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Abstract — The calibration of a collocated MIMO radar is
addressed by means of independent calibration of transmit and
receive arrays. The solutions for both arrays’ elements gain
and phase terms only and the full coupling matrix estimation
are presented. The proposed solution significantly improves over
the conventional calibration of the virtual array in terms of
calibration accuracy and reduced measurements requirement,
as demonstrated by numerical simulation and validated by
calibration of a commercial automotive radar.
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I. INTRODUCTION

Multiple-input multiple-output (MIMO) radar systems have
received significant attention in the last decade due to their
instantaneous large-angle coverage, ability to provide high
angular resolution and their low cost, essential for commercial
radars. These promising benefits of MIMO radars can be
archived only if the impact of prominent hardware errors
is minimal, thus system calibration is crucial for radar
production and maintenance. Array calibration is a procedure
that corrects hardware imperfections such as gain, phase, array
element locations, mutual coupling between elements and
I/Q imbalance [1]. Improper array calibration leads to severe
degradation of radar performance, in particularly the accuracy
and target response of (high-resolution) direction-of-arrival
(DOA) estimation techniques [2], interference cancellation [3]
and target detection.

Most of the conventional methods for MIMO radar
calibration use the virtual array representation and benefit from
a wide variety of calibration techniques for phased array radars,
e.g. [4], [5]. These methods provide reliable estimation of the
calibration coefficients [5] or the coupling matrix [4] with
sufficient amount of calibration data, but they do not benefit
the particular structure of the MIMO beamforming.

In this paper paper we propose a simple yet efficient
calibration technique for independent calibration of transmit
and receive arrays of a coherent MIMO radar. We demonstrate
that the proposed approach improves over the conventional
calibration of the virtual array in terms of calibration accuracy
and lowers the minimal required number of independent
measurements.

Notations: Hereinafter we use lowercase boldface letters
for vectors and uppercase boldface letters for matrices.
The superscripts (·)T , (·)H and (·)∗ indicate matrix/vector

transpose, Hermitian transpose and complex conjugate,
respectively.

II. COUPLING-FREE MODEL - GAIN AND PHASE
CALIBRATION

A. Virtual array calibration

Consider a virtual uniform linear array (ULA) of M
elements observing a point-like target at angle φi from the
array pointing direction. The target is characterised by its
complex back-scattering coefficient αi = |αi|ejϕi with ϕi ∼
U(0, 2π), which comprises signal attenuation due to two-way
propagation and processing gain with no loss of generality.
The amplitude and phase distortion in the m-th element of
the array is characterised by a complex-valued coefficient γm,
m = 0, . . . ,M −1. Then, the response of the i-th target in the
m-th antenna element κm,i is given by:

κm,i = αiγm exp

(
−j2πdm

λ
sin(φi)

)
+ nm,i, (1)

where λ stands for the carrier wavelength, d is the
inter-element spacing of the ULA and nm,i ∼

(
0, σ2

)
represents the receiver noise.

To remedy the dependence on the target back-scattering
coefficient αi, we consider channel m = 0 (another m can be
used with no loss of generality) as the reference point [1], [4].
This implies that the calibration coefficient at γ0 = 1 is fixed.
The new data set P ∈ C(M−1)×Ni is obtained by normalising
the target response in every channel via:

pm,i =
κm,i
κ0,i

= γmhm,i + n′m,i. (2)

Note that normalisation by a constant does not affect target
SNR nor its DOA estimation. We assume that the angles of
all observed targets φi, i = 1, . . . , I are known, and we use
them to form the steering vectors for the corresponding targets
in matrix H ∈ C(M−1)×I with elements:

hm,i = exp

(
−j2πdm

λ
sin(φi)

)
. (3)

The noise vector after normalization is n′m,i ∼
(
0, σ2

i

)
, where

σ2
i =

(
|αi|2

σ2
+ 1

)−1

= (SNRi + 1)−1. (4)
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a b c
Fig. 1. Gain and phase calibration comparison: MSE of calibration coefficients (a) vs SNR, (b) vs number of targets, (c) vs calibration error.

The equality follows directly from the normalization (2).
To perform calibration in a stationary scenario we collect

the normalised responses of all the observed targets P and
compare them to the expected array response in the same
channel. The calibration coefficients γγγ = [γ1, . . . , γM−1]T are
then estimated by the least squares method:

γ̂m =

∑I
i hm,ip

∗
m,i∑I

i |pm,i|
2
, m = 1, . . . ,M − 1. (5)

The accuracy of the calibration depends on the SNR and the
number of available observations.

For I independent measurements, the observation model
(2) can be written in the form:

pm = γmhm + n′m. (6)

with pm = [pm,1, . . . , pm,I ]
T , n′m ∼ CN (0I ,Σ) and Σ =

diag
(
σ2

1 , . . . , σ
2
I

)
. The representation (6) is a linear Gaussian

estimation problem, for which the Cramer-Rao bound (CRB)
of the estimated calibration coefficients can be given by:

CRBγm =
(
hHmΣ−1hm

)−1
∣∣∣∣
|hm,i|=1

=

(
I +

I∑
i=1

|αi|2

σ2

)−1

.

(7)

The coupling-free model is widely used because it gives a
reasonable estimation even with one measurement [6].

B. Tx and Rx array calibration

Consider a coherent MIMO system with K transmit and L
receive channels and let k = 0, . . . ,K−1 and l = 0, . . . , L−1.
The measured signal for the i-th target in the k-th Tx and l-th
Rx channel is:

κk,l,i = αiγ̃kγ̆l exp

(
−j2πdtk + drl

λ
sin(φi)

)
+ ñk,l,i, (8)

where dt and dr are the inter-element spacing of the uniform
linear arrays used for transmit and receive respectively and
ñk,l,i ∼

(
0, σ2

)
.

Proceeding in a similar manner as in (2), it is possible to
calibrate Tx and Rx arrays separately. Thus, for the Tx array,
consider the element k = 0 as the reference one γ̃k = 1 and
obtain the normalized data set via:

p̃k,l,i =
κk,l,i
κ0,l,i

= γ̃k exp

(
−j2πdtk

λ
sin(φi)

)
+ ñ′k,l,i, (9)

k = 1, . . . ,K. Denote h̃k,i = exp
(
−j2π dtkλ sin(φi)

)
, then the

calibration of Tx array can be performed via:

ˆ̃γk =

∑L−1
l=0

∑I
i h̃k,ip̃

∗
k,l,i∑L−1

l=0

∑I
i |p̃k,l,i|

2
, k = 1, . . . ,K − 1. (10)

The measurement model (9) can be given in
a from (6) by defining new variables: h̃k =
[h̃k,0,1, . . . , h̃k,L−1,1, . . . , h̃k,0,I , . . . , h̃k,L−1,I ]

T , and similarly
for p̃k. Assuming that E{|γl|} = 1, l = 0, . . . , L − 1, the
noise vector becomes ñ′k ∼ CN (0IL, IL ⊗ Σ) respectively.
Then the CRB for Tx calibration coefficients is:

CRBγ̃k =
(
h̃Hk (IL ⊗Σ)

−1
h̃k

)−1

=
1

L

(
I +

I∑
i=1

|αi|2

σ2

)−1

.

(11)

where the second equality is based on |h̃k,i| = 1.
Proceeding in a similar manner for the Rx array calibration

and setting the reference channel l = 0,p̆l = 1, we obtain:

p̆k,l,i =
κk,l,i
κk,0,i

= γ̆l exp

(
−j2πdrl

λ
sin(φi)

)
+ n̆′l,i, (12)

with l = 0, . . . L − 1. The calibration is performed similarly
to the examples above:

ˆ̆γl =

∑K−1
k=0

∑I
i h̆l,ip̆

∗
k,l,i∑K−1

k=0

∑I
i |p̆k,l,i|

2
, l = 1, . . . , L− 1, (13)

where h̆l,i = exp
(
−j2π drlλ sin(φi)

)
. Stacking the responses

of I targets in K Tx channels in an array h̆l, the CRB of the
estimation of Rx array calibration is given by:

CRBγ̆l =
(
h̆Hl (IK ⊗Σ)

−1
h̆l

)−1

=
1

K

(
I +

I∑
i=1

|αi|2

σ2

)−1

.

(14)

Here we assume that E{|γk|} = 1, k = 0, . . . ,K − 1.
To compare the performance of Tx and Rx arrays

calibration to that of virtual array, we can notice from (2)
and (8) the relation γm = g (γ̃k, γ̆l) = γ̃kγ̆l with m = Lk + l
for dense receive and sparse transmit arrays. Define Jacobian
JT (g) =

[
∂g(γ̃k,γ̆l)
∂γ̃k

, ∂g(γ̃k,γ̆l)
∂γ̆l

]
, then the asymptotic CRB for

the product of two parameters is [7]:

CRBγ̃kγ̆l = J(g)diag [CRBγ̃k ,CRBγ̆l ] J
T (g)

=
K + L

KL

(
I +

I∑
i=1

|αi|2

σ2

)−1

=
K + L

KL
CRBγm ,

(15)
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a b c
Fig. 2. Error in the estimated full coupling matrix: (a) vs SNR, (b) vs number of targets, (c) vs calibration error.

where CRBγm is defined in (7). It follows that CRBγ̃kγ̆l ≤
CRBγm for MIMO configuration: (K ≥ 2)∧(L ≥ 2). This can
be explained by the smaller number of unknown parameters
(K+L− 2) in the proposed approach compared to the virtual
array calibration (M − 1 = KL− 1).

The comparison of virtual array and MIMO calibration is
demonstrated in Fig. 1 as a function of SNR for I = 6 (Fig.
1, a) and as a as the function of number of observation for
SNR = 30 dB (Fig. 1, b). In these simulations the calibration
error in each Tx and each Rx element was modelled as:
γ̃k, γ̆l ∼ CN (1, σ2

γ) with σγ = 0.2. It can be seen that MIMO
calibration outperforms virtual array approach for SNR ≥ 18
dB case, while it has larger errors for small SNR. On the
other hand, for large calibration errors σγ ≥ 0.25, virtual array
calibration provides more accurate estimation (Fig. 1, c).

III. FULL COUPLING MATRIX CALIBRATION

A. Virtual array calibration

If the mutual coupling is present, the received signal of the
i-th target κκκi of the virtual array can be given by:

κκκi = αiΓΓΓhi + wi, (16)

where ΓΓΓ is the full M × M mutual coupling matrix, hi =
[h0,i, . . . , hM−1,i]

T with hm,i defined in (3) and wi is M × 1
vector of noise. Set the channel m = 0 as the reference one
and normalize the array data by its measurements:

pi =
κκκi
κ0,i

= ΓΓΓhi + w′i, (17)

with κκκi = [κ0,i, . . . , κN−1,i]
T and p0,i = 1. In [4] the

equivalent procedure is implemented by multiplication of the
steering vector by the received signal in the reference channel.
Next, we stack I measurements column-wise in M × I matrix
P = [p1, . . . ,pI ] and do the same procedure with the
steering vectors: H = [h1, . . . ,hI ] to obtain the least-squares
estimation of the virtual array coupling matrix via:

Γ̂ΓΓ = PHH
(
HHH

)−1

. (18)

The inverse of Γ̂ΓΓ is used for the virtual array calibration.

B. Tx and Rx array calibration

For a general MIMO radar, there exist two types of
antenna mutual coupling: within each array and from one
array to another (Tx-Rx). For collocated MIMO transmitting

FMCW chirps, Tx-Rx coupling is concentrated in the vicinity
of zero range. It implies that the distortion of the virtual
array beam-pattern for targets of interest is due to the
mutual coupling of adjacent elements in Tx and Rx subarrays
respectively.

For the separate calibration of Tx and Rx arrays, received
data from the i-th target is given by the K × L matrix:

KKKi = αiΓ̃ΓΓHHHiΓ̆ΓΓ + Wi, (19)

where vec(HHHi) = hi is the counterpart of the steering vector
for the matrix data model and Wi is the matrix of noise.
For the Tx array calibration, we reshape the data matrix as
K̃KK = [KKK1, . . . ,KKKI ] = [κ̃κκ1,1, . . . , κ̃κκ1,L, . . . , κ̃κκI,1, . . . , κ̃κκI,L] such
that every column represents an independent measurement
corresponding to the Tx array. Normalize the data as before:

p̃i,l =
κ̃κκi,l
κ̃0,i,l

= Γ̃ΓΓh̃i,l + w′i,l, (20)

where κ̃κκi,l = [κ̃0,i,l, . . . , κ̃K−1,i,l]
T . Construct the matrix

P̃ = [p̃1,1, . . . , p̃1,L, . . . , p̃I,1, . . . , p̃I,L] and do the same
rearrangement to HHHi to get H̃. Then Tx array calibration is
done via:

ˆ̃
ΓΓΓ = P̃H̃H

(
H̃H̃H

)−1

. (21)

Note that rearranging the matrix and normalization (20)
decouples the Tx and Rx array calibration, thus they can be
estimated independently.

For the received array, a similar procedure is applied over
the other dimension, namely: K̆KK =

[
KKKT1 , . . . ,KKKTI

]T
=

[κ̆κκ1,1, . . . , κ̆κκ1,K , . . . , κ̆κκI,1, . . . , κ̆κκI,K ]
T where KKKTi =

[κ̆κκi,0, . . . , κ̆κκi,K−1] and κ̆κκi,k = [κ̆0,i,k, . . . , κ̆L−1,i,k]T .
Every column in K̆KK is an independent measurement of the Rx
array for the i-th target and the k-th Tx channel respectively.
Applying normalization similarly to the above, we obtain:

p̆i,k =
κ̆κκi,k
κ̆0,i,k

= h̆i,kΓ̆ΓΓ + w′′i,k. (22)

Here h̆i,k are p̆i,k the Rx array steering vector and the
normalized received data for the i-th target and the k-th
transmit channel respectively. Merge all the normalized data
into matrix P̆ = [p̆1,1, . . . , p̆1,K , . . . , p̆I,1, . . . , p̆I,K ] and all
the steering vectors into matrix H̆ with the same rearrangement
of elements. Then Rx array calibration is done via:

ˆ̆
ΓΓΓ =

(
H̆HH̆

)−1

H̃HP̆. (23)
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a b c
Fig. 3. MIMO full coupling calibration matrix estimated with the proposed method (a) and considering virtual array (b) from the measurements, (c) Beam-forming
in the direction φ = 0 with the calibration matrices depicted in (a) and (b).

The estimated calibration matrices (21) and (23) can be
directly applied for the calibration of Tx and Rx arrays
independently. To compare the results of independent Tx and
Rx array calibration to that of the virtual array (18), the matrix
ΓΓΓ = Γ̃ΓΓ⊗ Γ̆ΓΓ is analyzed (assuming sparse Tx array).

Simulation results are demonstrated in Fig. 2. There we
considered 3 Tx × 4 Rx MIMO system. The coupling matrix in
each array is modelled via lower triangular matrix (K×K for
Tx and L×L for Rx) with elements: γr,s = exp(−(r−s))(1+
ωr,s), where the exponential part defines the average coupling
and ωr,s ∼ N (0, σ2

γ) models the random part. Fig. 2, a
shows the performance of calibration vs SNR and demonstrate
significant improvement of separate calibration over virtual
array calibration for limited number of observations, I = 36.
The comparison of the calibration approaches as the function
of measurements is presented in Fig. 2, b. It can be seen that
the requirement of the full virtual array calibration I ≥ N
is relaxed to I ≥ max{K,L} for the proposed techniques.
Finally, the sensitivity to the calibration error is demonstrated
in Fig. 2, c.

IV. EXPERIMENTAL VALIDATION

We compare the performance of the full coupling matrix
calibration methods described in Section III by applying them
to a commercial mm-wave radar with a dense Rx array having
L = 4 elements and sparse Tx array with K = 3 elements
and dt = 2λ. The radar transmits FMCW chirps of B = 1.05
GHz with time-division multiplexing (TDM) at the carrier
frequency fc = 79.3 GHz. The calibration setup was made
in anechoic chamber with a dihedral corner reflector installed
at the distance of 3 m in from of the radar. The measurements
were taken by rotating the radar at angles from φmin = −80o

to φmin = 80o with a step of 5o . The measurement at
φmin = 0o was not used for calibration, but for validation.
The estimated calibration matrix using (18) and its counterpart
obtained with (21), (23) are depicted in Fig. 3, a, b [8]. It can
be seen that enforced structure of MIMO calibration matrix
(Fig. 3, a) makes it less fluctuating compared to the virtual
array calibration (Fig. 3, b). This results in lower sidelobes
of beam-forming after applying calibration, as shown in Fig.

3, c for the beam-forming in the direction φ = 0o. The
improvement is significant for small to moderate number of
measurements (here I = 32), which is typically of interest.

V. CONCLUSION

In this paper two novel methods of MIMO array calibration
are proposed. The methods perform independent calibration
of transmit and receive arrays by means of the complex
gains of arrays elements or their coupling matrices. Both
methods can be implemented for calibration with a limited
number of measurements, e.g. in garage for an automotive
radar. Simulation results and real data processing demonstrate
that proposed approach significantly improves the calibration
accuracy and decreases the required number of independent
observation compared to conventional virtual array calibration.
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