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Wide-Swath Ocean Altimetry Using Multi-Satellite
Single-Pass Interferometry

Andreas Theodosiou, Marcel Kleinherenbrink, and Paco López-Dekker, Senior Member, IEEE

Abstract—Estimating sea surface height using cross-track in-
terferometry requires high sensitivity because the ocean surface
signal is in the order of 10 cm. Additionally, the interferometer
requires a temporal delay of a few milliseconds to ensure
coherency of the moving ocean surface. We show that a squinted
line of sight, in combination with a Helix satellite formation
allows optimizing the effective perpendicular and along-track
baselines to satisfy these conditions. This paper presents a model
to estimate the performance of a formation-flying cross-track
interferometer with a squinted line of sight. The tenth Earth
Explorer, Harmony, which features two bistatic SAR companions,
and a theoretical system with one monostatic and one bistatic
SAR are used as case studies. The standard deviation of the
height estimate is 1 cm to 10 cm between 29◦ to 41◦ and increases
to 30 cm at the far range (46◦) at a wind speed of 5m s−1. The
power spectral density of the elevation shows that spatial scales of
47 km can be resolved. The performance improves at higher wind
speeds due to higher backscattering. At a wind speed of 15m s−1,
wavelengths of 27 km to 11 km can be resolved, depending on
the elevation spectrum. The performance over a 250 km swath
enables the instantaneous estimation of the surface elevation at
the submesoscales for the first time.

Index Terms—Bistatic SAR, cross-track interferometry (XTI),
ocean relative elevation measurement, formation flying, interfer-
ometry, microwave remote sensing, multistatic SAR, synthetic
aperture radar.

I. INTRODUCTION

SATELLITE remote sensing instruments have significantly
contributed to our understanding of ocean dynamics. Esti-

mates of the sea surface height (SSH) made by radar altimeters
have advanced oceanographic knowledge. Despite the plethora
of SSH data that has been made available in the past decades
by remote sensing instruments, ocean processes that occur at
scales of 10 km to 100 km, the so called submesoscales, are
not captured in the present data. Submesoscale ocean motion
plays an important role in the vertical transport of heat and
nutrients [1] and the observational gap of capturing these
scales has been identified [2].

Cross-track interferometry (XTI) is a technique that com-
bines two complex-valued SAR images of the same surface,
taken from different sensor positions, to estimate the relative
surface height. Typical SAR instruments have swath widths in
the range of 30 km to 250 km with geometric resolutions of
meters up to tens of meters. Thus, an interferometric height
estimate, computed at sufficiently high resolution (depending
on the amount of averaging), could provide relative SSH
estimates with sufficient sampling to resolve submesoscale

A. Theodosiou, M. Kleinherenbrink and P. López-Dekker are with the De-
partment of Geoscience and Remote Sensing, Delft University of Technology,
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(10 km to 100 km) phenomena such as eddies, currents, tides,
and wakes from tropical cyclones.

Two properties of a cross-track interferometer that deter-
mine its performance are the perpendicular and along-track
baselines. Firstly the perpendicular baseline, defined as the
distance perpendicular to the line of sight (LoS) between the
two sensor positions, is directly proportional to the height sen-
sitivity. However, the maximum useful perpendicular baseline
is constrained by decorrelation and the height of ambiguity.
Secondly, the along-track baseline is the distance correspond-
ing to the temporal lag between acquisitions of a given
resolution cell on the imaged surface. If the surface changes
during the temporal lag, the signals of the two acquisitions
become decorrelated. The decorrelation manifests as noise in
the interferogram and its degree depends on the rate of change
of the surface. Therefore, topographic mapping of dynamic
surfaces, such as the ocean, requires minimizing the along-
track baseline while keeping a sufficient perpendicular baseline
for sensitivity.

The requirement of a minimum along-track baseline pre-
cludes repeat-pass interferometry as a possible technique of
estimating SSH. Single-pass interferometry can satisfy the
requirement in the form of a single-platform interferometer
or a formation-flying system of two SAR satellites. Single-
platform cross-track interferometers, such as the Wide-swath
Ocean Altimetry (WSOA) concept [3], overcome the issue by
mechanically fixing the two SAR antennas on the satellite to
physically eliminate their along-track separation. Thus, due
to structural and manufacturing limitations, the two SAR
antennas cannot be further apart than several meters. This
limit on the cross-track separation between the antennas puts,
for a given power budget, an upper bound on the sensitiv-
ity. Therefore, single-platform interferometers trade geometric
sensitivity for temporal coherence.

A formation-flying interferometer achieves, given appro-
priate formation parameters, larger interferometric baselines
between the sensors. Specifically, the Helix formation [4]
allows optimizing the along-track and perpendicular separation
of the satellites as a function of latitude. The formation can
be configured so that the radial separation results in an along-
track separation that tends to a minimum at polar latitudes and
a maximum at mid-latitudes. Nevertheless, safe proximity op-
eration constrains the minimum along-track separation above
100m. For an interferometer with lines of sight perpendicular
to the along-track direction, which causes the along-track
baseline to equal the along-track separation, this is too large
for coherent acquisitions of the ocean surface.

In this paper we propose an alternative: Introducing a

This article has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2023.3287675

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 2
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Fig. 1. Top view of the line of sight of the monostatic equivalent. rt, rr1 , and
rp represent the position vectors of the transmitter, the first receiver, and the
resolution cell on the surface. The line of sight of the monostatic equivalent
is parallel to the angle bisector, lME, of the transmitter and receiver lines of
sight.

squinted line of sight to decrease the effective along-track
baseline of a helix interferometer to allow estimation of rela-
tive sea-surface heights while keeping a safe radial separation.
Optimizing the formation parameters allows for acquisitions
with perpendicular baselines of hundreds of meters and ef-
fective along-track baselines of meters. Therefore, sensitivity
is maintained while temporal decorrelation is minimized. The
result is estimates of SSH with an accuracy in the order of
10 cm over wide swaths, enabling the recovery of mesoscale
and submesoscale processes of the ocean surface in a single
pass.

This paper is structured as follows: Section II explains the
measurement concept, the bistatic geometry and formation,
and the performance model. In Section III we discuss the
performance of two interferometers: Harmony, the tenth Earth
Explorer [5], and a hypothetical quasi-monostatic system of
two SARs without a separate illuminator. Section IV identifies
the main sources of systematic errors and outlines an estimate
of their impact. Finally, Section V introduces the oceanic and
atmospheric biases, with a mathematical derivation of the sea-
state bias in the appendix, and their effect on the relative height
estimate.

II. MEASUREMENT CONCEPT AND RELATED WORK

A. Interferometric SAR Geometry

The purpose of this paper is to present a performance
model for single-pass cross-track SAR interferometry over the
oceans. One of the key findings that will be discussed in the
subsequent sections is that a squinted line of sight, in contrast
to the conventional zero-Doppler line of sight, combined with
a Helix formation enables coherent acquisitions of the ocean
surface. In the performance analysis, we model the formation

Fig. 2. The Harmony XTI configuration. The two companions, Concordia
and Discordia, fly in close formation behind Sentinel-1D.

geometry using two monostatic equivalent SARs with squinted
lines of sight. The equivalent systems can represent monostatic
sensors or a bistatic system. The definition of the monostatic
equivalent, the relative motion of two spacecrafts in close
formation, and the effective along-track and perpendicular
baselines, quantities that are relevant to the interferometric
performance, are discussed in the following subsections.

1) Bistatic SAR and Monostatic Equivalent: The geometry
of a bistatic system forms an important link with the per-
formance through the interferometric baselines. The different
transmitter-to-target and target-to-receiver paths of a bistatic
SAR complicate the calculation of the interferometric baseline,
particularly in the case of two receivers where there is a
pair of surface-to-receiver paths. The complication due to
the asymmetry of the bistatic range is well known in SAR
processing, where an analytic formulation of the 2-D point
target spectrum does not exist for this reason. A workaround
is to locate the position where a monostatic radar would
measure approximately the same signal as the bistatic system.
This concept is known as the monostatic equivalent in the
literature [6], and it has been used to process bistatic SAR
data with monostatic focusing algorithms.

Geometrically, an equivalent system reduces an illuminator
and receiver pair to a single monostatic SAR. In the case of
two bistatic receivers, the illuminator and the two companions
are transformed to two equivalent monostatic SARs. The
interferometric baseline becomes the distance between the
points where the two monostatic equivalents observe a given
point on the ground with the same geometry.

The monostatic equivalent of each bistatic system lies along
the bisector of the bistatic angle formed by the illuminator-to-
surface and the surface-to-receiver range and has a line of sight
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parallel to:

lME =
−rt + rp∥∥−rt + rp

∥∥ +
−rri + rp∥∥−rri + rp

∥∥ , (1)

where rt is the position vector of the transmitter, rp the
position vector of the point scatterer on the surface being
illuminated, and rri the position vector of the ith receiver
where i ∈ {1, 2}. Figure 1 shows a visual representation of (1).

2) Relative Motion: Flying the SAR satellites in a Helix
formation allows optimizing the along and cross-track separa-
tion for cross-track interferometry. The formation-flying ele-
ments discussed in this section apply equally to a monostatic
and a bistatic SAR. In the case of Harmony, the mission
consists of two passive companion satellites, which we refer
to as Concordia and Discordia, flying in close formation with
Sentinel-1 (S1) as the illuminator. In the XTI mission phase,
Concordia and Discordia will fly behind S1, in a Helix forma-
tion [7] with a configurable along and cross-track separation,
as shown in Figure 2. We employ the relative inclination and
eccentricity vector formulation of relative motion [4] to model
the effect of the formation on interferometric performance.

The orbital frame of reference is used as the basis for all the
calculations. It consists of three unit vectors moving together:
êR along the radial direction (positive away from the Earth’s
center), êT in the along-track (tangential) direction of the
satellite motion, and the unit vector êN normal to the orbital
plane in the direction of the positive angular momentum vector
(cross track). This triad denotes a right-handed system, with
two time-dependent vectors êR and êT ; êN is time invariant
under the Keplerian approximation [4].

The relative motion of the second satellite (deputy), in-
dicated by C in Figure 3, with respect to the first (main),
indicated by M , is expressed in the orbital frame centered on
the main satellite

∆r = r2 − r1

= ∆rRêR +∆rT êT +∆rN êN , (2)

where rj for j = {1, 2} is the position vector of the main
and deputy satellites respectively and ∆rR, ∆rT , ∆rN are
the distances between the two satellites along the directions
corresponding to each unit vector.

For near-circular orbits in close formation, which is the case
for the orbits discussed in this paper, we linearize the motion
according to [4]. Thus, the components of the relative position
vector ∆r are∆rR/a∆rT /a

∆rN/a


=

∆a/a 0 −∆eX −∆eY
∆u −3∆a/ (2a) −2∆eY +2∆eX
0 0 −∆iY +∆iX



×


1

u− u0
cosu
sinu

 , (3)

where a is the semi-major axis of the orbit, ∆e and ∆i are
the differences between the eccentricity and inclination vectors

Y

Z

MC

X

Orbit

Fig. 3. Orbital frame of reference for the relative motion between two
satellites.

respectively, the subscripts X,Y represent the first and second
components of the vector, u is the mean argument of latitude,
and u− u0 is the argument at reference epoch t0.

Setting ∆eX = 0 and ∆iX = 0 and the second component
of the relative eccentricity and inclination vectors to a non-
zero value provides passive stability to the formation because
the two orbits are spatially separated. The two orbits pass
over one another near the poles, when u = π/2, where the
normal separation goes to 0 but the radial separation tends to
its maximum. The opposite occurs near the equator, where the
radial component goes to 0 and the normal is maximized. The
oscillation of ∆rR and ∆rN with a phase difference of π/2
forms the known helix-like formation introduced in [4]. For
the purposes of relative topography estimation, constant orbital
anomaly and semi-major axis offsets are counterproductive,
hence ∆u and ∆a are set to 0. Thus, the relative position
vector of the formation is determined by ∆eY and ∆iY . The
latter is approximated by

∆iY ≈ ∆Ωsin i, (4)

where i is the inclination of the orbit and ∆Ω is the difference
in the right ascension of the ascending node of the two
spacecraft.

3) Along-Track Baseline: A time interval between the two
SAR acquisitions forming an interferogram produces a phase
difference directly proportional to the velocity of the imaged
surface [8]. We refer to the distance traveled in the flight
direction during this time interval as the along-track (inter-
ferometric) baseline. In a conventional interferometer where
both images are acquired by monostatic instruments looking
along the zero-Doppler plane, the along-track baseline equals
the along-track separation. For a cross-track interferometer,
an along-track baseline reduces the accuracy of the height
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Fig. 4. Top view of the formation with a squinted line of sight. M represents
the position of the main and C of the deputy.

estimate because a part of the interferometric phase comes
from the velocity of the surface rather than the topography.

Figure 4 illustrates the top-view geometry of two SAR
satellites separated in the along and cross-track directions. The
lines of sight of the two SAR antennas are looking forward
with respect to the zero-Doppler direction. We give the term
“squint” to the angle between the lines of sight and the zero-
Doppler plane. The ground-projected squint of the antenna
is labeled η. In this projection the antenna look angle is not
visible as it is directed into the page.

The figure shows that for a zero Doppler configuration (η =
0◦) the along-track baseline is equal to the physical separation
of the two satellites in the tangential direction. If η is non-zero,
the baseline that arises due to the temporal lag is no longer
the same as the physical separation. The squinted line of sight
and the normal separation ∆rN cause the second satellite to
observe the same point as M, e.g. resolution cell P in the
diagram, before it moves ∆rT along êT . The effective baseline
becomes

B∥ = ∆rT −∆rN tan η. (5)

Equation (5) shows that setting tan η = ∆rT /∆rN gives
a zero effective along-track baseline. According to (3), the
two components of interest depend on the following forma-
tion parameters ∆u,∆a,∆e,∆i. For a stable formation, the
dependence reduces to ∆eY and ∆Ωsin i. Substituting (3)
into (5) and setting the baseline to zero yields the condition
that the ratio ∆eY /∆Ω must meet:

∆eY
∆Ω

=
sin i

2
tan η. (6)

Figure 5 shows the along-track physical separation and
the effective along-track baseline at the near range for a set
of formation parameters that have been optimized according
to (6). We note that while the separation reaches 230m the

−50 0 50
Latitude at near range /°

−200

−100

0

D
is

ta
nc

e
/m

Along-track physical
separation

−50 0 50
Latitude at near range /°

−20

0

Effective along-track
baseline

Fig. 5. The left panel shows the along-track physical separation of a formation
with parameters a∆e = 117m and a∆Ω = 650m and the right panel shows
the effective along-track baseline for the same formation.

effective baseline has a maximum magnitude of 38m. The
variation of the effective along-track baseline follows this
sinusoidal pattern for all incidence angles with decreasing
amplitude towards the middle range and increasing amplitude
from the middle to the far range. The effective baseline does
not exceed 80m for this set of formation parameters.

4) Perpendicular Baseline: To discuss the calculation of
the perpendicular baseline we start from a non-squinted con-
figuration where the two SAR sensors are in the same radial-
normal plane. We consider the projection along the radial-
normal plane as illustrated in Figure 6. The perpendicular
baseline B⊥ is the distance between the two planes spanned by
the flight direction (along-track) and the line of sight (antenna
beam-pointing direction) of each satellite:

B⊥ = bX1 + bX2 ,

= ∆rN cos θ +∆rR sin θ. (7)

Introducing a squint to the line of sight changes the effective
perpendicular baseline, as was the case for the along-track
baseline. Figure 7 illustrates such a configuration. To find
the effective baseline, the line of sight and the co-registration
need to be taken into account. As discussed in Section II-A3,
after co-registration of the two SAR images, the along-track
separation of the two sensors becomes ∆rN tan η. This is
equivalent to rolling forwards the position of the deputy
satellite along its orbital path so that it shares the same radial-
line-of-sight plane as the main satellite.

At the point where the two satellites view the same resolu-
tion cell their separation is given by

b3D =

 ∆rR
∆rN tan η

∆rN

 , (8)

where tan η is the tangent of the ground-projected squint.
tan η is also given by the ratio of the along-track component
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∆rR
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resolution cell

êT

êR

êN

Fig. 6. View along the radial-normal plane. The squint angle in this view
would be into/out of the page. The look angle θ is the angle formed by the
direction of the beam center and the nadir.

to the normal component of the unit vector parallel to the line
of sight l̂. The perpendicular baseline is given by

B⊥ =∥b3D∥ sinψ,
=
∥∥∥b3D × l̂

∥∥∥ , (9)

where ψ is the angle between b3D and l̂. Equation (9) shows
that the physical separation components and ground-projected
squint can be tuned to give a B⊥ that is sufficiently large to
offer good sensitivity to height. At the same time, ∆rT does
not affect B⊥, thus it can be selected together with angle
η to minimize B∥ according to (5). Equation (9) shows that
the effective perpendicular baseline is the projection of the
physical separation perpendicular to the line of sight, after
aligning the lines of sight of the two receivers. Therefore it
largely follows the perpendicular baseline of the formation
which varies sinusodially with the mean argument of latitude
with a maximum around 0◦ and minimums towards the poles
where the two satellites cross each other. Due to the squint the
amplitude of the sinusodial variation decreases slightly with
incidence angle.

B. Cross-track Interferometry Model

In monostatic systems, the two-way range difference be-
tween the two instruments and the surface can directly be
coupled to surface elevation. For single-transmitter systems,
such as a single-pass interferometer where only one SAR
transmits, the same is true except that it only depends on
the single-way range difference. The interferometric phase

resolution cell

M
C

θ η
A

φ

b3D

l̂

BX

Fig. 7. Cross-track baseline with squinted line of sight.

between two images of the same scene obtained from two
SARs is

ϕ = −p2π
λ
∆Rs, (10)

where p = 2 for “ping-pong” systems and p = 1 for single-
transmitter systems, λ is the carrier wavelength and ∆Rs is
the slant range difference from a point on the surface to the
two antennas. The expression for the phase difference can be
approximated by

ϕ ≈ −2π

ha
∆h, (11)

where ∆h is the relative height of the surface and ha is the
height of ambiguity:

ha =
λRs sin θi
pB⊥

, (12)

where Rs is the slant range and θi is the incident angle.
The height of ambiguity is used in the performance model to
convert the interferometric phase error to the height estimate
error.

C. Measurement Error

1) General Model: The interferometric phase measured
by a single-pass cross-track interferometer, where the two
satellites are in a close formation, will have contributions both
from the topography of the scene ϕtopo and from motion in
the direction of the line of sight ϕ∥ due to the perpendicular
and along-track baseline respectively. Additionally, the inter-
ferrometric phase signal ϕ will be modified by white noise
ϕn due to the thermal noise of the SAR electronics and the
decorrelation of the scene

ϕ = ϕtopo + ϕ∥ + ϕn. (13)
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Azimuth
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Wing antennaWing antenna

Along-track on-board baseline

Fig. 8. The planar antenna array assumed by the performance model. Two
phase centers are positioned at the aft and fore of the antenna structure.

We assume that the receiving SAR instruments follow the
design of the Harmony companions. Each has a planar antenna
made from two subapertures separated along the antenna
longitudinal axis. One subaperture is at the aft of the antenna
structure and the other at the fore as illustrated in Figure 8.
Each of the two subapertures forms a separate SAR image. The
instrument forms an improved SAR image by combining the
images from the individual phase centers, resulting in a better
Noise-equivalent Sigma Zero (NESZ) and Azimuth Ambiguity
to Signal Ratio (AASR). Unless stated otherwise, the imaging
and interferometric performance discussed in the paper refer
to the performance of the combined signal rather than that of
the single-channel signal.

Each receiving SAR estimates the phase due to the motion
of the surface ϕ∥, also known as the “along-track interferom-
etry (ATI) phase”, using its two individual phase centers. The
estimate ϕ̂∥ is subtracted from the measured phase to remove
the undesired motion component, giving an estimate of the
topographic phase. The error of the height estimate includes
the error of estimating the ATI phase ϵ∥

ϕ̂topo = ϕtopo + ϵ∥ + ϕn, (14)

ϵ∥ = ϕ∥ −
B∥

B∥s
ϕ̂∥, (15)

where the estimate of the ATI phase acquired using the two on-
board phase centers is scaled by B∥/B∥s. The scaling factor
arises because the estimate of the motion phase is obtained
with the on-board along-track baseline, B∥s, which is different
from the effective baseline of the formation.

We use the Cramer-Rao lower bound [9] to estimate the
standard deviation of the interferometric phase

σϕ =

√
1− γ2

2Nlγ2
, (16)

where γ is the coherence and Nl is the number of independent
looks. The coherence is the product of the partial coherence
factors [10]

γ ≈ γSNRγBγtγAmbγVol, (17)

where the right-hand side of the equation describes the contri-
butions to the error due to noise including quantization errors
(γSNR), baseline decorrelation (γB), temporal decorrelation

35 40 45

Incident angle /°

−27.5

−25.0

−22.5

N
E
S
Z

[d
B
]

Fig. 9. The estimated NESZ of Harmony with Sentinel-1 as the illuminator.
The three subswaths of Sentinel-1’s IW mode are visible by the discontinuities
between the three quadratic curves.

(γt), ambiguities (γAmb), and volumetric scattering (γVol).
Since the effect of ambiguities on Harmony is addressed
in [11], we do not consider it in this paper.

At C-band, the electromagnetic signal practically does not
propagate into the water. However, scatterers within a resolu-
tion cell follow the highly varying surface topography of the
ocean, which produces volumetric decorrelation. We follow
the same approach as in [12] and model the mean topographic
height of the ocean surface as a Gaussian variable with zero
mean. The volumetric decorrelation due to the surface waves
is given by

γVol = e−
1
2 (2π/ha)

2σ2
h , (18)

where the standard deviation of the ocean height is related to
the significant wave height (SWH) by SWH = 4σh.

The coherence due to temporal decorrelation depends on
the temporal lag between acquisitions [13]

γt = e−τ2/τ2
c , (19)

where τ =
B∥
2v is the lag between acquisitions due to the

effective along-track baseline B∥
2 and platform velocity v, and

τc ≈ 3.29λ/U approximates the coherence time at wind speed
U [10].

Baseline decorrelation occurs due to spectral shifts between
SAR acquisitions with different incidence angles. However,
filtering the two SAR signals to a common frequency band
avoids the decorrelation [14] at the cost of reducing the
effective number of looks. We assume that the SAR signals are
filtered to correct for the spectral shift. Therefore, we assume
γB = 1 and account for the reduction in the number of looks
by a factor γB = 1 − B⊥/B⊥,c, where B⊥,c is the critical
baseline [15].

2) Instrument Specific Parameters: The coherence due to
noise depends on the signal-to-noise ratio (SNR), which is a
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Fig. 10. The estimated NRCS in the vertical co-polarized channel for
Harmony over a sea surface that is driven by a wind with speeds 5m s−1,
10m s−1 and 15m s−1. The magnitude of the normalized radar cross-section
falls as the incidence angle moves towards the far range. .

function of the NESZ and the normalized radar cross-section
(NRCS), σ0, of a given resolution cell [16] [17]

γSNR =
1

1 + SNR (σ0,NESZ)
−1 . (20)

The NESZ depends on the system parameters and the antenna
gains of both the transmitter and receiver. Thus, to produce
performance estimates, assumptions need to be made about
the antenna gain and pattern. In the Harmony case study
the antenna pattern of the transmitter is calculated using the
specification of Sentinel-1. The effective area of the Harmony
companions is computed for three elements with identical,
2.6 × 0.66m, fore and aft elements that are separated by
10m. The dimensions were selected to match the design
from industry. When all phase centers on-board the Harmony
satellites are used as a single antenna, the NESZ varies from
−22 dB to −28.5 dB as shown in Figure 9. In the quasi-
monostatic case study, the transmit and receive antennas are
the same and any realistic parameters can be used. However,
as will be explained in the next section, the aim of the quasi-
monostatic case is to illustrate the effect of optimizing the
squint without being constrained by the need to have a good
overlap of the receiver and transmitter beams on the surface.
Thus, all system parameters, including the NESZ, NRCS, and
on-board phase center separation, are kept the same with those
in the Harmony case with the exception of the antenna squint.

The backscattering coefficient of a SAR system observing
the ocean surface depends on many factors such as: the
instrument viewing geometry, surface roughness, the dielectric
properties of the sea, and the waves being driven by the
wind. Three mechanisms drive the wave-induced changes to
the backscattered power: specular reflection, Bragg scattering,
and wave breaking. We apply a multistatic NRCS model based
on the model developed by Yuan [18] to the geometry of
Harmony, i.e. the incident and scattered azimuth and incidence

Incidence angle 
& LoS vector

Wind speed
& wind direction NESZ

NRCS (model) SNR

Thermal coherence

Baselines Coherence time

Temporal coherenceTotal coherenceGeometric  
resolution

Level-2 product
resolution 

Number of independent
looks

Standard deviation of
interferometric phase

Standard deviation
of relative elevation

Height of  
ambiguity

Volumetric coherence

SWH

Fig. 11. Flowchart of the interferometric height standard deviation calculation.

angles due to the separation of transmitter and receiver, to
estimate σ0 at different wind speeds. The NRCS for 5m s−1,
10m s−1 and 15m s−1 downwind is shown in Figure 10.

The number of independent looks is the ratio of the product
resolution ρL2 and nominal geometric resolution ρ2D

Nl = γB
ρL2
ρ2D

. (21)

Sentinel-1 in IW mode has a spatial resolution of 5m×20m.
The level-2 product resolution depends on the accuracy we
want to achieve. For relative elevation measurements with
accuracy of 10 cm over the majority of the swath and latitudes,
3 km×3 km is sufficient which corresponds to Nl = 90×103.

With the geometry of the formation, the number of looks
and the SNR determined we compute the total coherence of
the interferometer

γ = γSNRγtγVol. (22)

Following the same procedure, we also calculate the coherence
due to the temporal and thermal decorrelation of the ATI
phase estimate. Volumetric decorrelation does not impact the
on-board along-track phase estimate because the separation
of the phase centers only has a small residual perpendicular
component. The standard deviation for these two sources of
uncertainty is calculated using the Cramer-Rao lower bound
given in (16). Due to the addition of the estimation error to
the estimate of the topographic phase (14), the uncertainty
of the ATI phase estimate contributes to the overall system
uncertainty

σϕ =

√√√√σ2
ϕn

+

(
B∥

B∥s

)2

σ2
ϕ̂ATI

. (23)

The addition of the two uncertainties implicitly assumes
that the two are statistically independent. Figure 11 shows a
schematic representation of the method used to obtain the stan-
dard deviation of the height estimate. The process illustrated in
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Fig. 12. Harmony’s sensitivity to height and height of ambiguity of the
optimized formation. The latitudes of maximum sensitivity and minimum
height of ambiguity occur where the effective perpendicular baseline reaches
its maximum.

the flowchart is applied separately to the main interferometer,
formed by the Helix formation of SAR satellites, and to the
along-track on-board interferometer, formed by the two wing
phase centers on-board each satellite, to calculate σϕn

and
σϕ̂ATI

. The SNR of the latter is less than the SNR of the former
because only one of the phase centers of the receive antenna is
used to obtain the on-board ATI phase estimate. Additionally,
the temporal coherences of the two systems differ due to the
different geometry of the satellite formation compared to the
two phase centers on-board one of the two companions. The
on-board ATI phase estimate has a fixed purely along-track
baseline between the two phase centers while the effective
baseline of the main interferometer varies along the orbit due
to the Helix formation.

III. PERFORMANCE ANALYSIS

The interferometric model presented in Section II-B is
applied to two case studies: the Harmony companions with
Sentinel-1 as the transmitter; A pair of SARs in a Helix
formation with one of the two acting as the transmitter. We
use a wind speed of 5m s−1 in both case studies, while the
performance of Harmony is also evaluated at U = 10m s−1

and U = 15m s−1 to assess the change in performance with
wind speed. For the purposes of interferometric performance
the track is symmetric over the ascending and descending parts
of the orbit; Hence, only the descending part of the orbit is

TABLE I
RELEVANT ORBITAL AND PROCESSING PARAMETERS. IW REFERS TO

SENTINEL-1’S INTERFEROMETRIC WIDE SWATH OPERATING MODE. THE
NUMBER OF INDEPENDENT LOOKS IS CALCULATED ACCORDING TO (21)

FOR A PRODUCT RESOLUTION OF 3 km× 3 km AND THE NOMINAL
GEOMETRIC RESOLUTION OF S1 IN IW MODE (5m× 20m).

Parameter Value Unit

Centre frequency 5.405 GHz
Platform mean speed 7590 ms−1

Incident angle Senintel-1 (IW) 30–46 ◦

Lag between Sentinel-1 and Harmony formation 350 km
Separation due to inclination difference 0 m

Companion constant along-track separation 0 m
Number of independent looks 90× 103 -

used to compute the results. In both case studies, once the
state vector of the main satellite of the Helix formation is
determined, the position of the deputy satellite is computed
by applying the formation parameters to (3). Then, the relative
position vector and the line of sight of the main satellite are
used in (5) and (9) to calculate the effective baselines. With
the effective baselines computed, the measurement uncertainty
is calculated as explained in II-C.

A. Harmony

Sentinel-1 [19] defines the reference orbit and the Harmony
companions fly in a Helix formation lagging Sentinel-1 by
350 km. The parameters relevant to the model are listed in
Table I. Once the orbit of Sentinel-1 is computed, the position
of the first companion, Concordia, which is used as the
reference vehicle of the close formation, is calculated using
the same orbital parameters as Sentinel-1 but with the mean
anomaly of the orbit at the same epoch shifted to lag S1 by
350 km. Thus, Concordia travels in the same orbital plane as
S1 with a mean lag of 350 km and Discordia has an orbit
relative to Concordia determined by the formation parameters.

SAR imaging requires sufficient overlap of the transmitter
and receiver beam on the imaged surface. Hence, Concordia
steers its antenna beam to align with that of Sentinel-1 on the
surface, leading to a range dependent squint. As a result, tan η
cannot freely adhere to (6) to minimize B∥. B∥ passes through
zero if the ratio of eY to ∆Ω follows (6). However, the squint
of the receiver decreases with range as it tracks the line of
sight of the illuminator. Consequently, B∥ cannot be reduced
to 0 for the entire swath.

The close formation is defined by two parameters: the
vertical separation due to a difference in the magnitude of
the eccentricity vector a∆e, and a horizontal separation due
to a difference in the ascending nodes a∆Ω. Two formations
are considered in the analysis: One that does not follow the
condition shown in (6) for minimizing B∥; and a second
formation that does so that the effect of using the squint to
enhance performance can be illustrated. The parameters of the
two formations are listed in Table II.

The careful reader would raise the question of the optimal
combination of ∆e and ∆Ω. Forcing the along-track baseline
to go through zero can be achieved by selecting ∆e and ∆Ω
to follow the ratio of (6). However, the condition places no
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Fig. 13. The volumetric correlation as a function of incidence angle for
different values of significant wave height. The mean thermal coherence is
plotted using the black dashed line.

constraints on the magnitude of the values. A strategy of
having the smallest B∥ at all latitudes and incidence angles
would require selecting the smallest possible values that are
operationally safe. Yet, this would mean that sensitivity to
height would be too small to achieve good performance. On
the other hand, raising the two parameters leads to higher
sensitivity at the cost of higher extreme values of along-track
baseline and smaller height of ambiguity. Heights of ambiguity
smaller than 30m can cause phase-unwrapping problems in
regions with rough terrain.

Since Harmony will also perform acquisitions over land,
the formation parameters of the optimized case were selected
as the highest values that provide a minimum ha = 30m.
Figure 12 shows the sensitivity and height of ambiguity of
Harmony for the optimized formation. The sensitivity reaches
its maximum at the middle latitudes where the effective
perpendicular baseline is at its largest value. The sensitivity
varies from 0.01 radm−1 to 0.13 radm−1, with the exception
of a zone from 67.5◦ to 71.25◦S where the satellites of the
formation cross and the separation tends to zero causing the
sensitivity to also tend to zero. The height of ambiguity follows
the inverse progression ranging from a minimum of 45m to
a maximum of 1000m. Values above 300m are not shown in
the plot to avoid losing the detail in the variation of the small
values of ha which are critical. The sensitivity and height of
ambiguity of the non-optimized formation follow the same
pattern as those of the optimized formation but the sensitivity
has a maximum at 0.10 radm−1 and the height of ambiguity
a minimum of 60m.

An additional parameter that affects the performance is the
significant wave height. The volumetric decorrelation depends
inversely on the SWH and the sensitivity. Figure 13 illustrates
γVol, at the latitude with the largest perpendicular baseline of
the optimized formation, for different values of SWH and the
mean γSNR as a function of incidence angle. The figure shows
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Fig. 14. The estimated SSH uncertainty of the system due to thermal, spatial
and temporal decorrelation of the signal in terms of 1σ at a wind speed of
5m s−1.

TABLE II
THE TWO COMPANION FORMATIONS CONSIDERED IN THE SIMULATIONS.
WE REFER TO THE FIRST AS THE UNOPTIMIZED FORMATION AND TO THE

SECOND AS THE OPTIMIZED FORMATION. EACH IS DEFINED BY THE
VERTICAL SEPARATION DUE TO A DIFFERENCE IN THE MAGNITUDE OF

THE ECCENTRICITY VECTOR a∆e, AND A HORIZONTAL SEPARATION DUE
TO A DIFFERENCE IN THE ASCENDING NODES a∆Ω.

a∆e/m a∆Ω/m

25 500
117 650

that even at 8m of significant wave height, the volumetric
decorrelation is not as significant as thermal decorrelation.
From this point on, we assume a significant wave height of
6m for both case studies, which is a conservative number
since the majority of the ocean has smaller waves.

Figure 14 illustrates the estimated sea surface height error of
the interferometer at a wind speed of 5m s−1. The error shown
in the figure is due to the thermal, temporal and volumetric
decorrelation of the signal. The results show that the error is
within 5 cm over the majority of the swath and latitudes. The
performance rapidly deteriorates close to the poles because
the two companions fly over one another and B⊥ tends to its
minimum value. In turn, the height of ambiguity tends to its
maximum, pushing the uncertainty up. At the midpoint of an
ascending or descending pass, the coherence due to the time
lag τ is at its minimum because B∥ reaches its maximum at
the near range. However, this is not visible because B⊥ tends
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Fig. 15. The uncertainty of the phase estimate due to the along-track
separation in terms of 1σ at a wind speed of 5m s−1. The ATI phase
estimate ϕATI is obtained using the two phase centers on-board each Harmony
companion.

to a maximum at the same point and compensates for the
loss of along-track coherence. The orbital parameters of the
second formation are chosen to minimize B∥ at the midrange,
resulting in a wider valley of low error in the second formation
compared to the unoptimized formation. Both plots show a
slight deterioration of performance at the far range due to the
decrease of NRCS with increasing incidence angle.

Both plots in Figure 14 exhibit discontinuities at θi = 36.5◦

and θi = 41.9◦. The discontinuities are caused by the jumps
in the NESZ of the illuminator between subswaths 1–2 and
2–3 as shown in Figure 9. These abrupt changes in the NESZ
of the instrument are the result of the TOPS operation [20].
The discontinuities in the NESZ propagate to σn and σϕ̂ATI

through (20) and (16). Hence, they appear in the results of the
SSH uncertainty that follow.

The second source of uncertainty comes from the ATI
phase estimate produced by the two phase centers on-board
the Harmony companions. The error is shown in Figure 15.
Structurally the uncertainty of the ATI phase is similar to
that of the system, with the error peaking close to the poles,
and deteriorating towards the far-range of the swath. Yet, we
observe that the error contribution of the ATI estimate is larger
than the error of the system, particularly in the unoptimized
formation. There are two effects driving this phenomenon:

1) The SNR of the two SAR images, coming from the
individual on-board phase centers, from which the ATI
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Fig. 16. The total SSH uncertainty in terms of 1σ at a wind speed of
5m s−1. The total uncertainty is combined by summing the uncertainty of
the interferometer shown in Figure 14 with the uncertainty due to the ATI
phase estimate shown in Figure 15. In order to sum the two uncertainties
the assumption that they are uncorrelated is made. From the results it can be
seen that the uncertainty due to the ATI phase estimate dominates the overall
performance of the interferometer.

phase is estimated is 4.25 dB worse than the SNR of
the combined system. The effect of the reduced SNR
is particularly visible in the mid to far range of the
optimized formation.

2) The scaling factor haB∥/B∥s that converts the indi-
vidual estimator’s standard deviation to the standard
deviation of the combined system estimator increases the
error. Particularly in the unoptimized formation, where
B∥ does not tend to 0m at any point, the scaling of the
error by the ratio of the system along-track baseline to
the on-board baseline dominates the error.

The total error of the SSH measurement is shown in
Figure 16. The total standard deviation is found using (23).
The error is in the order of 10 cm over the majority of the
swath, throughout the orbit, except towards the poles. The
best performance is achieved near the Equator because at that
point the formation has the largest cross-track baseline. The
performance of the optimized formation shown in Figure 16
achieves a standard error of 6 cm or less in the near to mid
range, and up to 30 cm in the far range. The standard error
of the optimized formation at wind speeds of 10m s−1 and
15m s−1 is shown in Figure 17. The error is considerably
improved at higher wind speeds, with 4 cm or less at almost
the entire range and all latitudes with the exception of the
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Fig. 17. The total SSH uncertainty in terms of 1σ for the optimized formation.
The left panel shows the error at a wind speed of 10m s−1 and the right panel
at a wind speed of 15m s−1.

crossing point of the Helix formation. The improvement in
performance is driven by the higher SNR due to the brighter
NRCS of the sea surface.

B. Quasi-monostatic Interferometer

Importantly, despite the improvement that using a squinted
line of sight to decrease the effective along-track baseline
brings to the interferometric height estimate, there are two
factors limiting the performance of a bistatic interferometer
like the one presented in the Harmony case study. The first is
the drop in SNR, particularly in the signal coming from the
individual phase centers, at the far range which is visible at
low wind speeds, where the surface is less bright. Since the
SNR is driven by the NESZ of the instrument and the NRCS,
improving this aspect of the performance can only be achieved
by changing the design of the instrument, which is outside the
scope of this paper.

The second factor is the dependence of the squint on the
incidence angle. The dependence means that for a given point
in the satellite formation, there is not a single squint angle
that minimizes B∥ but rather a locus of angles. Minimizing
B∥ would require a range-dependent steering of the antenna
beam. For Harmony this ranges from 5◦ to 12◦, which is
difficult to implement. This requirement can be relaxed if one
of the satellites of the Helix formation acts as the transmitter.
In other words, one of the two satellites of the Helix formation
would be a monostatic SAR with the second satellite being a
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Fig. 18. The total SSH uncertainty in terms of 1σ of the quasi-monostatic
interferometer at a wind speed of 5m s−1.

bistatic receiver. Overlapping the beams, while still necessary,
becomes trivial and the squint is virtually range independent
because the along-track transmitter-receiver separation is in
the order of meters instead of kilometers.

In this section we present the performance of a quasi-
monostatic SAR flying in a Helix formation with a passive
companion. The antenna beams are steered according to (6)
to minimize B∥. Unless stated, parameters are kept the same
with the Harmony case to highlight the effect of the squint
on the performance. Figure 18 shows the standard error of the
quasi-monostatic configuration.

The results show a lower error at 5m s−1 compared to that
of the Harmony case at the same wind speed. Sub-5 cm error
is achieved for the entire swath between 70◦S and 70◦N and
the performance starts to degrade at latitudes higher and lower
of 70◦ and −70◦. The plots are shifted in latitude compared
to those of Harmony because the main satellite of the close
formation has been assumed to have the mean anomaly of S1,
whereas in the Harmony case it is displaced behind S1 by
350 km.

The degradation due to the SNR at the far range only
starts to become apparent at the edge of the swath and at
the two ends of the latitude where the perpendicular baseline
decreases. B∥ is kept to sub-meter values at all values of
incidence angle and latitude. Thus, γATI of the formation is
kept close to 1 at the far range which keeps the total coherence
is still high despite the SNR degradation. The error due to the
on-board along-track phase estimate makes a negligible, sub-
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Fig. 19. The power spectral density of the sea surface height modeled using a
power law and the noise floor of the Harmony interferometer. The solid black
line uses a spectral slope of − 11

3
which is the average at middle latitudes

(30◦S–60◦S and 30◦N–60◦N). The dashed red line uses a spectral slope
of −1.56 which is the average at low latitudes (30◦S–30◦N). The horizontal
dashed, dashed and dotted, and dotted lines are the noise floor for wind speeds
of 5m s−1, 10m s−1 and 15m s−1 respectively. The point of intersection
of the noise floor with the SSH spectrum determines the smallest wavelength
that the system can resolve. The intersections of the noise floors are indicated
in blue for the spectrum with − 11

3
slope and green for the spectrum with a

slope of −1.56.

centimeter, contribution to the total error due to the scaling
factor haB∥/B∥s being small.

C. Spatial and Spectral Scales

To assess the instrument performance in terms of whether it
can capture the topography of the ocean at the submesoscales
(scales between 10 km and 100 km), the standard deviation
of the height estimate, illustrated in Figure 16, needs to be
translated into a power spectral density and compared with the
variation of the power spectral density of the sea surface height
as a function of wavenumber. The density of the instrument’s
random error forms a noise floor and its intersection with the
density of the SSH signal determines the spatial scales that
the instrument resolves.

The power spectral density of SSH is approximated by a
power law in the wavelength range of 70 km to 250 km derived
from along-track altimeter observations. The spectral slope
in the 30 km to 120 km wavelength range is between −1.56
and −2.14 in the low-latitude (30◦S–30◦N) regions [21]. The
spectral slope in the 80 km to 280 km wavelength range is − 11

3
in the midlatitudes (30◦S–60◦S and 30◦N–60◦N) and reaches
−5 in the high latitude regions on average [22]. We assume
that the power law that governs the SSH power spectral density
extends down to 1 km, similarly to [2], and extrapolate two
SSH power spectral densities with spectral slopes of −1.56
and − 11

3 . The flatter slope is chosen for the low-latitude
regions because it is derived from Sentinel-3A data which is
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Fig. 20. The power spectral density of the sea surface height and the noise
floor of the quasi-monostatic interferometer. The PSD of the SSH is the same
as the one used in Figure 19.

able to resolve finer spatial scales than the altimeters which
are used to derive the steeper slope [21]. − 11

3 is chosen as
an average slope representative of the midlatitudes. A spectral
slope for high latitudes is not used in the analysis because the
perpendicular baseline tends to zero in the polar part of the
orbit and the interferometric performance is not representative
of the system capabilities.

The instrument random error is modeled as white noise with
a flat power spectral density. The spectral law for altimeter
data is specified as a one-dimensional spectrum in the azimuth
direction. The level of the density is determined by the
variance of the error and the sampling linear wavenumber of
the instrument

Shh =
σ2
h

νsxQ
, (24)

where Shh is the power spectral density of the random error
and νsx is the sampling linear wavenumber determined by the
level-2 resolution of the relative height estimate. Since the
SSH density is one dimensional in azimuth, we can average
the samples in range up to the Nyquist sampling interval that
corresponds to the smallest scale that the interferometer should
resolve. Q is the oversampling factor in the range direction
given by the ratio of the range sampling wavenumber to the
Nyquist wavenumber.

To evaluate the noise floor against the spectral density of
the measurement we set the smallest separable scale in range
to 15 km. Resolving wavelengths down to 15 km requires a
Nyquist interval of 7.5 km leading to an oversampling factor
of 2.5 for a product resolution of 3 km×3 km. We then convert
the one-dimensional power spectral density of the error to a
single-sided density by multiplying it by 2.

We use the standard error of the relative height estimate
presented in Figure 16 to compute the spectral density of the
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noise floor. As previously discussed, the standard deviation
of the relative height estimate varies with range and with
the position of the satellite along its orbit. To compare the
power spectral density of the SSH and of the error, a singular
value is needed for σh. Because of the tendency of the error
to peak towards high values at the far range that are not
representative of the majority of the swath, the median of the
standard deviation is used to obtain a representative average
value of the standard deviation. The values at the crossing
of the two companion satellites are not taken into account
in the calculation because the interferometric performance at
that point in the formation is not representative of the system
capabilities. In the Harmony case study the median standard
deviation is 4.7 cm, 2.3 cm and 1.7 cm while in the quasi-
monostatic case it is 2.0 cm, 0.8 cm and 0.5 cm for the three
wind speeds respectively. The density of the noise floor is
computed by substituting the median standard error into (24).
The spectral densities of the SSH, modeled with spectral
slopes of −1.56 and − 11

3 , and the noise floors corresponding
to Harmony and the quasi-monostatic interferometer are shown
in Figures 19 and 20 respectively. We note that the error
spectrum does not include systematic errors which we expect
to have a non-flat spectral envelope. Thus, the resolution
described in the following paragraphs shows the potential
of formation-flying interferometers, rather than a complete
description of the instrument resolution which will deteriorate
when systematic errors with components in the submesoscale
wavenumbers are included in the spectrum.

The intersection of the noise floor with the spectrum of the
SSH determines the smallest wavelength that can be resolved
by the instrument before the estimate is flooded by noise.
The intersections of the Harmony noise floor with the steeper
spectrum corresponds to wavelengths of 46.6 km, 31.4 km and
26.8 km for wind speeds of 5m s−1, 10m s−1 and 15m s−1

respectively. In the case of a spectrum with a flatter slope, as
is the case with low-latitude regions, a more favorable perfor-
mance is achieved with wavelengths of 40.8 km, 16.2 km and
11.1 km for the same respective wave speeds. The results show
that the performance is strongly dependent on wind speed.
Higher wind speeds lead to a rougher ocean surface and a
higher NRCS, which in turns improves the signal-to-noise ratio
and lowers the noise floor. The results suggest that Harmony
has the potential to resolve ocean surface height variations at
spatial scales of approximately 32 km and 12 km wavelengths
for moderate to high speeds.

The spectral density plot of the quasi-monostatic interfer-
ometer shows better results than the Harmony case. The noise
floor intersects the steeper spectral density at wavelengths
of 29.7 km, 18.4 km and 14.1 km and the flatter density at
14.1 km, 4.6 km and 2.5 km wavelengths. It should be noted
that wavelengths below 15 km would not be resolvable in the
range direction as a sampling interval of 7.5 km was assumed.
The numbers represent the potential of the instrument in
combination with a squinted line of sight that is optimized for a
given formation. Figure 20 illustrates that the concept of using
a squinted line of sight to decrease the effective along-track
baseline and reduce the temporal decorrelation of the surface
allows the estimation of relative SSH at submesoscales, from

TABLE III
ERROR BREAKDOWN.

Error component Mean value /cm

U = 5ms−1 U = 15m s−1

Instrument random error 7.7 2.6
Troposphere 0.3 0.3

Baseline 2.2 2.2
Phase synchronization 1.0 1.0

30 km to 15 km, at all wind conditions and over a wide swath.

D. Error Breakdown

In addition to the random error of the instrument, systematic
errors and oceanic and atmospheric biases also affect the
quality of the SSH estimate. Table III contains a breakdown
of the main sources of error that we expect a formation-
flying interferometer that uses the optimized formation to have.
Since some of the errors are strongly wind dependent, we
provide mean values at wind speeds of 5m s−1 and 15m s−1.
The random instrument error depends also on the design of
the instrument and the operation of the radars (bistatic/quasi-
monostatic). In Table III we show the mean instrument error
of Harmony over all incidence angles and latitudes, excluding
values above 45◦ of incidence angle and latitudes lower than
70◦S. We exclude these values because the standard error rises
sharply in the last 1◦ of the swath and at the latitudes when
the two satellites cross, strongly biasing the mean towards a
value that is not representative of the majority of the swath
and latitudes.

The error due to the troposphere is assumed to be constant
with wind speed and the mean value over the incidence angles
is used in the table. The sea-state bias depends on the wind
speed and direction. The bias will be constant over the swath
and opposite in sign to near nadir looking-altimeters. We
expect to achieve similar performance in terms of sea-state
bias estimation and removal as near nadir-looking altimeters.

The baseline error consists of components in the along-
track, perpendicular and line of sight directions. The first two
are in the order of mm, while the third has a slope in range
that is significant for relative SSH estimation. We calculate
the mean error in the line-of-sight direction for a resolution
cell of 3 km by calculating the mean gradient of the error
over all latitudes, except for the latitudes that the satellites
cross, integrating it over the length of a resolution cell. Finally,
the phase synchronization error shows an allocation of the
error that a syncrhonization algorithm should achieve to ensure
centimetric accuracy of the SSH estimate. The systematic
errors and the oceanic and atmospheric biases are analyzed
in sections IV and V respectively.

E. Comparision With Single-platform Designs

One might wonder how a formation-flying cross-track in-
terferometer compares to a single-platform interferometer.
Recently the Surface Water and Ocean Topography (SWOT)
mission has been successfully launched with the aim of pro-
viding accurate measurements of SSH at the submesoscales.
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SWOT is the current state of the art single-platform ocean
altimeter so it serves as a benchmark to an alternative concept
such as the formation-flying XTI.

Under most conditions SWOT will achieve higher accuracy
when estimating SSH. Harmony will provide similar accuracy
at high, above 10m s−1, wind speeds. At medium-to-high
incidence angles the dominant scattering mechanism over
the ocean is Bragg scattering, which increases with surface
roughness. Thus, scattering and by extent accuracy increases
with wind speed while nadir and side-looking swath altimeters
with small incidence angles lose accuracy with wind speed
because scattering is primarily specular. Furthermore, side-
looking interferometers have larger swaths.

The design of Harmony had to fit in the constraints imposed
by using an existing SAR satellite as an illuminator. As such,
the squint of the companions is determined by the beam of
the illuminator and cannot be freely optimized to reduce the
effective along-track baseline throughout the swath. A quasi-
monostatic interferometer would not have this constraint and
achieves better performance that is comparable to SWOT.
Furthermore, the benefit of a formation-flying interferometer
is that the formation can be reconfigured in flight to serve the
needs of different applications, such as land topography and
surface current estimation.

IV. SYSTEMATIC ERRORS

This section provides an analysis of the systematic errors in
a formation-flying interferometer. The focus is on identifying
and accounting for the main bias contributions to the height
estimate rather than on detailed modeling of the biases. We
discuss the baseline errors and the phase synchronization error.

A. Baseline Error

The interferometric model presented in section II-B uses
the cross and along-track baselines to estimate the standard
deviation of the sea surface height estimate. The model as-
sumes knowledge of the physical separation of the formation
elements, which requires knowledge of the position of the
companions. Error-free position information is not possible
and errors in the baseline estimation of the companions will
introduce systematic errors in the height measurement.

From sections II-A3 and II-A4 we know that due to the
squinted line of sight of the two SAR satellites, the along-track
baseline is a function of the along-track and normal separation
of the companions. The perpendicular baseline is a functions
of the radial and normal components of the separation vector.
As a result, an error in the normal component of the separation
leads to an error in both the along-track and perpendicular
baselines. A systematic error in the knowledge of the effective
along-track baseline would result in a bias of the ATI phase
estimate. Following (23), an error in the effective along-track
baseline, ϵATI, leads to a bias of the relative height estimate

ϵh =
haϵATI

2πB∥
ϕ̂ATI. (25)

Substituting the relation between interferometric phase and
radial velocity into the equation gives

ϵh = ha
ϵATI

B∥

τs sin θi
λ

vr, (26)

where τs is the time lag due to the on-board along-track base-
line and vr is the relative radial velocity of the surface with
respect to the receiver. Therefore, with a height of ambiguity
of 60m, which is typical for the formations presented in this
paper, an error in the knowledge of the effective along-track
baseline of 1mm translates to a height bias of ±0.10mm for
a radial velocity of 1m s−1.

Moving on to the perpendicular baseline error ϵBX
. Given

that the height sensitivity is inversely proportional to the
perpendicular baseline, the error is [7]

ϵh = h
ϵBX

B⊥
, (27)

where h is the surface height. For a surface height of h = 1m
and an effective perpendicular baseline of B⊥ = 300m, a
baseline error of ϵBX

= 1m will lead to a height error of
ϵh = ±3.3mm.

An error in the position of the receiver along the line of
sight direction leads to an over or underestimation of the
interferometric phase, resulting in a vertical displacement of
the digital elevation model produced by the interferometer [7]

ϵh =
ha
λ
ϵBl

. (28)

As the height of ambiguity varies with look angle, ϵh due
to an error along the line of sight changes with range.
Equation (28) gives the error locally at a given range. Since
the interferometric height estimate is a measure of the relative
height of the surface, the slope of error is more important than
the bias of the absolute value. Taking the largest value of ha
for the optimized formation and dividing the difference of ha
between the near and far range with the swath width gives a
slope of 0.89 cm per kilometer of ground range for a 1mm
error in along the line of sight direction. This will produce a
ramp in the height estimate that needs to be accounted for.

B. Phase Synchronization Error

Bistatic radars have, by definition, separate transmitters and
receivers. Each transmitter and receiver has their own modula-
tor/demodulator and their own oscillators. The low-frequency
phase errors introduced in the signal by the transmit oscillator
are independent from those of the receive oscillator and do
not completely cancel out when the signal is demodulated
by the receiver. After demodulation the signal has a residual
phase error due to the mismatch of the transmit and receive
oscillator phases. The error defocuses the images produced by
the SAR and produces a low-frequency modulation in azimuth
in the digital elevation models. The issue applies both when
two receivers operate bistatically, such as Harmony, and when
one of the two instruments operate bistatically, such as the
case discussed in Section III-B.

High-resolution measurement of the ocean surface topogra-
phy requires synchronizing the receiver oscillators. A model
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of the synchronization error is out of the paper’s scope.
Instead, we focus on setting the requirement of relative phase
error appropriate for SSH estimation. To maintain centimetric
accuracy, we set the maximum error due to the clock to 1 cm.
This translates to 0.175◦ of phase error for the height of
ambiguity of the optimized formation.

A potential solution is the precise orbit determination
(POD)-global navigation satellite system (GNSS) scheme pre-
sented in [23]. The scheme uses a common reference oscillator
for the GNSS receiver and the SAR instrument, making the
residual phase error proportional to the GNSS error of the
two satellites. Thus, we scale the phase error by fl/(

√
2fc)

to convert it to a synchronization error, where fc is the
radar carrier frequency and fl is the carrier frequency of the
navigation signal. For a radar carrier of fc = 5.405GHz and
a navigation carrier of fl = 1.5GHz the synchronization error
is 0.045◦.

Alternatively, the error can be remedied in post-processing
by a band-stop filter. The error affects the signal in azimuth
because of the stability of the oscillator over shorter time
scales. Thus, a band-stop filter with a stopband in azimuth
covering the affected wavenumbers can mitigate the effect of
the error at the cost of losing information over the stopband.

V. OCEANIC AND ATMOSPHERIC BIASES

A. Tropospheric Path Delay

The tropospheric delay causes range geolocation errors in
SAR images due to an overestimation of the distance between
the instrument and the surface along the line of sight. Esti-
mates of the troposhperic delay at the time of acquisition either
from models or from radiometers can be used to correct for
this range shift. The troposphere also affects interferometric
height estimates of single-pass interferometers, such as the
one discussed in this paper. The two SAR instruments of the
interferometer image the surface with a different incidence
angle. Hence, the paths from a given scatterer to each sensor
undergo different tropospheric delays leading to a residual
interferometric phase in the interferogram.

The shift in the interferometric phase leads to a shift in the
height estimate. The error in the height estimate is proportional
to the product of the tropospheric delay with the tangent of
the incidence angle. The variation of the error due to the
troposphere is [24]

ϵTPD =
∥∥∥δz(tan2 θi − 1)

∥∥∥ , (29)

where δz is the nadir tropospheric path delay. The error
decreases with incidence angle and reaches 0 cm at 45◦. The
dry and wet delay sum to 2.1m to 2.5m depending on
atmospheric conditions. Without correction, this error would
be too large for ocean topography estimation.

Numerical weather models, such as ERA5 from the Euro-
pean Center for Medium-Range Weather Forecasts (ECMWF),
provide estimates of the tropospheric path delay. Using such
models, we can estimate the value of ϵTPD and correct for it in
our estimate of the SSH. After correction, the error becomes
the residual between the estimate of the nadir path delay from
the model and the true value. Vieira et al. have found that the

RMS error between the wet tropospheric delay and the delay
measured from radiometers varies from 0.6 cm to 1.7 cm [22],
depending on latitude. Taking an average value of 1.15 cm for
the residual in the nadir direction and substituting it in (29) in
place of δz provides an estimate of the error after correction.
The error decreases from 0.6 cm at near range to 0 cm at 45◦

and increases to 0.4 cm from 45◦ to the far range. Since the
ϵTPD varies with incidence angle, its power spectral density
will have a component in the wavenumbers that correspond to
the submesoscales and the error has to be taken into account
in the error budget of the interferometer.

B. Sea-state Bias

Relative height estimates are obtained from two or more
SAR images using the method of interferometry. The modulus
of the interferogram is proportional to the normalized radar
cross-section. The most commonly used estimator for the rel-
ative height in SAR interferometry is the maximum-likelihood
estimator, which uses speckled averaged interferometric phase
to estimate the relative height. The bias of an estimator is
defined as the distance between the expected value of the
estimator and the true value of the estimated quantity. If the
NRCS is a function of height, then the expected value of the
estimator will include a term proportional to the correlation
of the NRCS with the height of surface which will bias the
expectation away from the true value of the height.

In the case of the ocean, the waves on the surface have a dif-
ference in roughness between crests and troughs. This leads to
more scattering of the SAR signal coming from the crests than
the troughs [25], correlating the NRCS with the surface height.
The roughness of the ocean surface depends on the wind speed
and other parameters related to the state of the sea, giving the
name “sea-state bias” to this phenomenon [26]. In this section
we present a summary of the effect and the main findings
as they related to bistatic SAR cross-track interferometers. A
detailed derivation is included in the appendix.

The height estimated by an interferometer ĥ(x) after the
formation of an interferogram and averaging over independent
speckle realizations is given by the convolution of the product
of the NRCS σ0(x) and sea surface height z(x) with the square
of the instrument response function χ(x). For simplicity, we
will consider only one dimension, so the height estimate is

ĥ(x) ≈ A
1

σ̄0(x)
(σ0z ∗∥χ∥2)(x), (30)

where σ̄0(x) = (σ0 ∗∥χ∥2)(x) and A is a term that includes
the antenna gain and constants of proportionality. From this
point on, the height estimate is computed for a region around
x0, and the spatial variability of the instrument-response
averaged cross-section is assumed to be negligible in this
region σ̄0(x) = σ̄. Additionally, we express σ(x) in terms of
the average cross-section σ̄ and a spatially varying component
δσ(x)

σ(x) = σ̄(1 + δσ(x)).

Applying this relation to (30) yields

ĥ(x) ≈ A((1 + δσ)z ∗∥χ∥2)(x). (31)
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The bias of the estimator is evaluated by computing its
expected value over the ensemble of the waves

Ew[ĥ(x)] ≈ A(Ew[z(x)] + Ew[δσ(x)z(x)]) ∗
∥∥χ(x)∥∥2 . (32)

Equation (32) demonstrates that the estimator is biased away
from the true value of the surface height z(x) because of
the second term that arises due to the cross-correlation of the
spatial variation of the NRCS with the height. The estimator
will be unbiased only in cases where the cross-correlation
E[δσ(x)z(x)] is 0. According to the linear modulation theory
of Hasselmann and Hasselmann [27], the spatial variation of
the NRCS δ̃σ(k) is related to the surface wave amplitude Z(k)
via a modulation transfer function (MTF) T (k) in the angular
wavenumber domain

δ̃σ(k) = T (k)Z(k). (33)

Substituting (33) into (32) in terms of the inverse Fourier
transform of δ̃σ(k) leads to the following expression for the
bias

Bias(ĥ, z) =

∫
T (k)Ψ(k) dk

∫ ∥∥χ(x)∥∥2 dx, (34)

where E[Z(k)Z(k′)] := Ψ(k)δ(k−k′) is the surface elevation
variance spectrum [27]. In cases where the squared instrument
response function is normalized, the integral of

∥∥χ(x)∥∥2 with
respect to x integrates to unity and the bias is determined by
the integral of the modulation transfer function and the surface
elevation variance spectrum.

Integrating over all numbers in R2 is not of interest as we
only expect to come across waves with maximum wavelengths
of 250m. Computations of (53) using the Elfouhaily spec-
trum [28] for Ψ and the MTF defined by Schulz-Stellenfleth
et al [29] for T were carried out using a dimensionless fetch of
100×103. The bias of the height estimate due to the sea-state
is shown in Figure 21 as a function of wind speed for wind
azimuths of 0◦, 45◦ and 90◦, using a solid black line, a dashed
red line, and a dotted blue line respectively. The bias is much
stronger for winds aligned with the radar look direction than
for crosswinds and increases approximately linearly with wind
speed between 5m s−1 to 10m s−1 for all wind directions.

Quantitatively, the bias varies between 1.5 cm to 12.5 cm
which is significant when compared to the standard deviation
of the total random error of the height shown in Figure 16.
Nevertheless, the interferometric height estimate is relative,
therefore a systematic bias that is independent of ground range
and azimuth will not impact the accuracy of the relative values
as long as the bias does not cause the interferometric phase
to wrap over 2π. Given that the formations discussed have a
minimum height of ambiguity of 30m, biases of up to 12.5 cm
are unlikely to cause phase wrapping.

VI. CONCLUSION

We have presented a model to estimate the random and
systematic errors in the ocean elevation measurement of a
bistatic SAR interferometer with a squinted line of sight.
Two case studies were used to investigate the performance
of the concept: The Harmony mission in its cross-track in-
terferometry phase; and a pair of SAR satellites flying in
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Fig. 21. Bias of the height estimate as a function of wind speed for azimuth
directions of 0, 45 and 90 degrees.

close formation with one acting as a transmitter and receiver
and the other bistatically. The discussion has included the
impact of coherence losses due to noise, volume scattering,
and temporal lag between acquisitions. We investigated the
simulated performance of the two systems over an orbit and
the challenges involved in the estimation of relative heights
from SAR images of the sea surface. The key benefit of the
XTI operation of a closed formation with a squinted line of
sight is allowing for effective perpendicular baselines that are
sufficiently large to observe the ocean surface with sub-meter
accuracy while minimizing the temporal decorrelation without
compromising the safety of the formation. Minimizing the
temporal delay reduces the temporal decorrelation sufficiently
to allow estimation of the relative SSH.

In the case of Harmony, the squinted line of sight is a result
of the bistatic operation. The beams of the companions follow
that of Sentinel-1, resulting in an off-boresight line of sight at
the receivers. However, bistatic operation with an illuminator
that is several kilometers displaced along the orbital track
is not required; the same effect can be achieved using one
monostatic and one bistatic SAR system with a squinted line of
sight. The performance of the interferometer can be enhanced
by taking advantage of the two on-board phase centers of the
receivers to estimate the contribution of the relative surface
motion to the interferometric phase and remove it. The results
show a standard error of 1 cm to 6 cm for the near to mid-
range and up to 30 cm at the far range for optimized formation
parameters at a wind speed of 5m s−1. This corresponds to
spatial scales of 47 km and 41 km for spectral slopes of − 11

3
and −1.56 respectively. The performance improves at higher
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wind speeds due to more backscattering. With a wind speed
of 10m s−1, wavelengths of approximately 31 km and 16 km
can be resolved.

In the case of the quasi-monostatic system, the constraint
to align the beam of the two SARs in the Helix formation
with the beam of an illuminator that is several kilometers
ahead along the track is lifted. Thus, the squint of the line
of sight is not range dependent as in the case of Harmony,
and can be optimized for the entire swath at all latitudes.
The performance combined with the wide swath of a SAR
enables the recovery of submesoscale ocean features at high
wind speeds. The results of the quasi-monostatic system show
a standard error of less than 5 cm for the entire swath with
the performance degrading only near the crossing point of the
formation. The error translates to resolving scales of 30 km
for 5m s−1 wind and 14 km for 15m s−1 wind speed for the
steeper spectrum.

The estimate of the sea surface height will be impacted
by systematic errors. We have considered the main sources
of systematic errors including phase synchronization, baseline
estimation and electromagnetic modulation of the backscat-
tered signal. The phase synchronization error has a significant
impact on the estimation. Therefore, cross-track interferome-
ters must be designed with this potential limitation in mind.
Alternatively, given that the error has a known shape in the
wavenumber domain, band limited in the azimuth direction
and negligible in the range direction, it could be removed
from the signal using a filter. A detailed derivation of the
sea-state bias for both a frozen and a dynamic surface has
been presented for a bistatic interferometer. In particular, we
have shown that the time dependence of the backscattering
does not affect the sea-state bias under the assumption of a
sufficiently broad SAR processing bandwidth and that the bias
is a function of the hydrodynamic modulation and the surface
height variance spectrum.

In the future we would like to complete the model by
providing spectral envelopes for the systematic errors and
biases. Furthermore, a more complete characterization of the
phase synchronization error and mitigation algorithms are
needed. Finally, we would like to use the model to compute
the azimuth cutoff wavenumber at different latitudes, incidence
angles and wind speeds.

APPENDIX
ANALYSIS OF THE SEA-STATE BIAS

SURFACE HEIGHT ESTIMATE OF A FROZEN RANDOM
BACKSCATTERING SURFACE

In this section we investigate the sea-state bias in the height
estimate produced from an interferogram for two cases: a
frozen random backscattering surface, and a moving random
backscattering surface. In both cases we assume that the
interferogram is produced by a pair of images acquired with
a zero effective along-track baseline. Consequently, the time
dependence of the surface manifests itself in the scattering
coefficient but not in the interferometric phase.

In the analysis, We apply the plane wave approx-
imation to the far field of the instrument. kq =

k0(sinψq, cosψq sin θq, cosψq cos θq)
T is the wave vector,

where θ is the look angle, ψ is the squint with respect to
the antenna boresight, k0 = 2π/λ0 is the wavenumber of the
carrier and the subscript q ∈ {T,R} stands for the transmitter
and the receiver respectively. RB is the bistatic range to the
location where the plane wave approximation is applied. The
image produced by the ith SAR of the interferometer is [30]

ui(x, y) = e−jk0RBi∫∫∫
s(r′)e−jkBi

·r′
χ(x− x′, y − y′) dV ′, (35)

where s(r′) represents the complex scattering coefficient in a
Cartesian coordinate system with the origin set at the plane
wave expansion point and x being the azimuth direction, y
the ground range direction and z the elevation direction. We
use the shorthand r = (x, y, z)T for functions of (x, y, z). We
represent the system imaging transfer function, including the
point target response and the processing filters, by χ(x, y),
and the bistatic wave vector by kB = kT + kR.

Let u1(x, ρ) and u2(x, ρ) be the two SAR images forming
the interferogram

ν(x, ρ) = u1(x, ρ)u2(x, ρ)
∗,

where the superscript ∗ denotes complex conjugation. We
assume that the scattering coefficient is a white stochastic
process

Es[s(r1)s
∗(r2)] = σ0(r1)δ(r1 − r2).

Then the expected value of the interferogram is

I(x, ρ) = Es [ν(x, ρ)]

= e−jk0∆RB

∫∫∫ ∫∫∫
σ0(r

′)δ(r′ − r′′)

χ(x− x′, y − y′)

χ(x− x′′, y − y′′)∗

e−jkB1 ·r
′
ejkB2 ·r

′′
dV ′ dV ′′,

where ∆RB = RB1
−RB2

.
We use the even and sifting properties of the Dirac delta

function to reduce the expected value of the interferogram to

I(x, ρ) = A

∫∫∫
σ0(r

′)e−j∆kB ·r′

∥∥χ(x− x′, ρ− ρ′)
∥∥2 dV ′, (36)

where A = e−jk0∆RB and ∆kB = kB1−kB2 is the difference
of the bistatic wave vectors.

We are primarily interested in the topographic mapping
of the ocean surface, where we can assume that the most
prominent contribution to the scattering amplitude comes
from the surface. Additionally, the frozen surface ζ(x, y) is
a function of the two horizontal plane coordinates describing
the surface height along z. The slant range to a point on the
surface at a given azimuth depends only on the ground range.
Thus, (36) reduces to an integral over the surface

I(x, y) = A

∫∫
σ0(r

′
p)e

−j∆kRR
·r′

p∥∥χ(x− x′, ρ− ρ′)
∥∥2 dx′ dy′, (37)
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and the integral can be expressed as the convolution of the
backscatter and interferometric phase terms with the norm of
the system impulse response function

I(x, y) = A(σ0β ∗∥χ∥2)(x, y) (38)

where r′p = (x′, y′)T is the position vector on the surface and
β(rp) = e−j∆kRR

·rp .
We assume that the wave height is small compared to the

height of ambiguity and expand the exponential in β. The
expectation of the interferogram after expanding the complex
exponential is

I(x, y) = A(σ0(1− j∆kR · r′p) ∗∥χ∥2)(x, y). (39)

Rodriguez and Martin [31] have shown that the maximum-
likelihood estimator of interferometric phase is

ϕ̂ = arctan

(
ℑ{∑Nl

n=1 ν[n]}
ℜ{∑Nl

n=1 ν[n]}

)
, (40)

where Nl is the number of independent interferometric looks.
Noting that for small interferometric phase tan ϕ̂ ≈ ϕ̂, the
phase and height estimators are

ϕ̂ ≈ ℑ{∑Nl

n=1 ν[n]}
ℜ{∑Nl

n=1 ν[n]}
, (41)

ĥ = −ha
2π
ϕ̂, (42)

where ha is the height of ambiguity. Assuming that the
scattering stochastic process is correlation ergodic and that we
use a sufficient number of looks allows us to substitute (39)
into (42)

ĥ ≈ K

σ̄(rp)

∫∫
σ0(r

′
p)∆kR · r′p

∥∥χ(x− x′, ρ− ρ′)
∥∥2 dS′

(43)
where

dS′ = dx′ dy′

K =
ha
2π

σ̄(rp) =

∫∫
σ0(r

′
p)
∥∥χ(x− x′, ρ− ρ′)

∥∥2 dx′ dy′.
Henceforth, we will assume that the spatial variability of the

instrument-response averaged cross-section can be neglected,
i.e. σ̄(rp) = σ̄. Additionally, we will decompose the radar
cross-section into a spatially averaged constant component and
a spatially varying component [32] [12]

σ0(x, y) = σ̄ + σ̄δσ(x, y).

Then (43) can be re-written as

ĥ ≈ K

∫∫
σ̄(1 + δσ(x′, y′))∆kR · r′p

σ̄∥∥χ(x− x′, ρ− ρ′)
∥∥2 dS′, (44)

which agrees with the equation for the height measurement of
the SWOT interferometer presented in [12].

We can see that the first term is proportional to the phase
difference of the two SAR images, which is defined by ocean

surface but the product in the second term δσ(x′, y)∆kR · r′p
introduces a correlation between the NRCS and the surface
height that biases the estimate. The NRCS can, in the context
of linear modulation theory as demonstrated by Hasselmann
and Hasselmann, be expressed as a function of the surface
elevation [27]

σ0(rp, t) = σ̄

(
1 +

∫∫
k

δ̃σ(k)e−j(kw·rp−ωwt) dkx dkρ

)
,

where k is the 2D wavenumber of the surface waves whose
positive and negative values are included in the domain of
integration. σ̄ denotes the spatially averaged NRCS and ωw =√
gk is the gravity wave angular frequency. The cross-section

modulation factor δ̃σ(k) and surface wave amplitude Z(k) are
related through the modulation transfer function (MTF) [27]

δ̃σ(k) = T
(
k
)
Z
(
k
)
, (45)

where capital letters represent the Fourier transform of func-
tions notated by the corresponding lowercase symbols. In cases
where capitalization leads to a symbol which conventionally
has an established meaning, e.g. δσ, we use the tilde to
represent the Fourier transform.

Thus, the variation in cross section δσ(x, y) can be ex-
pressed as the inverse Fourier transform of the product of the
MTF and the surface wave amplitude

δσ(x, y)

σ̄(x0, y0)
= F−1

{
T
(
k
)
Z
(
k
)}

(x, y). (46)

Equation (46) can be used to simplify (44). The dot product of
the wave vector difference with the position of the resolution
cell is

(kR1
− kR2

) · r = kR1

[
2x sin∆ψ/2 cosψ

+y(sin θ1 cosψ1 − sin θ2 cosψ2)

+z(− cos θ1 cosψ1 + cos θ2 cosψ2)
]
, (47)

where ψ = (ψR1 + ψR2)/2 and we have assumed that both
receivers use the same carrier frequency. In equation (47) we
have made the assumption that the difference in look angles
and squint is small. Substituting back to the expression for the
surface wave height estimate

ĥ = Kq

(
1 + F−1

{
T
(
k
)
Z
(
k
)})

z ∗
∥∥χ(x, ρ)∥∥2 , (48)

with
q = kR1(− cos θ1 cosψ1 + cos θ2 cosψ2),

where we have expressed the MLE of the measured height as
a convolution of the product of the height and cross section
with the instrument response function. Additionally, we have
neglected the terms proportional to x and y because while
there is a local correlation between (x, y) and the NRCS we
expect that globally the offset in NRCS due to the variation of
the waves in the horizontal direction will not be systematic.
We express the height of ambiguity in terms of the incident
and squint angles

ha := 2π
(
∂ϕ
∂z

)−1

=
2π

kR1
(− cos θ1 cosψ1 + cos θ2 cosψ2)
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which simplifies the leading constant of ĥ to unity.
To evaluate the bias of the estimator we need to compute

the expected value of the estimator over the ensemble of wave
surfaces. We express the expected value of the estimator in
terms of the inverse Fourier transforms of δσ and z. The focus
is on the second term of (48), which we label A(x, y) =
δσ(x, y)z(x, y)

Ew[A(x, y)] = Ew[F−1{T (k)Z(k)}F−1{Z(k)}]
= Ew[

∫
T (k′)Z(k′)e−j(k′·rp) dk′

×
∫
Z(k′′)e−j(k′′·rp) dk′′], (49)

where we can use the fact that the ocean wave field is real
z(x, y) = z(x, y)∗ and the linearity of the expected value and
the Fourier transform to simplify the expression

Ew[A(x, y)] =

∫∫
T (k′)Ew[Z(k

′)Z(k′′)∗]

e−j((k′−k′′)·rp) dk′ dk′′

=

∫∫
T (k′)Ψ(k′)δ(k′x − k′′x)δ(k

′
y − k′′y )

e−j((k′−k′′)·rp) dk′ dk′′

=

∫
T (k)Ψ(k) dk. (50)

The definition of the surface elevation variance spectrum, as
defined in [32]

Ew[Z(k)Z(k
′)] := Ψ(k)δ(k − k′), (51)

and the sifting property of the Dirac delta function were used
to simplify the expression of the bias term. Substituting (50)
into (48) yields

Ew [ĥ] = Ew[z(x, y)] ∗
∥∥χ(x, y)∥∥2

+

∫
T (k)Ψ(k) dk

∫ ∥∥χ(x, y)∥∥2 dx dy. (52)

Equation (52) shows that the expected value of the estimator
is the ensemble mean of the surface wave height filtered by the
instrument response plus an additional term that is a function
of the MTF and elevation spectrum. The additional term biases
the estimator away from the true value of the surface height.
The effect is well known in nadir altimetry as electromagnetic
bias [26].

The expression for Ew [ĥ(r)] gives us the expected height
estimate as a function of the spatial coordinates in the hor-
izontal plane. We can obtain a measure of the bias due to
the modulation of the NRCS by the surface-wave height by
computing the integral of the second term in (52)

Bias(ĥ, z) =

∫∫
T (k)Ψ(k) dk

∫∫ ∥∥χ(x, y)∥∥2 dx dy. (53)

For the purposes of investigating the effect of the instrument
target response on the bias, let us assume that χ(x, y)2 is a
two-dimensional squared sinc function [12]

χ(x, y)2 =
1

δρxδρy
sinc

(
x

δρx

)2

sinc

(
y

δρy

)2

with spatial resolutions δρx and δρy in azimuth and ground
range respectively. The integral over χ(x, y)2 evaluates to
unity and the bias becomes a function only of the MTF and
the elevation spectrum of the surface.

SURFACE HEIGHT ESTIMATE OF A MOVING RANDOM
BACKSCATTERING SURFACE

The derivation of the height bias for the case of a moving
surface largely follows that of a frozen surface presented in the
previous section of the appendix with a key difference. Since
the surface is now not assumed to be frozen, the scattering
coefficient depends on both space and time. The synthetic
aperture of the instrument records the temporal variation of the
scattering coefficient during the illumination time. Therefore,
the interferogram and the height estimate can no longer be
expressed as two-dimensional convolutions of the point target
response and the NRCS as in (37) and (52).

The time dependence of the scattering coefficient means
that the azimuth processing of the SAR image needs to
be accounted for to arrive to an expression of the image.
The derivation of the expected value of the interferometric
height estimate in this section is based on Hasselmann’s [32]
derivation of the mean SAR image intensity for a moving
surface. To make the analysis easier to follow, we only
consider the azimuth coordinate of the scattering coefficient,
the point target response and the impulse response of the
processing filter. Given that sensing in the range direction
occurs at the speed of light, we are neglecting the motion of
the backscattering surface in the range dimension. The results
of this subsection can be extended to the range direction by
following the derivation of the previous section.

The processed signal is obtained by matched filtering in
range, followed by matched filtering in azimuth. Since we are
interested in the interferometric height estimate, we include in
our equations the phase term due to the range to the surface
that is part of the signal after range compression even though
we do not go through the range processing in the analysis.
Consequently, we express the processed signal as the matched
filtering of the received signal and the exponential phase term

ui(x) =

∫∫
f2(x−x′′)f1(x′′−x′)s(x′, t′′)e−jk0R

′
Bi dx′ dx′′,

(54)
where RBi

is the bistatic range to a scatterer, f1(x) is
the azimuth point target response and f2(x) is the azimuth
matched filter. As noted in [32], (54) cannot be contracted into
a convolution of two functions of x as in (35). The azimuth
point target response and the matched filter are

f1(x) = e−jk0/Rx2

w1(x) (55)

f2(x) = e+jk0/Rx2

w2(x), (56)

where w1(x) is the antenna pattern in azimuth and w2(x) is
a weighting function over the integration time of the SAR
processor TI .

We substitute the transfer functions (55) and (56) in the
expression for the processed signal, and after expansion of the
quadratic terms in the exponentials and making a substitution
for the second variable of integration, equation (54) may be
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expressed as an integral over the finite resolution Fourier
transform of s(x, t) [32]

ui(x) =

∫
e−jk0R

′
BiN ′s̃(x′, TI , ω) dx

′ (57)

where

s̃(x′, TI , ω) =

∫
w(t̂, ω)s(x′, t′ + t̂)e−jωt̂ dt̂,

ω =
k0v(x− x′)

RBi

,

and we have grouped the two filter responses into a single
function

w(t̂, ω) = w1(vt̂)w2

(RBi
ω

k0v
− vt̂

)
N−1.

The normalization factors N and N ′ are the same as in [32]
with the bistatic range replacing the monostatic range.

Equation (57) is a generalized expression for the imaging of
a dynamic backscattering surface analogous to that of a frozen
surface (35). Therefore, we can proceed as in the previous
section to obtain an expression for the height estimate using
the maximum-likelihood estimator of interferometric phase.
Applying the assumption that the surface is spatially white,
correlation ergodic and expanding the exponential as in the
case of a frozen surface yields

ĥ =

∫
1

σ̄0(x)
N2σ0(x

′, TI)z(x
′)R̃ss(x

′, TI ;ω) dx
′, (58)

where in this case the averaged NRCS takes the form

σ̄0(x) =

∫
N2σ(x′, TI)R̃ss(x

′, TI ;ω) dx
′.

The model used for the expectation over the ensemble of
speckle realizations is [32]

Es[s(x, t)s(x+ x′, t+ τ)] = σ0(x, t)Rss(x, t; τ)δ(x
′)

and the equivalent relation in the frequency domain is

Es[s̃(x, TI ;ω)s̃(x+x
′, TI ;ω)

∗] = σ̃0(x, T )R̃ss(x, TI ;ω)δ(x
′).

R̃ss(x, TI ;ω) is the normalized variance spectrum of the
scattering element with azimuth position x at a frequency
offset given by ω. The variance spectrum is of finite resolution
due to the bandwidth of the SAR processor in azimuth which
is set by the integration time TI . The frequency offset ω
arises due to the time dependence, i.e. the motion, of the
scatterer at a given azimuth position during the integration
time. The spectral components of the surface reflectivity at x′

are given by s̃(x′, TI ;ω). The variance spectrum is a measure
of the intensity of the SAR image as a function of the offset
frequency. If the Doppler processing bandwidth is larger than
the bandwidth of the variance spectrum then the motion of the
surface results in a smearing of the height estimate without loss
of spectral information.

Taking the expectation of the estimator over the wave
ensemble yields

Ew[ĥ] =

∫
1

σ̄0(x)
N2 E[σ0(x′, TI)z(x′)]R̃ss(x

′, TI ;ω) dx
′.

Expanding σ0(x
′, TI) = σ̄0(x)(1 + δσ(x′, TI)) and sub-

stituting the MTF into the expression yields an analogous
expression to the one for the frozen surface but instead of
the square of the imaging transfer function χ(x, y)2 we have
the finite resolution variance spectrum of the scattering surface

Ew [ĥ] =

∫
N2 E[z(x′, y)]R̃rr(x

′, TI ;ω) dx
′

+

∫
T (k)Ψ(k) dk

∫
N2R̃rr(x

′, TI ;ω) dx
′ .(59)

In the case of multilooking we can assume that the azimuth
bandwidth of surface reflectivity is smaller than the processing
bandwidth and N2 is independent of frequency [32] and can
be taken out of the integrals in the numerator and denominator
of (58)

Ew [ĥ] =

∫
E[z(x′, y)]R̃rr(x

′, TI ;ω) dx
′

+

∫
T (k)Ψ(k) dk

∫
R̃rr(x

′, TI ;ω) dx
′ .(60)

Since the variance spectrum is normalized,∫
R̃rr(x

′, TI ;ω) dx
′ integrates to unity and the height

bias is determined exclusively by the MTF and the elevation
spectrum of the surface as in the case of the frozen surface.
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