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Abstract

Interactions in the real world are subject to mistakes and miscommunications. The presence of this noise
in interactions challenges cooperation, as one party cannot determine whether the other party did not
cooperate on purpose. The Prisoner’s Dilemma has commonly been used to study mutual cooperation.
Strategies like Tit for Tat that do well in the classic version of the game, perform badly once noise is present.
Recent studies that have used the Prisoner’s Dilemma to show that harsh environments promote cooperation,
currently do not take noise into account. This article therefore uses the Prisoner’s Dilemma and Agent Based
Modeling and Simulation (ABMS) to describe the relation between the harshness of the environment and
noise. From the simulations it follows that the adversity of the environment benefits cooperators and can
make cooperation more robust against mistakes. Harsher environments also encourage greater generosity
to cope with noise. Yet when uncertainty is high due to higher probability of mistakes or more potential
defectors in the environment, contrite behaviours are most successful.
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1. Introduction

An individual’s behaviour is considered coopera-
tive if it provides benefits to another individual, and
has been naturally selected because of these bene-
fits [1]. The abundant presence of cooperation in the
biological world leads to a paradox in evolutionary
theory; providing benefits to another would reduce
the relative fitness of this behaviour and therefore be
selected against [2]. Extensive research has however
shown that under the right conditions cooperation
can evolve in nature [3, 4, 5]. In 1981, Axelrod and
Hamilton formalized the issue of cooperation using
the Prisoner’s Dilemma Game to study the exact con-
ditions under which cooperative behaviour can evolve
[6].

When environmental adversity is high, cooperation
in many species counter-intuitively increases [7]. The
adversity, or harshness, of an environment increases

with the short-term benefits of selfish behaviour. Ex-
amples are increased risk of predation and scarcity of
resources, where selfish behaviour would be more ad-
vantageous short-term. However, in both situations
cooperative behaviour in nature has been observed to
increase ([8] and [9], respectively).

The same outcome can be observed in spatial Pris-
oner’s Dilemma Games with simulated harshness.
Defecting strategies benefit the most at first, but
in the long run cooperating strategies recover and
later dominate the game [10]. This effect is en-
hanced when harshness increases; cooperative strate-
gies shrink more at first, and make a more dramatic
recovery in the long run.

However, these experiments have been conducted
with only strictly cooperating and strictly defect-
ing strategies, assuming that no mistakes were ever
made. Other works have explored a larger set of
strategies [11], but with the same assumption that
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no mistakes were made in the decision making. Yet
information in real-world interactions is not perfect
and errors occur. Strategies that perform very well in
a normal Prisoner’s Dilemma setting, often fail mis-
erably when occasional mistakes happen [12]. For
a more realistic understanding of cooperative be-
haviours in harsh environments, mistakes (more com-
monly known as noise) have to be simulated as well.

While various works have studied the effects of
noise in spatial versions of the game [13, 14, 15], no
literature has been found on how noise affects suc-
cessful strategies in harsh environments. It has been
observed that cooperative, although non-forgiving
strategies are more successful in harsh environments
[11], but it is unknown if these strategies can remain
successful in the presence of noise.

This article explores the relation between noise and
harshness of the environment. Using Agent Based
Modeling and Simulation (ABMS) [16] on a spa-
tial Prisoner’s Dilemma Game with simulated harsh-
ness [10], the effects of noise in harsh environments
are studied. The results show that the presence of
mistakes makes cooperation more difficult, but the
harshness of the environment can in some cases help
cooperators’ robustness against noise. As opposed to
previous conclusions that the least generous cooper-
ators are the most successful in harsh environments
[11], this article shows how once noise is present
highly generous strategies are dramatically more suc-
cessful than other strategies. Results also show that
not only generous but also contrite behaviours are a
successful way to account for mistakes in harsh envi-
ronments.

Section 2 provides relevant background and defini-
tions used in this article. Section 3 describes how the
relations between noise and harshness will be studied
using agent-based simulations, followed by the exact
model description in Section 4. The obtained results
using this model are presented in Section 5. Section
6 discusses the reproducibility of the results. Results
are interpreted in Section 7 followed by a conclusion
and recommendations for future work in Section 8.

2. Background

2.1. Prisoner’s Dilemma Game

The Prisoner’s Dilemma Game formalizes the
problem of achieving mutual cooperation [17]. In
the classic version of the game, two players each de-
cide to either cooperate or defect. The individual
choice to defect has a higher payoff than to cooper-
ate. But if both parties defect, the payoff is worse
than if they both had decided to cooperate. For-
mally, the Prisoner’s Dilemma is represented by ma-
trix with 8 entries, shown in Table 1. The letters
represent the payoffs of each player. R stands for
reward ; the payoff when both parties cooperate. T
stands for temptation; the higher payoff for success-
fully defecting (i.e. the other player tried to cooper-
ate). S stands for sucker’s payoff ; the payoff when
cooperating when the other player defects. P stands
for punishment ; the payoff if both players defect. The
Prisoner’s Dilemma includes the following inequali-
ties in its definition [17]:

S < P < R < T (1)

2R > S + T (2)

These inequalities are what makes the game a
dilemma. Condition 1 motivates to defect in order to
get the highest temptation T , at the risk of getting
punishment P . Although the punishment P is higher
than the sucker’s payoff S, the player is motivated to
cooperate to get the higher reward R by cooperat-
ing. This only works if the other player cooperates
as well, hence the dilemma. Condition 2 guarantees
the only “cooperative solution” is when both players
cooperate. Suppose S + T ≥ 2R, then both play-
ers that alternate between cooperating and defecting
would receive a reward of S +T for each alternation,
i.e. at least 2R, which would have been obtained if
both players had consecutively cooperated.

2.2. Iterated Prisoner’s Dilemma

The version of the game where players play mul-
tiple rounds against each other, is the Iterated Pris-
oner’s Dilemma (IPD). The same conditions 1 and
2 introduced in the previous section hold for this
version. Behaviour can be recognized and decisions
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C2 D2

C1 R1, R2 S1, T2

D1 T1, S2 P1, P2

Table 1: Matrix representation of the Prisoner’s Dilemma. Cx

and Dx stand for player x cooperating or defecting, respec-
tively. Entries Yx represent payoff Y for player x.

adapted, which leads to a much larger set of inter-
esting strategies. For example, if playing against a
player that seems to consistently defect, the rational
move is to defect as well, even if the original intent
was to cooperate.

In Axelrod’s and Hamilton’s work a computer tour-
nament was organized to study which strategies are
successful in the Iterated Prisoner’s Dilemma [6].
The best performing strategy was “TIT for TAT”.
This simple strategy cooperates on the first move,
and then copies whatever the player did on the last
move. It is therefore a strategy based on cooperation
and reciprocity. Other strategies based on coopera-
tion performed significantly better in the tournament
than selfish strategies.

2.3. Noise

Noise defines the probability an individual makes
a mistake in an IPD game. For example, with noise
of 5%, each intended choice has a probability of 5%
to result in the opposite choice being carried out. In
the classic IPD, successful strategies remain cooper-
ative in the presence of noise, but either posses more
generosity or contrition [12]. Generosity is leaving a
certain amount of another individual’s defections un-
punished, while contrition is avoiding to defect as a
response to the other individual’s defection after own
unintended defection.

2.4. Harshness of the Environment

Numerous extensions have been made to the game
in order to simulate a more “realistic” environment.
Attempts at making an environment more realistic
generally consist of adding parameters that mimic

real biological settings to influence the game. For ex-
ample, implementing natural selection and evolution
[18], creating a 2 dimensional space in which players
can move and play against their neighbours (spatial
IPD) [19], allowing players to choose and refuse part-
ners [20], etc.. One particularly interesting model is
the one presented by Smaldino et al., a spatial IPD
that simulates the harshness of an environment [10].

Their model simulates the adversity of the environ-
ment using energy levels and two different parameters
[10]. The main idea behind the model is to simulate
harshness by removing more energy from the agents.
This can be done by increasing the cost of life, i.e.
removing more energy from every agent at each turn;
or making the sucker’s payoff increasingly more neg-
ative to punish cooperations with defectors. Adding
death and reproduction mechanisms makes the en-
vironment competitive, allowing the more successful
strategies to survive. The formal model description
can be found in Section 4.

3. Agent-Based Modeling and Simulation for
Spatial IPD

The advances in computing power over the past
decades have made modeling and simulation impor-
tant means for analysis and experimentation in many
different domains [21]. A model is a representation
of an original or reference system of interest. A sim-
ulation is the operation of this model [22]. The be-
haviour of the system of interest can then be inferred
by experimenting with and analyzing of the operation
of the model.

In agent-based modeling and simulation (ABMS),
systems are modeled using using autonomous, inter-
acting agents within an environment [16]. This stems
from the idea that a global phenomenon can be gen-
erated from the actions and interactions between the
agents of a system [23]. The strengths of ABMS are
its ability to express phenomena that emerge from
many interactions, how it provides a natural descrip-
tion of a system, and its flexibility [24]. Given these
strengths, ABMS has been used in numerous stud-
ies involving complex systems, across a large range
of domains such as pandemics, the immune system,
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and water management ([25], [26], and [27] respec-
tively).

The study of cooperation and competition has seen
its fair use of ABMS [28]. Axelrod’s original work
using the Iterated Prisoner’s Dilemma included both
mathematical analysis and the use of ABMS in the
form of tournaments. The use of such simulations has
been thoroughly reviewed by Gotts et al. [29]. To-
day there seems to be little use to simulation studies
for simple Iterated Prisoner’s Dilemma games where
every two agents have equal probability to meet. In
these cases, mathematical analysis is strongly encour-
aged. The situation is however different for spatial
versions of the game. The stochastic nature of such
environments makes mathematical analysis particu-
larly difficult, while using ABMS is trivial and has
the potential to provide valuable insights.

Given the above reasoning and the used spatial
IPD model presented in the next section, ABMS
will be used to study the relation between noise and
harshness of the environment.

4. Model Description

The ABMS model used to study the relation be-
tween noise and harshness in IPD games is based on
the work of Smaldino et al. [10]. Their work presents
a spatial IPD model that simulates harshness of the
environment with a cost of life K and a varying
sucker’s payoff S. These parameters directly adjust
the harshness of the environment, making experimen-
tation over different levels of harshness particularly
convenient. Furthermore, this model has been used
in other works on cooperation in harsh environments
[11, 30]. However, the model only includes always
cooperating or defecting strategies, and assumes no
mistakes are made. A larger set of strategies with
an extension of the model has been explored, but
under the same assumption that no mistakes were
made and the conclusion that cooperating, but non-
forgiving strategies were most successful [11]. In or-
der to study the effects of noise and the use of gen-
erosity and contrition in strategies of the IPD, the
model of Smaldino et al. is extended. A formal de-
scription of this extended model is described in this
section.

Agents are initially placed on a L × L discrete
square grid with toroidal boundaries, which serves
as the environment. Each simulation starts with N
agents, each placed on a random, unique location.
Every grid cell can only be occupied by a single agent
over the whole simulation, and a total maximum of
N∗ agents can be present on the entire grid.

Each time step, every agent tries to play a round
of the IPD game with another agent. If an agent has
not played yet, it will look in its local neighborhood,
i.e. the 8 closest cells, for another agent that has
not played yet during that time step. If the agent
cannot find such a co-player, it moves to a random,
unoccupied cell in that same neighborhood. If all
cells are occupied, the agent will remain on the same
cell and take no action.

Each agent has its own energy level, initially drawn
from a uniform distribution between 1 and 50. En-
ergy can be gained or lost by playing a round of the
IPD game with another agent. The payoffs of the
game are set to T = 5, R = 3, and P = 0; S ≤ 0 is
varied to simulate harshness. Furthermore, a cost of
life K is subtracted at the end of each agent’s action
(for every time step), regardless of whether the agent
moved, played, or stayed stationary. If an agent’s
energy level gets to 0 or less, the agent dies and is
removed from the simulation. An agent can attempt
to reproduce when its energy is at least 100. If a cell
in its neighborhood is unoccupied, for a cost of 50
energy units, a new offspring agent is created on that
cell with the same strategy of the original agent and
energy level of 50. The total energy is capped at 150,
to avoid agents accumulating energy indefinitely.

The harshness of the environment can therefore di-
rectly be controlled by the cost of living K, and the
sucker’s payoff S. A higher K and a lower S lead to
harsher environments, with P < K < R. If K > P ,
defectors could survive on their own, and if K > R
cooperators would not be able to survive and all the
agents would go extinct.

In order to simulate mistakes, an extra parameter
for noise E is introduced. E is the probability that
an action of an agent actually results in the opposite
action. For example, for E = 0.01, an agent that
decides to cooperate (according to its strategy) has a
1% chance of defecting instead.
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Strategies are evenly distributed over the N initial
agents. In order to study the impact of noise on co-
operation directly, the original two strategies (always
cooperating and always defecting) will be considered.
However, to study whether generosity and contrition
can be successful in harsh environments, a second ex-
periment with a larger set of strategies is required.

In 2012, M. Jurǐsić et al. conducted a review of
IPD strategies over the last 40 years. In this review
they present a set of 9 default strategies, described
in Table 2. Given the wide range of strategy types
it provides, this set will be included in the model for
competition experiments.

Designation Description
ALLC Strategy always plays coopera-

tion
ALLD Strategy always plays defection
RAND Strategy has a 50% probability to

play cooperation or defection
GRIM It starts with cooperation, but af-

ter the first defection of its oppo-
nent continues with defection

TFT It starts with cooperation and
then copies the moves of the op-
ponent

TFTT As TFT but defects after two con-
secutive defections

STFT As TFT but starts with defection
TTFT As TFT but for each defection re-

taliates with two defections
Pavlov Action results are divided into 2

groups, positive actions are T and
R and negative actions are P and
S - if the result of previous action
belonged to the first group, action
is repeated and if the result in the
second group, then the action was
changed, it is also called win-stay,
lose shift.

Table 2: Default types of strategies presented in the review of
Iterated Prisoner’s Dilemma Strategies [31].

In the study of the effects of noise in the classic
IPD, 3 strategies were highlighted [12]. These are

Designation Description
GTFT As TFT, but has a 10% probabil-

ity of cooperating when it would
otherwise defect.

CTFT As TFT, but has 3 states: con-
trite, content, and provoked. It
begins with cooperation and stays
there until there is unilateral de-
fection. If it was the victim while
content, it becomes provoked and
defects until a cooperation from
the other player causes it to be-
come content. If it was defector
while content it becomes contrite
and cooperates. When contrite,
it only becomes content after suc-
cessfully cooperating.

GPavlov As Pavlov, but has a 10% prob-
ability of cooperating when it
would otherwise defect.

Table 3: Strategies to cope with noise in a classic Iterated
Prisoner’s Dilemma [12]

described in Table 3. Generous Tit for Tat (GTFT)
and Generous Pavlov (GPavlov) are generous vari-
ants of the original strategies, while Contrite Tit for
Tat (CTFT) is the contrite variant of TFT. These
strategies performed better than other strategies in
the presence of noise in the classical IPD. These
strategies will be included in the model with the other
strategies to study whether their performance trans-
lates to harsh environments as well. Note however
that the used model of this article is a spatial IPD.

Grim has shown that in the presence of noise
greater generosity is to be expected in a spatial con-
text than in a classic one [15]. The most success-
ful strategy in his work was an even more generous
version of TFT that cooperates 60% of the time it
would otherwise defect. To study whether the harsh-
ness of the environment (and not only the spatial
nature) leads to increased generosity, two extra gen-
erous strategies are included in the model. These
strategies are Spatial Generous Tit for Tat (SGTFT)
and Spatial Generous Pavlov (SGPavlov) and are de-
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scribed in Table 4.

Designation Description
SGTFT As TFT, but has a 60% probabil-

ity of cooperating when it would
otherwise defect.

SGPavlov As Pavlov, but has a 60% prob-
ability of cooperating when it
would otherwise defect.

Table 4: Spatial versions of the generous strategies. Greater
generosity is to be expected in spatial environments, with a
GTFT cooperating 60% of the time it would otherwise defect
as best performing strategy [15]

.

5. Simulation Results

The model described in the previous section is im-
plemented using the MASON Multi Agent Simula-
tion Toolkit [32]. For every round, all agents were
stepped once in random order. Results were mea-
sured at the end of each round, i.e. after all agents
have been stepped. Interested readers willing to re-
produce the results are encouraged to read Section 6
for more information.

Two experiments were conducted on the model,
each with a different purpose. The first experiment
is aimed at studying the effects of noise and harshness
on cooperation, while the second experiment focuses
on the effects on different strategies.

The independent variables for both experiments
were the cost of life K, sucker’s payoff S, and noise
level E. K was varied between 0 and 2.5, and S
between -2.5 and 0. Higher (or lower) values would
result in an environment that is too harsh for agents
to survive. E was varied between 0 (no noise) and
0.1 (10% noise).

The setup and results of both experiments are de-
scribed in Section 5.1 and 5.2, respectively.

5.1. Effects of noise and harshness on cooperation

In order to create a perfect balance between coop-
erating and defecting agents, only always cooperat-
ing (ALLC) and always defecting (ALLD) strategies

were used in the model for this experiment. These
strategies were equally distributed: half of the initial
agents were cooperating and the other half defecting.
This is the same setup as the original model [10].

In this experiment the average fraction of cooper-
ators was measured for different levels of noise and
harshness. The average fraction of cooperators was
computed as follows: For round i, let Ci be the num-
ber of cooperators (ALLC agents) in that round, and
Di the number of defectors (ALLD agents). The av-
erage fraction of cooperators F is the fraction of the
sum of the number of cooperators over all rounds
over the sum of all agents over all rounds as shown
in Equation 3:

F =

∑
i

Ci∑
i

Ci +
∑
i

Di
(3)

This metric of cooperation differs from the one used
in the original model [10]. In the original model, the
average cooperation frequency represented the levels
of cooperation. This frequency is similar to the av-
erage fraction of cooperators F , but the number of
cooperations is counted instead. It is however diffi-
cult to interpret results with this metric in a noisy
environment. Remember that noise affects both co-
operators and defectors. This means that every coop-
eration has a given probability to result in defection,
while every defection has the same probability to re-
sult in cooperation. Therefore, in an environment
with a majority of cooperators there will be more ac-
cidental defections than accidental cooperations, and
vice versa. Cooperation could seem to decrease or in-
crease, while being a simple side effect of noise. Take
an extreme example: an environment with only co-
operators. Under no noise, 100% of the actions are
cooperations. But under 10% noise, only 90% of the
actions are due to accidental defections. The num-
ber of cooperators has not changed, but the average
cooperation frequency did. This justifies the use of
average fraction of cooperators F over the average
cooperation frequency in noisy environments.

Agents were placed on a 50× 50 grid (L = 50) and
ran for 105 rounds. The initial population size N was
set to 10% of the grid size (0.1 ·L2) with a maximum
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Figure 1: Influence of noise on the average fraction of cooperators for different levels of harshness. On the left figure the sucker’s
payoff S is kept fixed at a non harsh value, and cost of life K is varied. On the right figure K is kept fixed at a low value and
S is varied. Redder lines represent harsher environments.

size N∗ of 50% of the grid size (0.5 · L2). Originally,
each combination of independent variables (cost of
life K, sucker’s payoff S, and noise E) was ran 10
times, and it became clear that varying S or K led
to different types of results. In a second batch, either
S or K were held constant, and each combination ran
20 times. The results of this second batch are sum-
marized in Figure 1. Results for other combinations
were similar, except for very high S and K where the
environment was too harsh for agents to survive.

The grid size and number of rounds is chosen to
be big enough to provide meaningful results. Orig-
inally the experiment was ran on a 100 × 100 grid
with 106 runs to replicate the results of the original
model [10]. However, these simulations were time-
consuming and were not realistic for this research’s
time frame. Smaller grid sizes were explored and sim-
ilar results were found down to L = 40. For smaller
grid sizes populations would occasionally go extinct
for harsh environments. L = 50 was therefore chosen
to be safe. For this grid size the average cooperation
frequency seemed to stabilize well before 105 rounds.
A couple of experiments were ran for 106 rounds with
the same results.

When the environment becomes harsher (by in-
creasing K or decreasing S), cooperation seems to

increase. This aligns with the results in the work of
Smaldino et al. [10]. Furthermore, increasing harsh-
ness with the cost of life K seems to have a bigger im-
pact than varying the sucker’s payoff S. This might
be due to the fact that cost of life affects both coop-
erators and defectors, while the sucker’s payoff only
hurts players that cooperate with defectors.

The rates at which cooperation decreases seems the
same for all levels of harhsness, with the exception of
a high cost of life (K ≥ 1.5) or an environment that
is not harsh (S = −0.5 and K = 0.5). The fact
that the rates at which cooperation decreases seem
to be the same in general leads to believe that the
harshness of the environment does not have a direct
impact on the effects of noise. But the side effect of
increased harshness, namely increased cooperation,
could explain the deviations from this rate. In an en-
vironment without noise (E = 0.0), if the harshness
is in favor of cooperators (fraction of cooperators ¿
0.5), cooperation seems to remain around the same
levels when noise increases.

Interestingly, when the environment is not harsh
(S = −0.5 and K = 0.5) cooperation suddenly in-
creases for higher noise (E ≥ 0.16). This can be
explained by two factors. First, noise can act as a
“defense mechanism” for cooperators by giving them
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Figure 2: Influence of noise on variants of the TFT strategy in a tournament setting for different levels of harshness.

the probability to defect against a defector (and a
probability of a defector cooperating with a cooper-
ator). Second, when adversity of the environment is
low accidentally defecting with another cooperator is
less critical.

5.2. Effects of noise on strategies in harsh environ-
ments

This experiment took form as tournaments with
six different sets of strategies under different levels
of noise and harshness. The first set was the set
of default strategies, presented in Table 2. The sec-
ond, third, and fourth set were the same as the first

set, with the exception of TFT being replaced with
its noise tolerant counterparts, CTFT, GTFT, and
SGTFT (see Table 3 and Table 4). In the two last
sets the Pavlov strategy was replaced with the noise
tolerant GPavlov (Table 3) and SGPavlov (Table 4).

Tournaments took place on a 100 × 100 grid with
an initial population size N at 10% of the grid’s ca-
pacity (0.1·L2). The strategies of the chosen set were
distributed evenly over the initial agents. The max-
imum capacity N∗ was set to the grid size (L2) and
simulations ran until the grid was full, which would
happen after ca. 300 to 5000 rounds, depending on
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(a) TFT (b) GTFT (c) SGTFT (d) CTFT

Figure 3: Performance of TFT strategy and its variants (in blue) compared to other strategies in a tournament setting in a
very harsh environment.

the harshness and noise of the environment (harsher
and noisier leads to more rounds).

The number of agents with a given strategy at the
end of the simulation served as performance measure.
Successful strategies could accumulate more energy,
reproduce quicker, and therefore grow their popula-
tion size faster than their peers. Due to the random
initial position of agents, these numbers can slightly
vary per tournament. Every tournament is therefore
repeated 10 times (for every set of strategies and in-
dependent variables) and the average count of these
runs is used as final metric.

The performance of the TFT strategy compared
to its noise tolerant variants GTFT, SGTFT, and
CTFT for different levels of harshness is shown in
Figure 2. Similarly to the results of the first experi-
ment shown in Figure 1, the effects of increasing cost
of life K are much greater compared to decreasing
the sucker’s payoff S. When the environment is not
harsh (K = 0) there does not seem to be much differ-
ence in performance between strategies. Even when
noise is high, the 4 strategies perform the same.

The impact of noise on the different strategies be-
comes clear when the cost of life K is increased. In
harsher environments, higher noise seems to decrease
the performance of TFT. GTFT, the generous version
that cooperates 10% of the time it would otherwise
defect, also sees a decrease in performance, though
at a smaller rate. This could be due to the spatial
nature of the model, as the more generous SGTFT
is performing better when noise increases. The con-

trite version of TFT, CTFT, seems to thrive in harsh
environments with high noise (E > 0.04).

There are 3 trends that can be observed when com-
paring the performance of TFT, GTFT, SGTFT, and
CTFT with other strategies in the tournament (Fig-
ure 3a, 3c, and 3d respectively). First, the very
generous strategies ALLC (always cooperate), TFTT
(TFT but only defect after two consecutive defec-
tions), and SGTFT (TFT but cooperate 60% of the
time it would otherwise defect) seem to dominate
other strategies once noise is present. Second, the less
generous GTFT’s performance seems less affected by
noise than other strategies, but does not seem to ben-
efit from it similarly to TFTT, ALLC and SGTFT.
Finally, for higher noise (E > 0.05) CTFT seems to
outperform all the other strategies.

Unlike GTFT and SGTFT, the generous versions
of Pavlov (GPavlov and SGPavlov) do not seem to
see the same benefits when noise is present. Figure 4
compares the performance between the three strate-
gies in a harsh environment. Pavlov and GPavlov
seem to perform the same regardless of the level of
noise. SGPavlov is more successful under noise com-
pared to the other two strategies, but without any
performance increase like SGTFT. The same results
were observed for different levels of harshness.
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Figure 4: Influence of noise on Pavlov and generous variant
strategy in a tournament setting with harsh environment.

6. Responsible Research

This section provides more information on the re-
producibility of the results in order to address the re-
producibility crisis. The complete model description
is given in Section 4. The experiment procedures and
used parameters are given in Section 5. These should
provide interested readers enough information to re-
produce the obtained results. Due to the stochastic
nature of ABMS, results are subject to slight varia-
tions. The complete code used to produce the results
of this article together with the raw data are therefore
made available on a public repository1. The seeds of
the random number generator used to produce the
data are included in the raw data files in order to
reproduce the exact same results. The code uses the
MASON Multi Agent Simulation Toolkit [32], which
is well documented online2.

1https://gitlab.com/louis.gevers/noise-harsh-ipd
2https://cs.gmu.edu/~eclab/projects/mason/manual.

pdf

7. Discussion

7.1. Summary of results

In the presence of strict cooperators and defectors
noise seems to affect cooperation on most levels of
harshness. The more noise is present, the more diffi-
cult cooperation becomes. However, harsher environ-
ments lead to increased cooperation. In environments
where harshness results in a majority of cooperators,
cooperation seems more robust against noise.

When the environment is populated with a more
varied set of behaviours, the relation between noise
and harshness becomes more apparent. When adver-
sity is low, the success of different behaviours does
not seem to be affected by noise. However, when the
adversity is increased, most noise tolerant behaviours
prevail. Generous behaviours that forgive opponent
defections by continuing to cooperate are dramati-
cally more successful in harsh conditions when noise
is present. Contrite behaviours that focus on fixing
one’s own mistakes rather than forgiving the oppo-
nent mistakes finds similar success to generous be-
haviour in harsh environments. While slightly out-
performed when noise is low, their success directly
increases with noise. Contrite behaviours are there-
fore more successful when communication is particu-
larly unreliable.

Not all classic noise tolerant behaviours have this
success however. The Pavlov strategy fails just as
bad as a classic TFT, and so does the more generous
GPavlov. As a result of greater generosity SGPavlov
is more successful, yet it is still way outperformed by
SGTFT. Behaviours based on reciprocity with great
generosity (even unconditional cooperation) or con-
trition are therefore preferred.

7.2. Interpretation

Both experiments show that noise must not be ne-
glected when studying cooperation. Cooperation is
directly affected by noise, on all levels of harshness of
the environment. In non harsh environments, coop-
eration will decrease in the presence of noise. While
in harsher environments it becomes more crucial to
actively cope with noise. The success of generous or
contrite behaviours can be truly appreciated when
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communication is unreliable and the adversity of the
environment is high.

7.2.1. Diversity of behaviours

The results of both experiments seem to differ from
each other. It follows from the first experiment that
the presence of noise makes cooperation more diffi-
cult, while in the second experiment generous and
cooperative strategies thrive under noisy conditions
when environmental adversity is high. Furthermore,
the most generous strategy, ALLC, which was used
in both experiments performed differently in each.
In the first experiment its performance decreased in
presence of noise, or remained stable when the harsh-
ness of the environment was high. Meanwhile in the
second experiment its performance greatly increased
with noise in harsh environments.

This difference in cooperation could potentially be
explained by the work of Chong and Yao, which de-
scribes how the diversity of behaviours affects the
success of generous strategies under noise [33]. In
their work they study the effects of noise on the IPD
game with intermediate choices in a co-evolutionary
environment. Instead of having different sets of fixed
strategies, behaviour is modeled using neural net-
works. They draw two important conclusions based
on their results. First, higher levels of noise are detri-
mental to cooperation. Second, in the presence of
noise the diversity of behaviours helps the evolution
of cooperation. While their method is vastly different
from this article, their conclusion could explain how
noise discourages cooperation when only ALLC and
ALLD strategies are present (experiment 1) and en-
courages cooperative and generous strategies in the
presence of a larger set strategies (experiment 2).

7.2.2. Generosity

The success of generosity in noisy environments has
been widely supported. Numerous studies [12, 15, 34,
35] conclude that adding generosity is a successful
way for cooperation to succeed in presence of noise.
The results of this article indicate that the impor-
tance of generosity is emphasized when the harshness
of the environment increases.

Unlike the classic IPD where moderate generosity
(GTFT) works best [12], the results of this article in-

dicate that greater generosity (SGTFT, TFTT, and
ALLC) leads to more success. Before jumping to any
conclusions, note that the model is a spatial IPD and
not a classic IPD. Grim has shown that in the pres-
ence of noise greater generosity is to be expected in
a spatial context than in a classic one [15]. While
the most successful strategy in that work is SGTFT
(cooperates 60% of the time it would otherwise de-
fect), its generosity is still inferior to ALLC (cooper-
ates 100% of the time). This combined with the fact
that ALLC performed better than SGTFT in harsher
environments leads to the conclusion that in the pres-
ence of noise, harsher environments promote greater
generosity.

This contradicts the previous conclusions of the
success of less generous strategies such as GRIM in
harsh environments [11], which confirms the impor-
tance of studying the Prisoner’s Dilemma with noise.
Real-world interactions are error-prone, and the pres-
ence of such mistakes have a great impact on the suc-
cess of different strategies. This leads to believe that
great generosity is more likely to thrive in real en-
vironments with harsh conditions than non forgiving
behaviours.

7.2.3. Contrition

Under higher noise, contrition (CTFT) seems to
outperform generosity. The same phenomenon can
be observed in the classic IPD [12]. The advantage
of CTFT is that it works well in overtaking environ-
ments with defectors, while generous strategies rely
on the presence of other cooperating strategies to suc-
ceed [36]. The presence of less generous or defecting
strategies such as ALLD and STFT in this article’s
tournaments might explain why CTFT outperforms
the generous variants.

While contrition seems to work better than gen-
erosity in heterogeneous environments, the existing
literature about its success is less convincing. Smith
and Price introduced the concept of an evolutionar-
ily stable strategy (ESS), a strategy that would be
stable under natural selection [37]. Different studies
provide various conditions under which CTFT can
be evolutionarily stable [12, 38], however in general
contrition is not considered to be an ESS [39]. This
leads to believe that while contrite behaviours might
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work well in simulations, generosity is more likely to
emerge in the real world.

7.3. Current limitations

It is worth noting that the Prisoner’s Dilemma
Game is a simple model that attempts to explain
complex behaviours. While this game is a power-
ful model for reciprocal altruism [40], it is limited
and cannot provide an accurate explanation for ev-
ery phenomenon of altruism in nature. In his work,
Connor presents 3 different models that have been
used to explain altruistic behaviours in animals more
accurately than the Prisoner’s Dilemma [41]. The
Prisoner’s Dilemma is therefore not the only way to
model cooperation, and other models should be con-
sidered before drawing conclusions for specific real-
life phenomena.

This article is based on a specific model of the Pris-
oner’s Dilemma. The model in question is based on
the work of Smaldino et al. [10]. Another study has
extended this model with more realistic features (evo-
lution and aging) [11], yet both the extension and the
model used in this article suffer from the same limi-
tation: using a fixed set of strategies.

Each experiment used a fixed set of well-defined
strategies. The main benefit of using such strate-
gies lies in their simplicity. They are easy to encode
and setting up an experiment is straightforward. And
since these strategies are simple and distinct, inter-
preting results gives a broad view about different be-
haviours. Using well-defined strategies is therefore
suitable when studying the general effects on differ-
ent behaviours.

There are limitations to using such fixed strate-
gies. While broader questions can be answered, the
obtained results lack depth. To illustrate this three
examples from this article are given. First example,
when noise is present harsher environments promote
more generosity. With the current results however it
is unclear how much more generosity is to be expected
with harshness. To answer this question an approach
with continuous levels of generosity is preferred, as in
Grim’s study of generosity in spatial IPD [15]. Sec-
ond example, it follows from the results of this article
and existing literature [33, 36] that the presence of
some strategies influences the performance of other

strategies. Which strategies are influenced and how
they are influenced remains unclear. Third example,
there exists more complex strategies based on dif-
ferent concepts than generosity and contrition, such
as constructing a model of the other individual’s be-
haviour [42], that could potentially cope with noise.

8. Conclusions and Future Work

This article describes the relation between noise
and harshness of the environment. While harsh en-
vironments benefit cooperators, noise makes cooper-
ation more difficult. Hence the interest in studying
the relation between the two. When the adversity
of the environment is too weak to be beneficial for
cooperators, the effects of noise are greater and co-
operation decreases. Counterintuitively, harsher en-
vironments can help cooperators to be more robust
against mistakes. Furthermore, harsh environments
promote greater generosity. Strategies based on reci-
procity that forgive the great majority (if not all)
of the opponents defections are most successful in
harsh environments when communication is unreli-
able. For higher noise, contrition is more successful
than generosity. The strategy Contrite Tit for Tat
that focuses on fixing its own mistakes rather than
forgiving the opponents mistakes outperforms even
the most generous strategies in harsh environments.

The results of this work are based on the model
of Smaldino et al. [10], using the classic strategies
presented in the review of strategies by M. Jurǐsić
et al. [31] and noise tolerant strategies summarized
in Wu and Axelrod’s work [12]. The model can be
extended in the future to study the impact of other
environmental factors in the presence of noise. For
example, an extension of the model could be used to
study the effects of evolution and ageing on different
strategies when noise is present [11]. Environmental
factors also include the (non) presence of other be-
haviours. Further work could study the presence of
which behaviours catalyse or restrict generosity, and
explore more complex behaviours by using different
models than fixed strategies.
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