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SUMMARY

Buildings are becoming taller, lighter, slenderer. These changing characteristics make
tall buildings more sensitive to environmental loads, including wind gusts. A building
is considered "tall" when its height and slenderness influence the design. Given the
demand of improving building performance, the serviceability limit state (SLS) has be-
come the most important design criterion of tall buildings. The structural serviceability
is directly related to the building motions generated by wind gusts. These motions can
influence the well-being of the building occupants. Whereas the human perception of
movement is related to the jerk sensation, acceleration is the widely accepted parameter
for measuring comfort level. In literature, a few well-established criteria for determining
human perception to building vibrations can be found. In this work, the van Koten crite-
ria are used to study human perception of building vibrations, using data collected from
full-scale measurements of several high-rise buildings in The Netherlands. Whereas re-
sults clearly show that acceleration levels are barely perceptible, people still often feel
insecure in the interior of high-rise buildings, meaning that human perception is ex-
tremely subjective.
Dynamic systems are governed by their mass, damping, and stiffness. Damping can be
understood as the energy dissipation in a system. Therefore, it determines the maxi-
mum acceleration that can be felt. Given its physical complexity, damping is the most
uncertain parameter to be predicted. Presently, there are several damping predictors to
determine damping in high-rise buildings. The resultant damping obtained by means
of damping predictors is the result of the contribution of two main energy dissipation
sources: the soil foundation interaction and the internal damping in the structure. Us-
ing these predictors, damping related to soil-foundation is a constant value, whereas
structural damping increases with respect to the amplitude of vibration. Unfortunately,
the use of these predictors result in large scatter compared to the experimentally identi-
fied damping values of buildings located in The Netherlands. Given that the parameters
of these predictors are tuned based on full-scale experimental values, the discrepancy
between experimentally identified damping of the buildings and the resultant values ob-
tained by means of damping predictors is not easy to explain. In this work, a predictor
based on the same principles, and tuned to fit the data collected from the full-scale mea-
surements is presented and applied. Unfortunately, this predictor does not give enough
insight to understand the behaviour of the dissipation mechanisms in a tall building.
It is therefore the aim of this work to develop a tool for better assessing the energy dissi-
pation in high-rise buildings to improve damping prediction. In a tall building, there are
three types of energy dissipation (i.e the structural energy dissipation; soil energy dissi-
pation and energy dissipation caused by the wind around the building). In this work, the
aerodynamic damping caused by the wind around a building is considered negligible.
To get a better overall damping prediction, an attempt to identify the contribution of the
different damping sources to the overall damping is carried out. However, given the fact
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x SUMMARY

that wind loads cannot excite higher frequency modes in a tall building, the energy dissi-
pation of specific areas of the structure cannot be adequately identified by using modal
based techniques. Therefore, a different approach is needed to identify the energy dis-
sipated in local areas without a modal description of the structure. In this work, the
energy-flux analysis is proposed as a damping identification tool. This approach isolates
a certain area of the structure to formulate an energy balance around it. The connection
between this local area and the rest of the structure is made via the energy flux, which
accounts for the energy coming in and going out of the local area. By doing this anal-
ysis, the energy dissipation of a local area can be identified. In Chapters 4 and 5, an
energy-flux analysis is used to identify the energy dissipation in local areas of the struc-
ture. Then, a damping operator can be quantified. Another advantage of this approach
is the added possibility of studying the behaviours of different damping operators by
computing their energy dissipation. To validate the method two lab-scale structures, a
lab-scaled beam, a lab-scaled steel-frame building and a full-scale high-rise building are
used. This is done in the following manner. First, the structures are instrumented using
accelerometers in the case of the lab-scale beam and accelerometers and strain gauges
in the case of the lab-scale steel frame and high-rise building. Then, equivalent viscous
damping is experimentally identified by means of the collected data. Second, a model
representative of the structure to be analysed is developed. The model is made with con-
tinuous and discrete structural elements (e.g. beams, springs, dashpots). These models
are used in order to interpret energy change, energy flux and dissipation energy. The
energy balance can be formulated around a specific area of the model. Then, by making
use of experimental data, the energy enclosed in this specific area can be computed, and
energy dissipation can be identified. To compare percentages of critical damping, the
energy dissipation is formulated in terms of a damping operator. This operator can be
used to compute equivalent viscous damping, which makes use of the energy-flux anal-
ysis by comparing it to the experimentally identified equivalent damping values. Based
on the results presented in this work, it is proven that this approach is a consistent frame-
work for damping identification.
In Chapter 6, a basic model for tall-building damping assessment during the design
phase is presented. The model combines different models. The cone model describes
the soil-foundation interaction and a Euler-Bernoulli beam model represents the build-
ing. Assuming a small vibration field, the mechanism responsible for the energy dissi-
pation in the building is presumed to be directly related to the building’s deformation.
Therefore, the influence of building damping is studied based on the bending of the
beam model used to describe the building. This influence varies with the change in the
building deformation caused by different foundation stiffnesses. Likewise, the influence
of soil-building interaction damping varies when changing the soil-foundation stiffness.
Results provide evidence that the soil-foundation interaction of tall buildings may play
an important role in the overall damping identification for certain soil characteristics,
like the ones present in The Netherlands.



CONTENTS

Acknowledgements vii

Summary ix

1 Introduction 1
1.1 A brief history and future of high-rise buildings . . . . . . . . . . . . . . . 1
1.2 Problem statement and purpose of the study . . . . . . . . . . . . . . . . 3
1.3 State-of-the-art damping prediction of tall buildings subject to wind . . . . 4
1.4 Research objective and approach . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Full-scale measurements 9
2.1 Theory of wind-induced vibrations . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Wind-induced accelerations in structural dynamics . . . . . . . . . 12
2.2 Damping identification techniques . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 HPBW method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 RDT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Buildings description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.1 The Churchill Tower . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.2 The Erasmus Medical Center (E.M.C) . . . . . . . . . . . . . . . . 18
2.3.3 The MonteVideo Tower . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.4 The Oval Tower . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.5 The Hoftoren. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Field measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 Damping predictors in the studied buildings . . . . . . . . . . . . . . . . 26

2.5.1 The use of existing damping predictors . . . . . . . . . . . . . . . 26
2.5.2 A proposed damping predictor. . . . . . . . . . . . . . . . . . . . 29

2.6 Serviceability limit state in wind-induced vibrations . . . . . . . . . . . . 30
2.6.1 Occupant reaction to building vibrations . . . . . . . . . . . . . . 30

2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Beam models for high-rise buildings and the energy variation law 35
3.1 General description of beams . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Derivation of the governing differential equations of beams in three-dimension

36
3.3 Linear kinematic and displacement relationships. . . . . . . . . . . . . . 39
3.4 Saint-Venant torsion theory. . . . . . . . . . . . . . . . . . . . . . . . . 42
3.5 Constitutive relations for an elastic beam . . . . . . . . . . . . . . . . . . 43
3.6 Determination of the principal axes of a beam element . . . . . . . . . . . 45

3.6.1 Determining the bending centre and principal directions . . . . . . 45

xi



xii CONTENTS

3.7 Equations of motion for elastic beams . . . . . . . . . . . . . . . . . . . 49

3.8 Energy variation law . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Damping identification in structural elements by means of energy-flux anal-
ysis 53
4.1 Damping identification in a cantilever beam by means of energy-flux anal-

ysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.1 Experimental identification of the cantilever beam properties . . . . 54

4.1.2 Identification of energy dissipation of the cantilever beam by means
of energy-flux analysis . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Identification of energy dissipation in structural joints by means of energy-
flux analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.1 Experimental work . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.2 Problem formulation and energy-flux analysis . . . . . . . . . . . . 66

4.2.3 Quantification of the energy dissipation . . . . . . . . . . . . . . . 70

4.2.4 5-DoF model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5 Energy-flux analysis as a tool for identifying the contribution of soil-structure
interaction to damping in tall buildings 77
5.1 Full-scale measurements of wind-induced vibrations. . . . . . . . . . . . 78

5.1.1 Building description: the JuBi tower . . . . . . . . . . . . . . . . . 78

5.1.2 Soil conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.1.3 Instrumentation and field measurements . . . . . . . . . . . . . . 79

5.2 Model and energy-flux analysis . . . . . . . . . . . . . . . . . . . . . . . 83

5.2.1 Beam model and energy-flux analysis . . . . . . . . . . . . . . . . 83

5.2.2 Energy dissipation in the superstructure of the JuBi tower subject
to wind. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2.3 Energy dissipation in the soil-foundation interaction of the JuBi tower
88

5.3 Quantification of the energy dissipation in the JuBi tower. . . . . . . . . . 89

5.4 Comparison of the damping identified by means of the energy-flux analy-
sis and the measured modal damping. . . . . . . . . . . . . . . . . . . . 93

5.5 Assumptions and concluding remarks . . . . . . . . . . . . . . . . . . . 98

6 Basic models of tall buildings for damping assessment during the design stage
101
6.1 Modelling approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.2 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.3 Governing equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.4 Soil Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.4.1 The concept of the cone model . . . . . . . . . . . . . . . . . . . 104

6.4.2 Comparison of the cone model with a BEM model in a case study . . 106



CONTENTS xiii

6.5 Aerodynamic damping . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.6 Study of the foundation damping contribution to the total damping of sev-

eral buildings located in The Netherlands. . . . . . . . . . . . . . . . . . 110
6.7 Study of the building damping using energy interpretation . . . . . . . . . 113
6.8 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7 Conclusions 117

Bibliography 121
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

A Interface and boundary conditions for Euler-Bernoulli beam 127
A.1 Coefficients of a bending beam equation with fixed-free boundary condi-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
A.2 Coefficients of a bending beam equation with flexible-free boundary con-

ditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
A.3 Coefficients of a torsion beam equation with flexible-free boundary con-

ditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
A.4 Coordinate dependent solution of a Euler-Bernoulli beam for fixed-base

and flexible-base boundary conditions . . . . . . . . . . . . . . . . . . . 130

B Implementation of the dynamic stiffness of a foundation embedded in a lay-
ered half-space 131

C Cross-sectional constants of the prismatic beams 137

D Equivalence of work of the moment and shear force in the energy flux of a
Euler-Bernoulli beam 139

Samenvatting 141

Publications by the author 145

Curriculum Vitæ 147





1
INTRODUCTION

1.1. A BRIEF HISTORY AND FUTURE OF HIGH-RISE BUILDINGS
Since the legendary Tower of Babel, humans have attempted to build taller and taller
structures. It seems to be genetic. Give a child a set of cubes and she will try to pile them
into a tower. Is it therefore intrinsic to the human behaviour? An answer to this question
has not yet been given.
Over the years, construction philosophy has changed tremendously as shown in Fig. 1.1.

Figure 1.1: Historical evolution of structures in Europe.

Large structures were symbols of power and wealth in ancient cultures. They were often
constructed for religious purposes, as perhaps the Egyptian were. Many, ancient con-
structions attract a great engineering interest, even today.
The first modern tall buildings were erected in Chicago and New York in the 1880s moti-
vated by a great economic boom. Chicago’s Home Insurance building, rising a mighty 12
stories, was completed in 1884 and it is widely considered to be the first tall building of
the industrial era. Architects Louis Sullivan and Dankmar Adler were the first to use the
term “tall office building” in 1896.
Owing to technological marvels, the development of technology and manufacturing tech-
niques has grown rapidly. This has enabled architects and engineers to successfully ac-
complish engineering feats, erecting buildings higher than ever before while complying
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with established safety regulations. These buildings are built primarily for office work
activities. Entire business districts hence have evolved.
Later, motivated by the massive concentration of urban areas, tall buildings were adopted
for housing. Thus, the number of high-rise buildings increased tremendously over the
years, as shown in Fig. 1.2.

Figure 1.2: Number of 200 m+ buildings completed each year from 1960 to 2015, with projections through 2017
(CTBUH, 2015).

The term, "tall building" is not strictly defined. It depends on people’s perception and
the geographical location. However, from an engineering perspective, a building can be
considered tall when its height and slenderness influence the design. Slenderness can
be defined as the ratio between the height and the length of the base of the building.
Generally, high-rise buildings have high slenderness ratios. This is opposite to the struc-
tures built decades and centuries in the past. The Egyptian pyramids, for example, have
very low slenderness. For many years, the main demand of a building from the struc-
tural perspective was to ensure its structural integrity. Therefore, the main design crite-
ria were related to the ultimate limit state (ULS). Nowadays, besides ensuring structural
integrity, modern buildings must fulfil many other serviceability conditions related to
comfort (e.g. air quality, sunlight). From the structural perspective, serviceability should
ensure that building motions generated by environmental loads do not exceed certain
thresholds that may affect the comfort of building occupants. Thus, the main design
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criteria of modern tall buildings are more closely related to the serviceability limit state
(SLS).

1.2. PROBLEM STATEMENT AND PURPOSE OF THE STUDY
Buildings are becoming taller, slenderer and lighter. The large increases in height make
buildings more sensitive to dynamic loads, such as wind. Strong wind gusts make tall
buildings oscillate. This phenomenon is commonly referred to as wind-induced vibra-
tions. Generally, they do not lead to structural safety issues because of their generally low
amplitudes. However, they can generate the perception of insecurity, creating a nuisance
to the building occupants. The construction industry is therefore aware of the impor-
tance of providing high levels of comfort in terms of structural serviceability. Otherwise,
common activities of living and working with others (Fig. 1.3) could not be carried out
adequately.

Figure 1.3: Number of 200 m+ buildings completed by sorted by function (CTBUH, 2015).

Structural serviceability is directly related to the accelerations experienced by buildings
caused by environmental loads. Dynamic systems are governed by mass, stiffness and
damping. Damping determines the maximum building accelerations, and thus becomes
the main design parameter of SLS. Current damping predictors are quite rudimentary,
leading to a large discrepancy between predicted and measured damping values. This is
because generally damping cannot be determined until after the building is constructed.
In some cases, systems generating additional damping in a building are installed. Nowa-
days, there is a wide range of additional damping systems available. The selection de-
pends on the structural system, the external forces (e.g. wind loading) and the required
performance criteria of the building. To install an additional damping system, several
essential aspects must be accounted for in the design of the building and the additional
damping system. This makes the erection of buildings extremely expensive and intro-
duces new unknowns to the building design. Therefore, in many situations, the installa-
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tion of an additional damping system is not the most desirable solution.

In summary, erecting tall buildings that guarantee high standards of comfort has become
a real challenge for structural engineers and constructors. It is therefore the purpose of
this research to develop and provide tools to improve damping predictions in high-rise
buildings during the design stage.

1.3. STATE-OF-THE-ART DAMPING PREDICTION OF TALL BUILD-
INGS SUBJECT TO WIND

Currently, damping predictors exist to assess damping in buildings under wind excita-
tions both in the Serviceability Limit State (SLS) and the Ultimate Limit State (ULS). Gen-
erally, wind-induced vibrations lead to low-amplitude oscillations related to the build-
ing’s SLS. However, if wind gusts are sufficiently strong, ULS’s related to large displace-
ments can be reached. Davenport and Hill-Carrol [1] were the first to define intrinsic
material damping, radiation damping, frictional damping and aerodynamic damping
as primary mechanisms of energy dissipation in a tall building subject to wind loads.
They suggested a damping predictor based on full-scale measurements for the SLS of
tall buildings. Jeary [2, 3] also described different mechanisms of energy dissipation in
a building and progressed further with the concept of amplitude dependent damping
showing the relevance of the friction damping caused by crack formation during high
amplitude vibrations and establishing a relationship between damping and vibration
amplitude. He therefore distinguished three damping regimes with respect to the build-
ing vibration amplitude. The first regime is low-amplitude building vibration, where
damping is constant with respect to the amplitude. In the second regime, total damp-
ing increases with the amplitude of building vibration. The third regime represents the
very-high vibration amplitudes related to earthquake scenarios. Each damping regime is
named as follows: low-amplitude plateau; non-linear regime and high-amplitude plateau.
Accordingly, he developed a damping predictor based on full-scale measurements to de-
termine damping in the low-amplitude plateau and the non-linear regime. The high-
amplitude plateau cannot be described by his predictor, because it is out of the scope of
wind-induced vibrations. Lagomarsino [4] claimed that the main mechanism of energy
dissipation in steel buildings should be related to the friction in the joints. Thus, material
damping was considered negligible. Consequently, he developed a theoretical model to
predict friction damping in a building. However, he concluded that the model was not
directly applicable, so he developed an empirical formula based on full-scale measure-
ments. Tamura [5] formulated a damping predictor based on full-scale measurements
and the Jeary’s concept of amplitude-dependent damping, distinguishing between steel
and concrete buildings. He also implemented a friction model to describe the primary
mechanism of damping during wind induced vibrations [6, 7].

Whereas SLS-based knowledge in tall-building design has grown tremendously over the
years, the above described damping predictors provide an unacceptable deviation with
respect to the experimentally identified damping values of instrumented buildings lo-
cated in The Netherlands. Therefore, erecting tall buildings that fulfil comfort demands
remains a challenge.
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1.4. RESEARCH OBJECTIVE AND APPROACH
It is known that damping determines accelerations experienced by the building during
the vibration process. Furthermore, exceeding certain acceleration thresholds may lead
to a nuisance for the building inhabitants. It is therefore the aim of this work to improve
damping prediction in tall buildings by studying the contribution of the various damping
sources activated during building vibration to the total damping.
From the literature, it is reasonable to distinguish the sources of energy dissipation in a
building, as described in Fig. 1.4

MLBS: Main load bearing structure

NSE: Non-structural elements

Aero: Aerodynamic load 

SSI: Soil-Structure interaction

Figure 1.4: Sources of energy dissipation in a tall building.

Each energy dissipation source described in Fig.1.4 may be governed by one or more
damping mechanisms. The main load-bearing structure (MLBS) dissipates energy at
the material level caused by the deformation of the material. If large deformations occur,
cracks in the material can appear, creating an additional source of energy dissipation to
non-linear damping. The same behaviour is expected from the non-structural elements
and joints. At low vibration amplitudes these elements help to dissipate energy via sim-
ple deformation. However, when vibration amplitudes are sufficiently large, non-linear
behaviour, caused by friction between surfaces, is expected. With soil-structure inter-
action (SSI), two main mechanisms of energy dissipation can be distinguished. Wave
radiation occurs when building vibrations excite waves in the soil, and material damp-
ing occurs with the dissipation of energy due to the friction between the soil particles.
Aerodynamic damping is introduced by the wind surrounding the structure, and it is the
most extensively studied one [1, 8].
To improve damping prediction, problem simplification by identifying the contribution
of each damping source separately is called for. Unfortunately, this is not straightforward
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with current modal based identification techniques, because they do not allow identifi-
cation of energy dissipated in a specific structural location, unless sufficient number of
modes are included. However, the higher modes are difficult to measure.
To deal with this drawback, energy-flux analysis is developed and used in this thesis. The
energy flux is a well-established concept in several research fields [9–19], but not in the
field of structural mechanics. The energy-flux analysis for damping identification may
be seen therefore as a novel approach. This method allows us to isolate certain parts of
the structure accounting for the energy exchange by means of the energy flux. Having
computed the energy content of a specific part of a structure, and the energy exchanged
at chosen boundaries, the energy dissipated within those boundaries can be computed.
Then, a damping force based on the computed energy dissipation can be determined.
In this work, energy-flux analysis is first applied for damping identification on a lab-scale
beam. Then, a more complex lab-scale structure is used for identification of energy dis-
sipation at the connections. Finally, the energy method is used to study the damping
contributions of the foundation and superstructure in a full-scale structure. As a final
contribution to this work, the combination of well-established models with experimen-
tal data is used to provide insight and to establish the basis for further research into the
application of the method.

1.5. THESIS OUTLINE
This thesis contains two parts: experimental measurements and modelling, divided into
seven chapters. Chapter 2 deals with experimental measurements and the definition of
comfort criteria. Chapter 3 presents the groundwork for modelling. Chapters 4 and 5
present lab- and full-scale experiments with modelling. In Chapter 6, basic mechanical
models are used for damping prediction at the design stage of a high-rise building.
Chapter 2 describes the measurement campaigns conducted for several buildings lo-
cated in The Netherlands. Experimental data are presented using the power-spectral
density (PSD) function for better comprehension. This helps us, identify the resonant
frequencies of the buildings. To identify building damping, two techniques are used:
half-power bandwidth (HPBW) method and the random decrement technique (RDT).
The HPBW method is a technique based on a single-degree-of-freedom (SDoF) system
in the frequency domain. Thus, only an equivalent damping value for the whole struc-
ture can be identified. The RDT is a time-domain technique with the ability to assess
damping at a certain vibration frequency. The collected data from the measurements are
used in analytical models for damping identification and comparisons. Well-established
damping predictors are used to identify the effective modal damping of the instrumented
buildings. Moreover, based on insight provided by the established predictors and the
data extracted from instrumented buildings, a damping predictor is proposed. Finally, a
relation between the measured accelerations and human vibration perception is made
using established criteria.
In Chapter 3, beam models and the energy variation law for modelling high-rise build-
ings is described. Classical beam theory is used for this. Equations of motion and energy
variation law are derived, making use of the Lagrange formalism. In this chapter, the
focus is placed on the axial and flexural deformations, whereas a brief description of the
Saint-Venant torsional theory is also given. The energy variation law is later used as the
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groundwork for damping identification in high-rise buildings.
In Chapter 4, the energy-flux analysis is used to identify the overall damping of a lab-
scale beam. The energy balance is formulated around the scale-beam, and the energy
dissipated is quantified using the experimental data. The quantified energy dissipation
is assumed to be caused by material damping, and the result is compared to damping
identified directly (without the use of the energy-flux analysis) from experimental mea-
surements. Second, damping in the joints of a lab-scale steel-frame structure is iden-
tified. In this case the energy balance is formulated in the vicinity of the joints of the
structure to quantify the energy dissipated. Damping matrices are built from identified
energy dissipation. Finally, the results are compared with the directly identified modal
damping.
In Chapter 5, the energy dissipation in the superstructure and the soil-foundation inter-
action of a tall building located in The Netherlands is identified independently of each
other by means of the energy-flux analysis. This is done by formulating the energy bal-
ance in the superstructure and the soil-foundation separately. For the energy balance,
the energy-flux term connects these structural parts by accounting for the energy that
flows from one part to another.
In Chapter 6, basic mechanical models of high-rise buildings are used to model high-rise
buildings to study the damping contribution of different energy dissipation sources to
the total damping. Thus, a beam model, combined with springs and dashpots attached
at one end mimicking SSI, is used. The springs and dashpots representing the resistance
and dissipative capacities of the soil are quantified by the cone model.
Chapter 7 provides the main conclusions of this thesis.





2
FULL-SCALE MEASUREMENTS

In this chapter, equivalent viscous damping ratios associated with lower vibration modes
of several instrumented tall buildings subject to wind-induced vibrations in The Nether-
lands are identified by means of two techniques: half-power bandwidth (HPBW) and
random decrement technique (RDT). The HPBW is a frequency-domain technique based
on the dynamics of a SDoF system, in which an equivalent viscous damping at the res-
onance frequency is identified. RDT is a time-domain technique, from which an equiv-
alent viscous damping at a specific mode can be identified. Two techniques are used,
because they provide complementary insight and enable a comparison of the identi-
fied damping. A point of interest to structural engineers is that this method provides
practical insights into damping prediction. It seems customary to first use available
damping predictors to assess the usability of those in the instrumented buildings. Then,
the outcome of the predictors with the damping identified by means of the RDT can be
compared. Therefore, a damping predictor based on the collected data from the instru-
mented buildings is proposed.
Finally, the evaluation of the building’s serviceability, per the measured accelerations in
the instrumented buildings, is studied using the H. van Koten criteria. Thus, the impact
of vibrations to the well-being of building occupants and the expected damages to the
structure can be evaluated.

2.1. THEORY OF WIND-INDUCED VIBRATIONS
Structural vibrations originated by wind are caused by the wind velocity variations around
the building. Wind velocity grows with altitude and decreases near the earth’s surface be-
cause of obstacles. An illustration of wind-speed growth profile with respect to height is
given in Fig. 2.1.
Wind speed comprises a mean and a fluctuating component, as shown in Figure 2.1.
Thus, the wind pressure can be approximated as follows,

pwind = 1

2
ρair (V (z)+ ṽ(z))2 ≈ 1

2
ρairV (z)2 +ρairV (z)ṽ(z), (2.1)

9
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Figure 2.1: Wind profile.

where V (z) is the mean wind-speed component, ṽ(z) is the fluctuating component; and
it is assumed that |ṽ(z)| << V (z). An expression to assess the mean wind speed with
respect to height can be formulated from the fluid dynamics theory, as shown in Eq. 2.2
[20].

V (z) = v(h0)
ln

(
z−d

z0

)
ln

(
h0−d

z0

) (2.2)

where v(h0) is the average wind speed, d is the height of the building, z0 is the roughness
determined by the terrain and h0 is the reference height. This expression gives a good
approximation for heights lower than 200m. Alternatively, the mean wind speed can be
calculated using the following expression [20]:

V (z) = v(h0)

(
z −d

h0

)α
(2.3)

where α is the power-law exponent. Forces acting upon structures from wind gusts ap-
pear in the three main directions: along-wind, cross-wind and torsional. Along-wind
is important for buildings with rectangular shapes, whereas cross-winds affect circular-
shaped buildings. Wind gusts contain a turbulent part associated with the mean wind
speed, as shown in Fig. 2.1. This turbulence is largest in the direction of the mean
wind speed. However, it is present in all directions. It is convenient for design pur-
poses to compute the turbulent part of the wind in the frequency domain. Several re-
searchers [21] have developed analytical expressions for along-wind amplitude spec-
trum responses. In Eurocode EN 1991-1-4, the frequency spectrum is described by Eq.
2.4 [22].
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SL( f , z) f

σ2
L

= 6.8 fL( f , z)

(1+10.2 fL( f , z))
5
3

(2.4)

where f is the frequency in Hertz. Then,

σ2
L = 5.13

( z0

0.05

)α
(2.5)

and

fL( f , z) = f L(z)

V (z)
L(z) = 300

[ z

200

]α
α= 0.67+0.05ln(z0). (2.6)

The Solari spectrum, computed by means of Eq. 2.4, is shown in Fig. 2.2.

10-2 10-1 100
0

0.05

0.1

0.15

0.2

0.25
Frequency range of the lower frequency
modes for typical tall buildings

Figure 2.2: Solari spectrum amplitude.

From Fig. 2.2, it can be noted that the frequencies enclosed in the tail of the spectrum
coincide with lower-frequency modes for typical tall buildings. Whereas these modes
are enclosed within the low-energy content of the spectrum, the energy is sufficient to
make the buildings vibrate. Thus, if the frequency of the excitation load coincides with
a natural frequency of the structure, the latter may resonate without the need of intro-
ducing large-energy content. To use the Solari spectrum as an input to perform calcu-
lations of wind-induced vibrations, the term, SL( f ) should be computed. For a typical
tall building, this results in negligible energy content in frequency ranges larger than 2
Hz. Consequently, higher frequency modes of tall structures are not excited. This be-
haviour can be observed in the performed measurements shown in Section 2.4, where
only the fundamental modes of each vibrational direction (two translational directions
and torsion) are identified, whereas the higher modes are hidden in the measurement
noise.
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2.1.1. WIND-INDUCED ACCELERATIONS IN STRUCTURAL DYNAMICS
Generally, tall structures are designed with rectangular shapes. Thus, along-winds gen-
erate the largest building accelerations. Tall structures are usually modelled by means
of an SDoF system for dynamic analysis. The equation of motion for a structural system
subject to a general load can be described as shown in Eq. 2.7.

ẍ(t )+2ξω0ẋ(t )+ω2
0x(t ) = F (t )

M
(2.7)

with,

ω0 =
√

K

M
and ξ= C

Cr
= C

2
p

K M
, (2.8)

where M is the mass, K is the stiffness, ξ is the damping ratio and F (t ) represents a
generalized external load. For a system subject to wind loading, the external force, F (t ),
can be formulated by means of the fluctuating part of the wind, as follows:

F (t ) = ρairCD AV ṽ(t ), (2.9)

where F (t ) results from multiplying the fluctuating part of the wind-pressure equation
(Eq. 2.1) by the building area, A, and introducing a drag coefficient, CD. The spectral
density SF(ω) of the wind force is obtained by assessing the auto-correlation function
RF(τ) of the force, F (t ).

RF(τ) = lim
T→∞

1

T

∫ T /2

−T /2
F (t )F (t +τ)dτ= ρ2

airV 2 A2C 2
Dṽ(t )ṽ(t +τ) (2.10)

By applying the Fourier transform to Eq. 2.10, the following expression can be written:

SF(ω) =
∫ ∞

−∞
RF(τ)e−iωτdτ= ρ2

airV 2 A2C 2
DSu(ω) (2.11)

where Su(ω) is the spectral density of the turbulent wind speed and ω is the circular
frequency (ω= 2π f ). In practice, the aerodynamic admittance, χ2, is used to account for
the incomplete coherence of the wind loads in space and the disturbance of the wind by
presence of the building [23]. In Eurocode EN 1991-1-4, this is expressed as:

χ2 = RhRb , (2.12)

where

Rh = 1

ηh

1−e−2ηh

2η2
h

; Rb = 1

ηb

1−e−2ηb

2η2
b

; (2.13)

and

ηh = 4.6 f h

V h0
; ηb = 4.6 f b

V h0
, (2.14)

where h is the building height, and b is the building width. Alternatively, an empirical
expression, for a flat plate, suggested by Vickery [24] is described in Eq. 2.15.
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χ= 1

1+
[

2 f
p

A
V (z)

]4/3
(2.15)

Introducing the aerodynamic admittance, Eq. 2.16 can be rewritten as

SF(ω) = ρ2
airV 2 A2C 2

Dχ
2Su(ω). (2.16)

Now, applying the Fourier transform to Eq. 2.7, the following expression can be derived:

x̃(ω) = H(ω)F̃ (ω), (2.17)

where the modulus of the mechanical admittance, H(ω), often called the frequency re-
sponse function (FRF) appears as follows:

|H(ω)| = 1

K

1√(
1−Ω2

)2 + (2ξΩ)2
where Ω= ω

ω0
. (2.18)

Using random vibration theory [25], the power spectrum response of a system subject to
wind loading can be determined as

S(ω) = |H(ω)|2SF(ω). (2.19)

The square of the absolute value of the mechanical admittance, |H(ω)|2, is nearly zero
for most of frequency range. However, it is large near the natural frequency, ω0, when
the damping, ξ, is small, as shown in Fig. 2.3.

0 1 3
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Figure 2.3: Square of the mechanical admittance amplitude of a SDoF system with various damping ratios.

Thus, the multiplication of mechanical admittance, |H(ω)|2, by the fluctuating part of
the wind, SF (ω), the response spectrum adopts the combined shape of both spectra, as
shown in Fig. 2.4.



2

14 2. FULL-SCALE MEASUREMENTS

1 2
0

10

20

30

40

50

60

Figure 2.4: Response-spectrum amplitude resulting from multiplying the square of the mechanical admittance
by the frequency-spectrum amplitude of the fluctuating part of the wind, based on the Solari spectrum.

The smallest hump at the lower frequency range shown in Fig. 2.4 corresponds to the
higher- energy content of the wind spectrum, whereas the larger peak of the frequency-
response spectrum corresponds to the resonance peak of the system.

2.2. DAMPING IDENTIFICATION TECHNIQUES
Standard identification techniques (e.g. HPBW, RDT) enable us to compute a damp-
ing ratio for each mode of the entire structure, if the modes are well-separated, because
these techniques are based on a SDoF system and assume that a structural system is
reduced to an equivalent mass, spring and dashpot system. More advance techniques
based on multiple-degrees-of-freedom (MDoF) systems allow us to compute damping
ratios for different parts of the structure. However, this is only possible if sufficient num-
ber of modes are included in the analysis. This is hardly applicable to tall structures
subjected to wind, because higher frequency modes are not excited. Therefore, it is cus-
tomary to use SDoF techniques for damping identification in tall buildings.

2.2.1. HPBW METHOD

The HPBW technique enables us to identify the natural frequency of a system based on
the location of the spike in the frequency-response function. Computing the damping
ratio of a SDoF system with viscous-damping is as follows. First, the equation of motion
is formulated:

ẍ(t )+2ξω0ẋ(t )+ω2
0x(t ) = F (t )

M
(2.20)

Applying the Fourier transform to Eq. 2.20 we obtain the following expression:
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(−ω2 + i2ξωω0 +ω2
0

)
x̃(ω) = F̃ (ω)

M
(2.21)

where

x̃(ω) =
∫ ∞

−∞
x(t )e−iωt dt and F̃ (ω) =

∫ ∞

−∞
F (t )e−iωt dt . (2.22)

Solving Eq. 2.21 for ω2
0 the following expression is obtained:

x̃(ω) = F̃ (ω)

K

1

−Ω2 + i2ξΩ+1
where Ω= ω

ω0
. (2.23)

The PSD of a dynamic system is defined as

S(ω) = x̃(ω)x̃∗(ω) = |x̃(ω)|2 =
( |F̃ (ω)|

K

)2
1

|Ω2 −2iξΩ−1|2 . (2.24)

The quality factor and the resonant frequency of a damped system are defined as

Q =
∆Ω 1

2

Ωres
=
Ω+

1
2

−Ω−
1
2

Ωres
; Ωres =

√
1−2ξ2, (2.25)

whereΩ+
1
2

andΩ−
1
2

correspond to the frequencies at which the PSD function is half of the

maximum value. After some manipulations of Eqs. 2.24-2.25, a general expression for
the damping ratio of a SDoF system can be obtained in terms of the quality factor.

ξ= 1p
2

√√√√√
−Q4 +4Q2 +4−2√
−Q4 +4Q4 +4

(2.26)

Generally, for low-damped systems, it can be assumed that Q << 1. In these cases, the
damping ratio can be approximated by the following expression:

ξ≈ 1

2
Q =

∆Ω 1
2

2Ωres
. (2.27)

2.2.2. RDT
RDT was developed by Cole in the 1960s [26, 27]. It is based on the logarithmic decre-
ment technique [28], which allows calculation of the equivalent viscous damping ratios
of an SDoF system. An exponentially decaying response is achieved by allowing a sys-
tem to vibrate freely. The logarithmic decrement technique is not directly applicable for
damping identification in buildings subject to wind loads, because wind-loading does
not produce exponential decay responses in buildings during vibration. However, by us-
ing the RDT, the exponential decay response can be recovered from a random system
response.
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PRINCIPLE OF RDT
The fundamental principle of RDT is based on the fact that the dynamic response of a
linear system is composed by the sum of a free xh(t ) and a forced xp(t ) responses. The
free response depends on initial conditions of the system (i.e. displacements and veloc-
ities) and the forced response depends on external loads applied to the dynamic system.
Therefore, the dynamic response of a linear system can be described in the following
form:

x(t ) = xh(t )+xp(t ) = xx0
h (t )+xv0

h (t )+xp(t ) (2.28)

To apply RDT, a finite uniform time segment of duration τ is chosen and a level-crossing
x0 is selected. Those time moments at which the signal crosses a predefined level x(tr ) =
x0 are considered as initial time moments. The parts of the signal, starting at each initial
time moment, tr , enclosed in a segment x(tr + τ) are averaged and overlapped. This
results in a function δ(τ) as shown in Fig. 2.5.

Figure 2.5: Time segments of a random response signal.

Thus, δ(τ), can be defined as:

δ(τ) = 1

N

N∑
r=1

x(tr +τ) (2.29)

As the number of averages, N , increases, the part of the response corresponding to the
initial velocity at t = tr as well as the part excited by the random external force vanish,
such that:

N∑
r=1

xh(tr +τ)|v0 ≈ 0;
N∑

r=1
xp(tr +τ)| f ≈ 0. (2.30)

This behaviour is demonstrated in Fig. 2.6.
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Figure 2.6: Averaged time segments of a random response signal.

Finally, the remaining part of the signal will be an exponentially decaying function, ow-
ing to its initial displacement, i.e:

x(t ) ≈ xx0
h (t ) ≈ 1

N

N∑
r=1

x(tr +τ) (2.31)

An equivalent viscous damping ratio can be evaluated from the exponential decay func-
tion by means of the following expression:

ξ= 1√
1+

(
2π

ln(xn /xn+1)

)2
(2.32)

where xn and xn+1 represent the amplitude of two successive peaks. If the crossing
points x0 are set at different levels, an equivalent viscous damping ratio with respect
to each initial displacement x0 can be identified. Relating each initial displacement to
the vibration amplitude of a system an equivalent viscous damping with respect to the
vibration amplitude is said to be identifiable [29–32].

2.3. BUILDINGS DESCRIPTION
Prior to this work, several tall buildings located in The Netherlands were instrumented by
TNO, The Netherlands Organisation for Applied Scientific Research, and measurements
were performed under relatively strong wind conditions. The measurements were car-
ried out to identify the natural frequencies of the structures and the damping ratio asso-
ciated to each frequency. To this end, accelerometers were used. The disposition of the
accelerometers at each of the instrumented buildings was chosen such that the lower
modes could be identified.



2

18 2. FULL-SCALE MEASUREMENTS

2.3.1. THE CHURCHILL TOWER
The Churchill Tower is a 70 m office building with 24 storeys. The building was erected
in the early 70s and renovated 30 years later. The Churchill Tower is a concrete building
with a rectangular shape. The horizontal stability of the building is achieved by the main
core. The floors span from the main core to the external columns. The vertical loads on
the floors are transferred to the hidden beams, as shown in Fig. 2.7. The beams transfer
the loads to the columns and the core. These elements transfer the loads directly to the
foundation.
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Figure 2.7: Churchill Tower layout, instrumentation set-up and measurement wind conditions.

The building was instrumented with six Sundstrand accelerometers at the highest possi-
ble location of the tower (storey 21st), as shown in Fig. 2.7. Accelerometers 1,3 and 5 were
placed along the short horizontal dimension measuring in the stiff direction. Accelerom-
eters 1, 3 and 5 were placed along the short horizontal dimension in the stiff direction.
Accelerometers 2, 4 and 6 were located along the long horizontal dimension measuring
in the weak direction. Accelerometers 4 and 6 help identify the torsional vibration.

2.3.2. THE ERASMUS MEDICAL CENTER (E.M.C)
The new E.M.C is a building of an approximately 120 m high. The building has a rect-
angular shape. The horizontal stability of the building is accomplished by means of a
concrete core and a tube, as shown in Fig. 2.8. The lower part of the concrete core is
made in situ, whereas the larger part of the core, tube and floors are made with prefab-
ricated concrete. The floors are connected to the core and the tube. The wind-induced
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loads are transferred to the foundation via the tube principally, but also from the core.
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Figure 2.8: E.M.C. layout, instrumentation set-up and measurement wind conditions.

The building was instrumented with six Sundstrand accelerometers at the top storey,
as shown in Fig. 2.8. Three accelerometers (1, 3, and 5) were placed along the short
horizontal dimension measuring in the stiff direction. The other three accelerometers
(2, 4, and 6) were located along the long horizontal dimension measuring in the weak
direction.

2.3.3. THE MONTEVIDEO TOWER

The MonteVideo Tower is an approximately 150 m high multi-use building with 43 storeys.
The tower of a rectangular shape was built using concrete and steel. The bottom part of
the structure (up to the 2nd floor) is composed by a concrete core and a steel brace. In the
middle part of the structure (from the 2nd to the 27th floor) horizontal stability is given
by the concrete core. In the upper part of the structure (from the 27th floor to the top),
the MLBS consists of a steel frame. Wind loads are transferred from the outside walls to
the main concrete core through the concrete floors. The tower shares a foundation with
an adjacent low-rise building separated by a small dilatation.
In this case study, the tower was instrumented at two levels using 11 Sundstrand ac-
celerometers. Six were placed at the 27th floor, corresponding with the highest point of
the concrete part of the structure. The other five were placed at the 42nd floor, corre-
sponding to the highest accessible point of the building. In this case study, it becomes
more difficult to intuitively identify the direction of vibration in the lower mode, owing to
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Figure 2.9: MonteVideo Tower layout, instrumentation set-up and measurement wind conditions.

the almost square shape of the building. However, the instrumentation strategy is simi-
lar to the previous case studies for identifying the lower modes. Accelerometers 7, 8 and
10 at the 42nd floor and accelerometers 1, 3 and 5 at the 27th floor were placed to mea-
sure the Y-direction, as shown in Fig. 2.9. Accelerometers 9 and 11 at the 42nd floor and
accelerometers 2, 4 and 6 at the 27th floor were placed along the X-direction, as shown
in Fig. 2.9.

2.3.4. THE OVAL TOWER
The Oval Tower is a 25 storey office building 94 m high. It is named as such because of its
oval shape. The MLBS consists of two concrete cores, and the floors span from the main
core to the outside aluminium walls, as shown in Fig. 2.10.
The tower was instrumented making use of six Sundstrand accelerometers placed at the
top storey. Despite the unusual shape of the building, the instrumentation strategy is
similar to the ones used in previous case studies. Accelerometers 1, 3 and 6 were placed
along the short horizontal dimension measuring in the stiff direction, and accelerome-
ters 2, 5 and 6 were placed along the long horizontal dimension to measure accelerations
in the weak direction.

2.3.5. THE HOFTOREN
The Hoftoren is a 142 m high office building with 31 storeys. The tower has an irregular
shape and it is attached to a low-rise building 53 m high. The horizontal stability of the
tower is provided by two concrete cores. The prefabricated concrete floors span from the
concrete cores to the outside columns supporting the outside walls.
The tower was instrumented making use of six Sundstrand accelerometers at the rooftop.
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Figure 2.10: Oval Tower layout, instrumentation set-up and measurement wind conditions.

Accelerometers 2, 3, and 5 were placed along the long horizontal dimension to measure
accelerations in the weak direction. Accelerometers 1, 4, and 6 were placed along the
short dimension to measure accelerations in the stiff direction.

2.4. FIELD MEASUREMENTS
Acceleration measurements were carried out under strong wind conditions, as shown in
Figs. 2.7-2.11. Specifications of the instrumentation are summarized in Table 2.1.
Acceleration data were recorded and stored in sub-samples of 10 min each. After some
data processing, time traces of each sensor were transformed into the frequency domain
for identification.
PSD functions of the measurements depicted in Fig. 2.12 show that the accelerome-
ters recorded signals at all resonant frequencies. This means that the direction of the
accelerometers did not correspond with the principal direction of the modal vibration.
Therefore, modal analysis techniques based on SDoF could not be directly applied. To
deal with this challenge, the accelerometers signatures were manipulated by means of
rigid body kinematics, as described in Eq. 2.33.

~vB =~v A +~Ω×~r B
A (2.33)

Assuming the floors of the buildings behave as rigid bodies, the velocity at any point,
~vB , can be computed as the velocity at a certain point, ~v A , plus the angular velocity, ~Ω,
times the distance from A to B (~r B

A ). This leads to the results shown in Fig. 2.13. Having
separated the signals to a singular mode, SDoF-based techniques can be applied.
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Figure 2.11: Hoftoren layout, instrumentation set-up and measurement wind conditions.

Figure 2.12: PSD function of the instrumented buildings.
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Sensors Characteristics
The Churchill Tower Accelerometers Filtering 5Hz
Day: 25-11-2005 Sampling frequency 100 Hz
time: 10:00 - 12:00h am Calibration range 19.62 V/m/s2

Voutput 9.81 V
The E.M.C Accelerometers Filtering 5Hz
Day: 6-9-2011 Sampling frequency 50 Hz
time: 18:00 to 20:00h pm Calibration range 19.62 V/m/s2

Voutput 9.81 V
The Montevideo Tower Accelerometers Filtering 10Hz
Day: 18-11-2009 Sampling frequency 50 Hz
time: n.a Calibration range 19.62 V/m/s2

Voutput 9.81 V
The Oval Tower Accelerometers Filtering 5Hz
Day: 4-1-2002 Sampling frequency 100 Hz
time: n.a Calibration range 19.62 V/m/s2

Voutput 9.81 V
The Hoftoren Accelerometers Filtering 10Hz
Day: 31-1-2008 Sampling frequency 50 Hz
time: 14:00 to 17:00h pm Calibration range 19.62 V/m/s2

Voutput 9.81 V

Table 2.1: Instrumentation description.

Figure 2.13: Single-mode PSD functions of the instrumented buildings.

The natural frequencies of the buildings can be straightforwardly identified by matching
the spikes of the spectrum with the horizontal (frequency) axis. The equivalent viscous
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damping ratio associated to each natural frequency is identified using Eq. 2.27. A sum-
mary of the identified damping ratios for each building is shown in Table 2.2.

fx [Hz] fy [Hz] fφ[Hz] ξx % ξy % ξφ%
The Churchill Tower 0.54 0.79 0.68 1.9 1.6 2.5
The E.M.C 0.53 0.68 1.28 1.7 2.0 1.95
The Montevideo Tower 0.41 0.49 1.06 1.4 1.28 1.2
The Oval Tower 0.40 0.57 0.82 1.4 1.2 1.0
The Hoftoren 0.39 0.60 1.05 2.2 1.88 1.43

Table 2.2: Damping ratio of the lower modes of the studied buildings.

The subscripts x, y and φ , correspond to the X-direction, Y-direction and torsion, re-
spectively. The RD technique enables us to identify the equivalent viscous damping
ratios associated with each mode (natural frequency) with respect to the building ac-
celeration. The identified damping ratios obtained by means of the HPBW and the RDT
for the first mode ( fx ) in the X-direction of the studied buildings are shown in Fig. 2.14.
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Figure 2.14: Damping identified in the first vibrational mode ( fx ) of the instrumented buildings by means of
the HPBW technique and the RD technique.

Figure 2.15 shows the identified damping ratios by means of HPBW and the RDT of the
second vibration mode ( fy ) in the Y-direction.
In Fig. 2.16, the damping ratios for the torsional vibration mode ( fφ), in the φ-direction,
are identified.
In Figs. 2.14-2.16, the ẍ, the ÿ and the r φ̈ quantities of the horizontal axis represent the
horizontal and torsional maximum accelerations at the measurement height in the X, Y
and φ directions, corresponding to Figs. 2.7-2.11.The maximum accelerations in each
direction were achieved, meeting the acceptable limiting factor demanded by the RDT
for reliability of 100 averages over a time segment of the signal.
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Figure 2.15: Damping identified in the second vibrational mode ( fy ) of the instrumented buildings by means
of the HPBW technique and the RD technique.
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Figure 2.16: Damping identified in the third vibrational mode ( fφ) of the instrumented buildings by means of
the HPBW and the RD techniques.

From Figs. 2.14-2.16, both identification techniques gave comparable results. Based on
the RDT results, a constant damping ratio within the measured acceleration range is
found. However, in the first mode of the E.M.C building, a slight damping increase with
increasing acceleration was observed. In Fig. 2.14 the case of the Oval Tower shows a
large scatter in the identified damping.
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2.5. DAMPING PREDICTORS IN THE STUDIED BUILDINGS
Damping in high-rise buildings is a topic of great interest for structural engineers. This is
because damping is the key parameter that limits the vibration amplitude in a building
and helps to achieve the comfort level demanded by building occupants. However, mak-
ing damping predictions during the design stage remains problematic, because damping
has a very complex nature. In a tall structure, the overall damping is affected by several
sources of damping. In this section the usability of several well-established damping
predictors is tested in the instrumented high-rise buildings. Moreover, a damping pre-
dictor adjusted to the characteristics of the instrumented buildings and based on the
existing predictors is proposed.

2.5.1. THE USE OF EXISTING DAMPING PREDICTORS
Damping in tall buildings has been studied extensively. Thus, several damping predic-
tors have been developed. Principally, these predictors were developed for engineers to
use during the design stage of a tall building. It seems straightforward to then compare
the predicted damping of the studied buildings with that obtained by means of mea-
surement. This comparison is performed using four damping predictors. The predictor
developed by Lagomarsino [4] shown in Eq. 2.34 describes the Rayleigh-damping. It
does not depend on the vibration amplitude.

ξLago =α fn + β

fn
(2.34)

where fn is the fundamental frequency (Hz), and α and β are material-dependent con-
stants. The Davenport’s damping predictor [1] is described in Eq. 2.35.

ξDav = A

(
∆

H

)n

(2.35)

where H is the building height, ∆ is the design RMS horizontal vibration amplitude and
A and n are material-dependent constants. Davenport and Lagomarsino damping pre-
dictors do not depend on vibration amplitude. Results of the damping prediction by
means of the Lagomarsino and Davenport predictors are summarized in Table 2.3.

ξDav% ξLago%
The Churchill Tower 0.66 1.66
The E.M.C 0.55 2.12
The Montevideo Tower 0.7 2.5
The Oval Tower 0.55 1.8
The Hoftoren 0.68 2.39

Table 2.3: Damping ratio of the first mode calculated by means of the Davenport and Lagomarsino damping
predictors for the studied buildings.

The other predictors used in this study are Jeary’s and Tamura’s damping predictors.
Jeary developed his predictor based on two damping regimes: 0-amplitude (ξ0), and the
amplitude-dependent regime (ξI). The 0-amplitude regime might mislead the reader,
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given that, at 0 amplitude, damping must be zero. This regime is actually for very low
amplitudes of vibration. In this regime, damping is constant with respect to the am-
plitude of vibration. According to Jeary’s theory, the overall damping in the structure is
caused by the construction material, given that the material behaves elastically. The en-
ergy is dissipated because of the strain in the material and the large structural elements
that move relative to each other. Several observations made by Jeary support the the-
ory of the existence of damping associated with very-low vibration amplitudes. These
observations also suggested that, at these amplitudes, damping correlates with the fun-
damental frequency. Therefore, the following expression is used for the Jeary damping
predictor to compute the 0-amplitude damping:

ξ0 = fn = 0.01
46

H
(2.36)

where, fn is the fundamental frequency of vibration that can be estimated by means of
the empirical formula derived by Ellis [33]. However, according to Tamura’s theory, the
frequency-dependent damping term is related to radiation damping, owing to SSI, which
dominates for lower-rise buildings with shorter frequency periods. The amplitude de-
pendent regime is defined by Jeary as a non-linear region caused by the formation and
rapid elongation of micro-cracks in the material. Elongated cracks create a sink for en-
ergy loss. Therefore, this involves friction damping. The amplitude-dependent damping
term in Jeary’s damping predictor can be computed as shown in Eq. 2.37.

ξI = 10
p

D
2

x

H
(2.37)

The full damping predictors developed by Jeary and Tamura are described in Eqs. 2.38-
2.40, respectively.

ξJeary = ξ0 +ξI = 0.01 fn +10
p

D
2

x

H
(2.38)

and

ξTamura = 0.014 fn +470
x

H
−0.0018; for RC buildings (2.39)

ξTamura = 0.013 fn +400
x

H
+0.0029; for steel buildings (2.40)

where x represents the horizontal vibration amplitude, and D is the dimension of the
foundation in the direction of motion. Besides frequency, building height and vibration
amplitude, Jeary pointed out that the dimension of the periphery of the foundation of
the building plays an important role in damping prediction. He included the dimension
of the foundation in the direction of the motion of the mode of vibration. In the formula,
the damping in the foundation could not be independently accounted for. Even so, it is
included in the formula.
Tamura’s damping predictor established a difference in predicting damping between
steel and RC buildings. However, these predictors have some restrictions regarding the
building height and the vibration amplitude. The predictor devoted to RC buildings
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works in the range of 10m ≤ H ≤ 130m and x/H ≤ 2x10−5. In the case of steel build-
ings, the predictor works in the same range of dimensionless amplitude, x/H , as for the
RC buildings. The height should be enclosed between 30m ≤ H ≤ 200m.
Figure 2.17 shows the damping identified by the RDT, Jeary’s, Tamura’s, Davenport’s and
Lagomarsino’s damping predictor for the studied buildings.
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Figure 2.17: Damping ratio of the first mode calculated with Jeary’s and Tamura’s damping predictors com-
pared to the damping identified by means of RDT in the instrumented buildings.

To compute the equivalent damping ratio for the dimensionless horizontal vibration am-
plitude of the studied buildings represented by the + in Fig. 2.17, the signals are first
registered by the acceleration measurements in the X-direction. They are numerically
integrated to obtain displacements signals. Then, the RDT is applied, and the resultant
damping is plotted, making the horizontal amplitude of vibration dimensionless with
respect to the building height. The same dimensionless amplitude range was later used
to compute damping by means of Jeary’s and Tarmura’s predictor. With the geometrical
quantities of each building, a damping value at each dimensionless amplitude can be
computed by means of Eqs. 2.38-2.40, as shown in Fig. 2.17. The single damping value
obtained by Davenport’s and Lagomarsino’s predictor is plotted in Fig. 2.17 for com-
parision. Figure 2.17shows how the results obtained by means of Jeary’s and Tamura’s
damping predictors are comparable. However, when comparing them with the outcome
of the experimentally identified damping, it can be noted that the damping predictions
underestimate the overall measured damping, specifically the zero-amplitude regime.
This could mean that the influence of foundation damping is more dominant than ex-
pected in other locations for the 0-amplitude damping, ξ0 , according to Tamura’s theory.
Examining the amplitude-dependent term, ξI, the slope generated by Tamura’s predic-
tor at higher amplitudes seems to be larger than the slope obtained by the RDT, which
is nearly zero. However, the slope obtained by means of the amplitude-dependent term
of Jeary’s predictor seems to be smaller, almost plain for most of the cases, especially
at very-low amplitudes. Therefore, it behaves more in accordance with the identified
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damping. However, in the instrumented buildings, no significant crack formation was
identified, given the small amplitudes of vibration.
The damping obtained by means of Lagomarsino’s predictor is comparable with the
identified damping for the buildings with higher fundamental frequencies: Churchill
and E.M.C towers. It overestimates other buildings having a lower fundamental fre-
quency. Lagomarsino’s predictor behaves as Rayleigh damping. Therefore, it computes
a minimum damping at a natural frequency, and then increases with increasing or de-
creasing natural frequency. However, the studied cases show that buildings with lower
natural frequencies do not necessarily have higher damping. Therefore, it may be con-
cluded that these damping predictors are not appropriate for direct use when predicting
damping in the tall buildings located in The Netherlands, where soils are soft.

2.5.2. A PROPOSED DAMPING PREDICTOR
It was shown above that the existing damping predictors are not suitable for directly pre-
dicting damping for the studied buildings. However, it has also been shown that the
damping increase of the amplitude-dependent term of Jeary’s damping predictor seems
to be in accordance with the damping increase identified by means of the RDT for the
studied buildings. Moreover, the Lagomarsino’s predictor reproduces with reasonable
accuracy the 0-amplitude damping for the buildings of higher fundamental frequency.
Thus, an attempt to develop a more suitable damping predictor for the studied buildings
by making use of the existing knowledge in damping prediction is made in this section.
The predictor is therefore a combination of a modified 0-amplitude term using Lago-
marsino’s Rayleigh-damping concept and the amplitude-dependent term developed by
Jeary. Thus, the proposed damping predictor is shown in Eq. 2.41.

ξ= ξ0 +ξI = 0.0035 fn + 0.0075(
fn

)p +10
p

D
2

x

H


p = 1 for H ≤ 120m
p = 0.8 for 120m ≤ H ≤ 150m
p = 0.3 for 150m ≤ H

(2.41)

The proposed predictor is divided into two terms: the 0-amplitude term (ξ0) and the
amplitude-dependent term (ξI) proposed by Jeary. The main difference with respect
to the existing predictors is in the 0-amplitude term. The definition of this term is in-
spired by the Rayleigh-damping term described by Lagomarsino. However, his damping
model contains a major drawback for the direct utilization on the studied buildings: the
increasing damping with decreasing fundamental frequency. This damping behaviour
is definitely unobserved in the instrumented buildings. It was shown by Ellis [33] that
the fundamental frequency of a tall building correlates with building height. Therefore,
with the proposed predictor, a correction factor, p, was introduced to compensate. The
constant values of the 0-amplitude term was fitted to the identified data. The follow-
ing figure shows the damping predictions obtained by means of the proposed damping
predictor and the comparison with the identified damping.
Looking at Fig. 2.18 the damping predicted by Eq. 2.41gives comparable results to the
identified damping, except for the Oval Tower, which is still slightly off. However, for
this case, the damping identified is relatively low compared to the other study cases.
Furthermore, by looking at the damping identified by means of the HPBW, the damping
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Figure 2.18: Damping ratio of the first mode calculated with the proposed damping predictor compared to the
damping identified by means of the RDT in the instrumented buildings.

of the Oval Tower turns out to be comparable with the damping predicted by Eq. 2.41.

2.6. SERVICEABILITY LIMIT STATE IN WIND-INDUCED VIBRA-
TIONS

The serviceability of a building can be associated with the comfort of the occupants, as
with lighting and indoor air quality. The serviceability of the structure is related to build-
ing vibrations. The movement caused by external loads may influence the comfort of
occupants, causing motion sickness. Historically, most research and codes were devoted
to analysing building behaviour in the ULS, given that it may lead to structural damages
and safety risks. However, owing to the development of new, stiffer and lighter build-
ing materials and an increase of height, buildings are more sensitive to wind-induced
vibrations associated with SLS.

2.6.1. OCCUPANT REACTION TO BUILDING VIBRATIONS

During building vibrations, occupants are subject to this process, and it affects their
well-being. Quite often, these sensations cause subjective feelings of insecurity. Re-
search on human reaction to motions [34–36] has identified several factors that give rise
to feeling of insecurity and, in some cases, sickness. These factors are listed below.

1. Type of motion

2. The frequency of vibration

3. Expectancy of motion
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4. Personal Health

All these factors were identified via experiments. In practice, vibrations are identified
by means of acceleration measurements. Therefore, it seems customary to relate human
perception to vibrations in terms of motion displacement, velocity or acceleration. Some
researchers have shown that human bodies adapt to constant acceleration. Therefore,
jerk, which is the time derivative of the acceleration, seems to be the parameter respon-
sible for the human perception of motion. Whereas jerk is the parameter responsible for
motion, acceleration has become the accepted parameter to assess human perception
of motion. In The Netherlands, limiting accelerations are described by different stan-
dards. For example, DIN 4150 Pt. 2 or the ISO 2631, is used, per H. van Koten in a TNO
report [37]. These standards assess the limits of permissibility of acceleration within a
frequency range. To assess the human perception of accelerations registered during the
measurements in the case studies, the TNO standard drawn by H. van Koten is used.
Figure 2.19 shows the accelerations registered in the X-direction of each instrumented
building.
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Figure 2.19: Acceleration registered in the weak X-direction of the instrumented buildings.

Figure 2.20 shows the horizontal accelerations in the Y-direction. In Fig. 2.21, the tor-
sional accelerations of the instrumented buildings are presented. In table 2.4, a sum-
mary of the peak, RMS and effective acceleration is given for each case study.
The effective acceleration shown in Table 2.4 is the result of multiplying the peak accel-
eration by

p
2/2. Figure 2.22 shows the comfort limits established by H. van Koten. These

thresholds define human perception, depending on the frequency of vibration and peak
acceleration.
To determine whether the accelerations experienced by building occupants are harmful,
based on the criteria drawn by H. van Koten (Fig. 2.22), the total peak acceleration is
calculated by means of the following expression:
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Figure 2.20: Acceleration registered in the stiff Y-direction of the instrumented buildings.
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Figure 2.21: Acceleration registered in the torsional φ-direction of the instrumented buildings.

apeaktotal
=

√
a2

peakbending
+a2

peaktorsional
(2.42)

The results show that, based on the H. van Koten criteria, no critical threshold for struc-
tural damage is overlooked.
Principally, at the measured accelerations, the occupants should not perceive any vibra-
tion. However, they can still complain and feel insecure in the interior of the building.
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Peak acc. [mm/s2] RMS acc. [mm/s2] Effective acc. [mm/s2]
12.8 1.99 9.05

The Churchill tower 4.35 0.82 3.07
6.01 0.71 4.21
5.22 0.76 3.69

The E.M.C 2.38 0.36 1.68
5.42 0.26 3.83
26.06 5.21 18.42

The Montevideo tower 16.4 3.35 11.59
33.68 1.52 23.8
11.28 0.31 7.31

The Oval tower 1.11 0.187 0.78
1.16 0.182 0.82
23.46 4.21 16.58

The Hoftoren 7.36 1.22 5.2
6.49 0.88 4.93

Table 2.4: Peak, RMS, and effective accelerations in the weak, stiff and torsional direction of vibration of the
studied buildings.

Figure 2.22: Human comfort limits based on [37].

2.7. SUMMARY
In this chapter, the equivalent viscous damping ratio associated to a buildings’ natu-
ral frequencies in The Netherlands were identified by means of two identification tech-
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Description of the Admissibility of Rough judgement Example
perceptibility people in buildings for the

influence on
the surface

A Intolerable Inadmissible Collapse Emergency
cases

B Quickly tiring Inadmissible local damage Sudden stopping
of a motorcar

C Heavily perceptible Hardly admissible Crack formation Lift tramway
D Good perceptible At coarse manual labour Beginning slight Beginning of

crack formation sickness
E Perceptible A short time in houses No influence on

normal buildings
F Hardly Perceptible A long time in houses No influence
G Not Perceptible No influence

Table 2.5: Criteria on the effect of accelerations in humans.

niques, showing comparable results.
The RDT enables us to identify the damping ratio with respect to the vibration ampli-
tude at a specific mode (i.e. natural frequency). Presently, several damping predictors
are available in literature. These have been used with the studied buildings to compare
predicted and identified dampings. Based on observations of these results, a damping
predictor, which combines two well-established damping predictors with some modifi-
cations, is proposed.
Finally, the SLS of the studied buildings in terms of occupants’ well-being is studied us-
ing the criteria described in [37]. This shows that the accelerations experienced by the
instrumented buildings during wind-induced vibrations do not exceed a certain thresh-
old (i.e. level F), where no crack formation on the structure is detected. Thus, it seems
reasonable to use linear elastic models for this study, which examine the influence of
damping on high-rise structures subject to wind-induced vibrations.
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BEAM MODELS FOR HIGH-RISE

BUILDINGS AND THE ENERGY

VARIATION LAW

The objective of this chapter is to describe equations of motion and energy variation
laws for beams, which will be later used to model high-rise buildings and to identify en-
ergy dissipation. Thus, Lagrangian formalism and classical beam theory are used. First,
the governing differential equations for beams in three dimensions are derived. Then,
Euler–Bernoulli kinematic relations and classical constitutive equations are described.
Making use of beam differential equations, the constitutive and kinematic relations,
equations of motion and energy variation equations of beam elements are derived. In
this work, these equations of motion and energy variation establish the groundwork for
formulating the beam equations that represent the dynamic behaviour of tall buildings.

3.1. GENERAL DESCRIPTION OF BEAMS

The focus of this section is flexural deformation and coupling with axial deformations.
Beam elements are widely used in the field of structural engineering to study the static
and dynamic behaviour of structures. These elements help us simplify complex struc-
tural systems. A beam element can be defined as the volume generated by a plane cross-
section moving along a plane curve, d , implying that any cross-section, S, is normal to
d . Beams are 3-dimensional elements in which one dimension is larger than the other
two. Therefore, beam elements are usually described as one-dimensional systems.

Additionally, a brief description of the Saint–Venant torsion theory [38] is given.

35
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d
S S S

Figure 3.1: Representation of a Euler-Bernoulli beam.

3.2. DERIVATION OF THE GOVERNING DIFFERENTIAL EQUATIONS

OF BEAMS IN THREE-DIMENSION
Given a straight elastic beam with an arbitrary cross-section constant along the x-axis of
finite length, L, under free-loading conditions, is as shown in Fig. 3.2.

i

j

k

l
dx

x

y

z

Figure 3.2: Beam element in an undeformed state.

Displacements and rotations of the beam are described by a chosen reference Cartesian
coordinate system (x, y, z) with base unit vectors, i, j, k. The beam element can be loaded
by a force-per-unit volume, ρb, and a force-per-unit surface, t, as shown in Fig. 3.3a,
integrated over the area, as shown in (Eqs. 3.1-3.2):

q(x, t ) =
∫

A

ρbx

ρby

ρbz

dA+
∫
δA

tx

ty

tz

d(δA) (3.1)

m(x, t ) =
∫

A

0 −z y
z 0 0
y 0 0

ρbx

ρby

ρbz

dA+
∫
δA

0 −z y
z 0 0
y 0 0

tx

ty

tz

d(δA) (3.2)

These result in an equivalent force-per-unit-length vector, q = q(x, t ) and an equivalent
moment-per-unit-length vector, m = m(x, t ) along the (x, y, z)-coordinates defined as

q =
qx

qy

qz

 , m =
mx

my

mz

 (3.3)
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(a) Surface and body loads.
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Figure 3.3: Differential element of a beam in a loaded state.

External loads, q, and moments, m, are balanced with the internal forces and moments
represented by vectors F and M, respectively. The internal force and moment vectors act
on the cross-section with the base-unit vector i, of the x-axis in the outward direction
normal vector, as shown in Fig. 3.3b. The components of F = F(x, t ) and M = M(x, t ) in
the (x, y, z) coordinate system are

F =
 N

Qy

Qz

 , M =
M x

My

Mz

 (3.4)
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The component, N = N (x, t ), in the section force vector, is the axial force, Qy = Qy (x, t )
and Qz = Qz (x, t ) are the shear force components in the y- and z-directions. In the
section-moment vector, Mx = Mx (x, t ), represents the torque, and the components My =
My (x, t ) and Mz = Mz (x, t ) in the y and z directions represent the bending moments as
shown in Fig. 3.3c.
At this point, it should be noted that external forces, q, and moments, m, also generate
a deformation process described by a displacement vector, w = w(x, t ), and a rotation
vector, θ=θ(x, t ). Therefore, the energy generated by any external load should to be bal-
anced at any moment by the internal deformation energy and the kinetic energy of the
body, as shown in Eq. 3.5.

∆Ekin =Tint +Text (3.5)

The displacement vector, w, and the rotation vector, θ, with the components in the
(x, y, z) coordinate system are described in Eq. 3.6.

w =
wx

wy

wz

 , θ =
θx

θy

θz

 (3.6)

Next, using Newton’s Second Law relating the internal forces and external loads to accel-
eration, the dynamic force and moment equilibrium equations of a differential element
of a beam in three dimensions (Fig. 3.3b) can be formulated as follows.

−F+F+dF+qdx = ρAdx
d2w

dt 2

dF

dx
+q = ρA

d2w

dt 2

(3.7)

−M+M+dM+ idx × (F+dF)+q
dx2

2
+mdx = ρA

dx2

2

d2w

dt 2 +ρI dx
d2θ

dt 2

dM

dx
+ i×F+m = ρI

d2θ

dt 2

(3.8)

Equations 3.7-3.8 can be split into an equilibrium equation for each component in the
(x, y, z) coordinate corresponding to Fig. 3.3c.

dN

dx
+qx = ρA

d2wx

dt 2

dQy

dx
+qy = ρA

d2wy

dt 2

dQz

dx
+qz = ρA

d2wz

dt 2 (3.9)

dMx

dx
+mx = ρI

d2θx

dt 2

dMy

dx
−Qz +my = ρI

d2θy

dt 2

dMz

dx
+Qy +mz = ρI

d2θz

dt 2 (3.10)

where
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i×F = i× (
N i+Qy j+Qz k

)= 0i−Qz j+Qy k (3.11)

Therefore, the resultant vector of Eq. 3.11 has components [0,−Qz,Q y]. The normal
force is non-zero only if the product described by Eq. 3.11 is calculated in the deformed
state of the beam. This may lead to the coupled bending-torsional behaviour.

3.3. LINEAR KINEMATIC AND DISPLACEMENT RELATIONSHIPS

The kinematic relations used in this work are based on the Euler–Bernoulli assumptions.
One of these assumptions implies that, in a beam, the cross-section remains straight
and orthogonal to the x-axis at coordinate x during deformation. Thus, the deformation
in the transverse direction (Poisson effects), owing to axial strains, are neglected. The
deformed state of a cross-section of the beam is described by the displacement vector, w,
and rotation vector, θ. Assuming deformations correspond to the linear elastic range of
the material, a small displacement field can be considered. Consequently, the following
relation can be established:

sinθ ≈ tanθ ≈ θ (3.12)

Next, a displacement vector of a material point on the cross-section of the beam with
coordinates (x, y, z) in the undeformed state is described by the vector, u = u(x, y, z, t ),
with the components in the (x, y, z) coordinate system.

u =
ux

uy

uz

 (3.13)

The displacement vector, u, describes the displacement of a material point, comprising
the displacement, w, and the rotation, θ, vectors. The components of the displacement
vector, u, using the Euler-Bernoulli kinematic assumptions, are described in Eq. 3.14.

ux (x, y, z, t ) = wx (x, t )+ zθy (x, t )− yθz (x, t )

uy (x, y, z, t ) = wy (x, t )− zθx (x, t )

uz (x, y, z, t ) = wz (x, t )+ yθx (x, t )

(3.14)

Therefore, the kinematic constraint reduces the determination of any material point in
a beam to the determination of the six deformation components, wx = wx (x, t ), wy =
wy (x, t ), wz = wz (x, t ), θx = θx (x, t ), θy = θy (x, t ) and θz = θz (x, t ) along the x-axis of the
continuous displacement field, u = u(x, y, z, t ). The kinematic equations give a relation
between displacements and strains. Based on the displacement field described in Eq.
3.14 these relations are as follows:
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εxx = ∂ux

∂x
= dwx

dx
+ z

dθy

dx
− y

dθz

dx

γx y = ∂ux

∂y
+ ∂uy

∂x
= dwy

dx
− z

dθx

dx
−θz (x, t )

γxz = ∂ux

∂z
+ ∂uz

∂x
= dwy

dx
+ y

dθx

dx
+θy (x, t )

εy y =
∂uy

∂y
= 0; εzz = ∂uz

∂z
= 0

(3.15)

The strain components can also be written in a matrix form as

ε=
[
εxx

1
2γx y

1
2γy z εy y

]
(3.16)

The fact that εy y = εzz = 0 implies that the cross-section does not shrink after the defor-
mation. This also implies that the shear deformations, γx y and γxz , are independent of
the y and z directions.
The displacement field shown in Eq. 3.14 is only correct if the cross-section of the beam
about the x-axis is symmetric. Otherwise, the torsional moment Mx will induce an ad-
ditional displacement about the x-axis. Generally, this additional displacement can be
written as ux (x, y, z) =ω(y, z) dθx

dx , where ω(y, z) is the warping function in m2. It should
be noted that this function is dependent on y and z. Therefore, it allows for non-planar
deformations. Introducing the warping effects into the displacement field (Eq. 3.14), the
following expression for the displacement along the x-axis is derived.

ux (x, y, z) = wx (x)+ zθy (x)− yθz (x)+ω(y, z)
dθx

dx
(3.17)

Introducing the warping term into the kinematic equations, the strain components in
Eq. 3.15 are modified as follows:

εxx = ∂ux

∂x
= dwx

dx
+ z

dθy

dx
− y

dθz

dx
+ω(y, z)

d 2θx

dx2

γx y = ∂ux

∂y
+ ∂uy

∂x
= dwy

dx
+

(
∂ω

∂y
− z

)
dθx

dx
−θz (x)

γxz = ∂ux

∂z
+ ∂uz

∂x
= dwy

dx
+

(
∂ω

∂z
+ y

)
dθx

dx
+θy (x)

εy y =
∂uy

∂y
= 0; εzz = ∂uz

∂z
= 0

(3.18)

Euler-Bernoulli kinematics assumes that εy y = εzz = 0 and the shear strains, γx y and γxz ,
are negligible compared to the axial strain, εxx . Therefore, it can be established that

εy y = εzz = γx y = γxz = 0. (3.19)
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Moreover, Euler-Bernoulli theory assumes that the rotated cross-section is always or-
thogonal to the deformed beam axis. Consequently, the following additional kinematic
constraints on the deformation of the cross-section can be established.

θy =−dwz

dx

θz =
dwy

dx

(3.20)

The fact that Bernoulli-Euler assumes γx y = γxz = 0 immediately implies that the shear
forces become Qy = Qz = 0. However, contradictory shear forces are indeed present
in the bending of the beams. Therefore, it should be noted that shear forces in Eu-
ler–Bernoulli equations cannot be derived from the kinematic equations, but are derived
from the force-equilibrium equation of the beam.
Furthermore, we look at the deformed shape of a differential element of a beam with the
assumption of small displacements (see Fig. 3.4).

ds≈dx

-dθyz

x

rz

wz

ds≈dx

dθzy

x

ry

wy

Figure 3.4: Definition of the curvature of a Euler-Bernoulli beam in its deformed state.

Thus, the radii of curvatures, ry and rz , are related to the rotations, dθz and −dθy , as

ry dθz = dx κy = −1

rz
= dθy

dx

−rz dθy = dx κz = 1

ry
= dθz

dx

(3.21)

where κy and κz are the components of the curvature vector, κ(x, t )=κ. Thus, using
Euler-Bernoulli beam theory, the curvature components become

κy =−d2wz

dx2

κz =
d2wy

dx2 .

(3.22)
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Introducing Eq. 3.22 into Eq. 3.18, it follows that the axial strain can be written as

εxx (x, y, z, t ) = ε(x, t )+ zκy − yκz +ω(y, z, t )
d 2θx

dx2 (3.23)

where ε(x, t ) = dwx
dx is the axial strain of the beam along the x-axis.

3.4. SAINT-VENANT TORSION THEORY
A widely-used torsion theory is the one described by Saint–Venant, where the underlying
assumption is that φ = dθx

dx is constant. This implies that, in the case of circular beam
geometries, given the symmetry in the cross-section and the loads, the planar cross-
sections perpendicular to the axis remain planar and do not deform in the plane. Thus,
the displacement functions can be described as

ux (x, y, z, t ) = dθx

dx
ω(y, z)

uy (x, y, z, t ) =−zθx

uz (x, y, z, t ) = yθx

(3.24)

Consequently, the kinematic equations described by Saint-Venant are

εxx = εy y = εzz = εy z = 0

γx y = ∂ux

∂y
+ ∂uy

∂x
=

(
∂ω

∂y
− z

)
dθx

dx

γxz = ∂ux

∂z
+ ∂uz

∂x
=

(
∂ω

∂z
+ y

)
dθx

dx
.

(3.25)

Therefore, all components of the Cauchy stress tensor become equal to zero. However,
the shear stresses σx y and σxz . In the case of an elastic material, these are defined as

σx y = 2Gεx y =G

(
∂ω

∂y
− z

)
dθx

dx

σxz = 2Gεxz =G

(
∂ω

∂z
+ y

)
dθx

dx

(3.26)

where G is the transverse elastic modulus. The Saint-Venant torsional problem is de-
scribed by the following differential equation with Neumann boundary conditions:

∇2ω= 0

∂ω

∂n
= zny − ynz in Γ

(3.27)

The torsion problem depends on the geometry and, generally, is difficult to solve. In the
presence of warping effects, the axial strain is non-zero. dθx

dx is no longer constant along
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the x-coordinate. This phenomenon was described for thin-walled beams for the first
time by Vlasov (1961) [39]. Consequently, the non-homogeneous torsion is referred to as
the Vlaslov torsion.

3.5. CONSTITUTIVE RELATIONS FOR AN ELASTIC BEAM
The constitutive equations relate strains with stresses. For a linear elastic material, the
following relations can be derived:

σxx = Eεxx = E

(
dwx

dx
+ z

dθy

dx
− y

dθz

dx
+ω(y, z)

d 2θx

dx2

)
σx y =Gγx y =G

(
dwy

dx
+

(
∂ω

∂y
− z

)
dθx

dx
−θz (x)

)
σxz =Gγxz =G

(
∂ux

∂z
+ ∂uz

∂x
= dwy

dx
+

(
∂ω

∂z
+ y

)
dθx

dx
+θy (x)

)
σy y = Eεy y = 0

(3.28)

here, E and G are the elastic and the transverse elastic moduli, respectively. They are
directly related to material behaviour. The normal stress, σxx , is directed normal to the
cross-section of the beam, and the shear stresses, σx y and σxz , are acting in the plane of
the cross-section of the beam, as shown in Fig. 3.5.

idx

Mx

My

Mz
N

Qy

Qz

σxx

σxy

σxz

Figure 3.5: Stress state of differential element of a beam cross-section.

Normal and the shear stresses are related to the components of the force vector and the
moment vector, as follows:

N =
∫

A
σxx dA Qy =

∫
A
σx y dA Qz =

∫
A
σxz dA

Mx =
∫

A

(
yσxz − zσx y

)
dA My =

∫
A

zσxx dA Mz =−
∫

A
yσxx dA.

(3.29)

It should be noted that, assuming uni-axial strain does not imply uniaxial stress-state,
the stress-state of an elastic body can be represented as shown in Fig. 3.6.
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σyx

σyy

σyz

x

y

z

σxx

σxy

σxzσzx

σzy

σzz

Figure 3.6: 3D elastic body.

The first index indicates the coordinate axis co-directional to the outward normal vector
of the section, whereas the second index specifies the direction of action of the stress
component. The stresses represented in Fig. 3.6 form the components of the stress ten-
sor, σ, in the (x, y, z) coordinate system and can be represented in its matrix form:

σ=
σxx σy x σzx

σx y σy y σz y

σxz σy z σzz

 (3.30)

Next, introducing Eq. 3.28 into Eq. 3.29, and integrating the cross-section of the pris-
matic beam gives the following expressions:

N = E

(
A

dwx

dx
+Sy

dθy

dx
−Sz

dθz

dx
+Sω

d 2θx

dx2

)
Qy =G

(
Ay

(
dwy

dx
−θz

)
+Ry

dθx

dx

)
Qz =G

(
Az

(
dwz

dx
+θy

)
+Rz

dθx

dx

)
Mx =G

(
Sz

(
dwz

dx
+θy

)
−Sy

(
dwy

dx
−θz

)
+K

dθx

dx

)
My = E

(
Sy

dwx

dx
+ Iy y

dθy

dx
− Iy z

dθz

dx
+ Iωz

dθx

dx

)
Mz = E

(
−Sz

dwx

dx
+ Izz

dθz

dx
− Iy z

dθy

dx
− Iωy

dθx

dx

)
.

(3.31)

The integrals of the cross-sectional constants are described in Appendix C.
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3.6. DETERMINATION OF THE PRINCIPAL AXES OF A BEAM ELE-
MENT

While formulating the differential equations governing a beam element, the coordinate
system is chosen arbitrarily. Thus, the deformations (i.e. axial and bending) for each
direction, might be coupled. If an axial force is applied to the beam, axial deformation
can occur, but deformations and rotations can also occur in the other directions. Conse-
quently, if we substitute Eq. 3.31 into Eqs. 3.9-3.10, the result is a set of coupled differen-
tial equations. The coupling might have a significant impact on the structural behaviour
or the stability of a beam element. For instance, if we take a Euler–Bernoulli bending
beam, the maximum stress, σxx , for arbitrary axis can be defined as

σxx = N

A
− Mz Iy +My Iy z

Iy Iz + I 2
x y

y + My Iz +Mz Iy z

Iy Iz + I 2
x y

z (3.32)

In the case of the principal axis of inertia (Iy z = 0), the maximum stress, σxx , is defined
as shown in Eq. 3.33.

σxx = N

A
− Mz

Iz
y + My

Iy
z (3.33)

For the principal bending axis, bending in each direction and axial deformation can be
decoupled, so that

σxx = N

A
; σxx =−Mz

Iz
y ; σxx = My

Iy
z. (3.34)

Choosing a specific reference system may change the method of computing the struc-
tural stresses. It is of importance then to identify the bending axis and the principal axis
of a beam element to decouple the deformations in each direction if needed.

3.6.1. DETERMINING THE BENDING CENTRE AND PRINCIPAL DIRECTIONS
The bending centre of a beam element can be determined by means of a position vector,
~rb(x, y, z), with the components, [0, yb , zb], as

x(x, y, z) = X(x
′
, y

′
, z

′
)+~rb(x, y, z) (3.35)

where X is a vector containing the components of a new reference system (x
′
, y

′
, z

′
) in

the yet unknown bending centre of the beam as shown in Fig. 3.7.
In the new coordinate system, the displacement along the x-axis can be written as

u
′
x (x

′
, y

′
, z

′
) = w

′
x + zbθ

′
y − ybθ

′
z . (3.36)

The axial strain of the new axis becomes

εxx (x
′
) = ∂u

′
x

∂x ′ = ε′ + zbκ
′
y − ybκ

′
z . (3.37)

It should be noted that the components of the rotation, θ
′
, and the displacement, w

′
,

vectors in the new coordinate system are identical to the components of the rotation,



3

46 3. BEAM MODELS FOR HIGH-RISE BUILDINGS AND THE ENERGY VARIATION LAW
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Figure 3.7: Determining the bending centre in a beam with an arbitrary cross-section.

θ, and the displacement, w, vectors in reference coordinate system. This means that
the section force, F = F

′
, in the new coordinate system and in the reference coordinate

system, are equal to the section moment M = M
′
. Thus, the following relations can be

established for the force vector components:

N
′ = N ; Q

′
y =Qy ; Q

′
z =Qz (3.38)

and for the moment-vector components:

M
′
x = Mx ; M

′
y = My − zb N ; M

′
z = Mz + yb N (3.39)

Consequently, the following strain relation can be written as

ε= ε′ − zbκy + ybκz = ε
′ − zbκ

′
y + ybκ

′
z . (3.40)

The relation between forces and moments with displacements and rotations of the new
coordinate system with the reference axis can be condensed using matrix notation:

σ
′ = ATσ

ε= Aε
′
,

(3.41)

where

σ=
 N

My

Mz

 ; σ
′ =

 N
′

M
′
y

M
′
z

 ; ε=
 ε

κy

κz

 ; ε=

 ε
′

κ
′
y

κ
′
z

 (3.42)

and
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A =
1 −zb yb

0 1 0
0 0 1

 . (3.43)

The constitutive relation between σ and ε can be written as

σ= Cε (3.44)

where

C = E

 A Sy −Sz

Sy Iy y −Iy z

−Sz −Iy z Izz

 . (3.45)

Likewise, the constitutive relation in the (x
′
, y

′
, z

′
) coordinate system reads,

σ
′ = C

′
ε
′
, (3.46)

where matrix C
′

has the following form:

C
′ = E

 A S
′
y −S

′
z

S
′
y I

′
y y −I

′
y z

−Sz −I
′
y z I

′
zz

 . (3.47)

Combining Eq. 3.41 with Eq. 3.44, it follows that

σ
′ = AT Cε= AT CAε (3.48)

where

C
′ = AT CA = E

 1 0 0
−zO 1 0
yO 0 1

 A Sy −Sz

Sy Iy y −Iy z

−Sz −Iy z Izz

1 −zb yb

0 1 0
0 0 1

 (3.49)

and finally,

C
′ =

 A Sy − zb A −(Sz − yb A)
Sy − zb A Iy y −2zbSy + z2

b A −Iy z + ybSy + zb(Sz − yb A)
−(Sz − yb A) −Iy z + ybSy + zb(Sz − yb A) Izz −2ybSz + y2

b A

 (3.50)

where the bending centres are defined as

yb = Sz

A
zb = Sy

A
. (3.51)

yb and zb are components of vector~rb . The bending moments of inertia, I
′
y y , I

′
zz , and

the centrifugal moment of inertia, I
′
y z , in the new coordinate system can be expressed in

terms of the corresponding quantities in the reference coordinate system as follows:
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I
′
y y = Iy y −2zbSy + z2

b A = Iy y − z2
b A

I
′
zz = Izz −2ybSz + y2

b A = Izz − y2
b A

I
′
y z = Iy z − ybSy − zbSz + yb Zb A = Iy z − zb yb A.

(3.52)

If the cross-section of the beam element is symmetric around one axis, and the y-axis
is placed such that it coincides with this line of symmetry, then the static moment of
inertia, Sy , vanishes, such that

Sy =
∫

A
zdA = 0. (3.53)

Thus, the bending centre, b, will always be located on the line of symmetry in a single-
symmetric cross-section. If the cross-section is doubly symmetric, then the position of
b is found at the intersection of the two lines of symmetry.
Next, the origin of the (x, y, z) coordinate system is placed at the bending centre. Then,
the constitutive matrix takes the form

C =
A 0 0

0 Iy y −Iy z

0 −Iy z Izz

 . (3.54)

Therefore, axial force N no longer induces deformations in the y- and z- directions, and
the bending moments, My and Mz , do not induce axial displacements. However, the
bending moment, My , still induces displacements in the y direction in addition to the
expected displacements in the z direction. Similarly, the bending moment, Mz , induces
displacements in both the y and z directions. To find the principal directions, the new
(x

′
, y

′
, z

′
) coordinate system can be rotated about the origin, b, as follows:

σ= Bσ
′

(3.55)

where B is a rotation matrix defined as

B =
1 0 0

0 cos(φ) −sin(φ)
0 sin(φ) cos(φ)

 . (3.56)

Likewise, the strain vector in the principal direction is related to the strain vector of the
rotation matrix as

ε= Bε
′
. (3.57)

This allows us to use the following constitutive relation:

σ
′ = C

′
ε
′ = BT CBε

′
(3.58)

so that
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C
′ = BT CB = E

1 0 0
0 cos(φ) sin(φ)
0 −sin(φ) cos(φ)


A 0 0

0 I
′
y y −I

′
y z

0 −I
′
y z I

′
zz


1 0 0

0 cos(φ) −sin(φ)
0 sin(φ) cos(φ)


(3.59)

Finally, the inertia in the principal directions can be found as shown in Eq. 3.60.

I
′
y y =

1

2
(Iy y + Izz )+ 1

2
(Iy y − Izz )cos(2φ)− Iy z sin(2φ)

I
′
zz =

1

2
(Iy y + Izz )+ 1

2
(Iy y − Izz )cos(2φ)+ Iy z sin(2φ)

I
′
y z =−1

2
sin(2φ)(Iy y − Izz )−cos(2φ)− Iy z

(3.60)

3.7. EQUATIONS OF MOTION FOR ELASTIC BEAMS
Beam elements are generally useful for solving structural problems. To solve a dynamic
problem, a coordinate system should first be defined, and the DoF should be identified.
Then, the governing equation of a boundary-value problem can be formulated, and with
a set of initial conditions the problem can finally be solved. In relatively simple problems
with reduced amounts of DoFs, the Newton’s Second Law can be very convenient for
formulating equations of motion. However, for more complex systems (e.g. coupled
systems with several DoF’s), this is sometimes difficult. Thus, formulating equations of
motions by means of the Lagrange formalism is much more convenient. The Lagrange
equations are deduced from the Hamilton principle:

δ

∫ t2

t1

(L +Vext)dt = 0 (3.61)

where L = T −Vint is the Lagrangian. The kinetic energy, T , and the potential elastic
energy, Vint, of a one-dimensional beam can be defined as

T =
∫ l

0
T (x, t )dx

Vint =
∫ l

0
Vint(x, t )dx.

(3.62)

The external energy, Vext, shown in Eq. 3.61, describes the energy generated by dis-
tributed loads and moments on Beam 1, and can be defined as

Vext =−
∫ l

0
Vext(x, t )dx (3.63)

Next, let us consider u as the displacement field. The potential energy density is a func-
tion of the displacement u, and its first u

′
and second derivative u

′′
with respect to the

space variable.

1Concentrated loads and moments can be considered making use of the Dirac delta function.
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Vint =Vint

(
x, t ,u,u

′
,u

′′)
(3.64)

The kinetic energy density is a function of velocity, u̇, the rotational velocity u̇
′

and the
displacement u.

T = T
(
x, t ,u, u̇, u̇

′)
(3.65)

The external energy density introduced by external loads can be described as a function
of the displacement, u, and its first spatial derivative, u

′
.

Vext =Vext

(
x, t ,u,u

′)
(3.66)

Therefore, the Lagrangian density function can be expressed as

λ= T
(
x, t ,u, u̇, u̇

′)−Vint

(
x, t ,u,u

′
,u

′′)=λ(
x, t ,u, u̇,u

′
, u̇

′
,u

′′)
. (3.67)

Next, a general equation of motion can be derived from the variational expression, Eq.
3.61, of the Lagrangian density function λ, and the external energy density function, Vext

as

δ

∫ t2

t1

∫ l

0
(λ+Vext)dxdt =

∫ t2

t1

(∫ l

0

(
∂λ

∂u
δu+ ∂λ

∂u′ δu
′ + ∂λ

∂u′′ δu
′′ + ∂λ

∂u̇′ δu̇
′ + ∂λ

∂u̇
δu̇

)
dx

+
(∫ l

0
δ(x)Qδudx +

∫ l

0
δ
′
(x)Mδu

′
dx +

∫ l

0
qδudx +

∫ l

0
mδu

′
dx

))
dt = 0

(3.68)

where Q and M describe concentrated forces and moments respectively. Equation 3.68
can be evaluated via integration by parts, in order to express all the variations in terms
of the virtual displacement, δu, as follows:

∫ l

0

∂λ

∂u′ δu
′
dx = ∂λ

∂u′ δu |l0 −
∫ l

0

∂

∂x

∂λ

∂u′ δudx∫ l

0

∂λ

∂u′′ δu
′′

dx =
(
∂λ

∂u′′ δu
′ − ∂

∂x

∂λ

∂u′′ δu
)
|l0 +

∫ l

0

∂2

∂x2

∂λ

∂u′′ δudx∫ t2

t1

∂λ

∂u̇
δu̇dt = ∂λ

∂u̇
δu |t2

t1
−

∫ t2

t1

∂

∂t

∂λ

∂u̇
δudx∫ t2

t1

∫ l

0

∂λ

∂u̇

′

δu̇
′
dxdt = ∂λ

∂u̇′ δu
′
dx |t2

t1
−

∫ t2

t1

∫ l

0

∂

∂t

∂λ

∂u̇′ δu
′
dxdt∫ l

0
mδu

′
dx = mδu |l0 −

∫ l

0

∂m

∂x
δudx

(3.69)

Gathering all terms, introducing a dissipative function, D(u̇), and applying the Hamilton
principle described by Eq. 3.61, the following generalized equation of motion for one-
dimensional continuous systems can be obtained:
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∂λ

∂u
− ∂

∂x

∂λ

∂u′ +
∂2

∂x2

∂λ

∂u′′ −
∂

∂t

∂λ

∂u̇
+ ∂

∂t

(
∂

∂x

(
∂λ

∂u̇′

))
+ ∂D

∂u̇
+q− ∂m

∂x
= 0 (3.70)

with the natural boundary conditions,

m+ ∂λ

∂u′ −
∂

∂x

∂λ

∂u′′ −
∂

∂t

∂λ

∂u̇′ = T at x = 0,L (3.71)

and

∂λ

∂u′′ = M at x = 0,L (3.72)

Equations 3.70-3.72, supplemented by appropriate kinematic boundary conditions, gov-
ern the dynamics of a wide class of one-dimensional systems.

3.8. ENERGY VARIATION LAW
The Lagrangian formalism can also be used to formulate the energy balance equation,
as follows:

dH (t )

dt
+S(x, t )|l0 +Wdiss(t ) =Wext(t ) (3.73)

In Eq. 3.73, H is the Hamiltonian, and it is defined as

H (t ) =
∫ l

0
e(x, t )dx (3.74)

where e is the Hamiltonian density, defined as

e =
(
∂u

∂t
,
∂λ

∂t

)
+

(
∂2u

∂x∂t
,
∂2λ

∂x∂t

)
−λ. (3.75)

The energy flux, S, shown in Eq. 3.73, is defined as

S =
(
∂u

∂t
,
∂λ

∂u′ −
∂

∂x

∂λ

∂u′′ −
∂

∂t

∂λ

∂u′
∂u̇

)
+

(
∂2u

∂x∂t
,
∂λ

∂u′′

)
. (3.76)

The energy dissipation, Wdiss, is a velocity dependent function accounting for the dissi-
pation energy per unit time in the system. Finally, the external energy, Wext, introduced
by the external loads, is defined as

Wext(t ) =
∫ l

0
q(x, t )

∂u

∂t
dx. (3.77)

where q is a generalized load. The energy variation law will be used in the following
chapter as a tool for identification of energy dissipation in several structures.





4
DAMPING IDENTIFICATION IN

STRUCTURAL ELEMENTS BY MEANS

OF ENERGY-FLUX ANALYSIS

This chapter presents and applies a novel method to identify damping based on energy-
flux analysis. The concept of energy flux is well-established in different fields [9–19].
However, to the best knowledge of the author, in the field of structural mechanics and for
identification, it has never been used. The majority of damping identification methods
are based on experimental modal analysis [40–42]. With these methods, an effective
modal damping associated with all locations of a structure is identified. Sometimes, if
enough modes are used, specific locations where energy is dissipated can be identified.
However, this is an unexpected scenario in structures subjected to ambient conditions.
Thus, the work presented in this chapter aims to develop an identification method that
does not require a modal representation of the structure’s motion.
To show the applicability of the energy-flux analysis for identification purposes, mea-
surements from two lab-scale structures are used. First, in Section 4.1, the energy-flux
analysis is applied to identify the damping of a steel beam. Second, in Section 4.2, the en-
ergy method is applied for damping identification for a five-storey lab-scale steel-frame
building. The damping identified in each of the connections is later used for a global
model to identify the overall structure damping. The resultant damping obtained by
means of the energy-flux analysis shows good agreement with the experimentally veri-
fied damping for a wide frequency range in both cases.

4.1. DAMPING IDENTIFICATION IN A CANTILEVER BEAM BY MEANS

OF ENERGY-FLUX ANALYSIS
In this section the energy dissipation of a cantilever steel beam, as shown in Fig.4.1, is
identified by means of energy-flux analysis. Measurement data is used to validate the re-
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sults. The goal of this section is to introduce the energy-flux analysis for damping iden-
tification using a simple mechanical system, such as the cantilever beam.

4.1.1. EXPERIMENTAL IDENTIFICATION OF THE CANTILEVER BEAM PROPER-
TIES

The lab-scale beam is instrumented using the three accelerometers located at the top,
middle and bottom positions of the beam height, as shown in Fig. 4.1. The accelerome-
ters are positioned so that only accelerations in the weak direction are registered.

Figure 4.1: Lab-scale cantilever beam instrumented with accelerometers at the top, middle and bottom part of
the beam height.

Physical and geometrical characteristics of the beam are described in Table 4.1.

Height[m] Width[m] Depth[m] ρA[Kg/m]
1 0.01 0.001 7.85

Table 4.1: Characteristics of the beam.

During experimental identification, the lower modes and the damping ratio associated
to each mode are identified using the accelerometers on the beam. Thus, a hammer
impact test is conducted, knocking with a hammer atop the beam. Having deflected
the beam in the weak inertial direction by the hammer impact, the beam vibrates freely.
Consequently, a free-decay signal is produced by each accelerometer on the beam, as
shown in Fig. 4.2.
It becomes clear, looking at Fig. 4.2 that the beam loses energy at each oscillation. How-
ever, the time-domain signal does not clearly show which modes participate in the vi-
bration process. Therefore, a frequency domain analysis of the top accelerometer signal
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Figure 4.2: Measured response of the cantilever beam subjected to a hammer impact.

is conducted to visualize the modes participating in the vibration process. The result of
applying FFT atop the accelerometer is shown in Fig. 4.3, showing how the four lower
modes are excited by the hammer impact.
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Figure 4.3: Frequency response function amplitude of the cantilever beam subjected ta a hammer impact.

Fig. 4.2 shows that the time domain response gives a marginal insight into the frequency
content of the signal. However, frequency analysis reveals the frequency signal content
as shown in Fig. 4.3. However, knowledge of the time content is lost. Therefore, to see
into the time-frequency content of the signal, the short-time Fourier transform (STFT)
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[43, 44] is applied to the recorded signal of the accelerometer, located atop the beam.
The integral representation of the STFT is as follows:

STFT(t ,ω) =
∫ ∞

−∞
x(τ)w(t −τ)e−iωτdτ (4.1)

where x(t ) is the signal to be transformed, and w(t − τ) is the window function. The
main idea of the STFT is to analyse the frequency content of a signal, focusing on a spe-
cific time interval, neglecting the rest of the signal. In this experiment, the sampling
frequency is set to 2000 Hz. Therefore, to obtain the time-frequency representation of
the recorded signal, a discrete version of the STFT is computed as shown in Eq. 4.2.

STFT(k, l ) =
N−1∑
n=1

x(k −n)w(n)e−i 2π
N l n (4.2)

where n = 0,1,2..,andN − 1 are the number of discrete steps. k and l are the time-
frequency grid, and w(n) is the window function. The improvement in time localiza-
tion comes at the expense of frequency resolution. This means that the shorter the time
sample, the better the time resolution and the worse the frequency resolution. The fre-
quency resolution is mainly compromised by the window function. STFT normally uses
a rectangular window function, given the simplest representation of a window function.
An improvement of the STFT is the Gabor transform [45], which uses the same STFT.
In this transform, a Gaussian window function, wGaussian, is used. The use of this win-
dow function improves the frequency resolution. Moreover, different window functions
have been implemented to show either improvement or worsen the frequency resolu-
tion. Several window functions are described in Eq. 4.3.

wrect(n) = k

wGaussian(n) = e−1/2(α n
N /2 )2

where
−N

2
≤ n ≤ N

2

wHann(n) = 0.5
(
1−cos

(
2π

n

N

))
where 0 ≤ n ≤ N

wHamming(n) = 0.54−0.46cos
(
2π

n

N

)
where 0 ≤ n ≤ N

(4.3)

Figure 4.4 shows the results of Eq. 4.2 with the different window functions.
It can be noted, looking at Fig. 4.4, that the time-frequency analysis making use of the
rectangular window function gives the worst frequency resolution, whereas the analysis
making use of the Gaussian and the Hann window give an improvement of frequency
resolution. Figure 4.4 also reveals that higher frequency modes vanish faster, allowing
the beam to vibrate at the fundamental frequency until all of the energy input into the
beam is dissipated.
Having identified the modes participating in the vibration process, the damping ratio
associated with each mode is identified via logarithmic decay analysis (Eq. 2.32) pro-
duced by the three accelerometers. To identify the damping associated with each mode,
a low-high bandpass filter is applied to the signal. Table 4.2 shows the damping ratios.
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Figure 4.4: Time-frequency response function of the cantilever beam subjected to a hammer impact.

Mode ω [rad/s] ξ1[%] ξ2[%] ξ3[%]
1 51.5 0.14% 0.14% 0.14%
2 324.3 0.3% 0.3% 0.3%
3 907.4 1.1% 1.1% 1.1%
4 1777.9 6.6% 6.6% 6.6%

Table 4.2: Characteristics of the beam.

In Table 4.2, ξ1, ξ2 and ξ3 account for the damping identified by the data recorded by the
accelerometer at the top, middle and bottom of the beam respectively. Table 4.2 shows
that the modal damping ratio is larger for higher modes. This aligns with the outcome of
the time-frequency analysis, which shows that higher modes vanish faster. Furthermore,
the damping ratio is the same at different measurement locations for each mode.

4.1.2. IDENTIFICATION OF ENERGY DISSIPATION OF THE CANTILEVER BEAM

BY MEANS OF ENERGY-FLUX ANALYSIS
In this section, the energy dissipation in the cantilever beam shown in Fig. 4.1 is iden-
tified by means of energy-flux analysis. To support the energy-flux analysis, a model of
the cantilever beam is used. Therefore, the lab-scale beam is modelled with a bending-
beam model, using internal material damping. The Lagrangian density function of a
Euler-Bernoulli bending beam can be defined as

λ
(
x, t ,u, u̇,u

′′)= 1

2
ρA (ẇz (z, t ))2 − 1

2
E I

(
w

′′
z (z, t )

)2
(4.4)

where the independent coordinate is u = w(z, t ). The dissipation in the material is de-
scribed in the constitutive model as
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σ=
(
E +E∗ ∂

∂t

)
ε. (4.5)

By introducing Eqs. 4.4-4.5 into Eqs. 3.70-3.72, the equation of motion and boundary
conditions of a bending beam model can be written as follows:

ρA
∂2w(z, t )

∂t 2 +
(
E∗ ∂

∂t
+E

)
I
∂4w(z, t )

∂z4 = δ(z −L)F (t ) (4.6)

w(0, t ) = ∂w(0, t )

∂z
= 0(

E∗ ∂

∂t
+E

)
I
∂2w(L, t )

∂z2 =
(
E∗ ∂

∂t
+E

)
I
∂3w(L, t )

∂z3 = 0 (4.7)

Where F (t ) is the input force in this case given by the hammer, ρA is the mass per unit
length and E I is the bending stiffness of the beam. The hammer force is approximated
to the measured one by a piecewise function as shown in Fig. 4.5.
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Figure 4.5: Measured hammer force applied to the beam and a square function approximation to the measured
hammer force.

Neglecting material damping in the boundary conditions, the solution of Eq. 4.6 can
be sought for, in the form of the superposition of the multiplication of a function of the
co-ordinate (modal shapes) and a function of time as

w(z, t ) =
Nmodes∑

n=1
Wn(z)ψn(t ). (4.8)
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Substituting the above solution into Eqs. 4.6- 4.7, the following expressions can be writ-
ten:

Nmodes∑
n=1

(
ψ̈n(t )+ E∗I

ρA
ψ̇n(t )+ω2

nψn(t )

)
Wn(z) = δ(z −L)F (t )

ρA
(4.9)

Wn(0) = ∂Wn(0)

∂z
= 0

E I
∂2Wn(L)

∂z2 = E I
∂3Wn(L)

∂z3 = 0
(4.10)

where ω2
n =β4

nE I /ρA. Next, Eq. 4.9 is multiplied by the function, Wm(z), and integrated
over the length of the beam, as follows:

∫ L

0

{(
ψ̈n(t )+ E∗I

ρA
ψ̇n(t )+ω2

nψn(t )

)
Wn(z)

}
Wm(z)dz =

∫ L

0

{
δ(z −L)F (t )

ρA

}
Wm(z)dz

(4.11)
The integral of the multiplication,

∫ L
0 Wn(z)Wm(z)dz is non-zero only if m 6= n. Then, the

time-dependent part of the equation of motion reads

ψ̈m(t )+ωmζmψ̇m(t )+ω2
mψm(t ) = F (t )

ρA
Γm =Qm(t ) (4.12)

where

Γm = Wm(L)∫ L
0 Wm(z)Wm(z)dz

. (4.13)

The time function, ψm(t ), can be sought for in the following form, assuming zero initial
conditions.

ψm(t ) =
{

0 t ≤ t ′
1
ωm

∫ t
0 Qm(t ′)e−ζmωm (t−t ′)sin(ωdm (t − t ′))dt

′
otherwise

(4.14)

where ωdm =ωm

√
1−ζ2

m . The modal shapes and natural frequencies can be found, as-
suming the following general solution:

Wm(z) =C1cosh(βm z)+C2sinh(βm z)+C3cos(βm z)+C4sin(βm z) (4.15)

where Ci (i = 1..4) are constants to be determined. Substituting Eq. 4.15 into Eq. 4.10, a
set of equations can be written in matrix notation.

Ac = 0, (4.16)
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where A is a 4x4 matrix, and c is a 4x1 vector containing the constants, Ci (i = 1..4). Next,
solving the determinant of matrix A,

det|A(βm)| = 0, (4.17)

whose coefficients are described in Appendix A.1, the natural frequencies of the can-
tilever beam, neglecting damping can be calculated. Thereafter, the constants Ci (i =
1..4) can be calculated. Thus, the total solution can be written as

w(z, t ) =
NModes∑

m=1
Wm(z)

{
0 t ≤ t ′

1
ωm

∫ t
0 Qm(t ′)e−ζmωm (t−t ′)sin(ωdm (t − t ′))dt

′
otherwise

(4.18)
The analytical expression given by Eq. 4.18 is used to compute the energy dissipation in
the beam. In more complex mechanical systems, where analytical expressions cannot
be easily found, measurement data is used to compute the energy dissipation.
To calculate the energy dissipation, the energy balance equation is formulated as

Wdiss(t ) =Wext(t )− dH (t )

d t
−S(z, t )|L0 (4.19)

where H (t ) is computed by means of Eqs. 3.74-3.75, leading to the following expression:

H (t ) =
∫ L

0

{
1

2
ρA

(
∂w(z, t )

∂t

)2

+ 1

2
E I

(
∂2w(z, t )

∂z2

)2}
dz (4.20)

The energy flux is computed with Eq. 3.76, resulting in the following expression:

S(z, t ) = E I

(
∂2w(z, t )

∂z2

∂2w(z, t )

∂z∂t
− ∂3w(z, t )

∂z3

∂w(z, t )

∂t

)
=

(
M
∂2w(z, t )

∂z∂t
−Q

∂w(x, t )

∂t

)
(4.21)

where M is the bending moment, and Q is the shear force (Appendix D). The external
energy corresponds to the energy introduced to the beam by means of a hammer impact,
computed from Eq. 3.77, as follows:

Wext(t ) =
∫ L

0
δ(z −L)Fhammer(t )

∂w(z, t )

∂t
dz. (4.22)

By substituting Eq. 4.18 into Eqs. 4.20-4.22, energy dissipation Wdiss(t ) in the beam can
be computed. On the other hand, the energy dissipation can be computed directly, using
the assumed damping operator (the Kelvin-Voigt model in the example above):

Wdiss(t ) = E∗
∫ L

0

∂5w(z, t )

∂z4∂t

∂w(z, t )

∂t
dz (4.23)

The dissipated energy computed using Eq. 4.19 and Eq. 4.23 should be equivalent, which
allows one to determining the damping constant. For the example considered in this
section, the expression for E∗ can be found as:
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E∗ =
∫

t Wdiss(t )dt∫
t

∫ L
0
∂5w(z,t )
∂z4∂t

∂w(z,t )
∂t dzdt

(4.24)

To validate the obtained damping constant, the response measured by means of the ex-
perimental test is compared to the response of the beam model, making use of the iden-
tified damping, E∗.
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Figure 4.6: Comparison of the beam response using of the identified damping by means of the energy-flux
analysis with the experimental response in the frequency domain.

Figure 4.6 shows good agreement between the model response and the experimental re-
sponse especially for the three lower modes. The agreement for the fourth mode ( f =
279.9Hz) is poorer, which means that the adopted model is, probably, insufficiently ac-
curate at higher frequencies. In the following sections, the energy-flux analysis is used to
identify local damping of more complex structures making use of experimental data.

4.2. IDENTIFICATION OF ENERGY DISSIPATION IN STRUCTURAL

JOINTS BY MEANS OF ENERGY-FLUX ANALYSIS

In this section, energy-flux analysis is used to identify the local damping of a steel frame
lab-scale building structure. The elements of the structure are bolt connected. It is there-
fore assumed that the main source of energy dissipation takes place in the bolted joints
of the structure. Consequently, an energy balance equation around the connection areas
is formulated, and energy dissipation is identified. The identified energy dissipation, by
means of the energy flux analysis, is later compared to the experimental response of the
lab-scale structure.
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4.2.1. EXPERIMENTAL WORK
The experimental set-up shown in Fig. 4.7 was constructed and tested in the Materi-
als and Structures Laboratory of Sapienza University, Rome. It consists of a steel frame
structure with five concrete slabs distributed uniformly by height. The concrete slabs
are supported by L-shape steel beams connected to the columns of the structure with
bolts, as shown in Fig. 4.7. The structure is mounted on a shaking table, which pro-
vides the base excitation. The characteristics of the set-up are described in Table 4.3.
The fundamental frequency, ω1, and damping ratio, ξ1, are identified by means of the
exponentially decaying function of a free vibration test, making use of the shaking table.

Figure 4.7: Experimental set-up: 5-storey steel-building model mounted on the Moog shaking table with the
first instrumentation configuration and acquisition system.

Height[m] Width[m] Depth[m] ω1[rad/s] ξ1[%]
2.5 1.2 0.9 28.1 1.22

Table 4.3: Lab-scale structure characteristics.

The structure is instrumented with eight strain gauges, five accelerometers and two dis-
placement sensors. Five strain gauges are glued to one column between each bolted con-
nection, and three are mounted on an L-shape beam supporting the concrete slabs, near
the connections with the first, third and fifth storey. In the first instrumentation config-
uration, accelerometers are placed on the L-shape steel beams supporting the concrete
slabs at each floor (Fig. 4.7). The recorded data is used to identify the equivalent stiffness
matrices of the lab-scale structure. Thereafter, in the second instrumentation configu-
ration, to identify energy dissipation in the joints, accelerometers are repositioned near
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the strain gauges to measure the accelerations and strains at the locations shown in Fig.
4.8.

Figure 4.8: Experimental set-up: Second instrumentation configuration for the energy-flux analysis.

A displacement sensor is located at the top floor, measuring the horizontal displacement
in the weak direction of the fifth storey, whereas the other is fixed to the shaking table.
A channel in the acquisition system is reserved for a force sensor placed at the tip of the
hammer used to excite the structure. The data recorded by the hammer-force sensor are
used for the stiffness identification and validation of the model.

STIFFNESS IDENTIFICATION

In this section, the procedure employed to identify the equivalent stiffness of the lab-
scale structure is described. The mass of the structure is measured directly and does
not need to be identified. A combination of the peak picking method [46] and modal
analysis is used to identify the equivalent stiffness matrix. Based on the results of a
hammer-impact test, the Fourier spectrum of vibrations of each floor is obtained and
the peak-picking method can be used to identify the eigenvectors of the model depicted
in Fig. 4.7 from the imaginary part of the spectrum. This methodology is applicable be-
cause the modes are well-separated, and the relative displacements of the structure are
marginally influenced by damping. Therefore, damping in the system can be neglected
during eigenvector identification. Thereafter, the remaining part of the modal analysis
can be carried out.

MODAL ANALYSIS

The accelerations measured via piezoelectric accelerometers (PCB Piezotronics, Inc.) in
an impact hammer test are shown in Fig. 4.9. The real and imaginary parts of the Fourier
spectrum of the corresponding displacements are shown in Fig. 4.10.
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Figure 4.9: Time domain response of each storey of the structure to a hammer impact.

Based on this data, modal analysis is conducted. First the corresponding 5-DoF system
is introduced under the assumption of negligible damping.

Mẍ(t )+Kx(t ) = 0 (4.25)

where M and K are 5x5 real-valued equivalent mass and equivalent stiffness matrices.
Matrix M is diagonal containing the masses of the floors. Matrix K is subject to identifi-
cation. To identify K, the displacement vector, x(t ), of the effective system, is assumed
in the modal form.

x(t ) =
n∑

i=1
x̂i ui (t ) =φu(t) (4.26)

where φ is the eigenmatrix, and ui (t ) = Ai sin(ωi t +Φi ) are the normal coordinates, in
whichωi are the natural frequencies andΦi are the phases. Both the natural frequencies
and the eigenmatrix are identified, based on the impact hammer test, using a technique
described in [46], based on the spectrum of the measured accelerations shown in Fig.
4.10.
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Withωi andφ identified, the modal stiffness matrix, K∗ =φT Kφ, can be calculated using
the following equation:

ω2
i φ

T Mφu(t ) = K∗u(t ) (4.27)

The identified mode shapes, φ, and natural frequencies, ωi , of the structure are shown
in Fig. 4.11.
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Figure 4.11: Experimentally identified mode shapes of the lab-scale structure.
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4.2.2. PROBLEM FORMULATION AND ENERGY-FLUX ANALYSIS

Energy dissipation in rigid bolted connections is investigated by means of an energy
method and validated using a the lab-scale structure, as shown in Fig. 4.7. It is as-
sumed that energy is dissipated in the bolted connections only. Each bolted connection
is described by springs and dashpots. The springs mimic the elastic resistance of the
connection, and the dashpots are responsible for energy dissipation. As first step of the
identification procedure, the spring stiffness representative of the connections should
be parametrized. Next, the dashpots are parametrized by means of the energy method.
The energy dissipated in the bolted connections is studied in each connection individu-
ally. The overall energy dissipation obtained with the proposed method is later validated
using an effective 5-DoF-system. To this end, the equivalent stiffness, K and equivalent
mass, M, representative of the lab-scale structure identified by means of a hammer im-
pact test, are used.

STIFFNESS PARAMETRIZATION

The first step to identifying the energy dissipated in a given system is determining the
distribution of the elastic and inertial properties of the system. The inertial properties
can be identified straightforwardly, whereas the elastic parameters are more difficult to
determine. To identify the latter, a model representative of the lab-scale structure is im-
plemented, as shown in Fig. 4.12.
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Figure 4.12: Euler-Bernoulli beams with discrete springs and masses, representing the lab-scale structure.

The model consists of two parallel Euler–Bernoulli beams with uniformly distributed
masses, ρA, and bending rigidity, E I , along the height, H +h, five discrete masses, M j ,
four translational springs, Kt j and four dashpots, Ct j , per floor. The stiffness, Kt j , only
accounts for the stiffness in the joints of the lab-scale structure, whereas, K, accounts
for the total stiffness of the structure (e.g. joints, columns). The Euler-Bernoulli beams
represent the columns of the lab-scale structure (see Fig. 4.12). While vibrating, beams
experience in-plane (xz) deformation, while the masses representing the concrete hor-
izontal slabs (floors) do not deform. However, they are slaved to the beams’ displace-
ments. The springs represent the elastic resistance of the structural joints and attach
the slabs to the columns. The dashpots represent the dissipative elements of the joints.
The springs and dashpots can deform, as shown in Fig. 4.12. The deformation of these
elements is relative to the deformation of the beams, as ∆Lϕ = w(∆L + x j )− w(x j ) for
the upper spring and dashpot elements, and as ∆Lϕ= w(∆L − x j )−w(x j ) for the lower
spring and dashpot elements, respectively.
By applying the Euler-Bernoulli beam theory and assuming geometric linearity, it can be
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stated that the beam cross-section is not deformable and that the transverse displace-
ment is uniform. Therefore, the axial deformation results from the rotation of the cross
section as follows:

εzz = 0 εxx =−e
∂2w(x, t )

∂x2 with
∂w(x, t )

∂x
=ϕ(t ). (4.28)

Where e is the distance from the neutral fibre to the edge of the cross-section of the
beam, as shown in Fig 4.12. Subsequently, the equation of motion governing small vibra-
tions of the system, assuming both beams are subjected to the same deflection, w(x, t ),
can be formulated as follows:

2ρA
∂2w(x, t )

∂t 2 +2E I
∂4w(x, t )

∂x4 +
Nstoreys∑

j=1
2

(
Kt j +Ct j

∂

∂t

)
[
δ

(
x −x j −∆L

)(
w(x, t )−w(x j , t )

)+δ(
x −x j +∆L

)(
w(x, t )−w(x j , t )

)]
−δ(x −x j )M j

∂2w(x, t )

∂t 2 = 0

(4.29)

with the following boundary conditions:

w(0, t ) = ∂w(0, t )

∂x
= 0

E I
∂2w(H +h, t )

∂x2 = 0

E I
∂3w(H +h, t )

∂x3 =−F (H +h, t )

(4.30)

The force, F (H +h, t ), is an external force applied atop the lab-scale structure by means
of an impact hammer. The stiffnesses, Kt j , of the joints, are determined such that the
lowest five natural frequencies of the model match the corresponding natural frequen-
cies identified experimentally by the hammer-impact test. The frequency shift associ-
ated with damping, Ct j , is neglected, because damping in the structure is quite low, as
shown later.

ENERGY-FLUX ANALYSIS

The overall energy dissipation in the lab-scale structure is investigated by considering
energy dissipation in each connection. Thus, the model shown in Fig. 4.13 and its data
collected via the second instrumentation configuration are employed. The rotational
deformation of each connection is represented via visco-elastic elements, as shown in
Fig. 4.13.
Figure 4.13 also shows a short segment of the beams adjacent to the joint, the mass of
the floor and a detailed view of the joint model. The joint is assumed to be rigid in the
horizontal direction, such that a horizontal displacement of the beam element is the
same as the mass. Simultaneously, the joint provides a visco-elastic resistance to the
rotational motion of the beam.
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Figure 4.13: Euler-Bernoulli beams with springs and dashpots representing the connection of the first storey
of the lab-scale building.

To formulate the energy variation equation for a single floor, as shown in Fig. 4.13, the
equation of motion is multiplied by the velocity term, ∂w(x,t )

∂t , and integrated between
x j −∆L, and x j +∆L, as follows:

∫ x j +∆L

x j −∆L

∂w(x, t )

∂t

{
2ρA

∂2w(x, t )

∂t 2 +2E I
∂4w(x, t )

∂x4 +
Nstoreys∑

j=1
2

(
Kt j +Ct j

∂

∂t

)
(
δ

(
x −x j −∆L

)(
w(x, t )−w(x j , t )

)+δ(
x −x j +∆L

)(
w(x, t )−w(x j , t )

))
−δ(x −x j )M j

∂2w(x, t )

∂t 2

}
d x = 0.

(4.31)

The above equation can be written in the form of the energy variation equation as

dE j (t )

d t
+S(x, t )|x j +∆L

x j −∆L =WDiss j (t ) (4.32)

where,

E j (t ) = 1

2

[
M j

(
∂w(x j , t )

∂t

)2

+4Kt j∆L2
(
∂w(x j , t )

∂x

)2 ]
+H jbeam (t ) (4.33)

and the Hamiltonian energy of the bending beam, H jbeam (t ), can be expressed as

H jbeam (t ) =
∫ x j +∆L

x j −∆L

1

2

[
2ρA

(
∂w(x, t )

∂t

)2

+2E I

(
∂2w(x, t )

∂x2

)2 ]
d x (4.34)

E j (t ) is the energy of the considered segment of the system comprising the kinetic and
the elastic energies stored in the beam segment and in the springs. S(x, t ) is the energy
flux crossing the boundaries of this segment, located at x = x j ±∆L. It can be obtained
by means of Eq. 3.76. This leads to

S(x, t ) = 2

(
M
∂ϕ(t )

∂t
−Q

∂w(x, t )

∂t

)
(4.35)
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where M is the bending moment, and Q is the shear force. Therefore, energy flux is com-
puted as the bending moment multiplied by the time rate of the rotation and the shear
force multiplied by the velocity. Consequently, WDiss j is the energy dissipated within the
chosen segment of the system. Thus, Eq. 4.32 shows that the energy change in the sys-
tem is balanced by the energy flux through the boundaries of the segment and the energy
dissipated in the segment.

4.2.3. QUANTIFICATION OF THE ENERGY DISSIPATION
To quantify the energy dissipated in the segment j , WDiss j , the structure is excited by a
base harmonic motion via the shaking table. The excitation pumps in energy at the fun-
damental natural frequency, lasting long enough to achieve the steady-state response. It
is chosen to excite the system at its natural frequency, owing to the well-known fact that
resonance vibrations are most sensitive to damping. As mentioned above, accelerome-
ters and strain gauges are both positioned, as described in the second instrumentation
configuration shown in Fig. 4.8, to enable the calculation of the energy flux and energy
defined by Eqs. 4.32-4.35.
By using the accelerations and the strains measured in the vicinity of the joints, the total
energy (left-hand side of Eq. 4.32) per storey can be computed and evaluated to give an
expression for the dissipated energy.
Experimental observations suggest that the energy dissipation in the system shown in
Fig. 4.7 is caused by the rotational deformation around the joints. Therefore, per this
observation and Eq. 4.31, the dissipated energy is expressed as

WDiss j (t ) =
∫ x j +∆L

x j −∆L
2Ct j

∂w(x, t )

∂t

[
δ

(
x −x j −∆L

)(∂w(x, t )

∂t
− ∂w(x j )

∂t

)
+

δ
(
x −x j +∆L

)(∂w(x, t )

∂t
− ∂w(x j )

∂t

)]
d x =

2Ct j

[
ẇ2(x j +∆L)− ẇ(x j +∆L)ẇ(x j )

+ ẇ2(x j −∆L)− ẇ(x j −∆L)ẇ(x j )
]

.

(4.36)

To identify the effective damping coefficient, Ct j , it is instrumental to compute a cumu-
lative dissipated energy within a period, T. This can be done by integrating the energy
variation of Eq. 4.32 over time.

E j (t )|t0+T
t0

+
∫ t0+T

t0

S(t , x)|∆x j +∆L
∆x j −∆Ld t =

∫ t0+T

t0

WDiss j (t )d t (4.37)

where E j (t ) is given by Eq. 4.33, WDiss j (t ) is given by Eq. 4.36 and S(x, t ) is given by Eq.
4.35. Therefore, from Eq. 4.36 and Eq. 4.37, Ct j can be computed as

Ct j =
E j (t )|t0+T

t0
+∫ t0+T

t0
S(t , x)|x j +∆L

x j −∆L

2
∫ t0+T

t0

(
ẇ2(x j +∆L)− ẇ(x j +∆L)ẇ(x j )+ ẇ2(x j −∆L)− ẇ(x j −∆L)ẇ(x j )

)
d t
(4.38)
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The numerator of Eq. 4.38 consists of the left-hand side of Eq. 4.32, computed by the
measured strains and accelerations in the vicinity of the joints per storey, as shown in
Fig. 4.8. The denominator of Eq. 4.38 is evaluated computing the velocities at specified
locations of each storey. The damping coefficients, Ct j , so obtained are independent of
the time period, T , if the latter is sufficiently large, as demonstrated in Fig. 4.14. The
damping coefficient of the first floor, resulting from Eq. 4.38, is shown in Fig. 4.14.
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Figure 4.14: Viscous damping coefficient of the first storey of the setup.

Whereas the above procedure results in a stable prediction of the viscous damping co-
efficient, it does not prove that the viscous damping mechanism assumed in the evalu-
ations is the true dissipation mechanism [47]. Therefore, it seems reasonable to refer to
Ct j as effective viscous damping coefficients.

MODAL DAMPING MATRIX BASED ON IDENTIFIED DAMPING COEFFICIENTS

The procedure described above enables us to calculate the energy dissipated locally in
the structural joints. The identified local damping can be formulated in terms of the
modal damping matrix. To this end, the following procedure is used. First, the beam
displacement is represented as a superposition of the modes of the undamped structure.

w(x, t ) =
N∑

n=1
φn(x)ψn(t ) (4.39)

Then, Eq. 4.39 is substituted in the equation of motion, given by Eq. 4.29. Multiplica-
tion of the resulting equation by the eigenvector, φm(x), followed by integration over the
length of the beam, yields
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L̂w(x, t ) =−
Nstoreys∑

j=1
2Ct j

∫ H+h

0
φm(x)

{
N∑

n=1
δ

(
x −x j −∆L

)
(
φn(x)−φn(x j )

)+ δ
(
x −x j +∆L

)(
φn(x)−φn(x j )

)}
ψ̇n(t )d x =

−
Nstoreys∑

j=1
2Ct j

{
φm(x j −∆L)(φn(x j −∆L)−φn(∆x j ))+

φm(x j +∆L)(φn(x j +∆L)−φn(x j ))
}
ψ̇n(t )

(4.40)

where L̂ is an operator describing the elastic and inertial properties of the system. The
inertial properties are represented by the mass matrix, M, and the elastic properties are
represented by the identified stiffness matrix, K. Applying the Taylor expansion to the
right-hand side of Eq. 4.40 and truncating the result to the first order, we obtain

L̂w(x, t ) =−
Nstoreys∑

j=1
2Ct j∆L2φ

′
m(x j )φ

′
n(x j )ψ̇n(t ) (4.41)

The equation above can be recast in the matrix form as

M∗ü(t )+C∗u̇(t )+K∗u(t ) = 0 (4.42)

with, M∗ =φT Mφ, K∗ =φT Kφ, where,

C∗ =
Nstoreys∑

j=1
2Ct j∆L2φ

′
m(x j )φ

′
n(x j ) (4.43)

The modal damping matrix, C∗, is a fully populated, positive-definite 5x5 matrix.

4.2.4. 5-DOF MODEL
To validate the damping obtained from the identification procedure described above,
an effective 5-DoF system is used. Results are compared with measurements. Model
predictions and measurements are compared, both in time and frequency domains, for
an impact hammer test. The model is formulated as follows:

Mẍ(t )+Cẋ(t )+Kx(t ) = F(t ) (4.44)

By applying the modal decomposition, given by Eq. 4.26, we obtain the following equa-
tion:

M∗ü(t )+C∗u̇(t )+K∗u(t ) = F∗(t ) (4.45)

The left-hand side of this equation is the same as Eq. 4.42, whereas F∗(t ) =φT F(t ).
To solve Eq. 4.45, it is customary to reformulate the equations of motion in the state-
space form. This is done by introducing a new variable: modal velocity.

u̇(t ) = v(t ) (4.46)
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By using Eq. 4.46, Eq. 4.45 takes the following form:

v̇(t ) = M∗−1 {
F∗(t )−C∗v(t )−K∗v(t )

}
(4.47)

where

v(t ) = {u(t ); u̇(t )} (4.48)

which can be solved using a standard solver for a system of first-order ordinary differen-
tial equations.

4.2.5. RESULTS

In this section the proposed method for damping identification is validated. This was
done by comparing the numerical results obtained by numerical integration of Eq. 4.47
with the data acquired using the first instrumentation configuration in the lab-scale
structure, described in Fig. 4.7. The comparison was carried out both in time and fre-
quency domains. The structure was excited by an external force, F(t ), at the top floor,
corresponding to the top mass of the 5-DoF model, using of an impact hammer. The
resultant force of the impact measured at the tip of the hammer is shown in Fig. 4.15.
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Figure 4.15: Hammer-impact force measured at the tip of the hammer as a function of time.

The first method validation is made by comparing the measured displacement of the
structure at the top floor with the modelling output as shown in Fig. 4.16. To have a
clearer view of the comparison a high-pass filter (100 Hz) is applied to the experimental
data, because only the lowest five modes are included in the model. Therefore, high
frequencies that can be captured by the measurement device cannot be predicted by the
model.
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Figure 4.16: Filtered response to a hammer impact at the top storey of the setup and the model in time domain.

In Fig. 4.16, the experimentally observed response and the model are in good agreement
up to 3 s. Then, a small deviation of the experimental data, compared to the simulation,
is observed. This is the result of interference with another closely-spaced mode. Figure
4.17 presents the results of the experimental data and the model output, computed via
FFT of the time signal, as shown in Fig. 4.16.
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Figure 4.17: A absolute value of the displacement frequency response to a hammer impact at the top storey of
the experimental setup and the numerical model.

Whereas the results are in good agreement up to about 50 rad/s, no correspondence is
observed at higher frequencies. This is because that the displacement sensor captures
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only the fundamental mode of the structure. To validate and study the accuracy of the
presented method for higher frequencies, the acceleration measurements must be trans-
formed to the frequency domain and compared with the modelling results. Figure 4.18
shows the spectra of the modelled and measured accelerations.
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Figure 4.18: A absolute value of the acceleration frequency response to a hammer impact at the top storey of
the experimental setup and the numerical model.

The model predictions are in excellent agreement with the measurements for the first
and second modes. A good agreement is also observed for the third mode and a rea-
sonable approximation is observed for the fourth mode. The higher modes contain very
little energy in the experiments, leading to an expected worsening of the correspondence
between measurements and predictions. The results presented in this section provide a
satisfactory validation for the damping identification method.

4.3. CONCLUDING REMARKS
In this chapter, a method was proposed to identify the local energy dissipation in struc-
tures. The method was based on the analysis of the energy flux across the boundaries
of the local area, in which the damping was identified. This method was applied to a
lab-scale beam and a lab-scale steel frame structure, aiming to identifying damping in a
localized area of the structure.
According to the energy variation equation, the total energy in a local area of the struc-
ture can change due to the energy flux through the boundaries and the energy dissipa-
tion.
For the lab-scale beam, the energy dissipation is computed for the beam, given that
the system is uniform, and that there are no other structural elements connected to the
beam that can be a source of energy dissipation.
In the lab-scale building structure, the energy method helped quantify the local en-
ergy dissipation near the joints of the 5-storey model by means of an equivalent vis-
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cous damping element. This can be accounted for in a global damping matrix. Then,
a modal damping matrix was formulated for the 5-storey structure, which was shown
to fully-populate off-diagonal entries. This provided insight on the energy dissipation,
owing to the interactions between modes. To validate this method, the experimentally
measured responses to a hammer-impact test was compared to predictions. Their effec-
tive viscous damping was identified using the proposed method. The agreement of the
time response signals and their spectra was found to be good, especially for the lower
frequencies. Thus, the proposed method provides a solid framework for identification of
local damping in complex structures.



5
ENERGY-FLUX ANALYSIS AS A TOOL

FOR IDENTIFYING THE

CONTRIBUTION OF

SOIL-STRUCTURE INTERACTION TO

DAMPING IN TALL BUILDINGS

The aim of this chapter is to independently identify the energy dissipation in the super-
structure and the SSI of a tall building. To this end, the method based on energy-flux
analysis that is described in the previous Chapter is used. Identifying the energy dissipa-
tion at selected areas of a building is important for improving the dynamic performance
of tall buildings during the design stage. In this chapter, energy-flux analysis is used for
damping identification in a high-rise building in The Netherlands (i.e. JuBi tower). First,
an extensive experimental campaign was conducted. The collected data were used for
standard experimental identification of the natural frequencies and equivalent damp-
ing values for comparison later. Then, the energy-flux analysis was carried out to ensure
certain parts of the structure could be isolated, accounting for the energy exchanged
with the adjacent parts of the building via the energy flux. Having computed the energy
content of a specific part of a structure and the energy exchanged at the chosen bound-
aries, the energy dissipated within those boundaries could be computed. In this case,
the energy dissipation in the superstructure and the foundation is identified separately.
Damping operator constants are quantified and used for an analytical model to compare
the experimentally identified damping values.
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5.1. FULL-SCALE MEASUREMENTS OF WIND-INDUCED VIBRA-
TIONS

5.1.1. BUILDING DESCRIPTION: THE JUBI TOWER

The JuBi tower (Fig. 5.1) is a 146 m tall office building with 39 storeys, located in The
Netherlands. The JuBi tower is a concrete tube-in-tube structure.

Figure 5.1: The JuBi tower

The horizontal stability of the building is provided by three internal concrete cores of a
rectangular shape and the outside walls of an asymmetric shape. The storeys are sepa-
rated by lightweight floors hinged to the outside walls and the internal cores. Therefore,
the floors do not significantly contribute to the horizontal resistance of the building. Ver-
tical loads on the floors are transferred to the cores and the outside walls, then directly
to the foundation. The building is located on soft soil.

5.1.2. SOIL CONDITIONS

Prior to building construction, soil characteristics of the site were identified via cone
penetration test (CPT) tests at several locations within the foundation boundaries [48].CPT
employs a cone that penetrates the soil to measure resistance. Data recorded by means
of the CPT test could not be directly used for calculations. However, shear-wave speed,
which is a relevant parameter for computing soil resistance, could be calculated based
on recorded data of the CPT test, making use of the most appropriate correlation [49–
52]. The identification of the soil shear-wave speed helps us describe the characteristics
of soil layers up to certain depth. This depth usually extends to at least the foundation
pile length. Thus, the soil-foundation resistance can be identified.
At the location of the JuBi tower, several CPT tests were performed. The shear-wave
speeds identified by means of Robertson’s correlation [52] from these measurements are
depicted in Fig. 5.2. Looking at Fig. 5.2 three distinct soil layers can be identified, and
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Figure 5.2: The soil shear-wave speed at the location of the JuBi tower

the mean shear-wave speed at each layer is plotted (black-dashed line). Moreover, the
shear-wave speed is relatively low. This is rather common for soft-soil conditions found
in The Netherlands.

5.1.3. INSTRUMENTATION AND FIELD MEASUREMENTS

Acceleration and strain measurements were conducted in the JuBi tower under strong
wind conditions, as shown in Fig. 5.3. Accelerations at the 9th, 22nd and 37th floors and
strains at the 9th floor were recorded during 2 hours. Figure 5.3 shows the measurement
strategy used during the measurement campaign. This instrumentation strategy is cho-
sen to collect the information needed for the energy-flux analysis.

9th floor

22nd floor 37th floor

6

5

7

8

α4 3α

α

2

1

Rosette configuration
Strain gauge

Y

Z
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Figure 5.3: Instrumentation configuration at the 9th ,22nd and 37th floors
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The 37th floor is instrumented with four accelerometers. Accelerometers 5, 7 and 8 are
placed such that accelerations in the weak direction (Y-direction) are registered. Ac-
celerometer 6 is placed 90◦ with respect to accelerometer 5 to measure accelerations in
the stiff direction (Z-direction). Making use of accelerometers 5 and 8, torsional motion
can be measured. This instrumentation disposition also allows us to identify the global
fundamental modes in the weak and stiff translational directions and the torsional di-
rection of the building structure. At the 22nd floor, accelerometers 3 and 4 were placed
perpendicular to each other to measure accelerations in the weak and stiff translational
directions. At the 9th floor, strains and accelerations were measured. Accelerometers 1
and 2, shown in Fig. 5.3, are placed using the same strategy used to instrument the other
floors. On the same floor, 24 strain gauges were mounted on various components (e.g.
cores, piles, and outside walls) to map the strain distribution. Several strain gauges are
installed on different components in a rosette shape. The data acquisition (DAQ) system
and instrumentation used during the measurements are described in Table 5.1.

Equipment Model
Software

and
Characteristics

DAQ 9th floor HBM-MGCplus(MGC5) Catman 4.0.3
DAQ 22nd floor

37th floor
Dewetron DEWE-50-USB-8 Dewesoft 7.1.1

Sampling frequency 100 Hz
Range ±10mV /V and 20m/s
Voutput=9.81 V

Accelerometers Sundstrand QA-700 Amplifier: DAQP STG
(x8) Filter Butterworth: 10 Hz

Sensitivity 30g /N
Sampling frequency 100 Hz
Range 2000mV /V
Resistance 120±0.3Ω

Strain gauges Tokyio Sokki PL-60-11 Amplifier: ML801
(x24) Filter Butterworth: 10 Hz

Half bridge
Bridge factor 1
Gauge factor 2.13

Table 5.1: DAQ and instrumentation description

Acceleration and strain data were recorded in sub-samples of 10 min. After some data
processing, time traces of each accelerometer were transformed to the frequency do-
main for identification purposes.
The PSD of the velocity is shown in Fig. 5.4. To obtain velocity signals, the acceleration is
integrated numerically, and the mean value of the resulting dependence of the velocity
on time is set to zero. The figure shows that all accelerometers recorded signals at all res-
onance frequencies. This means that the directional placement of accelerometers does
not correspond to the principal directions of the modal vibrations. This is prohibitive
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Figure 5.4: The PSD functions at the 9th , 22nd and 37th floors

for direct identification of the modal damping. To mitigate this, the acceleration signals
were manipulated by making use of rigid-body kinematics, as described in Eq. 5.1:

~vB =~vA +~Ω×~r B
A (5.1)

Assuming that each floor behaves as a rigid body (See Section 5.5), the velocity at any
point,~vB, can be computed as the velocity at a certain point,~vA, plus the angular velocity,
~Ω, times the distance between A and B. By means of Eq. 5.1, single-mode signals can be
computed, as shown in Fig. 5.5.
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Figure 5.5: Power-spectral density functions of the shifted signals at the 37th floor

Once the modes are separated, SDoF-based identification techniques can be applied
to the signals. Looking at Fig. 5.5, the spectral density functions of the translational
signals (red and blue lines) show double peaks. It is tempting to conclude that these
peaks correspond to two distinct global modes, which correspond to specific vibrational
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shapes of the building. This is not the case, however. The true reason for these peaks
is that the JuBi tower consists of three cores and outer walls, which have close natural
frequencies, as deduced from the strain measurement data. The cores and walls are
coupled by the floors, but only weakly. Therefore, the two closely spaced peaks shown
in Fig. 5.5 correspond to the slightly modified natural frequencies of the cores and the
walls.
In this work, HPBW [53] is applied to the data shown in Fig. 5.5 to identify the funda-
mental frequencies, fn , and the corresponding equivalent viscous damping ratios, ξn ,
for the three fundamental modes of the building (i.e. two translational and one rota-
tional around the vertical axis).
Because JuBi tower has two closely spaced resonant frequencies, using the HPBW method
for damping identification is not straightforward. Therefore, given that these two reso-
nant frequencies correspond to the components of a weakly coupled system, an equiv-
alent viscous damping ratio at each peak was identified and averaged. For the torsional
mode, no such behaviour is identified. Consequently, the HPBW method can be directly
applied to the latter. It should be noted that the experimentally identified equivalent vis-
cous damping ratios were not true damping values for the assumed real-valued modes,
given the fact that these modes are coupled. However, in this work, the HPBW method
is used to indicate the effective damping ratio, used for comparing the damping values
identified by the energy-flux method. The averaged damping ratios identified with the
HPBW method are presented in Table 5.3.
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Figure 5.6: HPBW method applied to the shifted signals at the 37th floor

Figure 5.6 shows the damping identified by the HPBW method at one of the peaks of the
two translational PSD functions and the torsional one. The equivalent viscous damping
in each peak is computed by the following expression.

2ξ= ∆ f

fn
(5.2)

Where fn accounts for the fundamental frequency, and ∆ f accounts for the frequency
distance at half of the height of the spike.
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5.2. MODEL AND ENERGY-FLUX ANALYSIS
Energy-flux analysis is used in this work to identify the energy dissipated in a full-scale
structure. During vibrations of a high-rise building, not only does the part of the struc-
ture above-ground (superstructure) move, the surrounding soil and the foundation also
moves. This shows that energy is dissipated in the superstructure and the foundation,
owing to the interaction with the soil [33]. The SSI is rather complex and uncertain [54–
56]. Whereas the SSI is a process taking place beneath the ground, the superstructure
can strongly influence the SSI effects and vice versa. Modelling the dynamic SSI for high-
rise buildings is a challenge, owing to uncertainties in the characteristic of the soil and
the complexity of the foundation. Especially challenging is predicting the dissipative
properties of the building structure and the SSI-associated damping. Therefore, in this
work, a novel method for damping identification, based on energy-flux analysis, is used
to identify the dissipative properties of a full-scale high-rise building. Additionally, an
attempt is made to identify the energy dissipated in the superstructure separately from
that dissipated in the soil-foundation interaction.

5.2.1. BEAM MODEL AND ENERGY-FLUX ANALYSIS

To study the energy dissipated in the JuBi tower from wind loads via energy-flux analysis,
a Euler–Bernoulli beam model is adopted. The tower is sketched in Fig. 5.7. Its stability
is assured by three concrete cores and the outer walls, as shown in Fig. 5.7.
The structure has a complex and asymmetric shape. With the random load distribution
from the wind gusts, it is reasonable to assume that, during vibration, the building per-
forms both translational and torsional (coupled) vibrations. To account for these mo-
tions and their coupling in a relatively simple manner, an appropriate beam model is
developed, as described below.
It is assumed that the cross-section perpendicular to the largest dimension of the beam
(building) remains a plane after deformation. This means that the cross-section of the
beam moves as a rigid body and is uniquely described by a position vector w = [wx wy wz ]
and a rotation vector, θ = [θx θy θz ], where x, y and z are the components of the coor-
dinate system. Furthermore, geometric linearity is assumed, implying the angles of ro-
tation are small. Next, referencing a material point in the cross-section, a displacement
vector, u = u(x, y, z, t ), with components ux ,uy and uz , is described as follows:

ux (x, y, z, t ) = wx (x, t )+ zθy (x, t )− yθz (x, t )

uy (x, y, z, t ) = wy (x, t )− zθx (x, t )

uz (x, y, z, t ) = wz (x, t )+ yθx (x, t ).

(5.3)

The corresponding strain components read,

εxx = ∂ux

∂x
; γx y = ∂ux

∂y
+ ∂uy

∂x
; γxz = ∂ux

∂z
+ ∂uz

∂x
. (5.4)

The equations of motion are formulated employing Lagrangian formalism. In general,
the Lagrangian of a conservative system reads,
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Figure 5.7: Layout of the stability cores and walls of the JuBi tower

L =K −V (5.5)

where K = ∫ L
0 K (u̇, u̇

′
)dx and V = ∫ L

0 V (u,u
′
,u

′′
)dx are the kinetic and potential ener-

gies respectively. Therefore, the Lagrangian density function can be express in a general
manner as λ=λ(u,u

′
,u

′′
, u̇, u̇

′
), where the Lagrangian reads as

L =
∫ L

0
λ(x, t )dx =∫ L

0

{(
1

2
ρA

((
ẇx (x, t )+ zθ̇y (x, t )− y θ̇z (x, t )

)2 + (
ẇy (x, t )− zθ̇x (x, t )

)2+
(
ẇz (x, t )+ y θ̇x (x, t )

)2
))
−

(
−T (x)w

′2
x + 1

2
E(x)

(
Aw

′2
x (x, t )

−2Sy w
′
x (x, t )w

′′
z (x, t )−2Sz w

′
x (x, t )w

′′
y (x, t )+2Sωw

′
x (x, t )θ

′′
x (x, t )

+Iy y w
′′2
z (x, t )+2Iy z w

′′
z (x, t )w

′′
y (x, t )−2Izωw

′′
z (x, t )θ

′′
x (x, t )+

Izz w
′′2
y (x, t )−2Iyωw

′′
y (x, t )θ

′′
x (x, t )+ Iωθ

′′2
x (x, t )

)
+ 1

2
G(x)Kθ

′2
x (x, t )

)}
dx.

(5.6)
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The Euler-Lagrange equation for one-dimensional systems can be described in its gen-
eral form as follows:

∂λ

∂ui
− ∂

∂t

∂λ

∂u̇i
+ ∂

∂x

∂λ

∂u
′
i

+ ∂2

∂x2

∂λ

∂u
′′
i

+ ∂2

∂t∂x

∂λ

∂u̇i∂u
′
i

+Q = 0. (5.7)

Where ui denotes the generalized coordinate at each direction: i = x, y and z. Next, sub-
stituting the Lagrangian function described in Eq. 5.6 into the Euler-Lagrange equation,
Eq. 5.7, equations of motion governing small vibrations of the coupled system repre-
sented in Fig. 5.7 are obtained as

(
Nfloors∑

j=1

M j

L
+

Ncores∑
k=1

ρk Ak

)(
ẅy (x, t )− zθ̈x (x, t )

)+
Ncores∑
k=1

Tk (x)w
′′
y (x, t )−ESk

z w
′′′
x (x, t )+E I k

y z w
′′′′
z (x, t )+E I k

zz w
′′′′
y (x, t ) = Fy (x, t )

(5.8)

(
Nfloors∑

j=1

M j

L
+

Ncores∑
k=1

ρk Ak

)(
ẅz (x, t )+ y θ̈x (x, t )

)+
Ncores∑
k=1

Tk (x)w
′′
z (x, t )−ESk

y w
′′′
x (x, t )+E I k

z y w
′′′′
y (x, t )+E I k

y y w
′′′′
z (x, t ) = Fz (x, t )

(5.9)

(
Nfloors∑

j=1

M j

L
+

Ncores∑
k=1

ρk I k
p

)
θ̈x (x, t )+

Ncores∑
k=1

ρk Ak
(
y ẅz (x, t )− zẅy (x, t )

)+Gk Kkθ
′′
x (x, t ) = Fx (x, t )

(5.10)

where

Tk (x) = ρAg x. (5.11)

Equation 5.8 describes the equilibrium in the Y-direction (weak direction); Eq. 5.9 repre-
sents the equilibrium in Z-direction (stiff direction) and Eq. 5.10 describes the dynamic
torque about the X-axis.
Lagrangian formalism can also be used to formulate the energy-balance equation, which
has the following form:

d

dt
E(t )+S(x, t )|Lfinal

Linitial
=Wext(t )−Wdiss(t ) (5.12)

where E(t ) is the energy change obtained by the summation of kinetic and potential
energies, described in Eqs. 5.13-5.14,

K = 1

2

∫
L

{
ρ

∫
A

(
u̇2

x + u̇2
y + u̇2

z

)
d A

}
dx (5.13)
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and,

V = 1

2

∫
L

{
E

∫
A
ε2

xx d A

}
dx + 1

2

∫
L

{
G

∫
A

(
γ2

x y +γ2
xz

)
dA

}
dx (5.14)

S is the energy flux at specific boundaries, Lfinal and Linitial. The energy flux is computed
by means of Eq. 5.15.

S(x, t ) =
(
∂ui

∂t
,
∂λ

∂u
′
i

− ∂

∂x

∂λ

∂u
′′
i

− ∂

∂t

∂λ

∂u
′
i∂u̇i

)
+

(
∂2ui

∂x∂t
,
∂λ

∂u
′′
i

)
(5.15)

The Wdiss is the rate of energy dissipated within the boundaries (Linitial to Lfinal), and
Wext is the rate of energy introduced to the system by external forces. Equation 5.12
shows that the energy change in the system is balanced by (i) the energy flux, S, through
specific boundaries, (ii) the energy dissipated, Wdiss, and (iii) the external effects, Wext.
Next, the Fourier transform pair is introduced as:

F̃n(ω) =F ( fn(t )) =
∫ ∞

−∞
fn(t )e−iωt dt and fn(t ) =F−1(F̃n(ω)) = 1

2π

∫ ∞

−∞
F̃n(ω)e iωt dω.

(5.16)
The energy balance equation, Eq. 5.12, of a time interval [t ; t +T ] is transformed into the
frequency domain, as shown in Eq. 5.17.

∫ ∞

−∞

{
E(t̃ )|t+T

t +
∫ t+T

t
S(x, t̃ )|Lfinal

Linitial
dt̃

}
e−iωt dt =∫ ∞

−∞

{∫ t+T

t
Wext(t̃ )dt̃ −

∫ t+T

t
Wdiss(t̃ )dt̃

}
e−iωt dt

(5.17)

Where the energy change, E(t̃ ), and the energy flux, S(x, t̃ ), are first numerically inte-
grated over a time span, [t ; t +T ] and are then transformed to the frequency domain
using FFT.

5.2.2. ENERGY DISSIPATION IN THE SUPERSTRUCTURE OF THE JUBI TOWER

SUBJECT TO WIND
In this section, Eq. 5.17 and the data recorded during the measurement campaign are
used to identify the energy dissipation in the structure. As described in Section 5.1, mea-
surements were performed at three levels of the building. To compute the energy dissi-
pated in the superstructure, data recorded at the top level, Lf (37th floor) and at the bot-
tom level, Ll (9th floor) with the energy balance equation are used. The energy-change
term in Eq. 5.17 is computed using the following formula:

E(t̃ )|t+T
t = (Lf −Ll)

2

(
ẽl(t̃ )+ ẽf(t̃ )

) |t+T
t (5.18)

where ẽl(t̃ ) is the energy density computed at the bottom of the superstructure, and ẽf(t̃ )
is the energy density at the top measurement location. At the top level, the kinetic en-
ergy is computed per Eq. 5.13 and using the accelerometer data. It is assumed that the
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elastic energy density and the energy flux atop the building are negligible compared to
the kinetic energy. Thus, the top level is characterized solely by the kinetic energy. At
the bottom, the kinetic and elastic energies are computed per Eq. 5.13 and Eq. 5.14 us-
ing the recorded strain and acceleration data. Several strain gauges were glued around
each core and outer walls of the building. Thus, elastic energy is computed at each core
and outer wall, and added together. The energy flux crossing the bottom level, Ll is also
computed. This concludes the quantification of the left-hand side of Eq. 5.17.
To obtain the energy dissipated in the system, Wdiss, from the energy balance, it remains
to estimate the energy, Wext, introduced to the building by the wind. During the mea-
surement campaign, no wind sensors were installed on the building and, therefore, this
data was not explicitly collected. However, the wind peak velocity and 1-hr average ve-
locity (Fig. 5.3) could be obtained in The Netherlands via the KNMI database. Using
this data with a well-established procedure, a realistic wind–energy spectrum could be
computed, as described below.
First, the wind pressure, pwind, caused by the wind velocity normal to the face, B , of the
building, is computed. It is generally assumed that the wind velocity contains a mean
component, v(x), and a fluctuating component, ṽ(x, t ), both dependent on the height,
x.

pwind(x, t ) = 1

2
ρw

(
v(x)+ ṽ(x, t )

)2 , (5.19)

where ρw is the air density. The wind load-per-unit length of the building equals the
wind pressure multiplied by the building width, B , and the shape factor, Cf.

qwind(x, t ) = 1

2
ρwBCf

(
v(x)+ ṽ(x, t )

)2 (5.20)

Next, the rate of energy, Ξext(x, t ), introduced to the unit length of the building by the
wind, can be computed by multiplying the wind load, qwind, by the velocity of the build-
ing. We assume that the wind blows in the weak direction (parallel to the y-axis) of the
building. This results in the following expression for Ξext(x, t ):

Ξext(x, t ) = 1

2
ρwCfB

(
v(x)+ ṽ(x, t )

)2 u̇y (x, t ) (5.21)

The fluctuating component of the wind velocity is significantly smaller than the mean
velocity, and the velocity of the building is also much smaller than the mean wind veloc-
ity [20]. Therefore, we use the linearized version of Eq. 5.21:

Ξext(x, t ) = 1

2
ρwCfB v2(x)u̇y (x, t ) (5.22)

The mean wind velocity is normally assumed to have a logarithmic variation along the
building height. Therefore, according to Eurocode NEN-EN 1991-1-4, the mean wind
velocity function can be described by the following expression:

v(x) = 0.19

(
x0

x0,I I

)0.07

ln

(
x

x0

)
vb,0, (5.23)
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where vb,0 = 27 m/s is the mean wind speed; x0,II = 0.05 is a parameter accounting for
the location of the buildings, and x0 = 0.5 accounts for the roughness of the terrain. To
obtain the total rate of energy introduced by the wind, Eq. 5.22 is integrated over the
length of the superstructure as follows:

Wext(t̃ ) =
∫ L

0
Ξext(x, t )d x = 1

2
ρwCfB

∫ L

0
u̇y (x, t )v2(x)d x (5.24)

Given that the velocity of the building is known only at the measurement locations, a lin-

ear approximation of the building velocity is used: u̇y (x, t ) = u̇y (Lf,t )−u̇y (Ll,t )
Lf−Ll

x + u̇y (Ll, t ).

At this point, Wdiss, which accounts for the rate of energy dissipated at the superstructure
is the only unknown in the energy balance, equation, Eq. 5.12. Therefore, the energy
dissipated, as a function of frequency, can be also computed in accordance with Eq. 5.17.

5.2.3. ENERGY DISSIPATION IN THE SOIL-FOUNDATION INTERACTION OF

THE JUBI TOWER

To compute energy dissipation, owing to the SSI (W SSI
diss), the recorded data at the bottom

floor (9th floor) is used. Thus, the energy dissipation, W SSI
diss, computed in this manner ac-

counts for the dissipation in the soil-foundation and in the part of the superstructure be-
tween the foundation and the 9th floor. Ideally, to identify the energy dissipation solely in
the foundation, measurements at ground level are desired. However, due to strict safety
regulations, the 9th floor was the lowest level allowed for equipment installation. It is
expected that, owing to the very high rigidity of the lower part of the building compared
to soil stiffness, the energy dissipated between the 9th floor and the ground level is sig-
nificantly smaller than the energy dissipated in the SSI and, therefore, the so-identified,
W SSI

diss, is representative for the dissipation in the soil-foundation interaction.

Given that there is only acceleration and strain data recorded at the 9th floor, some as-
sumptions must be made to quantify the energy dissipation around the soil- foundation
part. First, the lower part of the building, from the 9th floor to the ground, is assumed to
move as a rigid body. Second, the complex interaction between the soil and the building
foundation is simplified by means of springs, which represent the dynamic stiffness of
the soil-foundation interaction for the different directions, as shown in Fig. 5.8.
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Figure 5.8: Description of the soil-foundation and lower part of the building

Considering the model sketched in Fig. 5.8b, the energy balance described in Eq. 5.12
can be used. E(t̃ )|t+T

t can be computed by means of the following equation:

E(t̃ )|t+T
t = (Ll −L0)ẽl(t̃ )|t+T

t (5.25)

where ẽl(t̃ ) was computed in the previous section. The energy flux, S(Ll, t̃ ), is computed
by means of Eq. 5.15. S(L0, t̃ ) is set to zero, given that the SSI is accounted for by the
springs, as shown in Fig. 5.8b. The rate of elastic energy related to SSI can be computed
as

Wext(t̃ ) = Ky wy (L0, t )ẇy (L0, t )+Kz wz (L0, t )ẇz (L0, t )|L0+
Kθyθy (L0, t )θ̇y (L0, t )+Kθzθz (L0, t )θ̇z (L0, t )+Kθxθx (L0, t )θ̇x (L0, t )

(5.26)

The stiffnesses Ky , Kz , Kθy ,Kθz and Kθx are computed with the well-established soft-
ware, Dynapile. Realistic stiffness values are computed by introducing the soil profile
described in Fig. 5.2, the pile plan, and the pile characteristics.
Next, the energy balance equation, Eq. 5.17, contains only one unknown, the spectra of
the energy dissipation: W̃diss(ω) = ∫ ∞

−∞
∫ t+T

t Wdiss(t̃ )e−iωt d td t̃ , which can be computed.

5.3. QUANTIFICATION OF THE ENERGY DISSIPATION IN THE JUBI

TOWER
Having computed all terms of Eq. 5.17, except the energy dissipation, Wdiss(t̃ ), the spec-
tra of the energy dissipation in the superstructure, W̃ structure

diss (ω), and in the SSI, W̃ SSI
diss(ω),

can be calculated. The results of these calculations are plotted in Fig. 5.9.
Once the dissipated energy is identified, it is of interest to characterize the velocity de-
pendence of the damping force that could cause the dissipation. Whereas a wide range
of velocity-dependences can be derived, the three most widely used dependencies are
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Figure 5.9: The amplitude spectra of the dissipated energy in the JuBi tower, subject to wind

considered (i.e. viscous type u̇(t ), quadratic type u̇(t )|u̇(t )| and hysteretic type u̇(t )
|u̇(t )| ).

The damping mechanisms are described by the damping forces:

FD1 (t , x) =
3∑

i=1
F i

D1
(t , x) =

3∑
i=1

C i
1u̇i (t , x) (5.27)

FD2 (t , x) =
3∑

i=1
F i

D1
(t , x)+

3∑
i=1

F i
D2

(t , x) =
3∑

i=1
C i

1u̇i (t , x)+
3∑

i=1
C i

2u̇i (t , x)|u̇i (t , x)| (5.28)

FD3 (t , x) =
3∑

i=1
F i

D1
(t , x)+

3∑
i=1

F i
D3

(t , x) =
3∑

i=1
C i

1u̇i (t , x)+
3∑

i=1
C i

3
u̇i (t , x)

|u̇i (t , x)| (5.29)

Where FD1 (t ) is the linear damping force, FD2 (t ) is the combination of the linear and
the quadratic damping forces and FD3 (t ) is the combination of the linear and the hys-
teretic damping force. The rate of the dissipated energy associated with these damping
mechanisms can be written as

Wdiss1 (t ) =
3∑

i=1

∫ L

0
F i

D1
(t , x)u̇i (t , x)d x =

3∑
i=1

C i
1i

∫ L

0
u̇2

i (t , x)d x (5.30)

Wdiss2 (t ) =
3∑

i=1

∫ L

0
F i

D1
(t , x)u̇i (t , x)d x +

3∑
i=1

∫ L

0
F i

D2
(t , x) (u̇i (t , x)|u̇i (t , x)|)d x =

3∑
i=1

C i
1

∫ L

0
u̇2

i (t , x)d x +
3∑

i=1
C i

2

∫ L

0

(
u̇2

i (t , x)|u̇i (t , x)|)d x

(5.31)



5.3. QUANTIFICATION OF THE ENERGY DISSIPATION IN THE JUBI TOWER

5

91

Wdiss3 (t ) =
3∑

i=1

∫ L

0
F i

D1
(t , x)u̇i (t , x)d x +

3∑
i=1

∫ L

0
F i

D3
(t , x)

(
u̇i (t , x)

|u̇i (t , x)|
)

d x =

3∑
i=1

C i
1

∫ L

0
u̇2

i (t , x)d x +
3∑

i=1
C i

3

∫ L

0

(
u̇2

i (t , x)

|u̇i (t , x)|

)
d x

(5.32)

To obtain the velocity dependence associated with the rate of energy dissipation in the
superstructure, the following linear relation between the velocities measured at the low-
est and top measurement points is assumed: u̇i (x, t ) = u̇i (Lf,t )−u̇i (Ll,t )

Lf−Ll
x+u̇i (Ll, t ). Because

there is no measurement data recorded at the foundation, it is assumed that the velocity
over the lowest part of the structure is constant. The spectra of the dissipation energy,
where F designates the integral Fourier transform as defined in Eq. 5.16, are

F (Wdiss1 (t )) =
3∑

i=1
C i

1F

{∫ L

0
u̇2

i (t , x)d x

}
(5.33)

F (Wdiss2 (t )) =
3∑

i=1
C i

1F

{∫ L

0
u̇2

i (t , x)d x

}
+

3∑
i=1

C i
2F

{∫ L

0
u̇2

i (t , x)|u̇i (t , x)|d x

}
(5.34)

F (Wdiss3 (t )) =
3∑

i=1
C i

1F

{∫ L

0
u̇2

i (t , x)d x

}
+

3∑
i=1

C i
3F

{∫ L

0

u̇2
i (t , x)

|u̇i (t , x)|d x

}
(5.35)

The spectra of the dissipated energy defined in Eq. 5.17 are related to the spectra defined
by Eqs. 5.33-5.35 as

F
(
Wdissi (t )

)= AW̃diss(ω) (5.36)

where

A = 2πωi(
e iωT −1

) . (5.37)

is a frequency multiplier accounting for the finite duration, T , of the measurement. The
damping operator constants, C i

1, C i
2 and C i

3 for each vibrational direction can be esti-
mated by means of minimization of the mismatch in Eq .5.36.

minCi

∑
ωn

∣∣W̃diss(ω)−F (Wdissi (t ))
∣∣ where ωn =∆ωn (5.38)

Then, an estimate of the damping operator constant for the superstructure and the SSI
associated to each vibration direction can be obtained. Using the damping constants
obtained through the minimization procedure, the spectra of the dissipated energy cor-
responding to the three assumed dissipation forces can be obtained. These are shown in
Figs. 5.10-5.15.
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Figure 5.10: Comparison of linear damping to identify energy dissipation of the superstructure
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Figure 5.11: Comparison of quadratic damping to identify energy dissipation of the superstructure

Figures 5.10-5.15 show the local maxima of the spectra. The blue line represents the
right-hand side of Eq. 5.36 and the black lines correspond to the energy dissipated pre-
dicted by the proposed damping mechanisms. Given the fact that C i

1, C i
2 and C i

3 are
assumed to be constant, the minimization procedure focuses on minimizing the error
at the maxima of the spectra, corresponding to the natural frequencies of the building
within the measured frequency band. The energy dissipation, W̃diss1, which corresponds
to the energy dissipated obtained from linear damping, gives a reasonable approxima-
tion at the modal frequencies of the building. The energy dissipation predicted by the
quadratic damping, W̃diss2 , gives less-accurate agreement at the natural frequencies. In
this case study, the non-linearity of the damping is not highly influential, given the ve-
locities are not large. The hysteretic damping mechanism, W̃diss3, is the most sensitive
to changes in values of the constant. Therefore, the linear viscous damping force with
the corresponding constants, identified by means of the minimization will be used in the
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Figure 5.12: Comparison of hysteretic damping to identify energy dissipation of the superstructure
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Figure 5.13: Comparison of linear damping to identify energy dissipation of the SSI

next section.

5.4. COMPARISON OF THE DAMPING IDENTIFIED BY MEANS OF

THE ENERGY-FLUX ANALYSIS AND THE MEASURED MODAL

DAMPING

To validate the proposed energy method for damping identification, the equivalent damp-
ing ratios, identified by HPBW, are compared to the computed modal damping ratios us-
ing the damping operators identified by the energy-flux analysis. To this end, the model
depicted in Fig. 5.16 is used. Equations of motion are given by Eqs. 5.8-5.10, assuming
the cross-coupling terms are negligible for simplification. The boundary conditions are
adopted from the foundation simplification depicted in Fig. 5.8, and Cθm , Cθx , C SSI

θm
and
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Figure 5.14: Comparison of quadratic damping to identify energy dissipation of the SSI
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Figure 5.15: Comparison of hysteretic damping to identify energy dissipation of the SSI

C SSI
θx

are the constants identified by means of the energy-flux analysis.
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(a) Bending beam model
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(b) Torsional beam model

Figure 5.16: One-dimensional continuous model representative for a tall building, including SSI effects

EoMs describing the small translational and torsional motions of the system in the Fourier
domain are

−ω2

(
Ncores∑
k=1

ρk Ak +
Nfloors∑

j=1

M j

L

)
W̃m(x,ω)+

Ncores∑
k=1

TkW̃
′′

m(x,ω)+
Ncores∑
k=1

E I k
mW̃

′′′′
m (x,ω) = 0

(5.39)
where m = y, z, and

ω2

(
Ncores∑
k=1

ρ J k
0 +

Nfloors∑
j=1

M j

L

)
θ̃x (x,ω)+

Ncores∑
k=1

G J k
x θ̃

′′
x (x,ω) = 0. (5.40)

The boundary conditions at x = L0 and x = Lt are

Ncores∑
k=1

E I k
mW̃

′′
m,1(L0,ω) =

(
Kθm + iωC SSI

θm

)
W̃

′
m,1(L0,ω)

−
Ncores∑
k=1

E I k
mW̃

′′′
m,1(L0,ω) = KmW̃m,1(L0,ω)

Ncores∑
k=1

E I k
mW̃

′′
m,3(Lt,ω) = 0

Ncores∑
k=1

E I k
mW̃

′′′
m,3(Lt,ω) = 0

(5.41)

Ncores∑
k=1

G J k
x θ

′
x (L0,ω) =

(
Kθx + iωC SSI

θx

)
θ̃x (L0,ω)

Ncores∑
k=1

G J k
x θ

′
x (Lt,ω) = 0

(5.42)
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and the interface conditions at x = Ll and x = Lf are

Ncores∑
k=1

E I k
m

(
W̃

′′
m,2(Ll,ω)−W̃

′′
m,1(Ll,ω)

)
= 0

−
Ncores∑
k=1

E I k
m

(
W̃

′′′
m,2(Ll,ω)−W̃

′′′
m,1(Ll,ω)

)
= iωCmW̃m,1(Ll,ω)

W̃m,2(Ll, t ) = W̃m,1(Ll,ω)

W̃
′

m,2(Ll,ω) = W̃
′

m,1(Ll,ω)

Ncores∑
k=1

E I k
m

(
W̃

′′
m,3(Lf,ω)−W̃

′′
m,2(Lf,ω)

)
= 0

−
Ncores∑
k=1

E I k
m

(
W̃

′′′
m,3(Lf,ω)−W̃

′′′
m,2(Lf,ω)

)
= iωCmW̃m,1(Lf,ω)

W̃m,3(Lf, t ) = W̃m,2(Lf,ω)

W̃
′

m,3(Lf,ω) = W̃
′

m,2(Lf,ω).

(5.43)

Ncores∑
k=1

G J k
x

(
θ̃
′
x,2(Ll,ω)− θ̃′

x,1(Ll,ω)
)
= iωC SSI

θx
θ̃x,1(Ll,ω)

θ̃x,1(Ll,ω) = θ̃x,2(Ll,ω)

Ncores∑
k=1

G J k
x

(
θ̃
′
x,3(Lf,ω)− θ̃′

x,2(Lf,ω)
)
= iωC SSI

θx
θ̃x,2(Lf,ω).

(5.44)

The equations of motion, Eq. 5.39-5.40, boundary and interface conditions, Eqs. 5.41-
5.44, are used to compute the following frequency equations, Eqs. 5.45-5.46, whose roots
are complex-valued natural frequencies of the system.

det|A(ωn)| = 0 (5.45)

det|B(ωn)| = 0 (5.46)

A(ωn) is a 12x12 matrix, whose components are described in Appendix A.2. The complex-
valued roots of Eq. 5.45 correspond to the translational modes of the structure and B(ωn)
is a 6x6 matrix, whose components are described in Appendix A.3, defines the torsional
modes. Complex-valued natural frequencies are used to compute the equivalent modal
damping ratio, assuming SDoF dynamics, using the following expression:

ξn = ℑ(ωn)√
ℜ(ωn)2 +ℑ(ωn)2

(5.47)

The parameters described in the model depicted in Fig. 5.16 are quantified using the
values given in Table. 5.2.
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m = y m = z
H(m) 146∑Ncores

k=1 E I k
m(N m2) 4.2e +14 8.5e +14∑Ncores

k=1 ρk Ak +
∑Nfloors

j=1
M j

L (Kg/m) 4.0e +05

Km(N/m) 1.1e +10 1.0e +10
Kθz (Nm/rad) 5.25e +12
Kθy (Nm/rad) 7.95e +12

C SSI
θz

(Nms/rad) 3.5e +10

C SSI
θy

(Nms/rad) 6.0e +10

Cm(Ns/m) 5.0e +05 1.6e +06∑Ncores
k=1 G J k

m(N m2) 4.5e +14
Cθx (Nms/rad) 2.0e +07
Kθx (Nms/rad) 3.9e +12
C SSI
θx

(Nms/rad) 2.1e +10

Table 5.2: Identified parameters for the JuBi tower

The stiffnesses Ky , Kz , Kθy ,Kθz and Kθx , shown in Table 5.2, are computed by means of
the software Dynapile, making use of the pile plan of the building and the soil profile.
The bending stiffness, E Im , and the torsional stiffness, G Jx are computed making use
of the Young’s modulus, E , and the shear modulus, G , corresponding to the building
material and the technical information needed to calculate the moments of inertia Im

and Jx . The mass per unit length, ρA, of the building is calculated using the density of
the reinforced concrete material and the area of the cores and outer walls, obtained via
technical information provided in the drawings. The mass of the floors, M j , is quantified
using the technical information of the floors. Finally, the damping constant Cm , Cθx ,
C SSI
θz

,C SSI
θy

and C SSI
θx

are obtained by means of the energy-flux analysis.

The resultant damping ratio associated with the translational and torsional modes are
compared to the identified damping in Table 5.3.

Identified (Averaged) Energy method
ξy 1.0% 1.1%
ξz 1.2% 2.0%
ξθx 0.73% 1.2%

Table 5.3: Comparison of identified damping and energy-flux analysis

Table 5.3 shows that the identified equivalent viscous damping values are slightly lower
than those obtained via energy-flux analysis. However, this discrepancy is acceptable,
given the complexity of the structure. It is important to notice that the damping ratios
shown in the right column (energy method) in Table 5.3 are the true modal damping
ratios, whereas the experimentally identified damping ratios are indicative of the pres-
ence of the closely spaced modes shown in Fig. 5.6. However, for low-damped systems
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like JuBi tower, these damping ratios are close enough to the modal damping values.
Moreover, the process of damping identification via the energy-flux analysis contains
some assumptions because of the complexity of the full-scale building system and en-
vironment. Therefore, damping identification leads to inaccuracies. Nevertheless, the
energy-flux analysis establishes a consistent framework for damping identification.

5.5. ASSUMPTIONS AND CONCLUDING REMARKS
The assumptions used in this chapter to compute the energy dissipation in the super-
structure and in the SSI are listed and discussed below.

• The assumption in Eq. 5.1 in Section 5.1.3 was made to accommodate the fre-
quency range of building vibrations caused by wind loading (0-3Hz). Only global
modes of the building were excited. Therefore, in-plane deformation of floors was
not expected.

• In Section 5.2.1, a Euler–Bernoulli beam model was used to interpret the energy-
flux analysis. Coupling effects considered by this model are shown in Eq. 5.3.

• To compute the energy change described in Eqs. 5.18-5.25a few assumptions were
made. First, the energy flux and the potential energy at the top were assumed to
be negligible compared to the kinetic energy, because the potential energy of the
building decreased with the distance from the foundation, like a cantilever beam.
At the top level, this energy, owing to a very low bending and shear, was much
smaller than the kinetic energy. The latter was maximal at the top in the funda-
mental mode of vibration, the basis for neglecting the potential energy. Regarding
energy flux, one can justify as follows. The energy flux through the roof is zero.
Therefore, the energy flux must be a continuous function of the coordinate, and it
must be small and in close vicinity of the roof. Thus, the energy flux through the
top level is neglected. Finally, Eqs. 5.18-5.25 are computed as an averaged value
over the height of the building, given that data are collected at two heights of the
structure.

• The assumption of using a constant velocity over the low part of the building (9th

floor to ground level) is taken, because the lower part of the building is attached
to a low-rise structure that is very stiff in the horizontal directions (Y and Z ). It is
much stiffer than the soil. Therefore, it is reasonable to assume that the lower part
of the building will move horizontally as a rigid body, thereby having a constant
horizontal velocity over its height.

In this work, the energy-flux analysis was applied to two parts of the building: to the
superstructure and the soil-foundation system. Thus, the energy dissipated in the su-
perstructure and in the soil-foundation system was identified independently. Therefore,
the relative contribution of damping in each part of the structure to the overall damping
was studied.
A quantification of damping in selected parts of a building is important in view of poten-
tial design improvements to allow for reduced accelerations subject to dynamic loads.
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This method also enables identification of a damping mechanism that mimics the en-
ergy dissipated by the building. The damping constants associated with the dissipation
in the superstructure and in the soil-foundation system identified by the energy-flux
analysis were compared using a model that considers SSIs.





6
BASIC MODELS OF TALL BUILDINGS

FOR DAMPING ASSESSMENT

DURING THE DESIGN STAGE

In this chapter, damping of several tall buildings located in The Netherlands is studied
using basic mechanical models. It has already been shown that, in high-rise buildings,
there are several sources of energy dissipation. These can be represented by one or more
damping mechanisms. Having a better understanding of the behaviour of the different
damping mechanisms, building vibrations can be better controlled in the design stage
to reduce vibrations that may cause nuisance to the building occupants. It is therefore
the aim of this chapter to use basic mechanical models to study the contributions of the
different damping sources to the total damping of several tall buildings located in The
Netherlands. Results show that aerodynamic damping can be neglected for the stud-
ied buildings and that foundation damping might play an important role in the overall
building damping certain soil characteristics typically found in The Netherlands.

6.1. MODELLING APPROACH

Several researchers developed damping predictors for high-rise buildings based on ex-
perimental data [1, 3–5]. Some studies attempted to identify damping in high-rise build-
ings experimentally or by developing complex, uncertain and time-consuming finite el-
ement method (FEM) models. The complexity and uncertainty in modelling a high-rise
building with a FEM package rests on the fact there are many interconnected variables.
There are several constraints that are extremely difficult to describe, except by fitting
through experimental data. With the effort required to study just one building, it was
decided to develop a simplified analytical model that can be used to study the dynamics
of several high-rise buildings by changing only the parameters.
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6.2. MODEL DESCRIPTION
Figure 6.1 shows a schematic representation of a high-rise building (Fig. 6.1a), and a
model of a high-rise building (Fig. 6.1b). In the model, the superstructure (the part above
ground) is mimicked making use of a Euler–Bernoulli beam. In principle, structures such
as tall buildings are relatively flexible owing to their heights. Therefore, it seems reason-
able to use Euler–Bernoulli beam theory to model the behaviour of the superstructure.
It is evident that building structures are attached to the ground, restricting movement.
Therefore, spring elements that mimic the ground resistance are attached to the bottom
end of the beam. The spring elements that represent the ground resistance are shear
and rotational. These types of springs were used because, during horizontal building vi-
bration caused by wind loading, the horizontal and rotational ground resistance play a
major role.

(a) Sketch of a high-rise building.

z

x
w(x,t)

(E+
E*	∂/∂t)I			ρA

uxx

Cb

Cxx

Kxx

Kθθ Cθθ

M0,I0

H

φθθ

(b) Beam model of a high-rise building.

Figure 6.1: Modelling interpretation of a high-rise building with different sources of energy dissipation.

Tall buildings dissipate energy through several physical mechanisms, as explained in
Chapter 1. A dashpot can be used to represent the energy dissipation in the field of
small vibrations. The energy is dissipated proportionally to the velocity of the system
(i.e. building). Another way of dissipating energy is described by the Kelvin–Voigt model
[57]. Using this model energy dissipation can be computed as a function of beam ro-
tation. Therefore, it mimics the energy dissipation in the material and the elements
caused by deformations during building motions. A relation between the parameters
of the model and the resistance and dissipation sources of a building can be established.
Therefore, in the model E I describes the bending stiffness of the superstructure, Kxx and
Kθθ are the horizontal and rotational soil-foundation stiffnesses respectively. The dis-
tributed dashpots attached to the beam mimic the aerodynamic energy dissipation (Cb)
induced by the wind, and the Kelvin-Voigt model (E∗) describes the energy dissipation
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caused by the material deformation of the MLBS and NSE and the energy dissipation in
the connections of the superstructure. The ground has the capacity to dissipate energy
in the form of wave radiation and via the material itself. These features are described in
the model of the dashpot elements, Cxx and Cθθ. Finally, the mass of the building is rep-
resented in the model as an uniformly distributed mass, ρA, along the beam. The mass
of the building foundation, M0, is locally concentrated at the bottom end in the beam
model.

6.3. GOVERNING EQUATIONS
Experimental measurements in Chapter 2 showed that the three lower modes in each
longitudinal and torsional direction are coupled. However, for simplicity and because
damping (subject of this study) is not highly influenced by the coupling, it is assumed
that vibrations occur only in one vibrational direction at a time. Thus, the displacement
field can be described as follows:

ux (x, z, t ) = zθy (x, t )

uy (x, z, t ) = uz (x, z, t ) = 0.
(6.1)

By the assumption of geometric linearity, the following strain expression can be written:

εxx = ∂ux

∂x
= z

dθy

dx

γxz = ∂ux

∂z
+ ∂uz

∂x
= 0

εzz = ∂uz

∂z
= 0

(6.2)

By using the relations described in Eqs. 3.20-3.22, the Lagrangian density function of a
Euler-Bernoulli bending beam can be defined as

λ
(
x, t ,u, u̇,u

′′)= 1

2
ρA (ẇz (x, t ))2 − 1

2
E I

(
w

′′
z (x, t )

)2
(6.3)

The dissipative energy function per unit length produced by the dashpots elements de-
scribed in Fig. 6.1b is defined as

D(u̇) = 1

2
Cb (ẇz (x, t ))2 (6.4)

The dissipation in the material is described in the constitutive model as

σ=
(
E +E∗ ∂

∂t

)
ε. (6.5)

Next, by introducing Eqs. 6.3-6.5 into Eqs. 3.70-3.72, equations of motion and boundary
conditions (Fig. 6.1b) can be written.
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ρA
∂2w(x, t )

∂t 2 +Cb
∂w(x, t )

∂t
+

(
E +E∗ ∂

∂t

)
I
∂4w(x, t )

∂x4 = F (x, t ) (6.6)

If w(0, t ) = u(t ) and ∂w
∂x (0, t ) =ϕθθ(t ), the boundary conditions can be written as

(
E +E∗ ∂

∂t

)
∂2w(0, t )

∂x2 = Kθθϕθθ(t )+Cθθ
∂ϕθθ(t )

∂t
+ I0

∂2ϕθθ(t )

∂t 2

−
(
E +E∗ ∂

∂t

)
I
∂3w(0, t )

∂x3 = Kxxu(t )+Cxx
∂u(t )

∂t
+M0

∂2u(t )

∂t 2

(6.7)

(
E +E∗ ∂

∂t

)
I
∂2w(H , t )

∂x2 =
(
E +E∗ ∂

∂t

)
I
∂3w(H , t )

∂x3 = 0 (6.8)

Having formulated the equation of motion and the boundary conditions of the model
depicted in Fig. 6.1b, but prior to solving Eq. 6.6, parameter values of the model rep-
resenting high-rise buildings should be derived. However, this is not a straightforward
task. The models used to describe the physical behaviour of different parts of the build-
ing are explained in the following sections.

6.4. SOIL MODEL
The subject of soil-structure interaction has been a matter of study for many years [54].
These studies have resulted in the development of several tools for computing equiva-
lent stiffnesses and damping values for SSI. These tools range from analytical solutions
of rigid disks resting on a half-space or a layered half-space [58-64] to numerical tools
such as FEMs [65] and boundary elements (BE) methods [66]. Both have the capacity to
account for the geometry of the foundation. To solve the system of equations described
by the model depicted in Fig. 6.1b, the resistance and the dissipation capacities of the
ground should be quantified. This means that expressions for the springs, Kxx and Kθθ ,
as well as the dashpots, Cxx and Cθθ, should be described by the SSI model. Thus, the
springs and the dashpots can be quantified for given soil characteristics. These values
can be computed via analytical expressions or with numerical software. Here, several
SSI models could have been used. However, it seemed convenient for this study to im-
plement the well-established cone model [67, 68]. The results given by this model are
compared to solutions given by a numerical software package in the next section.

6.4.1. THE CONCEPT OF THE CONE MODEL
A soil area having uniform properties can be modelled as an unbounded semi-infinite
elastic body (i.e. a half-space) with certain properties (e.g. mass density ρ, constraint
elastic modulus Ec, shear modulus G and Poisson’s ratio ν). When working with cone
models, it is convenient to formulate the soil properties in terms of wave speeds, cp =√

Ec/ρ and cs =
√

G/ρ, combining the aforementioned soil properties. Many other rela-
tions between the different soil parameters were developed by Wolf [67].
A rigid massless disk resting on a half-space (Fig. 6.2a) is next introduced, representing
the interaction between the foundation of a structure and the soil. The half-space below
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(a) Disk on surface of a half-space with cone
model.

1
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d

(b) Wave propagation in cone segments for sur-
face disk on layered half-space.

Figure 6.2: Cone model for surface foundations description.

the disk is modelled as a semi-infinite cone with certain properties for each DoF. The
opening angle of the cone is determined by the aspect ratio, z0/r0, which can be com-
puted by equating the static stiffness of the cone formulated from the elastic equilibrium
within the cone area and the closed-form solution of a rigid disk on a half-space based
on exact elastic theory. Therefore, per the opening angle of the cone, the static-stiffness
of the foundation can be computed. The dynamic stiffness is computed through the re-
lationship between the displacements of the disk and the dynamic load acting on the
disk, based on wave propagation. This relation is described by Green’s functions. Figure
6.2b shows a wave propagation pattern in the soil generated by a vertical dynamic load
on a rigid disk resting on a layered half-space.
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6.4.2. COMPARISON OF THE CONE MODEL WITH A BEM MODEL IN A CASE

STUDY

To study the reliability of the cone model (see Appendix B) for this work, a case study
is used. The results of an equivalent spring stiffness and dashpot damping of the cone
model are compared to the solutions obtained from the commercial software package,
Dynapile, which includes the stiffness of the piles of the foundation.
To proceed with the comparison a building is selected. The selected building has a rect-
angular shape (E.M.C building) with the dimensions described in Fig. 2.8. The founda-
tion contains 378 piles and supports a building 120 m high.
Soil parameters are identified using CPT at several locations within the foundation area
prior to construction. In a CPT, the cone penetrates the soil to certain depth (25 m),
measuring the resistance that the soil exerts against the cone sleeve. During penetra-
tion, a signal is registered every few centimetres, obtaining a full description of the soil
characteristics as a function of depth. Using these data and certain correlations [52], the
shear-wave speed as a function of depth can be identified, as shown in Fig. 6.3.

0 50 100 150 200 250 300 350 400
-25

-20
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-10
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Figure 6.3: Soil shear-wave speed as a function of the soil depth at several spots of the E.M.C building location.

Figure 6.3 describes the shear-wave speed as a function of depth at the location of the
foundation obtained using Robertson’s correlation. Looking at the figure, three soil lay-
ers can be distinguished, and it can be said that the foundation rests on a soft soil.
Once the soil characteristics are identified and the foundation size is determined, a sim-
ulation using the cone model for this specific foundation can be performed. In the case
of the numerical model the piles attached to the foundation are modelled. The char-
acteristics of the piles are obtained from the technical information described in Table
6.1.
A sketch of the pile foundation modelled with the software package is shown in Fig. 6.4.
The results are compared in terms of stiffness and damping of the transverse and rota-
tion degree of freedom, since these are degrees of freedom of interest for the study.
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E[KN/m2] ρ [Kg/m3] ξ[%] r[m] L[m]
3e +07 2300 0.5 0.25 20

Table 6.1: Pile characteristics.

Figure 6.4: Pile foundation plan of the E.M.C building.
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Figure 6.5: Soil stiffness and damping of the horizontal and rocking DoFs as a function of frequency.

Looking at the stiffnesses, Kxx and Kθθ, it can be seen that the transverse stiffness ob-
tained by the cone model is comparable to the Dynapile model. In the case of rota-
tional stiffness, the cone model gives slightly lower stiffness values compared to Dy-
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napile. These differences can be deduced from the fact that, in the cone model, pile
resistance is not included. The horizontal resistance effect of the piles is nearly negligi-
ble. However, in the case of the rotational motion, the piles contribute more significantly
to the overall stiffness. To overcome these differences, given that it is not feasible to reli-
ably model many piles in the cone model, a correction factor is used.

In the case of damping, both models show highly comparable results. Thus, the over-
all damping is governed by the damping in the soil. Therefore, the contribution of the
damping in the piles to the total soil damping is negligible.

6.5. AERODYNAMIC DAMPING

Another source of damping in a high-rise building is aerodynamic damping. The aero-
dynamic damping is generated by the aerodynamic interaction of wind with building. A
constant wind stream falling on the structure makes the building vibrate. To study the
effect of the aerodynamic damping in a high-rise building, a simplified 3-DoF model,
shown in 6.6, is used.

	 U(ω)

Uxx(ω)

φϑϑ(ω)

M0 I0+Ib

Kϑϑ Cϑϑ

Kxx

Cxx

Kb

Cb

Mb

H

F(ω)

~

~

~

~

Figure 6.6: 3-DoF representative for a building to study the influence of the aerodynamic damping.

Equations of motion of the 3-DoF model are written in the frequency domain as follows:
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−ω2MbŨ (ω)+ (Kb + iωCb)Ũb(ω) =−iω
1

2
ρairV windB HCαŨb(ω)

−ω2M0Ũxx(ω)− (Kb + iωCb)Ũb(ω)+ (
K̃xx + iωC̃xx

)
Ũxx(ω) = 0

−ω2 (I0 + Ib)ϕ̃(ω)− (Kb + iωCb) HŨb(ω)+ (
K̃θθ+ iωC̃θθ

)
ϕ̃(ω) = 0

(6.9)

In a condensed matrix form, Eq. 6.9 can be rewritten as

−ω2

Mb 0 0
0 M0 0
0 0 (I0 + Ib)

+
Kb + iωCeff − (Kb + iωCeff) − (Kb + iωCeff) H

−Sb Sb +Sxx SbH
−SbH SbH SbH 2 +Sθθ

 Ũ (ω)
Ũxx (ω)
ϕ̃θθ(ω)

= 0.

(6.10)

where Ũb(ω) = Ũ (ω)−Ũxx (ω)− Hϕ̃(ω), Ceff = Cb + 1/2ρairV windB HCα, Sb = Kb + iωCb

and Sxx = Kxx + iωCxx and Sθθ = Kθθ + iωCθθ . It is then clear from the system above, that
the matrix is non-symmetric for values Cα 6= 0. However, when the damping coefficient,
Cb, is sufficiently large, whereas Cα 6= 0, it can be assumed that Cα is negligible. Thus,
the system can be considered symmetric. Therefore, the same amount of energy coming
into the system goes out.
Group 1 of buildings described in Table 6.2 are used to study the influence of the aero-
dynamic damping in high-rise buildings. To do so, the system of equations shown in Eq.
6.10 using matrix form (Ac = 0) can be solved as follows:

det|A(ωn)| = 0. (6.11)

The solution of Eq. 6.11 consists of complex-valued natural frequencies, ωn , where the
overall damping can be extracted as:

ξn
aero = ℑ(ωn)√

ℜ(ωn)2 +ℑ(ωn)2
. (6.12)

Results of the study show that the aerodynamic damping can be considered negligible,
meaning that in all cases ξaero ≤ 0.2%. Another comparison has been made making use
of the aerodynamic damping predictor developed by Davenport [1].

ξaero = CDrag

4π

ρair

ρbuild

V

f0D
(6.13)

The resultant damping values obtained by applying Eq. 6.13 also lead to the conclusion
that aerodynamic damping is negligible. Therefore, no more effort is given to identify
the most adequate aerodynamic damping mechanism. However, if a building is suf-
ficiently light and tall, the aerodynamic damping could play an important role in the
overall damping.
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6.6. STUDY OF THE FOUNDATION DAMPING CONTRIBUTION TO

THE TOTAL DAMPING OF SEVERAL BUILDINGS LOCATED IN

THE NETHERLANDS
Given that all the described sources of energy dissipation in a tall building are now de-
fined, the damping of several high-rise buildings located in The Netherlands can now be
studied. To this end, the model represented in Fig. 6.1b is used. The EoM and boundary
conditions are formulated in the frequency domain as follows:

−ω2ρAW̃ (x,ω)+ iωCbW̃ (x,ω)+ (
E + iωE∗)

IW̃
′′′′

(x,ω) = F̃ (x,ω) (6.14)

(
E + iωE∗)

W̃
′′

(0,ω) = Kθθϕ̃θθ(ω)+ iωCθθϕ̃θθ(ω)−ω2I0ϕ̃θθ(ω)

− (
E + iωE∗)

IW̃
′′′

(0,ω) = KxxŨ (ω)+ iωCxxŨ (ω)−ω2M0Ũ (ω)(
E + iωE∗)

IW̃
′′

(L,ω) = (
E + iωE∗)

IW̃
′′′

(L,ω) = 0.

(6.15)

For simplification in the analysis and given that its influence is negligible, the aerody-
namic damping is assumed to be zero (Cb = 0). While identifying damping, the model
and data extracted from the measurements are used. The studied buildings are de-
scribed in Table 6.2.

Building H [m] Found. ρ Kb ω1 ξ1
H
R0 Soil

name (Group) area [m2] [ kg
m3 ] [ KN

m ] [ rad
s ] [%] prof.

Churchill (1) 83 1196 300 1.2e +08 3.45 1.7 4 1
New E.M.C (1) 121.5 1152 250 5.8e +08 3.35 1.6 6 2
Hoftoren (1) 142 1196 300 1.0e +08 2.5 1.9 8 3
MonteVideo (1) 131 792 210 3.2e +07 2.6 1.7 8 1
Amro tower (1) 94 1166 300 9.0e +07 2.5 1.7 5 1
EWI tower (2) 90 1620 165 9.5e +07 2.75 1.5 4 1
Bowes (2) 61 513 395 1.7e +08 5.5 1.8 5 4
Ned.Bank (2) 58 785 240 5.1e +08 3.9 1.6 4 4
Old E.M.C (2) 104 2608 300 3.2e +07 3.0 2.1 4 2
CMR (2) 65 990 300 9.8e +07 3.95 1.7 4 1
Laakhaven (2) 36 468 430 2.2e +08 7.7 2.1 3 3
Ommoord (2) 60 625 295 1.2e +08 5.0 1.3 4 2

Table 6.2: Characteristics of the studied buildings.

Data from the Group 1 buildings in Table 6.2 were extracted for this work. However, the
data from the Group 2 buildings is collected from given technical information.
The necessary information about the building structure to perform the study is fully de-
scribed in Table 6.2. However, this is not true for the soil, where the buildings are located.
Therefore, experimental data from CPT’s of several locations in The Netherlands was col-
lected. The data obtained at the locations where measurement were performed can be
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extrapolated to other locations in The Netherlands, meaning that this data is represen-
tative of soil characteristics of other locations in The Netherlands. Consequently, four
types of soil profiles are described.

Profile 1
depth[m] cs [m/s] ρ[kg/m3]

11 145 1700
6.5 124 1400
7.5 269 1700

V s,30 160

Profile 2
depth[m] cs [m/s] ρ[kg/m3]

3 127 1700
11.5 113 1400
10.9 266 1700
V s,30 149

Profile 3
depth[m] cs [m/s] ρ[kg/m3]

14 177 1700
2 153 1400
9 254 1700

V s,30 195

Profile 4
depth[m] cs [m/s] ρ[kg/m3]

14.5 111 1700
10.5 277 1400

V s,30 145

Table 6.3: Representative soil profiles in The Netherlands.

Because a goal of this study is to quantify the damping contribution of several damping
sources to the total damping, two main sources of energy dissipation are described. The
building damping (superstructure), which accounts for the energy dissipation generated
by the deformation of the building elements and in the material, is represented by the
Kelvin–Voigt material damping model, σ = (E +E∗∂/∂t )ε. Foundation damping, repre-
sented by dashpots Cxx and Cθθ , accounts for the geometrical and the material damping
in the soil.
To determine the damping contribution of the two damping sources the superstructure
and the soil-foundation to the total damping, the model depicted in Fig. 6.1b and infor-
mation given in Table 6.2 are used. Next, an iterative solution procedure can be started.

1. The cone model implemented per Appendix B makes use of the foundation size
and the corresponding soil profile at the building location. Thus, the vibration
frequency of a high-rise building is relatively low, the soil stiffness does not vary
much at this frequency range. A stiffness value for Kxx and Kθθ at the lowest vibra-
tion frequency of the building is selected.

2. Setting all damping parameters, E∗, Cxx, Cxx and Cθθ , to zero, estimating the mass
density of the building, ρA, and using the identified lowest natural frequency given
in in Table 6.2, the stiffness of the building, Kb, can be determined. In the Group 2
cases, the building stiffness is given as a reference value. If, by using this value, the
natural frequency is not fully matched by the one identified experimentally, then
Kb is tuned such that the match is satisfactory. It is extremely important that the
natural frequency of the system is well-identified, because this has a high impact
in the overall damping calculation.
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3. Cxx and Cθθ are parametrized based on the cone model (see Appendix B) results
using the same strategy that was used for soil stiffness. By solving the system of
algebraic equations (Eq. 6.15) a complex-valued natural frequency is obtained.
Making use of the expression described by Eq. 6.12 an overall damping ratio can
be obtained. This is the result of the foundation damping for the lowest natural
frequency, ξfound.

4. Finally, by comparing ξfound with the total damping, ξ, identified by means of the
measurements, the damping contribution of the foundation and the building can
be established. Consequently, E∗ can also be quantified.

Using the above procedure, Fig. 6.7 can be drawn. The y-axis of the figure describes the
damping contribution of the foundation to the total damping. Additionally, the x-axis
shows the influence of the foundation stiffness to the total stiffness.
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Figure 6.7: Influence of the foundation damping to the total damping for several buildings located in The
Netherlands.

The total stiffness and the foundation stiffness are computed as shown in Eqs. 6.16-6.17

1

K ∗ = 1

Kb
+ 1

Kfound
(6.16)

where

1

Kfound
= 1

Kxx
+ (H +h)2

Kθθ
. (6.17)

Looking at Fig. 6.7, several interesting conclusions can be drawn. The dashed lines
are the result of plotting two logarithmic functions (red: y = 0.6ln(x)+ 1, yellow: y =
0.25ln(x)+1) starting at ξfound/ξtotal = 1 and K ∗/Kfound = 1. This is done because a log-
arithmic function well represents the behaviour a high-rise building experiences when
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changing the stiffness ratio from K ∗/Kfound = 0 to K ∗/Kfound = 1. This behaviour was
more extensively investigated in [69]. In this case, the slopes of the logarithmic functions
are chosen such that all dots (buildings) in the graph fall in an area enclosed within the
dashed lines. Whereas each building is represented by a single dot, a certain bandwidth
can be established, and the building behaviour within this graph can be interpreted.
Looking at the dots representing buildings, there are two that fall outside the area de-
limited by the dashed lines. However, the height of the Laakhaven building is very low
compared to the others. Thus, shorter buildings with larger fundamental frequencies
will traverse the higher part of this graph. The other building outside the lines is the
Hoftoren. It is a tall building. However, it consists of a tall tower attached to a low-rise
building. This may change the overall stiffness ratio behaviour. In any case, this building
falls just outside the suggested area. Recall that the two dashed lines are tuned such that
most of the buildings fall with in this area. Therefore, they are not created from real data.
Finally, it can be noted that all buildings resting on soil profile of Types 2 and 4 per Table
6.2, and corresponding to the softer soils have a larger foundation damping influence:
ξfound ≥ 50%ξtotal. In the case of the buildings resting on soil profiles 1 and 3, the in-
fluence is lower. However, it is still important to consider the foundation stiffness and
damping.

6.7. STUDY OF THE BUILDING DAMPING USING ENERGY INTER-
PRETATION

Energy dissipation in the superstructure is influenced by dissipation in the foundation
and vice versa. Thus, structural damping can by modified by foundation flexibility. The
effect of the damping variation in the superstructure of several buildings is studied by
means of an energy evaluation.
An objective of the study consists of evaluating the deformation shape of the superstruc-
ture. It is shown in the section above that the energy dissipation in the superstructure
is assumed to be related to the rotation of building components and the deformation
in the material. This is necessarily related to the vibrational shape of the structure. Ad-
ditionally, maximum energy dissipation in the building caused by rotation is achieved
when the foundation is highly stiff. This can be represented in a model as a fixed-base
foundation. The relative stiffness between the superstructure and the foundation plays
a major role in the rotation of the building. The stiffer the foundation, the higher the
building rotation. Therefore, the higher the building damping. Conversely, in the case of
a soft foundation, the building rotation is lower, behaving almost as a rigid body. Conse-
quently, the effective damping in the superstructure is lower.
To analyse this behaviour, the following procedure is used. The work done by a dissipa-
tive force in a period of vibration, T , can be written as

Wdiss =
∫ T

0
FDdu =

∫ T

0
FDvdt (6.18)

where, force FD is defined as

FD = E∗I ẇ
′′′′

(x, t ). (6.19)
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The energy dissipation rate can be described as

W rate
diss (t ) =

∫ L

0
FDẇ(x, t )dx =

∫ L

0
E∗I ẇ

′′′′
(x, t )ẇ(x, t )dx. (6.20)

To study the influence of the foundation stiffness on building damping Eq. 6.21 is used.

εb(t ) =
W rate,flex

diss (t )

W rate,fix
diss (t )

(6.21)

The numerator gives the energy dissipation rate of the flexibly supported building, whereas
the denominator gives that of the fixed bottom of the building. Using the method of sep-
aration of variables, w(x, t ) =∑∞

n=1 Wn(x)ψn(t ), the ratio, εb, can be expressed as

εb(t ) =
E∗I

∑∞
n=1

∑∞
m=1 ψ̇n,flex(t )ψ̇m,flex(t )

∫ L
0 W

′′′′
n,flex(x)Wm,flex(x)dx

E∗I
∑∞

n=1
∑∞

m=1 ψ̇n,fix(t )ψ̇m,fix(t )
∫ L

0 W
′′′′

n,fix(x)Wm,fix(x)dx
. (6.22)

If solely the first mode is accounted for (n = m = 1) Eq. 6.22 can be rewritten as:

εb(t ) =
∫ L

0 W
′′′′

1,flex(x)W1,flex(x)dx∫ L
0 W

′′′′
1,fix(x)W1,fix(x)dx

ψ̇2
1,flex(t )

ψ̇2
1,fix(t )

(6.23)

For a qualitative assessment of the effect of the foundation stiffness, the time depen-
dence of ε(t ) is neglected and the following expression is analyzed:

εb =
∫ L

0 W
′′′′

1,flex(x)W1,flex(x)dx∫ L
0 W

′′′′
1,fix(x)W1,fix(x)dx

(6.24)

This study uses four buildings of Group 1 (Table 6.2) having different slenderness ratios.
Results are drawn in the graph (Figs. 6.8-6.9). To plot these graphs, the following steps
were followed.

1. For engineers, it is more intuitive to describe soil stiffness using soil shear-wave
speed. Given that building damping is a function of soil stiffness, the layered soils
defined in Table 6.3 can been simplified to a homogeneous half-space using Eq.
6.25. This formula gives an equivalent shear-wave speed in the first 30 m depth.

cs,30 = 30∑Nlayers
m=1

(
dm
vm

) . (6.25)

where dm is the layer depth, and vm is the averaged shear-wave speed in the layer.

2. For each building case, Wfix is computed based on a fixed-base bending-beam
model.
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3. For each building case, and for each selected soil stiffness, Wflex is computed. The
difference between Wfix and Wflex rests with the integration constants, Ci (i = 1...4),
as shown in Appendix A.4. They contain the influence of the boundary conditions
in this case the foundation flexibility.

4. Finally, εb is computed. The resultant is directly comparable to the damping ratio
between the fixed-base building and the flexible-base building.

The result of applying this procedure to the studied buildings is shown in Figs. 6.8-6.9.
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Figure 6.8: Building damping reduction as a function of the soil stiffness for several buildings with different
slenderness ratios (H/R0) in The Netherlands.

Figure 6.8 shows the building damping reduction as a function of soil stiffness. The y-
axis is bounded between 0 and 1, where 1 corresponds to a fixed-base foundation. It
is tempting to think that, for softer soils the overall building damping is lower. This, is
principally the case. However, if the soil is sufficiently soft, and depending on the soil
material damping, building damping reduction can be compensated by soil damping,
which may contribute largely to the overall damping, resulting in a higher overall damp-
ing for the building. This behaviour is shown in Figs. 6.8-6.9.
Comparing Figs. 6.8-6.9, it can be observed that the foundation damping grows faster
than the building damping decreases for soils with small shear-wave speeds. Therefore,
for soft-soil cases, soil damping might play a major role in the overall damping quantifi-
cation.

6.8. CONCLUDING REMARKS
This chapter was devoted the influence of the different sources of damping in several
high-rise buildings by using an analytical model. A beam element was used to mimic
building behaviour, and the cone model was used to describe the SSI. An analytical
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Figure 6.9: Foundation damping as a function of the soil stiffness for several buildings with different slender-
ness ratios (H/R0), located in The Netherlands.

model was used, because with a unique model, several buildings can be studied, and
results can be compared. Additionally, experimental data collected from the measure-
ment campaign for each building was used. The results presented in this chapter show
that foundation damping can play a major role in the overall damping if the soil has
soft characteristics, such as the soils in The Netherlands present. Moreover, it is shown
that aerodynamic damping can be considered negligible for the studied buildings under
certain wind conditions. However, if building characteristics were to change (e.g. they
become much more lightweight), aerodynamic damping may play a role in the overall
damping of the building.
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The aim of this research was to develop a tool for damping prediction in high-rise build-
ings located in The Netherlands. To this end, experimental data was collected from
measurement campaigns on several buildings located in The Netherlands. See Chapter
2. To identify the equivalent building damping, two techniques were used: half-power
bandwidth (HPBW) and random decrement technique (RDT). The HPBW method is a
technique based on an SDoF system in the frequency domain. Vibrations in high-rise
buildings occur in all directions at the same time, and usually, the vibrational modes are
closely spaced. This means that the HPBW technique, in most cases, cannot be directly
applied to building damping identification. Therefore, some manipulations were made
prior to applying the technique. Moreover, because the obtained damping value is real-
valued, it is essential to assume damping matrices are diagonal. Therefore, the damping
cannot precisely correspond to the modal damping. However, it provided a good es-
timate of the equivalent viscous damping, given the low damping characteristic of tall
buildings.
In the past, several ready-to-use damping predictors for high-rise buildings were devel-
oped. Results of RDT, as applied to the instrumented buildings, were compared to the re-
sultant damping, calculated by means of the amplitude-dependent damping predictors.
However, the damping values obtained with these predictors provided an unacceptable
scatter, compared to the experimentally identified damping values. Furthermore, the
human perception to building vibrations was studied by means of the H. van Koten crite-
ria, which shows that the accelerations experienced by the instrumented buildings dur-
ing wind-induced vibrations did no overstep a level-F threshold, and no crack formation
on the structure was detected. Therefore, it was reasonable to use linear elastic models
to study the influence of damping on high-rise structures subject to wind-induce vibra-
tions. Moreover, these criteria established that the acceleration levels experienced by the
instrumented buildings were barely perceptible.
However, it was evidenced that one can still feel insecure in the interior of the buildings.
This leads us to assume that human perception to vibration is extremely subjective. For
all the above-mentioned reasons, it seems therefore necessary to investigate deeper the
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phenomena of damping in high-rise buildings. To this end, the possible sources of en-
ergy dissipation were identified, as discussed in Chapter 1. Generally, the main sources
of energy dissipation are related to the structure, the soil that interacts with the foun-
dation and the wind around the building. In this work, additional damping was not
considered, given that the focus was placed on using the dissipation mechanisms of the
building to improve building design.

In Chapter 6, the aerodynamic damping generated by wind gusts around the building
was shown to be negligible compared to the structural and soil damping for the studied
cases. However, if the characteristics of the building were to change, aerodynamic damp-
ing may play an important role in the overall quantification of damping. The structure
and the soil-foundation can dissipate energy in different forms. In the structure, the de-
formation of the material or the friction between the structural elements consist of two
forms of energy dissipation. If the building vibration amplitude is sufficiently large, crack
formation can occur, generating an additional energy sink. However, this phenomenon
was not observed in the instrumented buildings. In the soil, energy is dissipated in the
form of wave propagation and friction between the soil particles. Separately identifying
each energy dissipation source should, in principle, lead to better quantification of over-
all building damping. This creates difficulties, however, and when these are combined,
the identification of each energy source becomes extremely uncertain. In the case of
modal analysis, extensive information of the structural behaviour is needed. This is un-
fortunately not possible in the case of high-rise buildings subject to ambient vibrations,
given that wind loads only excite the lower frequency modes of the building.

To overcome this issue, an alternative method to identify energy dissipation in specific
parts of a structure was proposed and used. This method is based on energy-flux anal-
ysis. Energy flux is a well-established concept in several fields, but not in the field of
structural mechanics. This method was used because it did not require a modal repre-
sentation for the analysis. Making use of the energy method, the energy dissipated at cer-
tain parts of the structure can be quantified by formulating the energy-balance equation,
which is extensively described in Chapter 3. The interaction with the rest of the structure
was then made using the energy-flux term. This term quantifies the amount of energy
coming in and going out of a selected area of the structure. Practical applications of the
energy method for identification purposes are extensively described in Chapters 4 and
5. The energy-flux analysis was used in a cantilever lab-scale beam to identify material
damping. Then, a more complex steel-frame lab-scale structure was used for damping
identification in the connections. The energy method was used to identify the energy
dissipation in a full-scale building. Given the limitation already explained in Chapter
5, the analysis extends separately to the identification of the energy dissipation in the
superstructure and the soil-foundation. The quantification of energy dissipation of lo-
calized areas is an approach that enables us to study the suitability of different damping
mechanisms by computing the energy dissipation only once. Thus, based on results pre-
sented in Chapters 4 and 5, the energy-flux analysis consisted of a solid framework for
damping identification. Whereas the benefits of using the energy approach are evident,
it is still not a ready-to-use tool for engineering practice. Therefore, further effort should
be made to generalize the approach, especially when identifying energy dissipation with
a damping mechanism.
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In Chapter 6, basic mechanical models with full-scale experimental data were used for
damping assessment. The main sources of energy dissipation in high-rise buildings
are related to the structure, the soil-structure interaction (SSI) and the wind around
the building. Because the damping generated by wind around the building was neg-
ligible, the other energy dissipation sources were more important. Thus, quantifying
the damping of each dissipation source acting together is extremely uncertain. From
the modelling perspective, there are no reliable models to quantify the damping in the
building structure. However, for the SSI, several models exist. The parameters in the soil
are very uncertain, making the analysis of SSI equally uncertain. Therefore, a simplified
model for the SSI was selected. The cone model, developed by Wolf, was used. This
model helped us quantify stiffness and damping via a spring and a dashpot of the SSI
in both dissipation capacities of the soil (i.e. geometrical damping and material damp-
ing). Given the low frequency range of vibration, material damping became the main
source of dissipation energy in the soil. As noted, the sources of energy dissipation in
the building structure are caused by the material deformation and crack propagation in
the material. The recorded data from the instrumented buildings evidenced that these
buildings experienced small vibration amplitudes. Consequently, an attempt to relate
building damping with the relative deformation of the building was made. Given that
the damping assessment was aimed at the modal vibration, we presumed a certain de-
formation shape of the building. This was done because energy dissipated is based on
the bending moments in the building, which is maximal when the foundation stiffness
is infinite. Based on this analysis, graphs were plotted and interesting conclusions were
drawn.
A structure with a more flexible base decreases the effective damping. However, this
can be compensated in cases where soils are very soft, thus significantly increasing the
overall damping. Therefore, foundation damping may play a major role in the overall
damping for certain soil characteristics. During this research, it was induced that the
proper damping identification must begin with the correct identification of the modal
frequencies of the structure. This result of this work encompasses the development and
application of a new approach for damping identification and the investigation of the
damping contribution sources in several high-rise buildings via basic mechanical mod-
els and experimental data.
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A
INTERFACE AND BOUNDARY

CONDITIONS FOR

EULER-BERNOULLI BEAM

A.1. COEFFICIENTS OF A BENDING BEAM EQUATION WITH FIXED-
FREE BOUNDARY CONDITIONS

The coefficients of the boundary equations written in a matrix form, A(βm), of a fixed-
free beam are

a1,1 = 1; a1,2 = 0; a1,3 = 1; a1,4 = 0

a2,1 = 0; a2,2 =βm ; a2,3 = 0; a2,4 =βm

a3,1 = cosh(βmL); a3,2 = sinh(βmL); a3,3 =−cos(βmL); a3,4 =−sin(βmL)

a4,1 =−sinh(βmL); a4,2 =−cosh(βmL); a4,3 =−sin(βmL); a4,4 = cos(βmL)

(A.1)

with

βm = ω2
mE I

ρA
(A.2)

A.2. COEFFICIENTS OF A BENDING BEAM EQUATION WITH FLEXIBLE-
FREE BOUNDARY CONDITIONS

The elements of the matrix A(ωn) describe the coefficients of the boundary and interface
equations of a Euler-Bernoulli beam with flexible-free boundary conditions.
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a1,1 = E I ; a1,2 =−iC SSI
θmω−Kθmβn ;

a1,3 =−E I ; a1,4 =−iC SSI
θmω−Kθmβn ;

a1,5 = 0; a1,6 = 0; a1,7 = 0a1,8 = 0;

a1,9 = 0; a1,10 = 0; a1,11 = 0; a1,12 = 0;

(A.3)

a2,1 =−Km ; a2,2 =−E Iβ3
n ;

a2,3 =−Km ; a2,4 = E Iβ3
n ;

a2,5 = 0; a2,6 = 0; a2,7 = 0a2,8 = 0;

a2,9 = 0; a2,10 = 0; a2,11 = 0; a2,12 = 0;

(A.4)

a3,1 =−cosh(βnLl); a3,2 =−sinh(βnLl); a3,3 =−cos(βnLl); a3,4 =−sin(βnLl);

a3,5 = cosh(βnLl); a3,6 = sinh(βnLl)a3,7 = cos(βnLl); a3,8 = sin(βnLl);

a3,9 = 0; a3,10 = 0; a3,11 = 0; a3,12 = 0;

(A.5)

a4,1 =−sinh(βnLl); a4,2 =−cosh(βnLl); a4,3 = sin(βnLl); a4,4 =−cos(βnLl);

a4,5 = sinh(βnLl); a4,6 = cosh(βnLl); a4,7 =−sin(βnLl); a4,8 = sin(βnLl);

a4,9 = 0; a4,10 = 0; a4,11 = 1; a4,12 = 0;

(A.6)

a5,1 = iCmωcosh(βnLl)−E Iβ3
nsinh(βnLl);

a5,2 =−E Iβ3
ncosh(βnLl)+ iCmωsinh(βnLl);

a5,3 = iCmωcos(βnLl)− sin(βnLl)E Iβ3
n ;

a5,4 = E Iβ3
ncos(βnLl)+ iCmωsin(βnLl);

a5,5 = E Iβ3
nsinh(βnLl); a5,6 = E Iβ3

ncosh(βLl); a5,7 = sin(βnLl)E Iβ3
n ;

a5,8 =−E Iβ3
ncos(βnLl); a5,9 = 0; a5,10 = 0; a5,11 = 0; a5,12 = 0;

(A.7)

a6,1 =−E Iβncosh(βnLl); a6,2 =−E Iβnsinh(βnLl);

a6,3 = E Iβncos(βLl); a6,4 = sin(βnLl)E Iβn ;

a6,5 = E Iβncosh(βnLl); a6,6 = E Iβnsinh(βnLl);

a6,7 =−E Iβncos(βnLl); a6,8 =−sin(βnLl)E Iβn ;

a6,9 = 0; a6,10 = 0; a6,11 = 0; a6,12 = 0;

(A.8)

a7,1 = 0; a7,2 = 0; a7,3 = 1; a7,4 = 0;

a7,5 =−cosh(βnLf); a7,6 =−sinh(βnLf); a7,7 =−cos(βnLf); a7,8 =−sin(βnLf);

a7,9 = cosh(βnLf); a7,10 = sinh(βnLf); a7,11 = cos(βnLf); a7,12 = sin(βnLf);

(A.9)

a8,1 = 0; a8,2 = 0; a8,3 = 1; a8,4 = 0; a8,5 =−sinh(βnLf); a8,6 =−cosh(βnLf);

a8,7 = sin(βnLf); a8,8 =−cos(βnLf); a8,9 =−sinh(βnLf);

a8,10 =−cosh(βnLf); a8,11 =−sin(βnLf); a8,12 = cos(βnLf);

(A.10)
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a9,1 = 0; a9,2 = 0; a9,3 = 0; a9,4 = 0;

a9,5 = iCmωcosh(βnLf)−E Iβ3
nsinh(βnLf); a9,6 =−cosh(βnLf);

a9,7 = iCmωcos(βnLf)− sin(βnLf)E Iβ3
n ; a9,8 = E Iβ3

ncos(βLf)+ isin(βnLf)Cmω;

a9,9 = E Iβ3
nsinh(βnLf); a9,10 = E Iβ3

ncosh(βnLf);

a9,11 = E Iβ3
nsin(βnLf); a9,12 =−cos(βnLf)E Iβ3

n ;

(A.11)

a10,1 = 0; a10,2 = 0; a10,3 = 0; a10,4 = 0;

a10,5 =−E Iβncosh(βnLf); a10,6 =−E Iβnsinh(βLf);

a10,7 = E Iβncos(βnLf); a10,8 = sin(βnLf)E Iβn ;

a10,9 = E Iβncosh(βnLf); a10,10 = E Iβnsinh(βnLf);

a10,11 =−E Iβncos(βLf); a10,12 =−sin(βnLf)E Iβn ;

(A.12)

a11,1 = 0; a11,2 = 0; a11,3 = 1; a11,4 = 0;

a11,5 = 0; a11,6 = 0; a11,7 = 0; a11,8 = 0;

a11,9 = E I sinh(βnLtop); a11,10 = E I cosh(βnLtop);

a11,11 = E I sin(βnLtop); a11,12 =−E I cos(βnLtop);

(A.13)

a12,1 = 0; a12,2 = 0; a12,3 = 1; a12,4 = 0;

a12,5 = 0; a12,6 = 0; a12,7 = 0; a12,8 = 1;

a12,9 = E I cosh(βnLtop); a12,10 = E I sinh(βnLtop);

a12,11 =−E I cos(βnLtop); a12,12 =−E I sin(βnLtop)

(A.14)

and,

β4
n =

√
ρAω2

n

E I
. (A.15)

A.3. COEFFICIENTS OF A TORSION BEAM EQUATION WITH FLEXIBLE-
FREE BOUNDARY CONDITIONS

The elements of the matrix B(ωn) describe the coefficients of the boundary and interface
equations of a torsion beam with flexible-free boundary conditions.

a1,1 =G Jβn ; a1,2 =−Kθx − iC SSI
θx ; a1,3 = 0; a1,4 = 0; a1,5 = 0; a1,6 = 0;

a2,1 =−sin(βnLl); a2,2 =−cos(βnLl); a2,3 = sin(βnLl); a2,4 = cos(βnLl); a2,5 = 0; a2,6 = 0;

a3,1 =−G Jβncos(βnLl)− iCθxωsin(βnLl); a3,2 =G Jβnsin(βnLl)− iCθxωcos(βnLl);

a3,3 =G Jβncos(βnLl); a3,4 =−G Jβnsin(βnLl); a3,5 = 0; a3,6 = 0;

a4,1 = 0; a4,2 = 0; a4,3 =−sin(βnLf); a4,4 =−cos(βnLf); a4,5 = sin(βnLf); a4,6 = cos(βnLf)

a5,1 = 0; a5,2 = 0; a5,3 =−G Jβncos(βnLf)− iCθxωsin(βnLf);

a5,4 =G Jβnsin(βnLf)− iCθxωcos(βnLf); a5,5 =G Jβncos(βnLf); a5,6 =−G Jβnsin(βnLf)

a6,1 = 1; a6,2 = 0; a6,3 = 0; a6,4 = 0; a6,5 =G Jcos(βnLtop); a6,6 =−G Jsin(βnLtop)
(A.16)
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and,

β4
n =

√
ρIpω

2
n

G J
. (A.17)

A.4. COORDINATE DEPENDENT SOLUTION OF A EULER-BERNOULLI

BEAM FOR FIXED-BASE AND FLEXIBLE-BASE BOUNDARY CON-
DITIONS

The coefficients of the coordinate dependent general solution for a fixed-base bending
beam, Wfix(z), was sought in the following form:

W (z) =C1cosh(βn z)+C2sinh(βn z)+C3cos(βn z)+C4sin(βn z) (A.18)

where the constant C1..C4 are defined as:

C1 =−C3 = sinh(βnL)+ sin(βnL)

cosh(βnL)+cos(βnL)
;C2 =−C4 = 1. (A.19)

For the case of the flexible foundation, the constant coefficients of, Wflex, read

C1 =−E I 2sinh(βnL)β4
n −E I 2sin(βnL)β4

n +2E I Kθcos(βnL)β3
n +KθKt ∗ sinh(βnL)+KθKtsin(βnL)

E I 2cosh(βnL)β4
n −E I 2cos(βnL)β4

n −2E I Ktsinh(βnL)βn −KθKtcosh(βnL)−KθKtcos(βnL)

C2 =
E I 2cosh(βnL)β4

n −E I 2cos(βnL)β4
n +2E I Kθsin(βnL)β3

n +KθKt ∗cosh(βnL)+KθKtcos(βnL)

E I 2cosh(βnL)β4
n −E I 2cos(βnL)β4

n −2E I Ktsinh(βnL)βn −KθKtcosh(βnL)−KθKtcos(βnL)

C3 =−E I 2sinh(βnL)β4
n −E I 2sin(βnL)β4

n +2E I Kθcosh(βnL)β3
n +KθKt ∗ sinh(βnL)+KθKtsin(βnL)

E I 2cosh(βnL)β4
n −E I 2cos(βnL)β4

n −2E I Ktsinh(βnL)βn −KθKtcosh(βnL)−KθKtcos(βnL)

C4 = 1
(A.20)

with

β4
n =

√
ρAω2

n

E I
. (A.21)
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IMPLEMENTATION OF THE

DYNAMIC STIFFNESS OF A

FOUNDATION EMBEDDED IN A

LAYERED HALF-SPACE

In this Appendix, a procedure to compute the dynamic-stiffness matrix developed by
Wolf [67] of a disk embedded in a layered soil (Fig. B.1) is described. By computing
the dynamic-stiffness matrix, an equivalent frequency-dependent spring stiffness and
dashpot damping for each DoF can be obtained. These values can be later used to
parametrize the spring and dashpot elements of the model depicted in Fig .6.1b.
First, the radius of any cross-section of the cone depth can be determined as

r j+1 =
z0 j +d j

z0 j
r j . (B.1)

The imaginary line described by the cone opening from the disk radius to the next disk
in depth is linear with uniform properties. The dynamic-stiffness matrix, S j (ω), depends
on the soil properties, the geometry of the rigid disk and relates the dynamic loads and
the motions. {

P j (ω)
P j+1(ω)

}
= [

S j (ω)
]{

u j (ω)
u j+1(ω)

}
(B.2)

To compute the dynamic-stiffness matrix, S j (ω), a unitary dynamic load at the surface
of the rigid disk is applied. The resultant motion of the wave pattern is described by a
superposition of Green’s functions corresponding to the double cones.

u11(ω) = 2g (0,ω)+4g (2d ,ω)+4g (4d ,ω)+ ...

u21(ω) = 4g (d ,ω)+4g (3d ,ω)+4g (5d ,ω)+ ...
(B.3)
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z0 r0

u0P0
z0

(a) Disk embedded in half-space with cone
model.

1
2

3
4

(b) Wave propagation in cone segments for em-
bedded disk on layered half-space.

Figure B.1: Cone model for embedded foundations description.

where the Green’s functions for the translational and rotational motions are

g t(d ,ω) = 1

2K t

1

1+ d
z0

e−iωd
c

1+ iωz0
c

(B.4)

and

g θ(d ,ω) = 3

2K θ

 1(
1+ d

z0

)3 + i
ωz0

c

1(
1+ d

z0

)2

 e−iωd
c

3+3iωz0
c + (

iωz0
c

)2 (B.5)

respectively. By introducing Eqs. B.4-B.5 into Eq. B.3, the displacement, ui j , can be
written as



B

133

ui j (ω) =
T t

i j (ω)

St
1(ω)

. (B.6)

The dynamic-flexibility matrix relates force and displacement and can be described as
follows:

{
u j (ω)

u j+1(ω)

}
=


T t

i , j (ω)

St
j (ω)

T t
i , j+1(ω)

St
j+1(ω)

T t
i+1, j (ω)

St
j (ω)

T t
i+1, j+1(ω)

St
j+1(ω)

{
P j (ω)

P j+1(ω)

}
. (B.7)

Inverting Eq. B.7:

{
P j (ω)

P j+1(ω)

}
=

St
j (ω)St

j+1(ω)

T t
i , j (ω)T t

i+1, j+1(ω)−T t
i , j+1(ω)T t

i+1, j (ω)


T t

i+1, j+1(ω)

St
j+1(ω)

−T t
i+1, j (ω)

St
j (ω)

−T t
i , j+1(ω)

St
j+1(ω)

T t
i , j (ω)

St
j (ω)

{
u j (ω)

u j+1(ω)

}
.

(B.8)
The dynamic-stiffness matrix can be computed.

[
St(ω)

]= St
j (ω)

T t
i , j (ω)T t

i+1, j+1(ω)−T t
i , j+1(ω)T t

i+1, j (ω)

T t
i+1, j+1(ω) − St

j+1(ω)

St
j (ω)

T t
i+1, j (ω)

−T t
i , j+1(ω)

St
j+1(ω)

St
j (ω)

T t
i , j (ω)


(B.9)

where

T t
i , j (ω) = 1+2

∞∑
n=1

e−inωT

1+n 2d
z0

T t
i+1, j (ω) = 2

∞∑
n=1

e−i(n−0.5)ωT

1+ (n −0.5) 2d
z0

T t
i , j+1(ω) = 2

∞∑
n=1

e−i(n−0.5)ωT

1+ (n −0.5) 2d
z0+d

T t
i+1, j+1(ω) = 1+2

∞∑
n=1

e−inωT

1+n 2d
z0+d

(B.10)

and

St
j (ω) = K t

j

(
1+ i

ωz0

c

)
St

j+1(ω) = K t
j+1

(
1+ i

ω(z0 +d)

c

) (B.11)
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and

K t
j =

ρc2πr 2
j

z0

K t
j+1 =

ρc2πr 2
j+1

z0 +d

(B.12)

with T = 2d/c. For the rotational DoF, the dynamic-stiffness matrix can be computed
following the same procedure. Therefore, the dynamic-stiffness matrix appears as fol-
lows:

[
Sθ(ω)

]= Sθj (ω)

T θ
i , j (ω)T θ

i+1, j+1(ω)−T θ
i , j+1(ω)T θ

i+1, j (ω)

T θ
i+1, j+1(ω) − Sθj+1(ω)

Sθj (ω)
T θ

i+1, j (ω)

−T θ
i , j+1(ω)

Sθj+1(ω)

Sθj (ω)
T θ

i , j (ω)


(B.13)

with,

T θ
i , j (ω) = 1+2

∞∑
n=1

e−inωT

 1(
1+n 2d

z0

)2 +

 1(
1+n 2d

z0

)3 − 1(
1+n 2d

z0

)2

 1(
1+ iωz0

c

)


T θ
i+1, j (ω) = 2

∞∑
n=1

e−i(n−0.5)ωT

 1(
1+ (n −0.5) 2d

z0

)2 +

 1(
1+ (n −0.5) 2d

z0

)3 − 1(
1+ (n −0.5) 2d

z0

)2

 1(
1+ iωz0

c

)
ωT

T θ
i , j+1(ω) = 2

∞∑
n=1

e−i(n−0.5)ωT

 1(
1+ (n −0.5) 2d

z0+d

)2 +

 1(
1+ (n −0.5) 2d

z0+d

)3 − 1(
1+ (n −0.5) 2d

z0+d

)2

 1(
1+ iωz0+d

c

)
ωT

T θ
i+1, j+1(ω) = 1+2

∞∑
n=1

e−inωT

 1(
1+n 2d

z0+d

)2 +

 1(
1+n 2d

z0+d

)3 − 1(
1+n 2d

z0+d

)2

 1(
1+ iωz0+d

c

)


(B.14)

and,
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Sθj (ω) = K θ
j

(
1− 1

2

(ωz0
c

)2

1+ (ωz0
c

)2 + i
ωz0

3c

(ωz0
c

)2(
1+ ωz0

c

)2

)

Sθj+1(ω) = K θ
j+1

1− 1

2

(
ω(z0+d)

c

)2

1+
(
ω(z0+d)

c

)2 + i
ω(z0 +d)

3c

(
ω(z0+d)

c

)2

(
1+ (ωz0+d)

c

)2


(B.15)

and,

K θ
j = 3ρc2πr 4

0

4z0

K θ
j+1 =

3ρc2πr 4
0

4(z0 +d)
.

(B.16)

Moreover, the dynamic-flexibility matrix is not symmetric as can be noted from the trans-
fer function coefficients, Ti , j , where i = 1,2 and j = 1..Nlayers.

Finally, by computing St(ω) and Sθ(ω), the stiffness and damping function of the fre-
quency can be obtained. This is done by relating the real part of the dynamic stiffness
matrix to the spring stiffness and the imaginary part to the damping, which corresponds
to the geometrical damping. The soil material damping can be considered in the com-
putation of the dynamic stiffness matrix as an additional damping through the complex-
valued wave speed, as shown in Eq. B.17.

c → c
√

1+2iξs ≈ c(1+ iξs) (B.17)

c = cs for the transverse and torsional DoFs, and c = cp for the translational and rota-
tional DoFs.





C
CROSS-SECTIONAL CONSTANTS OF

THE PRISMATIC BEAMS

The integrals of the cross-sectional constants are

A =
∫

A
dA Ay =αy A Az =αz A

Ry =
∫

A

(
∂ω

∂y
− z

)
dA Rz =

∫
A

(
∂ω

∂y
+ y

)
dA

Sy =
∫

A
zdA Sz =

∫
A

ydA Sω =
∫

A
ωdA

Iy y =
∫

A
z2dA Izz =

∫
A

y2dA Iy z =
∫

A
y zdA

Iωy =
∫

A
yωdA Iωz =

∫
A

zωdA

K =
∫

A

(
y2 + z2 + y

∂ω

∂z
− z

∂ω

∂y

)
dA.

(C.1)
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D
EQUIVALENCE OF WORK OF THE

MOMENT AND SHEAR FORCE IN THE

ENERGY FLUX OF A

EULER-BERNOULLI BEAM

The energy flux through a cross-section of a Euler-Bernoulli bending beam can be de-
scribed as

S(z, t ) =E I

(
∂2w(z, t )

∂z2

∂2w(z, t )

∂z∂t
− ∂3w(z, t )

∂z3

∂w(z, t )

∂t

)
=

M
∂2w(z, t )

∂z∂t
−Q

∂w(x, t )

∂t
.

(D.1)

Assuming the displacement, w(z, t ), in the form of a travelling wave, w(z, t ) =W0sin(ωt−
kz), the following expression for the energy flux can be obtained:

S(z, t ) = M
∂2w(z, t )

∂z∂t
−Q

∂w(x, t )

∂t
=W 2

0 k3ωE I
(
cos2(ωt −kz)+ sin2(ωt −kz)

)
(D.2)

Next, by using the following trigonometric relations

sin2(α) = 1

2
+ 1

2
cos(2α) (D.3)

and

cos2(α) = 1

2
− 1

2
cos(2α) (D.4)
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EULER-BERNOULLI BEAM

one can show that for, w(z, t ) =W0sin(ωt −kz),

M
∂2w(z, t )

∂z∂t
= 1

T

∫ T

0
M
∂2w(z, t )

∂z∂t
dt = 1

2
E IW 2

0 k3ω (D.5)

and

−Q
∂w(z, t )

∂t
= 1

T

∫ T

0
Q
∂w(z, t )

∂t
dt = 1

2
E IW 2

0 k3ω (D.6)

therefore

S = 1

T

∫ T

0
S(z, t )dt = 2M

∂2w(z, t )

∂z∂t
. (D.7)

In the above expressions T = 2π
ω . It is known that this approximation can also be applied

to more complex wave trains in the beam.



SAMENVATTING

Gebouwen worden hoger, lichter en slanker. Deze veranderende eigenschappen maken
hoge gebouwen gevoeliger voor omgevingsbelastingen zoals windvlagen. Een gebouw
wordt als “hoog” beschouwd wanneer zijn hoogte en slankheid het ontwerp beïnvloe-
den. Gegeven de vraag naar verbeterende prestaties van gebouwen is de bruikbaarheids-
grenstoestand het belangrijkste criterium voor het ontwerp van hoge gebouwen. The
structurele bruikbaarheid is direct gerelateerd aan de bewegingen van een gebouw on-
der invloed van windvlagen. Deze bewegingen kunnen het welzijn van mensen in het ge-
bouw beïnvloeden. Terwijl de menselijke waarneming van bewegingen gebaseerd is op
het voelen van schokken, is de versnelling algemeen geaccepteerd als parameter voor het
meten van het comfortniveau. In de literatuur zijn er enkele gevestigde criteria te vinden
om de menselijke perceptie van trillingen in gebouwen te bepalen. In dit werk worden
de Van Koten-criteria toegepast om de menselijke waarneming van trillingen in gebou-
wen te bestuderen aan de hand van data die is verkregen bij verschillende metingen van
bestaande hoogbouw in Nederland. Terwijl de resultaten duidelijk laten zien dat versnel-
lingen nauwelijks waar te nemen zijn, voelen mensen in bestaande hoogbouw zich vaak
onveilig, waar uit blijkt dat de menselijke perceptie zeer subjectief is. Het gedrag van
dynamische systemen wordt bepaald door zijn massa, demping en stijfheid. De dem-
ping kan beschouwd worden als de oorzaak van energieverlies in het systeem. Daarom
bepaald het de maximale versnelling die gevoeld kan worden. Vanwege zijn fysieke com-
plexiteit is de demping de meest onzekere parameter om te voorspellen. Momenteel zijn
er verschillende demping predictors om demping in hoge gebouwen te bepalen. The to-
tale demping die verkregen wordt via demping predictors volgt uit contributies van twee
bronnen, namelijk het energieverlies in de interactie tussen grond en fundering en het
energieverlies in de constructie. In principe zijn dit de twee voornaamste bronnen van
energieverlies in hoge gebouwen. Bij het gebruik van deze predictors is de demping die
volgt uit de interactie tussen grond en fundering een constante waarde, terwijl de dem-
ping in de constructie toeneemt met de amplitude van de trillingen in het gebouw. Het
gebruik van deze predictors leidt helaas tot een grote spreiding van de dempingwaardes
in vergelijking met de dempingwaardes die bij metingen zijn vastgesteld voor de hoog-
bouw in Nederland. Aangezien de parameters voor deze predictors zijn bepaald aan de
hand van data verkregen bij metingen aan bestaande hoogbouw is het moeilijk om het
verschil tussen de gemeten dempingwaardes voor hoge gebouwen en de resulterende
waardes die volgen uit de demping predictors uit te leggen. In dit werk wordt een pre-
dictor gepresenteerd en toegepast die is gebaseerd op dezelfde principes en die is afge-
stemd om overeen te komen met de data die verkregen is bij metingen van bestaande
hoogbouw. Deze predictor geeft helaas niet voldoende inzicht om het gedrag van de
mechanismes van energieverlies in hoge gebouwen te begrijpen. Het is daarom het doel
van deze dissertatie om een hulpmiddel te ontwikkelen om het energieverlies in gebou-
wen beter te kunnen bepalen en daarbij de prognose van de demping te verbeteren. In
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hoge gebouwen zijn er drie voorname types van energieverlies (i.e. energieverlies in de
constructie, energieverlies in de grond en energieverlies door wind om het gebouw). In
dit werk is aangenomen dat de aerodynamische demping door de wind om een gebouw
nihil is. Om een betere prognose te verkrijgen van de algehele demping is er een poging
gedaan om de contributies van de verschillende bronnen van demping aan de algehele
demping vast te stellen. Omdat windbelastingen geen hogere frequentiemodes kunnen
opwekken in hoge gebouwen, kan het energieverlies van specifieke delen van de con-
structie niet adequaat geïdentificeerd worden aan de hand van technieken gebaseerd op
modale analyse. Daarom is er een andere aanpak nodig die het energieverlies van speci-
fieke delen van de constructie kan bepalen zonder een modale beschrijving van de con-
structie. In deze dissertatie wordt energieflux-analyse voorgesteld als een hulpmiddel
om demping te identificeren. In deze methode wordt een lokaal deel van de construc-
tie geïsoleerd om van dat gedeelte de energiebalans op te stellen. De verbinding van dit
lokale deel met de rest van de constructie vind plaats via de energieflux, die voor dit ge-
deelte de inkomende en uitgaande energie beschrijft. Met behulp van deze analyse kan
de demping van een deel van de constructie worden vastgesteld. In hoofdstukken 4 en
5 wordt de energieflux-analyse toegepast om voor verschillende delen van de construc-
tie het energieverlies te bepalen. Daarna kan er een operator voor de demping worden
gekwantificeerd. Een bijkomend voordeel van deze methode is de mogelijkheid om het
gedrag van verschillende demping-operators te bestuderen door het bijbehorende ener-
gieverlies voor elke operator te berekenen. Om de methode te valideren zijn er twee
schaalmodellen van de constructie, zijnde een schaalmodel van een balk en een schaal-
model van een stalen gebouwframe, en een hoog gebouw op werkelijke schaal gebruikt.
En wel op de volgende manier. Als eerste is het schaalmodel van de balk uitgerust met
versnellingsmeters, terwijl het schaalmodel van het stalen gebouwframe en het hoge ge-
bouw op werkelijke schaal zijn uitgerust met versnellingsmeters en rekstrookjes. Aan de
hand van de verzamelde data is vervolgens de viskeuze demping bepaald. Daarnaast is
er ook een analytisch model voor elke constructie ontwikkeld dat bestaat uit continue
en discrete elementen (e.g. balken, veren, dempers). Deze modellen zijn gebruikt om
de energieverandering, de energieflux en het energieverlies te interpreteren. Ook voor
het model kan de energiebalans opgesteld worden voor een specifiek onderdeel van de
constructie. Door gebruik van de testdata kan dan de energie in dit gebied van een con-
structie berekend worden en kan het bijbehorende energieverlies geïdentificeerd wor-
den. Om percentages van de kritische demping te vergelijken wordt het energieverlies
uitgedrukt in termen van een demping-operator. Deze constante kan toegepast wor-
den om de equivalente viskeuze demping te berekenen door gebruik te maken van de
energieflux-analyse en deze te vergelijken met de equivalente dempingwaardes die in
de testen geïdentificeerd zijn. De resultaten gepresenteerd in deze dissertatie bewijzen
dat deze methode een consistent kader geeft voor de identificatie van de demping. In
hoofdstuk 6 is een basismodel gepresenteerd waarmee de demping in hoogbouw be-
paald kan worden gedurende de ontwerpfase. De interactie tussen grond en fundering
is hierbij beschreven door het conusmodel en het gebouw wordt vertegenwoordigd door
een Euler-Bernoulli-balk. Aannemende dat er een klein trillingsveld is, is verondersteld
dat het mechanisme dat verantwoordelijk is voor het energieverlies direct gerelateerd is
aan de vervorming van het gebouw. Daarom is de invloed van de demping in het gebouw
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bestudeerd op basis van het balkmodel dat het gebouw representeert. Deze invloed va-
rieert afhankelijk van de rotatie van het gebouw zoals deze veroorzaakt wordt door ver-
schillende stijfheden van de fundering. Op dezelfde wijze varieert de demping door de
interactie tussen grond en fundering afhankelijk van de stijfheid in de interactie tussen
grond en fundering. De resultaten tonen aan dat voor hoge gebouwen, de interactie
tussen grond en fundering mogelijk een belangrijke rol speelt bij de identificatie van de
algehele demping voor bepaalde grondeigenschappen, zoals die van grondsoorten die
in Nederland voorkomen.
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