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I
De formules, die Heiblum and Harris geven voor de verzwakking
van het licht door middel van afstraling in bochten of in prisma-
koppelaars, zijn een factor twee te groot.
M. Heiblum en J.H. Harris: IEEE J. Quantum Electron., QE-11, 1975, pp. 75-83.
M. Heiblum: IEEE J. Quantum Electron., QE-12, 1976, pp. 463-469.
Dit proefschrift, p. 70 en p. 101.

I
De dichtheid van poreus technisch keramiek kan nauwkeurig
bepaald worden door de waterverplaatsingsmethode uit te breiden tot

drie wegingen en daarbij glycerol te gebruiken in plaats van water.
E.C.M. Pennings en W. Grellner: J. Am. Ceram. Soc., 72, 1989, pp. 1268-1270.

I
De in dit proefschrift gepresenteerde berekeningen rechtvaardigen
twijfel aan de juistheid van de door Singh ez al. gepubliceerde resul-
taten.

J. Singhet al.: Electron. Lett., 25, 1989, pp. 899-900.
Dit proefschrift, pp. 186-188.

IVa
Deze stelling wordt niet afgedrukt in het NRC Handelsblad.
IVb
Het NRC Handelsblad is een dagblad, dat ofwel niet alle ware

stellingen of wel tegenstrijdige stellingen afdrukt.
K. Godel: Monatshefte fiir Mathematik und Physik, 38, 1931.
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De natuur kan effectiever beschermd worden door haar tot rechts-
persoon te maken.




VI
Indien de inschrijving voor de Varsity open staat voor een ieder die
zichzelf student noemt, zal Nederland haar meest ludieke studenten-
evenement verliezen.

VI
De enige winst van een geoptimaliseerd Black Jack spel, waarbij de
speler niet alle kaarten onthoudt die al uit het spel zijn, is een
onuitputtelijke hoeveelheid borrelpraat.

11
De filosofie van Popper dient aangevuld te worden met de stelling,
dat de contradictie vanuit wetenschappelijk standpunt de meest

interessante uitspraak is.
K.R. Popper: The logic of scientific discovery (Hutchinson, London, 1968)
Ch.6, § 31.

IX
Gebogen optische multimodale richelgolfgeleiders kunnen
vervaardigd worden met verliezen kleiner dan 0.5 dB/90° en
kromtestralen kleiner dan 200 um. Voor monomode gebogen
golfgeleiders zijn deze waarden niet haalbaar, maar biedt de ‘vanzelf
uitgerichte dubbel geétste’ bocht een goed perspectief om dit wel te
realiseren.

X
Optimaal ontworpen gebogen golfgeleiders kunnen gebruikt worden
om een geintegreerde externe trilholte voor een laser te vervaardigen,
waarbij de trilholte een lengte heeft van drie centimeter of langer en

welke desondanks een oppervlak op het substraat beslaat dat kleiner
is dan 0.25 cm’.
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The photograph on the cover shows a waveguide
which contains four loops with radii of curvature
of 150 um. The source of light is an He-Ne laser
with a wavelength of 632.8 nm.

( See also Fig. 6.5)
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Summary

This thesis deals with the modeling and the fabrication of curved optical wave-
guides and the subsequent assessment of their losses.

The properties of curved waveguides—radiation loss and modal field distribu-
tions—have been calculated by means of the method of effective dielectric
constant in combination with three techniques that can handle the resulting curved
slab waveguide; (a) an approach with Bessel functions, (b) a transformation has
been applied to the curved slab waveguide and the resulting straight waveguide is
analyzed by means of the WKB approximation and (c) the same transformation
in conjunction with the staircase approximation and the transfer-matrix method.
The numerical results of these three methods have been found to be in good
agreement with each other. It has been shown that the method of the effective
dielectric constant can be applied to curved waveguides in a similar way as to
straight waveguides.

The junction of the straight and the curved waveguide has been studied as well
and in order to do so, the orthogonality relations have been derived for the curved
waveguide. Exact solutions have been found for the junction of slab waveguides.
Numerical results have, however, been obtained by approximating these exact
solutions by overlap integrals.

A transformation is proposed in order to analyze two coupled oppositely curved
waveguides with identical radii of curvature. This transformation provides insight
into the coupling and loss mechanisms of such a geometry and can be used to
obtain numerical results, although these have not been pursued in the thesis.

The models and the accompanying computer programs have been used to
minimize the losses of curved waveguides. Normalized graphs are given for the
radiation loss, the minimum width that a curved waveguide should have and the
lateral offset at the junction. Design rules are given.

The computer programs have also been applied to the multi-mode-interference
coupler. The results of the modeling show that a multimoded coupler which guides
up to eleven modes may show a performance superior to conventional couplers
that guide two modes only. The explanation which has been found basically
involves the self-focussing effect of multimode slab waveguides.



xii Summary

Experiments have been performed in buried multimode A1203/Si02 waveguides
at wavelengths of 0.6328 and 1.3 pum and in multimode GalnAsP/InP waveguides
at wavelengths of 1.3 pm and 1.52 pm.

The influence of the lateral offset at the junction of the straight and the curved
waveguide has been investigated experimentally for buried Al203/SiO2 ridge
waveguides. The minimum excess loss has been found for the U-bend with an
offset that is very close to the predicted optimum offset.

Two new solutions have been proposed and tested that combine a large lateral
refractive-index contrast, which is required for small low-loss bends, and a small
lateral refractive-index contrast which is desired in order to reduce the scattering
losses and to obtain monomode operation.

The ‘double-ridge’ waveguide shows scattering and radiation losses that are
reduced with respect to those of a corresponding ‘single-ridge’ waveguide. This
has been verified experimentally.

The ‘self-aligned doubly etched’ bend has a ridge height which is larger for the
curved waveguide than for the straight waveguide. S-bends of this type have been
fabricated in the form of buried Al203/SiO2 ridge waveguides by means of a
self-aligned photolithographic technique. A lowest excess loss for the S-bend with
aradius of curvature of 200 pm of 0.5 dB/90° has been measured at a wavelength
of 632.8 nm. This value of 0.5 dB equals to a large extent the transition loss at one
junction of the small-contrast monomode waveguide and the large-contrast wave-
guide.

The lowest measured excess losses for various S-bends are; 0.23 dB/90° for
R =75 um in A12O3/Si02 waveguides at A9 = 1.3 pum, 0.6 dB/90° for R =50 um
in the ‘double-ridge’ Al203/Si02 waveguide at A9 = 632.8 nm and 0.5 dB/90° for
R =150 pm in MOVPE-grown GalnAsP/InP ridge waveguides at Ao = 1.52 um.

These experimental results demonstrate the effectiveness of the modeling and the
loss-minimization strategies.




Chapter 1

General introduction

1.1 Introduction

Communication and telecommunication have always been very important to
mankind and much of the communication is optical since a large part of all
information eventually reaches us by means of light. Although this form of
communication is analogue, it presents a good example of one of the advantages
of light, i.e. massive parallelism. A preliminary form of digital optical communi-
cation was already used by the ancient Greeks who lit fires on successive mountain
tops to herald the fall of Tr0y§. This digital optical communication network
possessed the total transmission capacity of one bit and was hampered by one of
the difficulties of earlier optical communication systems, i.e. their vulnerability to
atmospheric disturbances. Clouds or fog could have caused the Greek communi-
cation network to malfunction with the consequence, that this might have saved
Agamemnon’s life and at the same time would have withheld mankind from one
of the most beautiful classic epics.

In modern times, the revolution in optical telecommunication or lightwave
communication has been initiated by the development of the semiconductor laser
and the glass fiber.

§ S.L.Radt: Range: Philips Telecommunication Journal, 25 (4), 1964, pp. 12-19.
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The first laser was the ruby laser built by Maiman® in 1960 who followed the
proposal by Schawlow and Townes'. The ruby laser was followed by many other
types of laser such as the semiconductor laser, gas laser, the dye laser, the X-ray
laser, the free-electron laser, et cetera.

The laser exhibits a remarkable combination of properties that have led to a
widespread application. Lasers provide a source of coherent light of very high
intensity that initiated experiments and the development of a technology, hitherto
inaccessible. The combination of a diffraction-limited beam size and a large
brightness of the laser light have led to medical applications, to nuclear-fusion
experiments while carbon-dioxide lasers are used in machining, welding and
cutting. Its high power has even led the military to speculations and investments
in order to achieve a sort of ‘star-wars’ scheme. It seems, however, that the
destructive capacity of a laser is larger when it is dropped than when it is fired.
The advent of the laser stimulated the research into the area of nonlinear optics,
because the laser can provide the large brightness that is required in order for
nonlinear effects to become effective. Nonlinear optics is an exciting branch of
optics that includes a wide variety of effects and promises such as phase conjuga-
tion, four-wave mixing, solitons and in the future possibly an ‘optical computer’.

It was soon recognized after the invention of the laser that a frequency of the
order of 2 x 10'* Hz in combination with the coherence properties of the laser light
yielded an incredible bandwidth that could be exploited for telecommunication
purposes. One laser beam could, in principle, transmit information at a rate of, say,
10" bit per second, which is according to present standards adequate to transmit
approximately 7000 television programs. It was, on the other hand, clear that a
laser beam in free space would be attenuated too much by atmospheric influences
to permit the transmission of information over long distances by means of such a
freely propagating laser beam.

Soon after the first development of the laser and the realization of its enormous
potential bandwidth, attempts were made to confine the light in a lightguide in
order to keep the weather and the dirt out of the optical path. A first suggestion as
to the use of glass fibers was made by Kao and Hockham? in 1966 and they
suggested at that time that an attenuation of 20 dB/km for glass fibers could be
achieved, which was a bold suggestion since the bulk attenuation of the best glasses

§ T.H. Maiman: “Stimulated optical Radiation in ruby”, Nature, 187, 1960, pp. 493-494.

4 AL. Schawlow and C.H. Townes: “Infrared and optical masers”, Phys Rev., 112, 1958, pp.
1940-1949

1 K.C. Kaoand G.A. Hockham, Proc. IEE ( London ), 113, 1966, p. 1151.
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was several thousand dB/km in 1966. Since the introduction of glass fiber, their
losses have been steadily decreased by means of technological improvements to
a present value below 0.2 dB/km at a wavelength of 1.55 um and we can safely
say that the theoretical limit of the attenuation has been reached. Because of the
glass fibers, lasers have, indeed, fulfilled part of their potential with respect to
telecommunication.

Although the monomode glass fiber is of special importance to lightwave
communication, many other types of fiber exist and apart from the application to
lightwave communication, many other applications of glass fibers exist; they are
applied in “endoscopes” for medical diagnostics, they are applied in optical
gyroscopes and the electromagnetic compatibility of fibers has caused many other
applications of glass or plastic fibers.

In the same time of the invention of the laser, from 1960 onwards, there was a
huge effort to fabricate electronic integrated circuits as a partial spin-off of the
Apollo project that put the first men on and off the moon. The integration of many
electronic components on one chip results in an increased reliability, a reduced
size, a reduced power consumption, and it lends itself to mass-production and
consequently reduces the price per chip. The economic driving force and the
technology push have led to ever better photolithographic techniques and to a large
range of new deposition and etching techniques. These new technologies permit
the fabrication of chips which have a size of several square millimeter and contain
a million or more transistors.

The combination of the laser and integrated electronics resulted in the semicon-
ductor laser although the invention of the semiconductor junction laser preceded
the era of integrated electronics. Semiconductor lasers show many advantages to
other types of lasers such as differential quantum efficiencies that approach one
hundred per cent, a small size ( a typical length of 0.3 mm ), high reliability and
a reduced price. Many of these features are similar to those encountered in
integrated electronics. Widespread application of the semiconductor junction laser
has been found in lightwave communication, in the optical storage of digital
information, as laser scanners ( bar-code readers ) and lasers printers ( one of the
products of which might be enjoyed by the reader right now ).

The semiconductor lasers may, in fact, be considered as the first product of
integrated optics. The phrase ‘integrated optics’ was coined by Miller® in 1969

§ S.E. Miller: “Integrated optics: an introduction”, B.S.T.J., 48 (7), 1969, pp. 2059-2069.
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and is used to described the integration of optical components on one chip by
means of the same photolithographic techniques that are being used to fabricate
integrated electronics circuits. A more suitable phrase might be integrated op-
toelectronics since the semiconductor junction laser is both an optical and an
electronic device (i.e. adiode ). The advantages that apply to integrated electronics
apply even better to integrated optics because optical systems are much more
vulnerable to their environment than electronic circuits because optical systems
are sensitive to alignment and stability, dust and absorption.

From the semiconductor junction laser, it seems a natural step towards more
complex lasers such as the distributed feedback laser, the distributed Bragg-reflec-
tor laser, the multi-stripe laser, the ring laser et cetera. Not only do semiconductor
lasers become more complex, but there is also a tendency to combine the laser
with other components in the form of an optoelectronic integrated circuit ( OEIC ).
A similar demand for integrated optical circuits comes from the side of lightwave-
communication systems which require apart from the laser, optical switches,
power splitters, modulators, multiplexers and demultiplexers, polarization control-
lers, detectors, isolators, et cetera.

A lightwave-communications device which is well suited to an integration in the
form of an optoelectronic integrated circuit is the coherent optical transmitter or
receiver. The coherent-detection scheme consists of mixing the light that emanates
from the glass fiber with the light of a local tunable laser before it is detected ( this
scheme is similar to the signal detection thatis employed in aradio ). An impression
of such an optoelectronic chip is given in Fig. 1.1. The glass fiber is coupled to a
waveguide on the chip. The local-oscillator laser is contained on the chip and is
coupled to a similar waveguide. The driving and processing electronics could be
placed on the chip as well. A mixing network combines the light from the glass
fiber and the local-oscillator laser. In order to preserve the narrow line width of
the laser ( of the order of one per cent of the bit rate that is to be detected ) an
optical isolator is required and it is probably this isolator that is the most difficult
component to integrate. In order to eliminate fluctuations of the polarization of the
light, polarization diversity may be applied which requires polarization splitters,
polarization controllers and a double circuitry as shown Fig. 1.1.

The interconnecting waveguides on the chip shown in Fig. 1.1 consist of both
straight and curved sections. The curved waveguides are the topic of the thesis and
the next section expands on the problems that are encountered for curved wave-
guides.
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Fig. 1.1 A schematic impression of an optoelectronic integrated circuit (OEIC) which contains
a coherent optical receiver. ( LO = local-oscillator laser, PC = polarization controller, PS =
polarization splitter, C = waveguide crossing, DC =directional coupler, B = waveguide bend, PD
= photodiode and FET = field-effect transistor ) ( Drawing by Y.S. Oei, Delft University of
Technology )

1.2 The subject of the thesis

Curved open waveguides like the ones shown in Fig. 1.1 exhibit a fundamental
loss in the form of radiation. In straight waveguides, the tendency of light to diffract
is compensated for by the higher index of refraction of the waveguide core and
the guided mode has a plane wave front. In curved waveguides on the other hand,
the wave front rotates around a center of rotation. Since the phase velocity of the
wave fronts cannot exceed the local speed of light, there is a point beyond which
the wave front curves and where radiation occurs [79]. Curved waveguides pose
the following dilemma: the radiation losses increase almost exponentially with
decreasing radius of curvature. The successful fabrication of integrated optoelec-
tronic circuits, however, requires that waveguides can change direction over a short
distance and with small losses. An optoelectronic integrated circuit can have a
maximum size of, say, 5 cm and this chip must contain at least a few components.
A large radius of curvature is thus of the order of 1 cm and a short radius of
curvature is approximately one hundred times as small and of the order of 100
um. What is meant by ‘low-loss’ depends on the system specification orits ‘power
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budget’. Generally speaking, we might say that a loss of 0.1 dB for a component
is very good, a loss of 1 dB is reasonable but on the high side and a loss of 10 dB
is unacceptable.

The scope of the thesis consist of the following aspects:

The development of the theoretical and numerical tools that enable the
calculation of the losses and other properties of a ‘waveguide track’ that
consists of both curved and straight waveguide sections. The calculations
take radiation into account as well as the effect of the junction of the straight
and the curved waveguide.

The use of these numerical tools to analyze the influence of the waveguide
parameters, such as the width of the waveguide, its radius of curvature and
the influence of the indices of refraction on the transmission properties.
The development of strategies to minimize the losses of waveguides that
include curved sections.

The fabrication of waveguides with curved sections and the assessment of
their losses. These measurements must be related to the predicted losses and
can be used to verify the loss-minimization schemes.

New fabrication techniques have been proposed and tested in order to reduce
both the losses and or the radii of curvature.

Some applications have been considered, studied or fabricated that
specifically use very small bends.

1.3 Review of the literature

This section reviews the status quo with respect to curved optical waveguides.
Excluded from the review are some papers that discuss curved waveguides but
which have nevertheless been considered as being outside the scope of the thesis:

Open curved waveguides that are operated at microwave wavelengths are not
considered. These waveguides often include metal strips.

Bends and microbending effects in glass fibers fall outside the scope of the
thesis.

Limited attention is given to LiNbO; bends.

The review pertains to published measurements of the losses of curved
waveguides and not to publications on fabricated waveguide structures such
as switches, couplers, ring lasers orring filters that contain curved waveguide
sections but do not report on their losses.

Only gradual bends are considered. Abrupt bends, ‘Shiina’ bends and
‘coherent’ bends fall outside the scope of the thesis, although ‘Shiina’ bends
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are of importance to integrated optics®. Totally-reflecting corner mirrors are
excluded from the review for the same reason.
» The review does not include the work that is discussed in the thesis.

The publications to which the reader is referred in this section and not in the rest
of the thesis, are listed in footnotes rather than in the bibliography at the end of
the thesis. An attempt has been made to make this review as complete as possible.
The literature concerning the theory and modeling of curved waveguide will be
reviewed separately from the reports on experimental work since the existing
literature naturally divides itself into these two categories ( the reader is also
referred to section § 3.1 for an overview ).

Theory and modeling

The theoretical treatment of the curved optical waveguide can be traced back in
history to the issue of the Bell system technical journal that appeared in September
of 1969 and in which Miller introduced the phrase ‘integrated optics’. That issue
contains a paper by Marcatili on the curved waveguide with a two-dimensional
cross-section. Marcatili treats the curved waveguide in a way, similar to the straight
waveguide [66][67] and uses Bessel functions and their first-term approximations.

Perturbation techniques are a common approach to solve the problem of the
curved optical waveguide. Perturbation techniques come in two versions. One
version approximates the field in the curved waveguide by the field of the
corresponding straight waveguide. The curved waveguide is then viewed upon as
a contrast source and its radiated power is calculated by means of a Kirchhoff-type
integral ( the Kirchhoff-perturbation technique ). A second version of the pertur-
bation techniques expands the equations that govern the problem of the curved
waveguide and its solutions in powers of the inverse of the radius of curvature
(the 1/R-perturbation technique ). The first term in this approximation corresponds
to the solution of the straight waveguide.

§ H.F.Taylor: Applied optics, 13 (3), 1974, pp. 642-647. H.F. Taylor: Applied optics, 16 (3),1977,
pp. 711-716. D. Yap and L.M. Johnson: Applied optics, 23 (17), 1984, PP- 2991-2999.
S. Kawakami and K. Baba: Applied optics, 24 (21), 1985, pp. 3643-3647. T. Shiina, K. Shiraishi
and S. Kawakami: Optics letters, 11 (1), 1986, pp. 736-738.
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Marcuse [70]{71] has used a perturbation technique to solve the problem of the
curved slab waveguide. The field in the curved waveguide is approximated by that
of the corresponding straight waveguide. The radiation loss is found by evaluating
Poynting’s vector at infinity, where the electromagnetic field at infinity in the form
of the Hankel function of the second kind has been approximated by the first term
of Debye’s asymptotic expansion. The resulting formula for the radlatlon loss has
later been used by Chen and Unger [18] and by Geshiro and Sawa’.

The important book on curved waveguides by Lewin, Chang and Kuester [65]
contains much material that is also found in their previous pubhcatlons The work
by Lewin, Chang and Kuester includes the transformation of the curved slab
waveguide plus a subsequent WKB approximation and their work states the
eigenvalue equation of the curved slab waveguide in terms of Bessel functions.
Subsequent solutions and their evaluation, however, are always pursued in the
form of the Kirchhoff-perturbation technique or the 1/R-perturbation technique.
The work of Maley* discusses the curved and the straight slab waveguide and their
junction.

The Kirchhoff-type perturbation techmque has also been used by Snyder and
Love [106] and in an adapted version by White! who refers to it as the volume-
current method ( VCM ). The VCM has subsequently been applied to a number of
integrated-optics structures by Kuznetsov and Haus [62]. The VCM is applicable
in the weak-guidance approximation only and Kendall ez al. [8]1[51][52][53][55]
[107] have adapted the VCM to waveguide structures with a strong dielectric
discontinuity such as the one that occurs at the semiconductor-air interface.

The problem of the curved multllaycr slab waveguide has been studied by
Kawakami, Miyagi, Nishida and Takuma®®. They used a transformation ( different

§ M. Geshiro and S. Sawa: IEEE Transactions on microwave theory and techniques, MTT-29
(11), 1981, pp. 1182-1187. M. Geshiro and S. Sawa: Electronics letters, 19 (9), 1983, pp.
321-322.

{ L. Lewin: IEEE Transactions on microwave theory and techniques, MTT-22 (7), 1974, pp.
718-7217, plus ibidem, 1975, p. 779. E.F. Kuester and D.C. Chang: IEEE Journal of quantum
electronics, QE-11 (11), 1975, pp. 903-907. D.C. Chang and E.F. Kuester: Radio science, 11
(5), 1976, pp. 449-457. EF. Kuester: Radio science, 12 (4), 1977, pp. 573-578.

1 S.W. Maley: Radio science, 12 (4), 1977, pp. 579-585.

1 LA. White: Microwaves, optics and acoustics, 3 (5), 1979, pp. 186-188.

§§S. Kawakami, M. Miyagi and S. Nishida: Applied optics, 14 (11), 1975, pp. 2588-2597.
Y. Takuma, S. Kawakami and S. Nishida: Electronics and communications in Japan, 60-C (11),
1977, pp. 111-119. Y. Takuma, M. Miyagi and S. Kawakami: Applied optics, 20 (13), 1981, pp.
2291-2297. M. Miyagi, S. Matsuo and S. Nishida: Journal of the optical society of America A,
4 (4), 1987, pp. 678-682.
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from the one by Chang and Barnes [16] ) in combination with the perturbation
approach. This approximation has also been applied by them to the curved
waveguide with a rectangular cross-section’.

A different approach has been used by Rozzi et al. [100]. Their approach to the
problem of the curved waveguide consists of the method of the effective dielectric
constant in combination with a local coupled-mode formalism. The modal field
distribution in the curved waveguide is approximated by that of the corresponding
straight waveguide and effect of the curvature is accounted for by the coupling of
the guided mode to the continuous modes ( of the straight waveguide ). An
advantage of this approach is that the additional coupling of guided to continuous
modes caused by corrugations can be accounted for as well.

The two-dimensional beam-propagation method ( BPM ) has been used to study
curved waveguides as well. The paraxial approximation that underlies the BPM
does not permit the study of curved waveguide sections that subtend a large angle.
Baets and Lagasse [7] have overcome this problem by first transforming the curved

waveguide into an equivalent straight waveguide [16] and then applying the 2-D
BPM. This technique has found widespread application. An adapted version of the
BPM has been applied to bends by Yev1ck and Hermansson'. An interesting
application of the BPM is found in a paper by Okamoto and Ito who applied the
BPM to the nonlinear curved siab waveguide and found that the self-focusing
effect of nonlinear waveguides leads to a reduced radiation loss.

The curved slab waveguide can be transformed into an equivalent straight
waveguide, where the effect of the curvature is accounted for by a transformed
refractive-index profile. This transformation is first described by Chang and
Barnes [16] and has later been used in the form of a conformal mapping by
Heiblum and Harris [40][41]. Both Chang and Barnes and Heiblum and Harris
used a WKB approximation to solve the problem of the straight waveguide with
the transformed refractive-index profile. Thyagarajan, Shenoy and Ghatak [112]
solved the problem of the straight waveguide with the transformed refractive-index
profile by means of the transfer-matrix method. Ma and Liu' have studied the
curved waveguide with a rectangular cross-section by means of a technique that

M. Miyagi and S. Nishida: Journal of the optical society of America, 68 (3), 1978, pp. 316-319.
D. Yevick and B. Hermansson: Electronics letters, 21 (22), 1985, pp. 1029-1030.

N. Okamoto and S. Ito: IEEE Journal of quantum electronics, 24 (10), 1988, pp. 1966-1969.
C

§
1
i
+ C.Maand S. Liu: Optical and quantum electronics, 19, 1987, pp. 83-92.
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might be classified as the method of effective-dielectric constant in combination
with the transformation and a WKB-like approximation. Sheem and Whinnery
[102][103] solved the problem of the straight waveguide with the transformed
refractive-index profile in terms of Airy functions which may be compared to the
solution provided by the WKB approximation. Sheem and Whinnery also noted
the importance of the single-boundary bend.

The paper by Morita and Yamada [75] discusses the problem of the curved slab
waveguide plus the corresponding junctions. They expressed the field in terms of
Bessel functions without calculating the modes, i.e. without requiring the radiation
condition. Consequently, the radiation loss is determined by considering Poynt-
ing’s vector at infinity in much the same way as Marcuse [70] has done.

The problem of the curved waveguide can also be approached by expressing its
solution in terms of Bessel functions and by evaluating the Bessel functions
numerically. Neumann and Richter [81] reported on the actual evaluation of the
Bessel functions in relation to the problem of the curved slab waveguide. The work
of Neumann is also important since he has studied the problem of the junction of
the straight and the curved waveguide, for which he suggested the application of
a lateral offset to reduce the transition losses [80][82]. Van der Pauw® used the
numerical evaluation of the Bessel functions to analyze the multilayer slab
waveguide with a lossy coating where the losses are caused by the lossy coating
instead of radiation. Novel is the method of lines for curved waveguides by Gu
[36](37]. It is the only method that combines the Bessel-function approach with a
technique that is applicable to waveguides with a two-dimensional cross-section.

Experimental work

LiNbO3

Minford, Korotky and Alferness reported on waveguide bends in Ti:LiNbOs at
a wavelength of 1.3 um and found losses as low as 0.2 + 0.2 dB for an S-bend with
a lateral displacement of 0.1 mm and transition length of 3.25 mm ( which amounts
to an effective radius of curvature of approximately 26 mm ). Later, Korotky,

§ L.J.van der Pauw: Philips journal of research, 41 (5), 1986, pp. 431-444.
¥ W.J. Minford, S.K. Korotky and R.C. Alferness: IEEE Journal of quantum electronics, QE-18
(10), 1982, pp. 1802-1806.
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Marcatili, Veselka and Bosworth reported® on the CROWNING technique to
reduce the bending losses of Ti:LiNbOj; S-bends and they measured an excess loss
of 0.1 dB for an S-bend with a radius of curvature of 5.5 mm at a wavelength of
1.48 pm.

Doéldissen et al. [31] have reported on the fabrication and measurement of
S-bends in Ti:LiNbO; at a wavelength of 1.3 um, where a lateral offset has been
introduced at junction of the straight and the curved waveguide. They reported a
loss reduction of up to 2 dB for the complete S-bend by using an optimized offset.

Majd, Schiippert and Petermann have reported a loss of 1 dB for an S-bend with
aradius of curvature of 6 mm in Ti:LiNbO; at a wavelength of 0.79 um. This result
was achieved by means of two extra MgO diffusions in order to reduce the index
of refraction at the outside of the bend and by means of an increased width of the
curved waveguide.

AlGaAs

Austin was the ﬁrst toreport on curved waveguides in AlGaAs with submillimeter
radii of curvature®. He reported a 3 dB loss for an MOCVD-grown multi-mode
90° bend with a radius of curvature of 300 um at a wavelength of 1.15 um, and a
loss Of 8.5 dB for a single-mode 90° bend with a radius of curvature of 400 pm.
Austin and Flavin [6] fabricated monomode S-bends with a radius of curvature of
300 pm for wh1ch they measured a loss of 0.9 dB at a wavelength of 1.15 pm.

Inoue et al.” have reported on low-loss straight and curved waveguides in
MOCVD-grown AlGaAs. The S-bend losses are assessed to be below 0.5 dB for
a radius of curvature of 10 mm at a wavelength of 1.3 um.

Rolland et al.** published an experimental excess loss below 0.15 dB for an
S-bend with a lateral displacement of 10 um and a transition length of 100 pm (
which amounts to an effective radius of curvature of approximately 250 um ) at a

§ S.K.Korotky, E.A.J. Marcatili, J.J.Veselka and R.H. Bosworth: Proceedings of ECIO’85, pp.
207-209. S.K. Korotky, E.A.J. Marcatili, J.J.Veselka and R.H. Bosworth: Applied physics
letters, 48 (2), 1986, pp. 92-94,

{ M. Majd, B.Schiippert and K. Petermann: Proceedings of the ECOC ’89, 1989, paper TuB6.

§ M.W. Austin: [EEE Journal of quantum electronics, QE-18 (4), 1982, pp. 795-800.

1 H. Inoue, K. Hiruma, K. Ishida, T. Asai and H. Matsumura: Journal of lightwave technology,
LT-3 (6), 1985, pp. 1270-1276.

§§C. Rolland, G. Mak, K.E. Fox, D.M. Adams, A.J. Springthorpe, D. Yevick and B. Hermansson:
Electronics letters, 25 (18), 1989, pp. 1256-1257.
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wavelength of 1.3 pm. They found the measured excess loss to be in good
agreement with the predictions of the 3-D beam propagation method.

Takeuchi and Oe® have fabricated S-bends in single-mode AlGaAs waveguide
with radii of curvature below 1 mm. They assessed the propagation losses to be
0.58 and 0.69 dB/cm at wavelengths of 1.3 and 1.55 um, respectively, and they
measured an excess loss of 0.61 dB and 0.46 dB for the S-bend with a radius of
curvature of 2 mm and at wavelengths of 1.3 and 1.55 pum respectively.

An extensive investigation into the scattering and radiation losses of AlGaAs
waveguides has been performed by Deri et al. i [25] and by Seto er al. [101] where
an excess loss of 1 dB/90° has been reported for single-mode S-bends with a radius
of curvature of 300 pm at a wavelength of 1.5 pm and simultaneously a propaga-
tion loss for the straight waveguides of 1 dB/cm.

GalnAsP

Singh, Henning, Harlow and Cole have fabricated single-mode S-bends in
GalnAsP on InP, for which they reported a loss of 1.1 dB for a radius of curvature
of 200 um at a wavelength of 1.553 um [104]. The single-mode operation was
achieved by means of a small width of the waveguides of 1 pm.

1.4 Outline of the thesis

The thesis is divided in three parts. A theoretical part and an experimental part
are separated by a part that is devoted to numerical results and design rules, i.e.
Chapter 5.

Chapter 2

Chapter 2 gives the basic relations concerning optical waveguides ( section § 2.1)
and it describes the general configuration of the straight waveguide, the curved
waveguide and the junction of the two in section § 2.2. The electromagnetic
problem is formulated in section § 2.3, where attention is paid to the modal
representation of the electromagnetic field in curved open waveguides. The field
orthogonality relations for modes in curved open waveguides are derived in section
§ 2.3.3. These relationships are required for the full treatment of the problem of
the junction of the curved and the straight waveguide.

§ H. Takeuchi and K. Oe: Proceedings of the IGWO ’88, paper MB6. H. Takeuchi and K. Oe:
Applied physics letters, 54 (2), 1989, pp. 87-89. H. Takeuchi and K. Oe: Journal of lightwave
technology, 7 (7), 1989, pp. 1044-1054.

Y R.J. Deri, E. Kapon and L.M. Schiavone: Electronics letters, 23 (16), 1987, pp. 845-847.
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Chapter 3

The method of the effective dielectric constant is the topic of Chapter 3. This
well-known method approximates the three-dimensional waveguiding configura-
tions by equivalent two-dimensional ones. It will be shown in that chapter that the
method of the effective dielectric constant is applicable to both straight and curved
waveguides.

Chapter 4

The resulting effective two-dimensional configuration is discussed in Chapter 4
That chapter is divided into four parts. Section § 4.1 discusses three methods to
solve to the problem of the curved waveguide. Section § 4.2 deals with the junction
of the straight and the curved waveguide. Section § 4.3 explains how the properties
of a complete waveguide track which consists of multiple interconnected straight
and curved waveguides may be calculated in terms of the solutions that have been
developed in the previous sections. Section § 4.4 introduces a transformation that
is capable of handling the two-dimensional problem of two coupled oppositely
curved waveguides.

Chapter 5

Section § 5.1 is devoted to the assessment of the numerical accuracy and the
merits of the various techniques that have been developed in the Chapters 2, 3 and
4. Section § 5.2 is devoted to the modeling of curved waveguides. Normalized
graphs are given for the radiation loss, the minimal width that a curved waveguide
must have, and an estimate of the optimum lateral offset that must be used at the
junction of a straight and a curved waveguide. Section § 5.3 is entitled “using
bends” and discusses one application, i.e. the multi-mode interference coupler with
curved access waveguides. The sections § 5.3 and § 4.4 are, therefore, linked. The
modeling of this coupler leads to some interesting results with respect to the
self-focussing properties of multimode waveguide which can be used to advantage.

Chapter 6

Chapters 6 and 7 describe the results of experiments. Buried ridge waveguides
in the form of S-bends have been optimized and fabricated in the Al;04/SiO,
material system and the losses of these S-bends have been determined at wave-
lengths of 632.8 nm and 1.3 um. These experiments are described in the sections
§ 6.2 and § 6.6, respectively. The influence of the lateral offset at the junction of
a straight and a curved waveguide has been investigated experimentally, the results
of which have been condensed into section § 6.3. The minimization of the radiation
loss of curved waveguides may be in conflict with requirements that result from
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the optimization of other components on the same chip. Two schemes have been
proposed and tested that compromise between these conflicting requirements: the
‘double-ridge’ waveguide and the ‘self-aligned doubly etched’ bend. The report
on these experiments may be enjoyed by the reader in sections § 6.4 and § 6.5,
respectively. '

Chapter 7

S-bends have been fabricated in the form of ridge or rib waveguides in LPE-
grown GalnAsP/InP and their losses have been determined for a wavelength of
1.3 um. These experiments are the topic of section § 7.1. Similarly, curved
waveguides have been fabricated in the form of rib waveguides in MOVPE-grown
GalnAsP/InP. These waveguides have been designed in the form of U-bends or
‘chicanes’ and their optical losses at a wavelength of 1.52 um are reported in
section § 7.2. Chapter 7 is structured around two publications that report on these
measurements. The two manuscripts are supplemented by respective introductions
and addenda.




Chapter 2

Basic relations

This chapter is devoted to basic relations and definitions. Section § 2.1 deals with
Maxwell’s equations, boundary conditions, time dependence and basic assump-
tions about the media under consideration. It also introduces frequently used
parameters such as the plane-wave index of refraction and the wave number of
light in vacuum. The description of the general structure of the curved waveguide
is the topic of the section § 2.2, which also introduces the appropriate coordinate
systems. Section § 2.3 formulates the problem of electromagnetic waves in curved
waveguiding structures.

2.1 Basic equations

The waveguiding structures of interest operate at one wavelength. Consequently,
the electromagnetic fields are time harmonic and it is convenient to introduce the
complex representation of the electromagnetic field quantities. The time-depend-
ence of the electric field strength, for example, is defined as

E(r,r) = RelE(r,w)e®}. (2.1.1)

The imaginary unit j has been chosen in accordance with precedents in electrical
engineering, ® denotes the angular frequency and ¢ is the time coordinate. As Paris
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is nearer to the Netherlands than the USA, we adopt the system of S.I. units and
they are used throughout the thesis. The names and units of all symbols are listed
in the table on page 217.

The electromagnetic field quantities in a source-free domain satisfy the Maxwell
equations in complex form

VX E(@r,m) + joB(rw) = 0, (2.1.2)
VxH(r,w) — joD@rw) = 0. (2.1.3)

They can be supplemented with the divergence relations

V.-D(rm) =0, (2.1.4)
V-B(rm) = 0. (2.1.5)

The media under consideration are assumed to have the following properties:
* locally reacting,
« isotropic,
* linear,
* time-invariant and
» dielectric.
These assumptions lead to constitutive relations between the quantities D and E
and the quantities B and H

D(r,0) = &(r,0)E(r,0), (2.1.6)
B(r,0) = poH(r,w), 2.1.7

where the permeability of vacuum uod=°f 41t x 107 NA™, while g(r,0) denotes the
scalar complex dielectric permittivity

g(rw) = €@r,n)—jE"rn). (2.1.8)
From energy considerations we have

£”(r,m) 2 0, for passive media,
<

£”’(r,m) < 0, foractive media . (2.1.9)
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In view of the causality, the real part €' (w) and the imaginary part —€”(®) of
£(w) are interrelated through the Kramers-Kronig relations [50].
It is convenient to introduce the plane-wave index of refraction

n(rw) = n'—n” < VM o >0. (2.1.10)

N

The real part of the plane-wave index of refraction relates the velocity of electro-
magnetic plane waves in vacuum c to the phase velocity in the bulk medium and
is therefore positive. The dielectric permittivity of vacuum g, and the permeability
of vacuum |4 are related to the velocity of light ¢ < 2.99792458 x 10* m 5" and
the vacuum wave number k, through

2
(O))

2
C

k02 = = 0)280H0 . (2.1.11)

The value of the dielectric permittivity of vacuum g,= 8.854187817... x 1072

Fm™' now follows from the definitions of Mo and ¢ because g5 = ll(uoc2) .
Across an interface S between two dielectric media, with an outward normal %,

Maxwell’s equations have to be supplemented with the boundary conditions

&>

E, H, D, B,

E, H, D, B,

- oK

Fig. 2.1 A schematic diagram of the boundary interface S between two different media.

nx(ExE) =0, (2.1.12)
nx(HyHy) =0, (2.1.13)
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-(Dy-Dy) = 0, (2.1.14)
-(By-B)) = 0. (2.1.15)

&> N>

For the boundary conditions at the surface of a perfect electrical conductor we
have

nxE, =0, (2.1.16)
n 0 (2.1.17)

The power-flow density of the electromagnetic fields is given by the time average
of Poynting’s vector

<S(r,t)> = <E(r,1) x Hr,)> = SRe[E(r,0) x H (r,0)] . (2.1.18)

1
2

Poynting’s vector has been averaged over a period T=2nw ' and the time
dependence Eq. (2.1.1) has been used. In the remaining part of the thesis we will
omit ® in the complex field quantities.

2.2 General configuration

2.2.1 Introduction

It is of paramount importance that the general configuration be explained before
going into mathematical details. The objective is to analyze the waveguide tracks
along which light is guided on an optoelectronic chip. These tracks may connect
more sophisticated devices, such as lasers, photodiodes and switches. They consist
of straight and curved sections connected head to tail as shown in the example in
Fig. 2.2. These sections can be concatenated in arbitrary order and every section
is permitted to have different widths, lengths and radii of curvature. Any gradual
changes in waveguide configuration that occur, for example, in Y-junction splitters
and tapered transitions between two waveguides of different widths are excluded
from the present analysis. The track in Fig. 2.2 is depicted two-dimensionally, but
all structures are understood to be three-dimensional. Figures 2.3 and 2.4 thus give
a more realistic impression of the straight and the curved sections.

The waveguides in Fig. 2.2 are bounded by two interfaces, denoted by y = y; and
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Fig. 2.2 General 2-D waveguide track, consisting of a circularly curved section joining two
straight sections. The order in which the curved and the straight parts are concatenatedis arbitrary
thereby including bend-bend and straight-straight transitions. Every section is characterized by
its own width, length and radius of curvature. The lateral field distributions of the fundamental
modes are shown as illustrations.

y =y, for the first straight section and by r =R, and r = R, for the bend. This is
merely an example and our analysis will be more general. The number of these
interfaces is not limited to a maximum, thus allowing for the analysis of more
complex waveguides and systems of coupled waveguides.

2.2.2 The straight waveguide

Nothing is simpler than being straight. By straight we mean that a waveguide is
invariant under the translation along one coordinate, which we take to be the
z-coordinate of a right-handed Cartesian coordinate system Oxyz. This coordinate
defines the direction of propagation or the longitudinal direction. It is customary
to distinguish the directions perpendicular to the longitudinal direction between
lateral and transversal respectively as shown in Fig. 2.3. The electromagnetic
properties in the various domains D; of the cross-section of the waveguide are
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Dl’nl

D4:n4

(lateral)

A

y

o A
z
(longitudinal)
x
(transversal)

Fig. 2.3 Straight waveguide configuration. This is not the most general structure but serves
merely as an example. We fabricated this specific waveguide in InP/GalnAsF ( compare with Fig.
75).

described in terms of the plane-wave refractive indices n;. The refractive indices
are assumed to be constants in each domain D, i.e.

n(r) = n;forre D;withi = 1,2, ... M. 2.2.1)

Although in the specific example shown in Fig. 2.3, M =4, the number M is not
limited to a maximum. Every domain is bounded by horizontal planes, x = con-
stant, and by vertical interfaces, y = constant. It is assumed that the outermost
regions extend to infinity. The lowest domain is generally called the substrate while
the uppermost region is called the superstratum or cover. In order to make
waveguiding possible, at least one central domain should have an index of
refraction larger than those of both the substrate and the cover. This domain is aptly
called the guiding channel. It is obvious that there are a multitude of different
waveguiding configurations. [ refer the reader to Tamir [110] for a list of the
structures and the applied nomenclature. In the waveguide configuration shown
in Fig. 2.3, the guiding film D, is locally made thicker to form a waveguide and it
is then called a ridge waveguide. Most of the waveguides discussed in the thesis
are of the ridge-guide type.
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2.2.3 The curved waveguide

The discussion will be restricted to sections of curved waveguides that are
rotationally invariant around some center of rotation serving as the origir}\ Mofa
right-handed Cartesian coordinate system Mxyz where the transversal or x-direc-
tion and the axis of symmetry coincide. Because of this symmetry, it is convenient
to use a right-handed cylindrical coordinate system M’rex with M’=M. The
coordinate system M’'r@x is related to Mxyz by

Fig. 2.4 Example of a curved waveguide. Both the Cartesian and the cylindrical coordinate
systems are indicated.

X X x X
y | = | rcoso r|= Vy2+zz . (2.2.2)
z rsing ()] arctan(z/y)

The lateral direction is now equivalent to the r-direction. The cylindrical coordi-
nates are bounded by

o0 < X < oo, (2.2.3)
0 <7< 4oo, L (224
0<¢<d<2m. (2.2.5)
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The remarks made in the preceding section about the domains D; for straight
waveguides apply here as well. Their number M is not limited, the outer ones
extend to infinity, they are characterized by a constant complex index of refraction
n; and the lower and upper regions are called the substrate and the cover. There is
one difference however; the domains D; are bounded here by the surfaces r = con-
stant and x = constant.

2.2.4 Junctions

On an actual optoelectronic chip waveguides form tracks where straight and
curved waveguides are connected. The junction of a straight waveguide and a bend
requires special attention. Light, guided by a straight waveguide, is launched into
a bend and we would like to solve the coupling problem of knowing how much
power is launched into the bend and how much power is lost. In order to do this,
all local coordinate systems have to be expressed in terms of each other. From Fig.
2.5, the interrelation between coordinate systems Oyx,y,2y, MaXyy225, M3'X5r, @, and
O3x3y373 can be easily derived, namely

Fig. 2.5 A 3-D view of a waveguide track that includes two junctions of straight and curved
waveguides. The waveguide is schematically represented in the form of the guiding layer or the
ridge. Every straight section has its own Cartesian coordinate system while every curved section
has both a Cartesian and a cylindrical coordinate system.




Section 2.2 General configuration 23

X1 Xy X2 1 0 0 X3
Yi+pP2|=] y2|=|rcos@; {=]|0 cos® —sin® |[ys+p;]. (2.2.6)
Z)— Cl Zy rzsin(pz 0 sin® cosd z3+ C3

In the introduction to this section, the possibility of connecting bends to bends
and straight waveguides to straight waveguides was mentioned. In these cases the
connection between the coordinate systems follows similarly.

2.2.5 Screening the origin

It would be of great advantage to exclude the influence of distant waveguide
sections on the coupling problem. Referring to Fig. 2.6, this would be the case if
the curved section bent back on itself. To isolate these sections from each other a
perfectly conducting screen is put around the origin M at some point r = R. This
screen forces the tangential electric field components to vanish as in Eq. (2.1.16).
An identical screen is placed in the straight waveguide configuration at y =y, in
such a way that both screens are aligned at the transition. The exclusion of the
origin is not difficult to justify. We look for field distributions that peak near the
outer boundary of the curved waveguide structure, with a long tail in the positive
r-direction, but with exponentially decreasing behavior towards the origin as
sketched in Fig. 2.2. Placing the screen at points where the field is small justifies
the assumption of the screen.

l

Fig. 2.6 Aperfectly conducting screen is put around the origin to simplify the coupling problem
at the junction of the straight and the curved waveguide.
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2.3 Formulation of the bending problem

2.3.1 Introduction

Optical waveguides can be used for the sole purpose of guiding optical power
flow from one point to another, or they form a part of more complicated compo-
nents such as lasers, photodiodes, switches, modulators et cetera. Where they are
exclusively used to guide optical power, it seems obvious that no power should be
lost. Waveguide tracks include directional changes on optoelectronic chips and,
since the manufacture of sophisticated devices with a various components on a
small chip is desired, these directional changes have to be achieved in as short a
distance as possible. This leads to a conflict because curved open waveguides
always radiate light and the smaller the radius of curvature the more the light is
radiated. This is the main problem dealt with in this thesis.

The bending problem, i.e. a finite bend plus junctions that is both low loss and
has a short radius of curvature, is not an isolated problem. First of all there are
many other loss mechanisms. Radiation losses are relevant only when they become
large compared to those other losses. These mechanisms will be discussed in due
time, but are at the moment not crucial to the curved waveguide. Other criteria
play arole in the optimization problem of waveguide tracks too. Itis often desirable
to have single-mode waveguides and any solution to achieve low-loss curved
waveguides has to be simple and compatible with the existing technology. Im-
provements usually require an extra effort and the result should justify this extra
effort.

The electromagnetic problem can be formulated as follows. If, in one way or
another, a guided mode or some linear combination of guided modes has been
excited in the incoming straight waveguide referred to in Fig. 2.2, how much power
is still guided in the last waveguide section relative to the input waveguide in the
form of guided modes and to what causes can the losses be attributed? If these
losses can be calculated, loss optimization follows by calculating the losses while
varying the geometry of the configuration.

In order to calculate the losses, we look for solutions of Maxwell’s equations that
represent guided modes that propagate in straight as well as in curved waveguides.
At the junctions, one solution has to be represented in solutions of the other section,
i.e. the coupling problem must be solved. Finally these solutions have to be

represented in terms of power-flux density, because power is the measured physical
quantity.
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2.3.2 Straight waveguides

The mvanancc of the straight waveguide structure with respect to translation
along the 2-direction immediately suggests the application of a spatial Fourier
transform with respect to this coordinate. This leads to the spectral representation
of the electromagnetic field, i.e.

(BH} y.2) = 2= [{E1) cykoe? s, @3.1)
in which
EH} (y;k,) = f{E,H} (y,2)e™dz (2.3.2)

—o0

denotes the longitudinal spectrum of the electromagnetic field. In a subsequent
spectral decomposition, one arrives at a modal description in which the electro-
magnetic field in a cross-section of the straight open waveguide is determined by
the location and the nature of the singularities—poles and branch points—of the
spectrum {EH} (x,y;k.), in so far as they are located on the physically acceptable,
i.e. causal, sheet of a multi-valued Riemann surface that is representative for the
complex propagation-coefficient plan ( the k,-plane ). The contributions from the
poles of Eq. (2.3.2)—discrete spectrum—, k,=B, (u=1,2,..,M ) yield the
guided ( or surface-wave ) modes with modal distribution functions {eﬁ,hﬁ}(x,y)
where the superscripts + / — denote propagation in the positive / negative z-direc-
tion. The contribution from the loop integrals around the branch cuts k,= B
By », corresponding to the chosen Riemann sheets—B; , are the lines along which
Im(k,%_l,z—[iz)y2 = 0—, yield the radiation field—continuous superposition of radi-
ation modes—with modal distribution functions {ei,hi}(x,y;[}). The resulting
modal distribution in a cross-section of a straight open waveguide is then given
by
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M
E(xyz) = Y, {c;e,*,(x,y)e‘jﬂ'*z + c;e;(x,y)eﬂw} +
p=1
2 . .
2, .[ {e®exyBe™ + cBe (xy;Be™ap, | (2.3.3)

i=lBEBi

and a similar expression for H(x,y,z). For an extensive discussion of the modal
representation presented above see Blok [11][12] and de Ruiter [28]. Simple poles
located on the nonphysically acceptable, i.e. noncausal, Riemann sheets—often
referred to as improper poles—can be interpreted as leaky-wave poles; the
corresponding field distributions are the leaky-wave modes. Leaky-wave modes
can play a role in approximating the radiation field. Hessel [43] gives a thorough
introduction to this delicate topic while Blok ez al. [12] and Tamir ez al. [49][61]
[109] presented an intensive numerical investigation for the case of a slab wave-
guide. Leaky-wave modes also play a role in understanding the prism coupler.
Taking into account the similarity between the problem of the prism coupler and
that of the dielectric bend [41], leaky waves will be calculated for bend problems
after they have been transformed into an equivalent straight “guiding” structure
( See section § 4.1.5).

The electric and the magnetic field strength {e;,h;}(x,y) of the forward propagat-
ing mode with mode number 1, satisfy the equations

Frn Oyezy + iBueyp
jouo | By [ = — [ —iBuesy — 9eeiy |, 2.3.4)
o Ou€yp = Oyfixy
. 2 e%u a.yh:’u:-jﬂ‘1 ;f
joeon;” | ey | = | —iBuhxy — Oy |- (2.3.5)
€ Oultyn = Ooliz

Similar relations exist for the radiation modes {e*,h*}(x,y;B). Itis easily shown that
between modes propagating in the positive z-direction and modes propagating in
the negative z-direction the following mutual relationships exist
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+ t - - + —
€. = &,¢€ , € = —e;,

2.3.6

In each of the domains D,, the refractive index #; is assumed to be constant. Hence
{eﬁ,hﬁ}(x,y) satisfy the Helmholtz equations

(af +0,% + ko'n — Buz) fetntloey) = 0. 2.3.7)

For the existence of at least one guided mode in the modal representation, the
condition max{nsubs,m,e,nwve,}<max{nwaveg,dde} must be satisfied and we might

expect to have

max{konsubstrale’koncover} < B’J. < max{konwaveguide} . (238)

It is customary to introduce the dimensionless effective refractive index

R 2nR
N W,straight dﬁf e]g?l*) = T A:(BP) » (239)

and the attenuation

0.2Im(B,)
Oy straight = _Tl(()ﬁp_ dB/cm, (2.3.10)

of the guided mode with mode number p and complex propagation constant [3,,.

It can be shown that the discrete modes {e;(x,y Jay), u=1,2,., M } and the
continuous modes {e*(x,y;B),h*(x,y;B), Be B, f form a complete set. In view of
the analysis of the junction between a straight and a curved waveguide in section
§ 4.2, orthogonality relations for the modal constituents are required. The field
orthogonality relations for straight open waveguides are well known [106] and
will be presented without derivation. For two guided surface-wave modes we have
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Jax Jay et x 5} = Ky (2.3.11)

where K|, denotes the norm of the guided mode with mode number .. For a guided
mode and a radiation mode we find

[ax ay Slez < wp) = 0, (23.12)

where p=1,2, ..., M and B € B, ,, while for two radiation modes we have

j dx de 2e'(B) x ' (B} = KBSB-B) , (2.3.13)

—00  —o00

where B, B’ € B,, and K(B) denotes the norm of the radiation mode with f3 €
B, ;. Leaky-wave modes are not orthogonal, although an orthogonality condition
may be found by performing the integration on a complex cross-section [106].
Forward and backward propagating modes with identical propagating constants
are not orthogonal to each other. In the case of degeneracy, it is possible to find
linear combinations of the degenerate modes that are orthogonal to each other.
Apart from the field orthogonality relations, there are power orthogonality
relations which will not be used in the thesis, because the problem of the junction
can be solved by means of the field orthogonality relations. Power orthogonality
is valid for the lossless case Im(€,) = 0 only and makes it possible to write a simple
expression for the time average of the total power carried by a straight waveguide

+o0

<P> = jdx dyz - {oRe(ExH")} =

—0  —o0

Z{lc“l2 e K, + Z J e @N e @Ik @)ap  (2.3.14)

FlﬁeB
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This relation is used to evaluate the total power carried by the first and last straight
section of a waveguide track, because the difference in power at the beginning and
the end of the waveguide track represents the total loss of power.

Finally it is noted that the presence of a perfectly conducting screen, as discussed
in section § 2.2.5, results in the disappearance of one of the branch-cut integrals
in the field representation Eq. (2.3.3).

2.3.3 Curved waveguides

The invariance of the circularly curved waveguide structure with respect to
rotation around the x-axis suggests the application of a Fourier representation in
the axial direction. Then the electromagnetic field {E,H} (x,r,p) can be written as

{EH} (x,r,0) = %J {EH} (e,rikp)e Pk, , (2.3.15)
in which
{EH} (x,rikg) = _[{E,H} 0 ®de , (2.3.16)

~00

denotes the azimuthal spectrum of the electromagnetic field. It is noted that the
integration with respect to @ is carried out over the interval [—oo, +oo]. In this respect
we adopt a point of view that has proved its usefulness in diffraction and wave
propagation problems associated with circular cylinders [33]. It might be useful
to perform the integration with respect to ¢ over the section @; < ¢ < @, of the
curved waveguide. Once the azimuthal spectrum of the electromagnetic field has
been determined, a spectral decomposition similar to the one that has been
discussed for the straight open waveguide section leads to the modal distribution.
Such a modal description has been discussed for the case of a single concave
reactive surface by Lewin et al. [65] and by Wasylkiwskyj [123]. The field
representation for this configuration shows a contribution of a finite number of
discrete modes due to—simple—poles and a branch-cut contribution. The discrete
modes appear to be of the whispering-gallery type first discussed by Lord Rayleigh
[95][96]. A similar discussion on electromagnetic waves in the neighborhood of
curved structures by Lewin et al. [65], suggests that also in our problem the
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electromagnetic field in a cross-section of the curved open waveguide is deter-
mined by the location of the singularities ( poles and branch points ) of the
azimuthal spectrum {E,H} (x,r;kp), in so far as they are located on a physically
acceptable sheet of a multi-valued Riemann surface that is representative for the
complex ky-plane. The contribution from the poles of Eq. (2.3.16)—discrete
spectrum—, kp=7Y, (L=1,2,...,M) yields modes of the whispering-gallery
type with modal distribution functions {eﬁ,hﬁ}(x,r), where the superscripts + / —
denote propagation in the forward / backward ¢-direction. The contribution from
the branch-cut integral k, =y € [0, jeo], corresponding to the chosen Riemann
sheet, yields the continuous spectrum with distribution functions {ei,hi}(x,r,y). The

resulting modal distribution in a section of a curved open waveguide is then given
by

M
E(xro) = Y, {c,’}e;(x,r)e'm“’ + c;e;(x,r)e"m’} +
p=1
Joo
{c+(v)e+(x,r;v)c"”“’ + c‘(v)e‘(x,r;'y)e*"“”}dv, (2.3.17)

0

and a similar expression for H(x,r,¢). In contrast to the modal representation in
the straight open waveguide, the properties of the modal constituents presented in
the representation Eq. (2.3.17) have not been investigated. The electric and the
magnetic field strength ie;,h; (x,r) of the forward propagating discrete mode with
mode number M, satisfy the equations

hyy r"la,reg,,,l + jr_lype:u )
joMo |y | = = Gl —dehy | (2.3.18)
h;w axe:.p. - are:,u
el o, +ir k)
Xl T leu + )7 Yulry
joeon? | ey [ = | —iryhi, -0k, |- (2.3.19)
Cpn Oty — Orhrn )

Similar equations exist for the continuous modes {e+,h+}(x,r;y). It can be shown
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that between modes propagating in the forward ¢-direction and modes propagating
in the backward ¢-direction the following mutual relationships exist

+ o+ - - + -
€, = €x,6 > €p = —€p,

o € (2.3.20)
h:,h.:=_hx,_hr ’ h$=hq)-

In each of the domains D;, the refractive index n; is assumed to be constant. Hence
{eﬁ,hﬁ}(x,r) satisfy the Helmholtz equations

(V2+Brd) feuh) = 0, (2.3.21)

(V=) {e, )+ 27 feghe) = 0, (2.3.22)

(VAr2-r) {eghe) — 12 M, {enh} = 0, (2.3.23)
in which

V2= R+ +r9,— R (2.3.24)

The azimuthal or angular propagation constants:?y, are complex. In order to
compare the field representation Eq. (2.3.17) with Eq. (2.3.3) on page 26, it can
be useful to introduce

ky " 'YRt-l , @ o RO, (2.3.25)

in which R, is an appropriately chosen radius of curvature. In analogy with the
straight section, the effective refractive index can be introduced as

o Re(y) _ 2mRe(y,)
Nyurved & ——E = , 2.3.26
hewed = "R = TRk, (2.3.26)

and the attenuation can be introduced as
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10ntIm
Oty curved = ——’lt—lyk‘l dB/90° . (2.3.27)

In contrast to the orthogonality conditions for straight open waveguides, little is
found in the literature about orthogonality conditions of the field constituents in
curved open waveguides. In the remaining part of this section, it will be indicated
how this orthogonality can be derived. To this end we apply the reciprocity relation
of Lorentz [23]

fﬁﬁ-(EleZ-szHI)ds =0, (2.3.28)
S

to the domain V, [-X., < X < X.., R, <r < R.., ¢; < @ < ¢, ], thatis enclosed by the
surface S consisting of six parts as shown in Fig. 2.7. The contribution of the
perfectly conducting screen at r = R, will vanish because of the boundary condi-
tions. In the x-direction away from the curved light channel, the field behavior is
expected to be evanescent. Consequently, the contributions at the surfaces
[ x = foo, R, < 7 <R, ¢ < @ < ¢, ] will vanish. For large values of r, we might
expect the electromagnetic field in the curved structure to behave as an outgoing
cylindrical wave. Then also the contribution of the surface [—ee < x < oo, r — oo,
¢ < ¢ < @, ] will vanish. The only two nonvanishing contributions to the surface
integral then come from the interfaces ¢ = ¢, and ¢ = ¢,. Hence from Eq. (2.3.28)
we have

400 400 +400

o0
dr Jdx (/b IXH2 E2XH1 J.dr Idx EIXHz - E2XH1} =0.
R, —oo =0, R, =0,

—00

(2.3.29)

When dealing with discrete modes, we first take for the states 1 and 2 in Eq. (2.3.29)
two forward propagating modes,

[EvHY) = [eb b, (2.3.30)
(BB} = {er e ™, 2.3.31)
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Fig. 2.7 Cross-section x=constant (left) and cross-section ¢=@2 (right) of the curved
waveguide. A volume V bounded by a surface S consisting of the six planes x =1xw ,r=Rsc ,
r=Rw , 9= Q1 and ¢ = @ is indicated. A perfect conductor that screens the origin is located at
the interface r = Rg.

and insert them into the above integral to find

+o0 “+co

J-dr J-dx - {etxt — exhiplfe 00 T00R) = 0 (2:332)
R ~00

9¢

Since this has to be valid for any ¢, and ¢, it is found that

+o0 +o0 +oo +oo
J-dr jdx = J'dr dx ¢ {elxhy} , when y+y, 0. (2.3.33)
R —00 R —o0

Next we take for solutions {E LH 1} and {E2,H2} a forward propagating mode and a
backward propagating mode, respectively:
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(EvH) = {ehile™e, (23.34)
[EH) = [eshiferte, (2.3.35)

and find in a similar way

too oo 400 400
I"’j "'\’ "ux"v = J.d’,'-dx evxh} when y,~, #0 . (2.3.36)
R,

R —o0

£

—c0

Using the relation Eq. (2.3.20) between backward and forward propagating modes,
we find

400 oo 400 4o
Jdrja’.x(?) {esxnt} = J‘ j e}, whenyy, 20, (23.37)
R“ —o0 R ~o00

If p # v, theny,+y, # 0 and ¥,—Y, # 0. Both Egs. (2.3.33) and (2.3.37) should hold,
leading to field orthogonality of the discrete modes

jdr de ¢ {etxhii} = 0, whenpzv. (2.3.38)

A similar derivation might be given for the continuous modes.

The resulting orthogonality for the guided modes in a curved open structure can
be written as

400 400

dr J-dx ¢ -{epx ml} = K8,y (2.3.39)
~R, -
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where K, denotes the norm of the discrete mode with mode number p. For a
discrete mode and a continuous mode, we have

+o00 +o00

J‘dr de 6-lesxn'm} =0, (2.3.40)

R —oo

while for two continuous modes we have

+co

dr j dx - {e' () x B W)} = KWd(-Y) . (2.3.41)

-R, -

where v, Y € [0,jeo] and K(y) denotes the norm of the continuous mode with
Y € [0,je]. We assume the discrete and continuous modes to form a complete set.
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Chapter 3

Tackling the third dimension

The preceding chapter introduced basic definitions and relations, described the
general configuration of the straight and the curved waveguide and formulated the
electromagnetic problem. The next step is to find solutions for the given geome-
tries. We adopt the well-known method of effective dielectric constant (EDC) or
effective index method (EIM) to reduce the number of dimensions by one. The
transversal or x-dependence will be taken care off. The two-dimensional cross-
section is transformed into a one-dimensional problem, i.e. that of a planar straight
or curved waveguide that depends only on the y- or r-coordinate respectively. This
chapter deals with the method of effective dielectric constant and section § 3.2
gives a derivation of this method for both the straight and the curved waveguide.
It is not evident at first sight that the method of effective dielectric constant—nor-
mally used for straight waveguides—can be used for bends as well. Section § 3.1
discusses some approximating techniques like the method of effective dielectric
constant.

3.1 Overview of techniques

The classification of the available numerical modeling techniques for optical
waveguides is a rather cumbersome process. In fact, there is a European initiative,
the purpose of which is to survey and compare these techniques. This COST216
Working Group 1 recently published a study on different modeling techniques for
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Table 3.1 Overview of several modeling techniques. { WIM = weighted index method, BPM =
beam propagating method, CEIM = corrected effective index method, EDC = method of effective
dielectric constant, FEM and FDM = finite element or finite difference method respectively, DIM
= domain integral equation method )

EDC  [Bessel functions [81] Yes
method |2-D BPM Yes See text
[571  |Transformation and (7] Yes See text
[94] [2.D BPM
Plus  \reansformation and  |[40][41] Yes Breaks down at small radii of cur-
WKB approximation vature.
Transformation and  ([112] Yes
matrix transfer method
Local modes [100] Yes
Miscel- {WIM [56](29] Yes Does not differentiate between
laneous HE/EH modes.
CEM [121] No
Full Method of lines [36]1[37] Yes
3-D 3-D BPM Yes See text
methods [Scalar FEM, Vector  ([29] No
FEM, FDM, DIM
Pertur- | Volume Current [62] Yes Perturbation techniques are not
bation |Method suited to calculating the coupling
tech-  |Huygens-type formula [[8][51][52] |Yes losses.
niques [53][551{107];

longitudinally invariant optical waveguides [29]. A similar survey has been done
by Benson et al. [9]. The COST216 group is currently investigating the problem
of the curved waveguide and the directional coupler, but the results of this
investigation are not yet available ( See also page 105 ).

Various modeling techniques discussed in these two surveys are listed in Table
3.1. Some methods, e.g. the method of effective dielectric method, can be applied
in the modeling of straight as well as curved waveguides. As far as methods
applicable to bends are concerned, the following problems can be mentioned:
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* Perturbation techniques estimate radiation losses quite reasonably, because
the radiation loss is related to the imaginary part of the angular propagation
constant Im(y), which is much smaller than its real part Re(y), even when
high radiation losses occur. However, these methods do not give field
expressions, because the field of the curved waveguide is approximated by
that of the straight waveguide. Knowledge of the fields is required for the
full reatment of coupling losses at the junction. The reader is referred to the
discussion in § 7.2 of Lewin et al. [65] on the use of perturbation theories.

* The beam propagating method (BPM) calculates the total loss of a given
structure and it is difficult, though not impossible, to see how different loss
mechanisms contribute to the total loss figure. This method gives limited
insight into individual loss mechanisms and is for this reason less suited to
the optimization of the bend than other techniques.

+ The methods are either too slow on a computer or too cumbersome. In order
to be able to carry out the modeling of curved waveguides efficiently, it must
be possible to calculate the losses of a great number of structures within
reasonable computing times. This puts limitations on both the required CPU
time and on the friendliness of the interface between the user and the
computer program.

3.2 The effective dielectric constant method

3.2.1 Introduction

The method of effective dielectric constant (EDC) or effective-index method
(EIM) was introduced by Knox and Toulios [57] as an improvement on Marcatili’s
method [66]. It has found widespread acceptance due to its general applicability,
ease of use and its accuracy. A derivation will be given here because, firstly,
although widely used, little can be found in the literature and, secondly, because
we are also going to use the method of effective dielectric constant for curved
waveguides and to my knowledge, this topic has not been investigated elsewhere.
We adopt Marcatili’s line of reasoning [66]. An additional advantage of pursuing
Marcatili’s argument is the elucidation of the differences and the similarities
between the methods.
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Region / Region I1 Region 111

x=-h/l2

xX=+h/2

y=-w/2 N y=+w/2
x

Fig. 3.1 “Noughts and crosses” cross-section z= constant of the straight waveguide. This
generalized waveguide is used in the derivation of Marcatili’ s method and the method of effective
dielectric constant. The central domain has the higher index of refraction and confines the larger
part of the power flux. The outer domains are assumed to extend to infinity.

The derivation will be restricted to the generalized waveguide structure shown
in Fig. 3.1. This “noughts and crosses” structure has been used by both Marcatili
and Knox er al., and the corrected effective index method (CEIM) by van der Tol
and Baken [121] discusses the same “noughts and crosses™ waveguide. The
analysis is greatly simplified and made much clearer by confining ourselves to a
configuration with 3 x 3 domains D;.

It is not evident at first sight that this generalized structure encompasses the ridge
guide. Ramaswamy [94] applied the method of effective dielectric constant to
strip-loaded film waveguides and, therefore, to the similar ridge waveguide. The
method of effective dielectric constant will be generalized in section § 3.2.7 in
order to apply it to ridge waveguides and multilayer structures.

§ “Noughts and crosses” is a game which translates into “Boter, kaas en eieren” in the Dutch
language.




Section 3.2 The effective dielectric constant method 41

3.2.2 Mode nomenclature

It appears that the solutions of the Maxwell equations fall into two groups. This
separation originates in the polarization properties of light. The modal fields are
generally classified according to the presence of the longitudinal field components;
TEM modes have e, = h, =0, TE—transverse electric—modes have e¢,=0 and
h, #0 and TM—transverse magnetic—modes have A, =0 and e, # 0. In open
structures TEM-waves are only supported in the trivial case of an infinite uniform
medium. Planar straight and curved waveguides support both TE and TM modes,
numbered TE, or TM,, with u 2 0. But a mode confined in two dimensions in an
open waveguide has a hybrid character, e, # 0 and h, # 0. The appearance of the
hybrid modes is nevertheless TEM-like, in the sense that either e, and A, are
dominant or e, and h,. We will use Unger’s [117] convention throughout the thesis.
His convention identifies TE, with H, and TM, with E, and defines a hybrid
HE,,-mode, in which L refers to the transversal mode number and v to the lateral
mode number with ,v 2 0, as the mode that corresponds to the planar Hy-mode
when the ridge height of a ridge waveguide approaches zero. HE,,,-modes may
therefore be grouped together as quasi-TE -modes. The nomenclature is sum-
marized in Table 3.2.

Table 3.2 Definition of the mode nomenclature. Unger’s convention is used throughout the
thesis. The x-components disappear by definition and this serves as the starting point in the
derivation of the method of effective dielectric constant ( See Egs. (3.2.1), (3.2.23) and (3.2.37) ).
The coordinates x, y and r in Marcatili’ s nomenclature are the coordinates used in the thesis.

e, 0 e, 0

HE,, Quasi-TE, 2 S 1hel >> |kl >> (Al | 1A >> lhyl >> 1k,
le,l >> le) >>le,) | le,| >> legl >> le,

h def p &f

x = x
EH,, | Quasi-TM, Euv lhy| >> || >> |k | (R,] >> kel >> A,
le,l >> le| >> le,) | le, >> ley| >> le,|

h ( transversal ) e (transversal )

HE,, EH,y,
[T 1
L— e (lateral ) L i (lateral )
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3.2.3 Straight waveguides; HE modes

We can now proceed to the explanation of the method of effective dielectric
constant. We define the HE,,, mode by the vanishing of the e, component, i.e.

e

&

0. (3.2.1)

The field component e;‘ then satisfies the Helmholtz equation Eq. (2.3.7) every-
where

cos(—kﬂh/2+<p2)e""("+m) re D,
C, e cos(kyw/2+0) cos(kx+Q,) re D,
cos(92) cos(kph/2+p)e "D re D,
cos(-—k,sh/2+(p5)c""("+h’2) re D,
ety = { Cn L ot cers) re D;,
yhy cos(ps) w2
cos(kysh/2+ps)e a2 re D,
cos(—k,gh/24+pg)e ™™D r e D,
C]]] e—k),,,(y-w/2) COS(kJ!"W/ 2+6) cos (k; sx +(Ps) re D8
L cos(@s) cos(kgh/2+@g)e " *? re D,

(3.2.2)

where C;, Cyp, Cur, @2, s, @s and 0 are constants. The component ¢ is given by

0,65

* _ Yy

€ = 1 (3.2.3
B )

The magnetic field A* is found from Maxwell’s equation Eq. (2.3.4)
+ 2 n2 2.2 ~2
h; 1 ay_B N -k()ni_ax N
hy = P _axay ey = +apoP —axay €y . (3.2.4)

K +jBo, +iBo,




Section 3.2 The effective dielectric constant method 43

The components of the wave vector k in Eq. (3.2.2) are interrelated by

k1 (B> —kon?1™ [N7-n3)"

ko | = | BB | ¥ kol [i3-NT" |, (3.2.5)
ks G )—k20n3] [N7-n3]"

ket [ (B2 K] [N%,—nh

kis | = | Bmd—(B*+2)1" | ¥ ko | [n2-NE" |, (3.2.6)
kes [(B>+kE)—Kan2)” [N-nd]”

ky7 (B> k) —kn3]™ NZi—r3)"

ke | = | [Bnd—B*-k2)1” | ¥ ko| [m2-NZ1” |, (327
ko [(Bz-kﬁm)—kzongl% [Ni—n3]”

in each domain D, All square roots \/EL_ have been chosen with Re(k,;) > 0,
i=1,2,...,9. The form into which the field component e‘;‘, Eq. (3.2.2), has been
put ensures its continuity across all horizontal interfaces x = +h/2. The continuity
of the derivatives dye, and ayey automatically follows from that of e, and conse-
quently the continuity of the field components e, and A,. By requiring the continuity
of od.e, all boundary conditions have been matched exactly at x = +h/2. This
requirement leads to three dispersion relations

ko(k gtk
tan(k,h) = i(—l-—fs—) ,wheny < —w/2 (Region /), (3.2.8)

kﬂ x1/x3

ks (katk
tan(ksh) = —’-‘i(-4—"6) when ~w/2 < y < +w/2 (RegionIl),  (3.2.9)
sz kx4kx6

8(kertk .
tan(kgh) = Mﬁ , when +w/2 < y (Region IIT) . (3.2.10)

k x7%x9

We now have to match the boundary conditions at the vertical interfaces
y=3wi/2, but it appears to be impossible to make any of the field components
continuous along y = tw/2, because the x-dependence is different in every region
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I, I and III. 1t is at this point that we are going to make an approximation. The
essence of the method of effective refractive index is, in fact, that it gives the
horizontal boundaries with the strong refractive index changes priority over the
vertical interfaces ( See also Fig. 3.2 on page 49 ).

Thus, instead of satisfying the boundary conditions along the entire vertical
interfaces y = 2w/2, we are going to match two field components at one point of
the interface only, preferably a point where the magnitude of the fields is large, for
example at x = 0. We will analyze now which boundary conditions can be fulfilled
and to what extent. In order to do this we name the two field components that we
choose to match ¥, (x,y) and ¥5(x,y) and we have

¥, 0=0,y=w/27) = W1(x=0,y=w/2"), (3.2.11)

as the continuity requirement for ¥, at x = 0 and y = w/2 plus similar requirements
for ¥, at x =0 and y = —w/2 and for ¥, at x =0 and y = 3w/2. Since ¥, has been
matched at x = 0 only and not along the entire interfaces y = +w/2, the continuity
of the derivative d,¥, across the interface does not automatically follow, i.e.

o ¥, (x,y=wi2)| # o ¥ (xy=wi2"|, (3.2.12)
x=0 x»=0

as it did for the transversal boundary conditions. In order to label the extent to
which the boundary conditions have been fulfilled, we introduce the difference

M¥\(0)} = ¥iewi2) - ¥i(wi2') (3.2.13)

between the field component W, (x,y) on both sides of the interface y=w/2. A
similar expression holds for W,(x,y) and it seems redundant to introduce still
another expression for y = —w/2. Equation (3.2.11) leads to A{‘I‘l(O)} =0 and Eq.
(3.2.12) can be written as A{9,;¥(x)} # 0. We will now proceed to make a choice
for the field components to be matched and will express the deviation from the

continuity requirement by means of Eq. (3.2.13) ( This discussion is continued in
section § 3.2.8).

The choice of the field components that are going to be matched is inspired by
the wish to express the result of the method of effective dielectric constant as a
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laterally planar waveguide of width w and refractive indices Ny, Ny and Ny plus
the corresponding TM boundary conditions. The planar lateral waveguide—i.e.
without x-dependence—has e, = h, = h, = 0, solves the Helmholtz equation for
h, and requires the continuity of h and e, < N;’ a h,. We choose to match these
conditions and require the continuity of ¥'; = h, o< N eyand ¥, =N; 2a,h, o< dye,, at
y = 1w/ 2. Effecting these requirements yields

CiPB?) = Cu(—KorB?) , (3.2.14)
Cul~Kr) = Ckur—B) , (3.2.15)
kyCrcos(—k,/2+0) = —kyyCpsin(—ky* 2+9) , (3.2.16)
—kyCpsin(ky2+8) = —kyyCrpcos(ky*/2+9) , (3.2.17)

The deviation from the continuity requirement of &, is now expressed as AW,. The
deviation from the continuity requirement of e, is proportional to A¥, since
e, < d,e, =¥, the deviation is proportional to A(9,'¥;) for h, since h, < d,d)e,
=9, ¥, et cetera. Table 3.3 summarizes all boundary conditions and the degree to
which they are satisfied. The reader will have noticed some arbitrariness, because
we could have demanded the continuity of other field components that are equally
important. The consequences of this arbitrariness are discussed in section § 3.2.8.

Table 3.3 The boundary conditions for the HE-modes in straight waveguides using the EDC
method The table indicates which field components have to be continuous, the degree to which
is fulfilled and how it is accomplished. The deviation A is explainedin Eq. (3.2.13).

d, 0 Exact e, o

e, *% | Required | Exact | d, | ** o< Al(n/N)™¥1}
e, * e, Exact | e, * < AY,

h ok =e, Exact | h, | ** =AY,

h, <=h, Exact | A, oc A0, V)
h, * Required | Exact | A, * o< (NF20.¥))
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An eigenvalue equation is obtained from Egs. (3.2.14) through (3.2.17) by
eliminating Cy, Cyy, Cyyy and 0 and by substituting the N; from Eqgs. (3.2.5) through
(3.2.7)

Ni|Nf ~ Niy
2
k) ky ks
Nj; NI Nin
This equation is indeed the TM dispersion relation for a planar waveguide with
width w, film index Ny, substrate index N and cover index Ny;. The method of
effective dielectric constant can now be summarized in the notation of van der Tol

and Baken [121]. The propagation constant B, = Nk, for the HE,, modes is
found by solving a set of four uncoupled equations

y” [LCL f?ﬂ!]

tan(k,;w) = (3.2.18)

Dy(TE,ny,n2,n3 h,u,N;) = 0, (3.2.19)
Dy(TE,ng,ns,ns h,u,Ny) = 0, (3.2.20)
D(TE,n7,ng,ng h,W,Nyp) = 0, (3.2.21)
Dy(TM,N,Ny,Nypw,V,Nyy) = 0. (3.2.22)

3.2.4 Straight waveguides; EH modes

The derivation for the complementary polarlzauon is very similar to the one just
given. The Helmholtz equation is solved for h,(x,y) leading to a solution identical
to Eq. (3.2.2). The other field components can be calculated from A

Ko (3.2.23)
K = —ﬁﬁi (3.2.24)
e aZ_BZ ]%n?._a2

+ —1 Y + _1 ' +

e —0,9, |hy | 09, |A (3.2.25)
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The field & and the components d,, e, and e, have to be continuous at the
boundaries with the strong dielectric discontinuities x =1A/2. By requiring the
continuity of A, and e, o n,-'za,‘hy the exact fulfillment of all other conditions
follows. These two requirements lead to three TM dispersion relations for EH,,
modes

Ds(TM’nlanbnﬁl,h’u’Nl) =0 > (32.26)
Dy(TM,n4,ns,n b, ,Ny) = 0, (3.2.27)
Dy(TM,nq,ng,ng B, W,Npy) = 0. (3.2.28)

It is not possible to satisfy the boundary conditions in the lateral direction, which
are the continuity of h, e,, d, and ¢, along the entire interfaces y = +w/2. The fields
have different x-dependences in regions /, IT and III. Continuity is therefore
required along x = 0 only, and the reader is referred to page 44 for a discussion on
the accompanying deviation. We try again to impose the TE-boundary conditions
of a laterally planar waveguide of width w and refractive indices N;, N and Ny;.
The laterally planar waveguide has /4, = e, = e, = 0, solves the Helmholtz equation
for e, and requires the continuity of e, and d,e,. We impose the same conditions
along x =0 at y =1w/2 and since e, = (Ni/n;)"h,. We have

CiN? _ CyNg

= 3.2.29
B G229
CiNi  CuNiy
2 = 2 s (3.2.30)
ns ns
kyCiN} ke, qCuV%
f2l 1 COS(—ky,W/ﬁ-i-e) = __%sin(_ky”w/ﬁ_ke) s (3231)
2 5
k, CyuN> kumCriN
- zlliél n sin(k,;v2+0) = ——%COS(/@]H’V/@*‘G) . (3.2.32)
5 8

We have summarized the boundary conditions in Table 3.4. An eigenvalue
equation is obtained by eliminating C;, Cy, Cj; and 0 from Egs. (3.2.29) through
(3.2.32)
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Table 3.4 The boundary conditions for the EH-modes in straight waveguides using the EDC
method. The table indicates which field components have to be continuous, the degree to which
this requirement is fulfilled and how it is accomplished. The deviation A is explained inEq. (3.2.13).

d, *k < h, Exact e, ¥k =AY,
e, e, Exact | 4, oc A{ (ni/N ,-)28,‘1‘2}
e, * Required | Exact | e, * o< (N79,'¥))
hy 4] Exact | A, =40)
h, *% | Required | Exact | h, | ** oc (/N ¥}
h, * <h, |Exact]| h | * o< Al(n/N)*¥,}
kg+k
tan(lw) = 21t om) (3.2.33)
it — kot ey
or
Dy(TE N ,Ny.Nipw,V.Ny) = 0, (3.2.34)

thus reproducing the dispersion relations of the preceding section with TE and TM
interchanged.

3.2.5 Comparison with Marcatili’'s method

The derivation of the method of effective dielectric constant is very similar to the
derivation of Marcatili’s method [66]. There are a few differences, however. One
of them is unfortunate but cannot be circumvented. Marcatili defined HE,,, modes
by hydéfO and calculated h,. The e, component is proportional to d,d,h, which is of
the second order and can be neglected. But the method of effective dielectric
constant has to be exact for a planar waveguide. The approximation becomes worse
when the actual structure deviates further from the planar case and the derivation
should reflect this fact. It seems more natural to define the HE,, mode by the exact
vanishing of ;%40 and to calculate ey. This difference in starting point does not
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have any serious consequences since in both cases e,, k, = 0 within a second-order
approximation.

The main difference between Marcatili’s method and the EDC method, however,
involves the boundary conditions. Marcatili’s solution of the field satisfies the
scalar Helmholtz equation Eq. (2.3.7) everywhere and so does the solution Eq.
(3.2.2) of the method of the effective dielectric constant. But not all boundary
conditions can be simultaneously fulfilled. Marcatili’s method gives priority to the
boundary conditions at the interfaces between the central and the four adjacent
regions and neglects the four corner areas. The method of the effective dielectric
constant is best suited to a planar-like waveguide, where the largest refractive index
changes occur at the horizontal interfaces x = £h/2, because it fulfills all transversal
boundary conditions exactly and the lateral boundary conditions approximately.
These differences are shown in Fig. 3.2.

Marcatili’s method EDC method

Fig. 3.2 The differences between Marcatili' s method and the method of the effective dielectric
constant when they are applied to the generalized “noughts and crosses” cross-section of Fig. 3.1.
Marcatili's method stresses the boundary conditions at the interfaces that bound the central
domain, while the EDC method exactly fulfills all transversal boundary condition at the horizontal
interfaces (thick lines). Marcatili's method neglects the fields in the four corner regions.

3.2.6 Curved waveguides

We will now proceed to the derivation of the method of effective dielectric
constant for curved waveguides and HE,,, modes. The derivation is restricted to
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x=+h/2

Region / Region I1 Region 111

~>

r=R1 v r=R2
3

Fig. 3.3 “Noughtsandcrosses” cross-section @ = constant of the curved waveguide. The central
domain has the higher index of refraction and confines the larger part of the power flux. The outer
domains are assumed to extend to infinity. The perfectly conducting screen which was introduced
in section § 2.2.5 has been left out of the discussion.

the generalized waveguide cross-section shown in Fig. 3.3. The field component

+ . .
€, 1S written as

e(x,r) = <

COS(—kyph/2+@,)et= re D,
Cren(r) { cos(kor+,) re D,
Co8(P2) | cos(kph/2+p)e a2 re D,
COS(—kysh/2+@s)e =72 re D,
Cuerir(r) { cos(k,sx+@s) ,forre Ds, (3.2.35)
COS(Ps) | cos(k,sh/2-+s)e M2 re Dy

cOs(—k,gh/2+@g)et =42 re Dy
Cuern(r)  cos(kgx+@s) re Dy
cos(Ps) cos(kygh/2+@g)e oD re D,
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where the components of the wave vector k are defined by

kst IN:—n31" ) (kea IN—n31" ) (ks IN3-r31”

ko [Sko | [(W-NT" |, | ks (Eho | [n2-N2T |, | ks (Bho| [n-NZ1"

kys [N?=n31" | |k INin2]”% | | kso [Nii-n3]"
(3.2.36)

in each domain D;. All square roots ‘/E,_ have been chosen with Re(k,;) > 0 and
i=1,2,...,9. We define

e =0, (3.2.37)
and find from the divergence relation

e o(re)  ('+9)e;
®T Hy T Hyr

(3.2.38)

The functions e, (r) are then seen to satisfy an uncoupled Helmholtz equation

2
(_a_ +39 LNz J@J e = 0, withi=1ILIII, (3.2.39)
or ror r ’

by the substitution of Eq. (3.2.38) into Helmholtz equation Eq. (2.3.22). The
magnetic field can be found from Maxwell’s equation Eq. (2.3.18)

Ky 1 r@,r)~(yiry? ) OH3r 1041 22

- 1 _ ] + _
" Foewr | T %1 = Taur I
h‘P iJYr ax i_]'YI‘ 8,

N
= oy | 00+ e (3.2.40)
| Yo,
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The continuity of d,, e,, e, and h is required at the interfaces x = +h/2. If e, and
hg o< O,e, are matched, then d,e, and d2e, are also continuous and all continuity
requirements are seen to have been fulfilled precisely. This leads to three dispersion
equations for the HE,,, modes, Egs. (3.2.8) through (3.2.10), or equivalently

Ds('rEanlanbnS,h:p-yNI) =0 ’ (3.2. 19)
DS(T'Ein4an59n6,hvu’N”) = 0 ) (3.2.20)
DS(TE9n7sn8:n9,hvu‘>N1”) =0. (3‘221)

The transversal boundary conditions, notably the continuity of e,, d,, e, and h at
r =R, and r = R,, are impossible to fulfill, but this is what the method of effective
refractive index is about. The boundary conditions will be matched as far as
possible along x = 0 as shown in the preceding sections for the straight waveguide.
The freedom, obtained from the impossibility of matching all components, can be
used to impose the HE boundary conditions for a laterally planar, curved wave-
guide with refractive indices N;, Ny and Ny, bounded by r = R, and r = R,. In the
electromagnetic problem of the planar TM bend, we have e, = h, = hy, = 0, solve
the cylindrical Helmholtz equation for A, and require the continuity of A, and
N;?9,h,. Imposing these boundary conditions on the solution of the method of
effective dielectric constant leads to the continuity requirement of Ne, and 9,e,
and in this way all requirements are fulfilled along x = 0 to the second order. This
is summarized for the reader’s convenience in Table 3.5.

In conclusion it can be said that the HE-boundary conditions of the planar bend
fulfill all lateral boundary conditions for HE,,,-modes at x =0 to a second-order
approximation and that we therefore find

D (TM, N, NN R RV Ywy) = 0, (3.2.41)

where D(...) =0 denotes the dispersion relation for the curved slab waveguide
with corresponding parameters. It is stated without much ado that for EHy,, modes
Egs. (3.2.19), (3.2.20), (3.2.21) and (3.2.41) are recovered with TE and TM
interchanged.

Note that Eq. (3.2.41) yields a propagation constant v, in place of an effective
refractive index N,. Eq. (2.3.26) can be used to calculate an effective index of
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refraction, but its value is not unambiguous because it involves division by an
arbitrary radius R, ( See the discussion on page 64 ).

Section § 4.1 gives a number of solutions to the problem of the planar curved
waveguide.

Table 3.5 The boundary conditions for the HE-modes in curved waveguides using the EDC
method. The table indicates which field components have to be continuous, the degree to which
this requirement is fulfilled and how it is accomplished. The deviation A is explainedinEq. (3.2.13).

dy =0 Exact | e, =24

e, ok Required | Exact | d, Aok o< A(n/NY"P:}

€o * e, Exact | e, * o< A(r'N¥ 1 +HP,)
h, Ak e, Exact | &, ek =AY,

h, <hy | Exact | b, o< ACT'NTO¥ 1+9,¥)
he * Required | Exact | A, * o< (N720, %))

3.2.7 Ridge waveguides and multilayer structures

The derivation of the method of effective dielectric constant has been restricted
to the “noughts and crosses” structure of Fig. 3.1, mainly because it simplifies the
analysis considerably and because it is a common starting point for other tech-
niques. The method of effective dielectric constant itself is not restricted to that
configuration and it is easy to see that the four eigenvalue equations Egs. (3.2.19)
through (3.2.22) can also be applied to the ridge waveguide of Fig. 3.4 as follows

DS(TEanl:ananlhlau,Nl) =0 ’ (3‘242)
Dy(TE,ny,ny,n3 by, WNy) = 0, (3.2.43)
D(TE,ny,np.m3 by, Nip) = 0, (3.2.44)

Dy(TM,N,NyNiupw,V\Nyw) = 0. (3.2.45)
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EDC
method

Fig. 3.4 The method of effective dielectric constant for ridge waveguides. The ridge waveguide

on the left is transformed into an effective slab waveguide with effective refractive indices on the
right-hand side.

Further, the applicability of the method of effective dielectric constant can be
extended to include multilayer waveguides. Any region y; <y < y;,; can consist of
an arbitrary number of domains D;, which leads us to a dispersion relation for the
corresponding planar multilayer structure and results in an effective index of
refraction. All effective refractive indices found in this way are used in an effective
lateral planar multilayer waveguide.

We assume that the above generalization can be made for the curved waveguide
as well.

3.2.8 Ambiguity, accuracy and trouble-shooting

The quantity AW, Eq. (3.2.13), has been introduced to describe the change of a
field component on both sides of an interface, across which it should be continuous.
If the three regions 7, Il and Il are identical, the general noughts and crosses
structure reduces to the cross-section of a transversally planar waveguide. The field
solutions are equal in all three regions I, IT and /11, all deviations A¥ become zero
and the solution of the method of effective dielectric constant reduces to the exact
solution of the transversally planar waveguide. We might, therefore, expect that
the method of effective dielectric constant is good when the transversal refractive-
index profiles in the regions I, II and IIl resemble each other very much as in the
case of a ridge waveguide with a low ridge.

If, on the other hand, all outer regions are equal, i.e. we have a rectangular
cross-section Ds with refractive index ns in a homogeneous background, none of

the quantities A¥ become zero, because no solutions are found in regions / and
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III. This configuration is, in practice, dealt with by taking N; and Ny equal to the
refractive index of the background. It would seem that the method of the effective
dielectric constant is a poor approximation for such a geometry, but it was, in fact,
this geometry that was discussed in the paper by Knox and Toulios [57] and for
which they found the method of effective dielectric constant to be a good
approximation.

The conclusion may, therefore, be drawn that the method of effective dielectric
is exact for the transversally planar slab, that it is a good approximation to the
solution for a rectangular waveguide cross-section in a homogeneous surrounding
and that the approximation becomes poorer for geometries that do not resemble
these two limiting cases.

There is some arbitrariness in the method of effective dielectric concerning the
lateral boundary conditions. All transversal boundary conditions have been satis-
fied exactly as summarized in Table 3.3 and Table 3.4, but the lateral boundary
conditions cannot be fulfilled exactly. In section § 3.2.3 we had to match e,, d,,
e, and h. We chose to match exactly A, o« N?e, and e, =< dye, at y =1w/2 and at
x=0, because this gave us the advantage of retaining the lateral eigenvalue
equation

7|2t 2
Np|\N/ Ny

2 ’

tan(kyw) = (3.2.18)

2 NS
Ny |  Ni Ny

which is equivalent to that of the planar waveguide with effective refractive indices
Nj, N and Ny for the case of TM-polarization. But alternatively, requiring the
continuity of the equally important d, = n?ey component and e, o dye, leads us to

kyit (L‘LI + kzlll]
“7| .2 2
hs \n2  ng

(3.2.46)

tan(k,w) =

2 2 2
ns n; ng

s .
(i‘yﬂ) _ et by
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Within the second-order approximation, we have the proportionality A, o< e,. The
continuity of e, and e, =< d,e, might, therefore, just as well have been demanded,
leading in turn to the TE-eigenvalue equation

kyir (kyr + Kyrip)

tan(k,w) = .
K — by kg

(3.2.47)

Three dispersion relations are found instead of one and within a second-order
approximation they are all equivalent. We adhere, however, to the original choice
Eq. (3.2.18) for the straight waveguide and HE,, modes, but the other two
equations may be taken as an estimate of the accuracy of the method of the effective
dielectric constant. Briefly, the lateral boundary conditions cannot be fulfilled
completely and within the order of the approximation used we can apply a laterally
planar-waveguide dlspcrsmn relation with either TE condmons Eq.(3.2.47), TM
conditions with N,, Eq. (3.2.18), or TM conditions with n,, Eq. (3.2.46). (A
numerical example is provided in Table 6.1 on page 159 )




Chapter 4

Two-dimensional solutions

The previous chapter showed how the method of the effective dielectric constant
can be used to eliminate the transversal coordinate. The result is a two-dimensional
problem that depends on the lateral coordinate and the coordinate along which
propagation takes place. This chapter is devoted to solving the curved open-wave-
guide problem and the corresponding junction problem for waveguides with a
lateral dependence only. Section § 4.3 discusses how to deal with multimode
waveguide tracks. Section § 4.4 introduces a conformal transformation to solve
the two-dimensional problem of two coupled diverging bends with identical radii
of curvature.

4.1 Curved waveguides

4.1.1 Introduction

Before giving solutions, we will briefly summarize the relevant configuration
and equations for the reader’s convenience. The three-dimensional bend described
in section § 2.2.3 is transformed into the two-dimensional structure shown in Fig.
4.1. The perfectly conducting screen introduced in section § 2.2.5 is also indicated
in this figure.The refractive indices indicated are the effective refractive indices
that are found by solving the transversal problem first, as described in the previous



58 Two-dimensional solutions Chapter 4

~>

Fig. 4.1 Two-dimensional curved waveguide structure. Multiple interfaces R; are allowed to

exist, either forming part of one complex waveguide or representing multiple coupled bends. The
Ni are the effective refractive indices. A perfect conductor at r = Rsc screens the origin.

chapter. The subsequent lateral problem for HE,,-modes consists of solving the

equation

r or

2
[;)7 +2 24Nz - g] i) =

plus the continuity of

h(R) and lea,hx

i

while at the screen we have

def

O,hy| o< N?3,(re,)

R R R

0,i=1,2,...M, 4.1.1)
o M-1, (4.1.2)
(4.1.3)
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The Helmbholtz equation Eq. (4.1.1) does not seem to comply with Eq. (3.2.39)
that was derived by means of the method of effective dielectric constant in the
previous chapter. Equation (4.1.1) is found by substituting the proportionality
€; o hi/r, obtained from Eq. (3.2.40), into Eq. (3.2.39).

In a similar way, the problem for EH,,,-modes consists of solving

2
(;—rz+lai+k02Ni2—:§]ex,i(r) =0,i=1,2,...M, (4.1.4)
r aor

plus the continuity of

e,(R;) and OJ,e,
R

i

,i=1,2,..,M-1, (4.1.5)

and the requirement at the screen

df o . (4.1.6)

4.1.2 The Bessel-function approach

Equations (4.1.1) and (4.1.4) are differential equations of the Bessel type and
their solutions are well known. Bearing in mind that v is a complex quantity, the
independent solutions are J(koN;r), the Bessel function of the first kind, and
Y (koN;r), the Neumann function or Bessel function of the second kind, in which
the complex order is understood to be y=\/?_ with Re(y) > 0. The Bessel functions
of the third kind, the Hankel functions, are defined as linear combinations of the
first two, i.e. Hy (koNir) = Jy(koNir) + j¥\(koNir) and HP(koNir) = J(koNir) -
iY\(koNir). These two Hankel functions form an independent set of solutions to the
Bessel equation on their own. If the Bessel function of the first and second kinds
are chosen as the independent set of solutions, then the field in every section can
be expressed as
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+
[Z’;J = AJy(koNir) + BY,(koNir) , when Ry < <R; 4.1.7)

for EH- and HE-modes respectively—except for the fact that the effective refrac-
tive indices are different—. The EH- and HE-modes behave quite similarly and it
has proved to be worthwhile to introduce a special symbol X; in order to deal with
both polarizations simultaneously

1 for EH modes ,

N; 4.1.8
— for HE modes .- ( )

If boundary conditions are matched at 7 = R; two equations are found that relate
the coefficients {A;,1,B:11} and {A;,B} to each other in matrix notation

5oov Maa)_ (4 % \(a “19)
NiJy Nia¥y | Bia | | NiRJY NiRYY || B; ) o

kN:R; kNR;

where the prime denotes differentiation of the Bessel function with respect to its
argument koN;r. The determinant of the left-hand matrix is seen to be Ny, times

the Wronskian W(J,,Y,) and is thus equal to 2/(TtkoR;). Since this Wronskian never
vanishes, equation (4.1.9) can always be inverted to yield

A ) _ TkoR; ( NiYy -Yy Jy Y, A; (4.1.10)
By, 2 | Nidy Iy ||| MRy Ny )l B -

kNR, kNR

Boundary conditions have to be imposed in the inner- and outermost region. The
innermost is bounded by the screen and we impose condition Eq. (4.1.3) for the
HE-modes
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J ’
B, = —A,;,’; , 4.1.11)
‘chNan
and condition Eq. (4.1.6) for EH modes
Jy
B, = -4 .|’ 4.1.12)
AR,

Note that both conditions can be approximated by B; =0, i.e. the boundary
condition without the screen, if J(koNyr) and Y,(koN,r) have an exponentially
decreasing and increasing character respectively when r decreases. The radiation
condition must be imposed when r — e, which means that, far enough from the
origin, all solutions must exhibit the asymptotic behavior of an outgoing wave.
The asymptotic form of the Hankel function of the second kind describes such an
outgoing wave in combination with time dependence Eq. (2.1.1). When expressing
solution Eq. (4.1.7) in terms of Hankel functions

+
(Zi} = %(A.—jB»H&"(/coNir) + ’;‘(A#jB.-)H?)(de,-r) , (4.1.13)

the condition for the outermost region is found to be
Ay—iBy = 0. (4.1.14)

Starting at the boundary conditions Eqs. (4.1.11) and (4.1.12) for HE and EH
modes respectively, repeated application of transfer matrix Eq. (4.1.10) and
imposing requirement Eq. (4.1.14), a lateral dispersion equation is found which
leads to a finite set of discrete, complex values of the azimuthal propagation
constant 7, which is characterized by a transversal mode number u= 0, 1,
..., My—1 and the lateral mode number v =0, 1, ..., M,—1. Toeach y,, corresponds
a lateral modal distribution A,,,,(r) for HE,,-modes or e,,,,(r) for EH,,,-modes.

The simplest curved waveguiding structure consists of a single boundary r =R,
that separates a region with an effective refractive index N, from a region with
N, and N, > N,. Not only does such a curved interface constitute a waveguide
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[95][102], its radiation losses are also either lower than or equal to that of a
double-interface bend which makes it of practical importance. The dispersion
relation of the single-boundary bend is A,/B; = j or

NoYy (koNaR )T koV1R1) — Ny R 1Y (koNoR M (kN1 R1) _
—NaJy (koN2R W (koN1R ) + Ny R 1 J (koN2R 1 W, (kN1 R 1) I

(4.1.15)

where we have taken B, =0, i.e. the boundary condition without the presence of
the screen, which leads to a simplified equation that is a good approximation to
the equation for the configuration with the screen. This is justified, if J, and Y,
have an exponential character in the neighborhood of the screen, or, equivalently,

by verifying that the solution found by solving Eq. (4.1.15) has a modal distribution
with a negligible magnitude near the screen.

Although the Bessel function approach is straightforward, its numerical im-
plementation is not. Lewin et al. [65] hint at the difficulties encountered in the
calculation of these Bessel functions:

» The Bessel functions have to be evaluated in a region where they change in
character from increasing exponentially to oscillating. In this rransition
region, the magnitude of the argument and the order are roughly equal. There
are few accurate expressions for the Bessel functions in this region, the only
useful ones are given by Olver [85][86].

* Both the magnitude of the argument and the order are large. Practical bends
have a radii of curvature that range from 50X, to 50000A,. Argument and
order are thus at least of the order of 10° to 10°.

» The order yis complex and possibly the argument as well.

+ High accuracy—at least six significant digits—is required. An attenuation of
a =0.01 dB/90° corresponds to an imaginary part Im(y) = 10~ by means of
Eq. (2.3.27). This leads in combination with the above to Re(y)/Im(y) > 108,

We have implemented the Bessel functions with an accuracy of at least twelve
digits in the range of arguments and orders as described above. The implementation
has been based upon an article by Neumann and Richter [81]. Adjustments have
been made to improve the accuracy and these are documented in Appendix A.
Chapter 5 gives the numerical results of the calculations that have been done by
using the Bessel-function approach.
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4.1.3 The transformation to an equivalent straight waveguide

Although the Bessel function technique is the most direct approach, it has some
disadvantages. It provides little insight into the mechanism of the radiation loss
and its numerical evaluation is very time consuming on a computer, which is not
convenient for modeling purposes. The transformation that will be discussed in
this section gives more insight and lends itself to a variety of numerical implemen-
tations. The first reference to this transformation is in a report by Chang and Barnes
[16], who used the Wentzel-Kramers-Brillouin approximation to find the solutions
of the transformed curved waveguide problem, and later in Lewin, Chang and
Kuester [65], § 7.7. But it is especially the paper by Heiblum and Harris [40] on
this technique that received much attention. Heiblum and Harris showed that the
transformation belongs to the class of conformal transformations. Conformal
transformations are known to be applicable to the two-dimensional Helmholtz
equation.

In cylindrical coordinates the conformal transformation of the Helmholtz equa-
tion is restricted to a transformation with respect to r

r = R, e u = R, In(r/R)
= s (4.1.16)
9, = e“R 9, d, = (R/r)o,
that transforms
0O <R, ,<r<eoo, “4.1.17)
into
—o0o < Uy, < U < oo, (4.1.18)

Application of this transformation to the Helmholtz equations (4.1.1) and (4.1.4)
yields

2 x,
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plus the continuity requirements of

{h,(u) , N2h(w)  for HE modes

,atu = u; = u(r=R)), (4.1.20)
e (u) , Jd.elu) for EH modes

and the requirement at the screen

{ o,h(u) = 0  for HE modes

ew) =0  forEH modes} satu = U = u(r=Ry) . (4.1.21)

Inspection of the transformed Helmholtz equation Eq. (4.1.19) shows that it is
equivalent to the Helmholtz equation for a straight waveguide in u-space with a
transformed index of refraction N,e"’R' in place of N;. Such a transformed index of
refraction is shown in Fig. 4.2. The transformed index of refraction makes clear
why curved waveguides radiate light. The transformed index of refraction is
unbounded for large u and will, therefore, lead to an oscillating field at the outer
side of the curved waveguide. The transformed problem of the curved waveguide
is not completely identical to the problem of a straight waveguide in u-space,
because of two reasons:

« the transformed index of refraction Ng“® ranges from the unphysical values
zero to infinity, if u € [—eo,00] and

» the refractive index that occurs in the boundary conditions for HE-modes in
Eq. (4.1.20) is not the transformed index of refraction.

Discussion

It is very tempting to use the transformation in conjunction with a 3-D technique
such as the finite element method (FEM) or the finite difference method (FDM).
When using Eq. (4.1.16) to transform the Maxwell equations for a three-dimen-
sional waveguiding structure, it is easily verified that no simple decoupled scalar
Helmbholtz equation results. It may, of course, be possible to find approximations
that justify the direct application of the transformation to a three-dimensional
geometry, but I have not investigated this.

I want to stress here that the parameter R, is a parameter of the transformation
and as such is not a physical quantity. It may, in principle, be chosen arbitrarily
and should not influence the final result of the calculation. After calculation of the
fields and propagation constants of the transformed bend in u-space, the results
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have to be transformed back to r-space. There are good reasons, however, to choose
the parameter R, somehow proportional to the radius of curvature, but care has to
be taken. If R, is taken equal to the radius of curvature of the middle of a
conventional two-boundary bend for example, the counter-intuitive result is
obtained of an increasing effective refractive index Re(Y)/(koR,) for smaller R,. This
problem can be avoided by letting R, equal the radius curvature of the outer
boundary R,. The effective refractive index Re(y)/(koR,) is then bounded by the
refractive indices of the film and the cladding (See also Eqs. (2.3.26) and (4.1.34)).

We have r = Re“® = R,+ u, when u/R, << 1. The transformation of the field is
then a translation and an appropriate choice of R, makes the value u = 0 coincide
with the value y = 0 for the straight waveguide at the junction. This plays a role
when the problem of the curved waveguide is solved by means of the transforma-
tion in conjunction with the two-dimensional beam-propagating method (2-D
BPM) [7]1[111]. The 2-D BPM is usually applied to a geometry of the transformed
curved waveguide that is expressed in the y-coordinate of the straight wavegulde
plus the transformed index of refraction which is then written as N, &R =
Ni(1+u/R,) = N{1+y/R)).

4.1.4 WKB solution to the single-boundary bend

Heiblum and Harris [40][41] introduced the conformal transformation and solved
it with the Wentzel-Kramers-Brillouin approximation. There would be no need to
give a derivation here were it not for the fact that discrepancies are found between
values based on their equations and those found with the transfer-matrix method,
which is discussed in the following section. Table 5.1 gives numerical values that
support this statement.

The WKB method is applied to the simplest of all curved waveguiding structures,
i.e. the single-boundary bend. The single-boundary bend is of considerable interest
because its radiation loss is either lower than or equal to that of the double-bound-
ary bend, as will be discussed in section § 5.2.3. Secondly, the derivation of a
dispersion relation by means of the WKB approximation becomes complicated
when the number of interfaces grows beyond one or two. The transfer-matrix
method or the Bessel function approach are better suited to curved structures with
many interfaces.

The Wentzel-Kramers-Brillouin approximation is discussed in most textbooks
on quantum mechanics and a summary of the solutions and the connection
formulae is given in Appendix B for convenience. Two complications arise when
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using the WKB approximation to solve the problem of the transformed curved
waveguide. No information can be found on the application of the WKB approxi-
mation to a complex differential equation. The classical turning points, for
example, have no meaning, because the function f(u) = N?ez"’?'—yz/( ,2) in Eq.
(4.1.19) has no zeros if yis a complex quantity and if yis the only complex quantity.
We will apply the WKB approximation to the Helmholtz equation as if it were a
real equation and then use the analytic continuation of the solution into the
complex vy-plane. Secondly, the function f(u) is not bounded. We will verify
explicitly in Eq. (4.1.35), that the solution which is found by means of the WKB
approximation shows the correct asymptotic behavior for u — oo.

The original and the transformed index of refraction are shown in Fig. 4.2. The
value u = uy; is the transformed radius of curvature r = R; and the values u = u; and
u = yyy are the turning points, where N,e"’R* = Re(Y)/(koR,). Note that there are no
actual turning points, because the function f(u) = N?e2'”R'—'Y2/(k(2,R,2) has no zeroes.
The values u = u; and u = uy; do, however, mark the transition from aregion where
the solution has an oscillating character to a region where the solution has an
exponential character. The WKB solutions given in Appendix B are directly
applied to the transformed structure depicted in Fig. 4.2.

N@) transformation )
Eq. (4.1.16)
| > |
M
I
I N,
! l | |
' | i v
A 1
R, R, —_T U w uy wy —su

Fig. 4.2 The original and the transformed index of refraction profile for the single-boundary
bend that consists of two domains with refractive indices N1 and N2, separated by r = R1. Four
regions can be discerned according to whether the transformed index of refraction is larger or
smaller than the effective index of refraction. The regions I and IV have oscillatory solutions.
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U

+
&) | _ A B N
KE () = W(,-exp _{w(u )au’ |, < Uy, < u <<y (4.1.22)
[ + >u
€xi(4) 2A ., T

: _, n .
Fy (1) ey ©° ! kW)’ =51, << u < uy (4.1.23)
) 7_1/23 -uflc W)di' | + ;,IB— +I it
FHedu) | Nk exP ) woa Xy P ] Kp(w)du’ |,

Ug < u << uy (4124)

uﬂl

i. u
(Zﬁilgj - i o -J'{J kzv<u’>d“"§} << u <o (4125)

with
_ Re(y)
w = R/In {——Lle R (4.1.26)
R
uy = R, In {Fl} 4.1.27)
t
Upr = R, In {NBZ%.R&} , (4128)
t
and
% %—kz %R Re(x) > 0, (4.1.29)

1

ky & \/—W, Re(ky) > 0, (4.1.30)

t

Ky & V%—kz %2 | Re(xy) > 0, (4.1.31)
t
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ki & N aNge2" —f . Relkw) > 0. (4.1.32)

t

The form in which the above equations have been written reflects the fact that we
are looking for a solution in the form of a “guided” wave with oscillatory behavior
in region I and an exponential character in region I/I. This requires that
Rc(l?,,) > 0 for at least one value u < uy; and that Re(l(f,,) > 0 for at least one value
u > uy, or

Re{Me?/*} < Re{%} < Re{Me®}. (4.1.33)

Equation (4.1.33) can be simplified to

Re(y) _
N, < WR, N < Ny, (4.1.34)

where 7y has been replaced by Re(y) which is justified since Im(y) << Re(y) as
discussed on page 62. The above consideration shows that a useful effective
refractive index is obtained from Eq. (2.3.26) by taking R, = R, for the single-
boundary bend and, at the same time, that the effective index of refraction is an
ambiguous parameter for curved waveguides.

The form of the solution in region I reflects the boundary conditions which is
imposed by the screen Eq. (4.1.21). The WKB solution Eq. (4.1.22) decays
exponentially and this means that both the field and its derivative are zero if the
field decays fast enough and / or the screen is far enough away. The solution in
rljéion IV Eq. (4.1.25) reflects the outward radiation condition and is equal to

Y )(koNzr) for large values of the argument, which can verified by using the result
Eq. (C.4) of Appendix C, by subsequently taking the limit when u — oo and by
transforming back to r

+
lim [e;i(u)} = B \j Rl exp {-—_] (koNzr - 'Yg - %)} . (4135)

U—yoo hx,i(u) k()Nzr
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This limit Eq. (4.1.35) is indeed proportional to the asymptotic form of the Hankel
function of the second kind H§2)(k0N2r) (Eq.(9.2.4)in[1]).

The solutions in regions / and I on both sides of the turning point u; have already
been matched to each other by means of connection formula (B.11) and the fields
in regions /Il and IV on both sides of the turning point u;; have already been
matched through connection formulae Eqgs. (B.11) and (B.12). The only solutions
that have not yet been related to each other are the solutions in regions /7 and /I1.
The connection between these two solutions is established by means of the
boundary conditions Eqs. (4.1.2) and (4.1.5). Imposing these boundary conditions
and some manipulation lead to the dispersion equation

sin - J ky(u')du’ - % - tan_l(-————K’” () J

" R yky(uyr)
L /]

i

4 R 1hy(uyr)

. uy " Yy
—*]2— sin 3 j ky(u)du” — T, tan’l(ﬂ) exps —2 _[ Ky (W)du' 0,

u

U [/ 4
\

(4.1.36)

in which

LU Yz"kfz)N %R %
kn(u) kSN 1R Yz

(4.1.37)

and

jk,,(u')du' = y[ "’Zf‘ -1 -tan™! V-—;E"T;‘& ~1 ] ) (4.1.38)

L]

1. (11 - BNERAYP l w/ NZR?
J‘Klll(u )du = Y|: In ( ‘\/1 —kZOIVZRZ/’f :| (4.139)

The contributions to the above integrals from the points u = 1; and u = u;y; are not
exactly zero, but have been neglected with respect to the contribution from the
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point u = uy;. The evaluation of integrals Eqgs. (4.1.38) and (4.1.39) is discussed in
Appendix C. The expressions in series, Eqgs. (C.4) and (C.8), are to be preferred
to the expressions in closed form whenever the dispersion equation (4.1.36) is
solved numerically.

The lateral dispersion equation Eq. (4.1.36) can be compared to Eq. (4.1.15) and
leads to a finite set of discrete, complex values of the azimuthal propagation
constant Y, with a transversal mode number n =0, 1, ..., M—1 and a lateral mode
numberv =0, 1, ,..., M,—1. The corresponding modal field distributions are given
by Egs. (4.1.22) through (4.1.25).

Inspection of dispersion equation Eq. (4.1.36) shows that it is identical to the
dispersion relation for the single-boundary bend Eq. (16) in Heiblum [41], except
for a factor 14 that is missing in front of the second term in Heiblum’s equation.
This missing factor explains the discrepancies found between the values calculated
by means of Eq. (16) in [41] or Eq. (20) in [40] and the values that have been
calculated by means of the techniques that are discussed in the thesis. Numerical
values are given in Table 5.1 and they show discrepancies of approximately a factor
14 for the radiation losses. It is unlikely that the missing factor 14 is caused by an
editorial error since the factor is missing in both [41] and [40] and the equations
are consistent with each other throughout both papers. Moreover it seems that a
similar factor V4 is missing in the papers by Harris [38] and [39] ( compare for
example Egs. (10) through (14) in [38], Egs. (13) and (14) in [39], and Eq. (14) in
[41] ). It is my conviction that all the attenuation coefficients calculated by
Heiblum and Harris in the above-mentioned papers are too large by a factor two.

A perturbation solution of Eq. (4.1.36) will be pursued, because the dispersion
equation gives a number of solutions without advance knowledge as to which
mode numbers they correspond. The perturbed solution, on the other hand,
depends explicitly on the mode number. We then know with certainty which
propagation constant corresponds to which mode number. The perturbation solu-
tion is also more accurate when the radiation losses are small and it leads to two
convenient analytic expressions for the minimum width and the lateral offset, Egs.
(4.1.47) and (4.1.49).

To this end we write the original dispersion relation Eq. (4.1.36) as Dwga(Y)

= (. The exponential term vanishes when there is no attenuation and the dispersion
relation retains its first sine term
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0 . HE PP " i /1)) _
Dyxs(¥) = sin jk,,(u )du' -7 — tan (———xl k”(u”)] =0, (4.1.40)

]

with a real solution ‘Yo . Equation (4.1.40) can be written in the form of

., n of K)o
J K ydu -5 ~ an (le”(u”)) v =0, (4.1.41)

L]

where v is an integer and represents the mode number. The dispersion relation
Dwxka(y) = 0 can be expanded in a Taylor series around Y’

aD
Dwis(¥) = Dwia(f) + WK"](H") W

(4.1.42)

The first-order correction 'y—yo to yo is desired. Neglecting the second- and
higher-order contributions, we find

-D —
() = —ke | Dwks | (4.1.43)
9, Dwks M 9Dwks ;
and a little algebra yields
R ko )
Rk, [
P = j expi -2 | Ky(u)du’ |, (4.1.44)
(kiR | Rulkirr) YR ,:[
tan + 2.2 7
Y RIS Kk J

(4

which is imaginary if the effective refractive indices N, and N, are real and which
represents the attenuation. Equation (4.1.41) can be solved to find the real part of
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the angular propagation constant yﬁv for a given mode number v, after which Eq.
(4.1.44) can be used to find the first-order correction to ﬁv that represents the
radiation loss.

Expressions for the minimum width and the offset

The solution to the problem of the single-boundary bend that has been provided
by the WKB approximation can be used to obtain two convenient expressions.
One expression estimates the minimum width that a two-boundary curved wave-
guide must have in order to be effectively a single-boundary bend. The minimum
width is a useful parameter because the single-boundary bend has lower radiation
losses than the double-boundary bend (see Fig. 7.7 and section § 5.2.3). A second
expression gives the position of the maximum of the modal field distribution.
Knowledge of the position of this maximum leads to a prediction of the lateral
offset that must be applied at the junction between the straight and curved
waveguide. The lateral offset is introduced to align the maxima of both field
distributions and, thereby, to reduce coupling losses ( See section § 5.2.4).

The expression for the minimum width of the double-boundary bend follows
from the observation that the inner interface should lie sufficiently far away from
the caustic u = u; in Fig. 4.2 where the field quantities decay exponentially and the
presence of the inner interface will be unnoticed. A reasonably acceptable width
Au is found by requiring that

Re{ [wu)dw} =3, (4.1.45)

u,~Au

which means that the magnitude of the field at u = u;—Au is approximately e’
times the magnitude of the field at the caustic u = ;. Condition Eq. (4.1.45) can
be evaluated by using Eq. (C.8)

1, (11 = BN R =W _4\[ _BNRw) |
RC{Y[ 2" (I—W “ENRE | g =3

(4.1.46)
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In order to find a simpler expression for the minimal width® w, we replace Y by its
real part Re(y) which is justified since Im(y) << Re(Y) as discussed on page 62 and
we keep the first term of the series Eq. (C.8) which is permitted for sufficiently
small arguments of the square root. Equation (4.1.46) is thus simplified to

Z)
w Re(y)/(koR1) 9
2> _( o J 1- (RC(Y)J (4.1.47)

Inequality (4.1.47) gives the minimum width that a curved waveguide should have
in order to be effectively a single-boundary bend.

An approximate expression which gives the position r = R; — Ar of the maximum

field amplitude for the single-boundary bend can be found by requiring that the
real part of the argument of the cosine in Eq. (4.1.23) be zero

2 2 20 A2 '
Re{y[\/@@;_—m’)—-l —tan_r\/@m;zl—m)——l J} = %, (4.1.48)

in which the integral Eq. (C.4) has been used. A simpler form of Eq. (4.1.48) is
found here as well by replacing y by Re(y) and by retaining the first term of the
series Eq. (C.4),

)
Ar . 1—(————R°(Y)/(k°R‘)) V1+(———3" J . (4.1.49)

R, N, 4Re(Y)

Equation (4.1.49) gives the distance Ar between the outer interface and the
maximum of the field distribution. The lateral offset that must be applied at the
junction of a straight waveguide and a double-boundary bend of width w in order
to minimize the transition losses is w/2—Ar.

The WKB approximation is subject to inequality (B.10) for its validity. Direct
substitution of f(u) = N7e*®—y/(k,R,)* into Eq. (B.10) gives

§ The minimum width is written as w instead of R2-R1 in order to avoid confusion, because this
section discusses the single-boundary bend.
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2

e {9’; R f}
@

3
<< k%,{N,-rz—%} ) (4.1.50)
0

Inequality (4.1.50) does not hold in the neighborhood of the two turning points
r = Re(y)/(koN;) and r = Re(y)/(koN,) and in the limit ky — 0. Expression Eq.
(4.1.34) for the effective refractive index can be used to approximate inequality
Eq. (4.1.50) by

NZ(VaN*+N2p)

2,2
kORl >> 2 2
Ni=N.y

, (4.1.51)

where the inequality has been evaluated for r = R, and where 7y has been replaced
by Re(y). This condition fails when either N,,= N, or when N 5= N, where the
mode is close to cutoff. The WKB approximation may also not be used when the
radius of curvature is too small or equivalently when the wavelength is too large.

4.1.5 Staircase approximation plus transfer-matrix algorithm

A third technique to solve the problem of the transformed curved waveguide is
to approximate the transformed index of refraction Neg“® by a large number of
small steps of constant refractive index, called the staircase approximation, which
is then solved by means of the transfer-matrix method. This method gives optimal
results as far as accuracy, applicability and computing speed are concerned. There
seems to be an abundant amount of literature on the transfer-matrix method and
in general on the exact solution of multilayer structures. The best reference here
is the work of Ghatak, Thyagarajan and Shenoy on the matrix approach [35], since
they seem to be the only ones who published the application of this technique to
the curved waveguide [112].

The staircase approximation
The starting point is the scalar Helmholtz equation

i 22 20k, Y |[€dw) .
It kAN R AN _0i=1,2,...M, 4.1.19
(8142 N R iy ) T O @119

which is reproduced here, including the boundary conditions
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{h,(u) , N*%,h(u) for HE modes

? t =Ui= _Ri B 4.1.20
&) , 9eu  forEH modes} atu=u;=u(r=R;) (4.1.20)

and the requirement at the screen

{ d(u) = 0  for HE modes

eu) =0  for EH modes } atU=Use=ulr=Ry) . (4.1.21)

The staircase approximation replaces the transformed refractive index
Nexp(u/R,) by another refractive index N’(u), which consists of a large number of

steps where the index of refraction is constant as shown in Fig. 4.3. We have
adopted the following discretization where the transformed index Nexp(u/R,) in
domain i, that is bounded by [u;.,4;] and that corresponds to N; in domain
[Ri-1,R], is approximated by m; partitions / of equal size (u;—u;_,)/m; that are
bounded by

[Wip-y,u] = [ Uiy + (-1) B8y, v E‘ﬁu—“l} ,withI=1,2, ..., m;,

m m;
(4.1.52)
and characterized by constant refractive indices
U—u,;_
u_; + (-) —m‘l
N’;; = N;exp —. (4.1.53)
R,

The boundary u;,, of the last partition i coincides with the original boundary u;
and equals the boundary u;,; o of the first partition in domain i+1. The refractive
index N';; has been evaluated at the middle of the partition [1; ;-1,u; ;1. There is now
a total of

M
My = Y'm (4.1.54)
=1
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partitions bounded by M,,+1 border. By omitting the first border uy = g and the
last border uy = Uy m, and letting N’y and Ny m, €xtend to infinity, we retain an
approximation to the original refractive index profile that consists of M,,, partitions
with a constant refractive index separated by M,,—1 boundaries.

The original profile ranges from u = U, to u = +oo, but the number of steps cannot
be infinite. There is a first partition at u = u and a last partition at i = uy. The
refractive index before the first and after the last step of the staircase is approxi-
mated by one step only, i.e. the landing. The omission of the part of the refractive-
index profile for small u does not lead to serious errors, because the field profile

N(u)

|

Re(y)
koR,

Use up Wy U U3 —— U

Fig. 4.3 The staircase approximation. The original refractive-index profile is approximated by
a large number of small steps with a constant index of refraction. In this example we have mi = 3,
m2 =5 and m3 = 11. The refractive-index profile before ug and beyond u3 is approximated by one
value only, being N1,1 and N3 11 respectively. The position of the screen is given by u= Usc. The
two circles mark the beginning and the end of the staircase, where the remaining parts of the
transformed index of refraction are omitted.
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decays exponentially for small u and the point u = u, can be located at a point
where the magnitude of the field is negligible. The omission of the refractive index
beyond u=uy is not trivial, because the field decreases very slowly there.
Consequently a larger error results and the point u = uy must be chosen much
further away from the bend than the point u = u,. The influence of these omissions
is investigated numerically in Table 5.2 on page 104.

The transfer-matrix method

The solution to the scalar Helmholtz equation in partition / of domain i which is
characterized by a constant index of refraction N’;; and u € [u;;1,u4;/], can be
written as

3 B, sin{k; (u—u; 1)}
e | A { il -1 EH modes

(4.1.55)

with

kiy = szoNﬁz—“Rﬁz Re(k;) > 0. (4.1.56)

The solution is even in k;; and moreover it behaves correctly for £;; = 0. A similar
solution is found in partition /+1 and both solutions are interrelated through the
application of the boundary conditions at u = u;;. The boundary conditions Eq.
(4.1.20) are required at the “real” interfaces u = u; = u;o = U;_1 »_. There are no real
discontinuities in the refractive index at all other boundaries and normal continuity
is thus required of the fields and their derivatives. Alittle algebra yields the transfer
matrix relating the coefficients {A,-,I,B,-,,} to {Ag'1+1,B['/+1}

A cos{ki,l(ui,l_ui,l—l)} k,v_} Sin{k,- ',(u,-',—ui‘,_l)} Ay
= , (4.1.57)
B = i.ISin{ki,I(ui,f'ui,l~1)} cos{k,-,z(u,-‘,—u,- J_l)} Bi;

when [ # m; and
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Aiia COS{kin (Ui~ Uim )| KimSinf ks Uim—tti 0} \( Aim,
Bin, ) "Riki,m,.Sin{k;‘,mi(ui.mi_ui,m,.—l)} X ,cos{k.;mi(u.-,,.',—u,' m—l)} B, ’
' (4.1.58)

when [ = m;, where

1 HE modes,
.= { N}
R; 7;1 EH modes .- (4.1.59)

Note again that the transfer matrix is symmetric in k;, and that its determinant never
vanishes.

Boundary conditions

The transfer matrix can be used repeatedly to relate coefficients {A Mom,BuM ,,,M}, to
{A1,1,31,1}- Boundary conditions can be imposed on these four coefficients. To this
end it is more convenient to write the general field Eq. (4.1.55) as

(4.1.60)

. +Hik, (-uy, ) Sk lesy)
€ ,z(u)] € uk ! +(ki,1Ai,r*‘jBi,l)c_
il

(hf,u(u) = (kiyAi3Bi) R ye— 2%

Inspection of Fig. 4.3 shows that we are looking for the solution that is leaky for
u > uy and that represents an outgoing wave. This leads in combination with Eq.
(4.1.60), the choice of the root Re(k;;) > 0 and the time dependence ¢ to

AM,kaM,mM'—jBM/n” =0. (4161)

Inspection of Fig. 4.3 also shows that the solution must be bounded for u < u.
This requires knowledge of the sign of Im(k, ;), which is related to the sign of
Re(k; ;) by means of
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Rek;Imk;; = _B‘E};?X >0 (4.1.62)

t

Inequality (4.1.62) follows from the imaginary part of the square of Eq. (4.1.56)
under the assumption ImN;; = 0. The greater than sign results from the requirement
that both the forward and the backward propagating mode attenuate due to
radiation. The boundary condition on the coefficients {AU,BIJ} is thus seen to be

Ak 1—iByy = 0, (4.1.63)

The solutions to the problem of the transformed curved waveguide that have been
found by means of the staircase approximation and the transfer-matrix method
represent leaky waves. The leaky character, however, has been caused by chopping
off the part of the transformed refractive index beyond u > uy,. The field that is
calculated by means of the staircase approximation will deviate from the exact
solution beyond u > uy,. The field remains bounded, on the other hand, when the
transformed refractive index is not chopped and is allowed to go to infinity ( see
also the discussion on page 26 ).

4.2 The junction

4.2.1 Introduction

The junction of two straight waveguides has been studied by a number of authors.
Clarricoats, Hockham and Sharpe [22][48] solved the problem of the straight
waveguide junction by means of mode matching. Rozzi [99] used the complete
orthogonal set of discrete and continuous modes and subsequent matching of these
modes to find the scattering matrix of the junction. The study by Biehlig ez al. [10]
is similar to the work of Rozzi [99] but is of special interest because it uses a similar
notation to the one that is used in this section. De Ruiter [27] developed a general
theory for transmission and reflection at the straight waveguide junction which
uses the Green’s function integral approach.

The transmission of a junction of a straight and curved waveguide is calculated
by means of the “overlap” integral in several papers. Heiblum and Harris [40] give
an overlap integral with a factor which accounts for the Fresnel reflection and so
do Chen and Unger [18]. Baets and Lagasse [7] give an overlap integral that
includes the factor 1/r in the integrand.
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In the following sections, a derivation will be given for the scattering matrix of
the junction of two straight waveguides, the junction of the straight and the curved
waveguide and the junction of two bends. The scattering matrix will be given for
both HE and EH polarizations. The derivation includes the effect of reflection, it
does not a priori neglect the continuous modes. Rozzi’s approach [99] will be
followed, i.e. the use of the complete orthonormal set of modes to match the
boundary conditions at the junction. It will be shown that the resulting formulae
can be considerably simplified and the final result consists of simple overlap
integrals.

4.2.2 One-dimensional orthogonality relations

The coupling problem is treated here for straight and curved slab waveguides. It
has been shown in the previous chapter that the method of the effective dielectric
constant can be used to calculate approximate solutions for straight and curved
waveguides with a two-dimensional cross-section and that the results of the EDC
method are straight and curved slab waveguides with an effective refractive index
profile. The junction will, therefore, be treated here for slab waveguides.

Orthogonality relations are required and the orthogonality relations given in
Chapter 2 are explicitly written out here for slab waveguides. It is straightforward
to show that for a straight slab waveguide and EH-polarization, Eq. (2.3.11)
transforms into

+o00

By

ol J- Explrvdy = K8y, 4.2.1)

yu:

and for HE-polarization into

+ 7+
By J-h EhXV dy = K8,y . (4.2.2)

The above equations may be compared with Egs. (8.5-13) and (8.5-14) of Marcuse
[70]. For the curved waveguide and EH-polarization, we have from Eq. (2.3.39)
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400

Yo | ey 4 _ g 423

-(-;)—u; - r = uwOuyv » ( VN )

and for HE-polarization
+o00
Yo | Hauh,
£ J ; “dr = Kydyy - (4.2.4)

The dimension of K, is W m™ in all four equations. Similar orthogonality relations
exist for the continuous part of the spectrum.

4.2.3 Junction of two straight waveguides; EH-modes

We start with the junction of two different straight planar waveguides at z =0 and
EH modes. In the half-space z < 0 we have waveguide a and in the half-space
z >0 we have waveguide b. The electric field has only one component e,, with
€z = €xy. The electric field strength of mode p will therefore be written as e, for
short, without the subscript x or the superscripts + or —. In order to minimize the
details the total electric field Eq. (2.3.3) is written in shorthand notation as

waveguide a

waveguide b

Fig. 4.4 The junction of two straight waveguides at z=0.
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M
e = Y {clercae)+ j (BB B BB < le)cie),  4.2.5)
pu=1

B

where Einstein’s summation convention is adopted for summing over all indices
that appear twice. The indices refer to the mode number and range from 1 to
M,+1 when attached to a quantity that is labeled a and similarly from 1 to M,+1
for a quantity that is labeled b. It is understood that the summation includes M
discrete modes plus the contribution of the continuous part of the spectrum, which
is labeled by the index pu = M+1.

The fields |e,) are normalized, i.e.

S yith K= Jeu0e0)ds
[T . (4.2.6)
5%[% with KB)3(-B) = e B)e )y .

Vse

le p.) def

where the Dirac notation is used, i.e. the field of every mode has either a left or a
right bracket and an integration is performed on closing the brackets. More
information on Dirac’s notation and some examples are presented in Appendix D.
Such an integral (evleu) will be called the overlap mtegral and the (M, +1) x
(M+1) matrix that consists of all overlap integrals (e\,le,,l) will be called the overlap
matrix. See Biehlig ez al. [10] for a similar use of this notation. The dimension of
le,) after normalization is m™ "% and the overlap integrals are dimensionless.

The continuity is required of e, and , at the interface of the junction z = 0. The
boundary condition on e, at z = 0 can be conveniently written as

lef)(CratCra) = Ieﬁ)(c‘;ﬁc;b) ) 4.2.7)

The continuity requirement of h;:.n =1 e,/(wpo) at z =0 leads to

e Bav(Cra—Cra) = leoYBan(Cocus) » (4.2.8)
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where B,y is the square diagonal matrix B8, , with the propagation constants on
the diagonal. The eigenfunctions |ep) and |eﬁ) satisfy orthogonality

(evlep) = Oy, (4.2.9)
(eDlety = By, . (4.2.10)

Multiplying Eqs. (4.2.7) and (4.2.8) with M,+1 functions leﬁ) and M,+1 functions
Ieﬁ), integrating and using the orthogonality conditions we find

ctatcea = (eflep)(Csts) | 4.2.11)
(eRletN(ChatCoa) = Clytcis (4.2.12)
Bu(Cha—Cra) = (efley)Byv(Crs—Cus) , 4.2.13)
(eElepBiv(Cracua) = Bav(chs—Cup) - (4.2.14)

The consistency of these equations requires

(eBlesXellery = &, (4.2.15)

which is the requirement of completeness of the discrete and the continuous modes
of waveguide a. The consistency of Egs. (4.2.11) through (4.2.14) similarly yields
the completeness requirement for the modes of waveguide b.

We can view cj, and ¢y as the incoming waves and ¢y, and ¢}, as the outgoing

waves. The outgoing waves can be related to the incoming waves by a scattering
matrix S with the dimension M +M;+2

— + aa b +
Cia |aet g [ oo | e I;ilav T | Cva | (4.2.16)
cl.lb Cyp uv Rp.v Cvb
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where Ry, and T, are the reflection and the transmission matrices respectively. It
is easily verified that the scattering matrix must satisfy Stokes’ relations®

R T2 (RETE | _ (e O |
= b . 21
(rzz R\ 1 ki)™ 0 8, R

The coefficients ¢, are first eliminated from Eqs. (4.2.11) and (4.2.13) by adding
BVe times Eq. (4.2.11) to Eq. (4.2.13) and some renaming

Bivcia = {BielletrHedleBhulch, + {Baelled<etlenBlulcas,  (4.2.18)

Similarly, the coefficients c:’w can be eliminated from Eqs. (4.2.12) and (4.2.14)

[BEAetteny~edlenBaulcha + {BEeblet KelledBolcn = Bhucry,  (4.2.19)

These relations cannot yet be inverted since the matrices are not square. Square
invertible matrices are obtained by multiplying Eq. (4.2.18) by (efleg) and Eq.
(4.2.19) by (eZIeg). Inverting the relations and using completeness, the reflection
and the transmission matrices are found to be

T = {(ebled)Balellet +Bs 2AeledB, . (4.2.20)
R, = —{(ebleayBaesler+Bhy {(ledBaetlely—BL) . 4.2.21)
TS = {(etelBleblesr B 2(eied)Bl (4222)
R = (etielyB (el e KelleDBhdelenr-Be) (4.2.23)

This scattering matrix is a complete expression in the sense that both reflection
and the contribution of the continuous modes are included. Since the general
structure of the above expressions for the reflection and the transmission matrices
and the equivalent matrices for the other polarization and the other types of

§ Stokes’ treatment of reflection involves the argument that the incoming field must be recovered
if the scattered wave is reversed in direction. G. Stokes: Mathematical and physical papers, 2,
pp. 89ff.
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junction resemble each other, it will prove worthwhile to introduce two new
symbols, i.e. one symbol for the overlap matrices

Cu & (ellel) (4.2.24)
Cuy & (1€l (4.2.25)

and one symbol for the diagonal matrix that contains the propagation constants

Ky < Biy . (4.2.26)

plus an equivalent expression for kfw. The reflection and the transmission matrices
Eqs. (4.2.20) through (4.2.23) are summarized in the new notation in Table 4.1 on
page 89 together with the scattering matrices for the other types of junction.

4.2.4 Junction of two straight waveguides; HE-modes

The derivation for HE-modes is very similar to the derivation for EH-modes. The
only differences lie in the normalization and the overlap integrals. The magnetic
field for HE-modes in planar straight waveguides has an x component only, where
ey = M. The total magnetic field is written as

Ky = IWX(clatCus) (4.2.27)

in Dirac’s bracket notation ( see Appendix D ) and by means of Einstein’s
summation convention. The modes are normalized as

r

() ‘ T mOh0G)
—’\/‘—g with KPSM=J‘ ()Z,z O dy ,
Ve (4.2.28)

) = .
hKEﬁ; with K()36-)= | &%%m"y ’
\ Vse

and the orthogonality relation Eq. (4.2.2) is now expressed as
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(RINIRED = By, (4.2.29)
(RoING IRy = By (4.2.30)

The magnetic field A, must be continuous at the junction at z=0 between
waveguide a and b or

e CiatCua) = 1Nt Cas) - 4.2.31)
The continuity requirement of e, at z= 0 is formulated as
a b
Ihb%%(da—@a) = Ihij"%(&b—c;b) : (4.2.32)
a b

because ey o= +Bphx p/((oeoN ). Multiplication of the contmulty relation Eq.
(4.2.31) by (hPIN’ | and (hplN' | and Eq. (4.2.32) by (k| and (hul and using
orthogonality yield

CEatce, = (REIN IR Cls+Cps) » (4.2.33)
(REING X (Ciia+Cpa) = CEst+CEs (4.2.34)
BEu(Cha—cra) = (HEING IByv(Chscin) » (4.2.35)
(REINZIREIB(CyaCra) = BEA(CUs—Cap) - (4.2.36)

The consistency of these equations leads to the requirement of completeness

(RRINGAIRY RN = Bt (4.2.37)

for the modes of waveguide a. A similar completeness relation is required for the
modes of waveguide b and it follows from Eq. (4.2.37) by interchanging the labels
a and b. All remaining steps can be copied from the derivation for the EH-modes
and the resulting reflection and transmission matrices have been put together with
the other results in Table 4.1. The main difference is that there are now two
asymmetric coupling matrices C uvdéf(hﬁlN;zlh?,) and C P\,déf(hﬁll\/,;zlhﬁ) that are not
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the transpose matrix of each other due to the asymmetric occurrence of the
refractive index in the overlap integrals.

4.2.5 Straight-to-curved waveguide junction

The geometry of the junction of the bend and the straight waveguide has been
discussed in section § 2.2.4 and Fig. 2.5. It is clear that an overlap integral can be
expressed either in the lateral y-coordinate of the straight waveguide orin the radial
r-coordinate of the bend. The straight waveguide is labeled a and the bend is
labeled b. The electric field strength of the EH-modes in the curved slab waveguide
has only one component

el = lep)ChstCus) , (4.2.38)

The modes of the bend are normalized as

[ »
%;-;ﬁ with K,8,, = _[ eu(rb)ev(rb) dr,, ,
m

'8¢

et = | Re (4.2.39)
A —-—- K(B)S(B—B')—Jeb(r B L dr
W —R by by ry b >

where the coordinate r, has been labeled b in order to avoid confusion when
discussing the bend-to-bend transition. An arbitrary radius R, is included in the
normalization integrals to keep track of dimensions. If a dimensionless scattering
matrix Eq. (4.2.16) is desired, then the coefficients cp and consequently the fields
should have identical dimensions for both the straight and the curved waveguides.
Since the dimension of the field in the straight waveguide was m™"*—see page
82—, the normalization for the curved waveguide must be as in Eq. (4.2.39). The
orthogonality relation Eq. (4.2.3) is now expressed as

(evl leu) = vy (4.2.40)

which is dimensionless. The electric field e, should be continuous at the junction
between waveguide g and b or
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lei)(CratCpa) = lep)(Cistcus) - 4.2.41)

The continuity requirement of A, leads to

lefBrv(Cra—Cva) = Ie‘DY,‘:‘bl(ctb—ch) , (4.2.42)

because i = TWuex,/(0Lor). Multiplication of the continuity relation Eq. (4.2.41)
by (et| and (eg IR,/r;| and Eq. (4.2.42) by (eg| and (eél and using orthogonality yield

ctitce, = (elep)CtCun) » (4.2.43)
<eg| b e (ClatCpa) = CptCes » (4.2.44)
Tp
Pev(cva—cua) = (et Ry Ieﬁ)zﬁl (Co5—Cvs) » (4.2.45)
Ty R,
<eg|e;>Bﬁv(C¢a_C;a) = %l (C-:'-b_C;b) . (4246)
b

The requirement of the consistency of these equations leads us to the completeness
relation

(egl Iev)(ev|e,_l) = Oy . (4.2.47)

for the modes of waveguide a. A similar relation is found for the modes of
waveguide b by interchanging both labels. Writing out the reflection and the
transmission matrices is straightforward now and the results are given in Table 4.1.

The discussion for HE-polarization and the junction of two bends is skipped. The
arguments and conclusions are similar to the ones just given. The resulting
scattering matrices are included, however, in Table 4.1.
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Table 4.1 The exact transmission and reflection matrices for the junction of straight and curved
slab wavgguldes Dirac’s bracket notation and Einstein’ s summation convention have been used.
Matrix C* is the transpose of matrix C.

T, = {kaf,xC;K+Ic€K}-12C1§kgu
R bfx _{thkaoxcix""kgx}—I{C'cr;kgvc'\l;p—kep}
T;qux = {Ewkgxaix"'k‘:x}_lzaﬂkgu

@ = Coaky etk [CoktuCh i)

= e

straight|straight| Bl | B | (eple) | (efled) | (ANGIAS) IN' I

Yﬁv aRb b
straight | curved | Bl | B | (epled) (eul—2lev)

<h| i
e | chav2ney |1

Ra iy | R

a

a a R
curved | curved T | D <"u|—|ev) (efi=tlev)
Ra Rb 143

¢ The overlap integral (eﬁl&lec), for example, is written in Dirac’s notation ( see Appendix
S T Raa
D). The integral is equal to j eip(ra)r—ex,v(ra)drﬂ, which has been expressed in the

coordinate r, of the bend a, but which could have been expressed in any other coordinate.

« The propagation matrices are square and diagonal. The diagonal elements are the
respective propagation constants.

* The radius r, is the radial coordinate in the coordinate system of waveguide a and r, is
similarly related to waveguide b. The index of refraction N, is the lateral refractive-index
profile of waveguide a, and N,, is similarly related to waveguide b.

» All fields have been normalized in such a way as to make the coupling integrals and
hence the coupling matrix dimensionless. The parameter R, originates in this
normalization (see text) and the scattering matrix is independent of the parameter R,,.

» The overlap matrices satisfy the completeness relation of the modes of waveguide a,
CuCey = 8, and similarly of waveguide b, CyeCey = 8,
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4.2.6 Neglecting the contribution of the continuous spectrum

A good criterion to evaluate the influence of the continuous spectrum on the
analysis of the junction are the completeness relations (4.2.15), (4.2.37), (4.2.47)
and their combination in Table 4.1. Completeness can be restated in the following
way. The overlap integrals squared and summed along a column or row should
equal one or

(eflesXellely = Bey = D (eflely’ = 1 V&, (4.2.48)

If the contribution of the continuous spectrum is neglected, the sum given above
only includes the guided modes. Consequently the deviation from unity in the
right-hand side of Eq. (4.2.48) is then due to the missing contribution of the
continuous modes. We have, therefore, a fairly accurate estimate of the amount of
coupling from a guided mode to the continuous modes at the junction. What cannot
be estimated is the propagation of these continuous modes and their subsequent
recoupling to guided modes at the next junction. This leads to discrepancies when
junctions are very close to each other in combination with considerable coupling
of guided to continuous modes and vice versa.

The sum of all overlap integrals squared from one guided mode in waveguide
a to all guided modes in waveguide b is usually very close to one. The repre-
sentative example on page 119 mentions a sum of the squares of the overlap
integrals for the guided modes of 0.9962. These considerations justify the omission
of the contribution of the continuous modes to the coupling problem.

4.2.7 Simplification of the scattering matrix

The propagation constants of the guided modes satisfy Eq. (2.3.8) and are thus
closely spaced if the difference between the refractive index of the waveguide and
the refractive indices of both cover and substrate is small. If the propagation
constants for the guided modes of waveguide a are approximated by the constant
B” and those of waveguide b by the constant B’, then the transmission and reflection
matrices for the EH-polarization and the junction of two straight waveguides
simplify to
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,ql [TB_B‘ (eKIeP) , (4.2.49)

b a
RY = ga—_g—,, (4.2.50)
T = B—%(exlep} 4.2.51)
a b
RE = Eig_b (4.2.52)

The transmission matrices Eqgs. (4.2.49) and (4.2.51) are seen to be composed of
overlap integrals in combination with a Fresnel transmission or reflection factor
that takes the differences in refractive indices of the media g and b into account.
The reflection matrices Egs. (4.2.50) and (4.2.52) are diagonal and, consequently,
they do not express the intermodal coupling. Its magnitude is determined by the
Fresnel reflection factor.

The overlap integrals and normalization for the curved waveguide have been
formulated in such a way that they become equal to the overlap integrals and
normalization for the straight waveguide, when r, = R, and r, = R,,. This is true if
the field distributions are peaked around R, and R, and if the peaks are so narrow
that the relative changes in r, and r,, are small, which is valid for all practical bends,
and provided that R, and R,, are chosen equal to the radii of curvature of waveguide
a and b, respectively.

In order to simplify the reflection and the transmission matrices for the HE-po-
larization it must be assumed that the indices of refraction of medium a and b are
approximately equal, because the refractive indices enter the overlap matrices.
Applying this assumption leads to the even more reduced reflection and trans-
mission matrices

T = {edely (4.2.53)
Ri =0, (4.2.54)
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T = {(etley) (4.2.55)
Rq=0. (4.2.56)

All reflection is neglected in Eqgs. (4.2.53) through (4.2.56) and the transmission
matrices are equal to the coupling matrices.

It is not correct to relate the overlap matrix and the transmission matrix to power
flow. It is nevertheless common practice to specify a “transition or coupling loss”
in the following way

2 2
T\f{f, = lOlogIYﬁ‘\’, .

=10 log| (eﬁlef,)

(4.2.57)

Whenever a transmission or coupling loss in dB is mentioned in the thesis, it is
understood that Eq. (4.2.57) has been applied and that this is merely a way of
specifying the magnitude of the overlap integral.

4.3 Multimode interference effects

We mean by multimode interference effects the interference between the guided
modes exhibited in multimode waveguide tracks with multiple junctions and
considerable intermodal coupling at these junctions. Multimode effects can be
unwanted, because they can lead to the unpredictability of the performance of
devices and they can also lead to enhanced scattering losses when the guided
modes couple to higher-order modes or to continuous modes. Multimode effects
can, on the other hand, be used in couplers such as the multi-mode interference
coupler ( see sections § 4.4 and § 5.3.1).

The prediction of the behavior of such a multimode waveguide track has to take
care of the relative phases of all these modes. To calculate the total performance
of a waveguide track we can use the tools developed in the preceding sections.
The field in waveguide a can be represented by the vector c;,'a and the transmission
matrix Tf}‘,’l can be used to yield the corresponding vector ¢}, after the junction in
waveguide b. The analysis can be completed by defining square diagonal propa-
gation matrices for the straight waveguide

Rt T (4.3.1)
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and for the curved waveguide
e A%,y . (4.3.2)

These two propagation matrices incorporate complex propagation constants and
account for both the phase changes and the propagation losses. If the vector c;,, is
known in the first section of the waveguide track, repeated application of the
propagation matrices Egs. (4.3.1) and (4.3.2) and the appropriate transmission
matrices yields a vector at the end of the circuit. Finally, equation (2.3.14) can be
used to determine the power at the beginning and the end of the waveguide track
and consequently the loss of power.

4.4 Conformal transformation for two diverging bends

Introduction

The theory and techniques that have been developed in the previous chapters and
sections are applicable to curved multilayer waveguides, such as the curved
‘double-ridge’ waveguide or two coupled curved waveguides that have identical
centers of curvature. A more frequently encountered situation is the geometry of
two coupled oppositely curved waveguides, such as the curved access waveguides
of the multi-mode-interference coupler shown in Fig. 5.8. Three points are of
interest. Firstly, the modal field distribution of the coupled bends at the junction
can be used to determine the coupling efficiency with which the field of the straight
section is transmitted to the access waveguides. Secondly, the coupling between
the two bends gives an extra phase contribution in addition to the phase difference
that occurs in the straight section of the coupler. In the third place, the diverging
coupled waveguides exhibit radiation loss which degrades the performance of the
coupler.

Coupled waveguides have been analyzed by means of the method of effective
dielectric constant in combination with the beam propagation method [21]{98]. A
technique which is commonly applied to the two-dimensional problem of coupled
diverging waveguides is the staircase approximation, which approximates the
diverging waveguides by a large number of short straight waveguide sections, in
combination with the local coupled-mode theory or the more rigorous mode-
matching technique. The local coupled-mode theory can be used to give simple
expressions for the extra phase contribution [89] or can be applied to the problem
where more than two modes couple [108], but it does not account for the radiation
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loss nor for the change in the modal field distribution due to the curvature. The
coupling between bends can, however, be larger than the coupling between straight
waveguides because the curvature leads to a smaller distance between the two
modal field distributions. The staircase approximation in combination with a
rigorous mode-matching technique [124] takes all these effects into account. The
COST216 Working Group 1 is currently surveying and comparing the techniques
that are available for the analysis of complete couplers including the curved
sections ( see also page 105).

In this section, a conformal transformation will be introduced that transforms two
coupled curved waveguides into an equivalent straight waveguide with a trans-
formed index of refraction. The reader is referred to Marcatili [68] where the
technique of conformal mapping is applied to tapers.

The conformal transformation
In order to apply the technique of conformal mapping, three assumptions have
to be made:

+ Itis assumed that the problem is either two-dimensional or is translated to a
two-dimensional problem, e.g. by means of the method of effective dielectric
constant, because conformal-mapping techniques are applicable to
two-dimensional problems only.

« It is assumed that the two coupled curved waveguides have equal radii of
curvature which is not a necessary assumption.

« It is assumed that each curved waveguide is or can be represented by a
single-boundary bend. This is a sensible assumption because the guides
modes of the single-boundary bend exhibit smaller radiation losses than those
of the corresponding double-boundary bend as explained in section § 5.2.3.

The mapping properties of conformal transformations are well known [64]. The
analytic function that transforms the (y+jz)-plane into the (u+jv)-plane also trans-
forms the two-dimensional scalar Helmholtz equation

2 2 |
(ﬁ_ +% N ngz](ggg) —0,i=12, (4.4.1)
r4 X,V >

for the HE- and the EH-modes, respectively, into

-2
I(ujv) H uv) . .
J[E,,.-(u,v)J =0,i=12. 4.4.2)

I(¥+j2)

a2 62
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We consider the following conformal mapping

o yoR:1 ,_[Vyi—Ri + (y+j2)
(utjv) = R, \/}’0+R1 ln{\/y%—R% —(v4+2) s (4.4.3)

and it can be verified that Eq. (4.4.3) maps the two circles in the (y+jz)-plane
y+iz = HyRe ™}, - < 0 < =, (4.4.4)

where the +and the — sign are for the upper and the lower circle respectively, where
the upper circle is traversed counterclockwise and the lower circle clockwise, onto
the two straight lines in the (u+jv)-plane. We have

u =t = 2R, N2 1n{&+ V(&]z —1}, (4.4.5)

YotR:y |Ry R,

with

\JyoR AR
Ry V2L = Ly <y < vy = R, V2 (4.4.6)

y o+R 1 y0+R1 ’

as indicated in Fig. 4.5. The two points that are given by 0 =0, i.e. y=*(y;~R)),
are mapped onto the two points u ==u, A conformal mapping preserves the
magnitude of the angle between two intersecting lines. This implies that the
transforms of the lines v = constant intersect the two circles defined by Eq. (4.4.4)
perpendicularly. A consequence of this property is that the transformed boundary
conditions are the continuity requirement of

H,i(u,v) and Ny Hy (uv) , (4.4.7)
for the HE-modes and the requirement of the continuity of
E, (u,v) and 0,E, (uv) , (4.4.8)

at the interfaces u = tu,.
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From Eq. (4.4.2), we can see that a transformed index of refraction in u,v-space
may be introduced

y0/R1+1
N; 4.49
—\/ YotRy '\/)’0+R 1 o )
Yo—R, R 1 Yo R

Itis now seen that the normalization constant in the conformal mapping Eq. (4.4.3)
has been chosen such as to yield

Niu) ¥ Ny ST

N/(xuo,0) = N;. (4.4.10)

The original and the transformed refractive-index profile are shown in Fig. 4.6.
The figure illustrates several properties of the transformed refractive-index profile,
which will be discussed below.

y

> V

-complex
(y+jz)-plane

Fig. 4.5 The conformal mapping Eq. (4.4.3) is used to transform two coupled bends into a
straight waveguiding structure.
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For constant v, the transformed profile N/ (u4,v) — 0, when u — too. The trans-
formed profile may be thought of as ‘guiding’in the sense that the profile becomes
smaller for values of u far away from u = fu,.

The transformed profile N;(0,v) — oo, when 8 — *x. This transformed refrac-
tive-index profile at u = 0 eventually becomes larger than the value of the profile
at u = +u,. It seems inappropriate to discuss the radiation losses for the waveguid-
ing structure, which is represented by the transformed refractive-index profile,
because the transformed index of refraction approaches zero away from the central
region. Instead, we might think of the bulge at = 0 in the transformed refractive-
index profile as representing a ‘third waveguide’, in addition to the two wave-
guides at u = tuy. The power that is lost by the coupled bends can be thought of
as being coupled to this ‘third waveguide’ in the middle.

The value of the transformed refractive-index profile increases for increasing v.
This is due to the fact that the transform of line v = constant connects the two points
y= i\lyoz—RZ, and this line becomes larger for increasing v. In other words, the
transformed waveguiding structure has a constant width of 2, but this constant
width corresponds to an ever-larger distance in the y,z-space, which is compen-
sated by the increase of the transformed refractive index. Alternatively, this effect
may be compensated for by defining a local wave number

Eq. (4.4.3) /I

i ’0
> g
Ak

Fig. 4.6 The index of refraction profile N(yz) (left) and the transformed index of refraction
profile Ni'(u,v) given by Eq. (4.4.9) (right). The parameters for this example have been chosen as
R1 =200 um, yo =202 um, N1 = 1.5 and N2 = 1.0. The two circles on the left are not smooth and
the discontuity in the refractive-index profile is not sharp due to discretization.



98 Two-dimensional solutions Chapter 4
N{ (up,v) def N/ (15,0)
k) ¥ k=" and N/(uy) ¥ N/uy) = 2= 4.4.11
™= % N0 W) = NI N o) @41D)
or
R+1
k(v) = ko Yokt : 4.4.12)
! Ry yoR;
Uo~ [ YotRy VAalYotR)
cosh R R 0S R ;‘_7(
N{(uy) = N; L Jo) LA (4.4.13)

+R
cosh —Lf-'\/yo—l

o
Ry  yo—R; Ry  yoR,

The transformed refractive-index profile N;/’(u,v) is shown in Fig. 4.7.

Numerical calculations of the properties of the transformed index of refraction
profile are not presented in the thesis. These calculations might, however, be
pursued on the basis of a local coupled-mode theory or a mode-matching tech-

nique.

Fig. 4.7 Thetransformedindexof refractionN{"(u,v), Eq.(4.4.13)for the set of parameters given

in the caption of Fig. 4.6.




Chapter S

Numerical results

This chapter contains numerical calculations that are based on the theory de-
veloped in the previous chapters. Comment is given with respect to the accuracy
and numerical details of the Bessel function approach, the WKB approximation
and the staircase / transfer-matrix method. Modeling has been done for the curved
waveguide and the junction and the modeling results in design parameters.

Applications of curved waveguides will be discussed. The program that has been
developed to simulate the transmission of waveguide tracks containing bends and
straight waveguides has been applied to model multi-mode-interference couplers.
A second example is an integrated planar Fabry-Pérot cavity where the cavity
consists of a folded waveguide track and where gratings act as mirrors. Some work
has been done to realize such a Fabry-Pérot cavity [120], but it will not be discussed
in the thesis.

5.1 Assessment

5.1.1 Introduction

This section compares the numerical results of three techniques; the Bessel-func-
tion approach of section § 4.1.2, the WKB approximation of the transformed bend
discussed in section § 4.1.4 and the staircase approximation plus transfer-matrix
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algorithm for the transformed bend as discussed in section § 4.1.5. These tech-
niques will be referred to simply as the “Bessel function approach”, the “WKB
approximation” and the “staircase approximation”.

The main conclusion is that the three techniques are generally in good agreement
with each other, which is illustrated in Fig. 5.1. The WKB approximation deviates
significantly from the other two techniques for short radii of curvature, although
the deviation starts at losses above 10 dB/90°. But even for larger radii of curvature,
the agreement between the Bessel function approach and the staircase approxima-
tion is better than between the WKB method and the other two. The maximum that
occurs in the results of the WKB-approximation is an artifact, because the
assumption Eq. (4.1.50) on which the WKB approximation is based is no longer
valid at those radii of curvature. This contradicts the suggestion presented in [41].

The values of Table 5.1 provide a better means of comparison than Fig. 5.1. The
first two columns list values that were calculated according to the equations given
by Heiblum and Harris [40]{41]. The second column represents the full WKB
approximation and the first column represents a perturbation solution to it. These

o 107

< .

o)) 3
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2 i
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=

s 0.1 :
E Q0000 WKB approximation
. #* % % % % Staircase approximation

0.01 < 4 b A A & Bessel-function approach

0 100 - 200 300 400

radius of curvature, ( um )

Fig. 5.1 Comparison between the three techniques discussed in the thesis to calculate radiation
losses. The calculations were done for the waveguide parameters described in [119] or in section
§ 7.1. This graph applies to single-boundary bends.




Section 5.1 Assessment 101

Table 5.1 Comparison between the numerical results of the three techniques discussed in the
thesis and the equations given by Harris and Heiblum. Results are for the parameters of section
§7.1,i.e.ho=1.3 um,N1 = 3.26106, N2 = 3.22000 and EHoo-mode. The staircase approximation
used a transformed profile with 500 partitions that range from 5 \m before the radius of curvature
R\ to 30 pm beyond it.

3.2469051

400] 3.2467743| 3.2467743| 3.2467743 3.2469052
300f 3.2441917) 3.2441919| 3.2441918| 3.2444898| 3.2444899
200 3.2399003| 3.2399379| 3.2399098| 3.2407551| 3.2407555
150] 3.2363855| 3.2367812| 3.2364948| 3.2378996| 3.2379020
100] 3.2308681| 3.2326711] 3.2314391| 3.2333018| 3.2333062

75 3.2267697) 3.2291088| 3.2273953| 3.2293963| 3.2293403

3.2216610

21

400 0.01666 0.01666 0.00833 0.00863 0.00861
300 0.36671 0.36669 0.18335 0.18182 0.18205
200 5.66323 5.60041 2.82363 2.55695 2.56052
150 17.17608 15.78301 8.39062 7.54774 7.53796
100 34.99719 27.91642 16.33074 18.34612 18.46396

75 34.70509 30.18608 1691188 27.58126 27.11798

30 12.83208 20.78638 6.99150 42.74666 38.31256

two columns are in agreement with each other especially for larger radii of
curvature. The radiation losses in columns one and two, on the other hand, disagree
by an approximate factor two from the columns three, four and five. The differen-
ces between the results of the three methods discussed in the thesis and the methods
presented in [40][41] have already been discussed on page 70. The respective
merits of the WKB approximation, the Bessel function approach and the staircase
approximation are the topics of the following sections.

5.1.2 WKB approximation

The Wentzel-Kramers-Brillouin approximation of the transformed profile is the
technique which is easiest to implement on a computer. The numerical implemen-
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tation is fast and rigorous and it gives us the advantage that a mode number can
be specified. It can be stated with confidence whether a solution exists and to which
mode number that solution corresponds. The WKB approximation yields express-
ions for the field distributions but care must be taken near the “classical turning
points”, where a linear approximation must be used.

The WKB approximation is clearly the least accurate technique, especially for
small values of the radius of curvature, where the approximation is no longer valid.
The perturbation version, on the other hand, is accurate when dealing with very
small loss ﬁgurcs, where Imy/Rey becomes of the same order as the computer
accuracy, i.e. 10 ®when using DOUBLE PRECISION data type in FORTRAN.
Concerning the accuracy, it should be noted that the integrals derived in Appen-
dix C have to be evaluated in the form of the series unless the arguments are not
small compared to unity. The value of &, however, is in the range of [0.015,0.4]
for all realistic applications. The ratio of the first non- vamshmg tenn to the
vanishing lowest-order term, thus, varies between 5 x 1072 and 7.5 x 10~°, which
implies the loss of two to four significant figures if the series is not used.

5.1.3 The Bessel-function approach

The use of Bessel functions is straightforward since an exact analytical solution
is known which is expressed in terms of these functions. The difficulties which
are encountered are in the implementation of these functions for which asymptotic
expansions can be used. See also Appendix A. The algorithm can be rigorously
tested, on the other hand, throughout the complex y-plane by evaluating Wron-
skians and recursion relations. The relative accuracy was found to be better than
1072 for all orders and arguments of practical importance. The values of the
radiation loss that have been calculated by means of this technique are the most
trustworthy. The Bessel function approach becomes more accurate when the losses
increase and / or the radii of curvature decrease, which is in contrast to the behavior
shown when using the other two techniques.

The algorithm tends to become time consuming when many iterations are
required to find the complex roots of the dispersion relation or when the number
of interfaces grows. Such a situation can occur for a diffused LiNbO; waveguide
if the diffused refractive index profile is discretized. The staircase approximation
is by nature suited to such a refractive index profile. One evaluation of both Bessel
functions plus their derivatives consumes approximately one second of CPU-time
on a microVax II. The determination of the field profiles by means of the Bessel
functions becomes, therefore, elaborate. The modal field distribution has usually
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been approximated by an array of 600 or more values, the evaluation of which
involves an equal number of evaluations of the Bessel functions.

5.1.4 Staircase approximation plus transfer-matrix algorithm

This method is, in my opinion, optimal insofar as numerical accuracy, required
CPU-time, ease of implementation and applicability are concerned. The method
can be applied to a wide variety of geometries, is reasonably fast and accurate as
shown in Table 5.1.

Itis nevertheless clear that deviations occur for parameters that result in very high
losses, i.e. more than 10 dB/90°. This is partly caused by the discretization. The
influence of the discretization is indicated in Table 5.2 which shows the influence
of the total number of partitions ( or subdomains ) and the influence of the inner
and outer boundary which correspond to u = ug and u = u, in Fig. 4.3. The initial
size of the partitions was chosen equal to 1 pm, because the size of every region
is a multiple of this value. This gives us the advantage that doubling the number
of partitions halves the size of the partition and does not change the discretization.
Table 5.2 lists the results of the calculations and these values show that a reasonably
accurate value of the radiation loss is obtained for 160 partitions and that no
significant improvement is found for more than 640 partitions. Most of the
modeling of curved waveguides was performed using the staircase approximation
and a total number of partitions of 500.

The inner boundary Ry, corresponding to u, in Fig. 4.3, has no influence
whatsoever, provided it is located at a point where the fields are negligible. Since
the field distribution decays exponentially at the inner side, a distance of several
microns is adequate. The outer boundary R,, corresponding to the point u; in Fig.
4.3, presents more difficulties. The field distribution is proportional to
Hff)(koNzr), which oscillates and decreases very slowly, because the Bessel func-
tions behave as r_l/’, when r — oo, This explains, firstly, why R,—R; >> R;—R, and,
secondly, why there is so little improvement when the value of the outer boundary
isincreased. Table 5.2 shows the radiation loss for the same single-boundary bend,
when the position of the outer boundary is located further away from the bend
without changing the size of the partition. Increasing the number of partitions
might eventually lead to inaccuracy as well, because the multiplication of a large
number of matrices results in numerical inaccuracy as the coefficients grow in size.
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Table 5.2 The influence of the discretization in the staircase approximation. The results do not
change significantly for more than 640 partitions. The inner boundary Ro has no influence at all,
while the outer boundary does matter. There is no improvement for boundaries beyond 225 pm.

The Bessel function approach gives Negr= 3.2407555 and o. = 2.5605223 dB/9(°.

Doubling the number of partitions
195.0 200.0 235.0 40 3.2405833 2.0149450
195.0 200.0 235.0 80 3.2407416 2.2742282
195.0 200.0 235.0 160 3.2407497 2.5585156
195.0 200.0 235.0 320 3.2407541 2.5633978
195.0 200.0 235.0 640 3.2407551 2.5637523
195.0 200.0 235.0 1280 3.2407554 2.5636696
195.0 200.0 235.0 2560 3.2407554 2.5635717
195.0 200.0 235.0 5120 3.2407554 2.5635091

Varying the inner boundary R, of the transformed index of refraction.

193.00  200.0]  235.0| 5376]  3.2407554]  2.5635091
Varying the outer boundaryR, of the transformed index of refraction.

195.0 200.0 205.0 1280 3.2407511 2.5372589
195.0 200.0 210.0 1920 3.2407541 2.5566201
195.0 200.0 215.0 2560 3.2407547 2.5634718
195.0 200.0 220.0 3200 3.2407557 2.5545878
195.0 200.0 225.0 3840 3.2407552 2.5640735
195.0 200.0 230.0 4480 3.2407557 2.5583989
195.0 200.0 240.0 5760 3.2407553 2.5615035
195.0 200.0 245.0 6400 3.2407555 2.5627988
195.0 200.0 250.0 7040 3.2407554 2.5588452
195.0 200.0 255.0 7680 3.2407554 2.5593863
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5.1.5 The COST216 Working Group 1

It has proved to be quite interesting that the COST 216 Working Group 1° is
currently performing a study on the modeling of optical waveguides. In it first
session, the working group compared different modeling techniques for straight
waveguides and couplers [29]. The current session is comparing the modeling
techniques for curved waveguides and couplers including bends. The work on
waveguide modeling by Baken and van der Tol of the PTT Research Neher
Laboratories, Leidschendam, has been combined with our work on bends as a joint
contribution to the COST 216 working group. The modeling techniques for the
bends which are compared include, apart from our contribution, a number of
contributions that use the method of effective dielectric constant in combination
with the two-dimensional beam-propagating method, and the recently published
method of lines by Gu et al. [36]. The S-bend losses predicted by the BPM method
are in good agreement with each other, but differ as a whole from our results and
the results of Gu'.

It is my opinion that the different modeling techniques give similar values for the
radiation loss of a curved slab waveguide. The observed differences between the
values of the total loss for S-bends are instead due to the way that the two-dimen-
sional cross-section of the waveguide has been handled, such as the application of
the method of effective dielectric constant (effective-index method). The differen-
ces in the predicted losses might also be caused by the way that the transition losses
at the junction have been calculated and by the fact whether or not the multimode
interference effects for multimode waveguides have been included in the analysis.
From the comparison and the evident differences in predictions, the conclusion
may be drawn that although the experiments described in the thesis show that the
accuracy of the modeling is adequate to design very low-loss curved waveguides,
it is difficult to obtain a very accurate agreement between the observed and the
predicted losses for S-bends.

§ COST is acronym for ‘coopération Européenne dans le domaine de la science et de la
technologie’ and is an EEC initiative. The present study on curved waveguides and couplers of
COST216 Working Group 1 includes contributions from the University of Gent (Belgium), the
Heinrich Hertz Institut Berlin (F.R.G.), University of Twente (Netherlands), Technical Research
Center of Finland Espoo (Finland), the Deutsche Bundespost TELEKOM Darmstadt (F.R.G.),
the Swiss Federal Institute of Technology Ziirich (Switzerland), Plessey Research Caswell
Limited (U.K.), GEC-Marconi Research Centre Chelmsford (U.K), University of Padova (Italy),
CSELT Torino (Italy) and the joint contribution from the PTT Research Neher Laboratories
Leidschendam and the Delft University of Technology (the Netherlands).

9 Minutes of the 7 COsT-216 Working Group 1 which met on November 9“’, 1989, Berlin
(F.R.G.). A paper with the results of the comparison is to be submitted to ECOC *90.



106 Numerical results Chapter 5

5.2 Optimizing bends

The study of the properties of curved waveguides and the minimization of the
losses are closely linked. The numerical models will now be used to give general
graphs and to analyze in more detail how the losses depend on waveguide
parameters. The conclusions of the modeling automatically yield the design rules
for low-loss bends.

5.2.1 Dimensionless formulation

The general two-boundary bend is characterized by a set of six variables, but the
width of a curved waveguide should always be large enough to make the bend
effectively operate as a single-boundary bend as explained in section § 5.2.3. The
discussion will, therefore, be confined to single-boundary bends and values will
be given for the minimal width for which the two-boundary bend operates as a
single-boundary bend®. This has the additional advantage of reducing the number
of parameters by two. The single-boundary slab bend is characterized by a set of
four variables {N; ; N> ; Ag; R;}. Closer inspection of the Maxwell equations shows
that a consistent dimensionless formulation can be given in terms of two dimen-
sionless parameters {N,/N; ; koRiN;}. We choose the equivalent parameters
1-N3N? and koRN, to describe the single-boundary bend, because the difference
of the refractive indices proves to be a more critical parameter than just their ratio.

5.2.2 Influence of the lateral refractive-index contrast

The largest influence on the radiation loss is due to the refractive-index contrast
and the radius of curvature. Decreasing the radius of curvature and / or the contrast
in the refractive index leads to an exponential increase in the radiation loss as
shown in Fig. 5.2. The values of the radiation loss shown in the graph have been
calculated by means of the Bessel-function approach for large radiation losses and
by means of the WKB approximation for losses smaller than 10~ dB/90°.

The apparent simplicity of Fig. 5.2 proves to have some interesting consequences.
The “wall” is diagonal across the radius-contrast plane which suggests that the
contours of constant radiation loss form straight lines in the radius-contrast plane.
The accompanying contour plot Fig. 5.3 shows, indeed, a number of parallel
straight lines for constant radiation loss. The contour plot is given for EH-polar-
ization only, because the results for the HE-polarization are similar. If the radiation

§ The reader should be alert not to confuse the parameters of the two-boundary bend, radius R2
and width R2-R1, and the parameter of the single-boundary bend, radius R1.
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Fig. 5.2 Radiation loss as a function of the normalized radius of curvature and the refractive-
index contrast. The fundamental mode is cut off to the left of the ‘wall’ and the radiation losses
are smaller than 10”“" dB/90° on the right-hand side of the ‘wall’. The radiation loss increases
almost exponentially for decreasing radius of curvature and refractive-index contrast.

losses depend significantly on the polarization as demonstrated in section § 7.1,
then these differences must be ascribed to differences in the effective refractive
indices. The straightness of the contour lines in Fig. 5.3 can be used to obtain a
useful interpolation. The contour line, which is labeled -3, corresponds to a
radiation loss o = 10~ dB/90° and can be approximated linearly by

2

log 1-% = —0.65 log(koR:N;) + 0.88 , (5.2.1)
1
or
) 1.54
koRN, 1—% =227 = C(a) . (52.2)
N
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Fig. 5.3 Contour plot of the radiation loss in relation to the refractive-index contrast and the
normalized radius of curvature. The losses have been computed for the EHoo-mode of the
single-boundary bend. The curve labeled -3 corresponds to a radiation loss of 1072 dB/90°. The
losses for the HEopo-mode are very similar.

Since all contour lines seem to be parallel, they are described by equations similar
to Eq. (5.2.2). All contour lines can be described by one equation and a parameter
C(o) which depends on the radiation loss only. The dependence of C(o) on o has
been evaluated for the data shown in Fig. 5.1 and the result is shown in Fig. 5.4.
This graph too can be approximated by a straight line

C(a) = 13.7-3.72log ( (5.2.3)

2
1dB/90° |’

for losses below o, = 1072 dB/90°. Equation (5.2.2) shows that C(c) is proportional
to Ry and Eq. (5.2.3) is, therefore, the well-known exponential relation o =
A exp(—=BR;) between the radius of curvature and the radiation loss. The straight
interpolation is shown as the dashed line in Fig. 5.4 and it deviates from the
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Fig. 5.4 Curverelating the constant C(00) in Eq. (5.2.2) to the radiation loss. The dashed line is
the straight interpolation Eq. (5.2.3) and is valid for small losses only. A value 4, for example, on
the abscissa corresponds to a radiation loss 0. = 107* dB/90®.

calculated curve for o > (.1 dB/90°. Kendall, Stern and Robson [55] have shown
that a more accurate dependence is given by a0 = AR]’%exp(—BRl).

Optimization

Appendix E provides an example how to use the graphs and equations presented
in this section in order to choose an optimized radius of curvature for a given
refractive-index contrast.

The optimization strategy that presents the greatest conflict with other require-
ments is the maximization of the lateral refractive index contrast. The other
requirements are usually twofold; single-mode operation and low scattering losses
both require small refractive-index contrasts. The ideal solution is to combine the
large and the small refractive-index contrast.

One solution is the introduction of a new type of waveguide that combines a low
and a high ridge and which we, therefore, have named the ‘double-ridge wave-
guide’. The idea behind the ‘double-ridge’ waveguide is that the radiation losses
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are determined by the refractive-index contrast that corresponds to the total height
of both ridges and that the scattering losses, on the other hand, are mainly
determined by the scattering at the inner lower ridge. This waveguide, therefore,
provides a compromise to the conflicting requirements of both low scattering and
low radiation losses. The ‘double-ridge’ waveguide is the subject of section § 6.4.

A second solution is provided by the ‘self-aligned doubly etched bends’, where
a self-aligned photolithographic step is used to etch a higher ridge at the site of the
bend. This technique combines single-mode waveguides with low-loss bends on
a single wafer. A price is paid in the form of additional transition losses at the
junction of the low- and high-contrast waveguides. The ‘self-aligned doubly
etched’ bends are discussed in section § 6.5.

5.2.3 Width of the curved waveguide§

All graphs of the radiation loss versus the width of the bend are similar in
character. A representative example is given in Fig. 7.7 on page 189. The radiation
losses increase exponentially without limit below a certain value of the width..
Above this threshold value the radiation losses are completely independent of the
width. This formulation is not entirely correct, because the width is not the
parameter that is being varied, but the inner radius of curvature, while the outer
radius is fixed. A better way of saying this is to state that the field distribution
becomes independent of the inner boundary. The mode is guided by the outer
interface alone and is not influenced by the presence of the inner interface. Such
amode bounded by one curved interface is called a whispering-gallery mode! after
Lord Rayleigh [95][96]. The application of these modes in integrated optics has
been discussed in two papers by Sheem and Whinnery [102][103]. In the first of
these two papers Sheem and Whinnery use ray optics to explain the phenomenon
of the whispering-gallery modes. According to this picture, rays are reflected
successively by the outer interface without encountering the inner interface. The
point on the ray path nearest to the origin equals the caustic corresponding to u; in
Fig. 4.2. A mode is effectively a whispering-gallery mode if the inner interface is
far away from the caustic.

Equation (4.1.47) has been derived to estimate the minimum width that a
two-boundary bend should have in order to be in the whispering-gallery mode

§ This section does not discuss the properties of double-boundary bends in general, which would
be in contradiction to the statements made in the introduction § 5.2.1.

{ The phrase whispering-gallery mode (WGM) was originally applied by Lord Rayleigh to
acoustic waves guided by a single curved surface, of which he found a good example in St.
Paul’s cathedral.
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Fig. 5.5 Minimum width w that the corresponding double-boundary curved waveguide should
have in order to be in the WGM regime and thus to be effectively a single-boundary bend. The
markers refer to calculations for different N1 and show that the curve is independent of N1.

regime and thus to be effectively a single-boundary bend. This equation has been
evaluated for the same range of normalized radii of curvature as in Fig. 5.3 and
the results are shown in Fig. 5.5. The refractive index contrast at each normalized
radius is chosen such that it yields a radiation loss of 0.001 dB/90°, although the
refractive index contrast is not critical.

A useful interpolating formula can be found here too. The curve in Fig. 5.5 is
accurately described by

kowNy = 3.66 YkoR N . (5.2.4)

This inequality has a general applicability. It is valid for all radii of curvature,
refractive indices and wavelengths and, although calculated for refractive-index
contrasts that lead to a radiation loss of 0.001 dB/90°, it is quite insensitive to the
refractive-index contrast.
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Optimization

Optimization with respect to the width of the curved waveguide is simple. Make
it as wide as possible. Make it at least wider than the minimum required to reach
the regime of the whispering-gallery mode. There is no penalty whatsoever in
following this strategy. Even if the straight waveguides are monomode, no harm
is done by allowing the bends to be multimode. The higher-order modes show
increasing radiation losses and the influence of these higher-order modes is
practically eliminated at the next junction.

See Appendix E for an example of the optimization of the width of a curved
waveguide.

5.2.4 Transition losses at the junction

The theory of junctions has been discussed in section § 4.2, where it has been
shown that the transmission matrix, which determines the excitation coefficients
of the modes after a junction, is determined mainly by the overlap integral. Good
coupling requires, therefore, that the modal field distribution in the straight
waveguide and in the bend resemble each other as much as possible in order to
maximize this overlap integral. The field profile in a bend changes considerably
when the radius of curvature decreases, which is illustrated in Fig. 5.6. The field
distribution shifts outward and “sticks” to the outer interface. This shift can be
considerable even when the radiation losses are small such as for curves 2 and 3.
The overlap integral decreases because of this shift, which can be compensated
for by the application of a complementary shift of the curved waveguide with
respect to the straight waveguide as in Figs. 2.2, 2.5, 7.4 and photograph 6.3. The
concept of the offset was introduced in several papers and a patent by Neumann
[80][82].

Apart from the outward shift of the maximum, the form of the field profile also
changes. It becomes narrower and more asymmetric when the radius decreases as
shown in Fig. 5.6. The width of the field distribution of a single-boundary bend is
determined by the radius of curvature and the refractive-index contrast. The width
of the field profile in a straight waveguide, on the other hand, is to a large extent
determined by the width of the waveguide. A second reason why the overlap
integral is not optimal is the difference in shapes of the modal field distributions.
The fact that the shape of the field distribution in the straight waveguide is
influenced by the width of the waveguide can be used to our advantage. The
overlap integral can be further optimized by varying the width of the straight
waveguide. Typical graphs of coupling loss versus lateral offset and width of the
straight waveguide are Figs. 6.2 and 7.8, which are quite similar. The coupling
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Fig. 5.6 The intensity ex(r)ex(r) of the EHoo-mode versus coordinate r relative to the middle of
the two-boundary bend. The width is constant w = 3 um. The wavelength is A\o= 1.3 um. The field
profile shifts outward and becomes narrower for smaller radii of curvature. The legend to the
graph is given below
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loss in dB is a parabolic function of the offset. The width of the straight waveguide
influences the height of the minimum and the width of the parabola, but not the
offset at which the minimum is reached. The influence of the width of the straight
waveguide on the coupling loss is considerable. The coupling loss decreases by
approximately 1 dB when going from a width of 4 um to 2 um in the example
shown in Fig. 6.2.
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Fig. 5.7 Contour lines of the normalized distance koArN1 between the radius R\ and the
maximum of the field distribution, which is based on Eq. (4.1.49). An estimate for the optimum
offset between the straight and curved waveguide follows as wi2 — Ar. The values are for the
EHoo mode of the single-boundary bend. The values for the HEoo-mode are very similar.

Lateral offsets at the junction have been applied by Doldissen er al. [31] to
LiNbOj; curved waveguides, but apart from their paper it seems that the application
of offsets is not widespread. Equation (4.1.49) has been derived from the WKB
approximation and gives the distance Ar between the maximum of the field
distribution for the single-boundary bend and the guiding outer interface with
radius R;. An approximation to the optimum lateral offset is found from the
distance Ar by means of the relation

offset =

(SIS

- Ar. (5.2.5)

for a curved waveguide with width w. The distance Ar has been evaluated for a
wide range of parameters and the results are given in Fig. 5.7. However, all lateral
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offsets that have been used in the thesis have been found by maximizing the overlap
integral with respect to offset and straight-waveguide width.

There is some confusion with respect to the definition of offser. Curved wave-
guides are of the two-boundary type when they are actually fabricated and from
the point of view of the mask design, offset is the distance between the center of
the straight waveguide and the center of the bend. However, the single-boundary
bend has no width and the practical definition of offset is useless. Even in the case
of a two-boundary bend that is in the regime of the whispering-gallery mode, the
meaning of offset is unclear, since it depends on an arbitrary width. The parameter
that emerges from the analysis of the curved waveguide is the previously defined
distance Ar between the maximum of the field distribution and the radius R, of the
single-boundary bend. The relation between Ar and offset is given by Eq. (5.2.5).

Optimization

The use of an optimum lateral offset between the curved and the straight
waveguide to match the positions of both field distributions is strongly recom-
mended. There are no disadvantages to the application of such an offset. Optimiz-
ing the width of the straight waveguide is a very useful second strategy, but this
can be in conflict with other requirements. However, all S-bends described in the
thesis appeared to have optimized widths around the convenient values of 2 to
3 um which implies that the optimization of the width of the straight waveguide
with respect to the transition losses at the junction does not have to be in conflict
with other requirements.

An example of the optimization of the junction is given in Appendix E.

5.3 Using bends

5.3.1 The multi-mode-interference coupler

Curved waveguides can be used in the input and output sections of directional
couplers and the computer program developed to analyze multimode-waveguide
tracks can also be used to analyze such couplers. Although the tools can be used
to study the properties of both the directional ( or synchronous ) and the multi-
mode-interference coupler, the discussion here is confined to the multi-mode-in-
terference coupler, because the experimental program at the Delft University of
Technology includes the fabrication of multi-mode-interference couplers.
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The couplers of this type are known in the literature as two-mode-interference
couplers ( TMI ) or as the optically active bifurcation coupler ( BOA ) [87]. The
analysis presented in this section, however, considers couplers that guide an
unlimited number of modes and it seems, therefore, more appropriate to talk about
the multi-mode-interference coupler ( MMI ).

Principle

The structure of the multi-mode interference coupler is depicted in Fig. 5.8. Two
input waveguides combine in one broad multimode waveguide. A fundamental
mode arriving in one of the input waveguides equally excites the two lowest-order
modes in the broad section. Since these two modes have different propagation
constants their phase difference will change with propagation distance. If the phase
difference has changed = during the total length of the broad section

e T
Ly = Ly & B (5.3.1)

then the opposite output waveguide will be excited. The coupleris then in the cross
state. The coupler is in the bar state when the phase difference is 2x at the coupler
length Ly = 2L, and the output on the same side as the input is excited. The beat
of the two modes leads to an amount of power in each output port that is

. 2% ~ a4

gap §

Z— iy
port 2 Boo  Bor

port 4

Fig. 5.8 Schematic picture of the multi-mode interference coupler with curved input and output
sections. The field distributions of the two lowest-order modes have been inserted in the figure.
The ports 1 and 4 and the ports 2 and 3 are connected in the cross-state Lmmi= (2m+1)Lyx. The
ports 1 and 3 and the ports 2 and 4 are connected in the bar-state Lypr=2mLg (m=0,1, ... ).
At lengths Lymy = (m+V2)Ly the coupler functions as a 3-dB splitter, where the power from port
1, for example, is divided equally between port 3 and port 4.
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proportional to sinz(Ts’zLMMI/L,[) and to cosz(%LMM,/L,;) respectively [97][24]. The
maximum transmission or minimum loss from an input port to an output port
equals the insertion loss. The minimum transmission or the maximum loss repre-
sents the cross-talk.

MMI couplers have been applied as wavelength demultiplexers [21][24][97] [98]
and polarization splitters [84]. They offer compactness and improved reproduci-
bility, because the difference (Bp—Po;) is much larger for MMI couplers than for
directional couplers, and because multi-mode interference couplers lack the nar-
row gap between the coupled straight waveguides that is characteristic of direc-
tional couplers and which is subject to tight fabrication tolerances. The input and
output sections usually consist of two straight waveguides with an angle of 1° - 4°
between them. The use of curved input and output waveguides offers us the
advantage of a faster separation between the access ports than can be achieved
with tilted straight waveguides, and the lateral offset required to provide optimal
coupling leads to a natural separation between the two waveguides at the beginning
and the end of the MMI section as shown in Fig. 5.8.

Modeling

The multi-mode-interference coupler with curved input and output sections is
made suitable to modeling by splitting it in two and ignoring one input and one
output section as shown in Fig. 5.9. The MMI coupler reduces to a normal
waveguide track and can be modeled with the tools developed in chapter 4 and
especially as explained in section § 4.3. The omission of two sections from the
MMI coupler is allowed if the extra coupling between the two bends is negligible
compared to the total phase change in the MMI section. The coupling between the
two bends leads to different coupling efficiencies at the beginning and the end of
the MMI section and to an additional phase contribution. We make the assumption
that the extra coupling between the two bends can be neglected if the radiation
loss is small, because this implies that the modes are well confined by the curved
waveguide. The coupling between oppositely curved bends was investigated in
section § 4.4,

Twodielectric A, 05/Si0; ridge waveguides have been modeled, one with a small
ridge height of H = 20 nm and the other with a large ridge height of # = 100 nm.
The cross-section of the ridge waveguides is given in Fig. 5.9 and the waveguides
operate at a wavelength of 632.8 nm. The insertion loss and the cross-talk of the
waveguide track have been calculated, where the width of the MMI section
Wi, the size of the gap between the bends and the length of the MMI coupler
Ly have been varied. The results of the modeling are summarized in Table 5.3
and this table shows some interesting things. The values marked by thick lines in
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%W/ _____ L.

Fig. 5.9 Cross-section and layout of waveguide used 1o model the MMI coupler. By omitting one
input and one output section, the coupler reduces to awaveguide configuration that can be modeled
by means of the tools developed in the previous chapters. Omitting two access waveguides is
Justified when the additional coupling between the two bends can be neglected.

Table 5.3 correspond to multi-mode-interference couplers that show simultaneous-
ly

* an insertion loss lower than 1 dB,

» a cross-talk of approximately 25 dB or better,

* a gap between the two access bends of 1.2 - 1.6 pm, which is wide enough
to be fabricated reproducibly by standard lithography and

» short coupler lengths, i.e. shorter than 1 mm which includes the input and the
output sections.

It is interesting to note that all waveguides are multimode. However, the MMI
couplers that are reported in the literature always have bimodal MMI sections and
monomode access waveguides. The presented calculations even predict that the
MMI couplers function better when they become broader. The 7 um wide MMI
section, for example, guides four lateral modes that have all been included in the
analysis. The squares of the overlap integrals from the fundamental mode of the
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Table 5.3 Insertion loss and cross-talk for the MMI coupler of Fig.5.9. The ridge height H is
20 nm. The straight access ports are 2 pum wide and guide two modes NHE00 = 1.57036 and
NHEO01 = 1.56474. The curved waveguides are 3 um wide, have R2 = 1300 um and also guide two
modes with, NHEoo = Re(y)/(koR2) = 1.56994, aneoo= 0.079 dB/90° and Nugo1 = 1.56534,
OHEO1 = 66.6 dB/90°. The second-order mode in the bend is thus of little influence. The curved
waveguides subtend an angle ® = 5° and accomplish a separation between the access portsof 11.1
um within a distance of 226.4 um. The total length of the coupler is twice this value plus LMMI.
The lateral offset is 0.7 wum at the bend-bend junction and 04 yum at the straight-to-curved
waveguide junction. The 4- and 5-um wide MMI-sections guide three modes, the other two
MMI-sections four modes.

m— m—cw—

0.8 0.88] 17.63] 0.63] 17.80] 0.60] 14.08

1.0 1.05| 21.66] 071 2296] 0.64] 17.51] 0.64] 14.06
1.2 1.25| 24.63] 081 2462 076/ 17.08
1.4 077] 2689 079 2174
1.6 0.80

1.8 096 18.20] 0.83

bend to the four modes of the 7-um wide MMI section plus 1.6 um gap are 0.4986,
0.4175, 0.751 and 0.0005 respectively, amounting to a total of 0.9962. The
completeness relation Eq. (4.2.48) shows that the difference 0.0038 between the
sum 0.9962 and unity is due to the contribution of the continuous modes®.

Single-mode operation is an unnecessary requirement for the operation of MMI
couplers and it seems that they function even better with multimode waveguides.
A second simulation has, therefore, been done for a MMI coupler with a ridge
height of H = 100 nm. The large ridge height leads to a multimode waveguide,
but it also permits the use of short radii of curvature. A width of ’J;pm and a radius
of curvature of R, = 150 um lead to a radiation loss of 6.7 x 107, 9.3 x 107 and

§ The values shown in Table 5.3 have been computed by F.B. Veerman, Delft University of
Technology.
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2.3 dB/90° for the HE- to HEg,-mode respectively. The fundamental mode is
well confined and this reduces excessive coupling in the curved input and output
sections. The straight access waveguides are 2 um wide and guide three modes.
An optimized offset of 0.7 um leads to a transition loss of -0.06 dB at the junction
of the straight and the curved waveguide for the fundamental modes. A transition
loss of -0.16 dB occurs at the junction of the two bends when an offset of 1.5
um is applied. The small radius of curvature leads to a fast separation of the output
waveguides. The application of an arbitrarily chosen section angle & = 45° leads
to a separation of 176.3 um between the two output waveguides within a distance
of 211.1 pm. The insertion loss and the cross-talk for several configurations are
listed in Table 5.4.

The conclusions are similar to the conclusions for the MMI coupler with H =20
nm. The cross-talk is below -20 dB for MMI couplers with a width of 7 um or
larger. The insertion losses are better than 0.7 dB which includes the radiation
losses of the four curved waveguide sections with R, = 150 um and a section angle
of 45° and all six junctions. Table 5.4 shows that the performance of multimode
MMI couplers becomes better for wider MMI sections. The only disadvantage of
ever wider MMI sections seems to be the increasing length of the coupler. The
length Ly increases because Boo and Bo; approach each other as they both come
nearer to the effective index of the film for wider waveguides.

The power in both output ports is shown in Fig. 5.10 as a function of the coupler
length for the 9 um wide MMI coupler and a gap of 1.6 um. The coupler is in the
cross state at Ly = (2m+1)L, and in the bar state for Ly, = 2mL,. The coupler

Table 5.4 Calculated insertion losses and cross-talk for the MMI-coupler wzth aridge height
H =100 nmand access bends with R2 = 150 um. Indicated are Ly = n(ﬁoo—Bm) and the lengths
Lmwmi for which the minimum and maximum transmission loss have been computed.

4 0.4 66.9 0.88 67 13.97 137
5 0.6 99.8 0.67 104 15.10 204
6 0.8 139.3 0.54 141 17.20 278
7 1.0 185.6 0.57 188 21.40 368
8 1.2 238.4 0.68 240 28.71 472
14 0.58 26.62 470
1.4 0.83 33.34
9 297.
1.6 719 0.66 300 29.61 590
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Fig. 5.10 Output power versus coupler length, for the 9 um wide MMI coupler and a gap size
of 1.6 wm. The solid horizontal line denotes the loss at zero length and is due to radiation in the
bends and to transition losses. The labels ‘3’ ,'=" and ‘®’ denote the 3-dB splitter state, the
bar-state and the cross-state respectively.

functions as a 3-dB splitter when Ly, = (m+V2)L,. The losses of the coupler itself
are very small ( 0.00 dB - 0.22 dB ) because the larger part of the insertion loss
(0.51 dB ) is due to radiation losses in the bends and to transition losses at the
junctions other than the junction of the access waveguides and the MMI section
(this part of the insertion loss has been marked by the horizontal line in Fig. 5.10).

The curves in Fig. 5.10 do not resemble the simple cos® and sin? relationships at
all. A complex interference pattern is seen instead of the simple relations. This is
also exemplified in Fig. 5.11, where the field intensity Ihy(x)l2 is shown along a
total length of Ly =2L,. The field distribution at the beginning is the field
distribution of the bend. This distribution is clearly reproduced at L, = 300 pm,
where it is shifted to the other side of the coupler. The field distribution recovers
its original form at twice this length, Ly, = 2L,.
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Fig. 5.11 The total intensity distribution for the 9 um-wide MMI coupler with a gap size of 1.6
um and HE-polarization. The labels ‘3’,=' and ‘®’ denote the 3-dB splitter state, the bar-state
and the cross-state respectively.

An important question should now be discussed. Why does the MMI coupler
work? The MMI coupler that we have been discussing guides eleven modes and
one would expect that the coherence between all modes is lost right after the point
where the MMI coupler is excited. But the Figures 5.10 and 5.11 suggest that at
lengths that are a multiple of L,/2 all eleven modes interfere constructively.

Explanation

For the bimodal MMI coupler, the phase difference between both modes is a
multiple of &, when the coupler is in the cross-state. It seems that for the MMI
coupler, the phase differences between all modes become a multiple of 7t simulta-
neously in the cross-state. This happens indeed in a good approximation and is
due to the ‘self-imaging’ properties of multimode waveguides, that have been
studied previously by Ulrich and Kamiya [116] and by Chang and Kuester [17].

The ‘self-imaging’ character of multimode waveguides can be explained in the
following way. The guided modes of a multimode slab waveguide that has a width
wumr and is represented by an effective index of refraction N, are characterized by
propagation constants that are approximately given by
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e (v+1)?
)

Wmmi

Boy = KeN* — ,v=0,1,2,..., (5.3.2)

which follows from k2+k? = kN with k, = Boy and k, = (v+1)/wyp. Since Boy is
close to ko, Eq. (5.3.2) may be approximated by

2 2
Tt (v+1)
Boy = koN — A (5.3.3)
o~ 2koNWinar
The combination of Eqgs. (5.3.1) and (5.3.3) yields
T 3n°
— = Poo—Po1 = ———— 5.3.4
L. Boo—Bo AN ( )
which can be used to rewrite Eq. (5.3.3)
5 _ mv+1)?
Bov = koN AL (5.3.5)

The field in the MMI-section is written as a sum of the guided modes only for, say,
the HE-polarization

M-1

ry2) =Y i 0eP, (5.3.6)

v=0

where the coordinate system of the multi-mode-interference coupler is given in
Fig. 5.9. The field at the entrance z = 0 of the MMI section is thus

M-1

h30) = Y, CHh) . (5.3.7)

v=0

and the field at the end of the MMI section is
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M-1 2
: Ly (V+1
Ay L) = &3 ' cEpt (y) exp {j ﬁ;’g—)} : (5.3.8)
v=0 n
Inspection of the phase factor in Eq. (5.3.8) leads to
Y, i) 2m
- ~1)"™'eSh ) Lumt _ | om+1
h Y.Ly 2 T .. , for 3L,
YD) + Y, i) m+ 1
v even v odd
(5.3.9)

where the overall phase factor cxp{—jkoNLMM,} has been dropped. The symmetry
properties of the modes

_ | ly(-y) forevenv
hI,V(y) - { —hx,v(_y) for Odd v ’ (53.10)

can be used to rewrite the result Eq. (5.3.9) as

hx(yyo) 2m
—h(=y,0 L 2m+1
h(y.Lymr) = .(_1()3.;_1) i(—1)y"-1 , for SLLA:I ="
JT—hx(y,O) + Jz—h,(—y,O) m+ Vo
(5.3.11)

The field at the end of the MMI section reproduces the field at the beginning for
Lymi/(3Ly) = 2m and this represents the bar state. When Ly,,/(3L;) = 2m+1, an
exact mirror image is produced at the end of the MMI section and this is the cross
state. When Lyyy/(3Ly) = m+14, a linear combination of the original field and its
mirror image is obtained. The fields in both output ports have equal magnitudes

and a relative phase of 1/2, which means that the MMI coupler operates as a 3 dB
splitter.
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There is a second class of resonances, i.e. the resonances that coincide with those
that have been calculated before and that occur at lengths of the MMI section
Ly that are multiples of Ly, instead of 3L,. Inspection of the phase factor in Eq.
(5.3.8) shows that this second class of resonances does, indeed, occur provided
that the following coefficients are not excited

co=0,v=258,.. (5.3.12)

Eq. (5.3.12) shows that the optimization of the multi-mode-interference coupler
that has been described at the beginning of this section consists, in fact, of trying
to match Eq. (5.3.12).

Verification

These conclusions may be verified in two ways. Condition Eq. (5.3.12) must be
fulfilled in order to have resonances at Ly = Ly and this suggests a check of the
overlap integrals for the junction of the MMI section and the bend for the case of
an optimum MMI coupler. The squares of the overlap integrals for the fundamental
mode of the bend to the modes v=0, 1, 2, ... of the MMI-coupler with a width of
9 um and a gap of 1.6 um, are 0.3531, 0.3317, 0.0010, 0.1513, 0.1061, 0.0001,
0.0384, 0.0128, 0.0025, ... respectively. The modes v = 2, 5, and 8 are seen to be
significantly less excited than the other modes.

The existence of the super-resonances can be verified by considering the multi-
mode-interference coupler that performed least optimally with respect to the
optimization at Ly = L, and Ly = 2Ly, and by calculating the insertion loss at
Ly = 3L, and the cross-talk at Ly, = 6L,. A good example is a multi-mode-in-
terference coupler with wypy =4 um and a total gap of 1.0 pm. This coupler
showed an insertion loss of 1,90 dB at Ly = L, and a cross-talk of -11.05 dB at
Ly = 2L,. But this same coupler has an insertion loss of 0.63 dB at Ly, = 3L,
plus a cross-talk of -24.49 dB at Ly, = 6L, which shows that the super-resonances
indeed occur.

The self-imaging properties of multimode waveguides make the optimization of
the coupling of the MMI-section and the access waveguides redundant. When the
super-resonances are concerned, the insertion loss is determined by the accuracy
with which the image is reproduced and not by the excitation. The fact that an
image can be better represented in terms of more modes explains why MMI
sections that guide ever more modes show improved characteristics. The improved
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properties of MMI-couplers permits us to use high-contrast waveguides for the
design of the MMI-coupler. Very short bends can, therefore, be used that yield a
fast separation between the access waveguides. The absence of the excitation
problem allows us to optimize the size of the gap with respect to cross-talk only.




Chapter 6

Al203/S102 ridge waveguides;
experiments

This chapter is devoted to experimental work on dielectric curved waveguides.
Section § 6.1 provides the introduction, and the sections § 6.2 on S-bend meas-
urements and § 6.4 on the ‘double-ridge’ waveguide contain two papers that have
been published in Electronics Letters. Additional material is presented in the two
respective addenda. Section § 6.3 describes the experiments done to measure the
losses of S-bends, where the lateral offset at the junction was varied. The ‘self-
aligned doubly etched’ bends are the topic of section § 6.5, in which a new
technique to combine waveguides with a low ridge and waveguides with a high
ridge on one substrate is presented. Finally, section § 6.6 reports on experiments
where the losses of S-bends in Al,04/Si0, waveguides at a wavelength of 1300
nm were determined.

6.1 Technology and measurement setup

This chapter describes the experiments on and the fabrication of bends in
dielectric buried ridge waveguides. Most of these waveguides have been operated
at a wavelength of 632.8 nm and their cross-section is shown in Fig. 6.1. These
waveguides consist of a sputtered Al,O; film, which is approximately 250 nm
thick, on a silicon substrate that has been thermally oxidized in order to form a
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Si0, cladding layer. The SiO, layer, which is approximately 2 um thick prevents
the light from leaking into the silicon substrate. After the definition of the
waveguides by photolithography and the subsequent etching by means of Argon
beam milling, an S$iO, cover is sputtered on top of the processed wafer which
protects the waveguides and permits the use of a prism coupling to excite the
waveguides. The SiO, cover layer is usually 650 nm thick, which gives an optimal
coupling efficiency of the laser beam and the ridge waveguide. An annealing
treatment is applied of 55 min at 800 °C which results in a low attenuation of the
planar waveguide of approximately 1 dB/cm. This low value of the propagation
loss of the Al;0,/Si0, waveguides makes them useful in integrated optics. The
fabrication of these waveguides and the properties of sputtered Al,O; with respect
to integrated optics have been reported by Smit, Acket and van der Laan [105].

A chromium layer is sometimes sputtered on top of the SiO, cover in order to
enhance the accuracy of the loss measurements ( see Fig. 6.1 ). The chromium
layer is subjected to photolithography and etched in order to form narrow gaps
( grooves ) above the waveguide channels. A large fraction of the light that is lost
by the waveguide channel remains confined in the planar film. The chromium
mask so formed is located at the site of the output coupling prism and permits the
coupling of light out of the waveguide channels but prevents this for the rest of
the planar film.

chromium

Fig. 6.1 The straight-waveguide cross-section for operation at a wavelength of 632.8 nm,
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All measurements of the losses of S-bends in Al,03/Si0, waveguides that are
described in the thesis have been made using prisms to couple light into and out
of the waveguides and by detection of that light with a photodiode. The technique
of coupling light into a planar waveguide by means of a prism is well known. See,
for example, the chapter by Tamir in [110], Tien [113] or Pasmooij et al. [88].
There are many advantages to prism-coupling. It permits an accurate determination
of losses with an accuracy of approximately 0.1 dB. The light couples out of the
film under a well-defined angle that is related to the propagation constant
B = Nk of the mode which propagates in the waveguide by means of

N= Nyiom sin{ Oprism + sin“{ n"“f’ COS(B prismtOcoupling) }} . (6.1.1)
prism

where ny;, = 1.00028 is the refractive index for air, n,,;,, = 1.7356 is the refractive

index of the prism at a wavelength of 632.8 nm, 9,,;,, = 60° is the prism angle and

Ocoupling 18 the coupling angle between the laser beam and the plane of the wafer.

The accuracy with which the coupling angle can be determined is approximately

0.005°, leading to 5 significant digits for the effective refractive index [88].

Prism couplers can be used to excite a specific mode in a waveguide by giving
the input beam of light the appropriate angle. The measured coupling angles
Ocoupling Can, in combination with Eq. (6.1.1), be used to calculate the effective
refractive indices and, therefore, to calculate the properties of the waveguide such
as the refractive index of the guiding film, its height, and the width of a two-dimen-
sional waveguide by using the method of effective dielectric constant ( see Table
6.1 for example ).

The laser light is coupled directly into the straight waveguide by placing the prism
on top of the waveguide and by using a cylindrical lens with a focus of 75 mm,
which leads to a lateral spot size of the order of 50 pm. This spot size is much
wider than the waveguide, which improves the coupling efficiency and leads to an
improved stability of the measurement setup [88]. A contacting liquid ( CH,l, ,
n = 1.74) is used to reduce the influence of the gap between the prism and the
cover layer, since its index of refraction is almost equal to that of the prism.

6.2 Losses in S-bends

The following section contains the manuscript that we sent to Electronics Letters
and which was subsequently published [90]. Experimental material that is not
covered by the letter will be given in the addendum.
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6.2.1 Manuscript Electronics Letters

Low-loss Bends In Planar Optical Ridge Waveguides

E.C.M. PENNINGS, G.H. MANHOUDT? and M.K. SMIT
Laboratory of Telecommunication and Remote Sensing Technology
Faculty of Electrical Engineering
Delft University of Technology
P.O. Box 5031, 2600 GA Delft, the Netherlands

Abstract

Bending losses lower than 0.7 dB for 90°-bend sections with radii of curvature
as small as 75 um were measured on silicon-based Al,O5 ridge waveguides with
Si0O; cladding layers at a wavelength of 632.8 nm. These values, which are close
to the calculated values, are the lowest thus far reported.

Introduction

In optoelectronic integrated circuits, waveguide bends play an important role in
connecting components. The size of these bends eventually determines the maxi-
mum density with which components can be integrated on a single chip. Wave-
guide bends may also enable long components such as external cavities and phase
modulators to be folded and miniaturized.

The only previous results on submillimeter bends in ridge waveguides seem to be
those of Austin [6], where 1 dB/90°loss has been reported for GaAs/GaAlAs bends
with R = 300 um. Realization of directional changes with totally reflecting corner
mirrors has not yet yielded losses below 1.5 dB per mirror [15].

We investigated bending losses in very short bends with radii of curvature from
50 to 200 um in 3 wm wide ridge waveguides, etched in SiO, cladded A1,0; films
on silicon substrates. Measurements and calculations were performed at a wave-
length of 632.8 nm.

Bending loss mechanisms

The total loss of a waveguide bend of finite length is due to radiation loss, field
mismatch at the transition between the straight and curved waveguide and in-
creased scattering caused by roughness of the outer edge. We will discuss these
mechanisms subsequently.

§ Presentaddress: A.T. & T. and Philips Telecommunication, P.O. Box 18, 1270 AA Huizen, the
Netherlands
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Fig. 6.2 Calculated coupling losses for the HEoo-mode as a function of lateral offset for different
widths of the straight waveguide. The width of the waveguide bend is 3 ym and R = 100 yum.

(i) Every curved structure exhibits losses in the form of radiation, because of the
finite speed of light in the cladding material. The radiation losses can be reduced
either by increasing the radius of curvature or by introducing a large refractive-
index contrast. In our case, we created a large contrast by etching a high ridge, the
price of which is paid by increased propagation losses of the straight sections due
to scattering by edge roughness. The calculation of the radiation losses involved
the effective-index method. The resulting two-dimensional bend is transformed
into an equivalent straight structure by means of a conformal transformation [40],
which is then solved by means of the staircase approximation [19].

(i1) In a curved waveguide the intensity distribution shows a shift of its maximum
towards the outer edge. For small radii of curvature the mode is guided by the outer
edge alone (like a whispering gallery mode). The shape of this mode profile is,
therefore, not determined by the width of the waveguide bend but mainly by the
refractive-index contrast and the radius of curvature, whereas the shape of the
straight-waveguide mode profile strongly depends on the width of the waveguide.
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Fig. 6.3 SEM photograph of a ridge waveguide bend with R = 50 um defined in photoresist.

At the transition between the straight and the curved waveguide, conversion losses
will occur because of the mismatch between the two field distributions. These
conversion losses can be minimized by introducing a lateral offset between the
straight and the curved waveguide in order to align the field maxima [80], and by
optimizing the width of the straight waveguide in order to match the widths of
both field distributions, as exemplified in Fig. 6.3. The conversion losses have
been estimated by applying overlap integrals [40]. The improvement in coupling
efficiency can be substantial as can be seen in Fig. 6.2. For a 3-um-wide straight
waveguide the coupling loss improves by 2.4 dB if a 0.85-pum offset is introduced.
An additional 0.35 dB is gained by changing to a 2-um-wide straight waveguide.
The applied waveguides are multimode and the resulting coherent effects were all
taken into account in the calculations. We optimized all offsets and the straight-
waveguide width for the lowest-order mode.

(iii) The scattering losses depend on the edge roughness of the ridge waveguide.
We found that an optical pattern generator (ASET COMBO 250) with rotating
head in combination with a 4x reduction camera gives an edge quality superior to
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Fig. 6.4 Measured ( lines with markers ) and predicted ( lines without markers ) losses for five
different S-bends. The markers denote the measured values, for which the typical error is 0.2 dB.
( See the addendum ) ( R = 50, 75, 100, 150, and 200 pm )

electron-beam generated patterns, that often exhibit a step-like pattern due to
electron-beam quantization. This may be solved by choosing a very small spot
size, but at the price of excessive writing time. Figure 6.3 demonstrates the edge
quality of the optically generated pattern.

Experiments and results

We designed and fabricated two wafers with five identical sets, each set contain-
ing five different S-bends and several straight reference waveguides. Each S-bend
starts with a 200-um 90° bend and is followed by a second 90° bend with R = 50,
75, 100, 150 and 200 pum respectively. Waveguides were formed by atom-beam
milling a 100-nm step in a 250-nm-thick sputtered Al,O; layer ( # = 1.69) through
a photoresist mask and by covering the circuit with a sputtered SiO, layer
(n=1.457) [105]. The 100-nm step creates a lateral effective-index contrast of
An/n = 3.4%. Light from a He-Ne laser ( A = 632.8 nm) was coupled into and out
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Fig. 6.5 Four loops with R = 150 um.

of the waveguides by means of the two-prism configuration enabling the selective
excitation of all modes [88].

A silicon photodiode detected the power of all modes coupled out of the
waveguide by the prism. We measured the total additional power loss occurring
in the S-bend sections by comparing the power coupled out of them and out of the
straight reference waveguides. The agreement between theory and experiment is
quite good as can be seen in Fig. 6.4, in which the total additional power loss is
plotted as a function of the radius of curvature of the second bend. The HEy, mode
(notation of Unger [117]) in the 75-um S-bend has a loss of 0.7 dB, which is the
lowest value reported thus far. The loss of 0.2 dB for the 200-um S-bend is within
the measurement accuracy. This low loss enabled us to make the more complex
waveguide structure shown in Fig. 6.5, which contains four loops with R=
150 pm and shows negligible bending losses.

Because of the selective excitation, we could measure the bending losses for the
HE(; and the HEy, mode as well. The offsets between straight and curved
waveguides have not been optimized for these modes and consequently there is
considerable intermodal conversion at the transitions. Despite the increased con-
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tribution of multimode interference, effects the qualitative agreement between
measured and predicted results remains quite good. The crossing of the HE(,; and
HE_, attenuation curves as predicted by theory is indeed measured.

Conclusions

We have fabricated ridge waveguide S-bends with radii of curvature as small as
75 um and measured a total loss of 0.7 dB, which is very close to the calculated
value. These low values were obtained by introducing a large lateral effective-
index contrast and a lateral offset at the transition and by optimizing the width of
the straight waveguide. The low losses made it possible to cascade a considerable
number of bends with negligible bending losses, thus demonstrating the feasibility
of folding and miniaturizing long components such as external cavities and phase
modulators.

6.2.2 Addendum

A complete set of five S-bends and four straight reference waveguides is shown
in Fig. 6.6. The radii of curvature of the first 90° bend of every S-bend are equal
and amount to 200 um. The radii of curvature of the second 90° bend vary between
50 um and 200 pm. This mask design improves the resolution of the measure-
ments, because the light is mainly radiated from the second 90° bend in a
‘downward’ direction and this light, therefore, does not reach the output coupling
prism. The resolution has also been enhanced by the application of an extra
chromium layer as explained in section § 6.1. The accuracy of the loss figures of
15 dB or larger is, nevertheless, reduced despite these precautions.

The manuscript has been corrected in two places with respect to the published
version. Firstly, the correct radius of curvature of the four loops is 150 pm as
indicated in the caption of Fig. 6.5. Secondly, the predicted excess losses that are
shown in Fig. 6.4 have been corrected for the fact that the first and the second bend
are oppositely curved. This results in a noticeable correction for the R =50 pm
S-bend and a better agreement between the measured and the predicted excess
losses, especially for the first-order modes. The crossing that is found for the
measured excess losses for the HE,,-mode and the HEy,-mode as shown in Fig.
6.4, does, however, not occur for the predicted values now. The fact that the
measured excess losses increase sharply for the HEq;-mode and increase slowly
for the HE(,-mode, is in agreement with the predicted values and it is this fact that
leads to the ‘crossing’. The excess losses that are shown in Fig. 6.4 should not be
seen as giving the relation between the radiation loss and the radius of curvature
for each mode, because the excess loss represents the total loss for the complete
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Fig. 6.6 A set of five S-bends plus four straight reference waveguides (top) and a scanning
electron micrograph of the bend with a radius of curvature of 50 um ( bottom ).
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Fig. 6.7 The measured ( markers ) and the predicted ( curves without markers ) losses for the
same S-bends as in Fig. 6.4 and EH-polarization. The excess loss is the total loss of the S-bend
relative to the straight reference waveguides. The ridge height of the waveguides is 100 nm.

S-bend and this loss may quite easily be caused by transition losses at the junctions.
If the HE,-mode couples to the HEy-mode at the first junction for example, then
the excess loss will be dominated by the propagation properties of the HEy-mode
instead of the HEy,-mode.

The manuscript includes one graph with excess S-bend losses. These losses have
also been determined for the EH-polarization and for a second wafer, which
contains waveguides with a ridge height of 110 nm. These values are shown in
Fig. 6.7 and Fig. 6.8. From these graphs, we see that the agreement between the
predicted and the experimental values is better for the lowest- and first-order
modes than for the second-order mode. The predicted losses are generally smaller
than the measured losses. It should be noted, however, that the method of the
effective dielectric constant has been used for a waveguide where the ridge height
equals approximately half the thickness of the guiding film and a reduced accuracy
of the EDC method is to be expected.
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different S-bends. The ridge height of the waveguides is 110 nm.
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The measured excess losses for the HE-modes are smaller than those for the
EH-modes. This measured difference is not in agreement with the predictions,
which yield almost equal values for both polarizations, and it cannot be accounted
for by differences in propagation losses. The measured propagation losses for the
HE-modes are even slightly larger than for the EH-modes, which is in agreement
with the character of the source of the scattering, i.e. the roughness of the ridge.
The scattering of light is largest when the electric field is oriented along the lateral
direction in which the deviations from the perfectly smooth ridge geometry occur.

The mask included four waveguide tracks with one, two, three or four loops
respectively, as shown for example in Fig. 6.5. The total excess loss for the
HEy-mode is 0.50, 2.55, 2.80 and 3.85 dB for these loops, respectively for the
waveguides with a ridge height of 100 nm. The loss figure does not increase
linearly with the number of loops, which is due to multimode interference effects.
All light enters the first loop in the form of the HEy-mode. After the first loop,
some part of the remaining light has been converted to higher-order modes that
show higher losses than the lowest-order mode. A least-squares approximation
leads to an excess loss of 0.98 dB per loop and this value consists of the transition
losses of four junctions, the transmission loss of one waveguide crossing, the
radiation losses of bends with R = 150 um and a total section angle of 360° and
the propagation losses along a waveguide track that is 1.12 mm longer that the
straight reference waveguide.

6.3 The influence of the offset

6.3.1 Introduction

The theory of waveguide junctions has been discussed in section § 4.2. It was
shown in section § 5.2.4 that two strategies are available to reduce the transition
losses at a junction of a straight and a curved waveguide. Firstly, a lateral offset
may be applied to match the position of the maxima of the field distributions [80].
Secondly, the width of the straight waveguide can be varied in order to optimize
the widths of the modal field distributions in both sections. Doldissen et al. [31]
performed experiments to test the influence of the offset at the junctions in S-bends
in LiNbO; at A9 = 1.3 pm and showed a loss reduction of up to 2 dB.

In this section, experiments will be described for the purpose of testing the
influence of the lateral offset in S-bends in Al,05/Si0O, at a wavelength of 632.8
nm. The results of these experiments were presented at the European Conference
on Optical Integrated Systems at Amsterdam [93].
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6.3.2 Experiments

A mask has been designed that contains U-bends or ‘chicanes’ with identical radii
of curvature but varying lateral offsets at the junctions, straight reference wave-
guides and several straight sections with a width of 40 um which can be considered
as equivalent to a planar film. The mask layout of the U-bends is shown in Fig.
6.9 and it closely resembles the layout shown in Fig. 7.4. Every U-bend consists
of four curved sections with a section angle of 90° each. The first and third
90°-bend have a radius of curvature of 200 um and the second and fourth 90°-bend
have aradius of curvature of 100 um, the purpose of which is to reduce the amount
of light that emanates from the waveguide track in a forward direction where the
output coupling prism is located. The width of the straight waveguides is 2 pm
and the width of the curved waveguides is 3 pm. The offset at the junction of the
straight waveguide and the 90°-bend with a radius of curvature of 200 pm has the
constant optimized value of (.73 pum. The offset at the junction of the straight
waveguide and the 90°-bend with a radius of curvature of 100 um has been varied
between 0.6 m and 1.5 um in ten steps of 0.1 um and between 0.55 pm and 1.55
pm in five steps of 0.25 um. The range of offsets did not include zero because the
straight and curved waveguides have different widths. The outer side of the ridge
of the curved waveguide is aligned with the outer side of the ridge of the straight
waveguides for an offset of 0.5 um.

The U-bends have been manufactured in the form of ‘standard’ waveguides as
explained in the introduction to this chapter § 6.1. The waveguides are created by
Ar-ion- beam milling 100 nm away from a sputtered Al,O; film with a thickness
of 250 nm. A cover layer of 600 nm SiO, is sputtered on top and an annealing
treatment is applied of 55 min at 800 °C. A chromium mask on top of the SiO,
cover layer permits the coupling of light from the waveguide to the output coupling
prism but prevents this for light that is guided in the planar film. The scanning
electron micrograph that is shown in Fig. 6.9, gives an example of a lateral offset
at the junction of the straight and curved waveguide.

6.3.3 Results and discussion

The light from an He-Ne laser with A= 632.8 nm was coupled into the etched
film and into the 40 pm wide waveguide and the resulting coupling angles can be
related to the effective refractive indices by means of Eq. (6.1.1). These values
have been used, in turn, to yield the thickness of the as-deposited Al,O; film (255
nm ) and the thickness of the etched Al,O; film ( 157 nm ). The difference of these
thicknesses gives a manufactured ridge height of 98 nm. The coupling angles for
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Fig. 6.9 Mask layout of a set of five U-bends, four straight reference waveguides and a 40 pm-
wide waveguide (top). Example of the use of a lateral offset at the junction (bottom). The scanning
electron micrograph shows a junction of a2 um-wide straight waveguide and a 3 pm-wide curved
waveguide with a radius of curvature of 50 pm, which are defined in photoresist.
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the HEyy-mode and the EHyy-mode have been used in combination with the method
of effective dielectric constant to yield the width of the fabricated straight wave-
guide being 1.95 um.

The excess loss of several of the fabricated sets of U-bends has subsequently been
measured for the HEy- and the EHyy-mode and the results of the measurements
are shown in Fig. 6.10. Two parabola have been fitted to these measurements that
reveal a relationship between the losses and the offset similar to the one shown in
Fig. 6.2. The dashed vertical line indicates an offset of 0.88 um, which gives a
maximum overlap integral for the lowest-order modes in the straight and the
curved waveguide. The optimum offset is equal for the HEyy- and the EHy-mode.
The minima for the fitted parabolae occur at 0.92 pm and 0.90 um respectively,
which is close to the predicted value of the optimum offset. The calculated excess
losses for the HE-mode have been included in Fig. 6.10.

The experimental values shown in Fig. 6.10 are based on three fabricated sets of
U-bends. Preliminary measurements of other sets indicates that the experimental
values might show a large variation from set to set, which is due to multimode
interference effects. The total U-bend with optimized offsets is a waveguide track
that guides light with minimal losses from the first to the last section. If the offsets
are far from being optimized, it may be more appropriate to look upon the U-bend
as consisting of three multi-mode-interference couplers. The transmission of such
a coupler varies considerably with the length and other parameters of the straight
coupler section. In order to estimate this variation, the transmission of five U-bends
has been calculated for the HEy-mode for different ridge heights and waveguide
widths. The ridge height has been varied between 97 + 10 nm and the width of the
straight waveguide has been varied between 2.0 £ 0.5 um. The results of this
analysis are indicated in Fig. 6.10 by means of the error bars that mark the
minimum and the maximum calculated excess loss. The influence of the ridge
height depends on the length of the straight ‘coupler’ sections in the sense that the
ridge height becomes more critical for longer lengths of the straight section. The
largest change in excess U-bend loss is caused by the variation of the width. This
is due to the fact that when the width of the straight and the curved sections change
simultaneously, both the properties of the ‘coupler’ section and the value of the
offset change. The offset, i.e. the distance between the center of the straight and
curved waveguides, does not depend on the width, but it is the distance between
the outer side of the curved waveguide ridge and the center of the straight
waveguide that determines the transition loss at the junction, and this distance
depends on the width of the straight waveguide. A width variation of 0.5 um
changes the effective offset by 0.25 pm. The analysis reveals another important
advantage offered by the use of an optimized offset. Not only are the losses minimal
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Fig. 6.10 Total loss of the U-bend relative to the straight reference waveguides in relation to
the lateral offset. The solid and dashed parabola are fitted to the measured values and indicate
dependences similar to the one shown in Fig. 6.2. The vertical dashed line marks the optimum
offset for both the HEoo- and the EHoo-mode. The error bars give the variation in predicted losses,
when the ridge height is varied between 97 + 10 nm and the width of the straight waveguide is
varied between 2.0 + 0.5 \m ( the width of the bend is varied in accordingly ).

but this minimal loss is also the least susceptible to changes in the fabricated
geometry.

The excess losses are larger for the EHy-mode than for the HEy-mode and the
loss values for the EHgy-mode do not become smaller than 1 dB as the loss values
for the HEy-mode do. This has been observed before and is discussed on page
139,

6.3.4 Conclusions

The experiments show a minimum loss of the U-bends for an offset, which is
very close to the predicted offset. The excess losses for the U-bend with an
optimized offset and ‘without an offset’ differ by more than 2 dB ( the offset of



144 Al203/SiO2 ridge waveguides; experiments Chapter 6

0.5 um is viewed as *without offset’, since this offset aligns the outer sides of the
ridges ). The calculations predict a considerable variation in transmission if the
offset is not optimized which is due to multimode interference effects. An op-
timized offset minimizes the excess loss of the S-bends and this loss value is also
the least susceptible to changes in the fabricated geometry.

6.4 The double-ridge waveguide

The following section contains the manuscript that we sent to Electronics Letters
and which was subsequently published [92]. The addendum gives more details of
the modeling of the scattering losses in ridge waveguides.

With respect to the ‘double-ridge’ waveguide, the following remarks are made
concerning the nomenclature. Referring to Fig. 6.11, we can look upon the
waveguide cross-section as consisting of one ridge ( width: 2.7 um + 2D and
height: 130 nm — H') with a second ridge on top ( width: 2.7 pm and height: H ).
The first ridge is referred to in the manuscript as the ‘outer’ and or ‘high’ ridge
while the second ridge is referred to as the ‘inner’ and or ‘low’ ridge. A statement
like “the inner ridge is monomode” is shorthand for “the waveguide whose
cross-section consists of a planar film of height 250 nm —H with a ridge on top of
this film of width 2.7 um and height H operates in the monomode regime”.

6.4.1 Manuscript Electronics Letters

Reduced bending and scattering losses in new optical
‘double- ridge’ waveguide

E. C. M. PENNINGS, J. VAN SCHOONHOVEN,
J. W. M. VAN UFFELEN and M. K. SMIT
Department of Electrical Engineering
Delft University of Technology
PO Box 5031, 2600 GA, the Netherlands

Abstract

A new type of waveguide is proposed combining a low and a high ridge.
Experiments at A = 632.8 nm show an excess loss of 0.6 dB for a 90°-bend with
R = 50 pum in SiO, cladded Al,O; while showing reduced scattering losses
compared with a conventional ridge waveguide.
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Introduction

The successful development of optoelectronic integrated circuits depends largely
on the ability to miniaturize components and to reduce their losses. A necessary
ingredient of these circuits are curved waveguides with small radii of curvature
and low losses. These bends not only provide directional changes, which can also
be supplied by corner mirrors [2], but they separate waveguides in directional
couplers, are used in ring lasers and they enable the miniaturization of long
components such as phase modulators and external cavities by folding them onto
a small area.

Attenuation of light in a waveguide bend is caused by radiation, by roughness
scattering and by transition losses at the junction of the straight and curved
sections. The radiation losses decrease with increasing difference in refractive
index. Inridge waveguides the radiation losses can therefore be reduced by etching
a high ridge. But this has two important drawbacks. First, a large refractive index
contrast causes the waveguide to become multimode, whereas most applications
require monomode waveguides. Secondly imperfections in the mask and etching
processes lead to edge roughness coupling the bound mode to the continuum of
unguided modes [69]. These scattering losses increase with refractive-index
difference and with ridge height.

The ideal solution would be to use a local increase of the etched step as several
authors [70][81] have suggested. For straight waveguides, a low ridge could be
used that leads to a low-loss monomode waveguide while a high ridge at the bends
reduces the radiation losses. Such a scheme, however, needs two different masks
and leads to problems with the required submicron alignment.

In this letter we propose a new type of waveguide called ‘double-ridge guide’ as
showninFig. 6.11 that combines a low inner and a high outer ridge in a self-aligned
procedure. In straight waveguides the field is mainly confined by the inner ridge.
The height of this ridge can be chosen to yield a monomode waveguide with low
scattering losses. In a tight waveguide bend the field profile shifts outward to the
high ridge thus preventing radiation of light out of the waveguide.

Modeling

Theoretical predictions for the radiation losses in curved waveguides have been
made by applying the effective dielectric constant (EDC) method, after which a
conformal transformation was used [70]. The solution of the transformed scalar
wave equation was then found by numerical integration.

The scattering losses in a planar slab waveguide [69][47] are proportional to the
square of the power-normalized electric field, to the square of the dielectric-con-
stant difference and to A™* where k varies from two to four depending on the
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statistical model of the roughness. These proportionalities and the EDC method
have been used in a semi-empirical formula for the scattering losses,

(ANDIE(x)?

a=0g+0
T ek

(6.4.1)

in which o represents the total loss in dB/cm, ¢ is the attenuation for the planar
waveguide without lateral confinement, AN; is the difference in effective refractive
index at interface i, E(x;) is the electric field at interface i, x is a lateral coordinate
and the contributions are summed over all interfaces, which is justified if the
roughness in different ridges is not correlated. 0y and o; have been fitted to
experimental values yielding 0y = 1 dB/cm and o, = 0.14 dB for our waveguides
assuming that the correlation length and the rms value of the roughness are a
constant of the process.

The calculated radiation and scattering losses for Al,O; (n=1.690) and SiO,
(n=1.457) at Ay = 632.8 nm are given in Fig. 6.12, while the relevant parameters
of the double-ridge waveguide are explained in Fig. 6.11. For D =0.2 um the
radiation curve is nearly flat, indicating that for small ridge separations the
radiation loss depends on the sum of both ridge heights and not on the individual
ridge heights. The scattering loss in the straight waveguide, on the other hand,
strongly depends on the way the total ridge height is divided and it shows a
minimum between H = 20 nm and H =40 nm. For H = 0 and for H = 130 nm the

Fig. 6.11 The geometry of the double-ridge guide ( curved section ).
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Fig. 6.12 Calculated radiation loss the curved waveguide ( solid curves, R = 50 pm, w=
2.7 um ) and calculated scattering loss for the straight waveguide ( broken curves, w= 1.7 pm ),
The sum of both ridge heights is constant, i.e. 130 nm.

waveguide is single-ridge and asymmetry in the scattering curves stems from the
fact that at H = 0 nm the waveguide has become wider by an amount 2D. The inner
ridge will be single mode for ridge heights H smaller than 25 nm.

Experiments

Waveguides have been fabricated in 250 nm thick sputtered AL, O; films on
oxidized silicon wafers. We reported previously [90] on conventional ridge
waveguides in the same material system, which allows us a comparison with the
present results. The double-ridge waveguide was dimensioned such as to keep the
scattering loss in the straight waveguides approximately equal to those of the
single-ridge case and to reduce the radiation losses. This led to a total ridge height
of 130 nm, an inner ridge height of 40 nm and a distance D = 0.4 um. To create
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Fig. 6.13 SEM photograph showing controlled underetch in photoresist covered SiO2 on AbO3
( bar represents 1 um ).

the double-ridge guide we used a self aligned process that creates both ridges in
one photolithographic step. On top of the Al;O; film we sputtered 400 nm SiO,,
on which photoresist was applied, patterned and developed. Buffered HF was then
used to etch the SiO, film. Due to the isotropic nature of this etch a large underetch
developed ( See Fig. 6.13 ), the amount of which could be controlled by varying
the etching time. The photoresist defined the 90 nm high outer ridge that was etched
by atom beam milling and after stripping the photoresist the remaining SiO, served
to mask the inner ridge of 40 nm height. The SiO, mask was then etched away and
a cladding layer of 650 nm SiO, was sputtered as a cover.

The same mask was used to pattern both the single and the double-ridge
waveguide. Since the straight single-ridge waveguides were 2.5 um wide, the inner
ridge of the straight double-ridge waveguides was 1.7 um wide.
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Fig. 6.14 Measured S-bend losses for the HEo mode ( The markers denote the measured values
which have been connected by straight lines for convenience ).

Results

We fabricated five different S-bends, where every S-bend started with a 90°
R =200 pm bend and the second 90° bend had R = 50, 75, 100, 150 and 200 pm
respectively. All S-bends had optimized offsets at the junctions between straight
and curved sections in order to reduce the transition losses [90]. Light from a
He-Ne laser was coupled into and out of the waveguides by means of prisms [88].
The attenuation for the straight waveguides was measured by sliding the output
prism along the waveguide and was found to be 3.840.5 dB/cm for a 100 nm
single-ridge guide and 4.440.4 dB/cm for a 110 nm single-ridge guide. The 130
nm double-ridge guide had only 4.740.3 dB/cm attenuation. This value of 4.7
dB/cm is slightly higher than the predicted reduction from 11.6 dB/cm to 3.6
dB/cm as can be seen from Fig. 6.12. This deviation may be due to extra
roughening of the SiO, mask during the buffered HF etch. The total attenuation
of these S-bends was compared with four straight reference waveguides. Figure



150 Al204a/SiO2 ridge waveguides; experiments Chapter 6

6.14 shows the results for 100 nm and 110 nm single-ridge guides and a double-
ridge guide with 130 nm total ridge height (i.e. 90 + 40 nm ). The double-ridge
guide showed a total excess loss of 0.6 dB for the R = 50 um 90° S-bend, which
is the lowest value for bending losses reported thus far.

Conclusions

The double-ridge waveguide offers a solution to the conflicting requirements for
short bends and for low scattering losses. A self aligned procedure has been used
to create this waveguide. Experiments show a simultaneous reduction in bending
and scattering losses. A total bending loss as low as 0.6 dB has been measured for
a 90° S-bend with a radius of curvature of 50 pm.

6.4.2 Modeling of the scattering losses

This addendum discusses the modeling of the scattering losses in more detail.
The propagation losses of waveguides are due to the absorption of light, to
Rayleigh scattering in the bulk medium, and to scattering that is caused by the
roughness of the interfaces and the sides of the ridge. The contribution of the
absorption, the Rayleigh scattering and the scattering caused by the roughness of
the transversal interfaces is assumed to be independent of the width and height of
the ridge and is accounted for by the constant ¢ in Eq. (6.4.1). This constant is
equal to the propagation loss of the planar waveguide without a ridge. The
scattering loss of a planar slab waveguide has been discussed by Marcatili [69],
by Tien [114] and by Hinken and Unger [47][117].

An expression is desired that gives the additional scattering loss caused by the
ridge, which is usually the dominant loss. We combine equations (3a), (13) and
(90) of Marcuse [69] for a symmetric slab waveguide with film index N,, cladding
index N;, width w and for the fundamental mode of the EH-polarization with
propagation constant 3. We find

le (y=w/2)Z(N3-N?)?
_IT = A%
“=1  [eowrsy [ 2B

Nk
j p/Bo cos’ow/2 N sin“ow/2 B
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le (y=wi2)X(N3-N?)?

T le,(y)PPdy

oy, (6.4.2)

where p = VNyky—P°, 6= \]NQP O—Bz, A is the rms deviation of the interface from
perfect straightness and B is the correlation length. Equation (6.4.2) has a form
which suggests that the first factor describes the main influence of the waveguide
parameters and the second and the third factor describe the influence of the
roughness on the propagation losses. The second and third factor in Eq. (6.4.2) are
thus replaced by a constant o; which depends on the material system and the
fabrication process. Equation (6.4.2) gives the propagation loss for the interface
y =w/2 only. The propagation loss doubles if the roughness on both interfaces
y =1w/2 is not correlated. We, thus, take it for granted that the propagation loss
for multiple interfaces is given by the sum of all the contributions of the individual
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Fig. 6.15 The propagation losses in relation to the etched ridge height for a 2.5 um wide
waveguide. The solid curve has been calculated by means of Eq. (6.4.1) plus op= 1 dB/cm and
o1 = 0.141 dB. The dashed curve is the linear interpolation oo = 1.040.03H.. The markers denote
measured values and the error bars give the standard error of the mean.



152 Al203/SiO2 ridge waveguides; experiments Chapter 6

interfaces where the field is evaluated. It is also assumed that the method of
effective dielectric constant may be applied. A relation similar to Eq. (6.4.2) is
given by Eq. (11) in Hinken [47]. Equation (6.4.2) corresponds to the fill factor
Eq. (1) in Deri et al. [26] or Eq. (2) in Seto et al. [101]

Figure 6.15 gives the propagation losses as a function of the ridge height for an
Al,04/S10, waveguide with a film thickness of 250 nm at a wavelength of 632.8
nm and a width of 2.5 um. The calculated losses, a linear interpolation, and the
measured propagation losses are indicated in the figure.

One interesting result of the calculations by means of Eq. (6.4.1) is that the
scattering loss in curved waveguides can be either larger or smaller than the value
for the corresponding straight waveguides. If the curved waveguide has a large
radius of curvature and it is wide enough to operate in the whispering-gallery mode
regime, then the scattering losses are lower than those of a straight waveguide
because there is only one interface that scatters the light. If, on the other hand, we
have a curved waveguide with a small radius of curvature, then the scattering loss
of the bend is larger than that of the straight waveguide, because the field intensity
at the interface is much larger for the curved than for the straight waveguide. This
difference can be quite significant. The scattering losses for the waveguides that
we have been discussing in this chapter with a ridge height of 100 nm and the radii
of curvature that we fabricated are approximately two times larger than the
scattering losses for the straight waveguides. It seems unlikely that these differen-
ces can be verified experimentally.

6.5 Self-aligned doubly etched bends

6.5.1 Introduction

The radiation losses of a curved waveguide can be reduced by the application of
a large lateral refractive-index contrast as discussed in section § 5.2.2. A large
lateral refractive-index contrast is achieved by a high ridge in the case of ridge
waveguides, but the high ridge may have effects that are in conflict with the correct
operation of other devices. The natural solution seems to be the etching of a high
ridge at the sites where the high ridge is needed, i.e. around the curved waveguides
only as illustrated in Fig. 6.16. This poses two problems. Firstly, a self-aligned
technique must be used because our photolithography is not capable of aligning a
mask with the required accuracy of approximately 0.1 um. Secondly, transition
losses occur at the junction of the low-ridge waveguide and the high-ridge
waveguide, because the field distributions of the modes differ in each waveguide.
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The location of this junction should not coincide with the junction of the bend and
the straight waveguide, because high losses might result if a part of the curved
waveguide has a small ridge. It is better to locate the junction of the low-ridge and
the high-ridge waveguide approximately 10 um or more away from the curved
waveguide as indicated in Fig. 6.16.

6.5.2 Modeling

The strategy of the ‘self-aligned doubly etched’ ( SADE ) bends creates new
junctions where the low-ridge waveguide and the high-ridge waveguide meet. The
cross-sections of the low-ridge and high-ridge waveguides are shown in Fig. 6.17.
The transition losses at this junction have been estimated by applying the one-
dimensional overlap integral that has been derived in section § 4.2. The numerical
results for the transition losses are also shown Fig. 6.17. From the plot, we can
draw the conclusion that the transition losses increase with increasing ridge-height
difference h, — h,” and with decreasing width w of the straight waveguides. The
transition losses increases sharply when the lateral field distribution in the low-
ridge section broadens, i.e. when the low-ridge waveguide becomes monomode.
Monomode operation is achieved at ridge heights of 67 nm, 18 nm, 8 nm and 4
nm for widths of 1 um, 2 pm, 3 um and 4 pum, respectively. The transition losses
are 0.07 dB, 0.50 dB, 0.74 dB and 0.97 dB for these four widths, respectively,
which means that they are sufficiently low for the 1-um wide waveguide only. The

Window

Second mask

Fig. 6.16 The self-aligned doubly etched ( SADE ) bend is fabricated by means of two masks
and a self-aligned technique. The first mask defines the waveguiding structure and a low ridge is
etched. The second mask defines a window around the curved waveguide. The region within this
window is etched again which results in a high ridge. The alignment of the second mask is not
critical if the size of the window is at least 10 |\m more larger than the bend.
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Fig. 6.17 Cross-section of the low-ridge and the high-ridge waveguide (top) and the transition
losses at the junction of these two waveguides (below). The wavelength is 632.8 nm, the film
thickness hy is 250 nm and the thickness hy’ is 140 nm. The horizontal dashed line marks a transition
loss of 0.1 dB and the vertical dashed line marks the realized difference of 88 nm. The calculations
have been done for the HEoo-modes.
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losses are more acceptable if the waveguide is bimodal, where the HE,, mode is
close to cutoff. The asymmetric HE(;-mode is relatively unimportant then because
the scattering and the radiation losses are high.

The transition losses depend strongly on the abruptness of the transition. For the
2-um wide waveguide, for example, the transition loss is 0.50 dB at the junction
where the ridge height changes 18 nm to 110 nm. If there is an intermediate section
with a ridge height of 40 nm, the transition losses reduces to 0.26 dB and they
vanish altogether when the change in ridge height is adiabatic.

A correct prediction of the transition losses is crucial to the modeling of the
self-aligned doubly etched bends. We have, therefore, compared the result of a
one-dimensional overlap integral for a field distribution that has been calculated
by means of the effective-dielectric-constant method with the value of a two-
dimensional overlap integral for a field distribution that has been calculated by
means of the numerically accurate domain-integral—equation§ method [59]. For a
junction of two straight waveguides with a width of 2.1 um, a film thickness of
260 nm, a low ridge height of 22 nm and a high ridge height of 110 nm, the first
technique results in a value for the transition loss of 0.36 dB while the latter
technique results in a value of 0.40 dB. These values show that the results of the
one-dimensional overlap integral in combination with the effective-dielectric-con-
stant method are accurate enough for our purposes.

The aforementioned transition losses are based on the overlap integral for the
fundamental modes in the low-ridge waveguide and in the high-ridge waveguide.
A more complete analysis has to include the multimode-interference effects and
these effects have been taken into account in the predicted losses shown in Table
6.2.

Secondly, we have to know the minimum size of the window shown in Fig. 6.16,
because the radiation losses of the curved waveguide are not sufficiently reduced
if the window is too small. Figure 6.18 shows the radiation loss in relation to the
size of the gap between the outside of the bend and the point where the singly-
etched film begins. Figure 6.18 shows that the radiation losses increase very fast
for gaps that are smaller than 1 m and that the radiation loss is already close to
the limiting value of 1.67 dB/90° for gap sizes greater than 4 um. Note that the
radiation loss oscillates when the size of the gap is varied, which is caused by the
interference between the light that is radiated outward and its reflection at the
singly-etched film with a higher effective index of refraction. The resulting

§ These calculations have been performed by N.H.G. Baken and J.J.G.M. van der Tol of the PTT
Research Neher Laboratories, Leidschendam, the Netherlands.
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Fig. 6.18 Radiation loss in relation to the gap size for the HEgo-mode in a 3-um wide bend with
a radius of curvature of 50 wm . The as-deposited AL O3 film is 250 nm thick and the etched part
is 150 nm thick. The dashed horizontal line indicates a radiation loss of 1.67 dB/90°, which is
reached when the gap size becomes infinite. The vertical axis on the left-hand side refers to gap
sizes smaller than 1 um and the vertical axis on the right-hand side refers to gap sizes larger than
1 pm,

interference pattern either enhances or reduces the radiation loss with an estimated
period
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where k, is the radial component of the wave number ( see Eq. (4.1.1) ). This local
period depends on r and the substitution of the effective refractive index N,,, =
1.52317, the wavelength Ay =632.8 nm and the real part of the angular propagation
constant Re(y) =768.61 yield a period of 0.54 pm for » = 55 pm and 0.39 um for
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r = 60 um. Just outside of the bend we have the caustic ( corresponding to
u =y in Fig. 4.2 ) where k, — 0 and consequently, the oscillation disappears.

These calculations show that a window whose border is at least 10 um separated
from the curved waveguide everywhere, performs satisfactorily.

6.5.3 Experiments

The self-aligned doubly etched bends have been fabricated by means of the same
mask with five different S-bends, with radii of curvature of 50 pm, 75 pm, 100
pm, 150 pm and 200 pm, that had been used for the experiments described in the
sections § 6.2 and § 6.4. This mask defines straight waveguides that are 2-um wide
and become monomode for a ridge height of 18 nm. A new mask was fabricated
to define the windows. A layer of 250 nm Al,O; was sputtered on a 2 inch (100)
silicon wafer with 2.1 um thermal oxide SiO, on top of it.

A self-aligned technique has been used by Albrecht ez al. [2] and by Niggebriigge
et al. [83] to make totally-reflecting corner mirrors, where a 200-nm thick SiO,
layer defined the waveguides and an AZ-type photoresist defined the windows.
We?® have used two layers of AZ-5214E reversal photoresist on top of each other
to define both the waveguides and the windows, which eliminates the extra step
required to make the SiO, mask. A first layer of AZ-5214E photoresist defined the
waveguides. Argon beam milling was used to etch 18 nm away from the 250-nm
thick Al,Oj; film. The photoresist was then subjected to a post-bake treatment of
5 times 5 min at 110 °C, 120 °C ..150 °C respectively plus 15 min at 160 °C. A
second layer of AZ 5214E photoresist was spun on top of the previous layer.
Subsequent illumination and development opened the windows around the bends.
Argon-beam milling was used to remove another 80 nm from the Al,O5 film within
the windows. A 600-nm SiO, cover layer was sputtered on top after the removal
of the photoresist. A standard annealing treatment of 55 min at 800 °C was given
and a chromium coating was applied and etched open around the waveguides with
the purpose to improve the sensitivity of the attenuation measurements. Two
photographs of the fabricated curved waveguides are shown in Fig. 6.19.

The light from an HeNe laser, Ag = 632.8 nm, was coupled into the singly etched
and into the unetched Al,O; film. The measured coupling angles are given in Table
6.1 and can be related to waveguide parameters which yield a thickness of 260 nm
for the as-deposited Al,O; film and a thickness of 238 nm for the singly-etched
AL O; film, which means that the fabricated ridge height is 22 nm. The coupling

§ J.W.M. van Uffelen, Delft University of Technology, is accredited for his idea of this self-
aligned technique.
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Fig. 6.19 Two photographs of the ‘self-aligned doubly etched’ bends. A set of five S-bends ( top )
and a magnification of the R = 50 um bend ( bottom ) are shown. The straight waveguides are
more difficult to discern because of the smaller ridge height.
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Table 6.1 Measured coupling angles and the parameters that have been calculated from these
angles ( indicated by means of a tinted background ). The angle Ocoupling is the angle between the
laser beam and the plane of the wafer.

o

20.727° | 1.57717 | unetched Al,O;
TM, | 23.364° | 1.55754 film
TEy | 21.915° | 1.56847 etched Al,O4
T™, | 24.621° | 154776 | | , film
TE, | 20.727° | 1.57717 unetched Al,O4
TM, | 23.364° | 1.55754 film
TEq | 21.915° | 1.56847 etched ALL,O,
TM, | 24.622° | 1.54776 film
HEy | 21.114° | 1.57436 | 1.56847 | 1.57717 | Calculated with
TM-boundary
conditions
1| Calculated with
TE-boundary
conditions
EHy | 23.740° | 1.55464 | 1.54776 |1.55754 See above

angles of the HEy- and EHy-mode can be used to estimate the width of the
waveguide by means of the method of effective index of refraction, which results
in a width of w =2.1 pum.

The total loss was then determined for every S-bend relative to the straight
reference waveguides and for both polarizations. The processed wafer contained
a total of ten sets of waveguides and each set consists of five S-bends plus four
straight reference waveguides. Four sets have been measured and the values of the
total loss are listed in Table 6.2 together with the predicted values, which have
been calculated as explained in the previous chapters and which include the effects
of all junctions and the radiation losses.
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6.5.4 Discussion and conclusions

From Table 6.2, we see that the losses for the four S-bends with the larger radii
of curvature are dominated by transition losses that occur at the junction of the
low-ridge and the high-ridge waveguide. The loss of the R = 50 um S-bend, on
the other hand, is dominated by the radiation losses. The total loss of the R = 200
pm S-bend is smaller than the losses of the other S-bends, because the R = 200
Hm S-bend contains two junctions of the low-ridge and the high-ridge waveguide,
whereas the other S-bends contain four of these junctions. This indicates that the
S-bend losses are, indeed, dominated by the transition losses at the junction.

The large variation in the measured values of the excess loss is probably due to
the multimode interference effects. The fundamental mode in the monomode
low-ridge waveguide excites several modes ( with an even mode number ) in the
multimode high-ridge waveguide. The interference effects become manifest at the
last junction where the total field has to be coupled back to the fundamental mode
of the low-ridge waveguide.

The loss figures for the EH-polarization are higher than the losses for the
HE-polarization, which is in contradiction to the predicted values, but which is in
agreement with other experiments in Al,03/Si0, waveguides. This phenomenon
seems to defy any explanation.

The best loss figures are 1.0 dB for the R = 200 um S-bend and 2.3 dB for the
R =150 um S-bend both in upper set 5. This corresponds to 0.5 dB per 90° for the
R =200 pm S-bend and 1.15 dB for the R = 150 um S-bend. These values are
higher than the S-bend losses that have been reported in the sections § 6.2 and
§ 6.4 but this is not a fair comparison. The losses for the self-aligned doubly etched
S-bends have to be compared to the losses of totally-reflecting corner mirrors,
1 dB/mirror [2] or 1.5 dB/mirror [83], that have also been fabricated with a
self-aligned technique and that also contain low-ridge waveguides and high-con-
trast mirrors. Secondly, a curved waveguide with a ridge height of 22 nm must
have a radius of curvature of the order of 1 mm in order to obtain a similar loss of
0.5 dB/90°. The technique of the ‘self-aligned doubly etched’ ( SADE ) bends is,
thus, very promising if looked upon in this way. Furthermore, the transition loss
of the junction of the low-ridge and the high-ridge waveguides can be reduced if
it is split in two smaller steps, which requires an extra photolithographic step or,
by making the transition gradual or adiabatic. The latter could be accomplished
by allowing the border of the window to make a small skew angle between the
border and the waveguide instead of perpendicular to the waveguide.
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Fig. 6.20 The measured ( markers ) and the predicted ( curves ) excess S-bend losses for the
‘self-aligned doubly etched’ bends. The measured loss values for the R = 50 um S-bend do not fit
in the graph. ( See also Table 6.2 )

Table 6.2 Total measured and calculated loss figure in dB for SADE S-bends relative to straight
reference waveguides. The indicated radius of curvature is the radius of the second 90° bend. The
first 90° bend of every S-bend has a radius of curvature of 200 um. The error Gn-1 for the loss of
straight r ides i. ] ly 0.3 dB

1501 26 | 44 | 53 | 42 | 37 | 43 | 33 | 46 | 179|155
100] 23 | 41 | 40 | 45 | 28 | 27 | 23 | 30 | 1.8 | 1.62
75135 |1 45 | 54 | 53 )32 ] 37|36 | 38 |]249 |2.12
501157 116.1 | 17.0 ] 12.0 } 224 | 224 | ~ ~ 1536459
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6.6 Experiments at a wavelength of 1300 nm

The use of Al;04/8i0, waveguides at wavelengths of 1.3 um or 1.55 pm is
preferred to a wavelength of 632.8 nm, because glass fibers are operated at these
wavelengths. In order to use the Al,05/SiO, based waveguides at wavelengths of
1.3 umor 1.55 um, adaption of the measurement setup was required. This adaption
and the subsequent experiments are the subjects of the following sections.

6.6.1 Adaption of the measurement setup

Up to now, all our experimental setups used one type of laser, i.e. the He-Ne laser
which produced light with a wavelength of 632.8 nm. It was desirable that the
prism-coupling setup could still be used at 632.8 nm after the adaption to infrared
wavelengths and that switching between these wavelengths could be done effi-
ciently. This has been accomplished by using monomode polarization-maintaining
glass fibers, that guide the light from the laser to the measurement setup. The use
of glass fibers in optical measurement setups has many advantages. The setup
becomes modular in the sense that lasers, detectors, modulators, et cetera, can be
separated from the ‘actual’ setup around the chip, which leads to a simpler setup.
Most measurement setups are constructed around the source of light instead of
around the chip, since the laser is the largest and least flexible part of the setup.
Secondly, the adaption of the measurement setup can be done by merely discon-
necting a fiber and replacing it by another one. A schematic picture of the new
setup is given in Fig. 6.21.

Laser and power supplies

The source of light for the adapted prism-coupling setup is a GaInAsP Fabry-
Pérot laser ( Philips 503CQF #1983, 2 mW ) with a fiber pigtail and a mode-grav-
ity wavelength of A= 1.303 pm at a temperature of 20 °C. A power supply has
been designed and built that can house this laser as well as several other types of
lasers, such as an AlGaAs power laser that is used in a new type of measurement
setup that determines the propagation losses of GalnAsP/InP waveguides by means
of the twin guide [4]. The power supply is able to generate a constant threshold
current with a pulsed current on top of it. The maximum value of the pulsed current
is 500 mA and the minimum pulse time that can be generated is 60 ns. An internal
1-2 kHz modulator is used to modulate the laser which permits the detection of
the signal by means of a lock-in amplifier. The power supply protects the laser

§ This laser was obtained by courtesy of Philips Research Laboratories, Eindhoven, the Nether-
lands.
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Fig. 6.21 Schematic drawing of the adapted measurement setup. It gives an impression how
glass fibers have been used to connect the lasers o the actual measurement setup. The lasers do
not have to form part of the actual setup. The light is carried instead from the laser to the setup by
means of monomode glass-fibers, connectors and collimators.
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against large forward currents, against a reverse bias and against fluctuations in
the mains supply. The 1.3 pm laser is housed in the power supply and is connected
to the setup by means of a fiber jumper and an adapter.

Fiber connectors

The Seiko FC-type connector has been chosen by us to connect all glass fibers.
This fiber connector was chosen by NTT as the Japanese standard, it is suited to
connect monomode polarization-maintaining fibers and it comes in one version
which makes it more flexible than connectors that come in two complementary
versions. Mounting the fiber into the connector ( ferrule ) is a precise and
time-consuming job which requires special polishing equipment. An FC-type
connector has been mounted to the fiber pigtail of the 1.3-um laser by Seiko who
provide this service.

The interface fiber-measurement setup

The glass fiber is usually cleaved and placed in an x, .y, z, @, 8 manipulator in
front of a microscope objective. If the fiber is correctly cleaved, a good parallel
beam is obtained by placing the fiber end in the focus of the objective. This is not
a mechanically rigorous interface and it requires frequent adjustment and aligning,
especially when the sources are regularly interchanged. A more elegant approach
is provided by using lens collimators. We acquired jumpers that consist of a
monomode polarization-maintaining fiber with an FC-type connector at one end
and a collimator at the other end. The collimator ( OZ-optics ) itself consists of an
AR-coated GRIN lens in a ¢, © manipulator that could be made to fit in the applied
Spindler and Hoyer mounts.

Polarization

The polarization state of the light that emanates from a glass fiber is unknown
and it may change completely if the fiber is moved or bent. A few precautions are,
therefore, necessary. A polarization controller can be used such as the fiber
squeezer [58]. Secondly, polarization-maintaining fibers can be used to eliminate
changes of the polarization. A third option is the use of a polarizer in front of the
fiber collimator. The changes in polarization are then manifested as power fluctu-
ations, but these can in turn be eliminated by using a cube splitter and by measuring
the power ratio of the input and output beam as indicated in Fig. 6.21. The second
and the third option have been used in the adapted prism-coupling setup.
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Detector

A Germanium photodiode ( Germanium Power Devices, GM8CS ) has been used
to detect the light. The photodiode has a diameter of Smm and is mounted on a
ceramic substrate, which has been glued to the prism that is used to couple the
light out of the waveguide. It is important that the active area of the photodiode is
large in order to detect all the light that is coupled out of the waveguide.

6.6.2 Experiments§

Fabrication of the slab waveguide

Before the fabrication of S-bends, the planar slab waveguide has been designed,
fabricated and measured and optimized with respect to the annealing treatment,
that we apply to reduce the propagation losses. The slab waveguides have been
fabricated on thermally oxidized silicon wafers. The resulting SiO, layer has a
thickness of 4.15 pm, which is thick enough to prevent leakage of light to the
silicon substrate. A layer of Al,O; of 500 nm thickness was sputtered on top of the
wafer ( See also Fig. 6.23 ). This thickness has been chosen such that the resulting
slab waveguide is well in the monomode regime. The thickness of the Al,0O5 layer
of 250 nm at Ay = 632.8 nm can, in fact, be scaled directly to a thickness of 500
nm at Ag= 1.3 pm.

The alignment of the fiber collimator and the emanating beam of light has been
achieved by first coupling the light of the He-Ne laser ( A9 = 632.8 nm ) into the
slab waveguide. Two pinholes could then be aligned to the He-Ne beam and finally
the light from the fiber collimator could be aligned by means of the two pinholes.
No subsequent optimization was necessary. The coupling angle of the TEy-mode
was found to be 0,,pis, = 20.313° and the coupling angle of the TMy-mode was
found to be 6,.,p1ing = 23.056°. These two coupling angles can be used to give both
the index of refraction and the thickness of the sputtered Al,Os film, provided that
the indices of refraction of the SiO;, layer and the prism are known for a wavelength
of 1.3 um. The index of refraction of SiO, ( fused silica ) is #(Si0O,) = 1.447 for a
wavelength of 1.3 um ( n(SiO,) = 1.457 at a wavelength of 632.8 nm ) [3]. The
prlsm has been fabricated from SF13 glass ( Schott, melt nr. 13028 ). Measure-
ments' indicated that the specification of the index of refraction by the manufac-
turer has to be augmented by 0.00022. This resulted in an index of refraction
Norism = 1.7356 at a wavelength of 632.8 nm and n,,;,, = 1.7088 at a wavelength

§ The measurements have been performed by E.G. Wienke, Delft University of Technology.
9 F.H. Groen, Delft University of Technology. Private communication.
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of 1.3 um, where the dispersion equation has been interpolated outside the
specified range of 356 - 1014 nm. The use of n(Si0,) = 1.447, n,;,, = 1.7088 and
the measured coupling angles leads to an index of refraction n(Al,03) = 1.677 and
a thickness of 494 nm of the sputtered Al,O, film.

Propagation loss of the siab waveguide

The propagation loss was subsequently measured by sliding the output prism over
the waveguide and simultaneously monitoring the output power. A propagation
loss of 0.68 dB/cm was found for the TEg-mode and a propagation loss of 0.61
dB/cm was found for the TMy-mode. These values are lower than the value of 1.0
dB/cm which is found for 250 nm thick Al,O; films at a wavelength of 632.8 nm.
Previous experiments have shown that the propagation loss of 250 nm thick Al,O3
films at a wavelength of 632.8 nm is considerably reduced by an annealing
treatment of one hour at a temperature of 800 °C. An identical annealing treatment
has been given to the 500 nm thick slab waveguide but it was to be expected that
this treatment could be optimized. The second slab waveguide was fabricated and
subjected to an annealing treatment® of 30 min at a temperature of 700 °C. After
the determination of the propagation loss, the wafer was subjected to an annealing
treatment of another 30 min at a temperature of 725 °C. This procedure was
repeated several times and Fig. 6.22 shows the influence of the annealing treatment
on the propagation loss. A minimum propagation loss of 0.35 dB/cm is obtained
after the annealing treatment at a temperature of 825 °C. The total annealing
treatment of several times 30 min is equivalent to one treatment of an hour at a
constant temperature of 825 °C, because previous experiments have shown that
an increase in annealing temperature of 25 °C increases the reaction rate by an
approximate factor of two [105].

The propagation loss of 0.35 dB/cm of the slab waveguide is an improvement to
the value of 1.0 dB/cm at a wavelength of 632.8 nm and this increases the
applicability of the Al;0,4/Si0, waveguide system for telecommunication-oriented
optical integrated circuits. A reduction of the propagation loss might have been
expected on account of the Ag*-dependence of the Rayleigh scattering. The
absorption of light in bulk Al,O; at a wavelength of 1.3 um, on the other hand,
seems to increase by a factor of four with respect to the absorption at 632.8 nm
[20]. The measured decrease of the propagation loss of the slab waveguide by an

§ The optimization of the annealing treatment has been performed by AH. de Vreede, Delft
University of Technology.
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Fig. 6.22 The effect of the annealing treatment of the wafer on the propagation loss. Every
measured point represents a consecutive annealing treatment of 30 min to the same wafer at an
elevated temperature. The data on the influence of the annealing treatment at a wavelength of
632.8 nm are shown for comparison [105].

approximate factor of three seems to indicate that both the increased absorption
and the reduced Rayleigh scattering apply.

Fabrication and measurement of S-bends

Little has been reported in the literature on the fabrication of curved waveguides
in dielectric materials at wavelengths around 1.3 um or 1.55 pm. Himeno, Terui
and Kobayashi, however, have fabricated reflecting mirrors in high-silica wave-
guides, that consist of a SiO,-TiO; core and a SiO, cladding on a silicon substrate
and operate at a wavelength of 1.3 um [44][45], and reported the fabrication of
curved waveguides with radii of curvature in excess of 5 mm [46].

We will now describe the fabrication and subsequent measurement of S-bends in
the form of buried waveguides. The cross-section of the straight waveguides is
shown in Fig. 6.23. Buried waveguides provide a maximum lateral refractive-
index contrast, which permits the fabrication of very small bends ( see section
§ 5.2.2 ). Five S-bends have been designed and these S-bends resemble the set
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shown in Fig. 6.6 very much. Each S-bends has first a curved-waveguide section
with a section angle of 90° and a radius of curvature of 200 um, which is followed
by a small straight section and a second curved-waveguide section with a section
angle of 90° and a radius of curvature of 50, 75, 100, 150 and 200 pum, respectively,
for the five S-bends ( the radius of curvature corresponds to the outer side of the
waveguide ). The curved sections have a width of 6 um, which is large enough to
permit the guidance of whispering-gallery modes ( see section § 5.2.3 ). The
subsequent optimization of the junction as described in section § 5.2.4 led to a
width of the straight waveguide of 3 um and lateral offsets of Ar =0.75,0.98, 1.13,
1.33 and 1.50 um for the five aforementioned radii of curvature, respectively
(offset = Weyved2 — Ar ). The straight waveguides that interconnect both curved
section of every S-bend are 162.3, 137.5, 112.6, 62.8 and 13.0 um long, respec-
tively, for the five S-bends.

The adapted prism coupling setup has then been used to couple light with a
wavelength of 1.3 um in a 40 pm-wide waveguide that may be considered as being
equivalent to the slab waveguide without lateral confinement. The measured
coupling angles of 20.212° and 22.886° for the TEy- and the TMy-mode respec-
tively lead to a thickness of 507 nm and an index of refraction of 1.675 for the
Al,O; film. The coupling angles of 21.751° for the HEy-mode and 24.112° for
the EHy-mode lead, by means of the method of effective dielectric constant, to a

Sputtered SiO,

@2 ( oxidized Si )|

Fig. 6.23 The straight-waveguide cross-section for operation at a wavelength of 1.3 pm.
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fabricated width of the straight waveguide of 2.9 um and 3.0 um, respectively.
The excess loss has subsequently been determined for the S-bends, which is
interpreted as the difference in power of the light that is coupled out of the last
straight section of the S-bend and the average power of four straight reference
waveguides. Three fabricated sets of S-bends have been measured and the resulting
loss values are shown in Fig. 6.24 together with the predicted values.

From Fig. 6.24, we can see a sharp increase of the loss for the R = 50 pm S-bend.
The excess loss of the R =75 um S-bend and the HEy-mode amounts to the very
low value of 0.23 dB, which indicates a correct optimization of these bends. The
predicted values for the losses of the S-bends are too small, which seems to be due
to a too large lateral refractive-index contrast that follows from the method of
effective dielectric constant. The calculated losses are larger for the EHyy-mode
than for the HEg-mode, which is in agreement with the observations and the
calculations for the EHy-mode give the correct threshold radius of curvature of
75 pm.
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Fig. 6.24 The excess loss of the five S-bends relative to the average loss value of the straight
reference waveguides for the two fundamental modes. The solid and dashed line connect predicted
values. The error bars indicate standard errors of the mean.
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Conclusions

It has been shown in this section that stable waveguides can be fabricated that
consist of a 500 nm thick Al,O; layer sandwiched between thermally oxidized and
sputtered SiO, on a silicon substrate. A propagation loss of 0.35 dB/cm was
obtained at a wavelength of 1.3 um after an annealing treatment of one hour at a
temperature of 825 °C. S-bends have been fabricated in the form of buried
waveguides and an excess loss of 0.23 dB has been measured for the S-bend, which
contains a 90°-bend with a radius of curvature of 75 pm. This value is lower than
any published value for the losses of S-bends. The predicted losses of the S-bends
are too low, which indicates that the method of the effective dielectric constant
gives a value for the lateral refractive-index contrast which is too large. These
experiments demonstrate the suitability of Al;0,/SiO,-based waveguides for
optical integrated circuits at a wavelength of 1.3 um.




Chapter 7

GalnAsP/InP waveguides; experiments

This chapter describes the design and fabrication of curved ridge or rib wave-
guides in GalnAsP lattice-matched to InP at wavelengths of 1.3 and 1.52 ym and
the subsequent measurement of the losses of these bends. The measurements show
that the modeling and loss-reduction techniques described in the preceding chapter
are also applicable to curved waveguides in III-V semiconductors. These experi-
ments have been published in the form of a letter to Electronics Letters and a
presentation at ECOC ’89. This chapter contains both manuscripts plus two
addenda.

7.1 S-bends in LPE-grown GalnAsP

The following manuscript has been published by Electronics Letters [119]. It is
a joint publication by the Research Neher Laboratories and the Departments of
Electrical Engineering and Applied Physics, Delft University of Technology. This
work was the subject of a conference presentation by Doeksen at ECOISA ’89 [30]
and was presented in a talk at SIOE ’89 [91].
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7.1.1 Manuscript Electronics Letters

Low-loss Straight and Curved Ridge Waveguides in
LPE-grown GalnAsP

H. VAN BRUG?, FH. GROEN?, J.W. PEDERSEN®, Y.S. OEI',
E.C.M. PENNINGS' D.K. DOEKSEN', J.J.G.M. VAN DER TOL!

*Dem University of Technology, Department of Applied Physics,
Optics Research Group, Lorentzweg 1, 2628 CJ Delft, the Netherlands
TDelft University of Technology, Department of Electrical Engineering,
the Netherlands
YPTT Research Neher Laboratories, Leidschendam, the Netherlands

Abstract

Loss measurements on ridge waveguides in LPE-grown GalnAsP ata wavelength
of 1.3 um are presented. An attenuation of 4.5 dB/cm has been obtained for straight
waveguides and for curved waveguides an excess loss as low as 0.7 dB was found
for a 20.8° S-bend with a radius of 300 um (= 1.5 dB/90° ).

Introduction

The development of fiber based telecommunication demands cheap, reliable and
small optoelectronic integrated circuits (OEIC). These circuits will operate at a
wavelength of 1.3 um or 1.55 pm. The only material suitable for the integration
of both passive and active components on one wafer is GalnAsP lattice matched
to InP.

Low-loss straight and curved waveguides are essential to achieve the required
optoelectronic circuits. Optical losses in straight waveguides are due to absorption
and to scattering by interface roughness and can therefore be reduced by lowering
the background doping level, by using small refractive index contrasts and by using
reactive ion etching (RIE) to produce smooth edges [25]. The losses in curved
waveguides are due to radiation and to transitions between straight and curved
sections (conversion losses). Radiation losses decrease with increasing lateral
refractive index contrast. Conversion losses are caused by mode mismatch and can
be reduced by offsetting the curved waveguide with respect to the straight

§ permanentaddress: Laboratory for Semiconductor Technology, Electronics Institute, the Tech-
nical University of Denmark, DK-2800 Lyngby, Denmark.
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waveguide. It is obvious that concerning refractive index contrast there is a trade
off between scattering losses in straight waveguides and radiation losses in curved
waveguides.

To our knowledge no experimental results on bending losses have been published
so far for InP-based curved waveguides. Austin and Flavin [6], however, found 1
dB/90° for GaAs/AlGaAs ridge waveguides with a radius of curvature of 300
Mm at a wavelength of 1.15 pum. In this letter we report on bending losses for curved
ridge waveguides in GalnAsP on InP, etched by RIE. Theoretical calculations have
been done to find the optimal offsets and to verify the experimental results. The
bending losses have been determined for both polarizations.

Table 7.1 Measured and calculated excess loss due to S-bends. The given angle is for one curve
of an S-bend. The excess loss is taken as Vo(ou+02) minus 7.1 dB and 4.8 dB for TE- and
TM-polarization respectively.

oo 8.6 (8.6 7.0 |48
o0 7.1 7.1 55 |51
700 {134 [0.13 |84 (69 |0.540.2 |0.08 |69 5.8 |1.540.4 |0.05
500 |16.0 {0.18 7.2 [7.7 10.3#0.1 |0.26 5.0 |5.1 ]0.240.3 |0.12
300 j20.8 [0.30 }11.2 [12.8 |4.8+0.2 |2.86 |5.5 |5.6 |0.740.5 |0.71
200 [25.2 10.48 ]18.6 {19.2 |11.8+0.6/12.98]8.8 19.5 [4.310.3 |4.77

Experiments

A number of straight waveguides together with four different S-bends have been
fabricated in a double hetero (DH) structure with a width of 1.9 um and a ridge
height of 0.24 um ( See Fig. 7.1a ). These S-bends had different radii of curvature
( R =200, 300, 500 and 700 um ) but the same lateral displacement of 44 pm.
Between the two curved sections of an S-bend a straight section has been inserted.
Optimized lateral offsets were introduced at the connections between curved and
straight waveguides ( See Fig. 7.1b and Table 7.1 ) to reduce the conversion losses
[80]. This technique has been used successfully by us to form very low-loss bends
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lO.Z um InP cover

0.45 pm GalnAsP |

1.2 pm InP buffer |

n" InP substrate

(@ (b)
Fig. 7.1 Cross-section of ridge waveguide (a), and layout of S-bends (b).

in ALO4/Si0, at a wavelength of 632.8 nm [90]. Due to a mask error one of the
offsets was missing which has been taken into account in the calculations.

The double heterostructure, consisting of 1.2 pm InP-buffer, 0.45 um GalnAsP-
film, and 0.2 um InP top layer, was grown by LPE on an n *-InP substrate (MCP).
The lattice matching of the quaternary layer was Aa/a = —4 x 107 and the band
gap was determined by room-temperature photolumlnescence as A, = 1112+ 5
nm. A background doping level of n =3 x 10" cm™ was measured by a Polaron
PN4200 Profile Plotter.

The waveguide structures were defined on a chromium mask by optical litho-
graphy and reproduced on the substrate by projection illumination, reduction
factor 1:4, using the image reversal AZ 5214 E photoresist ( Hoechst ). Etching of
the ridge was performed by Reactive Ion Etchmg, Plasmalab RIE 80 (Plasma
Technology) using CH4/H; (1:4) at 0.5 W/em?.

We measured the insertion losses, i.e. the change in the throughput of the
measuring set-up due to the insertion of the waveguide in the light path, by
coupling light from a A9 = 1.3 um DH laser into the waveguide with a 50x / 0.85
microscope objective—butt-end coupling—and then measuring the emanating
light power as a function of waveguide length ( cut-back method ). The excitation
of waveguide modes is checked visually by imaging the near field distribution at
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the outcoupling side onto an infrared camera. The waveguides were observed to
be monomode although calculations revealed the presence of two modes. Owing
to the multimode character of the laser, modulation in the attenuation of the
transmitted power as a function of length did not occur—as is used in the
Fabry-Pérot technique—and the measured attenuation can therefore be directly
related to loss per unit length. The normal polarization state of the output beam of
the laser is TE. To obtain TM polarized light a %5 plate is inserted in the light path.

Results and discussion

A: straight waveguides

The result of the loss measurements for straight waveguides is shown in Fig. 7.2.
The loss was measured for 20 different waveguides. Some of the waveguides
showed defects and were not included in the analysis. A line has been fitted by
applying the least squares method to all 47 measured points. The fitted line through
our data yields a propagation loss of 4.5 dB/cm and an interception of 5.8 dB. This
value for the propagation loss is among the best figures for LPE-grown GalnAsP
waveguides [32] and is very close to the attenuation of the planar film demonstrat-
ing the small contribution of the ridge to the losses. The loss at zero length, the
coupling loss, can be found by extrapolating the data to zero lengths. The coupling
loss is caused by (i) reflection at the front and end face of the waveguide and by
(ii) mode mismatch. The loss due to (i) is taken to be 2.9 dB, as calculated from
the Fresnel reflection formula, and the loss due to (ii) is 2.9 dB, being the difference
between the measured interception and the reflection-loss, and they are inde-
pendent of the cleave.

B: S-bends

Insertion losses have been determined for two different sets of waveguides, o
and oy, each set containing four different S-bends and two straight reference
waveguides, and are given in Table 7.1. The insertion loss of every waveguide is
an average over several measurements and over both the forward and the backward
direction and it has been determined for both polarizations. The difference in
insertion loss between S-bend and reference waveguide is interpreted as the excess
bending loss, where the lowest insertion loss was taken as the reference value
(7.1 dB for TE and 4.8 dB for TM polarization ).

Table 7.1 also gives the theoretical predictions for the excess bending losses for
which the refractive indices had to be known. Using the modified Single Oscillator
Model [34] it was found that A, = 1112 + 5 nm implies a refractive index ng =
3.352 £ 0.004 at Ay = 1.3 um. The refractive index of InP was determined as n,p
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Fig. 7.2 Insertion loss vs. length for TE mode. The labels denote the number of measured
waveguides.

= 3.209. For the calculations a conformal transformation [40] and a staircase
approximation were used in conjunction with the effective dielectric constant
(EDC) method as described before {90]. Results for both calculations and meas-
urements are plotted for comparison in Fig. 7.3.

The S-bend with two 20.8° sections and R = 300 um showed an excess loss of
only 0.7 dB being in good agreement with the predicted loss and amounting to
approximately 1.5 dB/90°. The lower loss for the TM mode can be explained by
a better lateral confinement. The relative lateral contrast for the TM mode is 1.26%
whereas it is 1.04% for the TE mode.

Conclusions

This letter is the first to report on experimental results for bending losses in curved
ridge waveguides in GalnAsP lattice matched to InP. Low losses were found for
the S-bends because of a large lateral contrast and because of the introduction of
optimized lateral offsets at the transition between the straight and curved wave-
guide sections. Bending losses have been determined for both polarizations. The
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Fig. 7.3 Excess S-bend losses as a function of radius for both polarizations.

quasi-TM modes showed significantly lower bending losses than the quasi-TE
modes. This is in perfect agreement with theoretical predictions and is caused by
a larger lateral difference in effective refractive index. The straight waveguides on
the other hand were observed to be monomode and had propagation losses of 4.5
dB/cm, which is close to the film attenuation.

7.1.2 Addendum

A first remark concerns the analysis of the insertion losses shown in Fig. 7.2. The
values of the insertion loss seem less reliable for the waveguide lengths of 5.1 mm
and 6.85 mm than for the other lengths. Leaving these values out of the analysis
altogether gives a propagation loss of 2.6 dB/cm. On the other hand, by fitting a
straight line to the five average values of the insertion loss a value of 5.1 dB/cm
is found for the propagation loss. At the time of the preparation of the manuscript,
the best way to analyze the measurements seemed the application of the least-
squares method to all 47 measured values of the insertion loss. A smaller weight
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is automatically given to the loss values for waveguide lengths of 5.1 and 6.85
mm, because there are fewer measured values for these lengths of the substrate. A
propagation loss of 4.5 dB/cm results when the least-squares method is applied,
which is the value that has been published. This procedure, however, treats all 47
measured values equally accurate. The loss values at the lengths of 5.1 and 6.85
mm are not only smaller in number but also less accurate which is shown by the
larger standard error. Thc correct analysis of the data is, therefore, to use a weighted
least-squares method® and apply it to 47 measured values, where the weight for
each measured value is based on the standard error of the ensemble of measured
values at that length. Application of the weighted least-squares method yields a
propagation loss of 3.5 dB/cm, which seems to be a more correct value than the
published value of 4.5 dB/cm.

A second remark concerns the refractive indices which have been used to in the
modeling of the bending losses. In the above experiments we used the model of
Fiedler and Schlachetzki [34] for the index of refraction of Ga,In;_,As P;_,. This
model is first given by Utaka, Kobayashi and Suematsu [118] as an interpolation
between data on GalnP and GalnAs and is given by

E, E E 2E*-E*-F3
2 b b -2 b a L0
n=1+—+—E3+ Edln ) (7.1.1)
. Ei 2EXE:Ep) { E-E} }
where
E, = 3.391 — 1.652y + 0.863y* — 0.123y" , (7.1.2)
E, = 2891 -9.278y + 5.626)", (7.1.3)
E, = :;f 1.35-0.72y +0.12)% eV . (7.1.4)

11

The matching of both lattices requires y = 2.197x and E = hc/(ely) is the photon
energy in eV. An extra contribution to the refractive index results from free carriers.
This free-carrier plasma effect is more pronounced for electrons than for holes
because their effective masses are much smaller. Free electrons with concentration

§ J. MihnB, Technische Universitit Braunschweig. Private communication.
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N, and effective mass m, .5~ m, (0.07-0.0308y) decrease the refractive index by
an amount

JnAn = — = —— | (7.1.5)

It appeared within the context of the COST 216 project ( see page 105 ) that the
refractive indices of the above model are inaccurate near the band edges, i.e. for
small fractions y. The model of Henry et al. [42] for the refractive indices of
GalnAsP is based on the accurate determination of the refractive indices by
measuring the angle of the light which is coupled out of a waveguide by means of
a grating. Their model for the refractive index is

) 13.3510-5.4554E+1.2332E2  0.7140-0.3606E,
" =1+ + . (1.16)

1 —EO___ i 1- L i
Eg+2.50486V Eg+0. 1638eV

which yields more accurate values for the refractive index near the band edges. A
value of E, = 1.32 eV is given for InP which differs significantly from the
widespread 1.35 eV. If we apply Eq. (7.1.6) to the measured absorption wavelength
of A, = 1112 nm and the vacuum wavelength of Ag = 1300 nm, the values of nyp =
3.3408 and ny,p = 3.2022 are found instead of ny = 3.3520 and ny,p = 3.2091. The
refractive-index contrast that is calculated by means of Eq. (7.1.6) is thus slightly
smaller. The differences in refractive indices, however, are not large enough to
have significant consequences for the calculations and the modeling that have been
performed.

7.2 ‘Chicanes’ in MOVPE-grown GalnAsP

The following manuscript was accepted as a post-deadline paper PDB-9 at the
15™ European conference on optical communication ( ECOC ’89 ) on September
10-14, 1989, Gothenburg, Sweden [122]. The paper reports on experiments with
low-loss small-radii bends in MOVPE-grown GalnAsP ridge waveguides at
Ao= 1.52 um. These experiments are the result of the cooperation between
B.H. Verbeek of Philips Research Laboratories, Eindhoven, who performed the
measurements and wrote the paper, P.J.A. Thijs of Philips Research Laboratories,
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Eindhoven, who grew the double-hetero structure, Y.S. Oei and JJW.M. van
Uffelen of Delft University of Technology, who are responsible for the etching and
the photolithography. My contribution consisted of the modeling of the S-bends,
mask design and calculation of the losses.

7.2.1 Manuscript ECOC '89

Fabrication And Analysis Of Low-loss GaInAsP/InP
Optical Waveguides With Extremely Small Bends

B.H.VERBEEK®*, E.C.M. PENNINGS?, Y.S. OEI¥,
J.W.M. VAN UFFELEN& AND P.J.A. THIJS§

§Philips Research Laboratories Eindhoven,
PO Box 80.000, 5600 JA Eindhoven, The Netherlands

£Delft University of Technology, Dept. of Electrical Engineering,
PO Box 5031, 2600 GA Delft, The Netherlands.

Abstract

MOVPE-grown GalnAsP/InP strip waveguide bends ( 4 x 90° ) with radii of
curvature R between 100 - 400 um have been fabricated. An excess loss of 0.5
(0.6) dB/90° for R = 150 pm and 1.52 pm TM (TE)-light is in agreement with our
theoretical analysis.

Introduction

Low-loss optical waveguides in InP play an essential role in optoelectronic
circuits when various optical components will be integrated on a single chip.
Straight passive waveguides of GalnAsP/InP with propagation losses as low as
0.18 dB/cm have recently been fabricated using MOVPE-growth technique
[51[13] and optimized for minimum losses. However, low-loss lightguide bends
with small radius of curvature R are a prerequisite for implementation of integrated
optical devices with practical dimensions. Until now, bends have been employed
in integrated devices with R exceeding several mm’s and only very recently the
first results have been obtained on S-bends using submillimeter radii of curvature
[104][119]. An excess loss of 1.1 dB/90° for R = 200 um has been reported for TE
polarized light {104], but that result seems in contradiction with our calculations
for that structure yielding 26.2 dB/90°. In this paper we report the results of an
experimental and theoretical study on the optical losses of 4 x 90° ( “chicane’-
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testpattern ) GalnAsP/InP waveguide bends with very small radii of curvature. The
optical losses in bends are caused by radiation and by mode mismatch between
straight and curved sections. In our calculations, these effects have been taken into
account and also coherent effects were included since our waveguides are multi-
mode. For the first time an excess bend loss as low as 0.5 (0.6 ) dB/90° for R =
150 pm for TM ( TE resp. ) polarized light has been measured which is in
agreement with our theoretical predictions.

Bend-loss analysis

The properties of curved waveguides can be calculated by the conformal trans-
formation technique [40] which has the form®: x+jy = re® = Re™#R and
transforms the curved waveguide scalar wave equation into an equivalent straight
structure:

2 2
[a_+a_+k(2,'r?}‘l‘z(u,v) =0, .2.1)
o’ N

with a transformed index of refraction profile

A() = n(u(r)er (1.2.2)

and ¥,(u,v) the transformed field in the bend. A numerical evaluation of the
transformed problem has been adopted using a discretized refractive index profile
('staircase approximation ) and applying a transfer-matrix method plus appropriate
boundary conditions to the resulting field solution [112]. A discrete eigenvalue for
the complex angular propagation constant is obtained, the imaginary part of which
represents the attenuation due to radiation.

The field profile in the bend is used to calculate the conversion losses at the
junctions between straight and curved waveguides. The conversion loss is mi-
nimized by a lateral offset to compensate for the outward shift of the curved
waveguide mode profile ( the Whispering Gallery Mode (WGM), see Fig. 7.4 and
Table 7.2 ). Additional loss-optimization can be obtained by adjusting the width
of the straight waveguide to match both field profile widths. A very important
feature of bends is that radiation losses decrease exponentially with increasing
width, eventually reaching a lower limit. In this limit, the mode becomes a WGM

§ This notation is in slight disagreement with the notation in the rest of the thesis.
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Fig. 7.4 Layout of “Chicane” -test structure 90° including offsets between straight and curved
waveguide sections. Dashed curve indicates the maximum intensity of the fundamental mode and
demonstrates clearly the necessity of the offset. The waveguide width is 3.0 and 3.4 ym for straight
and curved parts resp.
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Table 7.2 Calculated excess loss for the TE- and the TM-polarization without and with offset
correction.

100 1.05 11.82 2.68 3.69 0.78
150 0.80 2.85 0.45 3.70 0.23
200 0.65 0.69 0.13 0.16 0.15
250 0.55 0.27 0.08 0.27 0.11
300 048 0.07 0.10 0.26 0.08
400 0.38 0.19 0.05 0.11 0.07

which is guided by the outer optical contrast only. The large lateral contrast AN,
= 0.075 ((TE) calculated via the effective index method) necessary to minimize
the radiation losses made the waveguide multimode and there exists some inter-
modal coupling at the junctions. Straight and curved waveguide field profiles have
been calculated for all allowed modes. The transmission of the full test-structure
follows by multiplying the vector representing the amplitude of these modes by
propagation and coupling matrices. The excess loss for a multimode structure may
be either higher or lower than for monomode waveguides depending on the amount
of intermodal coupling and the relative phases of the modes.

Fabrication and Measurements

The waveguides were fabricated from LPMOVPE-grown epilayers of undoped
InP/GalnAsP on a SI-InP substrate. The GaInAsP guiding layer has a gap wave-
length of 1320 nm. The top InPlayer was etched by RIE using CH4/H, (1:4) slightly
into the guiding layer for a large optical contrast AN, = 0.075. The structure of the
waveguide, its dimensions and a SEM micrograph are shown in Fig. 7.5. The
optimal width of the rib was 3.0 um in the straight sections and 3.4 um in the
bends. The “chicane” waveguide test pattern consisted of four 90° bends connected
with straight waveguides with the optimal offsets for each R ( see Fig. 7.4 and
Table 7.2). A set of “chicanes” with R ranging between 100 - 400 pm was defined
on the mask together with reference straight waveguides by optical lithography
giving very smooth curved patterns. The excess bend loss per 90° at Ay = 1.52
pm was obtained as the difference between the total insertion loss of the chicane
and the straight waveguides and dividing by 4. Fiber polarization controllers were
used for TE and TM excitation.
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Fig. 7.5 Structure and SEM micrograph of straight waveguides cross section.
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Fig. 7.6 Excess bend loss per 90° versus radius of curvature R at o = 1.52 um for TE and TM
polarization. Dots give measured average values with standard deviation indicated by bars. The
full and dashed curves represent our theoretical calculations.

Results

The excess loss of 90° bends for different R is shown in Fig. 7.6 for TE and TM
polarized light. The data have not been corrected for propagation losses (< 1 dB/cm
[5]) since the maximum additional length was 1.4 mm for R = 100 pm. The losses
for TE polarization are consistently higher than those of the TM data as a result of
a 22 % lower contrast than for TM modes. Also shown are the calculated curves
for TE and TM mode propagation. Both results show that the excess bend loss
depends critically on the radius R. A steep increase of the bend losses is observed
between 100 and 200 pum in very good agreement with the calculations for the high
contrast waveguides.
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Summary

We have presented the results of an analysis of 4 x 90° “chicane” bend losses of
MOVPE-grown GalnAsP/InP waveguides. Using lateral offsets and optimized
widths of straight and curved waveguides, excess losses for 90° bends as low as
0.5 (0.6) dB/90° for R = 150 um and TM (TE) have been realized. These
loss-figures for bends are the best values published so far and they are in very good
agreement with theory. Our results show that with proper design, extremely small,
practical waveguide bends with low excess loss can be fabricated and are essential
for implementation in integrated optical devices with practical dimensions.

7.2.2 Addendum

One of the reactions to the presentation of this work at ECOC ’89 came from
E.-G. Neumann®, who rightly reminded us that we had forgotten to refer to his
work, most notably [80] that first describes the lateral offset at the junction to
reduce transition losses. Neumann also mentioned the fact that the principle of the
offset has been patented by him [82]. The work of Neumann is referred to in the
thesis.

More details are given here of the loss calculations that we performed for the
S-bends as reported by Singh ez al. [104], because the ECOC manuscript mentions
discrepancies that are found between our calculations and the loss values reported
in [104]. The curved waveguides that are reported in [ 104] have radii of curvature
in the range of 100 pm to 400 um and have been fabricated in MOVPE-grown
GalnAsP. These waveguides have very small widths of 0.27 um, 1 um and 1.8
pm, which is contrary to the guidelines developed in chapter 5. The calculations
are based on the parameters reported in [104], being TE-polarized light with Ay =
1.553 um, a GalnAsP film of height 0.22 um and a band gap wavelength A, = 1.28
um and for the widths and radii given above. The Utaka model, [118] and Eqgs.
(7.1.1) through (7.1.4), yields the refractive indices ng = 3.3787 and n;,p = 3.1690.
The effective refractive index is N = 3.21242 and the S-bend losses that have been
calculated from these parameters are summarized in Table 7.3. The calculated
losses differ a factor 10 to 25 from the experimental values. A radiation loss of
84.3 dB/90° is found when w = 0.27 um and 0.4 dB/90° when w = 3 pum, both for
a radius of curvature of R = 300 pm, which shows that the width of the curved
waveguide is not optimal with respect to the radiation losses.

§ Private communication.




Section 7.2 ‘Chicanes’ in MOVPE-grown GalnAsP 187

Table 7.3 Losses calculated for the S-bends reported by Singh et al. [104]. We denote the total
S-bend loss by Ouor, the radiation loss by o, the radius of curvature by R, and M is the coupling loss
at the junction between the straight and curved waveguide or at the junction between two oppositely
curved bends.

400 | 4.7 2.6 0.5 1.2 24 0.0 0.1 0.0 0.8
300 | 11.2 | 6.4 1.1 2.6 4.4 0.4 0.2 0.0 0.3
200 | 262 | 144 | 2.8 62 | 153 | 3.7 1.1 0.3 1.1
100 | 63.9 | 308 | 80 | 17.2 | 63.2 | 208 | 129 | 5.5 7.8

The discrepancies between the calculated and the experimental values suggest
the variation of the parameters that are used for the calculations. A larger width of
w =3 pm does not lead to significant differences in the calculated losses as shown
in Table 7.3, because small widths lead to large radiation losses and large widths
lead to increased transition losses. Another set of calculations has been done for a
film height 4 = 0.3 um instead of 0.22 pm in combination with the original width
of 1 um and the refractive indices ng = 3.3858 and n;,p = 3.1641 that have been
calculated by means of Eq. (7.1.6). The resulting values of this set of calculations
are in good agreement with the experimental values. The larger film height leads
to a larger effective index N = 3.23696, which leads in turn to a better confinement
of the light and thus to reduced radiation losses.

I chning§, who is one of the authors of [104], revealed that the very high losses,
that have been calculated for the 0.27 um wide S-bends, have been observed,
indeed. The refractive indices calculated by means of both the Utaka and the Henry
model, Egs. (7.1.1) and (7.1.6) respectively, are in agreement with the values ng
= 3.38 and ny,p = 3.17, that have been used by I. Henning. The thickness of the
quaternary film is 0.22 + 10 % according to SEM photographs and this excludes
the value of 0.3 um. The geometry the waveguides can vary locally, however, due
to the anisotropic character of the chemical etch that has been used and due to a
possibly incomplete overgrowth leading to a cover which consists partially of air.

The measured losses of the S-bends in [104] are for S-bends that have no lateral
offset at the junction of the straight and the curved waveguides. The optimal offset,

§ Private communication.
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however, happens to be zero for a width of approximately 1 m, which can be seen
as follows. An optimal lateral offset, offser = w/2-Ar Eq. (5.2.5), is found by
aligning the maxima of the straight and the curved waveguide profiles, where Ar
is the distance between the maximum of the field distribution and the outer edge
of the bend. This distance Ar is of the order of the wavelength and varies, in
practice, between zero and 1.0 pm for small bends. The resulting offset will,
therefore, be close to zero when the width of the bend w equals twice the distance
Ar.

The two figures, that are shown on page 189, give results of the modeling of the
bends that are described in the ECOC manuscript. Fig. 7.7 shows the radiation loss
as a function of the width of the curved waveguide. The regime of whispering-gal-
lery mode operation, where the radiation losses are minimal, is reached for widths
that are larger than 2.5 um. A value of 3.0 um has been chosen for the width of
our bends and SEM photographs of the manufactured curved waveguides revealed
a fabricated width of 3.4 um.

The transition loss of the junction of the straight and the curved waveguide is
shown in Fig. 7.8. The transition loss is minimal for an offset of 0.7 um and a
straight-waveguide width of 2 pm. A width of 2.6 um has been chosen instead,
which is a compromise between the optimization of the transition losses and the
minimization of the scattering losses.
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Fig. 7.7 Calculated radiation losses versus width for a bend with R = 150 um and parameters

as given in the ECOC manuscript. The asymptotic limit reached for widths greater that 2.5 um is
the WGM regime where the inner side of the bend has no influence on the modal field distribution.
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Fig. 7.8 Calculated transition losses at the junction for the HEoo-mode, R = 150 pm and
Weurved = 3 Wm. The width of the straight waveguide has been varied from 1 to 5 pm. The
corresponding minimum transition losses are indicated in the legend.
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Appendix A

Implementation of the Bessel functions

This appendix discusses the numerical implementation of Bessel functions with
large arguments and large complex orders. The implementation is based on
information found in a paper by Neumann and Richter [81] and uses Airy functions
and asymptotic expansions that are listed by Abramowitz and Stegun [1]. The
asymptotic expansions for the Bessel functions are those of Olver [85][86].

Since the asymptotic expansions for the Bessel functions of the first and the
second kind and their derivatives use similar expansion coefficients and since the
transfer-matrix needs both the Bessel functions and their derivatives, an implemen-
tation has been adopted in the form of a subroutine that evaluates both the Bessel
functions and their derivatives simultaneously for the same argument and order.

Is is noted that the accuracy of an asymptotic expansion is always better than the
next term in the expansion that has not yet been included in the sum. This implies
that the summation must be stopped before the smallest term in order to obtain the
maximum accuracy.

The expansions for the Bessel functions have been based on the Airy functions
and these have, therefore, been implemented first.
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Ai(z), Bi(z), Ai'(z), Bi'(z) =

Egs. (104.2) - (104.5) ,lzl <6 COMPLEX*16

Egs. (104.2) - (104.5) ,Re(z) >3.75 and |z| <6.5 REAL*16 ,

Egs. (10.4.59) — (10.4.68) , |z| > 6 COMPLEX*16
(A.1)

where the equation numbers correspond to those of Abramowitz and Stegun [1].
The REAL*16 data type has been used in order to achieve the required accuracy.
The numerical implementation has been done for the real and imaginary parts
separately which implies an effective accuracy which is equal to that of an
COMPLEX#*32 data type. The coefficients Eqs. (10.4.4) and (10.4.5) of [1] have
been recalculated

3"%

= TR - 0.33502805388781723926006318604 , (A.2)
3—1/3

= r13) = (0.25881940379280679840518356017 , (A.3)

and have an adequate accuracy of 28 digits. The accuracy of the calculated values
of the Airy functions and their derivatives has been estimated by means of

accuracy = n{Ai(z)Bi'(z) - Ai'(z)Bi(z)} - 1, (A4

where Eq. (10.4.10) of [1] has been used for the Wronskian of the Airy functions.
The accuracy is better than 1072 everywhere in the complex z-plane. An accuracy
of 107 for z = 6 would have resulted if ‘normal’ COMPLEX*16 had been used for
this value of the argument. The implementation of the Airy functions and their
derivatives has also been tested with respect to the relations between the Airy
functions Eqgs. (10.4.6) through (10.4.9) of [1], with respect to complex conjugates
Ai(z") = Ai"(2) et cetera, and by means of the Table (10.11) in [1].

The evaluation of the coefficients Eq. (10.4.58) in [ 1] can be simplified and made
faster by using

(A.5)
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and similarly

de _k1_ 7
dey 20 T2

(A.6)

The Debye’s asymptotic expansions, Eqs. (9.3.7) and (9.3.8) of [1], may not be
used, since we have to evaluate the Bessel functions in the transition region where
the order and argument are almost equal. Setting sech o = 1 results in coth o0 —
oo and we find that the terms in the Debye’s asymptotic expansion then do not
converge. The asymptotic expansion in the transition region Egs. (9.2.23) through
(9.3.30) cannot be used either since too few expansion coefficients are given to
obtain the desired accuracy. The evaluation of extra expansion coefficients soon
turned out to be a hazardous enterprise.

We have, therefore, adopted the option of always using Eqs. (9.3.35) through
(9.3.46) in [1]. There is a problem, however, because the expressions, Egs. (9.3.40)
and (9.3.46) in [1], for the expansions are numerically not stable near { =0,
although the expansion coefficients themselves are well behaved. The wanted
relative accuracy for the Bessel functions of at least 107™"% leads to an accuracy
requirement for the expansion coefficients of 16 significant digits for ap(£=0), 10
significant digits for a;({=0), five significant digits for a,({=0) and one digit for
a3({=0) and similar requirements for the coefficients b;, ¢; and d;. The values for
the coefficients at { =0 are related to the given coefficients below Eq. (9.3.34) in
[1], whose accuracy is adequate. The coefficients ax(C), bx(C), ci(£) and dy(C) have,
therefore, been calculated by means of a twenty-point Lagrangian interpolation
(Eq. (25.2.1)in [1]) within the circle | {-1| < 0.1/1.001 for k=0, 1, 2, 3, respec-
tively, whereas the coefficients have been approximated by zero within the circle
|C——1| <0.2/1.001 for k=4, 5, 6, respectively, and within the circle l¢-1] <
0.4/1.001 for k = 7. The twenty-point Lagrangian interpolation has been based on
the given values of the coefficients for { =0, supplemented by values of the
coefficients which have been calculated with high precision.

The polynomials u,(z), Eq. (9.3.10) in [1], and vi(#), Eq. (9.3.14) in [ 1], have been
evaluated by means of

3k
ult) = YUt (A7)
=0

where
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k-1 1 -5 k-3
Ui = Ulc—l,i—l{T + 5,;} + Uk—S,E—I{a - T} and Ugp=1, (A.8)
and
3k
VD) = Y Vil (A9)
=0
where
-k 1 -5 k=2
Vk,i = Uk—l,i—l{? + ﬁ} + Uk_3‘,'_1{‘8-k' + T} and U(),O =1. (AIO)

The accuracy of the numerical implementation of the Bessel functions and their
derivatives, J,(z), Y,(2),J,’(z) and Y,’(z) has been assessed by calculating the
Wronskian, Eq. (9.1.16) in [1], and the recursion relations, Egs. (9.1.27) in [1].
The precision is twelve significant digits for lv| > 100. The precision is nine
significant digits for v = 5. Our implementation of the Bessel functions can be used
for all z and Arg(v)l < m/2.
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The WKB approximation

The WKB approximation is named after Wentzel, Kramers and Brillouin [60].
The WKB method provides an approximation to the one-dimensional Schrodinger
equation

Py + kafy@) = 0. (B.1)

ou’

Many textbooks on quantum mechanics discuss the WKB method. In the elegant
derivation by Landau and Lifschitz [63], the wave function y(u) is expanded in
powers of Planck’s constant. This is equivalent to an expansion in inverse powers
of the wave number in vacuum kg

W) = &, (B.2)

. . N2
nw) = no(u)+m(u)(*’kgj+ T!z(u)(‘]g;) + e (B.3)

Quantum mechanics becomes classical when the de Broglie wavelength becomes
small in respect to the characteristic dimensions or in the limit when Planck’s
constant becomes zero. Similarly, wave optics becomes geometrical in the limit
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of a a very small wavelength. The first-order approximation to y(u) is found by
substituting Eq. (B.2) with =1 into Eq. (B.1)

2 .
- (%} + (;—OJ%+ fw) =0, (B.4)

and neglecting the term which contains j/k,

now) = £ [ VFWydu' . B.5)

The second-order contribution to y(u) is found by substitution of 1| = NgHN1/ko
into Eq. (B.1) and dropping the terms that contain j/k,

9,Ned.N1 — ¥29inp = 0. (B.6)

The solution of Eq. (B.6) is

u

au’ au’ ’ ’
Mm@ = %j %du = %ln\/auﬂo(u) = —;‘Im/f(u) , (B.7)

and we find for y(u) to the second order
y(u) = _C exp ijk(j Nf(u)du'} . (B.8)
Yf(w) "

The second-order solution Eq. (B.8) satisfies

oAy + {k%f + }ﬁaif - f?;(aj)z}w =0, (B.9)

exactly and is a good approximation to Eq. (B.1) when
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Yazes -8 oupy

- 2 << |ka| (B.10)

Inequality Eq. (B.10) fails
« in the neighborhood of a zero, f(u) =0,
« when the wave number of vacuum becomes very small, ko0,
» when the derivatives d,f and d%f are large with respect to f or equivalently
when the relative change in f is large in a distance k'

The approximation can, therefore, not be used in the neighborhood of a zero of
f(u). This zero is called the classical turning point, because it marks a region that
is inaccessible according to classical mechanics. Far away from the turning point,
the approximations are good and the approximations on both sides of the turning
point can be related to each other. A proper treatment involves the approximation
f(w) = C(u—up) in the neighborhood of the turning point u = uy and the integration
along a “proper path”—see §1.4in [73]—. The results are the connection formulas,
which are neatly summarized by Merzbacher [74]. In Fig. B.1 where the turning
point is to the left of the classical region, the solutions are connected by

4y
1 AN=Fahdu Nryany
exp f(u)du | «—» cos fHadw —= |, (B.11)
V=fw) '[ \/f(u) -{
Uy u
—1 ’ ’ 1 : ’ ’ T
exp| + V—f)du | e«—— ——=—sin| | Vf@)duw - |, (B.12)
-f@w I i) u{ 4
f(u)
I classical

region
/\/ ’

Fig. B.1 The classical region is to the right of the turning point u = uo.
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and in the opposite case shown shown in Fig. B.2, the connection formulas are
given by

2 cos| | VF@ydw - T e L _expl -[VF@yaw |, ®.13)
u 4 i,

fw Y=fw)
J
u, \ u \
L sin| [ VF@yaw -2 =L exp|+ [ VR aw
sin u)du “—» exp) WHdu |, (B.14)
@ I 4 ~f@) uj,

f(u)

I classical
region —_—Uu
ul\/\

Fig. B.2 The classical region is to the left of the turning point u = u1.

The connection formulas are to be used in the direction of the double arrow only.
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WKB integrals

The WKB solution to the transformed curved slab waveguide of § 4.1.4 involves
two integrals that can be evaluated in closed form. The first integral is

J\/k 2,24, du (C.1)

t

and is solved by means of the substitution

25,2 2R, 2
_ \/%-——1 = \/kzol;’z_h (C.2)

(C.3)

!

_ Eldu
d = 2¢

Effecting the substitution yields
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! _'ﬁ & 5 %
J\/k%N?ez‘(’R'_Rz du = Y,[gzgﬁ dg =y ( —tan'lﬁ)l =
" : g, 3
él
= (188" - 8+ At - ), . (C4)
gl

The integral has been expressed in the form of a series because the integral
appears in adispersion relation thathas to be solved numerically. Since the quantity
€ is small and the two contributions to E, cancel, a reduced numerical accuracy
results if the closed expression is used. The second integral

u,
J. V‘}{é — KN Reay’ | (C.5)
u, !

is very similar to the first one. The substitution

2 24IR, 272.2
£ = \/l— = '\/1—%—, (C.6)
& = &1 au’ €7
§ R’ '
leads to

g
J-'\/i k2 2 2u/R, du’ = Yj?é_g_dé [ }_ig__‘\;)

gz

g

= 7(1/353 + 585+ 15T 4+ )l ) (C.8)
&




Appendix D

Dirac’s notation

Dirac’s notation is used in section § 4.2 and its first occurrence is in Eq. (4.2.5).
The normalized fields le,) and |h,) are appropriately defined in each section and
we have (e, = |e,) and (h,| = |h,). The overlap integral has the following form

d f
(eplev) =

T ei0)es(®) ~ _
f—Wdy w=1,..,M,andv=1,..,M, ,

Ie (z“l?ﬁ)?(j) Yy p=M+landv=1,... M, ,

0)e’ ;8" B ~
iwdy pu=1,...,Mand v=M,+1 ,

(D.1)

T%Mdy u=M+1and v=My+1 ,
5, VK@K @)

when the EH-polarization is considered and when the two waveguides a and b are
both straight. Similar definitions apply to the HE-polarization and to the other
types of junction. The norm of the discrete mode K, and the norm of the continuous
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mode K (B) are defined together with the normalization of the field, as in Eq. (4.2.6)
for example.

Writing out all equations is a stra1ghtforward but arduous task. The completeness
requirement Eq. (4.2.6), i.e. (eglev)(evlep) O ., for example, is shorthand for

M, *® b a
EO)E0) T e
E{j e ¥ f T y}*

T 0)e ;Y e (v';Beny")
f,;b—d 7—%— = 8,, ]
J‘B"{J K (B%) Y j K'(BK, o ®2)
B e =

when &, U # M,+1, and it is shorthand for

VK 2 VKIK(B™)
[EOBYDBY , TEWBIYBY) v | e sons b
Fegl ™ -

when § =p = M,+1, and it equals zero either when & # M,+1 and H=My+1 or
when §=M+1 and |1 # M+1.

{j" 0:BYR0) Te‘é(y’)e”(y’:ﬁb') '}Jr




Appendix E

Recipe

Two examples are given in which a curved waveguide and the accompanying
junction are optimized. One example concerns Al,O3/Si0, waveguides at a wave-
length of 1300 nm and the second example optimizes a GalnAsP/InP curved
waveguide for a wavelength of 1520 nm. The lateral refractive-index contrast must
be as large as possible in order to reduce the radiation losses and we begin the
optimization procedure with a fixed maximized lateral refractive-index contrast.

We consider the waveguide cross-section of Fig. 6.23, the HEy-mode and a
wavelength of 1300 nm. The refractive index of SiO, at this wavelength is
n = 1.447 while the refractive index of Al,O; is n = 1.677. Neglecting the influence
of the air cover and the silicon substrate on the calculations, we find the effective
refractive indices Ny = 1.5580 for the guiding layer and N; = Ny, = 1.4470 for the
two cladding layers. A corresponding single-boundary bend with N; =Ny and
N, =Ny has a lateral refractive-index contrast log(l—N%/Nf) = —0.86. From Fig.
5.3, we find that a bend with a normalized radius of log(k,R;/NV;) = 2.68 and a
contrast of —0.86 exhibits a radiation loss of 1 x 10~ dB/90°. We, thus, have
R, = 64 um. Alternatively, a value C(c) = 25 can be obtained from Fig. 5.4 and
substitution of this value into Eq. (5.2.2) yields a radius of curvature of R, =
71 um. From Fig. 5.5, we find a normalized width of at least kowN; > 30, or w =
4 um, in order to be in the whispering-gallery-mode regime. Finally, from Fig. 5.7
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can be found that 2 < kyArN, < 6 for the parameters given. We take koArN; =~ 5 and
find a value for the offset of 0.6 pm < Ar < 0.7 pum.

A more precise analysis by means of the staircase approximation and the
transfer-matrix method results in a radiation loss of 1.1 x 107> dB/90° for a radius
of curvature of Ry =67 um and a width of w=4 um, which is indeed in the
whispering-gallery-mode regime. The maximization of the overlap integral, re-
sults in an minimum transmission loss of 0.05 dB for a parameter Ar =0.95 um
and a width of the straight waveguide wyy,ign = 2.5 pm.

We actually measured an excess loss of 0.23 dB for an S-bend with a curved
section with Ry =75 um, wyn.s = 6 pm and @ = 90°, joined to a straight wave-
guide with Wy,in = 3 pm and Ar = 0.98 pm.

As a second example, we consider the cross-section shown in Fig. 7.5, the
EHy, mode and a wavelength of 1.52 pm. The model of Utaka et al., [118] and
Eq. (7.1.1), and the absorption wavelength A, = 1.32 um give a refractive index
n= 3.173 for InP and n= 3.408 for GalnAsP. Using the effective-dielectric
constant method, we find N;= Ny; =3.177 (= N, ) and Ny = 3.266 (=N, ) which
is calculated for a four-layer geometry. Consequently, the normalized contrast is
log(l—N2/N 1) =—1.27. From Fig. 5.3, we estimate a normalized radius of curvature
of log(koR;N;) = 3.33 or R, =158 um in order to obtain a radiation loss of
1 x 10 dB/90°. From Fig. 5.5, we find kgwN| 2 45 or Wpyeq = 3.3 um. The lateral
offsetis determined from Fig. 5.7 as 6 < kpArN; < 8 with a best interpolation around
koArN; = 8 or Ar = 0.6 um.

A more precise analysis by means of the staircase approximation and the
matrix-transfer algorithm results in a radiation loss of 1 x 10> dB/90° for a radius
of curvature of Ry = 166 um. A minimized transition loss of 0.05 dB is found for
a lateral offset of Ar= 0.85 um and a width of the straight waveguide of
Witraight = 2.2 Hm.

In section § 7.2, a loss of 0.5 dB/90° has been reported for a fabricated S-bend
where We,eq = 3.4 UM, Wepgien = 3.0 pm, R; = 150 pm and Ar = 0.9 pum.
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List of symbols and acronyms

ELECTROMAGNETIC AND RELATED QUANTITIES

MmO THIM

e

Electric field strength in the time domain

Magnetic field strength in the time domain

Poynting’s vector in the time domain ( Eq. (2.1.18) )
Electromagnetic power ( Eq. (2.3.14) )

Electric field strength in the frequency domain

Magnetic field strength in the frequency domain

Strength of the frequency-domain electric induction
Strength of the frequency-domain magnetic induction
Fourier transform of the frequency-domain electric field
strength with respect to the coordinate of propagation
Fourier transform of the frequency-domain magnetic field
strength with respect to the coordinate of propagation

The modal distribution of the frequency-domain electric
field strength corresponding to the propagation constant
By or v, for the straight and the curved waveguide, respec-
tively. The + and — sign indicate waves that propagate in the
forward or backward direction. ( Pages 25 and 30 )

The modal distribution of the frequency-domain magnetic
field strength corresponding to the propagation constant
By or 1y, for the straight and the curved waveguide, respec-
tively. (Pages 25 and 30)

Propagation constant of the guided mode with mode num-
ber [ in a straight waveguide

Propagation constant of a continuous mode in a straight
waveguide

Propagation constant of the guided mode with mode num-
ber W in a curved waveguide

Propagation constant of a continuous mode in a curved
waveguide

Lowest-order approximation toy
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List of symbols and acronyms

ax
@Y

y 3

Excitation coefficient of the guided mode with mode num-
ber | in straight and curved waveguides. ( Eqgs. 2.3.3 and
2.3.17)

Excitation coefficient of the continuous mode with propa-
gation constant f§ in a straight waveguide. ( Eq. 2.3.3 )
Excitation coefficient of the continuous mode with propa-
gation constant 'y in a curved waveguide. ( Eq. 2.3.17 )
Dielectric permittivity ( Eqgs. 2.1.6,2.1.8 and 2.1.9 )
Dielectric permittivity of the vacuum gopoc” = 1

€0= 8.854187817... x 107"
Permeability of the vacuum uod§f41t x 1077
Plane-wave index of refraction ( Eq. 2.1.10)
Effective index of refraction ( Egs. 2.3.9 and 2.3.26 )
Parameter defined in Eq. (4.1.8)
Auenuation of light in a straight waveguide ( Eq. 2.3.10)
Proportionality constant in Eq. (6.4.1)
Proportionality constant in Eq. (6.4.1)
Attenuation of light in a curved waveguide ( Eq. 2.3.27 )
Normalization constant of the guided mode with mode
number .
(Eqgs. 2.3.11 and 2.3.39)
( Eqgs. 4.2.1 through 4.2.4)
Normalization constant of the continuous mode in a straight
waveguide with propagation constant B. ( Eq. 2.3.13)
Normalization constant of the continuous mode in a curved
waveguide with propagation constant y. ( Eq. 2.3.41 )
Scattering matrix of a junction ( Eq. 4.2.16 and Table 4.1 )
Transmission matrix of a junction ( Eq. 4.2.16 and Table
4.1)
Reflection matrix of a junction ( Eq. 4.2.16 and Table 4.1 )
Overlap matrix C and its transpose C ( Eqgs. 4.2.24 and
4.2.25 and Table 4.1)
Coupling or transition loss ( Eq. 4.2.57 )
Photon energy hc/(ero) ( Eq.7.1.1)

dB/cm
dB/cm

dB
dB/90°

dB
eV
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E, Photon energy which corresponds to the band-gap absorp-

tion wavelength hc/(eA,) (Eq.7.1.1) eV
N, Concentration of free electrons ( Eq.7.1.5) m~
me, me.; Mass and effective mass of the electron (Eq.7.1.5) kg
MATHEMATICAL SYMBOLS
\% Nabla operator m
2 Laplacian operator in cylindrical coordinates ( Eq. 2.3.24 ) m™>
X Vector cross product

Vector dot product
] Imaginary unit V-1
Oy Partial derivative with respect to coordinate x ( d, = d/dx ) m’!
S Kronecker delta symbol (=0ifpu#v;=1ifp=v) 1
3(B—P’) Delta function (=0if B # " and |O(B-PB)dB=1) m
3(y=y) Delta function (=0ify=Y and |6(y-Y)dy=1) 1
M,V Mode numbers
B Branch cut
z' Complex conjugate of the complex variable z
<> Time-average (used in Eq. 2.1.18 )
{1 Dirac’s bracket notation
oc Proportionality
A Difference operator
aef Equality by definition
= Implied by, follows from
=3 Equivalence
D, Eigenvalue equation of the straight slab waveguide
D, Eigenvalue equation of the curved slab waveguide
Dwxs Eigenvalue equation for the single-boundary bend as found

from the WKB approximation
J(2) Bessel function of the first kind and ordery ( § 4.1.2)
Y(2) Bessel function of the second kind and ordery ( § 4.1.2)

Hankel function of the first kind and ordery ( § 4.1.2)
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H.(f)(z) Hankel function of the second kind and ordery ( § 4.1.2)

ab Label that are used to denote both waveguides at a junction
i Index or label

l Index or label

M Total number of guided modes or total number of partitions
m Number of partitions in one domain

Description of a volume

Description of a domain with index i

Outward pointing unit vector, normal to a surface
Position vector

D<@

Coordinate of a Cartesian or a cylindrical coordinate system
Unit vector % = x/lx|

Coordinates of a Cartesian coordinate system

Unit vectors

Fourier transform variable ( Eq. (2.3.1) )

Radial coordinate of a cylindrical coordinate system

Unit vector 7 = r/lrl

‘Lateral offset’ (Eqgs. 4.1.49 and 5.2.5)

Radius of curvature of interface i

Radius of curvature of the perfect conductor that screens the
origin

Parameter of the transformation Eq. (4.1.16) or a parameter

that is used to introduce an effective index of refraction for
the curved waveguide ( Eq. 2.3.26)

Angular coordinate of a cylindrical coordinate system
Unit vector

Fourier transform variable ( Eq. 2.3.15)

Section angle of a curved waveguide ( Eq. 2.2.5)
Angle (Eqs. 444 0r6.1.1)

Transformed coordinate ( Egs. 4.1.16 and 4.4.3 ) m

TS >R Y 3>
>N
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552*»\:
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=
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NENSEIE AN
5 33

FENT O &F L

Location of the screen expressed in coordinate u
Transformed coordinate ( Eq. 4.4.3)

Height of waveguide or film

Ridge height

Distance between the sides of the first and the second ridge
Width of waveguide

Length of the straight section in the two-mode interference
coupler (Fig.5.8)

Beat length between the two lowest-order modes

(Eq.5.3.1)
Band-gap absorption wavelength

Wavelength in vacuum Ap = 2n/ko

Wave number in vacuum ( Eq. 2.1.11)

Speed of light in vacuum ¢ 299792458

Time coordinate ( Eq. 2.1.1)

Period of an oscillation with angular frequency ® = 21/T
Angular frequency ( Eq. 2.1.1)

Component k-x of the local wave number in a domain that
has been labeled i. ( Similarly for other components )

8588883 3;

=
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ACRONYMS

BPM Beam-propagation method

CEIM Corrected effective-index method

COST Coopération Européenne dans le domaine de la science et de la

technologie ( European cooperation in the field of scientific and
technical research )

DRG ‘Double-ridge’ waveguide

ECOC European conference on optical communication

EDC Method of effective dielectric constant

EIM Effective-index method

LPE Liquid-phase epitaxy

LPMOCVD Low-pressure metallo-organic chemical-vapor deposition
MMI Multi-mode-interference coupler

MOCVD Metallo-organic chemical-vapor deposition

MOVPE Metallo-organic vapor-phase epitaxy

OEIC Optoelectronic integrated circuit

RIE Reactive-ion etching

SADE Self-aligned doubly etched curved waveguides

SEM Scanning electron microscope

SRG ‘Single-ridge’ waveguide

TE Transverse-electric modes or polarization

™ Transverse-magnetic modes or polarization

TMI Two-mode-interference coupler

WGM Whispering-gallery mode

WKB Wentzel-Kramers-Brillouin approximation




Samenvatting

Dit proefschrift gaat over de modellering en de vervaardiging van gebogen
optische golfgeleiders en de bepaling van hun verliezen.

De eigenschappen van gebogen golfgeleiders—de afstralingsverliezen en de
velddistributiefuncties van de modi—zijn berekend met behulp van de effectieve
index methode in combinatie met drie andere methoden die geschikt zijn voor de
analyse van de resulterende gebogen planaire golfgeleider; (a) een methode, die
gebruik maakt van de Bessel functies, (b) een transformatie, die een gebogen
planaire golfgeleider in een rechte golfgeleider transformeert, gecombineerd met
de WKB benadering en (c) dezelfde transformatie samen met een discretisatie en
het formalisme van de overdrachtsmatrix. De numerieke resultaten van deze drie
methoden bleken in goede onderlinge overeenstemming te zijn. Ook is aange-
toond, dat de effectieve index methode op een vergelijkbare wijze op gebogen
optische golfgeleiders toegepast mag worden, als waarop zij op rechte golfge-
leiders toegepast wordt.

De koppeling van de gebogen en de rechte golfgeleider is mede bestudeerd en
met het oog daarop zijn orthogonaliteitsrelaties afgeleid voor de gebogen golfge-
leider. Exacte oplossingen zijn bepaald voor de koppeling van planaire golfge-
leiders. Numerieke resultaten zijn daarentegen verkregen door deze exacte oploss-
ingen te benaderen door overlapintegralen.

Een transformatie is geintroduceerd voor de analyse van twee gekoppelde golf-
geleiders met identieke kromtestralen en tegengestelde kromming. Deze transfor-
matie biedt inzicht in de koppel- en verliesmechanismen van een dergelijke
configuratie en kan gebruikt worden om numerieke resultaten te verkrijgen.
Dergelijke numerieke berekeningen zijn niet gedaan.

De ontwikkelde modellen en de bijbehorende computerprogrammatuur zijn
gebruikt om de verliezen van gebogen golfgeleiders te minimaliseren. Genormali-
seerde grafieken zijn vervaardigd voor de afstralingverliezen, de minimale breedte
die een gebogen optische golfgeleider dient te hebben en de laterale compensatie
ter plaatse van de koppeling. Ontwerpregels zijn gegeven voor deze minimalisatie.

De ontwikkelde computerprogrammatuur is ook toegepast op de multimodale
interferentiekoppelaar. De resultaten van de modellering tonen aan dat een multi-
modale koppelaar, die elf modi geleidt eigenschappen kan vertonen die een
verbetering vormen ten opzichte van de gangbare bimodale koppelaar. De verkla-
ring, die hiervoor is gevonden, berust op de zelfafbeeldende eigenschappen van
multimodale planaire golfgeleiders.
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Experimenten zijn uvitgevoerd met begraven multimodale A1203/SiO2 richelgolf-
geleiders bij golflengten van 0.6328 um en 1.3 pm en met multimodale GalnAsP/
InP golfgeleiders bij golflengten van 1.3 im en 1.52 um.

De invloed, die de laterale compenserende verplaatsing van de gebogen golfge-
leider ten opzichte van de rechte golfgeleider op de verliezen heeft, is experimen-
teel onderzocht. Hieruit is gebleken, dat het minimale verlies optreedt bij een
waarde van de laterale compenserende verplaatsing die zeer dicht in de buurt ligt
van de voorspelde waarde.

Twee nieuwe oplossingen zijn bedacht en uitgevoerd om het grote laterale
brekingsindexverschil, dat nodig is voor de realisatie van kleine gebogen golfge-
leiders met lage verliezen, en het kleine laterale brekingsindexverschil, dat nood-
zakelijk is voor de reductie van verstrooiingsverliezen en voor de monomode
werking van golfgeleiders, te combineren op €én substraat.

De ‘dubbel-richel’ golfgeleider vertoont sterk verminderde verstrooiings- en
afstralingsverliezen ten opzichte van de conventionele ‘enkel-richel’ golfgeleider.
Dit is aan de hand van experimenten geverifieerd.

De ‘vanzelf uitgerichte dubbel geétste’ gebogen golfgeleider heeft een richel-
hoogte, die groter is voor de gebogen golfgeleider dan voor de rechte golfgeleider.
S-bochten van dit type zijn vervaardigd in de vorm van begraven richelgolfge-
leiders met behulp van een vanzelf uitgerichte fotolithografische techniek. De
kleinste gemeten waarde voor de additionele verliezen bedraagt 0.5 dB/90° en is
gevonden voor de S-bocht met een kromtestraal van 200 um en bij een golflengte
van 632.8 nm. Deze waarde van 0.5 dB moet grotendeels toegeschreven worden
aan de overgangsverliezen van één koppeling van een monomode golfgeleider met
een klein lateraal brekingsindexverschil en een golfgeleider met een groot lateraal
brekingsindexverschil.

De kleinste gemeten additionele verliezen voor verschillende S-bochten zijn;
0.23 dB/90° voor R=75um in Al203/Si02 golfgeleiders bij A9 =1.3 um,
0.6 dB/90° voor R =50 pm in de Al203/SiO2 ‘dubbel-richel’ golfgeleider bij
Ao = 632.8 nm en 0.5 dB/90° voor R = 150 pum in MOVPE-gegroeide GalnAsP/
InP richelgolfgeleiders bij Ag = 1.52 pum.

Deze experimentele resultaten bevestigen de doelmatigheid van de ontwikkelde
modellen en de gekozen strategie€én om de verliezen en de kromtestraal te
verkleinen van gebogen optische golfgeleiders.
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