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 A B S T R A C T

In precision positioning systems, lightly damped higher-order resonance modes can induce undesirable 
vibrations that degrade system performance and accuracy. These resonances pose additional challenges in 
non-collocated dual-stage positioning systems, where they significantly limit control bandwidth. Although 
conventional notch filters are commonly used alongside tracking controllers to enhance bandwidth, they 
lack robustness when faced with system parameter uncertainties. Moreover, the effects of the delimiting 
resonance on disturbance rejection remain. Active damping control has been successfully used to mitigate issues 
related to the primary resonance mode, but its application to higher-order modes has not been explored. This 
paper introduces a novel control strategy, High-Pass Positive Position Feedback (HP-PPF), inspired by existing 
methods but designed specifically for active damping of higher-order, non-collocated modes in positioning 
systems. The proposed method incorporates a second-order high-pass filter within a positive feedback loop, 
effectively attenuating the delimiting resonance. Integrated with a PID tracking controller in a dual-loop con-
figuration, this method enhances disturbance rejection and robustness against model uncertainties, overcoming 
limitations of traditional notch filter-based methods while achieving comparable bandwidth improvements. The 
proposed control architecture is validated through a proof-of-concept experimental setup that demonstrates the 
effectiveness of the underlying mathematical framework.
. Introduction

The high-tech industry experiences an ever-increasing demand for 
mproved performance of motion stages, particularly in terms of accu-
acy and speed. This demand encompasses diverse high-precision ap-
lications like scanning-probe microscopy [1], micromanipulators [2], 
anomanufacturing [3] and precision optics [4]. These stages require 
anometre-level positioning accuracy, high response speed, compact 
tructures, and large travel ranges [5]. The bandwidth of the control 
rchitecture driving the motion stages directly affects its speed and 
ccuracy, with increasing bandwidth typically leading to improved 
erformance [6]. However, increasing bandwidth comes with trade-
ffs, especially in linear control systems, where the waterbed effect 
imits performance enhancements. In addition, higher-order vibration 
odes in positioning systems introduce further constraints, as they 
enerate unwanted vibrations when excited by high-frequency refer-
nce or disturbance signals [6,7]. In non-collocated dual-stage systems, 
hese higher-order resonances impose additional restrictions on the 
ontrol bandwidth, as the minimum-phase behaviour of non-collocated 
ynamics limits achievable bandwidth to a fraction of the higher-order 
esonance frequency [8].

∗ Corresponding author.
E-mail address: A.M.Natu@tudelft.nl (A.M. Natu).

Approaches such as feedforward [9], input shaping [10], inver-
sion [11], and the application of notch filters [12,13] have successfully 
been employed in combination with conventional tracking controllers 
to mitigate the effects of parasitic resonances. Despite their potential 
effectiveness in systems with precise models and known references, 
these methods lack robustness against system parameter uncertain-
ties and external disturbances [14]. Moreover, while notch filters, 
when used alongside tracking controllers can enable higher control 
bandwidths, which in turn improves the rejection of low-frequency 
disturbances, such as floor vibrations, the effects of the delimiting 
resonance still degrade the closed-loop disturbance rejection perfor-
mance [15]. This residual effect can result in errors, particularly in 
multiple degree-of-freedom (DOF) systems, where cross-couplings may 
introduce disturbances near the resonance frequency, further degrading 
system performance.

Active damping control provides an alternative approach to ad-
dressing resonant modes by employing robust, fixed-structure feedback 
compensators that are straightforward to tune and rely on general 
system dynamics knowledge [16]. Compared to modal control or op-
timal controllers such as 𝐻∞-control, they provide a more practical 
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and easier-to-implement solution. Modal control decomposes system 
dynamics with higher-order modes into modal signals, facilitating the 
implementation of existing active damping strategies [17]. However, 
its performance is sensitive to uncertainties in modal properties [18] 
and closely spaced modes further complicate control, potentially ex-
citing unintended modes [19]. Moreover, precise sensor and actuator 
placement is essential, adding significant complexity to the imple-
mentation. Many robust feedback damping control schemes based on 
advanced optimal control theory have been developed to address the 
challenges posed by lightly damped resonant modes and system un-
certainties, such as robust 𝐻∞-control [20]. While these synthesized 
damping controllers demonstrate excellent performance in the presence 
of uncertainties, their high-order transfer functions introduce signifi-
cant complexity, making them less suitable for applications requiring 
high sampling rates, low computational cost, and efficient hardware 
implementation [21].

Common fixed-structure active damping controllers include direct 
velocity feedback (DVF) [22], integral resonance control (IRC) [23], in-
tegral force feedback (IFF) [24], negative position feedback (NPF) [25], 
positive position feedback (PPF) [26], positive velocity and position 
feedback (PVPF) [27], and positive acceleration, velocity and position 
feedback (PAVPF) [28]. Among these, PPF, PVPF, and PAVPF are 
widely adopted due to their ease of implementation, effective roll-off 
characteristics, ability to suppress multiple modes [29], and robustness 
against parameter variations [30]. However, PPF and PVPF require 
collocated actuator–sensor configurations because they are designed 
specifically for second-order systems [31]. Third-order models, which 
describe the dynamics of nanopositioning stages [32], have led to the 
development of the PAVPF damping controller, proven effective in 
enhancing bandwidth when combined with tracking control [31]. All 
these active damping controllers are guaranteed to be stable if and only 
if the open-loop gain at zero frequency is strictly less than one [33]. 
However, for non-collocated higher-order modes, this condition cannot 
be satisfied using existing methods due to their inherent gain-phase 
characteristics at lower frequencies.

Current fixed-structure active dampingmethods mainly focus on 
damping the primary resonance mode, typically assuming that higher-
order modes are far enough away to be considered negligible and 
unlikely to induce vibrations and errors. However, these higher-order 
modes can show at relatively low frequencies in vicinity of the domi-
nant mode, for example in systems incorporating flexure-based guiding 
mechanisms, where they contribute to errors when being excited. In 
industrial applications such as dual-stage positioning systems, including 
wafer and reticle stages in lithography machines [34], the influence 
of higher-order modes presents a critical challenge to performance 
and precision. Furthermore, non-collocated higher-order modes not 
only introduce positioning errors but also directly limit the control 
bandwidth.

Research has explored the concept of overactuation, which involves 
employing more actuators than there are rigid body modes to be con-
trolled, to achieve active damping of higher-order modes [15]. How-
ever, this approach requires additional actuators and sensors, which 
might not always be feasible in practical applications and adds com-
plexity to the system and its control architecture.

At present, no generally applicable fixed-structure active damping 
control strategy specifically addresses higher-order delimiting reso-
nance modes, which limit positioning accuracy and, in certain appli-
cations, even tracking control bandwidth.

1.1. Contributions

This paper introduces a novel active damping control strategy in-
spired by existing methods, targeting the first dominant higher-order 
mode in positioning systems while maintaining the simplicity of a 
single-input single-output configuration. The focus is on mitigating the 
non-collocated higher-order mode in dual-stage positioning systems, 
2 
Fig. 1. Experimental setup.

which also restricts control bandwidth, by employing a low-order fixed-
structure controller with clear tuning guidelines for straightforward 
implementation. The proposed framework, however, is adaptable for 
active damping of any higher-order mode causing undesirable vibra-
tions in various systems. The key contributions of this work are as 
follows:

(1) This paper provides a general solution for active damping 
of higher-order delimiting modes, enhancing disturbance rejection at 
those frequencies.

(2) The proposed solution demonstrates robust performance against 
model uncertainties, particularly concerning resonance frequency vari-
ations within a defined range, offering significant improvements in 
robustness compared to a notch filter-based method.

(3) The novel active damping control method enhances control 
bandwidth when combined with conventional tracking controllers in 
dual-stage positioning systems, achieving comparable tracking perfor-
mance to a notch filter-based method.

This paper is organized as follows: Section 2 presents an overview 
of the experimental setup used as a proof-of-concept and the gov-
erning system dynamics. Section 3 introduces the proposed active 
damping controller designed to address higher-order delimiting reso-
nance modes. Section 4 details the integration of the active damping 
controller into a motion control loop for application in a dual-stage 
positioning system. Section 5 presents an experimental comparison 
between the novel active damping control and a notch filter-based 
solution, focusing on process disturbance and robustness against model 
uncertainties. Finally, conclusions are drawn in Section 6.

2. System description

2.1. Proof-of-concept experimental setup

The experimental setup described in this paper is the single-axis 
dual-stage compliant micro-motion system from [15], illustrated in Fig. 
1. This prototype serves as a proof-of-concept for a non-collocated 
dual-stage positioning system to validate the contributions of this work.

The system features a base and end-effector stage connected by 
parallel guiding flexures, with a second set of flexures linking the base 
to a fixed ground for translational movement while limiting other DOFs. 
Mounted on a vibration isolation platform to reduce external distur-
bances, the base stage is actuated by a race-coil Lorentz actuator, which 
produces a bidirectional force proportional to the input current. Input 
voltage signals are amplified and converted into the necessary current 
by a current amplifier, which maintains a constant gain factor during 
amplification up to a cutoff frequency of approximately 10 kHz. The 
position of the end-effector is measured using a laser interferometer, 
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Fig. 2. Identified frequency response of experimental setup (black) and compensated 
analytical model of system dynamics (grey).

with a resolution of 39.5 nm, and an optical mirror, mounted on the 
end-effector stage to replicate the non-collocated dynamics.

For system identification, a sine sweep from 1 to 1000 Hz with 
increasing amplitude is applied to the Lorentz actuator, and the end-
effector position is measured to estimate the transfer function based on 
input–output relations. Fig.  2 shows the identified frequency response 
and analytical model, with the first mode at 6 Hz and a dominant 
higher-order mode at 78 Hz. The analytical model’s gain is adjusted for 
the stiffness of the bottom flexures, actuator, and amplifier dynamics, 
while the phase compensation corrects for a 180◦ offset from the 
operational amplifier’s inversion.

2.2. System modelling

The dynamics of positioning systems are typically defined by a rigid-
body mode, followed by one or more higher-order resonance modes. 
For the single-axis dual-stage positioning setup, the dynamics can be 
analytically modelled using a simplified double-mass–spring–damper 
system. This model effectively captures the behaviour of the first two 
dominant resonance modes. The non-collocated system dynamics, 𝐺(𝑠), 
represent the transfer function from the actuator force (𝐹act) to the 
displacement of the end-effector (𝑥2) and can be approximated by the 
following fourth-order transfer function to capture the two fundamental 
modes [15]: 

𝐺(𝑠) = 𝑐2𝑠+𝑘2
(𝑚2𝑠2+𝑐2𝑠+𝑘2)(𝑚1𝑠2+(𝑐1+𝑐2)𝑠+(𝑘1+𝑘2))−(𝑐2𝑠+𝑘2)2

(1)

Here 𝑚1 and 𝑚2 represent the masses of the base stage and end-
effector, while 𝑘1, 𝑐1 and 𝑘2, 𝑐2 represent the total stiffness and damping 
for the guiding and connecting flexures of the base and end-effector, 
respectively.

The non-collocated transfer function can be expressed in a general 
form, with the static gain determined by the stiffness 𝑘1 normalized to 
one, as: 

𝐺(𝑠) =
𝜔1

2 𝜔2
2

(

𝑠2 + 2 𝜁1 𝜔1 𝑠 + 𝜔1
2
) (

𝑠2 + 2 𝜁2 𝜔2 𝑠 + 𝜔2
2
) (2)

where 𝜔1 and 𝜔2 are the resonance frequencies with corresponding 
damping ratios 𝜁1 and 𝜁2 of the rigid-body mode and first higher-order 
mode, respectively. The spacing between the modes is denoted with 𝑛, 
such that 𝜔2∕𝜔1 = 𝑛, as indicated in Fig.  2. This mode spacing depends 
on the relative modal gains of the two resonance modes, which are 
governed by the stiffness and mass properties of the two stages, as 
described in Eq. (3). 

𝑛 =
𝜔2
𝜔

≈

√

𝑘2
𝑘

(𝑚1 + 𝑚2)2

𝑚 𝑚
(3)
1 1 1 2

3 
The non-collocated higher-order mode is characterized by
a −20 dB/dec slope before and −40 dB/dec slope after resonance. The 
minimum phase behaviour is observed as a phase shift from −180◦
to −360◦ at the resonance frequency, corresponding to the magnitude 
slopes. The height of the delimiting resonance peak is approximately 
equal to 1∕(2𝜁2) [15], indicating that increasing the modal damping 
coefficient reduces the peak height in the frequency domain. In the 
following sections a methodology will be proposed to improve the 
damping characteristics of this mode through an active damping con-
trol feedback loop, effectively reducing the peak height of the undesired 
resonance mode.

3. Active damping using high-pass positive position feedback (HP-
PPF)

The remainder of this paper focuses on the active damping of 
a non-collocated higher-order mode to fully illustrate the potential 
contributions. While the framework is applicable to any higher-order 
mode, the non-collocated mode presents specific challenges. In addi-
tion to generating unwanted vibrations, it also restricts the achievable 
control bandwidth. The minimum phase behaviour of a non-collocated 
mode inherently involves a −180◦ phase crossing at its resonance 
frequency. For stability, the non-collocated resonance peak in the open-
loop response must remain below 0 dB. This requirement limits the gain 
that tracking controllers can apply, thereby constraining the achiev-
able control bandwidth. Increasing the damping of this non-collocated 
higher-order mode is therefore of significant interest.

In contrast, the primary resonance mode is located below the con-
trol bandwidth and does not require additional damping, as its high 
gain is advantageous for motion control. A novel active damping con-
trol solution is proposed to address the undesired mode, which en-
hances damping properties and effectively reduces its peak height.

A simplified description of system dynamics in the region of interest 
(𝜔 > 𝜔1), capturing the higher-order delimiting mode, is introduced as 
the following generalized transfer function: 

𝐺𝑝(𝑠) =
𝜔4
2

𝑠2
(

𝑠2 + 2𝜁2𝜔2 + 𝜔2
2
) ∀ 𝜔 > 𝜔1 (4)

where 𝜔1 is the primary resonance mode frequency, 𝜔2 and 𝜁2 are 
the delimiting resonance mode frequency and corresponding damping 
ratio, respectively.

Active damping control of the primary mode is commonly achieved 
using various control techniques, such as employing a second-order 
low-pass filter within a positive feedback loop, as seen in PPF.

The frequency response of the non-collocated higher-order mode 
differs from that of the primary mode, showing a −20 dB/dec slope 
before resonance due to the influence of the rigid-body mode at lower 
frequencies, as illustrated in Fig.  2. The minimum phase behaviour of 
the non-collocated higher-order mode, which involves a phase shift 
from −180◦ to −360◦, makes the direct implementation of active 
damping methods like PPF and NPF infeasible. These methods typically 
use second-order low-pass filters (LPF) and high-pass filters (HPF), with 
PPF employing positive feedback. Inverting the feedback sign in PPF 
effectively multiplies the open-loop response by −1, introducing a 180◦
phase shift, which can ensure a positive phase margin in the open-loop 
damping response, essential for stability as detailed in [16].

Fig.  3 presents the open-loop response of active damping control 
applied to the non-collocated higher-order mode described in Eq. (4), 
comparing second-order low-pass filter (LPF) and high-pass filter (HPF) 
used as damping controllers, with phase margins indicated. The 2nd-
order LPF results in an open-loop phase between −180◦ and −360◦
(grey line), resulting in two negative phase margins. Positive feedback 
shifts the phase by 180◦, which moves the phase from 0◦ to −360◦, 
but the second crossover (𝜑𝑚2) remains unstable. Moreover, the LPF 
results in an open-loop gain exceeding one at frequencies below the 
target mode, which contradicts the gain requirement outlined in [16]. 
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Fig. 3. Active damping open-loop ((𝐺𝑝(𝑠) ⋅ 𝐶𝑑 (𝑠)) response; non-collocated higher-
order mode with second-order LPF (grey) and second-order HPF (black) as damping 
controller. Positive feedback shifts phase with 180◦ (black dashed line) into stable 
region.

This requirement states that the open-loop gain must remain below one 
at frequencies both preceding and following the target mode to ensure 
the preservation of system dynamics.

To meet this requirement and maintain system stability, a second-
order HPF is necessary. As illustrated in the magnitude response in 
Fig.  3 (black line), the HPF ensures that the open-loop gain remains 
below unity at lower frequencies. The HPF places the open-loop phase 
between 0◦ and −360◦ (solid black line), initially resulting in a neg-
ative phase margin at the second crossover. When positive feedback 
is applied, the phase shifts by 180◦ (black dashed line), bringing 
the open-loop phase into the stable region between 180◦ and −180◦, 
thereby achieving positive phase margins at both crossovers. This open-
loop gain and phase analysis demonstrates that only a second-order 
HPF within a positive feedback loop can achieve a stable closed-loop 
damping configuration for the non-collocated higher-order mode.

This analysis can be mathematically validated using the Routh–
Hurwitz criterion to evaluate the stability of the closed damping loop. 
The characteristic equations for both the closed damping loops employ-
ing second-order HPF and LPF controllers, with positive and negative 
feedback signs, are given as follows: 
1 ± 𝐺𝑝(𝑠)𝐶𝑑−𝐻𝑃𝐹 (𝑠) =

1 ±
𝜔4
2

𝑠2(𝑠2 + 2𝜁2𝜔2𝑠 + 𝜔2
2)

𝑔𝑛𝑠2

𝑠2 + 2𝜁𝑐𝜔2𝑠 + 𝜔2
2

= 0

𝑠4 + (2𝜁𝑐𝜔2 + 2𝜁2𝜔2)𝑠3 + (2𝜔2
2 + 4𝜁2𝜁𝑐𝜔2

2)𝑠
2 +⋯

(2𝜁2𝜔3
2 + 2𝜁𝑐𝜔3

2)𝑠 + (𝜔4
2 ± 𝑔𝑛𝜔

4
2) = 0

(5)

1 ± 𝐺𝑝(𝑠)𝐶𝑑−𝐿𝑃𝐹 (𝑠) =

1 ±
𝜔2
4

𝑠2(𝑠2 + 2𝜁2𝜔2𝑠 + 𝜔2
2)

𝑔𝑛
𝑠2 + 2𝜁𝑐𝜔2𝑠 + 𝜔2

2

= 0

𝑠6 + 2𝜔2(𝜁𝑐 + 𝜁2)𝑠5 + 2𝜔2
2(1 + 2𝜁𝑐𝜁2)𝑠4 +⋯

2𝜔3
2(𝜁𝑐 + 𝜁2)𝑠3 + 𝜔4

2 + 0 ⋅ 𝑠 ± 𝑔𝑛𝜔
4
2 = 0

(6)

The Routh–Hurwitz criterion for stability requires all coefficients of 
the characteristic polynomial to be positive and nonzero. Table  1 sum-
marizes these coefficients derived from the characteristic equations. 
Notably, when a second-order low-pass filter (LPF) is employed as the 
active damping controller, the coefficient 𝑎1 is always zero, regardless 
of the feedback sign. This results in an unstable pole, which corresponds 
to the negative phase margin observed in Fig.  3.

In contrast, the second-order high-pass filter (HPF) shows that stable 
closed-loop behaviour can be achieved under certain feedback condi-
tions. Specifically, stability holds with positive feedback if 1−𝑔 > 0 and 
𝑛

4 
Table 1
Coefficients of the characteristic equation for active damping of the non-collocated 
higher-order mode using a 2nd-order (2o) LPF and 2nd-order (2o) HPF with both 
positive and negative feedback signs.
 2o LPF (∓ Feedback) 2o HPF (∓ Feedback) 
 a6 1 –  
 a5 2𝜔2(𝜁𝑐 + 𝜁2) –  
 a4 2𝜔2

2(1 + 2𝜁𝑐𝜁2) 1  
 a3 2𝜔3

2(𝜁𝑐 + 𝜁2) 2𝜔2(𝜁𝑐 + 𝜁2)  
 a2 𝜔4

2 2𝜔2
2(1 + 2𝜁𝑐𝜁2)  

 a1 0 2𝜔3
2(𝜁𝑐 + 𝜁2)  

 a0 ±𝑔𝑛𝜔6
2 𝝎𝟒

𝟐 ± 𝐠𝐧𝝎𝟒
𝟐  

Table 2
Coefficients of the first column of Routh array for active damping of the non-collocated 
higher-order mode using a 2nd-order HPF with both positive and negative feedback 
signs.
 Negative feedback Positive feedback 
 a4 1 1  
 a3 2𝜔2(𝜁2 + 𝜁𝑐 ) 2𝜔2(𝜁2 + 𝜁𝑐 )  
 b1 𝜔2

2(4𝜁2𝜁𝑐 + 1) 𝜔2
2(4𝜁2𝜁𝑐 + 1)  

 c1 − 2𝜔3
2 (𝑔𝑛−4𝜁2𝜁𝑐 )(𝜁2+𝜁𝑐 )

4𝜁2𝜁𝑐+1
2𝜔3

2 (𝑔𝑛+4𝜁2𝜁𝑐 )(𝜁2+𝜁𝑐 )
4𝜁2𝜁𝑐+1

 
 a0 𝜔4

2(𝑔𝑛 + 1) 𝜔4
2(1 − 𝑔𝑛)  

Fig. 4. Active damping control loop employing second-order high-pass filter (HPF) in 
positive feedback (HP-PPF).

with negative feedback if 1+𝑔𝑛 > 0. However, despite these conditions, 
the open-loop phase analysis for the negative feedback case shows 
instability. This discrepancy highlights that the necessary conditions 
provided by the Routh–Hurwitz criterion are insufficient on their own; 
the sufficient condition must also be satisfied to confirm stability.

Table  2 presents the first-column coefficients of the Routh array 
for the second-order HPF under both feedback cases. For the negative 
feedback loop, two sign changes in the first column indicate two right-
half-plane poles, confirming instability. In contrast, for the positive 
feedback loop, all first-column coefficients remain of the same sign 
when 1 − 𝑔𝑛 > 0, ensuring stability.

It is important to note that the negative feedback loop becomes 
stable when 𝑔𝑛 < 4𝜁2𝜁𝑐 . However, given that the values of 𝜁2 and 𝜁𝑐
are typically small, this condition would only be met when 𝑔𝑛 is very 
small. Since 𝑔𝑛 directly affects damping performance, a higher 𝑔𝑛 is 
usually required to achieve adequate peak attenuation. Consequently, 
in practical terms, only the positive feedback configuration of the 
second-order high-pass filter can achieve a stable closed-loop damping 
system.

Here we introduce a second-order high-pass filter in positive feed-
back (HP-PPF) utilized as an active damping controller, as visual-
ized in Fig.  4. The closed-loop damping performance is tuned us-
ing gain parameter 𝑔, which for mathematical brevity is normal-
ized to 𝑔𝑛, such that the open-loop response has unity gain, i.e.
|

|

|

𝐺𝑝(𝑖𝜔) ⋅ 𝑔𝑛 ⋅𝐻𝑃𝐹 (𝑖𝜔)||
|𝜔=0

= 1. The resulting HP-PPF controller is given 
by: 

𝐶𝑑 (𝑠) = 𝑔𝑛 ⋅
𝑠2

2 2
(7)
𝑠 + 2𝜁𝑐𝜔𝑐𝑠 + 𝜔𝑐
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Fig. 5. HP-PPF active damping control (black) of non-collocated higher-order mode 
(grey) open-loop response (a) and closed-loop response (b).

where controller frequency 𝜔𝑐 equals the frequency of the higher-order 
resonance mode to be damped (𝜔𝑐 = 𝜔2). The effective damping is then 
determined by the damping ratio 𝜁𝑐 and the normalized feedback gain 
𝑔𝑛 of the controller. The resulting closed damping loop is described by: 

𝐶𝐿𝑑 (𝑠) =
𝑦
𝑑

=
𝐺𝑝(𝑠)

1 − 𝐺𝑝(𝑠)𝐶𝑑 (𝑠)
. (8)

The magnitude of the non-collocated higher-order mode, in Eq. (4), at 
the resonance frequency 𝜔2 can be calculated as: 

|

|

|

𝐺𝑝(𝑖𝜔2)
|

|

|

=
|

|

|

|

|

|

𝜔4
2

−𝜔2
2(−𝜔

2
2 + 2𝜁2𝜔2

2𝑖 + 𝜔2
2)

|

|

|

|

|

|

= 1
2𝜁2

(9)

The magnitude of the closed damping loop response, given in Eq. (8), 
at the resonance frequency, can be calculated in similar fashion as: 

|

|

𝐶𝐿𝑑 (𝑖𝜔2)|| =
2𝜁𝑐

𝑔𝑛 + 4𝜁𝑐𝜁2
= 1

2
(

𝑔𝑛
4𝜁𝑐

+ 𝜁2
) , (10)

From these expressions, it can be derived that the damping ratio of the 
closed damping loop can be described as: 

𝜁𝐶𝐿𝑑
= 𝜁2 +

𝑔𝑛
4𝜁𝑐

, (11)

This demonstrates an increase in the effective closed-loop damping 
ratio when 𝑔𝑛 > 0 and 𝜁𝑐 > 0, emphasizing the effectiveness of 
the HP-PPF controller in enhancing the damping characteristics of 
the non-collocated higher-order mode. Notably, this relationship holds 
specifically at the resonance frequency. While a combination of high 
gain (𝑔𝑛) and low damping (𝜁𝑐) can reduce the magnitude at the exact 
resonance frequency, it also results in peak splitting. Peak splitting 
refers to the emergence of new peaks in the closed-loop frequency 
response, which occurs when the open-loop gain is close to one and has 
a phase of ±180◦ [16]. When tuning 𝑔𝑛 and 𝜁𝑐 the phase requirements 
outlined in [16] should be taken into account.

The open-loop response depicted in Fig.  5(a) shows the resulting 
phase margins (𝜑𝑚1, 𝜑𝑚2) at both crossover frequencies (𝜔𝑥1, 𝜔𝑥2) re-
spectively, which can be tuned with control parameter 𝜁𝑐 . Meanwhile, 
the closed-loop response shown in Fig.  5(b) demonstrates the attenu-
ation of the non-collocated resonance peak with the proposed HP-PPF 
active damping control architecture. Following the characteristic equa-
tion in Eq. (5), the Routh–Hurwitz stability criterion indicates that the 
damping loop using HP-PPF is stable when the condition 0 < 𝑔𝑛 < 1 is 
satisfied.
5 
Fig. 6. Dual-loop architecture incorporating motion control and active damping con-
trol.

Fig. 7. Control architecture incorporating motion control and notch filter.

4. Active damping control of dual-stage positioning systems

4.1. Combining active damping control and motion control

The previous section showed that the HP-PPF active damping con-
troller effectively attenuates higher-order modes, applicable to a single-
axis dual-stage positioning system. This paper focuses on using this 
method in two DOF positioning systems as a case study, with dynamics 
described by Eq. (2). The adaptable solution also addresses higher-order 
system modes. A dual-loop control architecture, combining motion and 
active damping control as shown in Fig.  6, is used for damping and 
tracking control [31,35].

The control architecture features two distinct loops: an outer feed-
back loop utilizing a tracking controller (𝐶𝑡(𝑠)), typically a tamed PID 
controller, to achieve accurate motion tracking, and an inner feedback 
loop that incorporates an active damping controller (𝐶𝑑 (𝑠)). In the 
proposed HP-PPF solution, the inner loop uses a second-order high-pass 
filter within a positive feedback configuration to actively dampen the 
higher-order delimiting mode. The dual-stage positioning system (𝐺(𝑠)) 
is represented by the transfer function in Eq. (2). The dual closed-loop 
transfer function is given by: 

𝐶𝐿(𝑠) =
𝐺(𝑠)𝐶𝑡(𝑠)

1 + 𝐺(𝑠)
(

𝐶𝑡(𝑠) − 𝐶𝑑 (𝑠)
) (12)

where the inner closed damping loop is described by Eq. (8). The 
standard tamed PID controller is defined as follows: 

𝐶𝑃𝐼𝐷(𝑠) = 𝑘𝑝
(

1 +
𝜔𝑖
𝑠

)

⏟⏞⏞⏟⏞⏞⏟
Integrator

(

1 + 𝑠∕𝜔𝑑
1 + 𝑠∕𝜔𝑡

)

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
Lead∕Lag

(

𝜔𝑙
𝑠 + 𝜔𝑙

)

⏟⏞⏞⏞⏟⏞⏞⏞⏟
LPF

(13)

The PID controller includes a low-pass filter (LPF) to suppress 
high-frequency noise and unmodelled dynamics. The various frequency 
bands are computed, in terms of open-loop crossover frequency 𝜔𝑥
(0 dB crossing), as outlined in [36]. 

𝜔𝑑 =
𝜔𝑥
3

, 𝜔𝑡 = 3𝜔𝑥 , 𝜔𝑖 =
𝜔𝑥
10

𝜔𝑙 ≥ 10𝜔𝑥 , 𝑘𝑝 = 0.33
|

|

|

|

1
𝐺(𝑖𝜔𝑥)

|

|

|

|

(14)

The PID tracking controller is designed to ensure stability and 
robustness by achieving sufficient gain margin (GM ≥ 6 dB) and phase 
margin (PM ≥ 30◦) in open-loop.
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4.2. Stability of inner closed damping loop

Active damping is achieved in the inner loop of the dual-loop 
control architecture, as shown in Fig.  6. The stability of the active 
damping loop was previously analysed for the simplified system 𝐺𝑝(𝑠), 
where the rigid-body mode was neglected. However, in the dual-stage 
positioning system, the dynamics are governed by the fourth-order 
transfer function in Eq. (2), where the rigid-body mode cannot be 
ignored. This suggests that the stability condition of the inner active 
damping loop, derived earlier, may be affected by the presence of the 
rigid-body mode.

The characteristic equation of the inner closed damping loop, con-
sidering the fourth-order system dynamics and HP-PPF controller, is 
given as follows: 
𝑠6 +

[

2𝜔1
(

𝜁1 + 𝜁2𝑛 + 𝜁𝑐𝑛
)]

𝑠5+
[

𝜔2
1
(

1 + 2𝑛2 + 4𝜁1𝜁2𝑛 + 4𝜁1𝜁𝑐𝑛 + 4𝜁2𝜁𝑐𝑛2
)]

𝑠4+
[

2𝑛𝜔3
1
(

2𝜁1𝑛 + 𝜁2 + 2𝜁𝑐𝑛2 + 4𝜁1𝜁2𝜁𝑐𝑛 + 𝜁2𝑛
2)] 𝑠3+

[

𝑛2𝜔4
1
(

2 + 4𝜁1𝜁𝑐𝑛 + 4𝜁2𝜁𝑐 + 𝑛2 + 4𝜁1𝜁2𝑛 − 𝑔𝑛
)]

𝑠2+
[

2𝑛3𝜔5
1
(

𝜁𝑐 + 𝜁1𝑛 + 𝜁2
)]

𝑠 +
[

𝑛4𝜔6
1
]

= 0

(15)

Based on the necessary condition from the Routh–Hurwitz criterion for 
closed-loop stability, the following condition emerges: 
0 < 𝑔𝑛 < 4 𝜁2 𝜁𝑐 + 𝑛2 + 4 𝑛 𝜁1 𝜁2 + 4 𝑛 𝜁1 𝜁𝑐 + 2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
k

(16)

The factor 𝑘 can be approximated as 𝑘 ≈ 𝑛2 + 2 due to the typically 
small values of 𝜁1, 𝜁2 and 𝜁𝑐 . This factor compensates for modal gain 
variations, which spaces modes further apart. The spacing between 
the modes (𝑛) is directly related to the gain of the higher-order mode 
relative to the primary mode.

According to the gain criterion outlined in [16], the open-loop gain 
of the active damping loop must peak above 0 dB as indicated in 
Fig.  5(a), introducing two crossover frequencies to reduce sensitivity 
at resonance and therewith enhance the damping characteristics of the 
mode. For further separated modes, the relatively lower modal gain 
of the higher-order mode necessitates a higher gain in the damping 
controller (𝑔𝑛), which is essentially described by factor 𝑘, to meet this 
criterion for effective active damping. To simplify the formulation, the 
gain of the active damping controller is adjusted to account for this 
modal gain dependency, such that 𝑔𝑘 = 𝑔𝑛∕𝑘, resulting in the following 
expression for the active damping controller: 

𝐶𝑑 (𝑠) = 𝑔𝑘 ⋅
𝑠2

𝑠2 + 2𝜁𝑐𝜔𝑐𝑠 + 𝜔2
𝑐

(17)

Upon re-evaluation of the characteristic equation with compensated 
gain 𝑔𝑘, a necessary stability condition for the damping loop emerges 
as 0 < 𝑔𝑘 < 1, independent of 𝑛. This condition underscores the role of 
𝑘 in compensating for the modal gain difference.

However, even with the inclusion of 𝑘 ≈ 𝑛2 + 2 in the HP-PPF 
controller, the stability of the inner damping loop remains influenced 
by the spacing between the two modes. The open-loop responses in 
Fig.  8 illustrate the application of the same HP-PPF controller, which 
satisfies the condition in Eq. (16), to two systems with different mode 
spacing. In this example, the active damping controller achieves a 
stable closed damping loop when 𝑛 = 25 (Fig.  8(a)), but leads to an 
unstable closed damping loop when 𝑛 = 15 (Fig.  8(b)). This illustrates 
that closer spacing between the rigid-body and higher-order mode 
increases the likelihood of destabilizing the inner damping loop.

The root-locus plot in Fig.  9 illustrates that the closed-loop poles 
associated with the first resonance mode (𝜔1) in the right-half-plane 
(RHP) shift to more negative real values as 𝑛 increases, retaining 
stability of the inner closed-loop system, as those system poles initially 
lie in the RHP. This indicates that when the modes are closely spaced, 
the active damping controller can destabilize the closed-loop poles of 
the first resonance mode. The larger angle between the real axis and 
6 
Fig. 8. Closed inner active damping loop using same HP-PPF controller is stable when 
mode spacing 𝑛 = 25 (a) and unstable when 𝑛 = 15 (b).

Fig. 9. Trajectories of closed damping loop poles (black) and system poles (grey) for 
increasing values of 𝑛.

Fig. 10. Added phase at crossover in open-loop response 𝐶𝑡(𝑠) ⋅ 𝐶𝐿𝑑 (𝑠) (black), 
representing PID controller combined with the unstable inner damping loop (grey).

the closed-loop pole trajectories corresponding to the second mode 
(𝜔2) reflects an increase in the damping ratio of this mode. Note that 
this angle, and consequently the damping ratio, remains constant as 𝑛
varies.

The instability of the inner damping loop is not a significant con-
cern, as tracking controllers, such as PID controllers, are commonly 
used in motion control to stabilize otherwise unstable systems [37]. 
Similarly, in cases where the inner active damping loop becomes un-
stable due to closely spaced resonance modes, a PID controller can 
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Fig. 11. Stability regions as a function of 𝑔𝑘 and 𝑛 (𝜁𝑐 = 0.3), indicating where both 
the inner damping loop and outer closed-loop are stable (blue), and the region where 
the inner damping loop is unstable but the outer closed-loop with the PID tracking 
controller becomes stable (grey).

stabilize the system by shifting the unstable poles to the left-half-plane. 
In the frequency domain, this stabilization can be visualized through 
the derivative (D) action of the PID controller, which introduces an 
additional phase lead at the crossover frequency [37]. This phase lead 
effectively raises the phase above −180◦ at crossover, ensuring system 
stability and providing sufficient phase margin. The outer open-loop 
response in Fig.  10 of the control architecture in Fig.  6, represented by 
𝐶𝑡(𝑠) ⋅ 𝐶𝐿𝑑 (𝑠), where 𝐶𝑡(𝑠) = 𝐶𝑃𝐼𝐷(𝑠) as defined in Eq. (13), demon-
strates how a standard tamed PID controller adds phase lead (𝜑𝐿) at 
crossover (𝜔𝑥), retaining stability of the outer closed-loop system and 
ensuring a phase margin (𝜑𝑚) of approximately 30◦.

Fig.  11 illustrates the stability of both the inner damping loop and 
the outer closed-loop with the PID tracking controller, as a function of 
the HP-PPF controller feedback gain (𝑔𝑘) and the mode spacing (𝑛). The 
blue region represents combinations of 𝑔𝑘 and 𝑛 where the inner closed 
damping loop remains stable. In contrast, the grey region indicates 
where the inner closed-loop is unstable, but the PID controller, when 
properly tuned to introduce phase lead at crossover according to the 
design rules in Eq. (14), stabilizes the overall closed-loop system. As 𝑛
increases, the stable region converges towards 𝑔𝑘 = 1, in line with the 
derived Routh–Hurwitz stability condition. It is important to note that 
this plot assumes a fixed damping control parameter 𝜁𝑐 set to 0.3, and 
the PID controller is tuned based on standard rules-of-thumb (Eq. (14)).

4.3. Control parameter tuning

The dual closed-loop system’s performance mainly depends on the 
three control parameters of the HP-PPF controller 𝑔𝑘, 𝜁𝑐 , and the PID 
controller’s desired crossover frequency (Eq. (14)). The second-order 
high-pass filter’s cut-off frequency (𝜔𝑐) in HP-PPF is tuned to damp 
the mode at 78 Hz in the experiment. Increasing the damping of 
the controller (𝜁𝑐) leads to greater peak attenuation and robustness, 
however, this comes at the cost of increased phase lag, which limits 
the maximum achievable control bandwidth. Similarly, increasing the 
gain (𝑔𝑘), within the stability limits dependent on 𝑛 (Fig.  11), improves 
peak attenuation but also increases process sensitivity at lower frequen-
cies, as discussed in Section 5.1. Consequently, tuning the parameters 
involves a trade-off between peak attenuation, maximum control band-
width, and low-frequency disturbance rejection. Simultaneous design 
of control parameters in a dual-loop architecture through optimization 
has proven significantly more effective than the sequential design of 
7 
the damping controller and tracking controller [31]. 

max
𝐱

𝜔𝑥 =
{

𝜔||
|

|

|

|

𝐿(𝜔, 𝐱)||
|

= |

|

|

𝐶𝑡(𝜔) ⋅ 𝐶𝐿𝑑 (𝜔, 𝐱)
|

|

|

= 1
}

subject to 1
2
|

|

|

𝐿(𝜔, 𝐱)||
|𝜔=𝜔𝑥

|

|

|

− 1 ≥ 0

6
𝜋
⋅ ∠𝐿(𝜔, 𝐱)||

|𝜔=𝜔𝑥
− 1 ≥ 0

and 0 < 𝑔𝑘 < 1

0 < 𝜁𝑐 < 1

𝜔1 < 𝜔𝑥 < 𝜔2

where 𝐱 = (𝑔𝑘, 𝜁𝑐 , 𝜔𝑥)𝑇

(18)

To simultaneously determine the control parameters for both the damp-
ing and tracking controller (𝑔𝑘, 𝜁𝑐 , and 𝜔𝑥 respectively), a gradient-
based optimization method utilizing the sequential quadratic program-
ming (SQP) algorithm is employed [38]. The optimization aims to 
maximize the open-loop bandwidth (crossover frequency 𝜔𝑥) of the 
dual-loop, under the constraints of maintaining sufficient gain and 
phase margin. The optimization problem is formulated in Eq. (18).

The optimization process is employed to determine the control 
parameters that achieve maximum open-loop bandwidth for damping 
and tracking control of the identified frequency response of the exper-
imental setup (Fig.  2). This results in 𝑔𝑘 = 0.2618, 𝜁𝑐 = 0.7185 and 
𝜔𝑥 = 25 Hz.

4.4. Attenuating feedback noise using band-pass filter

The high-pass active damping controller lacks roll-off beyond its 
cut-off frequency, which can amplify high-frequency noise present in 
practical applications. This noise amplification increases power de-
mands, potentially causing the amplifier to overheat, saturate, or pro-
duce distorted output, ultimately degrading system performance and 
lifespan.

Mathematically, the signal entering the amplifier through the inner 
feedback loop can be represented as: 
𝑣𝑑
𝑛

=
𝐶𝑑 (𝑠)

1 + 𝐶𝑑 (𝑠)𝐺(𝑠)
(19)

which simplifies to 𝑣𝑑𝑛 ≈ 𝐶𝑑 (𝑠) at high frequencies due to the system 
roll-off ( lim

𝑠→∞
𝐺(𝑠) = 0). In this high-frequency range, where noise 

dominates, the noise entering the amplifier through the inner feedback 
loop can be expressed as: 
𝑣𝑑 = lim

𝑠→∞
𝐶𝑑 (𝑠) ⋅ 𝑛 ≈ 𝑔𝑘 ⋅ 𝑛 (20)

This emphasizes the importance of high-frequency roll-off in the damp-
ing controller to reduce the magnitude of the high-frequency compo-
nent of the transfer function.

To address this issue, a low-pass filter can be introduced, which 
provides high-frequency roll-off and effectively transforms the damping 
controller into a band-pass filter, as illustrated in Fig.  12 for the case 
where the width of the band-pass 𝛼 is set to 10. Depending on the 
required high-frequency roll-off, a higher-order low-pass filter may be 
utilized.

The band-pass active damping controller can be mathematically 
represented as follows: 

𝐶𝑑 (𝑠) = 𝑔𝑘 ⋅
𝑠2

𝑠2 + 2𝜁𝑐𝜔𝑐𝑠 + 𝜔2
𝑐
⋅
(

𝜔𝐿
𝑠 + 𝜔𝐿

)𝑚
(21)

where 𝑚 denotes the order of the low-pass filter, and 𝜔𝐿 = 𝛼 ⋅ 𝜔𝑐 .
However, placing a low-pass filter too close to the high-pass filter of 

the HP-PPF controller can adversely affect the effective damping perfor-
mance. This relative distance between the individual cut-off frequencies 
is described by the width of the resulting band-pass filter, denoted by 
𝛼.

The magnitude reduction of the inner closed damping loop at 
resonance frequency is evidenced in Eq. (10). When a second-order 
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Fig. 12. Second-order HPF (grey) with added first-order LPF (black-dotted) and second-
order LPF (black).

low-pass filter (LPF) is incorporated into the active damping controller 
for noise attenuation, the active damping controller is represented by 
Eq. (21), with 𝑚 = 2, 𝜔𝐿 = 𝛼⋅𝜔𝑐 , neglecting the damping ratio of the LPF 
for mathematical simplicity. The magnitude of the closed-loop damping 
response at the resonance frequency, considering only the contribution 
of the higher-order mode for mathematical simplicity as expressed in 
Eq. (4), can be determined as: 

|

|

𝐶𝐿𝑑−𝐵𝑃𝐹 (𝑖𝜔2)|| =
2𝜁𝑐

|

|

|

𝛼2 + 1||
|

|

|

𝑎2𝑔𝑛 − 4𝜁𝑐𝜁2 + 4𝛼2𝜁𝑐𝜁2||
(22)

This equation illustrates the dependence of damping effectiveness 
on the width parameter 𝛼 of the band-pass filter. Assuming 𝛼 ≫ 1, the 
expression simplifies to: 

|

|

𝐶𝐿𝑑−𝐵𝑃𝐹 (𝑖𝜔2)|| =
2𝜁𝑐 |𝛼2|

|𝛼2𝑔𝑛 + 4𝛼2𝜁𝑐𝜁2|
≈ 1

2
(

𝑔𝑛
4𝜁𝑐

+ 𝜁2
) (23)

The similarity with Eq. (10) suggests that when the low-pass filter 
(LPF) is sufficiently far from the high-pass filter (HPF), the active 
damping is unaffected. However, if the LPF is positioned too close to the 
HPF, the magnitude reduction is influenced. Therefore, careful tuning 
of the LPF frequency is essential, balancing damping performance with 
high-frequency noise attenuation. In the presented application, 𝛼 is 
set to 10 to maintain the primary objective of unaffected damping 
performance. For the proper tuning of 𝛼, methods such as dynamic error 
budgeting can be utilized [39].

5. Experimental implementation

The proposed HP-PPF active damping controller, optimized for the 
experimental setup with an added low-pass filter for noise attenuation, 
is implemented in real-time through discretization using the Tustin 
method. The chosen parameters, designed to maximize open-loop band-
width, lead to an unstable inner damping loop due to closely spaced 
modes. The introduced tamed PID controller stabilizes the outer closed-
loop system. Through closed-loop system identification, the frequency 
response of the inner damping loop is isolated, which is illustrated in 
Fig.  13. The results demonstrate a significant reduction (∼ 16 dB) of the 
resonance peak. The primary resonance mode 𝜔1 is shifted from 6 Hz to 
7.5 Hz in the closed damping loop response, yet it remains sufficiently 
below the crossover frequency 𝜔𝑥.

An experimental comparison is conducted to showcase the benefits 
of implementing HP-PPF active damping control across three scenar-
ios. In each case, the controllers are designed to maximize open-loop 
8 
Fig. 13. Experimentally identified inner closed damping loop 𝐶𝐿𝑑 (black) and identi-
fied frequency response of experimental setup (grey).

Table 3
Control parameters, open-loop bandwidth (𝜔𝑥) and corresponding margins (GM, PM) 
for three cases.
 Control parameters 𝝎𝐱 GM PM

 Case A – 12 Hz 13 dB 37◦ 
 Case B 𝑄 = 7, 𝜁𝑁 = 0.15 22 Hz 6 dB 30◦ 
 Case C 𝑔𝑘 = 0.26, 𝜁𝑐 = 0.71 25 Hz 6 dB 30◦ 

bandwidth while ensuring stability and robustness margins. The per-
formance of these scenarios will be compared and assessed throughout 
the remainder of the paper.

Case A (PID): Only a tamed PID controller ((𝐶𝑡(𝑠)) is employed 
for tracking control, leaving the delimiting resonance undamped. This 
configuration yields a maximum open-loop bandwidth of 12 Hz, limited 
by the non-collocated higher-order resonance.

Case B (PID + Notch): A conventional notch filter (𝑁(𝑠)), described 
in Eq. (24), is introduced, following the control architecture in Fig.  7. 

𝑁(𝑠) =
𝑠2 + (2𝜁𝑁∕𝑄)𝑠 + 𝜔2

𝑁

𝑠2 + 2𝜁𝑁𝑠 + 𝜔2
𝑁

(24)

The notch filter is tuned to reduce the delimiting resonance peak to a 
level comparable to that of the active damping controller with similar 
phase lag, resulting in a maximum open-loop bandwidth of 22 Hz.

Case C (PID + Active Damping): The dual-loop architecture shown 
in Fig.  6 incorporates the optimized HP-PPF controller and tamed PID 
controller, achieving an open-loop bandwidth of 25 Hz.

The tuned control parameters, resulting open-loop bandwidths and 
stability margins for the three cases are presented in Table  3. The 
corresponding experimental open-loop frequency responses are shown 
in Fig.  14. This comparison illustrates that the HP-PPF active damping 
control architecture can achieve open-loop bandwidths and stability 
margins comparable to those of an industry-standard notch filter-based 
solution.

5.1. Disturbance rejection

The previous section demonstrated the practical implementation of 
the proposed active damping control method, showcasing its ability 
to achieve control bandwidth improvements comparable to industry-
standard notch filters. However, the primary objective of this novel 
approach is not to exceed the bandwidth of existing solutions but to 
address the inherent limitations of notch filters. While notch filters 
effectively suppress resonance in closed-loop responses, their ability to 
improve disturbance rejection is limited, as the delimiting resonance 
remains noticeable in the closed-loop disturbance rejection [15].

The dual closed-loop process sensitivity function when implement-
ing active damping control, 𝑃𝑆𝐴𝐷𝐶 (𝑠), can be determined by: 

𝑃𝑆𝐴𝐷𝐶 (𝑠) =
𝑦
=

𝐺(𝑠)
=

𝐺𝑑 (𝑠) (25)

𝑑 1 + 𝐺(𝐶𝑡(𝑠) − 𝐶𝑑 (𝑠)) 1 + 𝐺𝑑 (𝑠)𝐶𝑡(𝑠)
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Fig. 14. Experimentally identified open-loop response indicating 0 dB crossover 
frequencies for three comparison cases.

Here, the inner active damping loop from Eq. (8) is represented by an 
equivalent plant (𝐺𝑑 (𝑠)), incorporating the damped delimiting mode. 
In practice, a notch filter (𝑁(𝑠)) can be implemented to obtain sim-
ilar peak attenuating in the open-loop around the frequency of the 
higher-order mode (𝜔2) and thus: 

|𝐺𝑑 (𝑖𝜔)| =
|

|

|

|

𝐺(𝑖𝜔)
1 − 𝐺(𝑖𝜔)𝐶𝑑 (𝑖𝜔)

|

|

|

|

= |𝐺(𝑖𝜔) ⋅𝑁(𝑖𝜔)|
|

|

|

|𝜔=𝜔2

(26)

The closed-loop process sensitivity when using the notch filter, denoted 
as 𝑃𝑆𝑁 (𝑠), can be calculated as follows: 

𝑃𝑆𝑁 (𝑠) =
𝐺(𝑠)

1 + 𝐺(𝑠)𝑁𝐶𝑡(𝑠)
(27)

Combining Eqs.  (26) and (27) gives: 
|

|

𝑃𝑆𝑁 (𝑖𝜔)|
|

≈
|

|

|

|

𝐺(𝑖𝜔)
1 + 𝐺𝑑 (𝑖𝜔)𝐶𝑡(𝑖𝜔)

|

|

|

|𝜔=𝜔2

(28)

The ratio of the two process sensitivity functions can be expressed as: 
|𝑃𝑆𝐴𝐷𝐶 (𝑠)|
|𝑃𝑆𝑁 (𝑠)|

=
|

|

|

|

𝐺𝑑 (𝑠)
1 + 𝐺𝑑 (𝑠)𝐶𝑡(𝑠)

|

|

|

|

∕
|

|

|

|

𝐺(𝑠)
1 + 𝐺𝑑 (𝑠)𝐶𝑡(𝑠)

|

|

|

|

=
|𝐺𝑑 (𝑠)|
|𝐺(𝑠)|

≈
|𝐺(𝑠) ⋅𝑁(𝑠)|

|𝐺(𝑠)|
= |𝑁(𝑖𝜔)|𝜔=𝜔2

= 1
𝑄

< 1
(29)

This demonstrates that the implementation of active damping con-
trol results in a reduced process sensitivity around the frequency of the 
higher-order delimiting mode, indicating better disturbance rejection, 
which is not achieved when using a notch filter.

This reduction around the delimiting resonance is clearly observed 
in the experimentally obtained process sensitivity frequency responses 
in Fig.  15 (III.), where the delimiting resonance peak remains present 
when a notch filter is employed. At low frequencies (I.), both the active 
damping control architecture and notch filter architecture reduce the 
process sensitivity due to the higher gains of the tracking controllers.

The active damping architecture demonstrates significantly reduced 
process sensitivity around the frequency of the delimiting mode, com-
pared to the notch filter architecture. In multi-DOF positioning stages 
that use multiple actuators and sensors, actuation in one DOF can 
introduce disturbances into the other DOF of the system, particularly 
at this delimiting mode frequency (𝜔2). This effect is evident in the 
cross-coupling transfer function of a multi-DOF positioning system, as 
illustrated in Fig.  16.

To replicate such cross-coupling disturbance, a multisine signal, 
composed of frequencies around the delimiting mode, is applied as a 
9 
Fig. 15. Experimentally identified closed-loop process sensitivity responses for three 
comparison cases.

Fig. 16. Magnitude of cross-coupling frequency response 𝑥2∕𝐹1 in multi-DOF position-
ing system; transfer function from actuator at 𝑚1 to position of 𝑚2.

process disturbance to the closed-loop system. This multisine signal 
includes components at 76 Hz and 80 Hz to illustrate the system’s 
ability to reject disturbances at frequencies close to the delimiting 
mode. The multisine disturbance signal 𝑑(𝑡) can be expressed as: 
𝑑(𝑡) = 𝐴sin(2𝜋 ⋅ 76𝑡) + 𝐴sin(2𝜋 ⋅ 80𝑡) (30)

where 𝐴 represents the amplitude of the sine waves. The resulting 
output response, normalized with the input amplitude 𝐴, depicted in 
Fig.  17, clearly illustrates the superior disturbance rejection achieved 
with the implementation of active damping control. Similarly, in Fig.  18 
when a chirp signal is applied as a disturbance input, an improvement 
in signal rejection is observed around the frequency of the delimiting 
mode.

The proposed HP-PPF active damping control architecture demon-
strates superior disturbance rejection around the frequency of the 
higher-order delimiting mode compared to the notch filter-based so-
lution. However, as shown in Fig.  15 (II.), there is an increase in 
the magnitude of the process sensitivity function in the frequency 
range between the rigid-body mode (𝜔1) and the higher-order mode 
(𝜔2) when using active damping control. This increase is attributed to 
spillover effects within the inner damping loop, which can be mitigated 
by reducing the gain 𝑔𝑘 of the damping controller. Consequently, a 
trade-off arises between reducing the delimiting resonance peak and 
increasing process sensitivity in this lower frequency range. This sug-
gests that the active damping control approach may not always provide 
better disturbance rejection in certain situations, depending on the 
present disturbance profiles.

5.2. Robustness to model uncertainty

A major drawback of the notch filter-based solution is its sensitivity 
to model uncertainties. The notch filter must be precisely tuned to the 
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Fig. 17. Process disturbance rejection of multisine signal 𝑑(𝑡) for three comparison 
cases.

Fig. 18. Process disturbance rejection of chirp signal (0.1 Hz–1000 Hz) for three 
comparison cases.

exact frequency of the delimiting resonance. Any deviation in the actual 
resonance frequency from the model can severely degrade the filter’s 
performance, leading to increased disturbance errors, restricted control 
bandwidth, and potentially inducing instability.

In contrast, while the HP-PPF controller also requires alignment 
with the targeted resonance mode, it achieves damping through phase 
adjustment, as illustrated in Fig.  5, offering improved robustness
against parameter variations. The notch filter mitigates the resonance 
by attenuating its gain, making it more susceptible to parameter vari-
ations. Although increasing the damping ratio of a notch filter can en-
hance robustness, it introduces additional phase lag, further restricting 
control bandwidth. Therefore, a trade-off exists between robustness to 
model uncertainty and control bandwidth in the case of a notch filter-
based architecture, a trade-off that is significantly less pronounced with 
the novel active damping approach.

The experimental setup includes fixed resonance modes that cannot 
be easily modified. However, resonance mode uncertainty can be simu-
lated by adjusting the frequency location of the HP-PPF controller and 
notch filter. The target frequencies of both controllers (𝜔𝑐 , 𝜔𝑁 ), which 
are typically set equal to the frequency of the target mode (𝜔2), are 
shifted by a factor 𝛿: 
�̂�𝑐 = 𝜔2 + 𝛿 ⋅ 𝜔2, �̂�𝑁 = 𝜔2 + 𝛿 ⋅ 𝜔2 (31)

The impact of this added uncertainty on the performance of the 
active damping control architecture and the notch-based approach can 
be observed using closed-loop system identification. Fig.  19(a) presents 
the closed damping loop response (𝐶𝐿𝑑 (𝑠)) and Fig.  19(b) the open-
loop notch response (𝑁(𝑠) ⋅ 𝐺(𝑠)) under different levels of resonance 
10 
Fig. 19. Effectiveness of active damping control (a) and notch filter (b) under varying 
percentages of resonance frequency uncertainty.

Fig. 20. Illustration cases of closed-loop step reference tracking with +2.5% (a) and 
−5% (b) of resonance frequency uncertainty 𝛿.

uncertainty. The results demonstrate the superior robustness of the 
active damping controller compared to the notch filter when faced with 
resonance mode uncertainty.

The closed-loop tracking responses to a step reference in Fig.  20 
demonstrate that the control architecture with a notch filter tends 
towards instability as the mismatch between the notch frequency and 
the resonance grows. In contrast, the active damping controller main-
tains consistent performance, showing no signs of degradation under 
variations in the resonance frequency within the considered range.

6. Conclusion

This research introduces a novel active damping control method 
designed to suppress higher-order resonance modes in positioning sys-
tems. By incorporating a second-order high-pass filter within a positive 
feedback loop (HP-PPF), the approach specifically targets higher-order 
delimiting modes, which typically introduce unwanted vibrations and 
reduce positioning accuracy. The proposed method effectively enhances 
the damping characteristics of these undesired modes. To demonstrate 
the contributions of this work, the proposed active damping control is 
integrated into a dual-loop configuration that operates in parallel with 
a PID controller for tracking control. This configuration provides active 
damping for a non-collocated dual-stage positioning system, where the 
dominant non-collocated higher-order resonance not only contributes 
to disturbance errors but also significantly limits control bandwidth. 
Through simultaneous optimization of both the active damping and 
tracking controllers, the dual-loop architecture shows improved dis-
turbance rejection at the frequency of the higher-order mode, as well 
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as enhanced robustness against model uncertainties, overcoming the 
limitations of traditional notch filters. The active damping control 
solution achieves an open-loop control bandwidth comparable to that 
of a notch filter-based architecture while providing better disturbance 
rejection and robustness against model uncertainties. A mathematical 
framework was developed to generalize these contributions, which 
were experimentally validated using a single-axis dual-stage compliant 
positioning system as a proof-of-concept setup.

Beyond the specific application studied, the HP-PPF method has 
broader applicability. By adjusting the feedback sign, it can also be 
used for active damping of higher-order collocated resonance modes. 
Additionally, for damping multiple modes, the method can be applied 
in parallel for each higher-order mode and integrated alongside existing 
techniques for primary mode damping. Further research should explore 
its applicability in systems with multiple degrees of freedom, where 
the HP-PPF method could be implemented in a decentralized archi-
tecture across different axes. Although the experimental implementa-
tion shows successful feedback noise attenuation with a second-order 
low-pass filter, optimizing the tuning of the low-pass filter frequency 
is recommended. This optimization should account for the trade-off 
between damping performance and noise attenuation, which can be 
achieved using methods like dynamic error budgeting, particularly 
when application-specific disturbances and noise profiles are known. 
Additionally, the observed increase in low-frequency process sensitivity 
due to the delimiting resonance peak reduction underscores the need 
for precise controller tuning based on application-specific disturbance 
rejection requirements. Furthermore, the impact of real-time system 
delays on phase properties and therewith damping performance must 
be addressed. Finally, a qualitative comparison with more complex 
existing control methods, such as modal control and 𝐻∞-synthesis, 
would provide valuable insights into the relative performance of the 
HP-PPF approach. Future investigations could focus on the broader 
application of this strategy to improve robustness and performance 
across various systems.
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