
Training a Machine-Learning Model for Optimal Fitness
Function Selection with the Aim of Finding Bugs

Ivan Stranski
Supervisors: Mitchell Olsthoorn, Pouria Derakhshanfar, Annibale Panichella

EEMCS, Delft University of Technology, The Netherlands

June 19, 2022

A Dissertation Submitted to EEMCS faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering



ABSTRACT
Software testing is essential for a successful development process,
however, it can be troublesome asmanuallywriting tests can be time
demanding and error-prone. EvoSuite is a test case generating tool
developed to address this [18]. It can generate test cases for different
test criteria - Line Coverage, Branch Coverage, Input Diversity, etc.
Branch Coverage puts the focus on covering branches in the code,
whilst Input Diversity puts the focus on the use of diverse inputs
as parameters in the test cases. The downside is that the user needs
to select the best suited test criteria, out of the many that EvoSuite
provides, for the classes under test. It is not feasible for the user
to manually find the optimal one for the classes under test. This
paper aims to shine a light on the effectiveness of the combination
of Input Diversity and Branch Coverage as a test criteria. This
study presents a machine learning technique to automatically select
the best combination of test generation objectives according to
static metrics. The model we chose for this task is a decision tree
as it directly provides a pattern. Said pattern is a combination of
conditions that the static metrics need to hold for the chosen test
criteria to be effective. The evaluation of the effectiveness was done
one a benchmark of 346 classes taken from SF-110 Corpus of Classes
[9] and the Appache Commons. To evaluate the effectiveness of
Input Diversity in combinationwith BranchCoverage, we compared
the test criteria to two other test criteria - Branch Coverage and
the Default coverage criteria used in EvoSuite. The decision tree
models created achieve an accuracy upwards of 90% in the best case
and deem metrics such as wmc, dit, fanin and others to be crucial
for the effectiveness of Input Diversity in combination with Branch
Coverage.

1 INTRODUCTION
Software quality testing plays a key role in the software develop-
ment process [7]. In the recent years, researchers proposed various
automated test generation approaches and tools to help developers
in the time taking testing tasks. Research shows that the automa-
tion of test generation significantly reduces testing costs [7]. Com-
mon approaches towards automation include search-based testing,
random testing and symbolic execution [1]. All approaches aim
to satisfy certain objectives. Fitness functions are different ways
to measure how close a test case is to fulfilling an objective [18].
Search-based test generation relies on fitness functions to guide
the optimization of a problem - in our case the generation of test
cases [1]. The problem is presented as a search space consisting
of combinations of test cases and the goal is to find a test case for
each objective such that specified fitness functions or heuristics are
satisfied [16]. EvoSuite [8] utilizes a multi-objective search-based
technique and is a cutting-edge tool used for the automation of
generating unit-level tests for Java [14]. The tool uses a genetic
algorithm which is a part of a larger group of evolutionary algo-
rithms [9]. As a unit test generation tool, it gets one class as class
under test and also gets a set of testing objectives [8]. Then, it
starts a genetic approach guided by fitness functions reflecting the
given test objectives to guide the search process towards generating
tests covering the given goals [8]. A study done by Almasi et al.

showed that EvoSuite has an advantage in terms of fault detection
capabilities on Randoop - a test case generating tool that utilizes
random testing [1]. EvoSuite provides a multitude of different fit-
ness functions. The user can freely specify which fitness function
or combination of fitness functions is to be used when generat-
ing the test cases for the classes under test. Some of the provided
fitness functions are Line Coverage, Branch Coverage, Input Di-
versity, etc. The Default fitness function that is used in EvoSuite is
a combination of Line, Branch, Output, Weak Mutation, CBranch,
Exception, Methods without Exceptions and Method Coverage. The
problem that is going to be tackled in this research paper is namely
the effectiveness of fitness functions of EvoSuite when it comes
to guiding the search process towards finding bugs. EvoSuite has
many different fitness functions, but it is unclear which is the best
option available. Different classes under test pose different charac-
teristics - static and dynamic metrics. Hence, a class with little to
no branches may benefit little in comparison to a class with a lot
of branches when Branch Coverage is used as a fitness function.
Fitness functions have a big effect on performance and therefore it
is beneficial to know under which circumstances we should enable
which types of fitness functions. It is important to mention that
we include Branch Coverage by default, as it provides us with the
ability to meaningfully cover more code and therefore it greatly
improves structural coverage [2].

EvoSuite still isn’t automated to decide what fitness functions
are appropriate for the classes under test and it is still up to the user
to decide this through trial-and-error. Therefore this paper seeks
to provide clarity on how effective the different state-of-the-art
fitness functions are at guiding the search process towards finding
bugs and higher structural coverage. More specifically, the goal of
the paper is to investigate in which cases it is useful to have the
combination of Input Diversity and Branch Coverage as a fitness
function. We have selected Input Diversity as research shows that
diversification of input yields better result than having similar input
[2].

The question that will be answered in this paper is when and
how does Input Diversity affect the number of bugs detected when
combinedwith Branch Coverage. In favor of answering the question
substantially, it will be broken down into three sub-questions:

• RQ 1: How does Input Diversity in combinationwith Branch
Coverage affect structural coverage when compared to
Branch Coverage and Default fitness function?

• RQ 2: How does Input Diversity in combinationwith Branch
Coverage affect fault detection when compared to Branch
Coverage and Default fitness function?

• RQ 3: How does the time budget affect structural cover-
age and fault detection when Input Diversity is used in
combination with Branch Coverage?

The analysis was done on a benchmark of 346 classes taken from
SF-110 Corpus of Classes [9] and the Apache Commons. To answer
the first two questions we computed the static metrics of the classes
under test. Then, we ran a Decision Tree Classifier with feature
selection to find patterns between the static metrics and the branch
coverage results and fault detection capabilities respectively. To



answer the third question we computed the box plots that were
based on the distribution of results of each fitness function for each
time budget respectively. Furthermore, we computed the averages
of each fitness function for each time budget. Then we did a time-
wise comparison of both box plots and averages time.

The decision tree models achieved in the best case accuracy
upwards of 90%. The patterns present in the decision trees deem
that the important metrics are wmc, fanin, cbo, dit, totalMethodsQty,
fanout, privateMethricsQty, protectedMethodsQty and cboModified.
We found that increasing the time budget from 60 to 180 seconds
leads to a 4.74% increase in the average branch coverage achieved
by Input Diversity with Branch Coverage, while increasing the
time budget from 180 to 300 seconds leads to an increase of only
0.1%. Overall, on average for branch coverage Input Diversity with
Branch Coverage works better than the Default fitness function, but
not better than Branch Coverage. For mutation scores on average
Input Diversity with Branch Coverage works better than Branch
Coverage, but not better than the Default fitness function.

The rest of the paper is structured in the following way. Section
2 talks about background of the research and related works. Section
3 talks in depth about the approach taken towards answering the
research questions. Section 4 outlines and discusses the results from
the research and analysis done. Section 5 discusses alternative ways
to approach the problem at hand and why certain decisions were
made. Section 6 outlines what we have done to mitigate possible
threats to validity. Section 7 discusses the ethical aspects and the
reproducibility of the research. Section 8 concludes the paper and
talks about future works.

2 BACKGROUND AND RELATEDWORKS
EvoSuite. EvoSuite is a test case generating tool that use a genetic
algorithm to implement a search-based approach towards the gen-
eration of test cases [2, 18]. A genetic algorithm is an evolutionary
algorithm. Furthermore, it is a stochastic algorithm, meaning that
it is non-deterministic and that there is some randomness involved,
which could result in different solutions [12]. The difference be-
tween a coverage criteria and a fitness function is that the criteria
is an objective we are aiming to fulfil and the fitness function is
the measurement that shows how close we are to fulfilling this
goal [18]. The algorithm starts with a random set of combinations
of test cases and evaluates them based on a fitness function [2].
The selecting process discards the test cases with worse fitness
function [2]. The set that is left is refactored through crossover and
mutation based on the result from the selection and is used for the
next round of evolution [2]. The process continues until either all
of the objectives are satisfied or the given search budget is passed
[2]. Selecting which solutions move on is done with a selection
technique, usually roulette wheel, that mimics evolution in the
real world [12]. After selecting the optimal sub-solutions the new
set of solutions is created through a crossover operation, where
parts of different solutions are interchanged within one another
[12]. Lastly, a mutation operation can be performed depending on
a predefined probability, where a part of the solution is changed
[12]. Thus, the new set of solutions is created and re-inserted as
the new population of solutions [12].

We will use EvoSuite to generate test cases for the classes under
test. These test cases will grant us branch coverage and mutation
score results that we will analyse in our study.

Fitness Functions. In our research we will use three different
coverage criteria - Input Diversity with Branch Coverage, Branch
Coverage and the Default fitness function. The fitness function of
Branch Coverage measures the distance a test case is from covering
a branch [17]. The fitness function of Input Diversity measures how
diverse the input used for testing is [17].

CodeMetrics.Weneed codemetrics to have better insight about
class under test in order to select the best objective. In our research
we have chosen to use the Chidamber-Kemerer code metrics tool
developed by Aniche [3]. It is an analytical tool that computes the
code metrics for a chosen set of classes. Code metrics are a way
of measuring the quality of the produced code on various criteria,
thus, giving insight into what needs to refactored [5]. The CK tool
provides the original CK code metrics - wmc, dit, noc, etc. - and is
extended with other code metrics totaling 49 code metrics [3].

Decision Tree. A decision trees is a type of supervised learn-
ing model. A decision tree is a chain of tests that check whether
a numeric value fulfills certain conditions [11]. The model posses
an irreplaceable advantage over black-box models - namely under-
standability, as it provides an easy to follow and logical representa-
tion of the inner workings of the model [11].

In our study we are going to use decision trees to find patterns
in the static metrics of the classes under test that coincide with
increase in either branch coverage or mutation score results. We
are going to use specifically decision trees as they will provide us
directly with the needed patterns. Said patterns will be embedded
in the structure of the trees as conditional statements.

WSA. A whole suite approach is an approach that instead of
optimising one test at a time, it optimises complete test suites at
a time [16]. The Whole Suite with Archive approach utilizes an
archive [19]. During test case generation, the algorithm takes note
of test objectives that are covered and the tests that covered them
[19]. Said objectives and tests are stored in an archive [19]. The
process is then remodelled at the end of the current generation so
that the next generation won’t consider the objectives stored in the
archive [19].

DynaMOSA. DynaMosa is a dynamic algorithm that considers
the existing structural dependencies between objectives during
optimisation of test suites [16]. Recent improvements in EvoSuite
include the transition from the Whole Suite with Archive approach
to the Many-Objective Sorting Algorithm with Dynamic target
selection [16]. In a study done by the creators of DynaMOSA it is
revealed that in a multitude of classes the approach manages to
attain higher coverage than the previously used WSA approach
[16].

Reinforcement Learning. In their paper Almulla et al. tried
to address the fact that many coverage criteria do not have well
defined fitness function or have fitness functions at all [2]. They
used reinforcement learning to select and adapt during test suite
generation the set of fitness functions that are used [2]. The fitness
function selection algorithm described in their paper achieves up
to 107.41% improvement when measuring exception detection and
diversity of test suites [2]. Furthermore, it provides an improvement



of up to 259.90% when measuring fault detection for the goal of
exception detection [2].

Research Gap.Many people have done research on Evosuite,
but not everything has been covered. In their research, Rojas et al.
took a look at the effectiveness of combining different coverage
criteria that EvoSuite provides - Line Coverage, Branch Coverage,
Exception Coverage, etc. [18]. However, they do not even mention
the effectiveness of Input Diversity as a coverage criteria. This is
the research gap that this paper aims to fill.

3 APPROACH
This section explains the approach taken and methods used to
answer the research questions. Subsection 3.1 explains the data used
in the research. Subsection 3.2 explains how the data was processed
before it was used in themachine learningmodel. Subsection 3.3 and
3.4 explain how research questions 1 and 2, and research question
3 are going to be answered respectively.

3.1 Data
The research will be done on projects present in the SF-110 Corpus
of Classes [9], provided by EvoSuite, and in the Apache Commons.
From all available projects 346 classes were chosen as a benchmark.
The classes used are the same as the ones used by Panichella et al.
in their research on the performance of DynaMOSA [? ]. Tests were
generated through the use of EvoSuite for different fitness functions
and different time budgets per fitness function. The main idea
was to measure structural coverage and fault detection capabilities
achieved by the test suites. The chosen time budgets are 60, 180 and
300 seconds and are based on previous research [15, 16]. For fault
detection capabilities, we ran EvoSuite with the 60 seconds time
budget only. The chosen fitness functions are Input Diversity in
combination with Branch Coverage (IDBC), Branch Coverage (BC),
and the Default fitness function (DFF) used by EvoSuite. To address
the randomness in the search-based approach used in EvoSuite, we
performed 10 runs with EvoSuite for each combination of fitness
function and time budget. Furthermore, we computed the static
metrics of the chosen classes with the CK tool created by Aniche
[3]. Unfortunately, the tool was not able to generate metrics for
all classes; to be exact metrics couldn’t be generated for 6 classes.
Therefore, we discarded those 6 classes from the data. Furthermore,
for some classes, EvoSuite was not able to generate test suites
as either there were no results for branch coverage or mutation
score. There were classes as well for which EvoSuite wasn’t able to
generate 10 test suites, and therefore they had less than 10 results. In
other to mitigate these two issues we filled the missing results with
zeros, as not being able to create a test suite for a class technically
means that 0% branch coverage or mutation score was achieved. We
also discarded metrics that either produced null values or always
produced a score of 0 - tcc and lcc.

3.2 Data Preprocessing
After computing the static metrics and obtaining the structural
coverage and mutation score, our goal is to find patterns in static
metrics that correlate to high structural coverage or high mutation
score - in other words high fault detection capabilities. In favour
of finding any valuable data we would have to filter out noise

from the data. We performed a Shapiro-Wilk test per class. The
test is given the 10 results per class and it computes computes a
p-value. The p-value is then compared to 0.05 - the critical value
for a 95% confidence interval. The null hypothesis states that the
data is normally distributed. If the p-value is smaller than 0.05 then
we reject the null hypothesis, which means that the data is non-
normally distributed, and vice versa. Depending on the results of
the Shapiro-Wilk test [20] we perform the Student’s t-test [21] in
the case of normality and a Wilcoxon rank sum test [24] in the
case of non-normality. The test is performed per class - on the
results of the 10 runs of each class. The tests check whether there is
statistically significant difference when we compare the results of
IDBC with the results of BC and DFF respectively. In other words,
the test checks whether there is a statistically significant difference
between the results of the pairs of fitness functions and returns a
p-value. The null hypothesis is that the two sets of results come
from the same distribution. If the p-value is smaller than 0.05 then
the results do not come from the same distribution and there is
significant difference between them, and vice versa. The classes for
which insignificant differences were found were discarded from the
data set. Further analysis was performed on the set of classes for
which significant differences were found due to reasons explained
in Section 5.

To get a better understanding of the results, we computed the
Vargha and Delaney effect size measurement [22]. The measure-
ment provided us with two results per class - value estimate and
magnitude. The value estimate is a number between 0 and 1 that
shows which of the two configurations being compared has better
results. The threshold value is 0.5. A value below the threshold
means that the second configuration has better results and vice
versa. The magnitude is essentially how big the difference in the
results are. Furthermore, any class-wise comparison that yielded a
negligible magnitude according to the measurement was discarded
from the set of significant classes.

3.3 RQ 1 and 2
Since we are looking at the circumstances that possibly render
IDBC an effective fitness function, we utilize decision tree model.
Previous studies show that they work well with conditions and
are preferred when sophisticated problems are encountered [23].
We need a process that extracts the patterns from the data and
presents them in an understandable way. This means that the only
feasible model to use is indeed a decision tree, as no other model
can present a pattern. Furthermore, sophisticated models such as
a neural network would not suffice as there is no way we could
understand what the patterns in the data are; not to mention that
we are working with too little data to construct an efficient neural
network. Moreover, in a research where the performance of a deci-
sion tree, logistic regression and a neural net are compared, Olson
found that a decision tree is the most robust when data balancing
is performed upon unbalanced data [13].

Using the previously computed Vargha and Delaney measure-
ments, we prepared the data for training the model. Class-wise
comparisons that provided an estimate strictly above 0.5 were la-
beled as 1 and the rest were labeled as 0. In other words, we labeled
classes in which we saw improvement in results when IDBC was



used as 1 and classes in which we saw no change or deterioration
in results as 0. The reason we mapped them to binary values is
because we want to do classification.

After dividing the data with a 6:4 ratio for training and testing,
we use a data balancing technique in the training set in order to
deal with the data imbalance we performed SMOTE [6]. Performing
SMOTE makes the most sense, but there is of course the downside
that artificial data is created. However, using SMOTE instead of
random oversampling, we overcome the risk of the model being
overfitted [4]. This is a big upside, as in most cases one of the
two labels is heavily underrepresented, which incurs a big risk of
overfitting.

Due to the large dimensionality of the data - 49 features - and
mainly the fact that not every code metrics provides useful insight
in our research, we used a Random Forest Classifier and MRMR 1

to select the top 10 most significant features. One could argue that
feature selection is not needed as in the worst case we would have
to work with 346 data points, however, we still get the benefit of re-
moving irrelevant or unimportant features, thus gaining efficiency.
Furthermore, when the features in a data set are similar in size to
the samples overfitting can occur [10]. This scenario is present in
our data, hence, avoiding overfitting is another benefit of feature
reduction. We chose to use the aforementioned methods, as they
preserve labels and do not make combinations of the data in order
to reduce the feature dimensionality. There is no specific reason
behind choosing these two methods other than label preservation.

We decide to create different decision trees based on different
number of features and take the best classifier. To find the best
performing decision tree, we brute forced through all possible com-
binations of parameters and feature selection models. This means
we created a decision tree using both feature selection models sep-
arately each time with a different number of features used - 5, 10,
15 and 20. For each decision tree we tuned the parameters of our
decision tree by running a grid search on it, and we took the best
estimator from the grid search.

3.4 RQ 3
For mutation score, we focused on the minimum time budget as the
most significant differences between configurations can be observed
in this time budget, therefore, we left out analysis of mutations score
in the question. For the branch coverage results we computed the
box plots per time budget for each fitness function and compared
them to one another. It is important to mention that we used all
data and not just the significant classes, as the insignificant classes
are still actual data and part of the distribution. The box plots where
created on the medians on the classes. Furthermore we looked at
the averages of the classes and looked at how they change as the
time budgets increase.

4 RESULTS
This section presents the results found during analysis of the data.
Subsection 4.1 presents the results for research question 1. Subsec-
tion 4.2 presents the results for research question 2. Subsection 4.3
presents the results for research question 3.

1https://github.com/smazzanti/mrmr

4.1 RQ 1
Upon manual analysis of the classes, we noticed interesting results
in the classes with significant difference from the comparison of
IDBC against the DFF for the time budget of 300 seconds. There we
found the following three aspects as prominent - moderate to high
amount of branches in methods, most of which consecutive, class
parameters and trivial methods. The manual analysis of classes for
different configuration comparisons did not grant any interesting
results.

Table 1 shows howmany configuration-wise comparisons present
differences that are statistically significant in terms of branch cov-
erage. With the increase in the time budget we notice an increase
in the significant differences. The increase seen is strict for IDBC
vs BC, where as for IDBC vs DFF we that the significant differences
decrease by 4 when the time budget is increased to 300 seconds.
The number of significant differences shows that more classes have
statistically significant difference for IDBC vs DFF than for IDBC
vs BC. This hints that IDBC is to be preferred over DFF and not
over BC. It is important to mention that we could not have more
data points as the test generation process is time-taking.

Time Budget Significant Insignificant
IDBC vs BC 60s 24 315

180s 29 310
300s 34 305

IDBC vs DFF 60s 65 274
180s 74 265
300s 71 268

Table 1: Number of Significant and Insignificant differences

The results for the top 5 positive correlations and top 5 negative
correlations for each time budget for IDBC against BC and for
IDBC agaisnt DFF are presented in Appendix A.1 and Appendix
A.2 respectively. We notice that the correlation tables for IDBC
vs BC present significantly higher correlations that the tables for
IDBC vs DFF. Tables 5 through 7 show significant correlation -
both positive and negative. Regarding the comparison of IDBC and
BC, we notice that in table 5 we have particularly high negative
correlations. With the increase in time budget the values of the
negative correlations significantly drop; this can be seen in tables
6 and 7. This leads us to the conclusion that as the time budget
is increased, singular static metrics have less negative effect on
branch coverage results. In other words, the influence of negatively
correlated metrics on branch coverage diminishes with increase
in time budget. Furthermore, we notice that the highly correlated
metrics are not constant, meaning that they vary. This leads us to
the conclusion that different metrics are important for different
time budgets and different configurations.

The results of the Vargha and Delaney effect size measurements
are presented in Appendix B. In table 2 we see that in most cases
IDBC wins against DFF. Furthermore, almost all classes win with
a large difference - 55 classes for 60 seconds, 60 classes for 180
seconds, and 52 classes for 300 seconds. On the other hand, IDBC
wins against BC in a small number of classes - 6 for 60 seconds, 9 for
180 seconds, and 8 for 300 seconds. The Vargha and Delaney effect

https://github.com/smazzanti/mrmr


Time budget #Win #Lose
Large Medium Small Negligible Large Medium Small Negligible

IDBC vs BC 60s 4 2 0 0 16 2 0 0
180s 8 1 0 0 17 3 0 0
300s 7 1 0 0 22 4 0 0

IDBC vs DFF 60s 55 1 0 0 8 1 0 0
180s 60 2 0 0 9 2 1 0
300s 52 3 1 0 13 2 0 0

Table 2: Vargha and Delaney effect size measurement for branch coverage

size measurement further supports that IDBC is to be preferred
over DFF and not over BC when it comes to branch coverage results.
This observation supports our initial motivation to do this study,
as the results show that the default configuration is not the best
option all of the time.

Figures 3 through 5 and figures 6 through 8 are the best classi-
fiers for IDBC vs BC and for IDBC vs DFF respectively for each
time budget. The accuracy, feature reduction model and number of
features used are as follows:

• Figure 3: 60%, Random Forest Classifier, 5 features
• Figure 4: 91.66%, Random Forest Classifier, 10 features
• Figure 5: 71.43%, Random Forest Classifier, 15 features
• Figure 6: 88.46%, Random Forest Classifier, 10 features
• Figure 7: 83.33%, MRMR, 15 features
• Figure 8: 68.97%, Random Forest Classifier, 5 features

In figure 3 we see that fanin plays a key role in determining
whether IDBC will provide better results than BC for a class when
the time budget is 60 seconds. In the case where fanin <= 0.5, the tree
will chose IDBC as a better fitness function. To choose IDBC over
BC fanin needs to be lower than or equal to 0.5. In figure 4 we see
that cbo and dit determine whether IDBC will outperform BC when
the time budget is 180 seconds. In the case where cbo <= 3.47 and
dit <= 5.228, the tree will choose IDBC as a better fitness function.
In figure 5 we see that the key metrics are dit and totalMethodsQty
when the time budget is 300 seconds. In the case where dit > 6.597
and totalMethodsQty <= 2.208, the tree will choose IDBC as a better
fitness function. We notice that dit is present in both decision trees
for the time budgets of 180 and 300 seconds.

The following metrics determine whether IDBC will outperform
DFF for each time budget respectively. In figure 6 the key metrics
is wmc when the time budget is 60 seconds. In the case where
wmc > 21.5 or wmc <= 11.5, the tree will choose IDBC as the better
fitness function. For the time budget of 180 seconds, we see in
figure 7 that the key metrics are fanout, privateMethricsQty and
protectedMethodsQty. In the case where textitfanout > 10.5 or fanout
<= 10.5 and privateMethodsQty > 23.5 and dit <= 41 or fanout <= 10.5
and protectedMethodsQty <= 17.5, the tree will choose IDBC as the
better fitness function. For the time budget of 300 seconds, we see
in figure 8 that the key metrics are cbo, wmc, cboModified and fanin.
In the case where cbo > 115 and cbo <= 377.499 and fanin <= 24.58
or cbo <= 115 and wmc <= 15.757 and cboModified <= 27.459, the tree
will choose IDBC as the better fitness function. We notice that dit
is presented in the decision trees for the time budgets 60 and 180

seconds. Both wmc and cboModified are present in the trees for the
time budgets of 60 and 300 seconds.

When IDBC is compared to BC it significantly underperforms
in 5.3% of the classes for the time budget of 60 seconds, in 5.9%
of the classes for the time budget of 180 seconds, and in 7.7% of
the classes for the time budget of 300 seconds. The static metrics
cases in which IDBC is to be preferred over BC are: time budget 60
seconds - fanin <= 0.5, time budget 180 seconds - cbo <= 3.47 and dit
<= 5.228, time budget 300 seconds - dit > 6.597 and totalMethodsQty
<= 2.208. When IDBC is compared to DFF it achieves significantly
better results in 16.5% of the classes for the time budget of 60
seconds, 18.23% of the classes for the time budget of 180 seconds,
and in 16.22% of the classes for the time budget of 300 seconds.
The static metrics cases in which IDBC is to be preferred over
DFF are: time budget 60 seconds - wmc <= 11.5 or wmc > 21.5,
time budget 180 seconds - fanout > 10.5 or fanout <= 10.5 and
privateMethodsQty > 23.5 and dit <= 41 or fanout <= 10.5 and
protectedMethodsQty <= 17.5, time budget 300 seconds - cbo > 115
and cbo <= 377.499 and fanin <= 24.58 or cbo <= 115 and wmc <=
15.757 and cboModified <= 27.459.

4.2 RQ 2
Table 3 shows how many configuration-wise comparisons present
differences that are statistically significant in terms of mutation
scores.

Time Budget Significant Insignificant
IDBC vs BC 60s 66 273
IDBC vs DFF 60s 108 231

Table 3: Number of Significant and Insignificant differences

In the analysis of the mutation scores there are more significant
differences to begin with - 61 for IDBC against BC and 101 for IDBC
against the DFF. This gave us a lot more data to work with.

However, we found that only 12 class’s scores of the IDBC were
outperforming the class’s scores of the DFF - all 12 differences had
a large magnitude. On the other hand, we had 53 class’s scores of
IDBC that outperformed the class’s scores of BC - 51 differences
with large magnitude and 2 with mediummagnitude. Talbe 4 shows
the results of the Vargha and Delaney effect size measurement for
mutation scores, which can also be found in Appendix E. This



Time budget #Win #Lose
Large Medium Small Negligible Large Medium Small Negligible

IDBC vs BC 60s 51 2 0 0 11 2 0 0
IDBC vs DFF 60s 12 0 0 0 94 2 0 0

Table 4: Vargha and Delaney effect size measurement for mutation score

higher number of significant difference is expected as when mea-
suring structural coverage input diversity barely contributes unlike
when measuring mutation scores. Having diverse input will en-
hance the fault detection capabilities due to a bigger amount of
test cases. However covering a branch with different inputs counts
as the branch being covered at most twice, as we are measuring
if the branch is covered and nothing else - once when the branch
condition is fulfilled and once when it is not.

The measurement shows that the winners achieve a large im-
provement in mutation score. Even though we have few winners
when comparing IDBC against the DFF, all of them show large
improvement in the mutation score.

The decision trees for IDBC vs BC and IDBC vs DFF can be
found in Appendix F. Both decision trees presented in the appendix
concern the time budget of 60 seconds. In figure 9 we see that
the key metrics that determine whether IDBC will be chosen over
BC are dit, fain and noc. In the case where dit <= 0.265 and fanin
<= 12610.119 and noc <= 13.438, the tree will choose IDBC as the
better fitness function. Figure 10 shows that they key metrics when
choosing between IDBC and DFF are cboModified, cbo and wmc. In
the case where cboModified > 8.5 and cboModified <= 28 and cbo <=
0.5 and wmc > 277.5 or cboModified > 8.5 and cboModified <= 28 and
cbo > 0.5, the tree will choose IDBC as the better fitness function.
Unlike the case for the decision trees of branch coverage, here we
see no overlapping metrics in the decision trees.

The accuracy, feature reduction model and number of features
used are as follows:

• Figure 9: 74.74%, MRMR, 10 features
• Figure 10: 81.82%, Random Forest Classifier, 5 features

When IDBC is compared to BC it achieves significantly better
results in 15.6% of the classes. The static metrics cases in which
IDBC is to be preferred over BC are: dit <= 0.265 and fanin <=
12610.119 and noc <= 13.438. When IDBC is compared to DFF it
significantly underperforms in 28.3% of the classes. The static
metrics cases in which IDBC is to be preferred over DFF are:
cboModified > 8.5 and cboModified <= 28 and cbo <= 0.5 and wmc >
277.5 or cboModified > 8.5 and cboModified <= 28 and cbo > 0.5.

4.3 RQ 3
In figures 1 it can be seen that as the time budget increases overall
the distributions of the three fitness functions tend to extend to-
wards the right. Change in the averages of branch coverage with
respect to time can be seen in figure 12. Both figures are present
in Appendix G. We observe an increase in the medians and upper
quartiles when the time budget is increased from 60 to 180 seconds.
However, when the time budget is increased to 300 seconds, we
notice an increase in DFF’s results, whilst the results of IDBC and

BC remain almost the same. This is expected as branch coverage
should converge to a value as we increase the time budget. There
is a limited number of branches that can be covered and at some
point increasing the time budget would not necessarily lead to an
increase in results. This is because either all branches have been
covered or for some reason branches that cannot be covered re-
main uncovered. This is further supported by the change in average
branch coverage presented in figure 12. In the figure we see that
an increase from 180 to 300 seconds does not result in increase in
results for IDBC and DFF. The case for mutation scores, however,
is going to be different. There is theoretically an infinite amount
of ways to target and kill mutants. Therefore, mutation scores will
benefit from increase in the time budget. Increase in time budget,
will allow for more test cases to be created, hence, for more mutants
to be killed. Whilst creating more test cases for branch coverage
won’t increase the results as at some point all branch should have
been covered.

Figure 2: Change in branch coverage with respect to time

Increasing the time budget from 60 to 180 seconds leads to a
4.74% increase - from 57.69% to 60.42% - in the average branch
coverage achieved by IDBC. Increasing the time budget from 180
to 300 seconds leads to a 0.1% increase - from 60.42% to 60.48% - in
the average branch coverage achieved by IDBC. The percentage
increase in the average branch coverage diminishes with the
increase in time budget as the branch coverage results converge.

5 DISCUSSION
The first step we took towards finding patterns was computing a
correlation matrix between the code metrics of the classes under



Figure 1: Data Distribution

analysis and the difference of the medians of their results. Both
correlation matrices for structural coverage and mutation score
showed significant correlation for some metrics. However, this was
not enough to deduce patterns in the data. We decided to manually
find patterns in the data by looking in the source code of the classes,
however this was to no avail. Therefore, we decided to use machine
learning to find patterns in the data.

Furthermore, there are several reasons we choose not to include
the insignificant data in the data used to train the model. Firstly,
there are a lot more insignificant data points than there are sig-
nificant data points. This means that including the insignificant
data points would create so much noise that any value that the
significant data points provide will be essentially lost. As we didn’t
want to make any bold assumptions, we trained a model that in-
cluded the insignificant data and it achieved 50% accuracy in best
case scenario. We tried three data balancing techniques - oversam-
pling, undersampling and class weights, and none of them helped.
We have too much insignificant data, and oversampling created
too much artificial data based on the significant data to match the
number of insignificant data. Undersampling on the other hand,
reduced the insignificant data to match the number of significant
data points. However, we have to take into account that in the worst
case scenario we had 12 significant data points that showed im-
provement. Therefore, after undersampling we were left with only
33 data points. Class weights did not work any better, as weights
for some labels were too big - weight of 19 - and yet provided no
improvement. Secondly, we mainly care about under which circum-
stances there will be improvement. As the insignificant data present
little to no change in results, this means that miss-labeling a class
where there would be no improvement as a class where there will be
improvement, the consequences would be negligible. Therefore, we

concluded that we can sacrifice potential miss-labeling for accuracy
and discovery of more valuable patterns.

We used SMOTE and class weights to try to balance the data.
There was no point in performing undersampling as this would
decrease the data to very small amounts, hence any model of sorts
would be very overfitted or inaccurate. We discarded class weights
as an option as in some cases the class weights were too big - class
weight of 8 for IDBC vs DFF for mutation score. Furthermore, the
decision trees utilizing class weights underperformed the decision
trees utilizing SMOTE. At best it achieved around 70% accuracy,
however, this is worse in 3 out of 6 time budgets for branch coverage
when compared to the trees utilizing SMOTE.

There are probably better suited methods for our data - PCA,
SVD, etc. - but not for our purpose. Such methods might find better
correlation between code metrics and branch coverage or mutation
score by making combination of the features. As we previously
specified, we believe that a combination of code metrics will show
a higher correlation to branch coverage or mutation score than
separate metrics on their own. Yet, we did not choose a method
that would reduce dimensionality of data by creating combinations
of code metrics as this would not preserve the labels, and we would
not be able to infer a clear pattern from such combinations. Hence,
we sacrificed more intricate and hidden correlations for label preser-
vation, as label preservation is key for achieving our goal. Given the
large number of features and the fact that most of them probably
had little to no impact on the performance of fitness function, we
thought that it would be most appropriate to decide how many
features to preserve based on the values of the correlation matrix.
However, few correlations were common between the different cor-
relation matrices. Therefore, we decided that it would be better to



create different decision trees based on different number of features
and take the best classifier.

6 THREATS TO VALIDITY
To address the small number of data points used - 346 - we have
included a variety of different classes from different projects. This
ensures that the research was done on a diverse and non-trivial
code. We made sure to use the same data for both branch coverage
results and fault detection capabilities. Furthermore, the bench-
mark used was taken from previous research regarding EvoSuite
[16]. To address the randomness of the search-based approach uti-
lized by EvoSuite, we performed 10 runs per class, thus, creating
a distribution of the results for each class. To make sure that our
classifier works with well represented data, we used a data balanc-
ing technique to mitigate data imbalance. Analysis of the data was
backed up by statistical methods - Vargha and Delaney effect size,
Wilcoxon rank sum test, and Student’s t-test.

7 RESPONSIBLE RESEARCH
The paper does not raise any ethical concerns nor violate any copy
right laws since the source codes and information used are openly
available online. The CK tool used for code metrics generation is
purely deterministic and therefore the static metrics discussed can
easily be reproduced. Even test generation can be reproduced if we
pass the same random seed despite it being stochastic. Furthermore,
the methodology of the paper does not rely on our own implemen-
tations of the used analytical methods, but rather on libraries and
already existing implementations that are free to use, hence, the
approach could be easily reproduced. Furthermore, the source code
used for this research is available online 2.

8 CONCLUSION AND FUTUREWORK
The goal of the paper was to shine a light on the effectiveness of
IDBC compared to BC and DFF respectively. We wanted to see
whether IDBC can be a better option than DFF and in which cases
this hold true. To this end we created a Decision Tree model to
find relevant patterns in the data that suggest IDBC is superior and
analysed how the different time budgets affect the results achieved
by IDBC. The analysis was conducted on a benchmark of 346 classes
taken from the SF-110 Corpus of Classes and the Appache Com-
mons. Future work include testing the created models with new
data outside of the used benchmark. It may be beneficial to compare
IDBC against other fitness functions as well. We plan to further
analyse the effects of time budgets through statistical significance
analysis.

REFERENCES
[1] M. Moein Almasi, Hadi Hemmati, Gordon Fraser, Andrea Arcuri, and Janis

Benefelds. 2017. An Industrial Evaluation of Unit Test Generation: Finding
Real Faults in a Financial Application. In 2017 IEEE/ACM 39th International
Conference on Software Engineering: Software Engineering in Practice Track
(ICSE-SEIP). 263–272. https://doi.org/10.1109/ICSE-SEIP.2017.27

[2] Gay G. Almulla, H. 2022. Learning how to search: Generating effective test cases
through adaptive fitness function selection.. In Empir Software Eng 27, 38 (2022).
https://doi.org/10.1007/s10664-021-10048-8

[3] Maurício Aniche. 2015. Java code metrics calculator (CK). Available in
https://github.com/mauricioaniche/ck/.

2https://github.com/IvanStranski/CSE3000_Research_Project

[4] Gustavo E. A. P. A. Batista, Ronaldo C. Prati, and Maria Carolina Monard. 2004.
A Study of the Behavior of Several Methods for Balancing Machine Learning
Training Data. SIGKDD Explor. Newsl. 6, 1 (jun 2004), 20–29. https://doi.org/
10.1145/1007730.1007735

[5] E Chandra and P Edith Linda. 2010. Class break point determination using CK
metrics thresholds. Global journal of computer science and technology (2010).

[6] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer.
2002. SMOTE: synthetic minority over-sampling technique. Journal of artificial
intelligence research 16 (2002), 321–357.

[7] Sebastiano Panichella et al. 2016. The impact of test case summaries on bug
fixing performance: An empirical investigation.. In Proceedings of the 38th
International Conference on Software Engineering. 2016. https://doi.org/10.
1145/2884781.2884847

[8] Gordon Fraser and Andrea Arcuri. 2011. EvoSuite: Automatic Test Suite Gener-
ation for Object-Oriented Software. In Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of Software
Engineering (Szeged, Hungary) (ESEC/FSE ’11). Association for Computing Ma-
chinery, New York, NY, USA, 416–419. https://doi.org/10.1145/2025113.2025179

[9] Gordon Fraser and Andrea Arcuri. 2014. A Large Scale Evaluation of Auto-
mated Unit Test Generation Using EvoSuite. ACM Transactions on Software
Engineering and Methodology (TOSEM) 24, 2 (2014), 8.

[10] A. Jović, K. Brkić, and N. Bogunović. 2015. A review of feature selection methods
with applications. In 2015 38th International Convention on Information and
Communication Technology, Electronics and Microelectronics (MIPRO). 1200–
1205. https://doi.org/10.1109/MIPRO.2015.7160458

[11] Sotiris B Kotsiantis. 2013. Decision trees: a recent overview. Artificial Intelligence
Review 39, 4 (2013), 261–283.

[12] Seyedali Mirjalili. 2019. Genetic Algorithm. Springer International Publishing,
Cham, 43–55. https://doi.org/10.1007/978-3-319-93025-1_4

[13] David L. Olson. 2005. Data Set Balancing. In Data Mining and Knowledge
Management, Yong Shi, Weixuan Xu, and Zhengxin Chen (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 71–80.

[14] Mitchell Olsthoorn, Pouria Derakhshanfar, and Annibale Panichella. 2021. Hybrid
Multi-level Crossover for Unit Test Case Generation. In Search-Based Software
Engineering, Una-May O’Reilly and Xavier Devroey (Eds.). Springer Interna-
tional Publishing, Cham, 72–86.

[15] Mitchell Olsthoorn, Arie van Deursen, and Annibale Panichella. 2020. Generating
Highly-structured Input Data by Combining Search-based Testing and Grammar-
based Fuzzing. In 2020 35th IEEE/ACM International Conference on Automated
Software Engineering (ASE). 1224–1228.

[16] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. 2018. Auto-
mated Test Case Generation as a Many-Objective Optimisation Problem with
Dynamic Selection of the Targets. IEEE Transactions on Software Engineering
44, 2 (2018), 122–158. https://doi.org/10.1109/TSE.2017.2663435

[17] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. 2018. Incre-
mental Control Dependency Frontier Exploration for Many-Criteria Test Case
Generation. In Search-Based Software Engineering, Thelma Elita Colanzi and
Phil McMinn (Eds.). Springer International Publishing, Cham, 309–324.

[18] José Miguel Rojas, José Campos, Mattia Vivanti, Gordon Fraser, and Andrea
Arcuri. 2015. Combining Multiple Coverage Criteria in Search-Based Unit Test
Generation. In Search-Based Software Engineering, Márcio Barros and Yvan
Labiche (Eds.). Springer International Publishing, Cham, 93–108.

[19] José Miguel Rojas, Mattia Vivanti, Andrea Arcuri, and Gordon Fraser. 2017.
A Detailed Investigation of the Effectiveness of Whole Test Suite Generation.
Empirical Softw. Engg. 22, 2 (apr 2017), 852–893. https://doi.org/10.1007/s10664-
015-9424-2

[20] S. S. SHAPIRO and M. B. WILK. 1965. An analysis of variance test for normality
(complete samples)†. Biometrika 52, 3-4 (12 1965), 591–611. https://doi.org/10.
1093/biomet/52.3-4.591 arXiv:https://academic.oup.com/biomet/article-pdf/52/3-
4/591/962907/52-3-4-591.pdf

[21] Student. 1908. The probable error of a mean. Biometrika (1908), 1–25.
[22] András Vargha and Harold D. Delaney. 2000. A Critique and Improvement

of the "CL" Common Language Effect Size Statistics of McGraw and Wong.
Journal of Educational and Behavioral Statistics 25, 2 (2000), 101–132. http:
//www.jstor.org/stable/1165329

[23] Sholom M. Weiss and Ioannis Kapouleas. 1989. An Empirical Comparison of Pat-
tern Recognition, Neural Nets, and Machine Learning Classification Methods. In
Proceedings of the 11th International Joint Conference on Artificial Intelligence
- Volume 1 (Detroit, Michigan) (IJCAI’89). Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 781–787.

[24] F Wilcoxon. 1945. Individual comparisons by ranking methods. Biom. Bull., 1,
80–83.

https://doi.org/10.1109/ICSE-SEIP.2017.27
https://doi.org/10.1007/s10664-021-10048-8
https://github.com/IvanStranski/CSE3000_Research_Project
https://doi.org/10.1145/1007730.1007735
https://doi.org/10.1145/1007730.1007735
https://doi.org/10.1145/2884781.2884847
https://doi.org/10.1145/2884781.2884847
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1109/MIPRO.2015.7160458
https://doi.org/10.1007/978-3-319-93025-1_4
https://doi.org/10.1109/TSE.2017.2663435
https://doi.org/10.1007/s10664-015-9424-2
https://doi.org/10.1007/s10664-015-9424-2
https://doi.org/10.1093/biomet/52.3-4.591
https://doi.org/10.1093/biomet/52.3-4.591
https://arxiv.org/abs/https://academic.oup.com/biomet/article-pdf/52/3-4/591/962907/52-3-4-591.pdf
https://arxiv.org/abs/https://academic.oup.com/biomet/article-pdf/52/3-4/591/962907/52-3-4-591.pdf
http://www.jstor.org/stable/1165329
http://www.jstor.org/stable/1165329


A CORRELATIONS BRANCH COVERAGE
A.1 IDBC vs BC

60 Positive anonymousClassesQty 0.4233
parenthesizedExpsQty 0.422
defaultFieldsQty 0.1928
numbersQty 0.1618
publicFieldsQty 0.0788

Negative wmc -0.5836
totalMethodsQty -0.5672
cbo -0.5594
fanout -0.5594
returnQty -0.5545

Table 5: Correlation for 60 seconds time budget

180 Positive maxNestedBlocksQty 0.4654
anonymousClassesQty 0.1727
staticMethodsQty 0.1335
staticFieldsQty 0.1066
synchronizedMethodsQty 0.0674

Negative totalFieldsQty -0.3708
privateFieldsQty -0.3579
protectedMethodsQty -0.3457
uniqueWordsQty -0.3386
returnQty -0.3199

Table 6: Correlation for 180 seconds time budget

300 Positive innerClassesQty 0.4366
cboModified 0.4166
fanin 0.4057
defaultMethodsQty 0.3348
privateMeethodsQty 0.2992

Negative lambdasQty -0.2903
lcom* -0.2034
maxNestedBlocksQty -0.1215
loopQty -0.1139
protectedMethodsQty -0.1014

Table 7: Correlation for 300 seconds time budget



A.2 IDBC vs DFF

60 Positive publicFieldsQty 0.2072
assignmentsQty 0.1948
modifiers 0.1734
mathOperationsQty 0.1704
logStatementsQty 0.1615

Negative fanin -0.2181
privateFieldsQty -0.1735
nosi -0.1371
anonymousClassesQty -0.1257
cboModified -0.1153

Table 8: Correlation for 60 seconds time budget

180 Positive lcom 0.1557
defaultMethodsQty 0.1383
publicFieldsQty 0.1256
uniqueWordsQty 0.0992
totalMethodsQty 0.0911

Negative synchronizedMethodsQty -0.2827
privateFieldsQty -0.1712
fanin -0.1359
staticMethodsQty -0.1096
modifiers -0.1

Table 9: Correlation for 180 seconds time budget

300 Positive defaultMethodsQty 0.1853
loopQty 0.1650
nosi 0.1443
publicFieldsQty 0.1406
mathOperationsQty 0.1377

Negative tryCatchQty -0.1387
lcom* -0.1263
modifiers -0.1076
noc -0.0831
anonymousClassesQty -0.0747

Table 10: Correlation for 300 seconds time budget



B VARGHA AND DELANEY EFFECT SIZE FOR BRANCH COVERAGE

Time budget #Win #Lose
Large Medium Small Negligible Large Medium Small Negligible

IDBC vs BC 60s 4 2 0 0 16 2 0 0
180s 8 1 0 0 17 3 0 0
300s 7 1 0 0 22 4 0 0

IDBC vs DFF 60s 55 1 0 0 8 1 0 0
180s 60 2 0 0 9 2 1 0
300s 52 3 1 0 13 2 0 0

Table 11: Vargha and Delaney effect size measurement



C DECISION TREES FOR BRANCH COVERAGE
C.1 IDBC vs BC

Figure 3: Input Diversity with Branch Coverage against Branch Coverage for 60 seconds



Figure 4: Input Diversity with Branch Coverage against Branch Coverage for 180 seconds



Figure 5: Input Diversity with Branch Coverage against Branch Coverage for 300 seconds



C.2 IDBC vs DFF

Figure 6: Input Diversity with Branch Coverage against Default fitness function for 60 seconds



Figure 7: Input Diversity with Branch Coverage against Default fitness function for 180 seconds



Figure 8: Input Diversity with Branch Coverage against Default fitness function for 300 seconds



D CORRELATIONS MUTATION SCORE
D.1 IDBC vs BC

60 Positive maxNestedBlocksQty 0.3177
loc 0.2808
privateMethodsQty 0.2753
assignmentsQty 0.2637
wmc 0.2567

Negative modifiers -0.1329
finalMethodsQty -0.059
abstractMethodsQty -0.0514
noc -0.0018

Table 12: Correlation for 60 seconds time budget

D.2 IDBC vs DFF

60 Positive lcom* 0.3094
finalMethodsQty 0.2489
staticMethodsQty 0.2237
uniqueWordsQty 0.2049
publicFieldsQty 0.1935

Negative abstractMethodsQty -0.3392
modifiers -0.3115
stringLiteralsQty -0.2881
mathOperationsQty -0.2627
lcom -0.2362

Table 13: Correlation for 60 seconds time budget



E VARGHA AND DELANEY EFFECT SIZE MEASUREMENT MUTAION SCORE

Time budget #Win #Lose
Large Medium Small Negligible Large Medium Small Negligible

IDBC vs BC 60s 51 2 0 0 11 2 0 0
IDBC vs DFF 60s 12 0 0 0 94 2 0 0

Table 14: Vargha and Delaney effect size measurement



F DECISION TREES MUTATION SCORE

Figure 9: Input Diversity with Branch Coverage against Branch Coverage for 60 seconds



Figure 10: Input Diversity with Branch Coverage against Default fitness function for 60 seconds



G TIME ANALYSIS

Figure 11: Data Distribution



Figure 12: Change in branch coverage with respect to time


	Abstract
	1 Introduction
	2 Background and Related Works
	3 Approach
	3.1 Data
	3.2 Data Preprocessing
	3.3 RQ 1 and 2
	3.4 RQ 3

	4 Results
	4.1 RQ 1
	4.2 RQ 2
	4.3 RQ 3

	5 Discussion
	6 Threats to validity
	7 Responsible Research
	8 Conclusion and Future Work
	References
	A Correlations Branch Coverage
	A.1 IDBC vs BC
	A.2 IDBC vs DFF

	B Vargha and Delaney effect size for Branch Coverage
	C Decision Trees for Branch Coverage
	C.1 IDBC vs BC
	C.2 IDBC vs DFF

	D Correlations Mutation score
	D.1 IDBC vs BC
	D.2 IDBC vs DFF

	E Vargha and Delaney effect size measurement Mutaion score
	F Decision Trees Mutation Score
	G Time Analysis

