opportunity for me to learn about the NFI and forensic work in general.
The people I was working with, from team FBDA and division BiS, were very helpful and welcoming. They
were always open to questions, and made me feel like a part of the team. During the second lockdown, I had
a hard time. It was mainly because of the help I received at the NFI that I was able to continue my thesis.
For this, I would like to thank Corina and Francisca, and especially my supervisor Rolf. Without them, I
would not have been able to finish my thesis during this pandemic.

Myrte van Belkom
August 10, 2021
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Introduction

This thesis was carried out at the NFI: the Netherlands Forensics Institute. The NFI is a government institute
whose main goal is to provide forensic analysis for the police and public prosecutor’s office. All work at the
NFI is divided into three core activities: case work (main goal), innovation (Research&Development) and
sharing knowledge (e.g. seminars, internships). These categories can even overlap; the subject of this thesis
falls into the R&D category, but if it is successful, it may be used in actual case work.

Problem statement

Every day hundreds of DNA samples are processed at the NFI. This task requires a trained DNA analyst
to read out the peaks corresponding to actual DNA from a measurement (STR electropherogram), which
can be time-consuming and readings can vary per analyst. A trained analyst views the electropherogram in
software (for instance Genemarker™ , GeneMapper™ or OSIRIS™ ) which filters out some artefacts using
a set of rules. For example, it uses information on how high an artefactual peak (stutter) is expected to
be, relative to the allelic peak causing it. This makes Genemarker™ able to filter out the most common
artefacts before the analyst looks at the electropherogram.

At the NFI, a simple automated method has previously been developed to do part of the analysis, and
filter out some more common artefacts. The current automated algorithm (Snelle ID-lijn) is built upon the
existing software; Genemarker HID auto v2.9.8™ . It would be preferable to develop an automated method
on data not dependent on the type of software used. Other institutes may use different software, and the
NFI may decide to use different software in the future too. This means that the data to be analysed is quite
raw and has no added information.

In 2016, it was shown that neural networks, a type of deep learning, could be trained to analyse an electro-
pherogram [1], [2], [3]. This was not yet a perfect solution, and more of a proof of concept. However, it is
very promising that the raw data could possibly be analysed decently without a DNA analyst or advanced,
threshold-based preprocessing from a software package like Genemarker™ . This would increase uniformity
of the results and efficiency of the analysis. The goal of this thesis is to explore whether neural networks
could enhance forensic DNA analysis at the NFI.

Overview

In the next chapter, Chapter 1, the necessary background knowledge in DNA analysis will be introduced.
Then, in Chapter 2, we will look into the available data and explain in detail how the DNA data files are
generated and how they are being used. Chapter 3 contains both a brief introduction into deep learning,
specifically neural networks, as well as a literature study on why the U-net was selected. In Chapter 4 we
discuss the settings of the U-net and format of the input. Chapter 5 contains the methods used to obtain
the results in Chapter 6. Chapter 7 and 8 respectively, cover the conclusion and discussion.
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1 Background: DNA

We are looking into a method to enhance forensic DNA analysis. The goal of forensic DNA analysis is to
identify the source (a person) of a DNA trace. The method we are applying to this biology subject, is deep
learning; a topic in computer science. That makes the topic of this thesis in the field of bio-informatics.
To understand this topic, both knowledge in the field of biology (DNA) as well as the field of computer
science (deep learning) is needed. We will very briefly introduce the necessary background information on
the DNA side in this chapter. The 3rd chapter will be dedicated to explaining the deep learning side of things.

In this chapter, first the basics of DNA are visited. Then we quickly move on to forensic DNA extraction
and analysis. Finally, I will explain the difficulty with reading out the data. Not all of the information is
relevant to the project work itself, but it is needed for interpretation of the results.

1.1 DNA

DNA can be found in nearly every cell of your body (pages 139-140 in [4]). Each cell nucleus (besides a
gamete’s nucleus) has the same 23 chromosome pairs. Per pair, one chromosome is inherited from each
parent. All information stored in these chromosomes makes you practically unique, and hence it can be used
to identify a person.

Figure 1: DNA1

DNA is stored in the chromosomes, and is built from two strings that wrap around eachother in the shape
of a (double) helix (see Figure 1). These two sides are connected to eachother by nucleotides, represented by
the letters A(denine), C(ytosine), G(uanine) and T(hymine). The two sides have opposite nucleotides. The
A is always opposite to the T, and the C always opposite to the G. One pair of two opposing nucleotides is
called a base pair.

Figure 2: Visualisation of a pair of chromosomes and one set of alleles2

On chromosomes, there are certain fixed positions, loci (page 140-143 in [4]), where the DNA can differ in
known ways (see Figure 2). On some loci the different varieties of allele differ from each other by the number

1nisenet.org
2researchgate.net

https://www.nisenet.org/catalog/dna-nanotechnology
https://www.researchgate.net/figure/Alleles-and-a-gene-locus-on-homologous-chromosomes-1_fig3_305766388
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Figure 3: Visualisation of how alleles show variation between persons 3

of repetitions of a short sequences of nucleotides: Short Tandem Repeats (STR). The number of repeats are
called alleles. Since these STRs are easily identified and show variation over the population, they are ideal
to use for DNA analysis. For an example, see Figure 3. Here, identifying only one allele would be enough
to discern between the three people. The more alleles you can identify, the more certain and unique your
identification is. But how would you obtain this information from a DNA sample?

1.2 Lab techniques

When trying to identify a person of interest from a human biological trace, forensic scientists follow a couple
of steps (pages 142-144 in [4]). First, the DNA is extracted as purely as possible and quantified. Then
PCR (Polymerase Chain Reaction) is carried out to label and copy only the STR regions of interest (Section
1.2.1). Finally CE (Capillary Electrophoresis) is performed to separate the amplified fragments based on
label (dye color) and length (basepairs), which will be discussed in Section 1.2.2. A graph of this feedback
is called an electropherogram, as we will see in Section 1.2.3.

Note: The NFI uses a 6-dye kit and software called Genemarker™ . Other companies may use a 5-dye kit,
or a different software like Genemapper™ or OSIRIS™ .

1.2.1 PCR

During the PCR, five different colour fluorophores are added to specific STRs to enable distinguishing be-
tween fragments in the same range of fragment length. A fluorophore is a chemical compound which emits
light after excitation (fluorescence). A sixth fluorophore is added to the size standard, a term which I will
explain later on in this chapter, during the next process: electrophoresis. See also the diagram in Figure 4

3chegg.com

https://www.chegg.com/learn/biology/introduction-to-biology/short-tandem-repeats
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for more details of the PCR.

Figure 4: PCR4

The goal of PCR is to multiply certain parts of DNA while leaving the rest. First, the double DNA strings
are pulled apart to access the nucleotides (DNA denaturation). Primers are small bits of DNA which link
to a region of interest and act as a starting block for the replication (primer annealing). The mixture is
also filled with loose nucleotides which rebuild the other half of the DNA string from the primer on (primer
extension). When the region of interest has been copied, the (now again) double strings are pulled apart
and the process repeats on both original and copied parts of DNA.

1.2.2 CE

Finally CE (Capillary Electrophoresis) is performed on the resulting mixture of PCR to separate the amplified
fragments based on label (dye colour) and fragment length (basepairs). The sixth dye is added to the size
standard, which will be further explained in Section 1.2.3. The sample is led through a very thin tube and
hit with a laser. The fluorescent feedback is read by a sensor, resulting in 6 different graphs; one for each
dye. This fluorescent feedback is locally very high for the copied STRs and shows up as a peak in the data.
So, at this point we have 6 measurements of relative fluorescent units (rfu) against time.

1.2.3 Electropherogram

We now have this graph that signifies which alleles are present, but we cannot see a lot from the raw data,
since its horizontal axis is time. The next step is to rescale the measured data’s horizontal axis (time) into
fragment length, so that the alleles can be identified. The longer a string of DNA is (the more nucleotides it
has), the slower it passes through the tube, and the longer it takes before the DNA passes by the laser. Using
a so-called size standard, a known sample with its own fluorescent dye, which is run through the machine at
the same time, this rescaling is possible. The peaks in the size standard are very easily distinguishable from
the baseline and have fragments of known sizes. So the time at which these peaks show up, can be linked to
a certain length in fragment size. This relation between the time and fragment length can then be applied
to all other dyes as well.

To link all peaks to alleles in the unknown sample, a ladder is used. A ladder is a mixed sample which
(theoretically) contains a mixture of all possibly occurring alleles for each locus. All steps in this and the
last paragraph are usually automatically performed by Genemarker™ : a genetic analysis software used at the
NFI. The data can be visualised in a graph with the 6 dyes on the vertical axis: the STR electropherogram.
An STR electropherogram shows, for each dye, fluorescent feedback in rfu (on the vertical axis) against

4case.ntu.edu.tw

https://case.ntu.edu.tw/blog/wp-content/uploads/2020/08/Figure-1-A1.jpg
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fragment length in base pairs (on the horizontal axis). An example of how a complete electropherogram
looks, can be found in Figure 5.

1.3 Profile analysis

When the electropherogram has been loaded into Genemarker™ (with all preprocessing applied), a forensic
analyst identifies which peaks he deems to be allelic (caused by DNA that was present in the sample), and
which are artefactual. Artefacts are caused by small errors in the DNA-replication process, and lead to peaks
in the electropherogram not related to the actual DNA. The two most common types of artefact are: stutter
and pull-up.

Figure 6: Visualisation of
how stutter can occur 5

A stutter occurs when the DNA string folds a little and the copied string
skips one STR (Figure 6). A stutter can occur on both sides of the DNA
string, so it can cause a piece of DNA to be one STR shorter or longer
than it was supposed to be. This can even happen with two STRs dif-
ference, but this is less common than with 1 STR. More than 2 STR dif-
ference was regarded too rare to even consider in this study. If this mis-
take occurs often during PCR, it shows up in the electropherogram as a
small peak right before or after an allelic peak: a stutter. Many exam-
ples of stutter can be found in Figure 5, almost each allelic peak in the
green dye has a stutter in front of it. This is called a backward stut-
ter, and is the most common type of stutter. A stutter artefact can actu-
ally be used to confirm that the following peak is not artefactual, but al-
lelic.

Pull-up occurs because the 6 colours’ spectra overlap partly. Some high peaks can appear as smaller peaks
in other dyes, even though they only correspond to actual DNA in one dye. To find this type of artefact,
you need to look vertically throughout the different dyes. You can see an example in Figure 5 in the sixth
orange dye. This is the size standard, which should only have peaks at set intervals. The small peaks at
168.30, 338.10 and 420.10 basepairs are all results of pull-up, most likely from the fifth purple dye.

Genemarker™ filters many of the errors out of the graphs according to static and dynamic thresholds, before
an analyst even looks at the data. There is a lot of noise at the almost zero level of rfu, which is not visible
in Figure 5 because of this preliminary filtering and the scale of the y-axis. Genemarker™ also automatically
calls the allele of each peak, or whether a peak is present but does not seem to correspond to an allele (OB:
Out of Bin). An analyst can then decide what to do with such a peak. On the other hand, Genemarker™ also
checks for the most common types of artefact, and specifically does not label these artefactual peaks: stutter
filters. Genemarker™ has information on which stutters could occur per allele, and how high (relative to
the allelic peak) the stutter peak is expected to be. All this specific information enables Genemarker™ to
recognise most stutter peaks accurately, so the analyst does not have to.

After all this preliminary analysis, an analyst decides which alleles to include or remove. The analyst then
reports only the alleles present and heights of each peak corresponding to that allele.

5slideserve.com

https://www.slideserve.com/ivo/310-data-collection-software
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Figure 5: Example of an electropherogram in Genemarker ™
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1.4 Interpretation

Based on the information the analyst has reported, the reporting officer interprets these results (pages 145-
149 in [4]). They make an estimation of the number of contributors. If there are multiple donors, and if
possible, they also deconvolve the mixture. Deconvolution is the splitting of a mixture profile into the profile
per donor, usually at least the main donor’s profile is deduced. Then they decide whether a profile is suitable
for comparison against other reference profiles within the case, or for inclusion in a DNA database. If the
profile is not regarded suitable, additional analyses may be performed on the sample, e.g. analysing a replica
of the sample, decreasing thresholds or using a different kit.

If the profile is good enough, the reporting officer performs weight of evidence calculations. These are
reported as a likelihood ratio. The probability of observing the evidence given that hypothesis H1 is true,
divided by the probability of observing the evidence given that hypothesis H2 is true. Generally, H1 is the
prosecution hypothesis, e.g. the person of interest and an unknown person contributed to the trace. And
H2 is generally the defense hypothesis, e.g. two unknown contributors, unrelated to the person of interest,
contributed to the trace.

1.5 Back to the project

This is how forensic DNA analysis is currently being carried out. A problem in this process, is that all
analysis has to be manually checked. This is very costly, time-consuming and can yield differences between
different analysts. FBDA (the Forensic Big Data Analysis team at the NFI) developed a simple automated
method built upon Genemarker HID auto™ to automate some extra steps of filtering out artefacts and
calling alleles. However, further automation and omitting a threshold-based analysis software may further
optimise the DNA profiling process.

Neural networks have been shown to be effective in many problems, and have also been successfully applied
to electropherograms [1], [2], [3]. So with the aim to streamline the process of forensic DNA analysis,
neural networks were examined for use on electropherogram data at the NFI. The exact extent of previous
research will be discussed more thoroughly in Chapter 3. But first, the data files available at the NFI will
be introduced in Chapter 2.
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2 Data

This chapter focuses on the data files available and how they are being used. Almost everything covered
in this chapter was carried out during a separate internship, and not part of the thesis work. However, a
summarised version of the internship report will be included, since the knowledge obtained is very useful for
the rest of the thesis. The code developed during this time will also be used in my thesis. All coding was
done in Python 3.86 using the PyCharm IDE7. A full copy of my internship report is included in Appendix
B and all code developed during this thesis can be found on a GitHub repository[5].

We begin by describing the goal of the internship project work in Section 2.1. Section 2.2 will take you
through the information inside the data files and how it is being used. Section 2.3 covers some even more
in-depth use and application of the files, and the beginning of the project work of my thesis. It will be clearly
stated from which point on the work will be part of the thesis.

2.1 Goal

Before we look at the content of the data files, it is important to know which information we need. Previous
research by Duncan Taylor and David Powers [1] on training a neural net, used a label per measured data
point. These electropherograms were annotated by hand and considered five different labels for each point:
baseline, allele, (backward) stutter, forward stutter, and pull-up. In Figure 7, a single labeled dye of two
different electropherograms is shown.

Figure 7: Labels used by Duncan Taylor and David Powers in [1]

6python.org
7jetbrains.com/pycharm

https://www.python.org/
https://www.jetbrains.com/pycharm/
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So the first goal is to obtain similar labels and similarly shaped data: we want to be able to label each point
of measurement in the electropherogram.

2.2 Data files

Duncan Taylor and David Powers had access to annotated electropherograms per pixel for 5 different labels.
First, we will introduce the available data files for this thesis to see how close to this format we can get. At
the NFI an R&D dataset of electropherograms was available to use. This means the electropherograms were
not created from case data, but from an experimental set of DNA samples. Each sample was replicated and
run 3 times, and for each of these measurements, we have the following data.

• .hid Raw data from genetic analyser

• .txt Trace data of DNA samples (raw and sized)

• .csv Analysts’ identified alleles and peak heights

And the following files with information needed for creating the labels:

• .csv Donors’ DNA profiles

• Microsoft Word™ document describing the composition of the DNA mixtures as published in [6]

• .xml Genemarker™ panel info

It would be ideal to be able read out the .hid files, so there would be no dependency on Genemarker™ at all.
However, this data is extremely raw measurement data; the files are are not understandable to the human
eye, they contain lots of random whitespace and characters. So we use Genemarker™ to read the .hid file
and then immediately export the data without applying any advanced filters or analyses (besides the resizing
of the axes to fragment length). There are two export options that do not require any advanced analysis
from Genemarker™ : raw trace data and sized trace data.

The last file listed, is the Genemarker™ panel .xml file. This file is used for a number of things. It contains
a huge amount of information, on the fragment lengths of alleles, which alleles are on which locus, which
locus is measured with which fluorescent dye, and much more. It was used for plotting purposes, as well as
to relate allele names to fragment size (position on the horizontal axis).

2.2.1 Raw versus sized trace data

The first question of my internship was: what is the difference between the two export options in Gene-
marker™ : raw trace data and sized trace data. To discover the difference, both were plotted in the same
figure for each dye in Figure 8.

The first difference is that the length of the sized data is much shorter than the raw data for each sample
(about 6000 measured data points compared to 9000). This has to do with both a resizing and a transla-
tion. The precise number of measured data points differs between files within both sets as well. The sized
data measurement only starts after the primer dimer, where the raw data measurement starts a lot earlier.
Primers are small single-stranded DNA that act as starting points for PCR. Primer dimer is the fluorescent
feedback of all the primers that were in the DNA sample for replication during PCR, but were not used in
the process. These primers are all very short and light structures, and easily distinguishable from the actual
peaks. Because of their small fragment length, they show up as the very first peak, since they reach the laser
first. Each measurement has such a primer dimer blob as its first peak.

After removing the same first part of measurement from the raw data, there are still differences between the
two data types. The horizontal axis had been rescaled for the sized data, and not for the raw data. The
size standard always shows peaks at the same locations, as can be seen in Figure 5 as well. Using the size
standard, we discovered that the sized data has precisely 10 data points per base pair. So at the 100th point,
a peak would signify a fragment length of 10 basepairs. Because this rescaling is a nonlinear rescaling of the
raw trace data, we decided to use the sized trace data from here on out.



14 2 DATA

Figure 8: All six dyes of the raw (orange) and sized (blue) trace data.

2.2.2 Profile composition

Now that it was possible to interpret this, still quite raw, sized data, the labels could be added. There
are two files that contain annotated alleles of the electropherogram. The first option is to use the analysts’
identified alleles, which were ordered in simple .csv files per sample. The analyst reports the alleles and their
heights (as seen in Genemarker™ ). There may be small errors in the reading, but it is very straight-forward
data to use.

Second option is to calculate the theoretical expected alleles from the known sample composition. These are
expected, because it is possible that an allele does not show up in the electropherogram. There are .csv files of
each donor’s DNA profile, as well as a text document with explanation on the composition of each mixture.
All of the experimental data was composed from known donors in known proportions. These samples are
coded by a short sequence denoting the amount of different donors, the ratios of DNA between donors and
which set of donors the sample came from.

In both cases, there is a little extra information available than strictly necessary. The only thing that
will be used from these files is the list of alleles present in the mixture. These should be visible in the
electropherogram as peaks. Using the Genemarker™ panel file, the alleles can be related to the horizontal
axis (fragment length). The specifics of this are discussed in the next section: Section 2.3

2.3 Adding labels per data point

The previous sections of this chapter were research carried out during the internship. The next problem is
the first problem studied as part of the thesis: now that the alleles present in a mixture could be obtained,
we needed a way to find the output peak of that allele in the electropherogram.

The data we obtained are the alleles in a mixture, either theoretical expected or identified by analyst. Then
the Genemarker™ panel file gives an approximate location of where the peak should be visible (a bin) on
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the horizontal axis. This gives us at least a general idea of where the peak is, but the full peaks are wider
than the bins themselves.

As described in Section 2.1, each measured point is supposed to get its own label, so some kind of peak
selection algorithm is needed to identify all the single points constituting each allelic peak. Furthermore,
Duncan Taylor and David Powers used five different labels in their papers, but with the available files only
two labels can be added: allelic peak or not an allelic peak.

2.3.1 Peak selection algorithm

An example of the output of the algorithm on a full electropherogram can be found in Figure A.1 in Ap-
pendix A. We only highlight some details of this figure within this chapter in Figures 9 and 10. The vertical
blue lines show the bins given in the Genemarker™ panel file, and the green area shows the entire peaks
selected. To explain the way this was designed, we look at a few details of this image.

Figure 9: Detail of
Figure A.1

The allele bins given in the panel file, are not completely accurate for the lo-
cation of the resulting peak (see Figure 9). Some bins are shifted too much
to one side, and only contain part of the peak. This means it cannot be as-
sumed that the top of the peak is within the bin. Upon inspecting the data,
we noticed that each bin does intersect with at least a part of the corresponding
peak.

Based on this fact, a simple algorithm was designed. We use the knowl-
edge of which alleles should be visible, and get the allele bin from the Gene-
marker™ panel file. Then, the highest point of measurement within the allele
bin is found. We check whether we can move in either direction to increase
this value (possibly moving outside of the bin). We keep on updating this value
until it has found the local maximum, so until the top of the peak has been
found.

(a) Zoomed out to highlight top of peak,
rfu range is -2000 to 20000 rfu

(b) Zoomed in to highlight start and end of peak at base-
line, rfu range is -50 to 500 rfu

Figure 10: Visualisation of peak selection algorithm. Green background: region selected by algorithm as
peak. Blue background: allele bin. Orange dot: top of peak. Yellow dots: resulting start and end points of
selected peak.

We make use of another fact, which is that the measurement data is extremely smooth. From the top of
the peak found, we select the left and right end points as long as the values are monotonously decreasing.
To illustrate how well such a simple algorithm works: for all images in this subsection, the peaks were
selected by this algorithm. It only requires the information from the Genemarker™ panel file, and performs
quite well. In Figure A.1 in Appendix A we see a full electropherogram where all peaks have been annotated.
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We decided to add this label for peaks in the size standard (6th dye) as well, since we want to train our
network to detect peaks. It might be very confusing to the network if we do feed it the size standard with
very clear peaks, and tell it not to detect those peaks. This would just make training unnecessarily more
difficult. We do want to include the size standard in our input, because it may show pull-up from other dyes,
or cause pull up in other dyes.

Figure 11: Example labels for all points in top dye of electropherogram. Green: peak, purple: background

Then, because no other labels are available, every other point is set to the background label. An example of
the result of this algorithm on a single dye, can be seen in Figure 11. This means we are now able to add a
per-pixel label to the entire electropherogram, as discussed in Section 2.1. This gives similarly shaped data
to what David Powers and Duncan Taylor used, but simpler because we use less labels. It is actually a lot
easier to use, since two different labels means it is binary data (peak/background). Both the measurement
and the labels can be represented as a n× 6 matrix, where the label matrix is a boolean array.
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3 Neural Networks

Now that we have seen the available data, and have sufficient background knowledge in DNA, it is time to
look at the computational modelling side: neural networks. We will begin by explaining the basics of deep
learning and what makes up a neural network in Section 3.1. Then we will review other applications of
neural networks in the field of bio-informatics in Sections 3.2 up to 3.3. From this, the choice for a U-net
will be explained in Section 3.3.

3.1 Background: Deep learning

Deep learning[7] is a class of machine learning based on artificial neural networks. Machine learning is the
process of letting a computer come up with its own algorithm to do a certain task by feeding it a lot of
data. Deep learning generally requires less intervention from the user and less structured data. The user
does not have to select features, the network trains to both extract features and subsequently classify the data.

If the data is labeled, that means the desired output is specified for training. This is called supervised
learning. If the algorithm is not given labels or desired output, it is called unsupervised learning. As an
example, think of labeling movies by genre. If we gave the algorithm a set of genres to pick from (horror,
comedy, romance) and then optimised its decision making, that would be supervised learning. If we just
gave the algorithm a set of movies, without specifying the genres and we ask it to group them together, it
would be unsupervised. In unsupervised learning, we do not tell the algorithm which labels or groups should
be selected. This means it could output genres no one has ever heard of. It is a very powerful tool to get
to know your data. If you do have more information about your data, it is often better to apply supervised
learning. In our case as well, since we have a lot of information on our data. We already know we are
interested in the alleles present in a mixture, the algorithm does not need to find that out on its own. In
this thesis we only consider supervised learning, and more specifically neural networks.

3.1.1 Neural network

Figure 12: Illustration of a neu-
ral network8

A (artificial) neural network is modeled after the brain (hence the
neural). It consists of a set of neurons or nodes, which are con-
nected by edges with weights. The nodes are subdivided into lay-
ers. The first one (green in Figure 12) is the input layer which has
one node per point of input. An image of 1024 pixels for exam-
ple, would require 1024 input nodes (3096 if the image is RGB). The
input layer is followed by at least one, but often more hidden lay-
ers (blue in Figure 12). The final layer is the output layer (yellow
in Figure 12). This often gives a probability to the input belong-
ing to a certain class. As we will see later on in Section 4, our net-
work also ends in a single node. The probability at this node corre-
sponds to the probability of there being an allelic peak at that loca-
tion.

Figure 13: Example output of
multi label classification prob-
lem9

The output layer can also be more than one node, for ex-
ample in a multiclass labeling problem like [1]. They dis-
tinguish 5 different classes for each pixel of the electrophero-
gram (allele, background, backward stutter, forward stutter, pull-
up). This will be more extensively covered in Section 3.2. To
give a simpler example of a multi-labeling problem, see Figure
13.

8commons.wikimedia.org
9towardsdatascience.com

https://commons.wikimedia.org/wiki/Artificial_neural_network
https://towardsdatascience.com/journey-to-the-center-of-multi-label-classification-384c40229bff
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Here, the neural network returns a probability on each of the options.
Based on this output, usually the class of highest probability is selected
as decision. In this example the movie Harry Potter and the Sorcerer’s
Stone most likely belongs to the genre adventure.

The parameters we control in the neural network, are structural parameters we set in advance. Examples
of this are the number of nodes in each layer, and the number of layers. The edges between nodes represent
weights which determine how much they influence each other. These weights on the edges are varied by
training the neural network.

3.1.2 Layers

Before we dive into the comparison of neural networks, some features of a neural network are important to
know in advance: the different types of layer.

The size of the input layer is determined by the shape of the input. In our case, we have 6 dyes and 4800
pixels in each dye, giving us an input layer of 28800 nodes. The following (hidden) layers usually become
bigger (more nodes) first, and smaller (less nodes) later until the desired amount of output nodes is reached.
The simplest neural network contains one fully connected hidden layer, also known as a dense layer. In a
dense layer, each node is connected to every other node in the previous layer, see Figure 12. This provides
a lot of information, but also requires a lot of computation. With our input, this would lead to 28800n
connections between the first two layers, where n is the size of the next layer.

Figure 14: Max and average
pooling 10

To decrease the amount of nodes, a pooling layer can be applied. A pooling
layer is designed to only let part of the input through. Most common in
image classification are max pooling and average pooling, usually with
both a stride and filter size of 2. In this example, every pooling layer
divides the number of nodes by 4 in the two-dimensional case, or 8 in the
three-dimensional case. The meaning of these terms is easier shown than
explained. In Figure 14 both types of pooling are illustrated. A block of
4×4 becomes a block of 2×2 and no pixel is doubly used. Max pooling,
as the name suggests, takes the maximum value out of each block of 4
pixels. Average pooling calculates the average of each block.

The final type of layer we will discuss, is a bit more complex: the con-
volutional layer (Figure 15). This takes a rectangular part of the input
(image matrix) and takes the inner product with a kernel matrix of the
same size. A kernel matrix can be seen as a set of weights to multiply
with the surrounding pixel values. The outcome of this inner product gives a single value for the middle
location of the block. The block size is not necessarily 3×3, but it is a very common size to use. The goal of
a convolutional layer is to use some information from a pixel’s neighbourhood, but not all pixels in the entire
image (like in a dense layer). If we compare this to a dense layer of 102 nodes, connected to all previous 102

nodes. A convolutional layer only has 9 · 102 edges, compared to the 104 edges of the fully connected layer.
The convolutional layer is mainly used in image recognition algorithms[8].

3.2 Previous work

Now that we know the basics of a neural network, we want to study how they are currently being used in the
field of bio-informatics. To the best of our knowledge, only Duncan Taylor and David Powers have published
about applying neural networks to electropherograms. Because their work is a relatively novel application,
we will be looking into comparing their work to other state-of-the-art machine learning techniques processing
similar data. First, we look more thoroughly into the research by Duncan Taylor and David Powers in Section

10researchgate.net
11researchgate.net

https://www.researchgate.net/figure/Illustration-of-Max-Pooling-and-Average-Pooling-Figure-2-above-shows-an-example-of-max_fig2_333593451
https://www.researchgate.net/figure/Illustration-of-Max-Pooling-and-Average-Pooling-Figure-2-above-shows-an-example-of-max_fig2_333593451
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Figure 15: Illustration of a convolutional layer11

3.2.1. Then, we extend our search into neural networks being applied to somewhat similarly shaped biodata
in Section 3.2.2. We end this literature review by concluding which neural network structure we regard best
suited for this specific application (Section 3.3).

3.2.1 On applying deep learning to STR electropherograms

Our aim is to partially automate analysis of STR electropherograms using neural networks. Duncan Taylor
and David Powers published a series of papers [1], [2], [3] which provide a proof of concept that neural
networks perform well on electropherograms.

The first paper [1] of this series investigated whether it was at all possible to train an artificial neural network
on this type of data. They consider five different labels for each pixel of the electropherogram: baseline,
allele, (backward) stutter, forward stutter, and pull-up (cf Figure 7). To classify each pixel, a window of
100 pixels to the left and 100 pixels to the right of it in all six dyes are fed into the neural network (total
1206 input nodes). The neural network itself only consisted of the input layer, one hidden layer and an
output layer; the most simple structure possible. After training on one electropherogram, the neural net
already had an overall accuracy of 93% on an unseen profile (and 98% on the profile it had been trained
on). For comparison, if an algorithm only predicted baseline, the most frequently occurring label, it would
have an accuracy of 80%. Anything above that shows the network has learned something, but 93% is not as
incredibly high as it would be for equally distributed classes. It is also important to note that training and
testing was performed on a simple profile to which only one donor contributed.
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Table 1: Confusion matrix from trained neural network applied to unseen profile. “Rows represents ground
truth responses and columns are assigned classifications”.[1]

Baseline Allele Stutter Pull-up Forward Stutter Error rate (fraction)
Baseline 4691 36 33 81 44 0.0397 (194/4885)

Allele 15 362 0 0 0 0.039 (15/377)
Stutter 64 0 139 0 0 0.3153 (64/203)
Pull-up 97 0 9 333 7 0.2534 (113/446)

Forward Stutter 19 0 0 0 70 0.2135 (19/89)
Totals 4886 398 181 414 121 0.0675 (405/6000)

In Table 1, the confusion matrix is shown for the neural network’s prediction on the unseen profile. The
baseline and allele labels were predicted correctly most often, having an error rate below 4% on a per-pixel
scale. Whereas pull-up and stutter had an error rate of 20 − 30%, and were misclassified most frequently.
These last percentages do not weigh as heavily in the overall accuracy, since the labels occur less frequently.
Because the baseline label occurs the most often, the network is relatively rewarded more for correctly clas-
sifying baseline. This might explain why the error rate on the baseline is among the lowest.

Their second paper [2], written together with Ash Harrison, tries to improve the artificial neural network by
using a more complex structure and more specific training. They add two hidden layers to the neural net
and train on specific loci or fluorescent dyes. The complete output uses all these specifically trained neural
networks to arrive at a prediction for the full profile. They also add a sixth category (half stutter) and
compare the resulting data to genetic analysis software. Accuracies are quite similar to [1], but do improve
a little from the extra specific training.

The third and most recent paper they wrote [3] with Michael Kitselaar, investigates the versatility of their
trained neural networks. They aim to answer relevant questions such as under what circumstances another
neural net should be trained, and when the neural nets can be applied to different types of data.

Throughout their papers, Duncan Taylor and David Powers mainly aimed to investigate the applicability of
neural networks to electropherograms. They state in their conclusion, “Much work is required to develop and
train a ANN that could be used routinely in active forensic casework; however the advantages of pursuing
such a system are great.” The authors believe there is definitely merit in the method, but does not compare
to current standards yet.

They use two variations of artificial neural networks, and keep most other variable choices the same through-
out the series of papers. There is still room for improvement by optimising each of those choices. We
discussed this project work with one of the authors, Duncan Taylor, as well. A different type of neural
network may be better suited for this type of data. Changing the simple neural network to a convolutional
neural network (CNN) for example, since CNNs are designed to work well on images[8]. An electropherogram
can be seen as a very simple type of image, and we will explore this feature in Section 3.2.2.

3.2.2 On applying deep learning to other biological data

In this section the papers are divided into a number of subsections based on their subject: basecalling,
heartrate monitoring, audio signal processing and MRI. The machine learning techniques in the papers will
be summarised in Section 3.2.3.

Basecalling

As we have seen in Chapter 1, DNA can be represented as a sequence of nucleotides: A, C, T and G. To find
out what sequence a string of DNA consists of, in a sample fluorescent markers are added to the nucleotides.
Then, just like we discussed with STRs, an electropherogram is created by measuring the fluorescent feed-
back for each nucleotide. Figure 16 shows an example of this.
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The goal is then to decide for each position which nucleotide it is. When a trace is as clean as the one in
Figure 16, it is simply choosing the nucleotide with the highest fluorescent feedback. While simple threshold-
based rules to automate this process already show a relatively high accuracy in basecalling, the authors of
[9], [10] and [11] felt this could and should be improved upon with machine learning.

Figure 16: Segment of an SNP
electropherogram trace [11]

In this paper on novel (machine learning) techniques [11], both Artificial
Neural Networks and Polynomial Classifiers are used to reduce errors in
basecalling of an electropherogram. They published two papers before on
each of the respective machine learning techniques [9], [10]. Main problems
with existing methods on basecalling are that either they are not accurate
enough, too slow, or require a lot of parameters that have to be manually
set. The ANN used consists only of a single hidden dense layer, and the PC
consists of 3rd order polynomials. The ANN and PC require hardly any
training, yet perform similarly to the current standard (ABI and PHRED).
They also perform some pre-processing (color-correction, peak sharpening,
normalization) to improve even further. Eventual accuracies are slightly
above 98% for both the ANN and PC. This is to be expected, since the
task is relatively simple. At each position, it is known a nucleotide needs
to be selected. The question is just which one, out of four possibilities.
What is useful to take away from this, is that machine learning methods also perform well on simpler
problems.

Heartrate monitoring

Heartrates are monitored using an ECG (ElectroCardioGram) and can show many different types of aber-
rant heartbeat. A paper by Jimenez-Perez, Alcaine and Camara [12] applies a U-net (type of CNN) on
one-dimensional heart peak data to split into the different heart waves (P, QRS and T) that make up a
single heartbeat, see Figure 17.

Figure 17: Delineated sample of heartbeat
into P (red), QRS (green) and T (purple)
waves. Top graph is ground truth and bot-
tom graph is U-net output. [12]

They give a similar argumentation for using machine learning;
other methods are laborious, many parameters need to be set,
much knowledge and experience needed, and even then there
can be different results between trained professionals. Their
technique to combat the low availability of data (and at the
same time overfitting) is very interesting. They add different
kinds of simulated noise to the samples, based on types of noise
that occur in practice. Other regularization techniques used
are SDo, batch normalization, data augmentation, and semi-
supervised pre-training. The accuracy percentages for different
test cases are all in the 90s. They conclude that their method
performs better than other machine learning methods, is more
generalisable than non-ML methods, performs similarly to cur-
rent state-of-the art methods, and has none of the downsides
previously mentioned.

In [13], Gordon and Williams use a combination of techniques (among which two ML methods) to automat-
ically detect PVC (Premature Ventricular Contractions) in ECGs, or in easier terms: an “arrhythmic beat
type”. If these occur often, it can be a precursor to a more serious heart condition. However, they occur
infrequently, making manual observation impractical and expensive. Existing methods again rely on esti-
mating a large number of parameters, and specific features which are difficult to detect. They first filter out
the QRS heart wave with a non-ML technique, all further analysis is performed on the QRS wave. Main goal
is to develop a more robust and general method. A convolutional autoencoder is used to combat overfitting
and create a lower-dimensional feature space. Then, a random forest classifier is applied to do the actual
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classification of PVC or normal heartbeat. The algorithm performed just slightly better than current, but
false negatives were distinctly less; which is very useful in this specific case: it means less actual PVCs were
missed. Overall accuracies are around 98%.
Another paper on the same subject is [14] by Hasan et al. It applies a one-dimensional convolutional neural
network to ECGs to detect arrhythmia. The previous paper used a more advanced combination of techniques
to detect one specific type of arrhythmia, whereas this paper classifies 5 different varieties with again around
98% accuracy. The neural net built from a couple of sequences of (2) convolutional, pooling and dropout
layers put together, and finally followed by one flattening and one dense layer into the output layer.

Audio signal processing

The most common way to represent audio, is to create a so-called spectrogram. A spectrogram has two
axes: horizontal time axis and vertical frequency axis. In the figure 18 it shows the amount of decibel in
different colours. This means that audio is, in a way, three-dimensional data. This is quite a stretch from
the 6 slightly correlated one-dimensional graphs an electropherogram is composed of. Since there is a lot of
machine learning being applied to audio data, we decided to look into the subject regardless.

Figure 18: “Example of an audio
signal containing 7 snore events.
The bottom part of the figure
shows an example of raw signal
after applying a Butterworth HP
filter, where the red parts are
snore events. The top part of
the figure depicts the spectro-
gram based on CQT.” [15]

Xie et al. [15] set out to develop a new method to detect snor-
ing by using multiple microphones. Snoring is a precursor to
OSA (Obstructive Sleep Apnea), and hence very important to de-
tect. However, not every patient has a bed partner, and not
all bed partners detect snoring reliably. Current tests require pa-
tients to be monitored overnight with uncomfortable sensors, which
is expensive. And waiting lists are long because of the length of
such a study. The authors focus on repetitive snoring patterns,
since it automatically yields a good ratio of snore to non-snore au-
dio fragments; it is ideal to have the same amount of data in
each data set. On top of that, it is easier to annotate repet-
itive snoring. The network uses 3 convolutional layers, each fol-
lowed by a max pooling layer, the output of which is then fed
into an RNN (Recurrent Neural Net), and eventually into one sin-
gle dense layer. The achieved accuracy was about 95%. Interesting
to note is that they see significantly more false-negatives than false-
positives.

The next paper [16] by Colangelo, Battisti and Neri, applies progressive resizing (plus another standard
resizing for comparison) on a pretrained CNN (ResNet34), which is then retrained on audio spectrograms.
Their goal is to classify events in the spectrogram. Progressive resizing is a way to make training more
efficient by increasing the resolution of the images during training. ResNet34 is pretrained on ImageNet,
and uses weight decay; sets the learning to be the maximal learning rate such that loss decreases. One data
set has short audio clips (less than 4 seconds long) which contain an event out of ten possibilities. The other
data set has 5 second clips containing one out of fifty possible events. Overall performance does not measure
up to the current state-of-the-art, but the progressive resizing itself is an improvement.

MRI

A traditional MRI scan, scans the brain in sections. A two-dimensional slice of the brain is imaged, and
the scanner moves down a few millimeters to do the same. By adding all images together, an almost three-
dimensional scan of the brain is obtained. You could see it as a 3D image which is discretised in one dimension.

Han and Kamdar [17] apply a bi-directional convolutional recurrent neural network (CRNN) to MRI images.
It predicts methylation status in cancer patients. There is a gene (MGMT) whose methylation status gives
information about how well chemo therapy will work. These variations of the gene, can manifest in the
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size and shape of brain tumors, visible on an MRI. Recent other methods to find the characteristics usually
use random forests or SVM (Support Vector Machines), which the authors of [17] disapprove of because
it requires a lot of hand-curated features. So they decide to use a CRNN. The dataset is split as follows:
training 70%, validation 15%, test 15%. It is a little unusual to have such a small test set, but they have a
very limited amount of data. The results show only around 65% accuracy overall, but they do have about
a 50/50 ratio positive/negative samples, so the network is definitely learning some features. It performs at
least 10% better than the random forest classifier which is currently being used, so their research is very
useful in practice. They note that their model is overfitted to the training set, and apply L2-regularization
until the validation accuracy starts to drop. The neural network in this paper really suffers from the low
availability of training data.

3.2.3 Summary

We have discussed research in the field of basecalling, heartrate monitoring, audio signal processing and
MRI. Now, we will compare these papers to the problem at hand. We will look at the type of neural network
used and how similar the problem is to ours.

Although basecalling is applied to the most similar data with respect to ours, the problem is simpler. In
basecalling, it is known there should be a nucleotide at each location, it is just a matter of picking the
correct one (out of four possibilities) at each step. The reading of an electropherogram first requires you
to find the locations of the peaks, and then pick the correct allele out of more than four possibilities. The
similarity between the data is quite obvious: both are a number of graphs (both of fluorescent feedback even)
in which peaks show up signifying a certain part of DNA, although an allele is a bigger structure than a
single nucleotide. The neural network structure they use, is the same as Duncan Taylor and David Powers [1]
used, and performs well in this case too. This reinforces the belief that neural networks are a good direction
to be searching for our desired ML method.

The second closest type of data to ours, is the heartrate data. The data is just one graph instead of six,
but the problem is a little closer. The delineation of heartwaves is more like our problem of detecting peaks
in the electropherogram. In the study by Jimenez-Perez, Alcaine and Camara [12], the detection is carried
out by a U-net and performs quite well. A U-net is a very special type of convolutional neural net, which
predicts a label for each pixel of the input image at once. Another very interesting part of this study is the
addition of simulated noise to create more data and combat overfitting.
Gordon and Williams [13] and Hasan et al. [14] used a non-ML method for the most relevant part to us (the
delineation of the heartbeat), and only apply the machine learning when the wave has been detected. This
implies that the research by Jimenez-Perez, Alcaine and Camara provides the most meaningful results to us.

The audio and MRI data papers are both a bit further removed from the electropherogram data. Both can
be seen as three-dimensional data, where our data is two-dimensional at most. The audio signal processing
papers do tackle a more similar problem type: detection of phenomena (think of these as peaks). Both
Xie et al. [15] and Colangelo, Battisti and Neri [16] use a type of convolutional neural network, where
the first of these combines it with a recurrent layer. Colangelo, Battisti and Neri also apply an interesting
technique, progressive resizing, to enhance training of the neural net. The MRI data is the most different to
an electropherogram, so the research on it, [17], weighs the lightest in our comparison. One interesting fact
to notice is the same type type of neural network is applied (CRNN) as for the audio detection.

3.3 Conclusion: U-net

Both the research by Duncan Taylor and David Powers [1],[2],[3] and the basecalling papers [9],[10],[11]
reinforced our belief that neural networks in general could work well on electropherograms. The heartbeat
delineation research [12], which is also the most comparable to our subject, pointed us in the direction of
a U-net. This is a very different type of neural net, which looks at the image as a whole. It classifies each
pixel of the input image, and would remove the need for the windows used by Duncan Taylor and David
Powers. The audio [15],[16] and MRI [17] papers, are the most different to electropherogram data, but all
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seemed to agree on using CRNNs. Some papers also provided useful techniques to combat overfitting or the
low availability of data [12],[16].

From this previous research, the CRNN and U-net seem to be the best choices. We found more papers using
the CRNN, but the U-net was applied to the most similar data and problem compared to ours. The U-net
was selected after consulting with the deep learning experts of the FBDA team. They had previous good
experience with U-nets, we saw more promise in U-nets than in the CRNNs. The U-net was also deemed
as better suited for this type of data, because the entire image can be used by the neural network at once.
This is confirmed by the fact that the most comparable research paper [12] also selected this structure.
Not unexpectedly, because U-nets are CNNs (which tend to perform well on images) and were specifically
designed for biomedical image segmentation[18]. As an additional benefit, it simplifies the input structure
for the neural network as well, since the windows used by Duncan Taylor and David Powers can be omitted.
In the next section, the structure of the selected U-net will be discussed in more detail.
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4 U-net

This chapter is dedicated to information regarding the U-net. We argued this choice in the previous Section
3.3. In Section 4.1 the concept of a U-net will be explained. Then, in Section 4.2, the implementation and
design of the U-net for this specific project will be discussed. Section 4.3 describes the format of the input
and labels that go into the U-net.

4.1 Structure

A U-net[19] is a specific type of CNN (convolutional neural network), which is very logically named: it is
shaped in the form of a U. Where most neural networks are structured to predict one label for one image, a
U-net predicts a label for each pixel in the input image.

Figure 19: Example of a U-net 12

The first step in the U-net is a convolutional layer, as was explained in Section 3.1.2. It creates a lot of
feature maps by applying different filters on the input image, to try and find useful information. A feature
map can be seen as a representation of the input. Feature maps can have emphasis on areas of high value, or
on edges, or on specific shapes even. As more convolutional layers are applied, information from increasingly
further away in the image can begin to impact a pixel. To demonstrate this, Zeiler and Fergus [20] engineered
a way to visualise the intermediate feature maps in their network.

12researchgate.net

https://www.researchgate.net/publication/337919457/figure/fig3/AS:835614740062209@1576237487815/Proposed-U-Net-structure-for-forest-segmentation-from-TanDEM-X-data.png
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Figure 20: “Evolution of a randomly chosen subset of model features through training. Each layer’s features
are displayed in a different block. Within each block, we show a randomly chosen subset of features at epochs
[1,2,5,10,20,30,40,64]. The visualization shows the strongest activation (across all training examples) for a
given feature map, projected down to pixel space using our deconvnet approach”[20]

After looking closely at the different layer’s feature maps in Figure 20, you might guess that the images
show people’s faces. The first layer identifies lines, the second layer finds longer lines or even curves, and the
third layer already shows parts of the faces. They could have set the kernel size to be larger to start with
of course. However, by choosing a small convolutional kernel size, and adding multiple convolutional layers,
the same (or even more) information is obtained more (computationally) efficiently.

This convolutional step is visualised in Figure 19 by the input image (dark blue) getting more depth in
two steps (light blue). The figure shows two convolutional layers were applied (although the arrows are not
visible in the top left yet). The current result contains (on purpose) too much information, instead of only
the important parts. So, the result is fed to a (max) pooling layer (red arrow down), to reduce the amount of
information. These steps are repeated a few times (three in this example in Figure 19). All these operations
together form the down path of the U-net.

By the time you have arrived at the bottom of the U, the height and width of the image are a lot smaller,
but the depth has only increased. The network has created a lot of feature maps, but the other dimensions
were limited. The idea is that this forces the network to focus on the most important features, and not on
their precise location. Now on the up path of the U, we want to do the opposite; try to limit the feature
maps, and recreate the original size of the input. We want to retrieve some locational information and apply
the discovered useful features.

The intermediate result now has to be upsampled : increasing the resolution (height and width) of the
image (green arrow up). Each pixel is simply repeated a few times (with the same size as the pooling).
This upsampled result is concatenated with the corresponding same-size layer on the down path (see the
horizontal grey arrow and block in Figure 19). The idea is that this horizontal skip connection provides the
needed locational information to return to a higher resolution image. The concatenation is along the filter
axis. This is again fed into two convolutional layers. The upsampling, concatenating and convolutional steps
are repeated a number of times (the same number as on the down path), until the original size of the input
is achieved again.

4.2 Settings

Now that the general idea of a U-net has been introduced, we explain more details about the specific settings
chosen in our implementation. Each block of layers (two convolutional and one pooling layer) is repeated
three times. On the up path, their equivalent blocks (upsampling, concatenation and two convolutional
layers) are also repeated three times. This shape of U-net is the same as Figure 19 shows. All coding is done
using Python 3.813 using the PyCharm IDE14.

13python.org
14jetbrains.com/pycharm

https://www.python.org/
https://www.jetbrains.com/pycharm/
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4.2.1 Convolutional layers

The first layer, besides the input layer, in the U-net is a convolutional layer. The padding is set to “same”,
so the output has the same shape as the input of this layer. We opted for a kernel of shape 3 × 6, so all
dyes can add information to each pixel. The 3 is a very common choice, the 6 is specifically chosen for
our input shape. In general, these parameters can be kept very small, since layers are applied multiple
times. The information throughout the entire image can incrementally influence more pixels while travel-
ing down the U. First, pixels are only influenced by neighbours, then by neighbours of neighbours, and so on.

The convolutional layer has a 2×6 kernel on the up path, because the third place is taken by the concatenated
extra maps. Furthermore, we use ReLU activation (max(input, 0)) and the He normal kernel initialiser [21].
These settings are commonly used in neural networks as they perform well and robustly. Each set of two
convolutional layers, is set to double the amount of feature maps in the previous layer.

4.2.2 Pooling layers

The first important setting of the pooling layer, is that we decided to use an average pool, instead of the
more common max pool. We hypothesised an average pool is more susceptible to subtle changes in the data
and shape of the graphs, which could be useful on the up path of the U-net. Section 6.2 will delve deeper
into the effects this change had on the U-net.

Another setting we changed, is that pooling layers never pool in the direction of the dyes. More specifically;
the pooling layers use a shape of 2× 1. We do not want to lose too much information. The 6 graphs per dye
are only very loosely connected to each other, and we did not feel it would be effective to try and reconstruct
the dyes’ graphs from the neighbouring dyes’ graphs. The information from the dyes can already influence
the other dyes, because we changed the convolutional kernel to a size of 3 × 6 (cf Section 4.2.1). By pooling
in the dyes’ dimension, we would be left with only the average of two dyes, and eventually with only the
average of all dyes. It would be very hard for the network to predict accurate labels for each pixel in each
dye from only this average and the skip connections.

We pool with a stride of 2. This means we skip every other pixel (only pool on every second pixel), and it
cuts the result’s dimension in half with each pooling layer. It is almost exactly as the example in Figure 14
in Section 3.1.2, except that we only pool in one of the two dimensions.

4.2.3 Hyperparameters

Finally, there are some global settings that influence the training of the U-net: hyperparameters. As we have
discussed in Chapter 3, a neural network starts off quite random, and needs time and data to learn from its
mistakes. Hyperparameters are a way to finetune this learning process.

One run through all data is called an epoch, and we train the network for 100 epochs. We achieved this
number by storing the intermediate weights to repeatedly initialize new runs to keep on training. After 100
epochs the U-net was done training, as more training did not have any significant effect on the loss or metric.
The learning is performed in batches: we set the number of inputs that are processed before updating the
U-net to 10 (batch size). A small batch size allows the network to train on specific images and find subtler
details, but might lead to overfitting. A larger batch size makes the network see more images before updating
its weights and is more generalisable to the whole data set.

Then, we logically need some measure to translate the performance into a value. A neural network tries to
optimise a so-called loss function. We used binary cross entropy as our loss function.15. To move into the
direction where our loss is the most optimal, an optimizer is employed. We used the Adam optimizer with
a default learning rate of 0.001.

15tensorflow.org

https://www.tensorflow.org/api_docs/python/tf/keras/losses/BinaryCrossentropy
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4.3 Input

The electropherogram as an input is two-dimensional; six one-dimensional graphs. This is in contrast to
the general structure of a U-net, the example in Figure 19 shows three-dimensional input. The input is
cropped to be 4800× 6 so it is easily divisible by the pooling layers of the U-net. This cropping is necessary,
because the length of the graphs differs for each electropherogram, and a U-net requires the inputs to be of
the same size. Each basepair is 10 pixels wide in the electropherogram, so the 4800 pixels left after cropping
constitute 480 basepairs. The data is only cut off horizontally, so highest and lowest fragment lengths in the
electropherogram are removed. This does not cut off any loci or alleles, since we only remove the first 50
basepairs where there are no loci. And the data ends at the 530th basepair, after which there are no more
loci. In Figure 21 the left and right cutting lines are shown for one dye.

Figure 21: Example graph of electropherogram with left and right cut off points (dashed blue line)

Another operation that we apply on the input, before feeding it into the neural network, but after the
cutoff, is rescaling. The values of an electropherogram (in rfu) can reach more than 10000. By rescal-
ing the values between zero and one, the U-net can train a lot faster and more efficiently. In a way, you
are telling the neural network there is not a lot of (important) difference between a value of 19999 and 20000.

The rescaling is specifically applied after the cutoff, to remove strong artefacts often encountered in the first
few pixels (primer dimer cf Section 2.2.1). See, as an example, the large peaks to the left of the first dashed
blue line in Figure 21. These are all caused by primer dimer. Each image is rescaled separately, since the
quality of a sample can influence the height of peaks. It is rescaled for the entire image (all six dyes) at once,
because pull-up heights would be severely distorted if we rescaled each dye’s graph separately. After these
two operations, the cropped, rescaled electropherogram is fed into the neural network.

4.3.1 Label format

In Section 2.3, it was explained how the per-pixel labels were obtained. We are using the theoretical expected
peaks as ground truth labels. In addition, and as mentioned in Section 2.2, we also have access to an analyst’s
annotated peaks for each electropherogram. An advantage of the latter is that we can compare the results
of our U-net against human performance. Labels are entered into a two-dimensional array, where a zero
means no peak and a one means it is denoted a peak. To match our input shape, the labels are also a
two-dimensional 4800 × 6 (boolean) array.
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5 Evaluation

Before we can discuss the results in Chapter 6, we need to decide how to handle and evaluate them. Section
5.1 describes the algorithm we designed to call alleles from the U-net output, and Section 5.2 how we
calculated an upper bound on this algorithm. Section 5.3 covers how we scored this output in terms of
alleles.

5.1 Allele calling algorithm

The eventual goal of the U-net, is to predict which alleles are present in an electropherogram. So we need an
algorithm to go from the predicted per-pixel labels back to the alleles. We do have the information of each
allele’s approximate location on the horizontal fragment length axis. We use the same information from the
Genemarker™ panel file, previously discussed in Section 2.3 when it was used to create the per-pixel labels.
There are some challenges with this problem, which we will tackle one by one.

Figure 22: Histogram of widths of regions designated as peak by the peak selection algorithm from Section
2.3.1. Green: peaks with maximum height below 100 rfu. Orange: peaks selected by 2 or more alleles. Blue:
all other peaks.

The allele bins given in the Genemarker panel file are approximately one basepair wide, but the average peak
width is larger than that. In Figure 22, we plotted the result of our peak selection algorithm. It shows the
width of a peak (in pixels) on the horizontal axis, and the number of times this peak width occurred on the
vertical axis. Remember that a width of 30 pixels corresponds to a fragment length of 3 basepairs. Figure
22 shows a, somewhat Gaussian-looking, distribution centered around a value between 30 and 40 pixels, or
three to four nucleotides.

Because some alleles in the mixture, may not appear in the electropherogram (dropout16), we also plotted
which peaks were extremely low (below 100 rfu) in green. In orange, we plotted the peaks that were selected
by more than one allele bin by our algorithm described in Section 2.3. This means that the resulting peak
was either a combination of two smaller peaks, or one of the peaks dropped out.

Knowing the disconnect between information (allele bins of one nucleotide wide) and the U-net output (full
peaks of three to four nucleotides wide), we designed a simple algorithm to translate the output. The first
step is to round off the U-net’s output to a value of either zero or one. The threshold is set at 0.5. Then, for
each block of ones (a peak), we find the most probably correct allele bin. In each block of positive prediction,

16sciencedirect.com

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/allelic-dropouts
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we check which bins are in there, and how high the (unrounded) U-net output is for all pixels in the bin. All
these probabilities are multiplied together to form the probability of that allele causing the peak. The allele
bin of highest probability is chosen as label for that peak.

Figure 23: Visualisation of allele calling algorithm. Background shows allele bins in alternating colours. Blue
graph is U-net output, black line is electropherogram trace for reference. Grey dashed line is U-net output
value of 0.5. Numbers at horizontal axis show alleles and corresponding probabilities for a single peak.

Figure 23 shows an example of the algorithm’s working. We look at a peak where the U-net is more
uncertain of its prediction. All closest allele bins are plotted as background, in alternating colours to be
easily distinguishable: 17.2, 17.3, 18 and 18.1. Allele 18.1’s U-net output is never above 0.5, so is not
considered as label. The algorithm considers three bins, and only the right part of the 17.2 bin above 0.5.
The U-net output values in these bins are multiplied together for each bin, resulting in the probabilities
given in Figure 23. For this peak, the algorithm will label it as allele 17.3.

5.2 Upper bound algorithm

The need for this upper bound algorithm will be described later in Section 6.4. The upper bound algorithm
provides an upper bound on the performance of the U-net with the most optimal allele calling algorithm.
This section describes the upper bound algorithm itself using an example in Figure 24.

Figure 24: Visualisation of upper bound algorithm. Black line is electropherogram, blue line is U-net output.
Blue background is the allele bin, green background area to be checked if average probability is over 0.5 (grey
dashed line).

To calculate this upper bound, we use the ground truth. We check for each allele in the ground truth,
whether the average probability is high enough (i.e. over 0.5) on the expected resulting peak, see Figure 24.
We plotted the same part of the same electropherogram as in Figure 23, but only show the (correct) 17.3
bin and disregard the other allele bins. We regard the expected peak as the pixels in the allele bin (blue
background in Figure 24) ± 15 pixels to its left and right (green background in Figure 24). This corresponds
to a peak width of about 3 to 4 basepairs wide: the allele bin has a width of 8-10 pixels, and we add twice
15 pixels. In Figure 24 the expected peak window to be checked is the complete green plus blue background.
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The blue line shows the U-net output, which we use to calculate the average probability on that interval.

The allele bins may be shifted from the center of the peak, so the expected peak window may not perfectly
contain the peak, but the average should fix this problem. If the peak is detected by the U-net, all output
values on the peak are close to a value of one. If part of this expected peak window has lower values, the
average should still be well over 0.5, as it is in the example in Figure 24 too.

If, according to this check, the probability is high enough, we add this allele to our list of predicted alleles.
Once we have checked all alleles in the ground truth (positives), we set the U-net output in those locations
to zero. After this first part is done, we run the previous algorithm from Section 5.1 to see if the U-net has
detected any more (wrong) peaks (false positives).

5.3 F1-score

To compare our U-net’s results to the performance of a trained analyst, we calculate the F1-score[22]. While
accuracy (correct/total) gives a good idea of the total number of pixels classified correctly, it is less useful if
we are mainly interested in the alleles. To explain the F1-score, it is important to understand the concepts
true/false positives/negatives.

Figure 25: “Classification of
a prediction into True Positive
(TP), True Negative (TN), False
Positive (FP) and False Negative
(FN).”[23]

After receiving the output of the U-net, and translating this to alle-
les, we have two lists of alleles present in the mixture: ground truth
and predicted. If the two overlap, it is called a true positive/negative
(see also Figure 25). If the predicted and ground truth labels do not
agree, it is called a false positive/negative (see also Figure 25. For
each possible allele, it can either be present (positive) or not present
(negative) in the mixture. If AMEL X was predicted, and is cor-
rect, this is an example of a true positive. If AMEL Y was pre-
dicted, but is not present according to the ground truth, this is called
a false positive: it was falsely classified as a positive label. The
same goes the other way around for false negatives. We can now ex-
press the accuracy in terms of true/false positives/negatives. The ac-
curacy is the true positives plus the true negatives divided by the to-
tal.

On to the F1-score: the harmonic mean of precision and recall. Precision is the true positives divided by the
total predicted positives (true plus false positives). Precision is a measure of how accurate your prediction
of a positive label is. Precision is optimised when there are no false positives, and it has a value of 1. Recall
is the true positives divided by the total ground truth positives (true positives plus false negatives). Recall
is a measure of how many of the positives your algorithm misses. Recall is optimised when there are no false
negatives, and it has a value of 1. The F-score can be tuned to put more emphasis on either precision or
recall, but the F1-score is precisely in the middle: the harmonic mean17 (a specific kind of average). This
again has an optimal value of 1 for a perfect algorithm. Now that we have introduced the score we are using,
we can start to interpret our results.

17en.wikipedia.org

https://en.wikipedia.org/wiki/Harmonic_mean


32 6 RESULTS

6 Results

First, we will look at the output of the U-net in detail in Section 6.1. Based on this output, we will explain
why the switch from a max pooling to an average pooling layer was made in Section 6.2. In Section 6.3 we
will compare these results to an analyst’s reading of the electropherograms. Then, we will show an upper
bound on the algorithm in Section 6.4, and evaluate the performance of this final result in Section 6.5.

6.1 Interpretation

The output of the U-net is the same shape as the input labels. It can output values between zero and one.
During training, the (binary cross entropy) loss function is calculated on the output values rounded to a
zero or a one. For easier reading, the output value of 0.5 is also plotted in Figure 26 as a grey dashed line.
We also plot the ground truth labels as background for the input (black) and output (magenta). An output
value of one corresponds to a prediction of an allelic (or size standard) peak, and a zero to background. So
we can interpret each pixel’s output value as a probability of an allele being present at that pixel. The overall
performance on a per-pixel scale of the U-net was around 95%. The example in Figure 26 is representative for
the full data set. Figure 26 demonstrates the performance of the U-net on a relatively complicated mixture
profile. This profile was composed by mixing 4 donors in a ratio of 20:1:2:1. So we can expect a large variety
in (allelic) peak heights in this electropherogram.

Figure 26: Example output of U-net. Background colour shows ground truth labels of allelic peaks in cyan.
Black graph is input (left axis), magenta graph is U-net output (right axis), grey dashed line signifies output
value of 0.5. Text and arrows on axis of each graphs are names and ranges of loci respectively.

We can see that the U-net output (magenta line) tends to predict a value close to one whenever an allele
is present (cyan background). And it predicts a value close to zero when there is no allelic peak (white/no
background colour). This is exactly what we wanted to happen. Upon inspecting the result of the U-net a
little closer, it seems to generally follow the input graph somewhat. This is what we expect: a high proba-
bility of allelic peak on high values of rfu. The difficult decisions arise with the lower peaks that could be
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either artefactual or allelic. Note also that the high values of rfu are not shown in the graph, only up to
1000 rfu. This allows us to see more detail around the baseline and small artefacts.

The U-net does make some mistakes; see locus D1S1656 in the top graph in Figure 26. Remember that
the output is rounded off to a positive label (allelic peak) when it is above 0.5 (grey dashed line). The last
two peaks on this locus are both allelic, but the U-net only predicts the last one, and not the second-to-last
peak to be allelic. A few loci later, on D10S1248, the first peak is artefactual, yet the U-net predicts that
it is an allelic peak. So the U-net makes mistakes both ways, although generally it clearly predicts a very
high probability (near one) on actual peaks and a very low probability on background (near zero). The size
standard (bottom graph in Figure 26) is predicted almost perfectly. Not entirely unexpected, as this easiest
of the six graphs with hardly any varieties in peak heights, shapes, widths or distances.

6.2 Max to average pool

Now that we are familiar with the output of our U-net, we want to substantiate our decision for the average
pooling from Section 4.2.2. Below, in Figure 27 we plotted the same electropherogram as in Figure 26, only
with all pooling layers in the U-net set to a max pool instead of an average pool. Networks were trained for
the same number of epochs. This figure is representative for the performance of the max pooling network
on the full data set, as are the comments in the rest of this section.

Figure 27: Example output of U-net using max pool on same profile as Figure 26 (see this figure for
explanation of colours used)

When comparing Figure 27 to Figure 26, we immediately notice that the U-net output (magenta line) does
not reach as high as in the average pool case. The output of the max pooling network starts off at 0.5 before
training, and slowly becomes more extreme, moving values closer to zero and one as the training continues. If
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we had let our network continue training, the highest probabilities would have moved closer to the top value
of one. The average pooling network takes less epochs to finish training, where the max pooling network
needs more than 100 epochs to be certain enough of its predictions.

Another difference between the max pooling (Figure 27) and average pooling (Figure 26), is that the max
pooling network shows more random spikes around zero. Take a look at the size standard (bottom graph),
and remember that the average pooling network predicted this almost perfectly. The max pooling network’s
output shows random spikes between the actual peaks of the size standard. There is even a spot where the
spikes pass the important value of 0.5. And even in this easy-to-predict size standard, the outputs still never
quite reach a maximum value of one.

Unexpectedly, the exchange of max for average pooling, also sped up the training of the neural network.
Seeing it outperform the max-pooling network in terms of speed, without showing impairment on the quality
of the output, we decided to use the average pooling variant of the U-net going forward.

6.3 Analyst

From the analyst, we have a list of annotated alleles for each sample. In Section 5.1 we have explained how
we obtain a list of alleles based on the output of the U-net. To compare their performance, we have plotted
side-by-side boxplots of their F1-scores in Figure 28. The green bar shows the median, and the blue box con-
tains the 25% to 75% area of scores. The so-called whiskers (black bars at the end of the blue lines from the
boxes) signify the minimum and maximum (excluding outliers). The outliers are represented by black circles.

Figure 28: Boxplot showing F1-scores of analyst and allele calling algorithm’s annotated alleles, grouped by
the number of donors

We have grouped the results by the number of donors that contributed to the sample (horizontal axis). We
were expecting a very clear negative correlation between the F1-score and the number of donors, because
profile complexity increases with the number of donors. However, both the U-net output and analyst perform
similarly across the different numbers of donors. What stands out the most, is that the U-net does not come
close to the analyst’s performance. Where the U-net has median F1-scores of slightly over 0.6, the analyst
performs incredibly well with a median score of over 0.95. There are some F1-scores for the U-net around
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0.8, which is almost equal to the worst performance of the analyst.

Another interesting observation, is that there is less variation in the U-net’s F1-scores for 5 donors than for
the smaller numbers of donors. As stated previously, we would expect the 5 donor-profiles to be the most
difficult. The median score is similar, but both bars representing the top and bottom 25%, and the whiskers,
are much closer to the median. This shows us that the F1-scores are more clustered together.

6.4 Upper bound

After seeing these results, we concluded that the current pixel to allele translation does not perform well
enough. With a 95% accuracy of per-pixel labels, we would expect better F1-scores than a median of 0.65.
Many mistakes in this translation are made due to the wrong allele being called, after the correct peak
was found in the per-pixel data. Alleles are not only distinguished by the number of (complete) STRs,
but also if they have a part of the sequence extra. This is denoted by e.g. 13.1, 13.2 etc. for each extra
basepair following the sequence. If the repeating sequence is ATC for example, a 3.1 would be ATCAT-
CATCA. The allele bins are very close together, because STRs with one basepair difference are very close
together on the horizontal axis in the electropherograms. Remember that a basepair spans 10 pixels hor-
izontally, but the peaks are generally around 30-40 pixels wide (Figure 22) and span more than one allele bin.

When creating the per-pixel labels in Section 2.3, we ran into some similar problems because of the allele
bins. Some allele bins only intersect the side of the peak they cause, and will not be called correctly by
our algorithm. Our algorithm is designed to select the most probable allele. Since the U-net output drops
to zero at the sides of a peak, an allele bin that only intersects the side of a peak will never be most probable.

These problems are mainly caused by a small disconnect between the theoretical allele bins, and the actual
resulting peaks. Genemarker™ solves this problem by using a ladder (cf Section 1.2.3). To solve our
problem, we would need to mimic the analysis performed by Genemarker™ . However, this is quite advanced
and difficult analysis, and requires more extensive research and more time than we had left at this point.
Because we did want to estimate how well the U-net could potentially perform if the translation were
perfected, we decided to calculate an upper bound on the score (cf Section 5.2): given that we have the best
possible allele calling algorithm, how well does the U-net score? This will allow us to calculate an upper
bound on the F1-score of the U-net output, which we can compare to the performance of the analyst.

6.5 Comparing upper bound and analyst

First, we begin by comparing the upper bound score for the U-net from Section 5.2 to the analyst. A boxplot
of these scores, again grouped by the number of donors, can be found in Figure 29.

The most notable difference is the huge improvement of the U-net’s score. Where we saw a maximum of
0.8 and medians around 0.65 in Figure 28, the upper bound has maxima nearing one and medians around
0.95 in Figure 29. Interestingly, the U-net seems to have the most difficulty with the two-donor samples,
and appears to perform better for more donors. We cannot explain this phenomenon, but we do have a
hypothesis. The number of distinct alleles per locus increases (relatively) less and less as more donors are
added to a mixture, because five donors are more likely to have some alleles in common than two donors. It
could be that the network has learned to expect a certain number of distinct alleles per locus, and cannot
find enough peaks in the two-donor samples.

The F1-scores for three, four and five donors are similar to the analyst’s F1-scores; medians well above 0.95
and not too much variation. However, only the U-net has a median F1-score between 0.9 and 0.95 for the
two-donor group, and the longest whiskers. This is the only group, both for the U-net and analyst, where
the median F1-score drops below 0.95. Comparing the boxplots of the U-net to the analyst, the U-net’s
scores generally seem to be more clustered together. Both the bars for the 25th and 75th percent (box) and
the bars for the minima and maxima (whiskers) are closer to the median (green bar) than for the analyst.
The difficulty the U-net has with two-donor samples, is not visible for the analyst. The scores for three, four
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Figure 29: Boxplot showing F1-scores of analyst and upper bound algorithm’s annotated alleles, grouped by
the number of donors

and five donors are very similar for the analyst and U-net. All in all, performance is comparable between
the two options to find alleles in an electropherogram.

Now that we had a score we could compare to the analyst in a meaningful way, we wanted to see if we
could group the scores by a more interesting condition. The number of donors that contributed to a sample
is not the only factor that determines the profile’s complexity. Another, or maybe even more impactful
factor, is the ratio between the donors. This tells us whether all donors contributed the same amount of
DNA, or whether there was a clear major donor who contributed the most, and how little the minor donors
contributed. For a complete overview of the ratio’s between donors in the dataset, see Figure 30.

Figure 30: “Mixture proportions and amounts of DNA used per donor to create a total of 20 different
mixtures per dataset.”[6]

The mixture types vary from a 1:1 to a 1:20 ratio between donors.
We would expect the algorithm and analyst to have the most difficulty with the latter, and the least with
the more equal ratios. When some donors contribute a relatively small amount of DNA, that causes smaller
peaks. This makes it harder to distinguish between allelic and artefactual peaks based on height.
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Figure 31: Boxplot showing F1-scores of analyst and upper bound algorithm’s annotated alleles, grouped by
mixture type

Comparing the table in Figure 30 and the boxplots in Figure 31, we can definitely see a correlation. The
simplest mixture types in this data set, A and C, with ratios of 1:1 and 1:2 clearly show the highest F1-scores.
For the analyst this effect is the most dramatic: mixtures A and C not only have a higher median score,
but all scores are clustered close together around the median of ∼0.975. The minima are above 0.95 even.
For the upper bound on the U-net’s output, this effect is less dramatic, but still visible. Mixtures A and C
show the highest median scores, but not necessarily the most clustered scores. For the U-net, all scores are
clustered in a similar way (approximately the same size boxes and whiskers). The minima of mixtures A
and C are similar to those of B and D, which are a step more complex.

After the mixtures A and C, we can see that both the U-net and analyst show the same trend. The scores
become lower from A and C to D-type mixtures, then B-type and finally E-type mixtures. This was to be
expected, since this is precisely the ordering of 1:1 to 1:20 ratio of the donor’s contributions. In the analyst’s
scores, we see another trend: the scores become more scattered (the boxes become larger). This effect is most
clearly visible for mixture type E, which also attains the lowest minimum for the analyst. This scattering is
partly due to some scores still being quite high, while others are becoming worse.

The analyst still attains the same maxima for mixture types A, C and D (around 0.99), but drops to around
0.97 for mixtures B and E. For the U-net’s scores, the maxima decrease more subtly, but they do clearly
decrease for more complex mixture types. All in all, the F1-scores behaved like we expected them to: they
decreased as the mixtures became more complex.

Finally, we decided to also group the scores based on the donor set. The donors were divided into six groups.
We did not expect there to be any difference across these groups, so it provides a check on the validity of
the results. The first donor set is made up of high allele sharing donors, the second of low allele sharing
donors, and the remainder is random. This should not impact the allele calling, it just means there will be
more distinct peaks in the low allele sharing donor set, and less in the high allele sharing donor set.
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Figure 32: Boxplot showing F1-scores of analyst and upper bound algorithm’s annotated alleles, grouped by
donor set

The analyst performs comparably across all donor sets. Median scores for donor set 2 and 4 seem slightly
lower. Most notable is the low whisker for donor set 4. However, it is important to remember the left vertical
axis’ scale. All these scores are already incredibly high, so small variations are magnified in this plot. Based
on this boxplot, we do not see any reason to believe there is a difference in performance by the analyst across
the donor sets.

Now, looking at the U-net’s upper bound score, we see similar F1-scores compared to the analyst. There is
no sign that the donor sets impact the F1-score in a major way. Strange enough, the upper bound also has
its lowest whisker at the fourth donor set, just like the analyst. The medians seem quite constant across all
donor sets. They are quite comparable to the analyst, but do not vary in the same way for each donor sets.
Where the analyst’s median is a little lower in donor set 2, compared to donor set 1 and 3, the upper bound
score’s median is actually a little higher. This just goes on to show that these are very different methods to
arrive at the same kind of solution.

6.6 Summary

While the U-net’s performance on a per-pixel level was good (95% accuracy), there was some trouble trans-
lating this output to alleles. We developed a simple algorithm to this end, and calculated F1-scores on the
alleles predicted by the U-net and analyst. This simple algorithm to call alleles, used only the U-net output
and allele bins, and scored decently (∼0.65 F1-score), but did not compare to an analyst’s performance
(∼0.95 F1-score). We concluded that we needed more advanced analysis (like Genemarker™ ’s use of the
ladder) to correctly translate the output’s peaks to alleles. To give an idea of the potential of this method,
an upper bound was calculated. This upper bound’s scores were comparable to the scores of an analyst.
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7 Conclusion

In Chapter 6, we discussed the U-net’s output in depth. We compared the U-net to the analyst’s performance
in two ways: both as is, and with an upper bound on the score. We will revisit our results to conclude that
the method of applying a U-net of per-pixel labels of an electropherogram definitely shows potential.

Based on the performance on a per-pixel level, the U-net achieved a roughly 95% accuracy. By normalising
the input data and using average pooling layers, the training sped up and this accuracy was achieved after
100 epochs. Looking at only this result, we would say the U-net was successful.

When translating these per-pixel labels back to alleles present in the sample, we ran into some problems.
We use information from the Genemarker™ panel file to locate allele bins on the horizontal axes. However,
Genemarker™ applies more advanced analysis to call the alleles correctly (namely a ladder). In our case, this
preprocessing has not been applied yet, since we opted for a more raw data type for the electropherograms.
The naive algorithm calling alleles from the U-net output, achieves only about a 0.65 F1-score compared to
the ground truth alleles. Although a value of 1 might be unattainable because of possible dropout, we were
not satisfied with this score after having seen the per-pixel accuracy of 95%.

An upper bound score was calculated on the same U-net’s output, and achieved an F1-score of around 0.95.
We were quite happy with this result, as it shows the U-net could possibly work very well. We will discuss
how this upper bound may eventually be achieved in Section 8.

This upper bound was compared against the analyst, and we found the performance similar. A comparison
based on random groupings of donors (Figure 32) showed no significant difference between the two methods
or between the sets of donors, as expected. By comparing the analyst and upper bound based on number
of donors, we did see a difference. The U-net’s performance increased with the number of donors while the
analyst’s performance was constant (Figure 29). This was an unexpected result, and we have no way to
explain this at the moment. More research is needed to conclude the reason behind this definitively.

The most interesting comparison was perhaps the one based on mixture type (Figure 31). While there
were some more differences between the analyst and upper bound, they did show the same pattern. As the
mixture types got more complex, the performance decreased. The analyst had both better scores for the
simpler mixtures, and worse scores for the most complex mixtures. Especially this last observation, that the
U-net’s upper bound outperforms the analyst in specific cases, shows promise for the method.
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8 Discussion

In this chapter, we will discuss all decisions made in this project, and especially the parts that could be
improved. We will treat all decisions grouped together by subject: input and deep learning. After that, we
will summarise our findings and give recommendations for future research on this subject.

8.1 Input

8.1.1 Adding more labels

On the per-pixel labels, the U-net achieved an accuracy of 95%. This accuracy was slightly higher than
Duncan Taylor and David Powers [1] achieved in their first paper (93% on unseen data). This is not a fair
comparison, since they also used 5 labels to our 2 labels, and we used a different data set. We cannot predict
what the accuracy would be of the U-net in the 5-label case or on their data set. Taylor et al. [2] did
increase the number of labels from 5 to 6 in their following paper, among some other changes, to improve
the performance of their neural net. We hope this would mean the performance of our U-net would also
improve as the number of labels increases.

To annotate the electropherograms with these extra labels, some kind of tool could be developed to make
it easier for the DNA analyst to select an area and give it the correct label. It should show the currently
known allele labels (both allele names and all pixels selected for that allele), so the analyst can focus on the
new information. After this, all remaining pixels will be set to background.

To optimise the annotation process even further, a simple neural network could be applied. We would ask
an analyst to annotate a small subset of the electropherograms with the new labels. Then try to make the
network predict stutter and pull-up artefacts in the remaining electropherograms decently. Then, ask an
analyst to take another look at the discrepancies between the network’s prediction and their own annotated
labels. They can decide if the prediction was indeed wrong or if the label needs updating. This way we are
iteratively improving the labels as well as the results of the neural network.

8.1.2 Cropping electropherograms

The decision to crop the sides of the electropherograms was necessary, because the electropherograms did
not have the same length. However, we did make a slightly arbitrary choice to leave only basepairs 50 to
530. Many values could have been chosen for the same purpose. We wanted to choose a starting point after
all effects of the primer dimer had disappeared. The stopping point should be anywhere after the rightmost
locus, but before the shortest of the electropherograms end. The values of 50 to 530 were also chosen, because
this leaves 480 basepairs, or 4800 pixels in each dye, which is easily divisible. Divisibility is useful for the
pooling layers in a U-net, in our case we wanted to divide by 2 four times, making 4800 a logical choice.

8.1.3 Normalisation

Applying some form of normalisation turned out to be a good choice in this specific case. It both increased
speed and performance of the U-net. We decided to normalise each electropherogram as a whole, as opposed
to normalising the entire set of electropherograms based on the overall maximum. We did this, because there
can be variation in quality, resulting in lower peaks throughout an entire electropherogram. Then again, the
information that a profile is low quality could be useful for the U-net, so it could be looked into more.

Another option was to normalise each dye on its own, because there is a lot of variation in peak heights be-
tween dyes. It could be easier for the neural net to recognise peaks if they are all (maximally) the same height.
A downside of this method is that pull-up artefacts are related to the height of a peak in a different dye. The
relative height of the pull-up with respect to its corresponding peak would be distorted by this normalisation.
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Another addition to the normalisation algorithm could be to first cut off all very high values and set them
to the same maximum. Since peaks above a high enough rfu value are almost definitely allelic, it would
remove unnecessary information. The interesting decisions are made close to the baseline, around low values
of rfu. After cutting off high values, we could still opt for either normalising or not normalising the data. A
problem with this method, is that when peaks are close together, the fluorescent feedback does not always
drop to zero, but can show only a dip between two high peaks. If we were to cut off the entire top, we could
be merging peaks together, removing the only way to tell them apart.

An important factor to consider is that absolute peak height can be an important tool. Peak height can be
used as a factor to judge whether a low peak is an artefact for example. Since it is known with which proba-
bility a stutter occurs, Genemarker™ filters out stutters if they have the expected relative height to the allelic
peak. This is a property which a neural network might also pick up on (if we did not remove this information).

All in all, each normalisation method has its advantages and disadvantages. Even the option of not normal-
ising has a disadvantage, mainly that rfu values are large numbers and slow down training. We feel confident
about our decision to normalise each electropherogram as a whole. Although we have no definitive proof
that all other discussed normalisations were outperformed by our choice, we have not seen any signs that the
U-net’s results were negatively impacted by the normalisation. We did compare the chosen normalisation
against no normalisation, and saw an improvement in performance and speed.

8.1.4 Ladder

As we have discussed in Sections 2.3.1 and 5.1, there was some difficulty translating the alleles to the correct
peak in the electropherogram and vice versa. With full information, it was doable to select the correct peak
from a known allele. However, when identifying alleles purely from the U-net’s output, it proved too difficult
and we calculated an upper bound. There is a slight mismatch between the allele’s bins as given by the
Genemarker™ panel file and the resulting peak in the electropherogram. This is solved by Genemarker™ by
using a ladder for each run (cf Section 1.2.3).

There are three options to solve this problem. First, a future researcher may think of a better method or
algorithm to select the correct alleles based on the U-net’s output. If this method is not found, a solution is
to either find out how to incorporate the ladder into the (raw) data ourselves, or use a less raw data type
from Genemarker™ which has already been analysed and rescaled using the ladders. We believe it is going
to be necessary to incorporate the ladders to call all of the alleles correctly.

8.1.5 Different datatype

As discussed in Section 2.2, there were three datatypes available for each electropherogram: our option, an
even rawer datatype, and the profile analysed by Genemarker™. With the problems we encountered using the
middle option, either using the Genemarker™ profile or a hybrid option could be considered. It is preferable
to work with a more raw data type, so the research does not depend (too much) on Genemarker™ specifically
and could be applied on electropherograms from other genetic analysis software packages as well. On top of
that, not all of the analysis Genemarker™ performs may be needed to solve our problems in allele calling. In
the previous section, we mentioned the option of using only the ladders to create a hybrid datatype for our
electropherograms.

Other possible useful information that could be added are STR repeat lengths or allele bins. Because these
STR lengths vary, the stutter for some STRs will occur a basepair earlier or later than for another STR.
This could be confusing our neural network if it happened to pick up that most stutters occur four basepairs
before their corresponding allelic peak. To avoid this problem, we could rescale each locus’ axis to have
the same unit of distance to the expected stutter. Feeding the neural network the precise location of each
possible allele (allele bins), removes a lot of area to make decisions on. The network would know in advance
that no allelic peaks can exist between loci for example. An added advantage is that it may improve the
allele calling on the output of the network as well.
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8.2 Deep learning

8.2.1 Parameters of U-net

Most settings of the U-net were very standard choices, e.g. the ReLU activation function (max(input, 0)).
The He normal initialiser[21] could not have impacted our results in a big way, because it is only an ini-
tialisation. Even if the initialisation was bad, the network would eventually move past it. The number of
convolutional and pooling layers (steps) was exactly like the example U-net in Section 4.1. We actually
started out with different networks, each with a different number of steps, before we settled on three steps.
A larger network needed much more time to train, and a smaller network resulted in too simple predictions
(making many mistakes).

Some of the more interesting choices are the parameters of the layers themselves. While it is standard to
set the convolution kernel to 3 × 3, we decided on 3 × 6 to include all dyes. The 3 × 3 shape is commonly
chosen for two-dimensional images, but our input is actually six interdependent one-dimensional images. On
the other hand, we decreased a dimension of the pooling kernel. It is common to half each dimension on a
pooling layer (stride of 2 and kernel of 2 × 2). We chose a stride of 2, but a kernel of 2 × 1 to avoid pooling
in the dye’s direction. These choices were made based on intuition and on the data at hand, and could
definitely be looked into for improvements.

The most influential change to our U-net, was the average pooling layer. We explained our decision to
exchange the max pooling for average pooling layers in Section 6.2. While we believe this was a good
decision given our set-up, it may not work as well if the dataset became smaller or larger, or the datatype
became different. We have discussed some issues that arose because of the raw datatype we chose for the
electropherograms. It is not unthinkable that further research will select a different datatype option to work
with. It would be good to reconsider the average pooling layers in that case. We only researched the effect
on this specific data with this specific U-net, and cannot predict how it will behave in different cases.

8.2.2 Different neural network

We based our decision for the type of deep learning method on a literature review. We also consulted experts
from the FBDA team at the NFI before making our final decision. While we decided on the U-net, another
structure that appeared frequently in comparable research were CRNNs. A U-net has convolutional layers,
so it is a CNN, but the recurrent layers are still another option to explore. The main goal we would have for
these recurrent layers, is to enhance stutter prediction. Recurrent layers are good for finding sequence/time-
related features. Although a U-net does solve part of the problem by analysing a full image at once, recurrent
layers may prove useful, especially after adding stutter annotations to our labels.

8.2.3 Improving training

Since we were able to achieve good results with little training, we did not make many changes to optimise
the training process. We found many good suggestions during the literature review, which could be useful
perhaps in future work, e.g. progressive resizing [16]. Taylor et al. [2] improved upon their first proof-
of-concept paper by pretraining on specific types of data (e.g. a certain dye). Pretraining certain layers
could also be used to speed up training, or by using better hardware or training on an external cluster of
computers. Training (and results) could also be enhanced by using a learning rate scheduler. This starts off
with a larger learning rate to quickly arrive at a decent solution, and then decreases the learning rate to find
the most optimal solution more precisely. We simply used a standard learning rate of 0.001 for training.

8.2.4 Creating more data

An important factor in deep learning, is the amount of available data. We had access to electropherograms
of 120 different compositions, of which most were replicated two or three times. In total we could use 350
distinct electropherograms (although the replicates are quite similar). This might sound like a large number,
but is not that much in deep learning. Taylor and Powers [1] solved this problem by training their network
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on a window of 1206 pixels, on each of the 6000 pixels in one electropherogram. We simply used an entire
electropherogram as a single input. It is not easy to create more data, since these require a lot of work from
trained specialists. We cannot create more electropherograms on our own, or find more images online due
to the specific combination of kit and settings used.

There are some ways to avoid actually creating new data, but rather use existing data to generate similar
data. In the specific case of electropherograms, it is important that the dyes are interconnected. We could
vertically (keeping all 6 dyes together) cut electropherograms into chunks, and put these chunks together to
create a fictitious electropherogram. We would have to be careful with stutters in the horizontal direction,
although this probably does not have much effect on a large scale. Or we could copy single peaks or artefacts
from one electropherogram into another. This demands some caution in the vertical direction, so we do not
copy pull-up artefacts without a corresponding peak for example.

Since we do not know exactly what a neural network learns, it is important to keep the data as realistic as
possible. The previously discussed options each had their own downside which would make the generated
electropherograms suboptimal. Gordon and Williams [12] used an ingenious technique to add simulated
types of noise to heartbeats. Since heartbeat measurement machines have different types of background
noise, they added a different type of noise to existing data. This does not remove any of the authenticity
from the data, yet can be used to create much more data to train on. It might be interesting for future
research to investigate whether this process could be applied to electropherograms.

8.3 Recommendations

We have indicated that our main problem is the allele-calling algorithm on the U-net’s output. If one were
to build on our research, our advice would be to solve this problem first. It could be interesting to look
at new options for the input data type using the ladders. Hopefully, it will not be necessary to use the
fully analysed profiles from Genemarker™ . It would be ideal if future research could either enhance the
allele-calling algorithm, or design a hybrid datatype somewhere between the more raw and more analysed
datatypes.

Another addition to the input data could be to add more labels (stutter and pull-up), which was shown
effective in the case of Taylor et al. [1], [2]. This does require a lot of (manual) work from trained analysts,
so we would advise to use some sort of preliminary prediction and a handy annotation tool (as discussed
in Section 8.1.1) to lessen the workload. We believe the boundaries for cropping are not very interesting
to vary, and the normalisation we selected was a good choice, so we would suggest researching other areas first.

The U-net was selected as deep learning method after careful consideration, and performed very well. How-
ever, based on the performed literature study, CRNNs did also seem promising. Since we did not implement
a CRNN, we cannot be sure that the U-net was the best choice, only that it was a good choice. Future
research may look into the differences in performance between these two networks when applied to electro-
pherograms. The U-net we designed was specifically tuned to our data and goal. If something were changed
about the datatype or labels, some parameters and/or the structure may need to be tuned again.

We did not have a very large data set, so we did not need to optimise the training process. Since deep
learning usually benefits from larger amounts of data, it would be interesting to see how much our U-net
would benefit from it. We described some ideas on how to create more (fictitious) data in Section 8.2.4. We
believe this could be one of the most impactful improvements to make on this research.
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A Figures

The following Figure A.1 shows the difference between peaks and bins for each allele in a single electrophero-
gram.

Figure A.1: Bins (blue) and annotated peaks (green) for one full profile. Arrows and text on x-axes are loci
and loci ranges respectively. Black line is electropherogram, left axis shows values in rfu.

B Internship report

Internship report will be included exactly as the original on the next few pages, with the exception of page
numbers having been added that match the rest of the report.
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1 The NFI

This internship was carried out at the NFI, the Netherlands Forensics Institute. The NFI is a government institute
whose main goal is to provide forensic analysis for the police and public prosecutor’s office. Another important
goal is to increase and share forensic knowledge, in order to increase forensic insight. Examples of this are offering
internships, training more forensic scientists, and giving talks about their research. The knowledge at the NFI is
always increasing as they are constantly looking for improvements.

2 Problem description

For my internship, the subject lies at the intersection of two fields: FBDA (Forensic Big Data Analysis) and BiS
(Biological Traces). The problem was presented to me as both an internship and master thesis subject: Exploring
neural networks to enhance DNA analysis. My thesis is going to be to design, create and apply neural networks on
the data I have prepared during the internship.

To analyse a DNA sample, the NFI makes use of so-called electropherograms. These are analysed by hand, after
which a likelihood ratio calculation determines the weight of the evidence to be reported to the judges. A problem
in this process, is that all analysis has to be done by hand. This is very costly and time-consuming. A simple
automated process has already been created at the NFI. However, neural networks have been shown to be effective
in many problems, and have recently been applied to DNA analyses [4], [2], [3]. To streamline this process, my
mentor was wondering whether neural networks could be trained to analyse these electropherograms instead of the
analyst.

My internship focuses on how to obtain data in a suitable format for training neural networks from raw DNA
measurements (in Python) to prepare them for the neural network. To be able to explain in more detail about my
internship, first a small introduction (or refresher) of DNA analysis is needed, which I will give in Section 3.
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3 DNA analysis

I will try to keep this DNA introduction as short as possible. Not all of the information is relevant to the project
work itself, but it is needed for interpretation of the results. Learning all this new information took place during
the first week or two of my internship. Even though I did follow biology in high school, this information was way
more specific and in-depth than what I learned. And after 5 years of not using biology, even the general concepts I
should have known, had become somewhat vague.

DNA can be found in every cell of your body (except red blood cells). Each cell nucleus has the same 23
chromosome pairs. A chromosome is built from a double DNA string, where the two sides of a DNA string are
eachother’s opposites. If one side has AGTC, the other sides connects with TCAG. These A(denine), C(ytosine),
G(uanine), T(hymine) are called nucleotides, and the A is always opposite to the T, and the C always opposite to
the G. One pair of two opposing nucleotides is also called a base pair. On chromosomes, there are certain fixed
positions, loci, where the DNA can differ in known ways. The variations on a specific locus are called alleles. Some
of these alleles consist of repeated short sequences of nucleotides: Short Tandem Repeats (STR). The different
alleles for these loci vary from eachother by the number of repetitions. Since these STRs are easily identified and
show plenty of variation over the population, they are ideal to use for DNA analysis.

When trying to identify the DNA in a biological trace, the forensic scientist follows a couple of steps. First, the
DNA is extracted as purely as possible. Then only certain identifiable parts (STR’s) of the DNA are multiplied
many times using PCR (Polymerase Chain Reaction) and five different colour fluorophores are added to specific
STR’s. A fluorophore is a chemical compound which emits light after excitation (fluorescence). A sixth fluorophore
is added to the size standard, which I will explain later on in this section, during the next process: electrophoresis.
This sample is led through a very thin tube and hit with a laser. The fluorescent feedback is read by a sensor,
resulting in 6 different graphs; one for each colour. This fluorescent feedback is locally very high for the copied
STR’s and shows up as a peak in the data. So, at this point we have 6 measurements of relative fluorescent units
(rfu) against time.

So, the next step is to rescale the measured data’s horizontal axis (time) into nucleotides. The longer a string of
DNA (the more nucleotides it has), the slower it passes through the tube, and the longer it takes before the DNA
passes by the laser. Using a so-called size standard, a known DNA sample with its own fluorescent dye, which is
run through the machine at the same time, this rescaling is possible. The peaks visible in the size standard are
very easily distinguishable from the baseline and have fragments of known sizes. So the time at which these peaks
show up, can be linked to a certain length in fragment size. This relation between the time and nucleotide axes can
then be applied to all other dyes as well.

Then to identify all peaks in the unknown sample, we use a ladder, a mixed sample which (theoretically) has
exactly the same amount or DNA of all possibly occurring alleles. All steps in this and the last paragraph are
usually automatically performed by Genemarker: a genetic analysis software. The resulting graph of all 6 colours
with horizontal axis of nucleotides is called an STR electropherogram. An STR electropherogram shows rfu (on
the vertical axis) against fragment size in nucleotides (on the horizontal axis). An example of how a complete
electropherogram looks, can be found in Figure 2. Because these images contain a lot of information, they have to
be printed quite big to be legible.

Figure 1: source:
https://www.slideserve.com/ivo/310-
data-collection-software

When the set of 6 graphs has been loaded into Genemarker, a forensic analyst
identifies which peaks he deems to be allelic, and which are artefactual. Small errors
in the DNA-replication process can lead to artefacts not related to the actual DNA.
One common example of this is stutter: the DNA string folds a little and the copied
string skips one repeat (Figure 1). And because the 6 colours’ spectra overlap partly,
some peaks can appear in more than one colour, although only belonging in one (pull-
up). There is a lot of noise at the almost zero level of rfu. Genemarker can filter
most of the errors out of the graphs, but does so according to static thresholds.
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Figure 2: Example of an electropherogram in Genemarker

3

49



4 Project

As briefly mentioned in the problem description, Section 2, my mentor was won-
dering whether a neural network could be trained to identify peaks in an electro-
pherogram; a task currently being performed by hand by trained forensic analysts.
This idea originated from a series of papers published by Duncan Taylor and David
Powers.

The first paper [4] of this series investigated whether it was at all possible to
train an artificial neural network on this type of data. They consider five different labels for each point of the
electropherogram: baseline, allele, (backward) stutter, forward stutter, and pull-up. To classify each point, also 100
points to the left and 100 points to the right of it in all six dyes are fed to the neural network. After training on
one electropherogram, the neural net already had an accuracy of 93% on an unseen profile (and 98% on the profile
it had been trained on).

The second paper [2] tries to improve on the artificial neural network by using a more complex structure and
more specific training. They add two layers into the neural net and train the neural net on specific loci or fluorescent
dyes. They also add a sixth category (half stutter) and compare the resulting data to genetic analysis software.

The third and last paper they wrote [3] investigates the versatility of their trained neural networks. Under what
circumstances you should train another neural net, and when the neural nets can be applied to different types of data.

Duncan Taylor and David Powers mainly aimed to investigate the applicability of neural networks to electro-
pherograms. They use two variations of artificial neural networks, and keep most other choices the same through
the papers. There is probably still a lot room for improvement by investigating each of those choices. A different
type of neural network may be better suited for this type of data. Convolutional neural networks for example, since
they are designed to work well on images, and an electropherogram can be seen as a very simple type of image.

But most of this is of later concern, as those research questions are reserved for my thesis. Before we could
train a neural network on data, first the data had to be prepared during my internship. The first step of the thesis
project is going to be reproducing the results from Duncan Taylor and David Powers, so I would need to prepare
the data in the same format.

4.1 Data files

The DNA data that was made available to me, was not case data, but rather an experimental dataset. The DNA
samples had been mixed from known donor DNA in certain ratios. Some mixtures were created from donors who
shared many alleles (high allele sharing). This means you would expect it to be difficult to identify the amount of
distinct donors, because some alleles will be the same for multiple donors, and only show up once. Other mixtures
were low allele sharing, and the rest had randomly selected donors. The available data files were:

• .hid Raw data from genetic analyser

• .txt Trace data of DNA samples (raw or sized)

• .csv Analysts’ identified peaks and peak heights

• .csv Donors’ DNA profiles

• Word document describing the composition of the DNA mixtures

• .xml Genemarker panel info

If we were able to read out the .hid files, without using Genemarker, that would be ideal. However, this data is
extremely raw measurement data, and the files are are not understandable to the human eye. So we use Genemarker
to read the .hid file and then immediately export the data without applying any advanced filters or analyses, besides
the resizing of the axes. There are two export options that don’t require any advanced analysis from Genemarker:
raw trace data and sized trace data. My first problem was to figure out the difference between the two, the results
of which can be found in Section 5.1.

Then the alleles present in the data could be obtained in two ways. The first option is to use the analysts’
identified peaks, which were very nicely ordered in simple .csv files per sample. Second option is to calculate the

4

50



theoretical expected peaks from the known sample composition. I had access to .csv files of each donor’s DNA pro-
file, as well as a Word document with explanation on the composition of each mixture. I will explain in more detail
how the samples were composed and show some examples of the identified and expected peaks in Sections 5.2 and 5.3.

The last file I listed, is the Genemarker panel .xml file. This one was used for a number of things. It contains a
huge amount of information on the locations of alleles, which alleles belong to which locus, which locus is measured
with which fluorescent dye, and much more details I will not be using. I used this file mainly for plotting purposes,
but it is also needed to relate allele names in the peak files to fragment size (positions on the horizontal axis).

The peak data, theoretical or identified, only specifies which alleles are present in an electropherogram, but not
the size or shape of this peak. The analysts’ file does contain the height of a peak, but not the width. Luckily the
Genemarker panel contains the location of allele bins in terms of nucleotides. This gives us at least a general idea
of where the peak is, but the bins are still wider than the peaks themselves. As described in Section 4, each point
is supposed to get its own label, so I would be needing some kind of peak detection algorithm to identify the single
points constituting a peak. Furthermore, Duncan Taylor and David Powers used five different labels in their papers,
but these files (after translation of allele to horizontal position and peak detection) only contained two: peak or no
peak. So I do not have access to the same labels they do.
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5 Results

I will first go into the differences between Genemarker’s trace data export options in Subsection 5.1. After that, in
Subsections 5.2 and 5.3, I will explain more about how the samples were mixed and how I read out the labels.

5.1 Raw and Sized Trace Data

The first question was, what the difference is between the two export options in Genemarker: raw trace data and
sized trace data. These files are exported as tab delimited text files, where each column is one measurement of one
dye. The first row contains the sample names per six columns (each sample is measured in six dyes). The second
row contains the dye names per column (FL, JOE, TMR, CXR, TOM and WEN). I decided to read out the data
in a matrix format, so an n × 6 matrix per sample. What stood out immediately to me, is that the length of the
sized data is much shorter than the raw for each sample (about 6000 data points compared to 9000). However, the
amount of data points was also not constant. So, to investigate, I plotted both types of trace data in the same
figures for each of the 6 colours in a sample. In Figure 3, one such image is shown. Every subfigure contains both
raw and sized trace data for the same dye and the same sample.

Figure 3: All six dyes of the raw (orange) and sized (blue) trace data.

These dyes all show approximately the same graph in raw (orange) and sized (blue) trace data, only it ap-
pears to be translated. An effect you can see very clearly in the WEN dye, the big peak (primer dimer) starts
immediately for the sized data, and only at about the 3000th data point for the raw data. Primers are small single-
stranded DNA that act as starting points for PCR. Primer dimer is the fluorescent feedback of all the primers
that were in the DNA sample for replication during PCR, but weren’t used. These primers are all very short and
light structures, and easily distinguishable from the actual peaks. Because of their small weight, they show up as
the very first peak, since they reach the laser first. Each measurement has such a primer dimer blob as its first peak.

After noticing the translation, I decided to cut off the same (first) part of the raw trace data to be able to see
the subtler differences. The next figure, Figure 4, shows only a single dye (JOE) where the raw data was resized to
be the same length array as the sized data.
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Figure 4: One dye of resized raw (blue) versus sized (orange) trace data, with first part cut off of raw data.

You can see clearly that the graphs are very similar. They have the same amount of peaks and the peaks are
almost the same heights. The primer dimer has been completely cut off in the resized raw data (blue), but is still
visible in the sized data (orange). Something that stands out, is that they seem to have a different x-axis. For the
first few peaks, the raw peaks are before the sized peaks. But later on, the raw peaks catch up with the sized peaks,
and appear after the sized peaks. To further look into this phenomenon, and what type of rescaling it is, we look
at another dye.
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Figure 5: Size standard dye of resized raw (blue) versus sized (orange) trace data.

Figure 5 shows the dye WEN, this dye is reserved for the size standard of a sample. This means that we know
where the peaks in this dye are supposed to show up in terms of fragment length. Somewhat surprising is that the
raw data peaks (blue) first appear before, then on, then after, and then again on the sized data peaks (orange).
This means that it is not a linear transformation from raw to sized data or vice versa.

If you look closely at the peaks of the sized trace data, you can see a peak precisely at 1000, 2000, 3000, 4000
and 5000. I verified this, using a simple peak detection algorithm, and the peaks indeed show up exactly at those
data points. These peaks at every thousand data points, are supposed to show up at every 100 nucleotides in
the size standard, and a few steps in between (every 20 nucleotides up to 200 and every 25 nucleotides from 200
on). From this, I concluded that the sized trace data had been resized to a fragment length axis using the size
standard. So the sized trace data has 10 measurements per nucleotide. This discovery made plotting the samples
in an electropherogram a lot simpler, since I could now link a data point to a value on the fragment length axis.
Exporting sized or raw trace data from Genemarker takes the same amount of time, so I decided to use the sized
data from here on.

5.2 Reading out identified peaks

Now that I knew how to identify the data from the trace data, I wanted to compare it to the peaks that should be
visible in the figure. Each of the samples has already been read by an analyst, and he had denoted the alleles and
heights of each peak. Below, figure 6 shows the peaks (*) the analyst has identified in the sample for one dye (FL).
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Figure 6: Analyst’s identified peaks (*) and measured DNA data for one dye.

The heights are also plotted exactly as the analyst has written them down. The difference in height is most
likely due to the filters Genemarker uses. Although there is a small difference in height of the peaks that were
measured, and the peaks that the analyst identified, they do clearly describe the same mixture. The lower peaks
are much closer to what the analyst described than the higher peaks.

On the horizontal axis you can see the marker ranges plotted. These show the range where alleles for the same
locus should appear. This information was taken from the Genemarker panel information. If this was a single
person profile, we would expect 1-2 peaks per marker range (one for each chromosome in a pair). One peak in a
marker means that this person has the same allele on both chromosomes. This also explains why the single peaks
are so much higher, because those have twice the amount of genetic material per allele.

5.3 Reading out expected peaks

All of the experimental data I was given, was composed from known donors in known proportions. These samples
are coded by a short sequence denoting the amount of different donors, the ratios of DNA between donors and
which set of donors the sample came from. For example, the next figure shows a mixture of two donors where the
main donor to secondary donor ratio is 2:1.
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Figure 7: Expected peaks (*) and measured DNA data for one dye.

In Figure 7, I tried to visualize the expected peak heights. There is no precise relation between the amount of
genetic material and the height of a peak. Obviously, the more material, the higher the peak. However, a certain
amount of DNA does not relate to a certain height in rfu and can also differ between measurements. DNA also
becomes more susceptible to decay the further it shows on the horizontal axis.

This specific sample was made up of two donors, one of which was added twice as much DNA as the other one.
I added together the relative contributions to the total weight of the DNA sample, to come up with relative heights
of the peaks. The horizontal black line at 20000 rfu shows the maximal possible peak (*) height. This means that
the * on this black line represents an allele that each donor on each chromosome. The large peak to the right of it,
around the 275th nucleotide, is almost the same height in the measured data, yet the amount of DNA is not even
75% of the DNA for the first peak.

It was very good to see that the expected peaks matched the measured data so well horizontally. This means
that the data was read out properly, and the Genemarker panel file matches the data. The panel contains the allele
and marker ranges for all alleles that can be measured using this set-up. Figure 8 shows all allele and locus bins
that Genemarker has stored in its panel. At zero level, the locus bins are between the squares for all 5 dyes. The
size standard obviously does not contain alleles, so was not plotted in this case. At the height of one, all allele
bins are plotted. These bins are incredibly small, they have a width of about one (nucleotide), but it varies a little
between alleles.
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Figure 8: Allele and locus bins

5.4 What I have learned

I have learned a lot these past months, for example knowledge of DNA, better programming skills and machine
learning basics. My mentor advised me to use Github for version control of my code, and I’m very glad he did.
Version control software is not something we learn to use in the bachelor Applied Mathematics, even though it
would have been very useful. I think there are some more advanced programming courses in the master, mainly
aimed at the CSE specialisation. Unfortunately, I did not have any room left in my exam programme to add these
courses, but luckily my internship did provide an opportunity for more programming.

During the only required programming course in Applied Mathematics, we learn to use Python with its built-in
IDLE (Integrated Development and Learning Environment) [1]. At this internship, I learned how to use Python in
Pycharm instead, and virtual environments using Anaconda. Never having known about other IDE’s (Integrated
Development Environments), I didn’t know what I was missing until I tried it. Being able to rename a variable
everywhere in your code, even distributed over multiple files, with a single click is ideal. Anaconda gives you an
overview of the packages you have installed for each virtual environment, and makes it easier to install or uninstall
packages.

More specific skills I developed are learning to deal with lots of different types of data file. I also got some
experience in presenting my project and interim results to different audiences. The digital meeting environments
and screen-sharing sometimes provided difficulties, but never too much. Doing this internship right before my
thesis, gave me the room to figure out how to work independently. This was especially challenging because of the
Corona virus measures, and having to do the largest part of the work at home.

Lastly, I would like to add what I have learned during the internship besides the project work itself. I was
included into the team FBDA from the start, which not only made me feel very welcome, but also gave me a taste
of the day-to-day working environment in FBDA. They adapt an agile work structure, which means that they have
short meetings to start each day and see how everyone is doing. Every week they share some larger updates on
their projects, and every few weeks they present their final results. It was interesting to see what actual researchers
were working on.
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Appendix

On the following pages the developed code is included, the appendices A: classes.py, B: reading functions.py, C:
plotting functions.py and D: main.py.

A classes.py

This file contains all data classes and some global variables.

from d a t a c l a s s e s import d a t a c l a s s
from typing import List , Dict
import numpy as np

@datac lass
class Dye :

””” Class f o r f l u o r e s c e n t dyes o f g en e t i c ana l y ze r . ”””
name : str # example : ’FL−6C’
p l o t c o l o r : str # example : ’ b ’
p l o t i n d e x : int # index o f which o f 6 s u b p l o t s when a l l dyes \

# are p l o t t e d in the same image

# Current ly between c l a s s e s so i t can be used wi th in c l a s s e s
BLUE = Dye( ’FL−6C ’ , ’b ’ , 1)
GREEN = Dye( ’JOE−6C ’ , ’ g ’ , 2)
YELLOW = Dye( ’TMR−6C ’ , ’ y ’ , 3)
RED = Dye( ’CXR−6C ’ , ’ r ’ , 4)
PURPLE = Dye( ’TOM−6C ’ , ’m’ , 5)
LADDER = Dye( ’WEN−6C ’ , ’ k ’ , 6)

@datac lass
class A l l e l e :

”””Class f o r each a l l e l e t h a t can be i d e n t i f i e d . ”””
name : str # example : ’X’ or ’17 ’
mid : f loat # ho r i z on t a l po s i t i on , example : ’87 .32 ’
l e f t : f loat # l e f t s i d e o f b in from mid (0 .4 or 0 .5 )
r i g h t : f loat # r i g h t s i d e o f b in from mid (0 .4 or 0 .5 )

@datac lass
class Locus :

”””Class f o r locus , s t o r e s A l l e l e s per l o cu s in d i c t . ”””
a l l e l e s : Dict [ str , A l l e l e ] # example o f entry : ’ 18 ’ : A l l e l e ( )
name : str # example : ’AMEL’
dye : Dye # dye t ha t l o cu s i s on
lower : f loat # lower boundary o f marker
upper : f loat # upper boundary o f marker

@datac lass
class Peak :

”””Class f o r an i d e n t i f i e d or expec ted a l l e l e peak .
Has e v e r y t h in g needed f o r p l o t t i n g . ”””
name : str # Using ” l o c u s a l l e l e ” because i t makes d i c t acces s easy
x : f loat # ho r i z on t a l l o c a t i o n o f peak

13

59



he ight : f loat # he i g h t o f peak
dye : Dye # dye o f peak

@datac lass
class Sample :

”””
Class f o r samples , data i s ( nx6 ) matrix o f a l l 6 co l ou r s
”””
name : str # example : ’1A2 ’
data : L i s t
c o l o r l i s t = [BLUE, GREEN, YELLOW, RED, PURPLE, LADDER]

@datac lass
class Person :

””” Class to s t o r e a l l e l e s a Person has . ”””
name : str # name i s A − Z , l e t t e r used to i d e n t i f y person
a l l e l e s : L i s t [ str ] # l i s t o f ’ l o c u s a l l e l e ’ names

@datac lass
class PersonMixture :

name : str # for example : ”1A2”
persons : L i s t [ Person ] # l i s t o f Persons pre sen t in mix
f r a c t i o n s : Dict [ str , f loat ] # f r a c t i o n a l c on t r i b u t i on o f each person in mixture
def c r ea t e p e ak s ( s e l f , l o c u s d i c t ) :

”””Returns l i s t o f peaks expec ted in mixture and t h e i r r e l a t i v e h e i g h t s ”””
p e a k l i s t = [ ]
peak d i c t = {}
# add X and Y by hand ( a l l samples are male )
X and Y = l o c u s d i c t [ ’AMEL’ ] . a l l e l e s
X = X and Y [ ’X ’ ]
Y = X and Y [ ’Y ’ ]
p e a k l i s t . append ( Peak ( ”AMEL X” , X. mid , 0 . 5 , BLUE) )
p e a k l i s t . append ( Peak ( ”AMEL Y” , Y. mid , 0 . 5 , BLUE) )
# i t e r a t e through persons in mix
for person in s e l f . persons :

# i t e r a t e over t h e i r a l l e l e s
for l o c u s a l l e l e in person . a l l e l e s :

try :
p eak d i c t [ l o c u s a l l e l e ] += s e l f . f r a c t i o n s [ person . name ]

except :
p eak d i c t [ l o c u s a l l e l e ] = s e l f . f r a c t i o n s [ person . name ]

# now we have a d i c t i ona r y o f the h e i g h t o f the a l l e l e s
# a l l t h a t ’ s l e f t i s to s t o r e corresponding peaks in l i s t
for l o c u s a l l e l e in peak d i c t :

locus name , a l l e l e n a m e = l o c u s a l l e l e . s p l i t ( ” ” )
l o cu s = l o c u s d i c t [ locus name ]
a l l e l e = lo cu s . a l l e l e s [ a l l e l e n a m e ]
x = a l l e l e . mid # s to r e x l o c a t i o n
he ight = peak d i c t [ l o c u s a l l e l e ] # s to r e r e l . h e i g h t
dye = locu s . dye # s to r e dye
new peak = Peak ( l o c u s a l l e l e , x , he ight , dye )
p e a k l i s t . append ( new peak ) # append peak to l i s t

return p e a k l i s t
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@datac lass
class AnalystMixture :

””” Class to s t o r e peaks i d e n t i f i e d in mixture . ”””
name : str # name of mixture , ’1A2 ’ f o r example
r e p l i c a t e : str # where 1 i s donor se t , 2 i s #donors , A i s mixture type and 3 i s r e p l i c a t e
peaks : L i s t [ Peak ] # l i s t o f peaks

# Globa l v a r i a b l e s
PICOGRAMS = np . array ( [ [ 3 0 0 , 150 , 150 , 150 , 150 ] ,

[ 300 , 30 , 30 , 30 , 3 0 ] ,
[ 150 , 150 , 60 , 60 , 6 0 ] ,
[ 150 , 30 , 60 , 30 , 3 0 ] ,
[ 600 , 30 , 60 , 30 , 3 0 ] ] )

TOTAL PICOGRAMS = np . array ( [ [ 4 5 0 , 600 , 750 , 900 ] ,
[ 330 , 360 , 390 , 420 ] ,
[ 300 , 360 , 420 , 480 ] ,
[ 180 , 240 , 270 , 300 ] ,
[ 630 , 690 , 720 , 7 5 0 ] ] )

B reading functions.py

This file contains all functions used for reading out data files.

import pandas as pd
import xml . e t r e e . ElementTree as eT
from s r c . c l a s s e s import ∗

def t x t r e ad da ta ( f i l ename : str ) :
””” Function to read data f i l e s \
Returns a l i s t o f sample names , co lo r s , \
and the data i t s e l f as matrix . ”””
t e x t f i l e = open( f i l ename , ” r ” ) # open t e x t f i l e
t e x t s = t e x t f i l e . read ( ) # read en t i r e content
t e x t s = t e x t s . s p l i t ( ”\n” ) # s p l i t i n t o l i n e s
# l i n e s 1 and 2 are not i n t e r e s t i n g
t i t l e s = t e x t s [ 2 ] . s p l i t ( ’ \ t ’ ) # ge t t i t l e s o f f i l e s
t i t l e s = [ item for item in t i t l e s i f item != ’ ’ ] # remove empty e n t r i e s a f t e r s p l i t t i n g
c o l o r s = t e x t s [ 3 ] . s p l i t ( ’ \ t ’ ) # only needed f o r width o f l i n e s
data = np . z e r o s ( ( len ( t e x t s [ 4 : ] ) , len ( c o l o r s ) ) )
counter = 0 # counter i s needed f o r l i n e number
for e l t in t e x t s [ 4 : ] :

new = np . array ( e l t . s p l i t ( ’ \ t ’ ) ) # s p l i t i n t o words
new [ new == ’ ’ ] = 0 # i f empty s t r i n g , make zero
data [ counter , : ] = new # s to r e in t o data array
counter += 1

# now pour con ten t s in t o separa t e sample d a t a c l a s s e s
s a m p l e l i s t = [ ]
for i in range ( len ( t i t l e s ) ) :

new sample = Sample ( t i t l e s [ i ] . s p l i t ( ’ ’ ) [ 0 ] , data [ : , 6∗ i : 6∗ i +6])
s a m p l e l i s t . append ( new sample )

return s a m p l e l i s t
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def xml read b ins ( ) :
”””Read xml f i l e f o r b in s o f each a l l e l e , \
re turns d i c t i ona r y o f in format ion ”””
t r e e f i l e = eT . parse ( ” data /PPF6C SPOOR. xml” )
root = t r e e f i l e . g e t r oo t ( )
l o c u s d i c t = {}
# root [ 5 ] i s the node wi th l o c i , r e s t i s pane l i n f o
for l o cu s in root [ 5 ] :

locus name = locu s . f i n d ( ’ MarkerTit le ’ ) . t ex t
# to t r a n s l a t e the numbers in xml f i l e to dyes
temp dict = {1 : BLUE, 2 : GREEN, 3 : YELLOW, 4 : RED, 5 : LADDER, 6 : PURPLE}
dye = int ( l o cu s . f i n d ( ’ DyeIndex ’ ) . t ex t )
lower = f loat ( l o cu s . f i n d ( ’ LowerBoundary ’ ) . t ex t )
upper = f loat ( l o cu s . f i n d ( ’ UpperBoundary ’ ) . t ex t )
# s to r e i n f o so f a r in Locus da t a c l a s s
new locus = Locus ({} , locus name , temp dict [ dye ] , lower , upper )
# add a l l a l l e l e s to l o cu s
for a l l e l e in l o cu s . f i n d a l l ( ’ A l l e l e ’ ) :

a l l e l e n a m e = a l l e l e . get ( ’ Label ’ )
mid = f loat ( a l l e l e . get ( ’ S i z e ’ ) )
l e f t = f loat ( a l l e l e . get ( ’ Le f t B inn ing ’ ) )
r i g h t = f loat ( a l l e l e . get ( ’ Right Binning ’ ) )
# s to r e in A l l e l e d a t a c l a s s
n e w a l l e l e = A l l e l e ( a l l e l e name , mid , l e f t , r i g h t )
# add to a l l e l e s d i c t o f l o cu s
new locus . a l l e l e s [ a l l e l e n a m e ] = n e w a l l e l e

# add crea t ed l o cu s to l o cu s d i c t
l o c u s d i c t [ locus name ] = new locus

return l o c u s d i c t

def c s v r e a d p e r s o n s ( donor s e t ) :
””” reads a l l p r o f i l e s from given donor s e t (1 ,2 ,3 ,4 ,5 or 6) ”””
f i l ename = ’ data / d o n o r p r o f i l e s / Re f s da ta s e t ’ + str ( donor s e t ) + ’ . csv ’
donor peaks = pd . r ead c sv ( f i l ename , dtype=str , d e l i m i t e r=” ; ” )
p e r s o n l i s t = [ ] # i n i t i a l i z e l i s t s
a l l e l e s = [ ]
person name = donor peaks [ ’ SampleName ’ ] [ 0 ] # ge t f i r s t donor name
for index , row in donor peaks . i t e r r o w s ( ) : # i t e r a t e over a l l a l l e l e s

i f row [ 0 ] != person name : # we have a r r i v ed at a new person
# s t o r e up to now in Person da tac l a s s , s t a r t new l i s t
p e r s o n l i s t . append ( Person ( person name , a l l e l e s ) )
a l l e l e s = [ ]

person name = row [ 0 ] # f i r s t entry i s person name
l o cu s = row [ 1 ] # second entry i s l o cu s name
a l l e l e 1 = lo cu s + ” ” + row [ 2 ] # th i r d entry i s f i r s t a l l e l e
a l l e l e 2 = lo cu s + ” ” + row [ 3 ] # four t h entry i s second a l l e l e
a l l e l e s . append ( a l l e l e 1 )
a l l e l e s . append ( a l l e l e 2 )

return p e r s o n l i s t

def p e r s o n c o n t r i b u t i o n s ( p e r s o n l i s t , number of donors : int , mixture type : str ) :
””” Ca l cu l a t e s r e l a t i v e c on t r i b u t i on s o f each person based on mixture type ”””
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# Temporary d i c t to t r a n s l a t e l e t t e r to row
l e t t e r t o number = { ’A ’ : 0 , ’B ’ : 1 , ’C ’ : 2 , ’D ’ : 3 , ’E ’ : 4}
mixture row = le t t e r t o number [ mixture type ] # type o f mixture determines the row
p e r s o n d i c t = {} # i n i t i a l i z e l i s t and d i c t
persons = [ ]
par t s = PICOGRAMS[ mixture row ] # g l o b a l v a r i a b l e s f o r c on t r i b u t i on s
t o t a l = TOTAL PICOGRAMS[ mixture row , number of donors − 2 ]
for i in range ( number of donors ) :

f r a c = part s [ i ] / t o t a l /2 # d i v i d e by 2 because 2 a l l e l e s per l o cu s
p e r s o n d i c t [ p e r s o n l i s t [ i ] . name ] = f r a c # add f r a c t i o n to person
persons . append ( p e r s o n l i s t [ i ] )

return per son d i c t , persons

def make person mixture ( mixture name , l o c u s d i c t ) :
”””Uses p e r s on con t r i b u t i on s and c s v r ead pe r son s to c r ea t e expec ted peaks in person mixture ”””
donor set , mixture type , donor amount = mixture name # can be ”1A2” fo r example
donor amount = int ( donor amount )
p e r s o n l i s t = c s v r e a d p e r s o n s ( donor s e t )
p e r s o n f r a c s , persons = p e r s o n c o n t r i b u t i o n s ( p e r s o n l i s t , donor amount , mixture type )
person mix = PersonMixture ( mixture name , persons , p e r s o n f r a c s )
peaks = person mix . c r e a t e p e ak s ( l o c u s d i c t )
return peaks

def c s v r e a d a n a l y s t ( sample name , l o c u s d i c t ) :
”””Read csv f i l e o f ana l y s t ’ s i d e n t i f i e d a l l e l e s r e turns l i s t o f corresponding peaks ”””
r e s u l t s = pd . r ead c sv ( ” data / a n a l y s t s d a t a f i l t e r e d /”+str ( sample name)+” New . csv ” )
name = r e s u l t s [ ’ Sample Name ’ ] [ 0 ] # to s t a r t i t e r a t i o n
sample name , r e p l i c a t e = name . s p l i t ( ’ . ’ )
m i x t u r e l i s t = [ ] # i n i t i a l i z e b i g l i s t s
p e a k l i s t = [ ] # i n i t i a l i z e sma l l l i s t s
for index , row in r e s u l t s . i t e r r o w s ( ) :

# i t e r a t e over a l l rows , because each row conta ins the peaks f o r one a l l e l e
i f name != row [ 0 ] : # then s t a r t new sample

sample name , r e p l i c a t e = name . s p l i t ( ’ . ’ )
m i x t u r e l i s t . append ( AnalystMixture ( sample name , r e p l i c a t e , p e a k l i s t ) )
p e a k l i s t = [ ] # empty l i s t

name = row [ 0 ] # then s e t name to curren t sample name
for i in range (2 , 1 2 ) :

# go over the 10 p o s s i b l e l o c a t i o n s o f peak i d e n t i f i c a t i o n
i f str ( row [ i ] ) == row [ i ] :

# append va lue on ly i f non−empty
# empty e n t r i e s are conver ted to ( f l o a t −type ) NaN ’ s by pandas
# so s t r ( row [ i ] ) == row [ i ] f i l t e r s out empty e n t r i e s
l o cu s = l o c u s d i c t [ row [ 1 ] ]
a l l e l e = lo cu s . a l l e l e s [ row [ i ] ]
x va lue = a l l e l e . mid # lo ca t i o n on x a x i s
he ight = row [ i +10] # he i g h t s are 10 i nd i c e s f u r t h e r than
dye = locu s . dye # th e i r corresponding a l l e l e names
new peak = Peak ( l o cu s . name+” ”+a l l e l e . name , x value , he ight , dye )
p e a k l i s t . append ( new peak )

m i x t u r e l i s t . append ( AnalystMixture (name , r e p l i c a t e , p e a k l i s t ) )
return m i x t u r e l i s t
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C plotting functions.py

This file contains all functions used for plotting the read out data files.

import matp lo t l i b . pyplot as p l t
from s c ipy . s i g n a l import f i nd pe ak s
from s r c . c l a s s e s import ∗

def plot sample markers 6C ( sample : Sample , l o c u s d i c t : dict ) :
””” P lo t s sample and markers in 6C p l o t ”””
p l t . f i g u r e ( )
# i t e r a t e through a l l l o c i to p l o t markers
for key l o cu s in l o c u s d i c t :

l o cu s = l o c u s d i c t [ k ey l o cu s ] # ge t l o cu s c l a s s o b j e c t
p l t . subplot (6 , 1 , l o cu s . dye . p l o t i n d e x ) # p l o t in co r r e c t co l o r l o c a t i o n
# p l o t bar at l e v e l 0 wi th squares as endpo in t s to show marker
# might want to change s t y l e o f endpo in t s
p l t . annotate ( s=’ ’ , xy=( l o cu s . lower , 0 ) , xytext=( l o cu s . upper , 0 ) , arrowprops=dict ( a r rows ty l e=’<−> ’ ) )
# p l t . p l o t ( [ l o cu s . lower , l o cu s . upper ] , [ 0 , 0 ] , c o l o r = locu s . dye . p l o t c o l o r , marker = ”s ”)

for i in range ( 6 ) :
p l t . subplot (6 , 1 , i + 1)
cur rent = sample . data [ : , i ]
p l t . p l o t (np . l i n s p a c e (0 , len ( cur r ent )/10 , len ( cur r ent ) ) , current , str ( sample . c o l o r l i s t [ i ] . p l o t c o l o r ) )
p l t . xl im ( [ 5 0 , 5 0 0 ] )

p l t . s u p t i t l e ( sample . name)
p l t . t i g h t l a y o u t ( )
p l t . s u b p l o t s a d j u s t ( top =0.9)
p l t . show ( )

def p l o t a n a l y s t ( peaks : l i s t , sample : Sample , l o c u s d i c t ) :
””” uses both the ana l y s t s i d e n t i f i e d peaks and s i z e d data \
f o r comparison to p l o t both in one image f o r each co l o r ”””
for j in range ( 6 ) :

p l t . f i g u r e ( )
p l t . t i t l e ( str ( ’ f i l ename : ’+sample . name+’ , dye : ’ + str ( sample . c o l o r l i s t [ j ] . name ) ) )
p l t . xl im ( [ 5 0 , 5 0 0 ] ) # to cut o f f primer dimer
c u r r e n t p l o t = sample . data [ : , j ]
# p l o t measured data
p l t . p l o t (np . l i n s p a c e (0 , len ( c u r r e n t p l o t )/10 , len ( c u r r e n t p l o t ) ) , c u r r e n t p l o t )
# to s c a l e y−ax i s somewhat c l o s e to data
p l t . yl im ([ −50 , max( c u r r e n t p l o t [ 1 0 0 0 : ] ) ∗ 1 . 5 ] )
# i t e r a t e through a l l a l l e l e s in mixture
for peak in peaks :

dye = peak . dye
i f dye . p l o t i n d e x == j +1:

l o cu s = l o c u s d i c t [ peak . name . s p l i t ( ” ” ) [ 0 ] ]
p l t . annotate ( s=’ ’ , xy=( l o cu s . lower , 0 ) , xytext=( l o cu s . upper , 0 ) , arrowprops=dict ( a r rows ty l e=’<−> ’ ) )
p l t . p l o t ( [ peak . x ] , [ peak . he ight ] , str ( dye . p l o t c o l o r + ”∗” ) ) # add co lour

p l t . show ( )

def p lo t ana ly s t 6C ( peaks : l i s t , sample : Sample , l o c u s d i c t ) :
””” uses both the ana l y s t s i d e n t i f i e d peaks and s i z e d data \
f o r comparison to p l o t both in one image f o r each co l o r ”””
p l t . f i g u r e ( )
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for j in range ( 6 ) :
p l t . subplot (6 , 1 , j + 1)
p l t . xl im ( [ 5 0 , 5 0 0 ] ) # to cut o f f primer dimer
c u r r e n t p l o t = sample . data [ : , j ]
# p l o t measured data
p l t . p l o t (np . l i n s p a c e (0 , len ( c u r r e n t p l o t )/10 , len ( c u r r e n t p l o t ) ) , c u r r e n t p l o t , sample . c o l o r l i s t [ j ] . p l o t c o l o r )
# to s c a l e y−ax i s somewhat c l o s e to data
p l t . yl im ([ −50 , max( c u r r e n t p l o t [ 1 0 0 0 : ] ) ∗ 1 . 5 ] )
# i t e r a t e through a l l a l l e l e s in mixture

for peak in peaks :
dye = peak . dye
p l t . subplot (6 , 1 , dye . p l o t i n d e x )
# ge t marker b in s
l o cu s = l o c u s d i c t [ peak . name . s p l i t ( ” ” ) [ 0 ] ]
# p l o t marker b in s
p l t . annotate ( s=’ ’ , xy=( l o cu s . lower , 0 ) , xytext=( l o cu s . upper , 0 ) , arrowprops=dict ( a r rows ty l e=’<−> ’ ) )
# p l o t peaks
p l t . p l o t ( [ peak . x ] , [ peak . he ight ] , ”k∗” ) # add b l a c k co lour

p l t . s u p t i t l e ( sample . name) # se t t i t l e
p l t . t i g h t l a y o u t ( ) # ensures s u b p l o t s don ’ t ove r l ap
p l t . s u b p l o t s a d j u s t ( top =0.9) # ensures t i t l e doesn ’ t ove r l ap p l o t s
p l t . show ( )

def p lo t expec t ed ( peaks : l i s t , sample : Sample , l o c u s d i c t : dict ) :
””” uses both the t h e o r e t i c a l a c t ua l r e l a t i v e peaks and \
s i z e d data f o r comparison to p l o t both in one image”””

for j in range ( 6 ) :
# makes one separa t e f i g u r e per dye
p l t . f i g u r e ( )
p l t . t i t l e ( str ( ’ f i l ename : ’+sample . name+’ , dye : ’ + sample . c o l o r l i s t [ j ] . name ) )
c u r r e n t p l o t = sample . data [ : , j ]
# cut o f f primer dimer
p l t . xl im ( [ 5 0 , 5 0 0 ] )
# amount to mu l t i p l y r e l a t i v e peak h e i g h t wi th
max rel = max( c u r r e n t p l o t [ 1 0 0 0 : ] ) ∗ 1 .5
# se t y max at 1 .5 t imes max peak
p l t . yl im ([ −50 , max rel ] )
# p l o t max h e i g h t r e l a t i v e po in t s
p l t . h l i n e s ( max rel , 0 , 500)
# p l o t measured data
p l t . p l o t (np . l i n s p a c e (0 , len ( c u r r e n t p l o t )/10 , len ( c u r r e n t p l o t ) ) , c u r r e n t p l o t )
# i t e r a t e through d i c t to p l o t a l l peaks as ∗
for peak in peaks :

dye = peak . dye
i f dye . p l o t i n d e x == j + 1 :

c o l o r = dye . p l o t c o l o r
l o cu s = l o c u s d i c t [ peak . name . s p l i t ( ” ” ) [ 0 ] ]
p l t . annotate ( s=’ ’ , xy=( l o cu s . lower , 0 ) , xytext=( l o cu s . upper , 0 ) , arrowprops=dict ( a r rows ty l e=’<−> ’ ) )
p l t . p l o t ( [ peak . x ] , [ peak . he ight ∗ max rel ] , str ( c o l o r + ”∗” ) ) # add co lour

p l t . show ( )

def plot expected 6C ( peaks : l i s t , sample : Sample , l o c u s d i c t ) :
””” uses both the ana l y s t s i d e n t i f i e d peaks and s i z e d data \
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f o r comparison to p l o t both in one image f o r each co l o r ”””
p l t . f i g u r e ( )
for j in range ( 6 ) :

p l t . subplot (6 , 1 , j + 1)
p l t . xl im ( [ 5 0 , 5 0 0 ] ) # to cut o f f primer dimer
c u r r e n t p l o t = sample . data [ : , j ]
# amount to mu l t i p l y r e l a t i v e peak h e i g h t wi th
max rel = max( c u r r e n t p l o t [ 1 0 0 0 : ] ) ∗ 1 .5
# se t y max at 1 .5 t imes max peak
p l t . yl im ([ −50 , max rel ] )
# p l o t max h e i g h t r e l a t i v e po in t s
p l t . h l i n e s ( max rel , 0 , 500)
# p l o t measured data
p l t . p l o t (np . l i n s p a c e (0 , len ( c u r r e n t p l o t )/10 , len ( c u r r e n t p l o t ) ) , c u r r e n t p l o t , sample . c o l o r l i s t [ j ] . p l o t c o l o r )

# i t e r a t e through a l l peaks in mixture
for peak in peaks :

dye = peak . dye
p l t . subplot (6 , 1 , dye . p l o t i n d e x )
# ge t marker b in s
l o cu s = l o c u s d i c t [ peak . name . s p l i t ( ” ” ) [ 0 ] ]
# p l o t marker b in s
p l t . annotate ( s=’ ’ , xy=( l o cu s . lower , 0 ) , xytext=( l o cu s . upper , 0 ) , arrowprops=dict ( a r rows ty l e=’<−> ’ ) )
# p l o t peaks
p l t . p l o t ( [ peak . x ] , [ peak . he ight ∗ max rel ] , ”k∗” ) # add b l a c k co lour

p l t . s u p t i t l e ( sample . name) # se t t i t l e
p l t . t i g h t l a y o u t ( ) # ensures s u b p l o t s don ’ t ove r l ap
p l t . s u b p l o t s a d j u s t ( top =0.9) # ensures t i t l e doesn ’ t ove r l ap p l o t s
p l t . show ( )

# ## UNDERNEATH ARE MOSTLY UNUSED ###
def p l o t da ta ( sample : Sample ) :

””””Simple p l o t o f a l l c o l o r s o f one sample in the same f i g u r e ”””
p l t . f i g u r e ( )
for i in range ( 6 ) :

p l t . p l o t ( sample . data [ : , i ] , l a b e l=str ( sample . c o l o r l i s t [ i ] ) )
p l t . l egend ( )
p l t . t i t l e ( sample . name)
p l t . show ( )
return None

def plot 6C ( sample : Sample ) :
”””” P lo t s one combined p l o t o f a l l 6 c o l o r s o f one sample ”””
p l t . f i g u r e ( )
p l t . s u p t i t l e ( sample . name)
for i in range ( 6 ) :

p l t . subplot (6 , 1 , i + 1)
p l t . p l o t ( sample . data [ : , i ] )
p l t . t i t l e ( sample . c o l o r l i s t [ i ] )

p l t . show ( )
return None

def p l o t s i z e s t d p e a k s ( s i z e s t d ) :
”””The goa l o f t h i s f unc t i on was to determine the f a c t o r needed \
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f o r r e s i z i n g the s i z e d data to base pa i r s \
Input i s one s i z e s tandard array , output was a p l o t ”””
peaks , r e s t = f i nd pe ak s ( s i z e s t d , d i s t anc e =200)
p l t . f i g u r e ( )
p l t . p l o t ( s i z e s t d )
print ( peaks )
p l t . p l o t ( peaks , s i z e s t d [ peaks ] , ”∗” )
p l t . show ( )
return peaks

def p lot marker s ( l o c u s d i c t ) :
””” Just a qu i ck func t i on to t e s t marker boundar ies ”””
p l t . f i g u r e ( )
# i t e r a t e through a l l l o c i
for key l o cu s in l o c u s d i c t :

l o cu s = l o c u s d i c t [ k ey l o cu s ] # ge t l o cu s c l a s s o b j e c t
p l t . subplot (6 , 1 , l o cu s . dye . p l o t i n d e x ) # p l o t in co r r e c t co l o r l o c a t i o n
# p l o t bar at l e v e l 0 wi th squares as endpo in t s to show marker
p l t . p l o t ( [ l o cu s . lower , l o cu s . upper ] , [ 0 , 0 ] , c o l o r=lo cu s . dye . p l o t c o l o r , marker=” s ” )
# i t e r a t e through a l l a l l e l e s
for k e y a l l e l e in l o cu s . a l l e l e s :

a l l e l e = lo cu s . a l l e l e s [ k e y a l l e l e ] # ge t a l l e l e c l a s s o b j e c t
s t a r t = a l l e l e . mid − a l l e l e . l e f t # ca l c u l a t e where i t s t a r t s
end = a l l e l e . mid + a l l e l e . r i g h t # ca l c u l a t e where i t ends
p l t . p l o t ( [ s t a r t , end ] , [ 1 , 1 ] ) # p l o t a l l e l e b in at l e v e l 1

p l t . show ( )

D main.py

This file contains an example usage of some available functions.

from s r c import d a t a p r e p f u n c t i o n s as df , p l o t t i n g f u n c t i o n s as pf , r e a d i n g f u n c t i o n s as r f

i f name == ’ ma in ’ :
# f i r s t c r ea t e a l i s t o f a l l samples
s a m p l e l i s t 1 = r f . t x t r e ad da ta ( ” data / t r a c e d a t a /TraceData1 . txt ” )
s a m p l e l i s t 2 = r f . t x t r e ad da ta ( ” data / t r a c e d a t a /TraceData2 . txt ” )
s a m p l e l i s t = s a m p l e l i s t 1 + s a m p l e l i s t 2
# now we ge t a l l pane l in format ion from the Genemarker f i l e
l o c u s d i c t = r f . xml read b ins ( )
# p l o t some samples wi th marker b in s
for i in range (10 , 1 3 ) :

cur r ent = s a m p l e l i s t [ i ]
current name = current . name
pf . p lot sample markers 6C ( current , l o c u s d i c t )
# Everyth ing underneath
# p l o t samples wi th ana l y s t ’ s i d e n t i f i e d peaks
r e p l i c a s = r f . c s v r e a d a n a l y s t ( current name , l o c u s d i c t )
# now have a l i s t o f the ana l y s t ’ s i d e n t i f i e d peaks + he i g h t s f o r a l l r e p l i c a t e s
# cu r r en t l y a lways p i c k s f i r s t r e p l i c a
pf . p l o t ana ly s t 6C ( r e p l i c a s [ 0 ] . peaks , current , l o c u s d i c t )
# now p l o t wi th a c t ua l peaks
peaks = r f . make person mixture ( current name , l o c u s d i c t )
pf . p lo t expected 6C ( peaks , current , l o c u s d i c t )
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