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Summary

Structure from Motion in nD Image Analysis

In this thesis we investigate the measurement of local properties in multi-dimensional
grey-value images. Special attention is given to orientation representation and cur-
vature estimation. Furthermore, the possibility to compute global shape properties
from these local properties. We aim to derive sampling-error free measurements.
A sampling-error free measurement of a properly sampled image yields exactly the
same result as the sampled analog measurement (chapter 3).

We propose a new robust curvature estimation algorithm in nD grey-level images
for lines (chapter 4) and surfaces (chapter 5). A better understanding and a general-
ization of the continuous orientation representation introduced by Knutsson (chap-
ter 2) enables us to compute derivatives of the orientation field leading to the new
curvature estimator. In our approach images are represented as multi-dimensional
functions and we assume that locally only a single orientation is present. No para-
metric description of the objects is needed. The curvature can reliably be computed
on ridges and in valleys, where classical isophote curvature fails. Isophote curva-
ture cannot deal with areas of vanishing gradient as the curvature is normalized by
the gradient magnitude. The local property curvature is used to estimate global
properties as bending energy and Euler characteristic (chapter 4 and 5). The inte-
gration over a digital object surface is accomplished by a summation of the gradient
magnitude over the whole image after soft-clipping.

These local and global measurements are applied to time series: (x, t)-images.
Here orientation corresponds to velocity and curvature to acceleration. We will
discuss several motion estimation algorithms (chapter 6) and show the connection
between spatial and temporal sampling (chapter 3).

The developed algorithms are employed in three applications: 1) the characteri-
zation of the rising behavior of bread dough, 2) the flow field analysis of the motion
of microspheres in nanoliter vials during evaporation of the liquid, where the liquid
flow and the Brownian motion are discussed, 3) a biological application where flu-
orescent labeled chromatin is observed in a living cell with a confocal microscope.
We propose a robust method to correct for the superimposed motion/drift of the
cell on the chromatin during the acquisition, which enables a better study of the
dynamics of the chromatin.
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Chapter 1

Introduction

The interest to analyze and understand the things we observe is one of the driv-
ing forces behind science, philosophy and technological developments. The human
visual system (HVS) was and is a source of inspiration in the fields of computer
vision, image processing and image analysis. As of today, the HVS is unmatched in
the recognition and the communication tasks of visual information. For measure-
ment purposes the HVS is strong in qualitative tasks. However, the field of exact
sciences relies to a high extent on objective, reproducible measurement values. Im-
age processing and analysis provide a consistent theory to obtain ”hard numbers”
for visual phenomena, which allows for a scientific approach to describe visual in-
formation (images). In this thesis we will focus on measurements in images. The
goal is to measure different properties of 2D and 3D time series as accurately and
precisely as possible and to express these measurements quantitatively.

The desire to measure and provide a quantitative description for visual obser-
vations has had an impact on recent advances in biology and medicine, which lie
in between the exact and the empirical sciences. This desire has been the largest
in fields where visual inspection of temporal phenomena plays an important role
through the advances in acquisition techniques (resolution and speed) and com-
puter power to process the recorded data. In this respect, the developments of 3D
plus time resolved imaging modalities such as confocal microscopes and MRI ma-
chines are important. The Netherlands Organization for Scientific Research NWO
has made possible an integrated approach to study the dynamic structure of the
living cell and of living tissue by bringing together researchers from different fields
such as biology, medicine, chemistry, physics and computer science. It funded the
project ”4D imaging of living cells and tissues”, in which three universities and
four different fields participate. The present thesis is carried out within this project
under the name ”4D grey-level image processing”.

1



2 Introduction

1.1 Problem

Structure in spatio-temporal images is formed by motion, e.g. a moving point forms
a spaghetti-like trajectory in space time, where the local slope of the spaghetti
corresponds to the velocity at that point. Imagine it as a moving object leaving
a trace in an image much like a charged particle going trough a bubble chamber
in particle physics experiments in the last century. There are also other structure
parameters in the spatio-temporal image of a moving point that correspond to
motion properties, such as the curvature to the acceleration and the path length to
the traveled distance. The shape of the generated structure depends on the initial
shape at rest; a moving point will form a line, a moving line a plane-like structure
and so on. The methods developed here cannot only be applied to space-time
images but also to images where all coordinates are space-like. In principle they can
be applied to any multi-valued (spectral channels) multi-dimensional data, but the
interpretation of the outcome may not be clear. This thesis focuses on measurement
techniques describing the structure in spatio-temporal images, where structure is
composed of local and global characteristics.

Our goal is to find local measurements of properties such as orientation and
curvature and their relation to global information, such that we obtain numeric
descriptors for structure that are not necessarily confined to (x, t)-images.

To do so, different aspects of 4D image processing need to be addressed, such as
digitization, restoration, low-level processing, motion analysis, measurement, etc..
A 4D (x, t) image is not the same as a 4D (x) image. Even as physicists treat
space and time in the same manner, they make a fine distinction, giving time the
opposite sign in the space time metric tensor of the Minkowski space. A direction
in the time axis is introduced by the increase in entropy. In image processing,
the fact that one image axis represents time, has certain consequences. To start
with, most acquisition devices do not sample the time axis in the same way as
the spatial axes, which can be acquired at different resolutions. Typically, the
spatial domain is acquired with lots of sample points, pixels (PICture ELement)
or voxels (VOlume ELement), whereas often only a few dozen time samples are
available. This is especially the case for in vivo confocal microscopy in biology, MRI
imaging in medicine and seismic imaging where two 3D data sets are considered
a 4D representation. The amount of available time samples in standard video
applications is much higher, as typical frame rates are range at approximately 25
Hz. Given the limited number of time samples, in our applications due to the
acquisition constraints, one has actually more often to do with 3D plus time. The
term 4D, suggesting an equal amount of available samples of all four dimensions,
may be a little overdone here. Time also introduces causality. This means that
given an initial shape, its movement cannot produce arbitrary shapes, as the object
cannot move backwards in time, i.e. a moving point cannot form a closed ring in
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any (xi, t) projection. Or in other words, spaghetti cannot be laid into a pretzel
shape. However, when we observe a Y-shape in (x, t), we see something that is
dividing, whereas a Λ-shape in (x, t) represents two merging objects, given that
the time axis is pointing upwards. Therefore, causality allows interpretation of
structure in (x, t).

An important issue in time resolved applications is the estimation of velocity.
One can think of the speed of a moving point, the velocity of a cloud of points,
but also of the speed at which a plant grows, the speed of change in texture of a
rising dough, etc.. The velocity in itself can be of interest, further properties can be
derived from the analysis of the flow field of a region, which can give indications for
special points, i.e. the sources/drains and the rotation center of the flow. Spatial
velocity distributions can help to identify different parts of a scene that belong to-
gether, a process referred to as segmentation. In terms of N -body motion, different
velocity aspects are interesting: the center of mass motion, movement of objects
with respect to each other and motion analysis of the body itself. The body can be
formed out of individual discrete objects or can be a continuous object.

The basis of measurements, characterization and interpretation should be a
properly recorded image. Under recording we understand the process to capture an
analog phenomenon and transform it into a digital representation, which is suitable
for further processing. The distance and size of the digital samples have to be
chosen such that reliable measurements can be made. Any analog, physical signal
can be synthesized from a superposition of sinusoids of specific amplitude, phase
and frequency. If there is a frequency above which the amplitude is zero, we call
such a signal band-limited. For proper sampling, the sampling distance must be
less than half the smallest occurring period of the sinusoids. This is known as the
Nyquist/Shannon sampling theorem and allows reconstruction of the analog signal
from the discrete samples. In many applications, the spatial sampling can be done
properly, i.e. satisfying this criterion. For a time series the sampling criterion
must also hold along the time dimension. Unfortunately, this is often not the case,
especially in confocal microscopy. This leads to restrictions on the measurement
side and gives rise to the correspondence problem, e.g. the difficulty to identify
things that belong together. The nature of acquisition in time and space is very
different as well. Optical acquisition of space variant data is ultimately done by
a lens system, which imposes certain properties to the recorded signal, such as
inevitable blurring by the point spread function and causes mutual influence of
neighboring points. This is not the case in the acquisition of time samples. In
chapter 3 we will discuss the entanglement of spatial and temporal sampling and
present a method to sample time in the same thorough manner as space.
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1.2 Approach

Analysis of structure in spatio-temporal images involves several aspects from causal-
ity over sampling to local and global measurements in images. The presented ap-
proach addresses the relevant sub-problems and motivates them. We address:

• the localization issue of image processing operators,

• grey-value versus binary methods,

• sampling in images sequences,

• the choice of a regularization function,

• local measurements, and

• the combination of these measurements with global knowledge to obtain shape
descriptors.

Let us first start with a short note on scale. In cell biological, the resolution of
the imaging device a (confocal) microscope together with the structure at hand
(cell nucleus) dictate the minimal and maximal observable sizes. If you study, for
example, the motion of chromatin, you know the size of the structures at hand,
i.e. the biological knowledge provides this information. The image processing and
analysis operators have to know these typical sizes involved, which are called scales
in image processing. Rather than exploring the structure as a function of scale,
we use knowledge from the application domain to process only a limited number
of selected scales that contain relevant information. These operators are in general
local operators, which means that they only ”see” a certain neighborhood around
a point in space and time. More mathematically, their support is bound. The
operators will only give the desired responses if the scale is chosen wisely. The scales
of interest are dictated by the structures to be studied. In a specific application of
image processing and analysis, it is clear what you are looking at. Therefore the
scales are defined by that knowledge.

A lot of research has been done to study the human visual system (HVS). This
does not only apply to the physiological part, but also to ”how we see”. It turned
out that the eye has separate cells that are sensitive to intensity changes on a large
variety of scales and orientations. The eye uses all operators at the same time and
the optimal scale is then determined [53, 114]. Having this result in mind, image
processing techniques have been developed to emulate parts of this scale selection
mechanism. Starting from all scales, the goal is to extract the scales of interest
automatically. In our case this framework is not necessary due to the fact that
in a specific application knowledge about the important scales is present. A gen-
eral purpose approach similar to the flexibility of the HVS, incorporated by the
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scale-space approach, is not needed. This does, however, not mean that rescaling
the operator neighborhoods during the measurement is not desirable or promis-
ing. Images can degrade in quality over time, can be distorted by different noise
sources which noticeably reduce operator performance. These different contribu-
tions, especially from noise, have an influence on the chosen scales of regularization
methods applied before or as an integral part of the actual measurement operator.
The combination of information from different scales is useful to estimate the local
dimensionality and the hierarchy of objects. The estimation of depth by humans
at one point is greatly influenced by the global surroundings [67]. Here we see that
(limited) local knowledge alone, can lead to wrong conclusions about the observa-
tions/measurements. In image processing, localization of image operators may lead
to ambiguity of the interpretation of their outcome. In chapter 2 an example for
such an arising ambiguity is discussed in depth.

Traditionally, measurements are done after the input image is segmented by
binarisation and labeling. Segmentation is a process to separate interesting objects
from a background. An object can for instance be as complex as a tree or be
its building blocks. Segmentation of a tree in a natural scene is difficult, however
most applications have much easier objects which can often be classified by only
one or a few local properties, e.g. intensity, texture, size, shape or color1. This
information may be corrupted by noise, so that thresholding on the one parameter
at hand fails, which makes segmentation the critical processing step in the majority
of applications. If labeling is acquired, the image is binarised, i.e. assigning the
value one to the foreground pixels (object) and the value zero to the background
pixels. Measurements are derived from the labeled binary image, e.g. the area
being just the sum of the foreground pixels of one object. The processing of binary
images had a tremendous advantage in the days before the rise of cheap personal
computers in the early 1980s. A binary image can be stored extremely memory-
efficient by only coding its boundary. Algorithms working only at the boundary are
still among the fastest. However binarisation has great intrinsic problems. Hardly
any imaging devices does has a high enough resolution to resolve the quantized
structure of nature and even more important most, of the time larger spatial scales
are of interest, such that the final observations are continuous. For example a
circle drawn with a pair of compasses is round to the eye. Acquiring an image of
it and storing/processing it on a computer, quantizes the circle, assigning values
to (nearly always) rectangular pixels on a rectangular grid. If the sampling of the
grid satisfies the Nyquist criterion, reconstruction of the analog object from the
sampled representation is possible and unique. If we now binaries the values of the
image, the boundaries of the objects become jagged. The boundary is not even

1Color is not considered or referred to in this thesis as humans perceive it. It is solely considered as
a function of the photon energy. Images may be multi channel, each channel indicating signal strength
(grey-value).
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clearly defined, as there is no natural way to split a curved line into square blocks.
Furthermore, rotations and sub-pixel shifts of the object are not naturally included
into binarisation and can cause an arbitrary error, which will hamper all subsequent
measurements.

In general, the deviation that a measurement has from the true value is com-
posed of two terms: the systematic and statistic (or stochastic) error, which are
independent of each other. The systematical error is also called bias and determines
the accuracy. It describes the deviation of the mean of many measurements from
the truth. This error is caused by errors in the measurement procedure or neglecting
side effects. Sometimes it is possible to correct this type of error afterwords if the
problem and the measurement system are completely understood. The statistical
error determines the precision and gives an indication for the deviation between one
random measurement result and the mean of many. It characterizes the influence
of random effects (noise) on the measurement procedure.

In our opinion, the more appropriate approach to image analysis is to avoid
binarisation and to keep the grey-value information for the measurement. It is es-
pecially important to preserve the regions of intensity change as the information is
essentially confined to these places. Van Vliet and Verbeek introduced a variety of
measurements that can be obtained from the grey-volume of an object (sum of the
samples), which is a sampling error-free measurement. This concept incorporates
affine invariance and sub-pixel precision as long as proper sampling of the image is
guaranteed. The sampling constraints along with measurement techniques based on
the sum of samples are introduced in chapter 3. The paradigm within this frame-
work is to perform measurements on grey-value images and to avoid aliasing of the
image by using band-limited operations. Finally, a measurement value is accompa-
nied by a confidence value that indicates the trustworthiness of the measurement
value. The confidence is computed from the structure present in the image, taking
into account the model assumptions of the measurement procedure. Nevertheless,
noise reduction was and is necessary. This can be done without losing edge infor-
mation by a regularization step, which can be adaptive smoothing or anisotropic
diffusion.

We will follow our paradigm to keep the grey-value information for the mea-
surements in 4D (or higher dimensional) image analysis. Memory constraints and
computer power set us back 20 years. We face similar limitations with the com-
putation of three- and four dimensional grey-value images as the pioneers in two
dimensions with binary data.s The theories and algorithms we will present are first
developed in analog space, keeping in mind the local nature of image operators,
and are in the end digitized and applied to the digitized images.

Measurements in images requires the application of filters to the image. Gaus-
sian filters are used throughout the thesis by the convolution of a Gaussian (or a
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derivative of a Gaussian) with the image. The approach to convolve the image with
a regularization function (the Gaussian) is a natural extension of the function the-
ory given by the distribution theory. In this theory a framework is constructed for
the handling of, for example, Dirac deltas, which are not functions in the traditional
way, as a function value reaches infinity at one point. The choice for the Gaussian as
the regularization function is based inter alia on the minimal space-frequency prod-
uct of the Gaussian. Convolution with a regularization function allows further for
a straight forward manner to compute derivatives of discrete images. The deriva-
tive of an image is just the convolution with the derivative of the regularization
function.

In chapter 2 and 3 we specify the localization problem of image operators,
sampling issues and the need to perform band-limited operations. Along these
lines we present in chapters 4 and 5 a measurement algorithm for the curvature of
lines and surfaces (local measurements) and discuss several global shape descriptors
computed from these local curvatures. Different estimation methods of velocity in
spatio-temporal images available in the literature are revised in chapter 6. They are
used together with the previously developed shape descriptors in three applications.





Chapter 2

A systematic approach to nD
orientation representation1

ξυνoν γαρ
,
αρχη και περας

,
επι

κυκλoυ περιϕερεια.
Beginning and end coincide in the
circumference of the circle.
Herakleitos, 536–470 (frag.103)

We define simple neighborhoods in images as areas that are shift invariant in
at least one direction and not shift invariant in at least one other direction. Such
areas play a key role in the description of local structure. The aforementioned shift
directions can be determined up to point inversion. Therefore a pair of opposite
directions is designated by a single orientation.

The first order intensity variation is the gradient. A collection of local gradi-
ents is needed to compute a dominant orientation. The accompanying intensity
variations and that of orthogonal directions can be used to describe lines, surfaces
and edges as well as texture. A characterization of simple neighborhoods is by the
dominant orientation [10, 60, 45, 11].

Orientation is direction up to point inversion, therefore leaving room for am-
biguity in representation. Direction is described by the full angle, which is in 2D
characterized by ϑ ∈ [0, 2π], and in general by n−1 angles in nD. Direction can also
be represented by vectors, for example v = (1, 2) or w = (−1,−2). These vectors
point in opposite directions but have the same orientation.

Representing orientation by vectors (direction information) leads to troublesome
descriptions, in the sense that it is discontinuous. Representing a line in 2D by its
angle with respect to a fixed coordinate axis and a plane in 3D by its normal
vector is therefore not a suitable representation. In figure 2.1 a test and a real
2D image are shown on the left and the orientation fields on the right. We clearly
see two jumps or discontinuities. They cannot be removed, for example by phase

1Part of this chapter has been published in B. Rieger and L.J. van Vliet, Representing orientation
in N-dimensional spaces, CAIP’03, 10th International Conference on Computer Analysis of Images and
Patterns (Groningen, The Netherlands), August 25-27, 2003 [104] and an extended version is accepted for
publication in Image and Vision Computing [105].

9
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(a) (b)

(c) (d)

Figure 2.1: a) Image with concentric circles forming an oriented texture, b) the local
orientation field [−π

2
, π

2
[ (dark,light) with a discontinuity mod π, c) a cross section

through a CT image of a tree trunk and d) the orientation field.

unwrapping [137, 70, 29]. Phase unwrapping can only successfully be applied to
discontinuities that form non-intersecting closed lines.

A consistent definition of direction is only possible in a global frame work,
whereas most image operators are bound to a local neighborhood. The heart of
the problem is sketched in figure 2.2. The support of the operator may have a size
as indicated by the circle. The scale is local, whereas the structure has a global
connection. The content of the upper and lower window are the same, although
the outward pointing normal vector changes continuously along the line. So we
are left with two identical windows and an estimated normal orientation with a
discontinuity.

The gradient vectors in a local neighborhood need to be combined to obtain
an estimate of the local orientation. A simple averaging of gradient vectors fails,
on lines in 2D (planes in 3D etc.) because vectors from opposite sides of the line
point in opposite directions and will cancel each other. Thus we need a suitable
continuous representation of gradient vectors to average the structure inside a local
window.

Furthermore, a discontinuous representation is very often not suitable for fur-
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N

?

Figure 2.2: Local analysis and the problem of direction versus orientation infor-
mation. The normal vector in the two dashed windows point in different direction
whereas the content of the windows is the same. Global knowledge is needed to resolve
direction information.

ther processing. Most image operators give incorrect response to apparent discon-
tinuities. Therefore the approach should be as follows: obtain the gradient vectors,
map them to a continuous representation, carry out the averaging (or apply another
filter). The interpretation of the results of the filtering operation on the new rep-
resentation is then - in general - not straightforward. A well-known tool to analyze
local structure is the Gradient Structure Tensor Ḡ (GST) [10, 60, 56, 45, 71, 43, 11].
It is defined as

G := ∇I∇It with G := ∇I∇It , (2.1)

where I is a grey-value image and the over-lining stands for averaging the elements
inside a local neighborhood.

A physical interpretation of the GST can be given in the terms of friction [123].
Imagine the grey-value surface of a 2D image as a washboard where the friction
is proportional to absolute gradient strength. The GST is then a measure for the
local mean squared friction otGo along orientation o when rubbing over the surface.
An eigensystem analysis of the GST yields the orientation with the least and the
highest friction; along and perpendicular to the ribs of the washboard.

The structure tensor also is similar to the covariance matrix C =
〈
X2〉− 〈X〉2.

In statistical pattern recognition the covariance matrix is used to describe a set of
points (here the points are generated by the endpoints of the gradient vectors) [57,
12]. The relation is given by

C = G−∇Ii∇Ij 1 ≤ i, j ≤ n . (2.2)

The covariance matrix and the structure tensor are identical if the average (expec-
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tation) per element is zero, 〈X〉 = 0, i.e. on lines and planes. The orientation
estimation of the GST is very robust to noise. An accurate estimate for the ori-
entation can be obtained for signal-to-noise ratios close to 0dB (dependent on the
window size) [61, 140].

The gradient structure tensor is also related to a well-known quantity in physics,
the inertia tensor [111] by the following relation

J = tr (G)I−G or Jij = tr (Gij)δij −Gij . (2.3)

One way to see the connection is that the GST estimates the inertia of the gradient
vector endpoints which are translated to the a common origin.

The gradient structure tensor overcomes the problem in averaging orientation by
mapping the local gradient ∇I via a dyadic product to a continuous representation
which allows filtering; averaging with a weight function. The outcome cannot be
interpreted directly but first an eigenvalue analysis of G has to be done, where
the ratios of the eigenvalues characterize local structure [56, 43], i.e. the local
dimensionality. Due to the nonlinearity of the structure tensor, applying arbitrary
linear filters to the tensor result may produce an unexpected outcome.

The gradient structure tensor clearly treats gradients (x) pointing in opposite
direction (−x) equally with respect to direction and magnitude G : IRn 3 x →
xxt ∈ IRn×n. These two properties are necessary conditions for sensible averaging
of the tensor elements. In other words, rotation of the image yields an equally
rotated result of the tensor space. In other circumstances it may be desirable to
preserve absolute differences in orientation in the mapping resolving the orientation
problem. The GST has n(n+ 1)/2 independent components. Limiting the number
of elements needed reduces the memory requirements for higher dimensional images.
We will look for a minimal set of elements to describe local orientation satisfying
three conditions that are outlined below.

2.1 Requirements of a continous distance preserving

mapping

Knutsson proposed the following three properties for a continuous distance preserv-
ing representation of orientation: Uniqueness, Uniform Stretch and Polar Separa-
bility [64, 63]. Let be x ∈ IRn:

• Uniqueness: Antipodal vectors should be mapped onto one point, this removes
the phase jump, e.g. opposite gradient vectors are treated equallyM(x) =
M(−x).
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• Polar Separability: The norm of the mapped vector should be rotation invari-
ant; information carried by the magnitude of the original vector does normally
not depend on the angle. ‖M(x)‖ = f(‖x‖) , where f is an arbitrary function
f : IR+ → IR+.

• Uniform Stretch: The mapping should carry implicitly information about the
distances in the original space that is rotation invariant and scales linearly
with the angle between two hyper planes ‖δM(x)‖ = c‖δx‖ for ‖x‖ = const.

2.2 The mapping

A mapping that fulfills the above requirements is M : IRn → IRn×n

M(x) =
xxt

‖x‖
. (2.4)

It was introduced by Knutsson in this form in 1989 [64]. From the construction it

is clear that M is symmetric and has only n(n+1)
2 independent components. The

mapping is slightly different from the structure tensor G. The latter does not meet
all of the above requirements. The uniqueness requirement is met by G, also the
polar separability as ‖G(x)‖ = ‖x‖2, but the uniform stretch property is not met
as ‖δG(x)‖ = c‖x‖‖δx‖. The structure tensor is therefore no distance preserving
mapping.

If other than blurring filters are applied to G or M the outcome has not been
studied. The uniform stretch property will allow us to compute curvature of lines
and surfaces in nD by applying derivative filters to M and to interpret the outcome.
This is the key to the new curvature estimation methods of chapter 4, eq.(4.7) and
chapter 5, eq.(5.12).

The Knutsson mapping M is a scaled version of G. Where G has only one
non-zero eigenvalue ‖x‖2 with eigenvector x, M has the same eigenvector to the
scaled eigenvalue ‖x‖.

For the norm in the uniformity and the polar separability Knutsson chose the
Fröbenius norm

‖M‖2 :=
∑
ij

m2
ij . (2.5)

If the norm is rotation invariant, as given here by the polar separability requirement,
then

‖M‖2 = tr (M tM) =
∑
n

λ2
n (2.6)
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where λn are the eigenvalues of M . Here the Fröbenius norm is equal to the often
used spectral norm ‖M‖spec :=

√
largest eigenvalue of(M tM) as M has only one

nonzero eigenvalue ‖x‖.
At this point we notice that we can further reduce the number of independent

components of M ; and G for that matter. The polar separability requirement
guarantees for both mappings a rotation invariant norm and

‖M‖2 = λ2
max = λ2

1 = tr (M)2 = const. . (2.7)

So there is another restriction imposed on the sum of the diagonal elements of
M . Therefore from the n diagonal elements only n − 1 linear combinations are

necessary; the mappings M and G have n(n+1)
2 − 1 independent components. This

can be important as the fewer dimensions to process, the less memory is needed.

2.2.1 The mapping in 2D

In the following we identify M(x) =
xixj

‖x‖ as an ordered n-tuple. For the 2D case

the mapping M reads x ∈ IR2:

M(x) =
1

‖x‖
(x2

1, x1x2, x2x1, x
2
2) , (2.8)

or in polar coordinates x1 = r cosϕ, x2 = r sinϕ,

M(x) = r(cos2 ϕ, sinϕ cosϕ, cosϕ sinϕ, sin2 ϕ) . (2.9)

From the above consideration we know that there are only n(n+1)
2 − 1 = 2 inde-

pendent components. Linear combinations of the diagonal elements yield only one
component carrying information

cos2 ϕ+ sin2 ϕ = 1 (2.10)

cos2 ϕ− sin2 ϕ = cos 2ϕ . (2.11)

To scale all elements evenly we take twice the off-diagonal elementm12, 2 sinϕ cosϕ =
sin 2ϕ. Summing up we get a reduced set

Mr2D(x) =
1

‖x‖
(x2

1 − x2
2, 2x1x2) = r(cos 2ϕ, sin 2ϕ) . (2.12)

The Knutsson mapping M , reduced to Mr2D in 2D, is equivalent to the well known
double angle method [10, 56]: r(cosϕ, sinϕ)→ r(cos 2ϕ, sin 2ϕ). Note that the dou-
ble angle method cannot be generalized to higher dimensions in a straightforward
manner. The functions r(cos 2ϕ, sin 2ϕ) are the circular harmonics [17]. They form
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a basis of the polynomials of second degree in 2D, so the reduced set Mr2D (2.12)
is indeed minimal.

Already in 1987 Bigün and Granlund proposed an orientation operator for 2D
images using these linear combinations of the components of the structure tensor
to describe the orientation ϕ [10]

tan 2ϕ =
2∂xI∂yI

(∂xI)2 − (∂yI)2
, (2.13)

where the overhead bar denotes averaging in a local neighborhood.

In figure 2.3 we illustrate that the gradient (∂xI, ∂yI) is not continuous whereas
the reduced set is, and therefore averaging of theses elements is allowed (i.e. it does
not yield false responses to the apparent discontinuities).

2.2.2 The mapping in 3D

Again we want to reduce the dimensionality of the general mapping M . For the 3D
case we apply the successful recipe from 2D; taking twice the off-diagonal elements
and cyclic combinations of the diagonal elements

1

‖x‖
(x2

1 − x2
2, 2x1x2︸ ︷︷ ︸

again 2D

, 2x1x3, 2x2x3, x
2
2 − x2

3, x
2
3 − x2

1) . (2.14)

We have 6 components, from the above considerations we know that there are only
n(n+1)

2 − 1 = 5 independent components. Due to the restriction on the trace a
combination of the cyclic diagonal elements m1,m5,m6 is suitable to reduce the set
by one. We choose m6 −m5

Mr3D(x) =
1

‖x‖
(x2

1 − x2
2, 2x1x2, 2x1x3, 2x2x3,

1√
3
(2x2

3 − x2
1 − x2

2)) . (2.15)

For a 2D subspace (x3 = 0) this reads

Mr3D(x) =
1

‖x‖
(x2

1 − x2
2, 2x1x2, 0, 0,

−‖x‖2√
3

) , (2.16)

where we recognize the 2D mapping again. A 2D orientation half plane in 3D is
mapped onto a 2D cone in 5D with opening angle α = 120◦ (slope of the cone 1/

√
3

and tan 30◦ = 1/
√

3) as depicted in figure 2.4.
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(a) ∂xI (b) ∂yI

(c) ∂xI (d) ∂yI

(e) (∂xI)2 − (∂yI)2 (f) 2∂xI∂yI

(g) (∂xI)2 − (∂yI)2 (h) 2∂xI∂yI

Figure 2.3: Illustration along with the mapping (2.13), a,b) the derivatives of the
image in figure 2.1a), c,d) smoothing of the derivatives with a Gaussian filter, e,f)
the reduced mapping Mr2D, g,h) smoothing of the reduced mapping with a Gaussian
filter. For easier educational insight elements e)-h) are normalized by the gradient
magnitude.
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2D orientation
subspace

Mr3D
opening angle α

 
mapped onto a 2D cone in 5D
orientation representation

Figure 2.4: A 2D orientation half plane in 3D is mapped via M3rD onto a 2D cone
in 5D with opening angle α = 120◦ (slope of the cone 1/

√
3 and tan 30◦ = 1/

√
3).

Knutsson 1985:

In 1985 Knutsson introduced a mapping fulfilling the above requirements suitable
for 3D [63]. This function MK : IR3 → IR5 is written in spherical polar coordinates
r ∈ IR+, φ ∈ [−π, π] and θ ∈ [0, π]

MK(r, θ, φ) → r(s, t, u, v, w), (2.17)

s = sin2 θ cos 2φ,

t = sin2 θ sin 2φ,

u = sin 2θ cosφ,

v = sin 2θ sinφ,

w =
√

3(cos2 θ − 1

3
) .

Knutsson gave no derivation for his mapping MK and said it was heuristically
derived. We can derive MK in a systematical way from the general mapping M
(2.4).

This function MK is in fact not different from M . MK is the reduced set
Mr3D(2.15) in spherical polar coordinates: x1 = r cosφ sin θ, x2 = r sinφ sin θ, x3 =
r cos θ. The extension from 2D to 3D is now no longer heuristic, as we presented
its derivation. Extension to higher dimensions has become straightforward.
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Another way to MK:

The extension to 3D (2.17) of the 2D solution, the double angle method (2.12), can
also be derived by analogy transfer. The double angle method maps the tangent to
the circular harmonics. Now let’s have a look at the spherical harmonics [17]

Y m
l (θ, φ) =

{
Pml (cos θ) cos(mφ) for m = 0, 1, 2, . . . , l

P
|m|
l (cos θ) sin(|m|φ) for m = −1, . . . ,−l

, (2.18)

where Pml are the associated Legendre polynomials.

The spherical harmonics of second degree Y m
2 are (up to a scaling factor) iden-

tical to the components of the mapping MK

s = 1/3Y 2
2 ,

t = 8Y −2
2 ,

u = 2/3Y 1
2 ,

v = 4Y −1
2 ,

w = 2/
√

3Y 0
2 .

The spherical harmonics form a basis of the polynomials of second degree in 3D, so
the set of components of Mr3D (2.15) is indeed minimal.

2.3 Properties of the mappings

In table 2.1 we summarize some properties of the mappings presented here.

Dimension Uniform Stretch Polar Separability Angle

G n – ‖x‖ 2 –

M n c =
√

2 ‖x‖ cosα=cos2 ψ
Mr2D 2 c =2 ‖x‖ cosα=cos 2ψ
MK 3 c =2 2√

3
‖x‖ cosα= 3

4(cos 2ψ + 1
3)

Table 2.1: Summary of the properties of the different mappings.

The angle ψ of two vectors x, y ∈ IRn in the original space can be related to
the angle α that the mapped vectors M(x),M(y) ∈ IRn×n will form in the mapped
space M . Knutsson has done this only for MK [63, 64]. For the general mapping
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M (2.4) the deduction is

cosψ =
x · y
‖x‖ ‖y‖

(2.19)

cosα =
M(x) ·M(y)

‖M(x)‖ ‖M(y)‖
=

∑
ij xixjyiyj

‖x‖2 ‖y‖2
=

(x · y)2

‖x‖2 ‖y‖2
(2.20)

⇒ cosα = cos2 ψ . (2.21)

In figure 2.5 we plot the angle transfer functions for M,MK ,Mr2D between the
angle of two vectors in one space and the angle of the vectors in the mapped space.
We observe the following properties:

M : nD→ n2D ψ ∈ [0, 180◦]→ α ∈ [0, 90◦] (2.22)

MK : 3D→ 5D ψ ∈ [0, 180◦]→ α ∈ [0, 120◦] (2.23)

Mr2D : 2D→ 2D ψ ∈ [0, 180◦]→ α ∈ [0, 180◦] (2.24)
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Figure 2.5: Transfer function of the angle depicting the relation between the angle
in the original space and the corresponding angle after mapping the vectors. The
maximal angle in the mapped space is the opening angle of the mapped cone of a 2D
half plane, compare figure 2.4.

Both reduced mappings Mr2D and Mr3D ≡MK have the same uniformity factor
of 2, but the maximal angle in the mapped space is different. The 2D mapping maps
the 2D orientation half plane onto the full 2D plane, which is a cone with opening
angle 180◦, whereasMr3D maps the half plane to a cone with opening angle 120◦ (see
also figure 2.4). Flatting of the 3D cone to a 2D plane is possible. The stretching
is canceled by the polar separability factor 2√

3
to one, thus flattening of Mr3D is

identical to use Mr2D directly.
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Furthermore, Knutsson pointed out that the sum of two non-zero mapped vec-
tors (by M or MK) is always greater than zero because the maximal angle they can
make is smaller than 180◦. He interpreted this as a consequence of the fact that
there is no fully symmetric representation2 of two 3D lines [63], but there is one of
three 3D lines, i.e. three perpendicular lines. If we map three perpendicular lines

z-axis: MK(r, 0, φ) = r(0, 0, 0, 0, 2/
√

3)

y-axis: MK(r, π/2, π/2) = r(1, 0, 0, 0,−1/
√

3)

x-axis: MK(r, π/2, 0) = r(−1, 0, 0, 0,−1/
√

3)

then the sum of these three mapped vectors is zero. Here we see the possibility
to generate, from two mapped vectors (by MK) in 5D, a third vector that is per-
pendicular to the other two and that is in the image of MK . To find a vector in
5D that is perpendicular to two other vectors is not difficult, it is, however, more
complicated to find the one which lies in the subspace of the image of MK . In 3D
the outer product is used to obtain a perpendicular vector from two other, in 5D
the sum of those three must be zero

3D z = x× y (2.25)

5D MK(z) = −[MK(x) +MK(y)] . (2.26)

2.4 Conclusions

We have shown in which manner specific solutions (2D [10, 60] and 3D [63, 64]) for
a continuous orientation representation are connected through a general framework
for arbitrary dimensions. In a general manner we can reduce the dimensionality of
the Knutsson mapping (2.4) and of the gradient structure tensor to a minimal set
necessary to describe orientation in multi-dimensional images. The relation with
the circular and spherical harmonics has become clear, as a minimal set of necessary
components in 2D and 3D. Furthermore, the difference between the structure tensor
and the Knutsson mapping are discussed, the first being not distance preserving
which is important when applying other than averaging filters. The uniqueness and
polar separability are properties of both mappings.

2Fully symmetric in the sense that reflections map the lines onto each other.



Chapter 3

Sampling

In this chapter we present the terminology and tools necessary for the discussion
in the following chapters. At the basis of image processing and analysis stands
the acquisition of images that are subsequently stored in a digital format. The
step from the analog to digital domain has to be done with some thought. First we
summarize some definitions and important relations that describe how sampling has
to be done in order to allow reconstruction of the continuous data from the sampled
data and, closely related, the conditions for performing reliable measurements. In
the second part we discuss the relation between spatial and temporal sampling. For
an overview of sampling (of space and time variant phenomena) see a textbook, such
as [95] chapter 7, [55] chapter 4.6, [56] chapter 9 or [79] chapter 4.

• Fourier transform: The Fourier transform of a function f ∈ L2(IRn), ξ ∈ IRn

is the isometric isomorphism3 F : L2(IRn)→ L2(IRn)

F{f}(ξ) := f̂(ξ) = (2π)−n/2
∫

IRn

f(x)e−ixξ dx , (3.1)

with ξ the angular frequency and the inverse given by

F−1{f}(x) := f̌(x) = (2π)−n/2
∫

IRn

f(ξ)eixξ dξ, with
ˇ̂
f = f . (3.2)

For periodic functions it is convenient to define the variable in Fourier space
as 2πν = ξ. Then ν is directly the conventional frequency. Furthermore, we
have the property:

f̂ ∗ g = (2π)n/2f̂ ĝ , (3.3)

3Isometric isomorphism: bijective and preserves the norm. The actual definition of the Fourier transform
is on f ∈ L1 but can be extended to L2 by Plancherel’s theorem, see for the details [108] chapter 7.

21
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with ∗ the convolution operator (f ∗ g)(x) :=
∫
f(t)g(x − t)dt. The Fourier

transformation of a Gaussian is again a Gaussian

g(x) := (
√

2πσ)−ne
− x2

2σ2 (3.4)

ĝ(ξ) = (2π)−n/2e−
1
2σ

2ξ2 . (3.5)

• Band-limit: A function f is called band-limited if f̂ exists and

f̂(ξ) = 0 for |ξi| > bi i = 1 . . . n . (3.6)

The bi are called the band-limit. If f is acquired by a lens system it is band-
limited. In optics spatial data is observed through a lens. The finite aperture
of this lens ensures band-limitation of the signal in the image plane. The band-
limitation manifests itself through some blurring. If f is not band-limited, it
can be made band-limited using a low-pass filter. Van Vliet [132], p. 28/29
suggests the use of a Gaussian with σ = 0.9, as it is a good approximation to
the Point Spread Function (PSF) of a diffraction limited lens. The low-pass
filter, however, must be applied in the analog domain (before sampling).

• Nyquist/Shannon sampling theorem: A function that is band-limited is uniqu-
ely determined by its samples, if the sampling frequency ξi,s exceeds twice the
highest occurring frequency bi [93, 113, 41]

ξi,s > 2bi i = 1 . . . n . (3.7)

For lens systems > can be replaced by ≥ as the energy at the cut-off frequency
is zero. Digital filtering (after sampling) cannot achieve band-limitation.

3.1 Reconstruction and measurement

3.1.1 Perfect reconstruction by ideal low-pass filtering

The multidimensional delta train is used to model the sampling process, and is
defined by

comb∆(x) :=
∑
m∈Z

n∏
i=1

∆iδ(xi −∆imi) , (3.8)

where ∆i is the sampling distance in the i-dimension. The Fourier transform of the
comb function is again a comb function with spacing 2π

∆ . Sampling a function I is
multiplication with the comb function

I[m]
ADC←→ comb∆(x)I(x) . (3.9)
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In figure 3.1 the spectrum of a band-limited function I with band-limit b, the
spectrum of the comb function and the sampling by the comb function are shown.
The sampling frequency ξs does not meet (3.7), i.e. the signal is undersampled and
all frequencies above ξr are aliased. The (unaliased part of the) signal I(x) can be

2π

I comb

I comb

b

comb

I

b b

ξ

∆

ξ

ξ

ξ

ξs

ξ

ξ
r

ξs

lph

f

Figure 3.1: a) Spectrum of a band-limited signal I with band-limit b, b) Fourier-
transform of the comb function eq.(3.8) c) the product of a) and b) resulting in an
aliased signal, d) recovering the unaliased part of the spectrum with a low-pass filter
hlp with ξf ≤ ξs − b.
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retrieved from comb∆(x)I(x) by ideal low-pass filtering. An ideal low-pass filter to
achieve this is a block in Fourier domain with cut-off frequency ξf

ξf ≤ ξs − b . (3.10)

For critical sampling (
ξs,crit

2b = 1 + ε, ε ↘ 0) ξf = b recovers the whole signal. If

ξs < b, the required cut-off frequency ξf would be negative indicating that Î(0),
the DC component, is aliased and therefore the whole signal. The inverse Fourier
transformation of a block is the sinc function

sinc(x) :=
sin x

x
. (3.11)

Ideally a sinc function would be needed to interpolate the original from the samples.
There are, however, two reasons this is not done in practice. First, the sketched
sampling theory is only valid on the domain IRn, whereas we are restricted to finite-
length signals in practice. Second the sinc decays slowly towards zero in the spatial
domain.

3.1.2 Finite number of sample points

In figure 3.2 we show the effects of a finite number of sample points on the Fourier
transform of a sinc. It is no longer a true block function. At the folding frequency
(ξ = π) there occur small oscillations, this is the so called Gibbs phenomenon [95]
section 3.

3.1.3 Approximately band-limitation

The concept of approximate band-limitation is adopted to deal with signals f that
are not truly, but for most practical reasons, band-limited. The approximated
band-limit ξa can be defined as the value where f̂ encloses 99% of the total volume
or has dropped to 1% of the maximal signal value. We choose the latter definition.
The reason is simple: Functions that decay as 1/ξ (e.g. step edges introduced by
thresholding) accumulate volume very fast as we walk along the ξ-axis due the
divergence at ξ = 0. Other definitions for the approximate band-limit may be
reasonable.

For a Gaussian g(x) the condition

ĝ(ξ) ≤ 0.01 max ĝ(ξ) ∀ |ξ| ≥ ξa (3.12)

is satisfied from

ξa =

√
2 ln 100

σ
≈ 3

σ
=: bG . (3.13)
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Figure 3.2: The normalized (to be one at ξ = 0) Fourier transforms of a sinc, a
Gaussian and the first order derivative of a Gaussian all at σ = 1.

Sampling a Gaussian according to the Nyquist theorem (3.7) requires sampling
2π
∆ = ξs > 2ξa, therefore the sampling distance should be

∆ . σ . (3.14)

With standard sampling ∆ = 1 this means that a Gaussian should at least have
σ = 1 to be approximately band-limited. Van Vliet argued, based on the PSF
function of a microscope, that σ ≥ 0.9∆ should be fulfilled as an appropriated
sampling condition for band-limitation of a Gaussian [132] chapter 2.5.

For truly band-limited functions f the following relation holds for the band-limit
b of the derivative

b(f) = b(Df) . (3.15)

For approximate band-limited function this relation is not true in general, as D̂f =

iξf̂ , but for a Gaussian the exponent e−
1
2σ

2ξ2 decays stronger than any power of
ξ. Therefore we will also use relation (3.15) for derivatives of approximate band-
limited functions. The Fourier transform of the Gaussian and its first derivative,
both with σ = 1 and standard sampling ∆ = 1, are shown in figure 3.2. We see that
for ξ

2π = 0.5 (folding frequency) ĝ is indeed about 1% of the maximal value. The
derivative has a slightly higher approximate band-limit but we stick to eq.(3.15) for
further use.
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The integral of a Gaussian, the erf function

erf(x) :=
2√
π

x∫
0

e−t
2
dt (3.16)

is thus also approximately band-limited. Filtering a step edge with a Gaussian
results in a erf function. An erf function is a ’smooth step edge’.

3.1.4 Sum of samples

Before we start with the use of the sum of samples to obtain measurements, we
take an excursion to the measurement theory in discretized images. This will mo-
tivate why in the remainder of the thesis the grey-volume is used as the integration
measure to obtain global measurements.

Measurement theory in images

An image has discrete pixels whereas the real world has not. This is the heart of
the problem. Our goal is to define a framework such that measurements on the
digital image give the same result as the measurements of the analog object, .i.e.
the framework must take care of the discrezation.

The first approaches to measure global object properties, such as volume, sur-
face area and perimeter have been binary in nature. This means the object is
recorded and separated from the background by thresholding of the data. On the
binarised object a measurement is performed to obtain the desired information.
Unfortunately, even binary methods that have no systematical error, can have a
high statistical error. Different realizations (by shift and rotation) of the same
original object on the image grid followed by binarisation do not yield the same
result (except for integer shifts and few rotations). The goal therefore is to develop
a set of rules such that the statistical error is zero (or at least small). The re-
quirements of such a framework fulfills the class of sample-error free measurements,
which includes the sum of samples.

Sum of samples

The sum of samples
∑
m I[m] is a sampling-error free measure [122]. A sampling-

error free measure is a measurement that performed on a sampled image gives the
same result as its analog counterpart. The sum of samples is proportional to the
integrated grey-value (grey-volume), if the sampling frequency ξs is higher than the
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ΦLocal measurements 

µIntegration measure

I[m]
interesting

Figure 3.3: Measuring scheme for global measurements of an object. Combination
of the integration measure µ with the point measurements is the input for the sum of
samples. This sum must be direct proportional to the property to be measured.

highest frequency b of the analog signal [122] and [132] chapter 2.3(
n∏
i

∆i

)∑
m

I[m] =

∫
IRn

I(x)comb∆(x) dx (3.17)

= (2π)n/2Î(ξ) ∗ ĉomb2π/∆

∣∣∣
ξ=0

(3.18)

= (2π)n/2Î(0) (3.19)

=

∫
IRn

I(x) dx,
2π

∆i
> bi . (3.20)

The sampling requirement is twice as loose as the Shannon/Nyquist sampling the-
orem (3.7).

3.1.5 From the sum of samples to global measurements

The grey-volume is a sampling-error free measure, and thus it is desirable to measure
global object characteristics by grey-volume measurements. Now we will focus on
how a measurement can be transferred to a grey-volume measurement. The big
picture is emphasized, for a much more comprehensive discussion of the details
see [122, 129, 128, 132, 135].

Assume we want to measure the global property interesting of an object (e.g.
surface area), then the measurement scheme in figure 3.3 should be followed. We
obtain

interesting =
∑

Φµ(I) , (3.21)

where the filter Φ is a combination of local measurements Φ1, . . . ,Φm. The product
Φµ(I) must be approximately band-limited, and so must all local measurements
Φi. This can require oversampling dependent on the operators µ and Φ [122].
Many measurements are done by applying (derivatives of) Gaussians, thus we need
an approximately band-limited Gaussian. This can be realized as discussed above
(3.1.3).
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Let us, for the moment, assume Φ = 1. The integration measure µ, a transfor-
mation of the input image, is dependent on the dimensionality of the measurement
k to be done. In table 3.1 we summarize integration measures µ for different mea-
surement dimensionalities k which are applicable to closed filled objects (objects
which are enclosed by edges only) in nD images [132] part III. On the way we in-
troduce erf-clipping. Erf-clipping (a form of soft-clipping) of an image between the
limits `± 1

2h is defined as [132] chapter 2.6

Iclip(`, h) = `+
h

2
erf

(√
π

h
(`− I)

)
. (3.22)

Erf-clipping is approximately band-limited, i.e. at half the sampling frequency
the spectrum of the erf-clipped signal is more than one order of magnitude lower
than hard clipping or thresholding (and preserves the edge information) [132]. The
erf-clipped result is in good approximation a Gaussian filtered step edge. The
approximate band-limit is given by the corresponding Gaussian.

µ k Property
Iclip n Volume

‖∇Iclip‖ n− 1 Surface (n ≥ 3)/Perimeter (n = 2)

∂ggIclip n− 2 Length (n = 3)

∂
(n−1)
g Iclip 1 Length

Table 3.1: Integration measures µ that produce a grey-volume that is proportional
to the specified property in nD dimensional images I with property dimensionality
k [132]. Where Iclip is defined by eq.(3.22) and ∂g is the derivative in the local

gradient direction.

Example: µ = ‖∇Iclip‖, Φ = 1

The gradient magnitude is found to be the integration measure for surface area [132].
Here we discuss why this transformation is suitable to measure surface area. How-
ever, we leave out details of the edge localization by Gaussian filters. For the
gradient magnitude standard sampling is sufficient [122].

Assume, a single band-limited solid object O is embedded in an image I by an
iso-surface at level `. The integration measure µ must produce an image which
integrated volume = const. × surface area. Thus each cross section e (the edge)
perpendicular to the iso-surface ∂O should contribute an equal amount. First we
apply erf-clipping, then the cross section is a clipped edge, e(r) = h−

∫ r
0 p(r̃) dr̃ with

profile distribution p(r̃) satisfying
∫∞
0 p(r̃) dr̃ = h. Perpendicular to the iso-surface

we have

‖∇Iclip‖ = ‖ d
dr
Iclip‖ . (3.23)
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Note that the integral
∫
‖ ddrIclip‖ dr =

∫
‖ ddre(r)‖ dr = h. Finally, volume inte-

gration of ‖∇Iclip‖ accumulates the contribution of all cross sections and hence
1
h

∫
‖∇Iclip‖ dV yields the surface area of the embedded object. Thus integration

over an iso-surface element dA is accomplished by integration of the gradient mag-
nitude after clipping over the entire image volume∫

∂O
dA =

1

h

∫
I
‖∇Iclip‖ dV . (3.24)

The volume integral can be replaced by a sum of the sampled image iff ‖∇Iclip‖
is approximately band-limited. The derivatives are implemented by convolutions
with derivatives of Gaussians. Here we see again that we require a band-limited
Gaussian to transfer an analog theory to the discrete domain without sampling-
errors. The approximate band-limitation is no fixed criterion, but as experiments
by van Vliet [135] show, for σ ≥ 0.9∆ there is no statistical error, which justifies
the chosen restriction.

Example: µ = ‖∇Iclip‖, Φ = κ2
1 + κ2

2

For the bending energy of an object embedded in a 3D image, we have to set
Φ = κ2

1 + κ2
2, where κi are the principal curvatures of the object. Together with

µ = ‖∇Iclip‖ this yields∫
κ2

1 + κ2
2 dA ↔

∫
(κ2

1 + κ2
2)‖∇Iclip‖dV (3.25)

=
∑

comb∆(κ2
1 + κ2

2)‖∇Iclip‖ .

The curvatures κi have to be computed along the lines laid out before on the
grey-value information of the image. The sum of samples only corresponds to the
physical volume of the object if the recording does not contain specular reflection or
other disturbances that do not reflect the physical object height. The erf-clipping
takes care of this in most cases.

For hollow (or ridge like) objects this approach does not hold, they must first
be filled, see chapter 5.1.4.

3.2 (x, t)-sampling

The sampling of space-time dependent data is important for many tasks ranging
from reconstruction of the continuous (x, t)-signal from its (x, t)-samples to charac-
terization, recognition and measurement of the true or apparent motion. The choice
of the temporal sampling frequency, given the image content, i.e. the velocity of
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the fastest, important object, is closely related to the problem to establishing a
relation between the observations of an object in a time series as will be discussed
later. Acquisition of time data differs from the acquisition of spatial data. In the
time domain there is no inherent blurring by a lens system: a shutter of a camera
is opened and then closed, defining the exposure time. Time band-limitation is
introduced by spatial band-limitation as we will discuss in the following.

3.2.1 Introducing time band-limitation by spatial band-limitation

In practice the question often arises, given a spatial sampling, how fast do we have
to sample in time to measure a certain motion without aliasing? It can also be put
the other way around: given a limited time sampling by the acquisition aperture
what is the maximal observable velocity? The sampling issues in space and time,
however, cannot be seen separately from each other. The image obtained by the
spatial acquisition by a lens system is band-limited by the cut-off frequency of the
lens. Spatial band-limitation, luckily, induces temporal band-limitation as can be
seen from figure 3.4. If we assume uniform rectilinear motion, i.e. ẍ = 0, then the
velocity v is

v = cotϕ =
∆x

∆t
. (3.26)

The Fourier transform of an uniform rectilinear motion is a straight line in Fourier
space. The truncation in the reciprocal spatial axis k induces therefore truncation
of the reciprocal temporal axis ω as can be seen from figure 3.4. For linear motion
I(x, t) = I(x− vt), I(x, 0) = I(x) the spectrum lies on a 90◦ rotated line

F{I}(k, ω) =
1

(2π)2

∫
dtdx I(x− vt)e−i(kx+ωt) (3.27)

=
1

(2π)2

∫
dtdx̃ I(x̃)e−i(kx̃)e−it(kv+ω) (3.28)

=
1√
2π
Î(k)δ(kv + ω) . (3.29)

Here we did not apply the conventional space-time metric (−1, 1, 1, 1), but treated
all components in the Fourier transform the same.

With the spatial band-limits bi and velocity components vi in dimension i, we
obtain for the time band-limit bt from figure 3.4

bt = max
i

(bivi) i = 1, . . . n . (3.30)

This implies that given a spatial band-limit, the time band-limit is proportional
to the velocity. Eq.(3.30) gives a useful relation between the space and time band-
limit/sampling. It is now clear that both cannot be addressed separately.
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Figure 3.4: Sampling of linear motion and the relation between temporal and spatial
band-limit. For linear motion I(x, t) = I(x − vt) the spectrum lies on a 90◦ rotated
line F{I}(k, ω) = Î(k)δ(kv + ω). Here we only show one object with I(x, 0) = δ(x)
for simplicity.

Now assume constant acceleration as I(x, t) = I(x−at2). Fourier analysis yields

Î(k, ω) = Î(k) 1√
2π

vmax∫
v=0

dv δ(kv + ω), so we see that the temporal band-limit is just

given by the maximum velocity in the case of constant acceleration.

Here we want to raise a practical interesting question. What can be said about
the spatial and temporal sampling if only the sampled time series is observed and
the physical sampling distances ∆x = 2π

ξi
and ∆t = 2π

ξt
could not be recorded or are

lost? This is for example the case if a time series is inspected on the screen from
one time frame to the next. Suppose the series is sampled with sampling frequency
ξs according to the Nyquist theorem, where b is the band-limit, then

ξs > 2b ↔ ξs
2b

= 1 + ε, ε > 0 , (3.31)

where critical sampling corresponds to ε ↘ 0. Let ∆x and ∆t be the spatial and
temporal sampling interval, then substituting eq.(3.31) in eq.(3.30) we obtain for
the velocity in these sampling units

v =
bt
bx

(3.32)

=
(1 + εx)

(1 + εt)

∆x

∆t
. (3.33)

From this we can immediately draw the conclusion that critical sampling (ε ↘
0) implies v < 1∆x/∆t = 1pixel/frame for the objects in a time series. If we
observe velocities v > 1∆x/∆t and the series should be properly sampled then this
implies εx > εt, i.e. we need spatial oversampling to a higher degree than temporal
sampling.
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Note: Observation of (apparent) velocities that are smaller than one pixel per
frame in a sampled image sequence does not guarantee proper sampling, as temporal
aliasing could already have corrupted the signal.

Measurement of velocity/acceleration is performed by applying a (combination
of) first/second order Gaussian derivatives. The Gaussian and its derivatives are
low-pass filters, all having the same approximated band-limit bG = 3/σ. The
Nyquist sampling theorem requires sampling as

ξi,s > 2bi i = 1 . . . n . (3.7)

A possibility to recover the unaliased part of an aliased signal is to use a filter ξf

ξf ≤ ξs − b, with b < ξs < 2b (3.10)

before sampling, where b is the band-limit. For a temporally aliased signal with
temporal band-limit bt and temporal sampling frequency ξs,t this reads for a tem-
poral Gaussian filter ξf = 3/σt

ξf ≤ ξs,t − bt (3.34)

3/σt ≤ ξs,t −max(vibi) (3.35)

σt ≥
3

ξs,t −max(vibi)
. (3.36)

In practice the spatial band-limit is often known and an assumption of the maximal
velocity (based on the underlying physics) can be made, then the temporal band-
limit can be calculated from bt = max(vibi). Eq.(3.36) provides a helpful restriction
on the choice of σt.

For a line spectrum, e.g. the two dimensional spectrum of uniform rectilinear
motion shown in figure 3.4, the restriction on the recovery of the unaliased part can
even be loosened to the following. All but one axis can be sampled with ξs < b.
The DC component ~0 must be preserved, but the (ω, 0) or (0, k) axis can be partly
aliased. The restriction on the temporal ξf,t and spatial filter ξf,x can be taken
from figure 3.5:

ξf,tξf,x ≤ min(ξs,t, ξs,t/v) (3.37)

where without loss of generality the time axis is undersampled with ξs,t < bt. The
area of the rectangle spanned by (ξf,t, ξf,x), (−ξf,t, ξf,x)(−ξf,t,−ξf,x)(ξf,t,−ξf,x)
must be confined in the diamond (ξs,t/v, 0), (0, ξs,t), (−ξs,t/v, 0), (0,−ξs,t).

3.2.2 The correspondence problem

The correspondence problem refers to all sorts of identifying and following tasks of
individual objects in time. The following thought experiment explains the problem.
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Figure 3.5: Temporal undersampling by ξs,t < bt of a time series with line
spectrum. Part of the signal can still be recovered if a spatio-temporal fil-
ter with ξf,t, ξf,x is applied which footprint lies within the diamond spanned by
(ξs,t/v, 0), (0, ξs,t), (−ξs,t/v, 0), (0,−ξs,t). One possible filter is indicated here by the
rectangle in the middle.

Imagine that you have twenty glass marbles placed on a table, take a picture and
let them roll off the table on the ground. Now try to place the marbles back on the
table using the photo in exactly the same position. Even if all marbles are different
it will take some time to do it. However, some marbles are not distinguishable at
all by sight and/or touch. In that case the task is not solvable. This problem is
encountered in image processing of time dependent data (here we usually have more
than only two observations). The marbles are the equivalent of bright blob-like spots
in living-cell confocal microscopy. The different blobs may be characterized by their
peak intensity and shape [8]. This tracking by fitting certain shape parameters is
computationally complex. The blobs may change shape during motion and different
blobs can even merge to one or blobs may split. Taking care of theses exceptions
makes tracking for these image types a difficult task.
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Finding correspondences is easier as long as all objects are connected via a path
in the (x, t)-image. For critical sampling the maximal velocity is v < 1∆x/∆t =
1pixel/frame and thus the objects are connected, however, objects may still touch
and cross each other. Perfect correspondence without the need to model each blob
is only given if the (characteristic) spatial distance λs between two blobs is larger
than the shift between two time frames

λs > v∆t . (3.38)

If the trajectories in the (x, t)-image are not connected, a pre-processing step can
sometimes connect the trajectory of one object. Therefore the time axis has to
be resampled (inserting time frames which allow for a connected trajectory). In
chapter 8 we will use adaptive filtering to compensate for varying intensity along
a trajectory. This ’dotted’ trajectory is, however, not caused by temporal under-
sampling but by objects moving in and out of focus. A morphological approach
presented by Okker [94] to fill in missing parts of static structures could be used
for this problem as well. If the measurement of velocities with Gaussian filters
is not possible due to temporal undersampling, then tracking and computing the
velocities from the center of mass positions is more feasible.

3.2.3 Time band-limitation by acquisition

As discussed, spatial band-limitation induces temporal band-limitation (a restric-
tion on the maximal apparent velocity). Standard temporal acquisition does not
introduce a cut-off frequency analog to an optical lens system (2NAλ). In the
spatial domain the Point Spread Function (PSF) blurs a point source and thereby
creates an overlap of intensities from different locations. The question rises whether
the same can be incorporated into a camera system for temporal acquisition? This
can be answered affirmatively, but not with one camera. As a sampled time point
should have an overlap with its neighbors, more cameras have to be used. In the
following, we formulate a concept idea to construct such an acquisition device with
minimal loss of light intensity [134].

The intensity during the exposure time should be blurred by a (temporal) PSF.
The PSF can be very well approximated by a Gaussian [132] p.28/29. If we truncate
the Gaussian at 2σ then four cameras are required to produce 2σ overlap. In
figure 3.6 we show four reoccurring Gaussians with peak-to-peak distance σ. In a)
ideal Gaussians are plotted, and in b) the effects of the truncation are shown. The
sum of the Gaussians is constant as can be seen from the following consideration.
One Gaussian is described by

gi(t) =
1√
2πσ

e
− (t−iσ)2

2σ2 , i ∈ IN (3.39)
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Figure 3.6: Four reoccurring Gaussians with σ = 2 at sampling distance 1σ and
their sum, a) ideal, b) after truncation of the Gaussians at 2σ.

and the sum is (neglecting border effects)

s(t) =
∑
i

gi(t) (3.40)

=
∑
i

g0(t± iσ) ≈ 1

σ
. (3.41)

The last line is the formula for numerical integration for the normalized Gaussian
without the step size ∆ = σ

1 =

∫
g(t)dt ≈

∑
j

g(t± j∆)∆ . (3.42)

From here we see that it is theoretically possible to distribute an incoming signal
to four Gaussian distributions without losing signal in the acquisition if we choose
σ = 1.

Experimental setup

Here we formulate an idea for an experimental setup which has four cameras and
can acquire time signals with a Gaussian distributed intensity, time delayed by one
σ with minimal loss of photons. A beamsplitter setup with Gaussian diffusers (for
example by optical active crystals) as in figure 3.7a) is possible but then each camera
only receives about 1/8 of the incoming intensity. An advantage is, however, that
this setup is truly time overlapping. We propose a different setup with three mirrors
as shown in figure 3.7b). The idea is to realize the Gaussian intensity profiles by
dithering.
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Mirrors that can be switched fast, reflect light in time intervals ∆d to the dif-
ferent cameras according to the overlap at that time point. Where ∆d is limited by
the switching time of the mirrors. Form figure 3.7b) we see how the incoming light

(a)

C1 C2 C3 C4

B B CC

AA

(b)

Figure 3.7: a) Beamsplitter setup with Gaussian diffusers at each splitting, b) Setup
with switchable mirrors, for example a Digital Mirror Device from Texas Instruments
can be used here. They have about 70% light efficiency (including area fill factor) and
can switch a whole page at about 10 kHz and single mirrors at 66 kHz[119].

is divided over the four cameras C1-C4

C1 = AB C3 = ĀC (3.43)

C2 = AB̄ C4 = ĀC̄ . (3.44)

We truncate the Gaussian gi, i = 1 . . . 4 at 2σ and make them for each of the
four cameras periodic with period 4σ. So, one Gaussian represents one camera
gi(x) = gi(x + 4σ). The total amount of incoming light must be distributed at t0
as

1 =
4∑
i=1

gi(t0) (3.45)

= g1(t0) + g1(t0 − σ) + g1(t0 − 2σ) + g1(t0 + σ) . (3.46)
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The ratio of switching of the mirrors is

B(t) :
g1(t)

g2(t)
(3.47)

C(t) :
g3(t)

g4(t)
(3.48)

A(t) :
g1(t) + g2(t)

g3(t) + g4(t)
. (3.49)

An optimal dithering pattern still has to be found for the set of gi according to the
ratios given above.





Chapter 4

Curvature of n-dimensional space
curves4

Local curvature represents an important shape parameter of space curves which
are well described by differential geometry. Curvature is the change of orientation,
for which we have developed a continuous representation in chapter 2. Here we
present an estimator for local curvature of space curves embedded in nD grey-
value images. The space curves are implicitly represented by grey-level isophotes
(level-sets). There is neither a segmentation of the curve needed nor a parametric
model assumed. The method exploits the differential structure of images. Our
estimator works on the orientation field of the space curve. This orientation field
and a description of local structure is obtained by the Gradient Structure Tensor
(GST). The computed orientation field has discontinuities; walking around a closed
contour yields two such discontinuities in orientation, see figure 2.1b). This field
is mapped via the Knutsson mapping eq.(2.4) to a continuous representation; from
a nD vector to a symmetric n2D tensor field. The curvature of a space curve, a
coordinate invariant property, is computed in this tensor field representation. An
extensive evaluation shows that our curvature estimation is unbiased even in the
presence of noise, independent of the scale of the object and furthermore the relative
error stays small.

Curvature in 2D images has been studied extensively , both in segmented and in
grey-level images [43, 90, 56, 147, 146]. Curvature is the first order shape descriptor
of an object and therefore an important feature. In 2D it totally determines the
shape of a curve. Isophote curvature [122, 16, 135] can successfully be applied to
edges in 2D and 3D grey-value images, but it fails when applied to lines (space

4The main content of this chapter has been published in: B. Rieger and L.J. van Vliet, Curvature of
n-dimensional space curves in grey-value images, IEEE Transactions on Image Processing, 11(7):738-745,
2002 [103]. New material in sections 4.2.5, 4.3 and 4.4.

39
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curves) or line patterns [140]. Isophote curvature in 2D is computed as [132, 56]

κ =
−(IxxI

2
y − 2IxIyIxy + IyyI

2
x)

(I2
x + I2

y )
3/2 . (4.1)

A lower index denotes a partial derivative with respect to that coordinate. For
regions where the denominator (essentially the gradient magnitude) is zero this
formula does not hold. This is the case on ridges and in valleys. Furthermore,
the curvature will have a different sign on both sides of the slope. This problem
becomes even more apparent if we deal with a line pattern, the scale at which the
isophote curvature is computed cannot be increased for noise suppression without
smoothing out the pattern we are interested in. Let us consider, for the sake of
simplicity, a 2D example. In figure 4.1 the isophote curvature and the new proposed
algorithm are applied to a natural line pattern image. For this example in 2D the
curvature could also have been computed differently than by our proposed method,
see for example [91, 140, 42, 5, 126].

(a) (b) (c)

Figure 4.1: a) Image of growing rings of a tree, b) isophote curvature with σ = 5,
range [-1, 1], c) new curvature estimator as in eq. 4.7 σg = 1, σT = 5, log stretch.

In our approach we transform the grey-value image into an orientation map to
overcome the problems associated with isophote curvature. From the orientation
map the curvature can be derived after solving the discontinuity problem [43]. In 2D
the use of the double angle method is well-known [43, 63], but in 3D it remained an
obstacle that prevented the computation of curvature in 3D. Therefore traditional
3D methods are applied to segmented images, or even on curves represented by
ordered points, which enables one to fit a parametric model to the curve [15, 81, 22].
These methods rely heavily on the preceding segmentation, labeling and orderings
steps, which may fail due to noise or the presence of a bundle of space curves
comparable to in a lock of hair or the wood growing rings in figure 4.1.
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Isophote curvature in 3D has been studied by van Vliet and Verbeek [135], but
the isophote curvature fails on lines and plates as illustrated above. A scale-space
related segmentation free method for curvature has been presented by Salden et
al. [110]. They do not consider the localization problem of the derivative operator
and assume global direction information. Bakker et al. have introduced a segmen-
tation free method in 3D to compute curvature of lines or line bundles based on
a local parabolic model of the GST [5, 4]. We will compare our results to this
approach in section 4.4.

In 2D, the curvature κ of a curve in every point describes the shape of this
curve completely. In 3D, a second parameter, the torsion τ , is needed to give a
full description, in 4D another and so forth. These parameters totally determine
the shape of a space curve but do not tell anything about its position. This makes
these parameters well suited as curve descriptors. The curvature κ is a first order
feature of a nD curve, describing the second order change. The curvature of a space
curve k : IR→ IRn is given by (see appendix B)

κ = ‖k′′‖ , (4.2)

where ′ is the derivative with respect to the arclength. In words, eq.(4.2) states
that the curvature is the magnitude of the second order change of the curve along
the curve. Along the curve means in tangent orientation. See appendix B for an
introduction to the mathematics of differential geometry that describe space curves
or the textbooks [28, 116, 39].

From eq.(4.2) we see that the curvature is always greater or equal to zero.
Indeed for space curves it does not make sense to speak of a signed curvature in
a coordinate independent description. In contrary to closed surfaces there is no
border separating two distinct parts of space. By choosing an origin one can speak
of signed curvature also for space curves.

4.1 Curvature of space curves in grey-value images

A local orthonormal basis {vi} attached to the space curve can be obtained from
the grey-level images itself by local orientation analysis.

4.1.1 The orientation field; a local orthonormal basis

In order to obtain the orientation field along a space curve embedded in a nD image
we use the GST [60, 10, 64, 61, 151, 56]. See appendix A for more information about
the GST. For any image I we can compute it as:

Ḡ := ∇I∇It . (4.3)
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The overhead bar denotes smoothing which is done per element Ḡij, where each
element is a nD image. The GST can be expanded in terms of the eigenvalues λi
and eigenvectors ui as

Ḡ =
n∑
i

λiuiu
t
i, with λ1 ≥ λ2 ≥ · · · ≥ λn . (4.4)

The eigenvectors of the GST contain information about the local structure in the
image. We can compute the largest λ1 and smallest eigenvalue λn and the associated
eigenvector for any dimension of the image by using the power method [44]. For the
smallest eigenvalue Ḡ has to be inverted, which becomes time consuming for large
n. In the 2D or 3D case analytic solutions are possible and much faster [42]. For
line-like structures the tangent orientation is given by the ”smallest” eigenvector

un. A normalized line detector is the ratio λn−1−λn
λn−1+λn

[42, 61].

All derivatives are implemented as convolutions with Gaussian derivatives [83].
The scale σg denotes the resolution at which the Gaussian derivatives are computed.
The size of the tensor smoothing σT of Ḡ defines how local the image structure is
computed. The local set of eigenvectors {ui} of the GST consists of the same set
of vectors {vi} (up to sign) as the local orthonormal basis. The ordering, however,
is different.

4.1.2 Discontinuity of the orientation field

Unfortunately the calculated orientation field un contains a discontinuity mod π
[64], i.e. the direction of the line is undefined. Computation of partial spatial
derivatives of the orientation field are not possible without some preparation. In
general, a mapping to a higher dimensional space is needed to solve the discontinuity
problem. For example in 2D, the phase jump can be resolved by doubling the angle
of the gradient vector [43, 63]. In higher dimensions the Knutsson mapping

M(x) =
xxt

‖x‖
. (2.4)

can be used as described in chapter 2. The Knutsson mapping removes the phase
jump by the property M(x) = M(−x). Vectors that are pointing in the opposite
directions are mapped onto the same point. Furthermore, M is distance preserving
and relates the magnitude of a variational input vector linearly with the variation
of a mapped vector by ‖δM(x)‖ =

√
2‖δx‖. This is called the uniform stretch

property.
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4.1.3 Curvature in nD grey-value images

Our goal is to compute the curvature via eq.(4.2) κ = ‖k′′‖. We start with the
tangent orientation un ≡ T ≡ k′ obtained with the GST. Here, we already have
the first derivative. The discontinuity problem (discussed earlier) prevents direct
computation of the derivative of T along un. This is solved by mapping the tangent
orientation T via the quadratic mapping M to a continuous representation. The
elements of M(T ) form a new n2D vector w. The ordering of the elements in this
vector w does not influence our curvature estimation, because we only evaluate a
norm as shown in eq.(4.7) which is independent of a permutation of the elements
of w.

Now, we calculate the derivative of w in the direction of the tangent T , which
is again a n2D vector [17]

∂w

∂T
= DM · T , (4.5)

where DM is the n2 × n functional matrix

DM =


∂w1
∂x1

∂w1
∂x2

· · · ∂w1
∂xn

...
...

∂wn2

∂x1

∂wn2

∂x2
· · · ∂wn2

∂xn

 . (4.6)

From the uniform stretch requirement of M, ‖δM(x)‖ = c‖δx‖, (see chapter 2.1) we
know how to scale the norm of a variation vector δx. Thus, starting from eq.(4.2)
and the mapping M(T ) we obtain a new expression for the curvature

κ =
1√
2

∥∥∥∥∂M(T )

∂T

∥∥∥∥ . (4.7)

This reads explicitly as

κ =
1√
2

 n∑
i,j

[
n∑
k=1

∂Mij

∂xk
T k
]2
1/2

. (4.8)

This formula can directly be applied to grey-value images.

We are aware of the fact that we cannot take it for granted that eq.(4.7) rep-
resents the curvature of the original curve. First, we apply a non-linear mapping
M to the tangent orientation T and then in the mapped space a derivative and a
projection are done. The reason why eq.(4.7) is indeed another form of eq.(4.2),
is the uniform stretch requirement imposed on the mapping M , that ensures that
there is a fixed relation between the norms of the mapped and the original vector.
For a formal proof that eq.(4.7) equals eq.(4.2) see appendix E.

In chapter 5 the same procedure will be used to compute the curvature on
surfaces which will lead to eq.(5.12).
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4.1.4 The method in 2D

Let us assume that the 2D tangent orientation is given T =

(
f(x, y)
g(x, y)

)
, where

f, g ∈ C1 : IR2 → IR are arbitrary functions. The mapped vector w is

w =
1√

f2 + g2


f2

fg
gf
g2

 . (4.9)

Having the vector w explicitly, we construct the functional matrix, compute the
projection onto the tangent direction (4.5) and then we can calculated the curvature
using eq.(4.7)

κ =

∣∣∣∣∣gf(∂xf)− f2(∂xg) + g2(∂yf)− fg(∂yg)
f2 + g2

∣∣∣∣∣ . (4.10)

If we have the 2D orientation field φ(x, y) given, then the tangent is

T =

(
− sinφ(x, y)
cosφ(x, y)

)
. (4.11)

Filling in this tangent in eq.(4.10) and simplifying the expression with the help of
the trigonometric relations, we get

κ =

∣∣∣∣sinφ∂φ∂x − cosφ
∂φ

∂y

∣∣∣∣ = ∣∣∣∣∂φ∂c
∣∣∣∣ , (4.12)

where c is a local coordinate along the contour (level curve).

At this point we are able to state that our method of calculating the curvature
via the mapping in a higher dimensional space is consistent with the standard
definition of curvature in 2D. Also the isophote curvature formula in 2D can be
obtained by eq.(4.10) with the gradient being g = (Ix, Iy), the contour c = (−Iy, Ix)
and therefore the isophote tangent

T =
c

‖c‖
=

(−Iy, Ix)√
I2
x + I2

y

. (4.13)

The indices being partial derivatives. Filling in this tangent in eq.(4.10), we get the
isophote curvature formula [135, 16, 43]

⇒ κ =

∣∣∣∣∣−(IxxI
2
y − 2IxIyIxy + IyyI

2
x)

(I2
x + I2

y )
3/2

∣∣∣∣∣ . (4.14)
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4.2 Evaluation of the algorithm

To assess the performance of the proposed estimator we will apply it to synthetic
test images of various scales and hampered by noise.

4.2.1 Test images

Definition: Under a space curve in a grey-value image we understand a line of
constant grey-value, i.e. an isophote (level-set). It should be noted that such
isophotes are implicitly represented by the voxel-values of a properly sampled band-
limited image.

To evaluate the algorithm on space curves, some proper test images are needed,
that reflect this definition. A general method of creating smooth and approximately
band-limited space curves in images is described in the following. One has to
consider that a suitable test image must be band-limited before sampling, otherwise
one might encounter problems due to aliasing [135]. We do this by computing the
distance from every voxel in the image to the mathematical function and assign it
to the voxel. In the next step, the image is multiplied by itself to create a steeper
slope; subsequently, an erfclip operation [136] is applied to produce a smooth space
curve, embedded in an image.

In 2D we use a simple ring as a test image. In 3D, as a first step we create
a torus of arbitrary orientation. In a second step we study the simplest possible
test object in 3D not only having curvature. The object with constant curvature
and torsion is the circular helix eq.(4.15). So we finally get a smooth represen-
tation of a torus/helix. This guarantees a sub-pixel precision and approximately
band-limitation. The image consists of an isophote (same grey level) center line
and isocylinders around it. In figure 4.2 the center line of a grey-level helix is
shown, where the line indicates constant grey-value. The vectors given in the figure
represent the local orthonormal basis. In figure 4.3 an isosurface plot of the smooth
string shaped into a spaghetti is shown. The isocap through the spaghetti shows
the isocylinder around the imaginary center line. Furthermore, the cross-section
through the object is shown. In figure 4.4 a 3D grey-value torus is shown with
contour planes to indicate the grey-level.

4.2.2 Ring

To start off in 2D we generate smooth rings with different radii and signal strength
S = 1. To measure the robustness of the estimator we add different levels of
Gaussian noise. We use the definition SNR= 20 log S

σn
, where σ2

n is the variance
of the Gaussian noise. The results are depicted in figure 4.5. The different noise
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Figure 4.2: a) Sketch of a circular helix with parameters r, h, b) Center line of a
grey-level helix with local coordinate system, the tangent T , normal N and binormal
vector B.

levels are always calculated at the same radii, but slightly shifted in the figure for
a better display. The error bars indicate the standard deviation over 40 runs. A
tensor smoothing σT = 5 and a gradient smoothing σg = 1 was used. For SNR=10
dB the average relative error is smaller than 10%. The estimator is unbiased.

4.2.3 Torus

In figure 4.6 we show three torii with respectively 20,10 and 3dB noise and again we
use σT = 5 and σg = 1. The performance of the estimator is tested over 20 runs for
different noise levels, see figure 4.7. The error bars indicate the standard deviation.
The different noise levels are again shifted in the figure for better display. The error
bars include even for the high noise level (3 dB) the true value.

4.2.4 Circular helix

The curvature

κ =
r

r2 + h2 (4.15)

of a circular helix given by the parametrization (r cos t, r sin t, ht) depends on the
two parameters r and h which scale the helix. See appendix B for a deduction of
eq.(4.15). For increasing size of the helix radius the curvature first rises, being at
its maximum at r = h and then decreases (figure 4.8). In order to make a scale
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Figure 4.3: a) Isosurface plot of a grey-level helix, b) a cross-section through the
test object.

Figure 4.4: Surface plot with contour planes of a grey-level 3D torus.
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Figure 4.5: Average curvature estimation on a 2D ring for different noise levels over
40 runs with σg = 1 and σT = 5.
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Figure 4.6: Cross section through a 3D torus with different noise levels. a) 20dB,
b) 10dB, c) 3dB.

invariant statement about the performance of our algorithm we sample the scale
space (r, h), generate the according test images and compute the curvature of the
center line. Therefore we rewrite eq.(4.15) to

κ =
r
h2

1 + r2

h2

and κr =
x2

1 + x2 , x =
r

h
. (4.16)

Now, we deal with dimensionless quantities x and κr, which are suitable to show
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Figure 4.7: Average curvature estimation on a torus for different noise levels over
20 runs with σg = 1 and σT = 5.

5 10 15 20 25 30
1

2

3

4

5

6

7

8

9
x 10−3

cu
rv

at
ur

e

helix radius

computed value   
theoretical value

0 50 100 150
0

0.002

0.004

0.006

0.008

0.01

0.012

helix radius

cu
rv

at
ur

e

h=50 

Figure 4.8: Change of the curvature with the radius r of a helix.
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that our estimation works fine over a wide range of scales. In figure 4.9 we plot the
theoretical prediction and our calculations, in which the different symbols indicate
helices having either the same radius or pitch. Because our estimation stays so
close to the true value over a wide range of scales we conclude that for all values
in between our sampled (r, h) points the estimation works as well. The relative
error of the estimation that is shown in figure 4.9 is smaller than 3% over a range
from r/h ∈ [0.1, 6.0]. For the bulk of estimations the error is even smaller than
1%, the exceptions are helices with small radii r ≈ 10 and pitch h ≈ 15 − 20.
For these helices the tensor smoothing σT = 4 is too large, different parts of the
helix fall in one smoothing window. The curvature values were computed for the
whole image and extracted with sub-pixel precision by cubic interpolation from the
mathematical centerline.

Influence of noise

• Noise for different helix scales
In the same scale invariant manner as for figure 4.9 we investigate the performance
under noisy circumstances. In figure 4.10 the results are shown for 13, 19 and 25 dB,
where the error bars indicate the standard deviation for 20 runs. The estimation is
unbiased, since the error bars always intersect the true curvature.
• Studies along a cross-section of the helix profile

For one helix (r = 10, h = 20) we add noise (SNR=19dB) to the image and plot the
computed curvature (mean over 20 runs) and the standard deviation in figure 4.11
along a cross-section of the helix (see figure 4.3). Again we see that the mean
remains around the true value, and the variation stays approximately constant. It
should be pointed out that we see here not only the isophote line at the point where
the mathematical helix would lie but a cross-section through the 15 pixel diameter
of the helix. Even away from the center line we compute nearly the helix curvature
(value for this helix κ = 10/(102 + 202), dashed line). Due to the regularization
effect of the GST, we can estimate the true curvature even if we are not at the
exact position. If we choose a small tensor smoothing σT , then the relative error at
the exact point becomes smaller but for the surrounding values it becomes larger.

Influence of the Gaussian derivative in the mapped space

For a limited number of helices (h = 50, r = 10, . . . , 25) we investigate the depen-
dency of the relative error of the curvature on σK , the standard deviation of the
Gaussian derivative in the mapped space eq.(4.5) (compare figure 4.12). Here we
observe an overall σ2

K dependency in the relative error.
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Figure 4.9: Curvature estimation of different helices and their relative error in the
noise free case, scale invariant with σg = 1, σT = 4.
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Figure 4.10: Curvature estimation and relative error with added noise of 13,19 and
25dB, scale invariant with σg = 1, σT = 5.
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Figure 4.11: Curvature along a cross-section of a helix with r = 10, h = 20 with
19dB added Gaussian noise.
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Figure 4.13: Curvature along a circular helix with r = 30, h = 30 averaged over 20
runs with σg = 1 and σT = 5.

4.2.5 Curvature along a curve

In this section we will study the estimation of curvature along a space curve. The
circular and elliptic helix will be studied in the noise free case and hampered by
noise of respectively 20,10 and 3 dB. We keep σg = 1 and σT = 5 and average the
results over 20 noisy realizations. In figure 4.13 the curvature along a circular helix
(r cos t, r sin t, ht) with r = 30, h = 30 is shown. The curvature is constant along
the curve. The x-axis is the running parameter t, where t ∈ [0, 2π] for a full turn of
the helix. As ds/dt = const. the sample points are equally spaced along the curve.
We retrieve the sub-pixel values by cubic interpolation of the curvature image. For
the noise free case we observe an excellent estimation with a relative error of about
0.5%. For a noise level of 20dB the mean stays relative close to the true value
and only the spread becomes larger. The elliptic helix given by the parametrization
(a cos t, b sin t, ht) has a non-constant curvature along the curve, compare eq.(B.31).
In figure 4.14 we show the estimated curvature value and the relative error along an
elliptic helix (a = 20, b = 30, h = 40) in the noise free case and for 20 dB Gaussian
noise. The relative error is less than 3% in the noise free case and for 20 dB the
mean remains stable and again only the standard deviation increases. The sampled
points are no longer equally spaced along the curve as ds/dt 6= const. for an elliptic
helix. For very low signal to noise ratios of 10 and 3 dB our algorithm still produces
reasonable results as seen in figure 4.15. For 10 dB the estimation is still good as
the average estimation is very close to the true value. For 3 dB however even the
mean is not longer very well estimated. The error bars still intersect the true value
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Figure 4.14: Curvature along an elliptic helix with a = 20, b = 40, h = 30 averaged
over 20 runs with σg = 1 and σT = 5 for the noise free case and 20dB Gaussian noise.
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most of the time.
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Figure 4.15: Curvature estimation along an elliptic helix with a = 20, b = 40, h = 30.
averaged over 20 runs with σg = 1 and σT = 5 for 10dB and 3dB Gaussian noise.

4.3 Path length and bending energy

The bending energy of a thin rod, which is equivalent to a space curve, is defined
as

BE =

∫
κ2ds , (4.17)

if we neglect the material constants as the elastic (Young) modulus [118]. A closed
line which forms a circle minimizes the bending energy as it has the minimal edge
length for a given enclosed area and therefore the minimal average curvature. Bend-
ing energy can be seen as the roughness of a surface and can be used to characterize
the shape of objects [30, 148].

Furthermore, we need the possibility to integrate the curvature along the line.
Van Vliet proposed an sampling-error free method to measure 3D length for cylin-
ders, see [132] chapter 8.2 and compare the summary in chapter 3.1. The first
observation is that the grey-volume of an object is a sampling-error free measure-
ment [122]. The idea is that an applied operator is dominant over the edge form
and that the result has to be constant in one direction, then the remaining degree
of freedom is proportional to the energy/volume of the response. This volume can
be summed sampling-error free as it is a grey-volume, so we have to get a relation
as grey-volume = const.× edge length. Van Vliet proposed the Second Derivative
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in Gradient Direction (SDGD or ∂gg) as an appropriated operator and
∑
∂gg as a

measure of the length. Assume we have a cylinder with radius R, edge blurring
σ and constant height of one in the middle, then the edge profile in cylindrical
coordinates is

B(r, ϕ) = − 1√
2πσ

∞∫
r

dξ e
−
(

ξ−R√
2σ

)2

. (4.18)

If we neglect the smoothing effect of ∂gg on the image, then the second derivative
in radial direction is ∂rr and the integral over the radial component is

∞∫
0

dr r
r −R√
2πσ3

e
−
(

r−R√
2σ

)2

=
1

2

(
1 + erf

(
R√
2σ

))
(4.19)

≈ 1 for R > 2
√

2σ , (4.20)

where erf is the error function erf(x) := 2√
π

x∫
0
e−t

2
dt [17]. The sum of the ∂gg is

in good approximation independent of the radius R of the cylinder and the edge-
slope parameter σ. However, our test images as in figure 4.3 do not fulfill the
condition R > 2

√
2σ. The test-object represents a cylinder with radius R = 0. The

physical equivalent of this test object, if acquired by an imaging system, would a
point source. The observed signal width would be entirely due to the point spread
function of the imaging system. In most real life situation there are no point sources
and therefore the requirement R > 2

√
2σ is often met.

We investigate two implementations of ∂gg. First the classical expression [132]
p.230

∂gg =
gtHg

‖g‖2
=
IxxI

2
x + 2IxyIxIy + IyyI

2
y

I2
x + I2

y
, (4.21)

given for 2D, but this can easily be extended to nD. This method will be referred
to as DGG. Second, a regularized formulation

∂gg = GtHG , (4.22)

where H = Iij , i, j ∈ 1, . . . n is the Hessian matrix , g = (Ix, Iy) the gradient vector
and G the gradient orientation computed with the gradient structure tensor (GST),
see appendix A. The advantages of the regularization effect of the GST is that
eq.(4.22) holds also on ridges and valleys where the gradient magnitude vanishes,
we will refer to this method as the Tensor Framed Hessian (TFH). Furthermore,
the disentanglement of the second derivatives (H, σg) and the orientation estimation
step (G, σT ) provides better noise suppression.

In figure 4.16 we investigate the behavior of the sum of the SDGD for bent
cylinders (R = 5, σ = 1) with different bending radii rb ∈ [15, . . . 50] in the noise
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free case and hampered with 20dB Gaussian noise. The experimental results show
that eq.(4.19) also holds for bent structures. The TFH is outperforming the DGG
in the presence of noise considerably by an order of magnitude. The relative error
of the TFH is less than 1% in the noise free case and with 20dB added Gaussian
noise.
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Figure 4.16: a) Perimeter/length estimation of a bend cylinder (R = 5, σ = 1).
TFH: σg = 1, σT = 3, DGG σ = 1. The results are slightly shifted for better display,
b) Relative error.

4.4 Comparison with the GST in parabolic coordi-

nates

Bakker et al. presented in [5] a method to determine curvature of lines and line
patterns or bundles in 3D. It can be also applied to 3D surfaces [4]. It is an extended
method that was introduced by Verbeek et al. for the 2D case [140, 126]. In this
method a local coordinate transformation is applied to the image such that the
GST becomes translation invariant. Then the GST is calculated in this transformed
coordinate system. The transformation has curvature as a free parameter that will
adopt the curvature of the underlying pattern by minimizing the gradient energy
along the ”straightened” pattern. This yields an expression for the eigenvalues of
the GST with one (in 2D) and two (in 3D) free parameters. Form the optimal
transformation parameters an estimate for the local curvature can be obtained.

Three different types of artificial test images have been investigated in [5] and [4]
p.61-79. A torus, a helix and an 2D ellipse have been studied. In section 4.2.3
we already discussed the estimation behavior of our new estimator on torii for
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different radii and noise levels as shown in figure 4.7. Compared to the results of
the method by Bakker [4] p.69 figure 4.5, we see that our method performs with a
smaller bias but larger statistical error for noise levels of 20 and 10 dB, compare
figure 4.17. With increasing noise a bias term is introduced in the parametric
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Figure 4.17: Curvature estimation on different torii for different noise levels. a)
Reprint of Bakker [4] p.69 figure 4.5, b) here presented algorithm figure 4.7.

GST whereas our method remains unbiased as the mean value is relatively stable
and the error-bars always intersect the true curvature value. The parametric GST
gives large underestimations, this structural problem of the parameter estimation
is explained in [4] p.79, but no solution to resolve this underestimation is given.
In their estimation of the curvature, terms influenced by the noise do not cancel
as they appear quadratic in the denominator and only linear in the numerator. In
our approach to obtain the orientation via the GST we use a regularization method
that averages out noise terms. In addition, noisy orientations are canceled in the
curvature estimation as it is a difference of orientations. The same problem persists
with the two other test objects. Our algorithm does not show this behavior as seen
in figure 4.10. We did not use the flat ellipse as a test object, but however an elliptic
helix, which also has a changing curvature along the curve. Again we observe even
for high noise corruption a relative stable mean value as shown in figure 4.15.

We conclude that our algorithm performs at least as good as the approach of the
parametric GST in the noise free case. For low signal-to-noise ratio our algorithm
remains unbiased. The statistical error of our method is, however, larger than of
the parametric GST approach.



60 Curvature of n-dimensional space curves

4.5 Comparison with a segmentation based approach

Coeurjolly et al. [22] presented a purely discrete algorithm to compute curvature
in images based on discrete osculating circles as an extension to the method by
Worring and Smeulders [147].

The estimation error of Coeurjolly et al. is dependent on the resolution of the
grid. Our algorithm is independent of this quantity as long as the object is not
undersampled. Their estimation error on a 2D noise free disk is about 2.5% for a
circle with radius 50 and about 1 % for a circle with radius 100 pixels (corresponding
to grid step size of 1/50 and 1/100 resp.). On noise free 2D rings our method
performs with a relative error of about 0.5% for radii greater than 25 pixels, see
figure 4.18. For smaller radii the estimation is less reliable due to the influence of
opposing ring edges in the smoothing of the gradient structure tensor elements for
σT = 5, but still more accurate than the discrete approach. In the case of noisy
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Figure 4.18: Relative error of the curvature estimation of a 2D ring as a function of
the radius.

images the segmentation algorithm plays a key role for the quality of the curvature
estimation, this is not the case for our proposed method.

Measuring the curvature along the boundary of a circle (40 pixel radius) Coeur-
jolly et al. get a relative error of about ±15% due to quantization. Our method
gives only a relative error of ±1.2% if the values are retrieved from the curvature
image at integer positions. However, we are allowed to interpolate the curvature
image and retrieve curvature estimations with sub-pixel precision at the true center
position of the ring. Then the relative error is < 10−2%, compare figure 4.19.
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Figure 4.19: Relative error of the curvature estimation along half a 2D ring contour
with r=40.

4.6 Application

In fluorescent confocal microscopy, especially in biological life time applications,
3D time series are acquired [8]. Typically these images contain moving bright
spots. Here it could be of interest to compute the acceleration of the spots. The
acceleration is related to the curvature of the spatio-temporal space curve formed
by the moving spots. The acceleration a can be computed from the 4D image as
follows (appendix B and [39])

(
ds

dt

)2
= ‖k̇‖2 = |v|2 (4.23)

a = |v̇|T + |v|2κ(s)N . (4.24)

This is the classical expression of the tangential and the normal components of the
acceleration.

The velocity v can be computed by e.g. optical flow or via the gradient structure
tensor. See chapter 5 for a comprehensive introduction to gradient based velocity
estimation. In a spatio-temporal 4D image (x, y, z, t) the orientation of the space
curve, formed by a moving spot, is a measure for the velocity of the spot [59, 55].
It should be noted that the eigenvalue analysis of the gradient structure tensor
which is used to measure the 4D orientation does not give direction information.
We can, however, retrieve the velocity vector if we shift the discontinuity of the
orientation field to the time dimension. This is reasonable as we know there is a
causal connection between the time frames, i.e. ∆ut > 0. We can retrieve the



62 Curvature of n-dimensional space curves

components of the velocity vector as follows:

vi =
∂ui
∂t
≈ ∆ui

∆ut
1 ≤ i ≤ 3 , (4.25)

where ui are the eigenvectors of the gradient structure tensor.

See also section 9 for an application to estimate curvature of bright spots in 4D
(x, y, z, t) biological data.

4.7 Conclusions

We have shown that the curvature of space curves embedded in nD grey-value im-
ages can be estimated using the formulas given by differential geometry adjusted to
the higher dimensional space mapped by the Knutsson mapping. Our new estima-
tion formula eq.(4.7) reduces in 2D to the known expression, which clearly indicates
that our work is consistent with older work. Furthermore, the estimation is unbi-
ased, which even holds in the presence of noise. The approach holds for constant
and variable curvature values along lines. The curvature calculation is independent
of the scale of the objects as shown by our computations. Our grey-value based
approach is clearly superior to a discrete curvature estimation and to the parabolic
GST approaches as the signal to noise ratio becomes lower.



Chapter 5

Curvature and local shape
descriptors of surfaces5

Curvatures of surfaces are the key to compute shape descriptors and to classify
different classes of surfaces. We have developed a method to estimate principal
curvatures of surfaces that are implicitly represented by grey-level isophotes (level-
sets). Surfaces are embedded in the image by a grey-level difference with respect
to their surroundings. Our method works directly on the grey-value information of
the image, neither a segmentation is needed to detect the surface nor a parametric
fit is done at any time during the analysis. The method exploits the differential
structure of images.

The isophote curvature can successfully be applied to edges in 3D grey-value
images [122, 47, 16, 120, 135, 80], but it fails when applied to planar structures
and shells (hollow objects) [140]. First we give an illustrative example of this
fact. In figure 5.1 we calculate the isophote curvature by the Hessian approach,
an estimation via direct first and second derivatives as presented by Thirion and
Gourdon [120] and by our new algorithm. The artificial test image consists of three
ellipsoid shells, where the larger contains the smaller. Imagine it like the Russian
doll, babushka, which contains a smaller versions of itself if you open it. Classically,
the Hessian matrix H is rotated to be aligned with the normal of the surface

H′ = RHRT =

(
Inorm

H′tang

)
. (5.1)

Then the surface subspace Hessian H′tang is diagonalized and the principal curva-

5Different parts of this chapter have been published in B. Rieger, F.J. Timmermans, L.J. van Vliet
and P.W. Verbeek, Curvature estimation of surfaces in 3D grey-value images, ICPR’02, Proc. 16th Int.
Conf. on Pattern Recognition, August 11-15 2002 [101] and B. Rieger, L.J. van Vliet and P.W. Verbeek,
Estimation of curvature based shape properties of surfaces in 3D grey-value images, SCIA’03, Proc. of
the 13th Scandinavian Conf. on Image Analysis (Göteborg, Sweden), June 29 -July 2 2003 [106] . The
main part has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine
Intelligence [102].

63
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tures are computed from the eigenvalues [2, 132] chapter 5.4

κ1,2 =
−λ1,2

‖∇I‖
. (5.2)

Furthermore, for patterns of ridges, a robust estimation is not possible as noise
reduction involves larger smoothing, but this also smooths out the pattern. The
problems associated with isophote curvature can be overcome if we transform the
grey-value image into an orientation map (normal vector field up to sign) from which
the curvatures can be derived after solving the discontinuity problem. In 2D the use
of the double angle method is well-known [43, 63], but in 3D this problem remained
an obstacle that prevented the computation of curvature. We solve this problem by
mapping the orientation field to a closed representation via the Knutsson mapping
eq.(2.4). This representation is suitable for further processing and enables us to
compute the principal curvatures.

In the early 1990s the first segmentation free estimation algorithms for 3D iso-
surface curvature computations in grey-level images were presented. B̊arman pre-
sented the use of quadrature filters on a vector image to estimate orientation and
curvature [2]. Monga et al. [85] made use of a 4D description for 3D surfaces by
Monge patches [116]. Van Vliet presented isophote curvature computation by a
rotated Hessian [135]. Later other authors presented different methods which are
purely based on first and second derivatives of the image [47, 120, 54, 110]. These
methods have in common that only one scale is involved in the computation of
the derivatives for the orientation, the change of the orientation and the noise sup-
pression. Furthermore, if normalization by the gradient magnitude is required, this
implies automatic failure on ridges and valleys.

First we briefly introduce the mathematics needed to compute curvatures on
2D surfaces. For a comprehensive discussion on the differential calculus on surfaces
see for example [39, 28, 116, 84]. In appendix C the mathematics of curvatures of
surfaces are summarized. In addition, higher dimensional surfaces are discussed.
The curvature κ at a point p in a tangent direction T on the surface is defined as
the magnitude of the change of the surface normal N in a tangent direction T

κT (p) = ‖∇TN‖ . (5.3)

There exist two mutual orthogonal tangent direction T1, T2, for which the curvature
is extremal. They are called principal directions, which associated curvatures κ1, κ2.
Two classical measures of curvature in a point are

Gaussian curvature K := κ1κ2 (5.4)

mean curvature H :=
κ1 + κ2

2
. (5.5)

From Gauss Theorema Egregium we know that the Gaussian curvature is an iso-
metric invariant [28], i.e. if a surface is bent without stretching K remains the
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(a) (b)

(c) (d) (e)

Figure 5.1: a,b) Stack of ellipsoid surfaces (like the Russian nesting doll Babushka)
with 20dB Gaussian noise in an image with 80×80×80 voxels, c) Our new curvature
estimation as in eq.(5.12), d) Isophote curvature via eq.(5.2), e) Curvature estimation
as in [120] eq.(12-14), display range [-0.2, 0.2], σg = 1, σT = 4. All cross sections of
the estimation are not in the symmetry planes of the test image but are shown 10
pixels off.
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H

∖
K > 0 0 < 0

> 0 Peak Ridge Saddle ridge
0 - Flat Minimal surface
< 0 Pit Valley Saddle valley

κ1

∖
κ2 > 0 0 < 0

> 0 Peak Ridge Saddle
0 Ridge Flat Valley
< 0 Saddle Valley Pit

Table 5.1: Principal curvatures and their connection to qualitative surface properties.

same, although the principal curvatures and the mean curvature change. In table
5.1 the shape of a surface is connected to the curvatures.

A shape descriptor that can relate the shape of a 2D surface to its principal
curvatures by only one number is the shape index introduced by Koenderink [68]

s =
2

π
arctan

κ2 + κ1

κ2 − κ1
, κ2 ≥ κ1 , (5.6)

if κ1, κ2 6= 0.

In order to build (local) shape descriptors for objects based on these curvatures
we must be able to integrate the curvatures over the whole object surface. To do
this we introduce a sampling-error free surface area estimator based on the sum of
the samples in a local image. The local image is transformed into an image whose
sum is proportional to the surface of the embedded object. With this technique
at hand we can now estimate the Euler characteristic and bending energy. In
images that contain texture in the form of planar structures, the local bending
energy, κ2

1 + κ2
2 [135], is a useful characteristic (local deformation energy) and can

be computed per point with sub-pixel precision. It can be integrated over the object
surface

EB =

∫
κ2

1 + κ2
2 dA, (5.7)

into a scale invariant shape descriptor. A sphere minimizes bending energy for a
given closed surface. Therefore it can be seen as the roughness of a surface and can
be used to characterize biological objects [30, 148]. The Euler characteristic is (by
the Poincaré-Hopf index theorem or the Gauss-Bonnet theorem)

χ =
1

2π

∫
κ1κ2 dA . (5.8)

describes the global topology of a closed surface by an integer number. It describes
the topology of the surface, and is in general the alternating sum of Betti num-
bers, which reads in 3D for polygons χ = nvertices − nedges + nfaces. The Euler
characteristic χ as a function of scale is closely related to the morphological gran-
ulometry [112, 13, 78]. The latter is a volume weighted distribution, whereas χ
counts the number of objects minus the number of handles (or tunnels) visible at
a certain scale.
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5.1 Curvature of surfaces in grey-value images

In order compute the principal curvatures and shape descriptors of iso-surfaces
embedded in grey-level images we need 1) To find the vector field normal N and
the principal directions T1 and T2, 2) solve the discontinuity problem of N and
compute ‖∇TN‖ and 3) be able to integrate over weighted iso-surfaces to form
shape descriptors.

5.1.1 The gradient structure tensor and the principal directions

The gradient structure tensor (GST) is a tool to analyze local structure in images
[10, 60, 151]. It is defined as

G := ∇I∇It, G := ∇I∇It , (5.9)

where I is a grey-value image and the overhead bar (·) stands for averaging the
elements over a local neighborhood σT . The gradient structure tensor borrows its
descriptive power from the analogy to a well-known quantity in physics, the inertia
tensor. See also appendix A for a review of the properties of the GST.

Two scales are involved. The gradient vector ∇I is computed by convolutions
with Gaussian derivatives at the scale σg. The size of the Gaussian weighted tensor
smoothing σT defines the neighborhood in which the image structure is computed.
The latter can be used for noise suppression without hampering the signal strength.
An eigenvalue analysis of G is a standard approach to classify local structure in
images. In the case of planar structures the eigenvalues will have the following or-
dering: λ1 � λ2 > λ3. The eigenvector v1 (corresponding to the largest eigenvalue
λ1) is aligned with the surface normal. The estimated orientation v1 for symmetric
neighborhoods is unbiased, as gradient contributions from one side of the symmetry
axis (or symmetry plane) are balanced by their mirrored counterpart. For asym-
metric neighborhoods a small bias is introduced. The remaining two eigenvectors
v2, v3, lie in the principal directions of the surface. Summarizing we find, compare
figure 5.2a) :

v1 ↔ N, v2,3 ↔ T1,2 . (5.10)

A drawback of the GST is that the set {vi} only contains orientation informa-
tion. Therefore we have to deal with a discontinuous representation as orientation
is direction up to point inversion.
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Figure 5.2: a) The principal directions on a ellipsoid v1 ↔ N, v2 ↔ T1, v3 ↔ T2.
The line is the parametrization region v = π/2, u ∈ [0, π/2]. κ2 is the curvature along
the line and κ1 perpendicular to it (in the direction of v2. b) A sketch of an ellipsoid
with half axes a, b, c.

5.1.2 Estimation of the principal curvatures

The principal directions T1, T2 and the surface normal N can be found using the
GST as described above. Now we want to compute the principal curvatures dif-
ferentiating the normal with respect to the principal directions, from eq.(5.3) and
eq.(5.10) we obtain

|κ1,2| = ‖∇T1,2
N‖ ↔ ‖∇v2,3v1‖ . (5.11)

Unfortunately the orientation field v1 contains a discontinuity. Computation of
partial derivatives of orientation data is not trivial as explained in chapter 2 and 4.
The idea is to transform v1 into a continuous representation by a mapping M for
which ‖δM(v)‖ = K‖δv‖ holds. A suitable mapping was introduced by Knutsson

M(v) = vvT

‖v‖ , with K =
√

2 for ‖v‖ = const. [63]. The norm of the mapped

derivative M(v) is linearly related to the norm of the derivative of v. Therefore
we propose a new expression, together with (5.10), that is suitable to compute
curvature of surfaces in images

|κ1,2| =
1√
2
‖∇v2,3M(v1)‖ . (5.12)
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For the computation we write down the formula in index notation. Let the elements

of M(v1) =
v1v

t
1

‖v1‖ be Mij and xi a coordinate with 1 ≤ i, j ≤ 3. Then we have

|κ1,2| =
1√
2
‖

3∑
k=1

∂Mij

∂xk
vk2,3‖ , (5.13)

where the norm of M is defined as the Fröbius norm ‖M‖2 :=
∑
M2
ij. The ordering

of the elements Mij does not influence the outcome as only the norm is evaluated.
For a formal proof that eq.(5.12) equals eq.(5.3) see appendix E.

The application of eq.(5.12) to hyper-surfaces with codimension 1 (i.e. the
surface is n − 1D) in nD images is straightforward as all involved algorithms, i.e.
GST and Knutsson mapping, are applicable to nD images. Then there are n −
1 principal curvatures and directions which are again mutual orthogonal (if the
curvatures are non-degenerated). See also appendix C for a discussion of high-
dimensional surfaces.

The sign of the curvature, i.e. if we deal with a elliptic or hyperbolic situation
is lost by the outlined algorithm. The sign can be retrieved even from planar
structures by the scheme described in 5.1.4 .

5.1.3 Surface area estimation

In this section we sketch how to compute surface area from the grey-level volume
of an object. We will focus on the main idea and leave out details of the edge
localization by Gaussian filters, for a much more comprehensive discussion see [129,
132] and the summary in chapter 3.1.

Assume a band-limited solid object embedded in an image I by an iso-surface at
level `. The surface area of the object

∫
S dA can be computed by a volume integral∫

I Φ[I(x)] dV after a suitable transformation of the image. The transformation
Φ must produce an image whose integrated volume = const.× surface area. Thus
each cross section e(r) perpendicular to the iso-surface S should contribute an equal
amount. First we apply erf-clipping (a form of soft-clipping) to the image between
the limits ` ± 1

2h. The cross section is a clipped edge, e(r) = h −
∫ r
0 p(r̃) dr̃ with

profile distribution p(r̃) satisfying
∫∞
0 p(r̃) dr̃ = h. Along the iso-surface ‖∇Iclip‖ =

‖ ddrIclip‖. Note that the integral
∫
‖ ddrIclip‖ dr =

∫
‖ ddre(r)‖ dr = h. Finally,

volume integration of ‖∇Iclip‖ accumulates the contribution of all cross sections

and hence 1
h

∫
‖∇Iclip‖ dV yields the surface area of the embedded object. Thus

integration over an iso-surface element dA is accomplished by integration of the
gradient magnitude after clipping over the entire image volume∫

S
dA =

1

h

∫
I
‖∇Iclip‖ dV . (3.24)
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The volume integral can be replaced by a sum of the sampled image iff ‖∇Iclip‖ is
approximately bandlimited and sampled at half the Nyquist rate [122, 129]. Since
‖∇I‖ ≥ 0 noise contributions will not compensate each other, but sum up over
the entire image. A mask image can be used to only integrate over the region of
interest. The mask can be computed from the gradient magnitude with a larger
filter and then performing an iso-data threshold operation. Another possibility is
to apply a non-linear smoothing operation (e.g. anisotropic diffusion along the
contour dI

dt = −ITT [139]) for preprocessing followed by an erf-clipping operation
[129]. The sampling-error free measurement of the surface area is only possible if
the object is solid.

5.1.4 Solid objects from shells and the sign of curvature

To reconstruct a solid object form a shell, the shell is first preliminary filled by the
grey-weighted distance transform [109, 127]. Now we can distinguish interior from
exterior parts of the object. This yields a sign which we can add to the estimated
orientation field and obtain the normal vector field. Together with the original
object shells in the input image we can create a gradient vector image from which we
can obtain solid objects by an advanced integration technique [125]. The sign of the
surface principal curvatures for shell like object in grey-value images is obtained by
investigating the value of the second derivative along the tangent direction T tHT ,
where H is the Hessian matrix of the image, so a maximum/minimum corresponds
to a negative/positive value.

5.2 Evaluation of the algorithm

5.2.1 Test images

We created band-limited grey-value test images containing shells of constant thick-
ness of spheres and ellipsoids, see figure 5.3. A band-limited ellipsoid shell is pro-
duced by computing the squared gradient magnitude of a band-limited filled ellip-
soid. Isophote curvature estimation ITT

‖∇I‖ applied to these images will fail as the

gradient vanishes on ridges and valleys. The relative edge localization error of the
gradient in 3D is about −

( σ
R

)2
for constant curvature [130], where R is the bend-

ing radius and σ the standard deviation of the derivative filter. Therefore the peak
position of ‖∇I‖2 will be shifted, but this is negligable for R > 10. We must satisfy
σ ≥ 0.9

√
2 ≈ 1.3 to ensure band-limitation [130].
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Figure 5.3: A test object; hollow ellipsoid with iso-intensity lines and profile plot.

5.2.2 Curvature

In this section we investigate the performance of our curvature estimator on different
ellipsoids with different levels of added Gaussian noise. An ellipsoid with half axes
a, b, c (figure 5.2b)) given by the equation

x2

a2 +
y2

b2
+
z2

c2
= 1 , (5.14)

is parameterized by (a cosu sin v, b sinu sin v, c cos v), u ∈ [0, 2π], v ∈ [0, π] . Due to
symmetry it is sufficient to evaluate our algorithm in the xy-plane (v = π/2) in
the first quadrant (u ∈ [0, π/2]), compare figure 5.2a) the black line. The principal
curvatures can be computed analytically from the parametrization, see eq.(C.17)
The first principal direction lies perpendicular to the xy-plane, whereas the second
lies in it. The curvatures are computed for the whole image via eq.(5.12) and
then evaluated at the mathematical surface position. We can retrieve the values
with sub-pixel precision as our test image is sampled correctly. Curvatures will be
denoted as 0.2(5). The first value is the actual curvature, the second between the
brackets is the radius of the corresponding oscillating circle, i.e. 1/κ.

In figure 5.4 the estimated and true principal curvatures are plotted for three
different ellipsoids with half axes a = c and b/a = 1.5. The estimation is averaged
over 20 sub-pixels shifts. The relative estimation error is about 1% at the blunt
side (u = 0, v = π/2) and increases with increasing curvature to about 7% for
κ = 0.075(13.3̄) at u = π/2. For curvatures smaller than 0.04(25) our estimation
has very little bias (< 2%). The small underestimation of the true curvature as
observed in figure 5.6b) for higher curvatures can be understood as follows. The
derivatives are implemented as convolutions with Gaussians derivatives. For reasons
of band-limitation one should always choose σ > 0.9 [132]. Recall that the curva-
tures are computed as the derivative of the (mapped) surface normal in the direction
of the principals (eq.(5.12)), then the average over a surface neighborhood includes
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Figure 5.4: Curvature estimation on 3 different ellipsoids averaged over 20 sub-
pixel shifts. Top a = c = 20, b = 30 middle a = c = 30, b = 45, bottom a = c =
40, b = 60. The points A and B lie on two different ellipsoids with the same curvature
κ1 = 0.05(20). The estimation error, however, is different, see the text for a detailed
explanation.
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surfaces normals that are not perpendicular to the direction of the derivation, thus
have a smaller component than the normal at the point under consideration. There-
fore the more the local neighborhood is curved the larger the error. This reasoning
is also valid in the Knutsson representation where the derivative is taken, as the
Knutsson mapping preserves the local geometry (uniform stretch requirement).

In figure 5.5a) and b) two points (A,B) are indicated that lie on two different
ellipsoids with the same curvature κ1 = 0.05(20). In A the estimation is excellent
(ε < 1%), although the local geometry is asymmetric (κ1 6= κ2), whereas at the
umblic point B (curvatures in all directions are equal) we observe a larger error
(ε ≈ 4%). The reason for this observation is that at A κ1 = const. and κ2 changes
slowly, whereas at B κ1 = κ2 but both are changing rapidly. Hence the estimation
error is not only dependent on the value of the curvature, it also depends on the
change of the curvatures in the neighborhood, i.e. the local geometry.

Influence of the scale of the filters: σg, σT , σk

There are three Gaussian kernel sizes involved in the computation: first the deriva-
tive kernel σg to compute the gradient ∇I, second the smoothing kernel σT of
the GST and finally the derivative kernel σk applied to the mapped normal field
(eq.(5.12)). We do not investigate the dependency on the size of σg as the smallest
reasonable size, σg ≈ 1, gives the best gradient [43]. The influence of σk is shown
in figure 5.6a). At symmetric neighborhoods (κ 6= 0, κ̇ = 0) the size of σT has no
influence on the quality of the orientation estimation of the GST due to cancellation
of equally strong gradients lying at opposite sides of the true gradient. The estima-
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Figure 5.5: a) Ellipsoid with a = c = 20, b = 30, b) ellipsoid with a = c = 30, b = 45,
κ1(A) = κ1(B) = κ2(B) 6= κ2(A).
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tion will be biased if the curvature is not constant (κ̇ 6= 0) in the kernel window.
The estimated gradient orientation is overestimated in this case, as it is the mean
gradient within the area given by σT . Secondly, as the filter size increases on top
of the ellipsoid surfaces patches are averaged that do belong to different sides (of
the yz-plane). Nevertheless the relative error in figure 5.6b) is much smaller for the
same size of σT as for σk in figure 5.6a). This is due to the fact that curvature is a
difference of orientations, biased orientation terms (dependent on σT and κ̇) cancel
to a limited degree. The actual choice of the size of σT for generic neighborhoods
is a trade off between noise suppression and orientation estimation precision.

Performance in the presence of noise

We add different levels of Gaussian noise to the test images to measure the ro-
bustness of the estimator . We use the definition SNR= 20 log S

σn
, where σ2

n is the
variance of the Gaussian noise and S the maximal signal strength. In figures 5.6c,d)
the results are shown for two different ellipsoids. The error bars indicate the stan-
dard deviation over 40 runs. The estimation is consistent as the mean stays around
the true value and the error-bars intersect the true curvature. With increasing noise
level only the error-bars become larger, the mean remains stabile. For a discussion
on noise robustness for traditional methods see for example [51].

5.2.3 Bending energy, Euler characteristic and surface area

In this section we test the performance of our estimator to compute (local) surface
shape descriptors based on the principal curvatures. We investigate the behavior for
a torus and for ellipsoids as a function of scale and deformation. In all experiments
the results of the true, the noise free and two noise level (20, 40dB) are plotted.
The noise runs are averaged over 20 runs and the noise free over 20 sub-pixel shifts.
For all computation we keep the following kernel sizes σg = σk = 1, σT = 2 fixed.

The sign of the curvature is needed to compute the Euler characterization. If
only closed shells are present in the image then by filling the objects (compare 5.1.4)
and assuming that objects are white, it is clear what is inside and outside and a
sign can be given to the curvature. The sign cannot be given by local information
only.

Ellipsoids, scaled and deformed

The true surface area and bending energy are integrated numerically from the
analytically computed curvatures eq.(C.17) with Mathematica [99]. The Euler
characteristic is for any closed surface without holes χ = 2. The results of our
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Figure 5.6: a) Influence of σk on κ1, with σg = 1, σT = 2, b) Influence of σT

on κ1, with σg = 1, σk = 1, c,d) Principal curvatures κ1,2 in xy-plane along the
parametrization averaged over 40 runs for different noise levels c) a = c = 20, b = 30,
d) a = c = 30, b = 45; σg = 1, σT = 2, σk = 1.
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computations are shown in figure 5.8a) for a scaled ellipsoid and in figure 5.8b)
for a deformed one. The deformation of an ellipsoid is done by slowly deforming
a sphere (r = 12) into a elongated cigar like object (a = c = 12, b = 38); whereas
the scaled ellipsoid is blown up from a = c = 12, b = 18 to a = c = 36, b = 54 with
constant b/a = 1.5.

The area estimation is critical to all other estimations. For the noise free case
the estimation is excellent, for small curvatures the estimation error is smaller
than 0.5%. Even in the present of noise the area estimation is fine. The bending
energy and the Euler characteristic are scale invariant properties. In figure 5.8a)
we see that the run of the curve for the noise free and for 40dB indeed approach a
constant value. For 20dB the curvature estimation for larger ellipsoids seems to be
influenced by the noise in a scale variant manner, as the area estimation remains
fine. As higher curvature are more biased (section 5.2.2) we expect the estimation
to perform better for larger ellipsoids. The quality of the estimation of the bending
energy and the Euler characterization on the other hand decrease with increasing
ratio b/a (elongation). The curvature increases in some areas during deformation
such that the bending energy increases. These larger values will have a larger
negative bias as explained in 5.2.2.
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Figure 5.7: a) Surface area and b) Euler characterization estimation at different
noise levels averaged over 20 runs for scaled torus, σg = 1, σT = 2, σk = 1.
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Figure 5.8: Surface area, bending energy and Euler characterization estimation at
different noise levels averaged over 20 runs for a) scaled ellipsoid, b) deformed ellipsoid,
σg = 1, σT = 2, σk = 1.
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Torus

Finally we want to test the algorithm on an object that has an elliptic and hyper-
bolic part. For the spherical torus

((R + r cos v) cosu, (R + r cos v) sinu, r sin v) (C.12)

we obtain K < 0 for v ∈]π2 ,
3π
2 [ and K > 0 for v ∈] − π

2 ,
π
2 [. The surface area of

the torus is 4π2Rr. The Euler characteristic is χ = 0, as it is a sphere containing a
handle. In figure 5.7a) the area estimation is shown, again it performs excellent in
the noise free case and good for added noise. The same can be said for the Euler
characteristic estimation in figure 5.7b). The measured points for 40dB lie a little
beneath the noise free runs, whereas the 20dB runs lie above for the area estimation
figure 5.7a). The masking of the integration measure ‖∇I‖, done to avoid summing
up components outside the surface, is not independent of the noise level, for lower
noise levels a broader masking is permitted as for higher SNR this must be smaller.
This dependency can however be avoided by using the more advanced masking
method described above.

5.3 Application and comparison with existing work

We compare our method with the classical Hessian based isophote curvature and
a method presented by Thirion and Gourdon [120]. They compute the curvatures
directly from the first and second derivatives of the image. For further work on 3D
curvature see for example [96, 85, 47, 54, 110]. In the Hessian approach the Hessian
matrix is rotated to be aligned with the surface normal. Then the surface sub-
space Hessian is diagonalized and the curvatures are computed as these eigenvalues
divided by the gradient magnitude [2, 135].

5.3.1 Torus test image

In figures 5.9a-e) we show different vertical slices through a synthetic 3D torus
shell and the calculated mean curvatures H = 1

2(κ2
1 + κ2

2). In figure 5.9b) the
estimation by our algorithm eq.(5.12) is shown, in c) the magnitude of the mean
curvature by Thirion et al. [120], d) the mean curvature and in e) the numerator
of the mean curvature by Thirion et al. [120]. Comparing figures 5.9c),d) and e)
we see that the numerator is smooth, but that at the peak position of the ridge
profile the normalization fails as the gradient magnitude is (nearly) zero. These
positions display white in figure 5.9c),d). Note the sign change in figure 5.9c),d)
on different sides of the ridge. In a coordinate independent description (arbitrary
choice of the origin) the sign of curvature is not meaningful for ridges as the sign
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cannot be defined consistently from local information only. For edges this is trivial
as by convention the inside of objects is white.

a)

b)

c)

d)

e)

Figure 5.9: a) Vertical slices through a 3D torus shell with radii R = 50 and r = 15
and Gaussian ridge profile, b) mean curvature by eq.(5.12), σg = 1, σT = 3, σk = 1,
c) magnitude of the mean curvature by Thirion et al. [120], d) mean curvature by
Thirion et al. [120], e) numerator of the mean curvature by Thirion et al. [120] σ = 1.
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5.3.2 Duplex board paper

In figure 5.10a) we show part of a pre-processed SEM scan of duplex board paper,
from which for example milk cartons are made of. The image size is 3072×768×102
voxels with a physical voxel size of 0.7 × 0.7 × 5µm. The image was provided by
StoraEnso Research, Sweden. We compute the curvature and bending energy via
eq.(5.12) and the isophote curvature, see figure 5.10b) and c). The bending energy is
only displayed for regions where fiber is present. With our algorithm the deformed
parts are directly highlighted as bright parts, whereas the isophote curvature has
difficulties dealing with the ridge-like cross-section of the image structure. The
different paper fibers can be segmented [1] and then the bending energy can be
integrated over each fiber. The deviation of their bending energy from a cylinder
(BEcyl = l/r2) provides a measure for the deformation of the fiber. This contains
more shape information than a pure fiber curl measure [1], where just the distance
between start and end-point is compared to the middle line length. The deviation
from a cylinder includes deformation of the surface and is therefore a 2D measure.
Whereas the end-point-distance of the middle line is an intrinsic 1D measure. A
1D measure neglects squeezing (which can be wanted).

a)

b)

c)

Figure 5.10: A 33×67µm region of a SEM paper scan at a depth of 73µm a) adaptive
filtered input, b) bending energy via (5.12), log stretch, σg = 1, σT = 3 c) bending
energy via the isophote curvature, range [0,0.5], σ = 3.
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5.3.3 Seismic data

Curvature (and derived properties) can be used to interpret seismic data [107]. A
typical seismic image is shown in figure 5.11a), which shows a strong layer structure
and each layer represents a reflector. Tectonic forces can cause fractures in the
subsurface rock leading to a vertical displacement of rock layers on both sides of
the fracture. These fractures are called faults. The detection of these faults is of
interest to the oil industry. Hand picking these faults is time consuming and can
be difficult in 3D data. Automatic detection of strong faults with a nearly vertical
displacement is possible and works reliable [4]. The detection of non-straight and
weak faults is difficult. Curvature can help to find these weak faults.

Ordinarily, a layer/reflector of interest is segmented by hand and then curvatures
are computed in a 3 × 3 or 5 × 5 neighborhood on the labeled 2D surface [107].
Our method can compute the curvatures of all (iso) surfaces in one image without
segmentation. In figure 5.11b,c) we show the principal curvatures computed with
eq.(5.12). Here again, isophote curvature by rotation of the Hessian or by Thirion’s
algorithm does not work due to the layer structure, compare figure 5.11d,e). The
two step approach to compute the local structure at scale σT and the gradients at
σg, σk shows it strength especially for this pattern of surfaces.

In general, seismic data is very large (on the order of thousands of pixels in each
direction). Therefore, memory and computation time considerations are important.
We have implemented our algorithm in the MATLAB toolbox DIPimage [76]. For
an image of size 400×400×130 the computation takes about 2 GB of memory and
15 minutes of CPU time on a Linux PC with an AMD 2000 processor. Thirions
algorithm [120] needs about 1.3 GB of memory and 9 minutes of processor time.

5.4 Conclusions

We have demonstrated that our approach to estimate curvature and (local) shape
descriptors on surfaces based on the differential structure of images is working
excellent. It avoids problems associated with classical approaches such as matched
filtering and polynomial fitting. It succeeds where standard isophote curvature
estimation methods fail. Furthermore, we can conclude that the GST is able to
estimate the principal directions on surfaces, as the computed curvatures in these
directions are estimated accurately. Our new curvature estimation formula (5.12)
is a consequence of the formulas of differential geometry taking into account the
local structure of operators in grey-level images, e.g. circumventing the problem of
non-unique orientation representation by using the Knutsson mapping.

In any application where patterns of ridge-like structures are present a robust
estimation is not possible by the isophote curvature. First, on the ridges and val-
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leys the gradient magnitude vanishes which results in a very high overestimation.
Second, efficient noise reduction is not possible as it requires large smoothing ker-
nels which smooth out the pattern of interest, such that the signal vanishes. Our
algorithm can reliably estimate curvature in these cases.

The reason for these properties is that our algorithm uses a two step approach,
first an orientation estimation process in a local neighborhood described by σT and
then the derivative of the orientation field yields the curvature. In our algorithm
σg, σk are the smoothing parameters for the first and second order derivative and
correspond to the smoothing parameter of the isophote curvature. For σT → 0 the
GST returns the input vector as only eigenvector and our proposed method is equal
to the isophote curvature. More explicitly, the added value of our estimation algo-
rithm is a robust orientation estimate avoiding gradient magnitude normalization
through the use of a local neighborhood σT .

The error of the computed curvature is dependent on the size of the curvature
and its change in the local neighborhood. Nevertheless, the error stays small and the
estimation is robust in the presence of noise. Surface area estimation and integration
of functions over these embedded surfaces can be performed sampling-error free by
relation (3.24). The area estimation has no bias and is independent of scale and local
geometry. From these two ideas curvature based shape descriptors, the bending
energy and Euler characterization, can be computed. The latter as a function of
scale is closely related to the morphological granulometry [112, 13, 78]. Although
a granulometry is a volume weighted distribution and the first only counts the
number of objects visible at a certain scale. The estimation of these descriptors is
consistent, robust and independent of the scale of the objects. It performs excellent
for isotropic objects and small curvature (ε < 0.5% for κ < 0.03). For highly
asymmetric shapes and high curvatures the error stays small (ε < 7% for κ < 0.08).
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Figure 5.11: a) Slice of seismic image, b,c) principal curvatures by eq.(5.12), log
stretch, d,e) principal curvatures by Thirion [120], range [−1, 1].





Chapter 6

Motion in spatio-temporal images

6.1 Estimation of motion

Here we present and discuss techniques to measure velocities of moving objects or
image parts in image sequences. A sequence can be a collection of 2D images taken
with a standard photo camera at the speed that you can press the button or 4D
imaging of a beating heart by MRI. We will focus the discussion on optic(al) flow
via differential techniques and a tensor approach. We do not include a discussion
on apparent motion, i.e. motion that is captured by projection. For example
a standard camera records a 2D image of the 3D world. We assume that our
recordings have the full dimensionality of the problem, therefore observed motion
is true motion. For a comprehensive introduction of the different techniques see the
textbooks [55, 115] and an overview article by Barron et al. [7] for a quantitative
discussion of several methods.

6.1.1 Displacement from two successive images

If only two time frames are considered to estimated the velocity/shift, two methods
come to mind: feature or region-based matching and a grey-value approach by first
order Taylor expansion. Feature matching is essentially a two step process, where
first, robust and descriptive features are computed and then corresponding features
are matched. Different methods for matching are used, such as normalized cross-
correlation and minimizing a distance measure. In industrial applications where
there is a controlled scene and only a few feature present, this approach is often
used. However, feature matching is not feasible for general scenes. Zero-crossings of
grey-value functions have been proposed as a feature [82, 150] and found widespread
use [50]. But it turned out that a multi-scale zero-crossing approach cannot describe
even some special but simple structures correctly [24]. The local phase was used as
a feature by Fleet et al. to compute the velocity [37]. From the conceptual point of

85
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view feature matching is discrete in time. Furthermore, it has to balance the need
for long time intervals for accurate displacement estimation and short time intervals
for successfully finding corresponding features. In this two step category also falls
color histogram tracking of people in natural scenes [92]. Tracking of segmented
particles is successfully used in the study of turbulent gas and liquid flows. A con-
trolled experimental setup enables a high contrast of the inserted marker particles,
which are tracked in time. The amount of recorded data is generally very large
so segmentation can reduce the amount of information drastically (several GByte).
After segmentation the data is reduced to the point coordinates and can be handled
efficiently. Recently Farnebäck presented a two frame estimation method based on
the iterative region-based matching of polygons [35].

If the objects can be segmented from the background before the motion is es-
timated Diehl et al. [27] presented a fast and efficient method. The motion is
modeled globally for a segment of the image and a few parameters describe the
motion. The parameters are fitted via an iterative scheme. This method is more
robust than local optical flow, but the image has to be segmented before the motion
is estimated.

First order Taylor expansion

A grey-value approach to estimate the shift if only two images should be used is
by first order Taylor expansion. This was presented by Luengo et al. for global
shifts in images [58, 77, 133], but is also usable to obtain a local shift estimation
by windowing. It turns out to be very similar to the optical flow equation solved
with the constraint of constant motion in a surrounding neighborhood as presented
by Lucas and Kanade [75], therefore it will be presented here. Let us start by
investigating the Taylor expansion up to order r of a 2D image I(x, y) around a
point (x0, y0)

I(x, y) = I(x0, y0) +
r∑
i=1

i∑
j=0

(
i

j

)
∂jx∂

i−j
y I

∣∣∣
x0,y0

(x− x0)
j(y − y0)

i−j + ε . (6.1)

This reads up to first order in vector notation

I(x) = I(x0) + δx · ∇I + ε . (6.2)

where ε is the error in the estimation and the shift δx = (x−x0, y− y0). From now
on x, x0 will be considered vectors. Now we want to estimate the unknown shift
between I1 and I2

I1(x+ δx) = I2(x) . (6.3)

Substituting the Taylor expansion for I1 we obtain

I1(x+ δx) = I1(x) + δx · ∇I1 + ε = I2(x) . (6.4)
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From solely this equation it is not possible to obtain the shift vector unambiguously.
This problem will be encountered again with the flow constraint eq.(6.27) and is
known as the aperture problem. Only the normal component of the shift is given
by eq.(6.4). Luengo et al. chose to use further the constraint of a local constant
velocity, i.e. using more points in a small neighborhood to over-determine eq.(6.4).
The error is minimized via the least square method in an area V

δx = arg min
1

V

∫
V

(I2(x)− I1(x)− δx · ∇I1)2 . (6.5)

Setting the partial derivative with respect to δx to zero yields

0 = (I2 − I1 − δx · ∇I1)∇I1 (6.6)

δx = (∇I1∇It1)−1[(I2 − I1)∇I1] . (6.7)

The integration over the volume V will be incorporated by a smoothing of the
term ∇I1∇It1 by a Gaussian with standard deviation σT . This smoothing will be
denoted by overlining be term. The derivatives ∇I are Gaussian derivatives with
a standard deviation σg. In eq.(6.7) all terms must have the same magnitude to
compare them, so also the first term in eq.(6.7) must be smoothed and we obtain
finally the average shift in an area defined by σT

⇒ δx = (∇I1∇It1)
−1[(I2 − I1)∇I1] . (6.8)

For global shift estimation (V = I) this method is biased toward smaller mag-
nitudes as M. Bezuijen pointed out during this bachelor project in our group [9].
Assume we have the true shift δu then by inserting the Taylor expansion for I2 from
eq.(6.4) in eq.(6.8) we obtain

δx = (∇I1∇It1)
−1

(δu∇I + ε)∇I1 (6.9)

= δu+ (∇I1∇It1)
−1
ε∇I1 . (6.10)

Let us now investigate the sign of the ε∇I, as (∇I∇It) is semi-positive definite [42]
appendix B. We limit us to 1D and let N be the number of pixels of I

ε
dI

dx
=

1

N

∑
I

∞∑
i=2

1

i!
δui

diI

dxi
dI

dx
(6.11)

=
1

N

∑
I

∞∑
i=1

1

(2i+ 1)!
δu2i+1d

2i+1I

dx2i+1
dI

dx
+ (6.12)

1

N

∑
I

∞∑
i=1

1

(2i)!
δu2id

2iI

dx2i
dI

dx
(6.13)
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The even terms of δu (6.13) vanish as (fx, fxx)L2 = (iξf̂ ,−ξ2f̂)L2 = 06. Odd powers
of δu (6.12) preserve the sign and the inner product of the first derivative with an
odd derivative is

(fx, fodd)L2 =

∫
(−iξf̂)(−(iξ)2k+1f̂) k ∈ IN (6.14)

= i2k
∫
f̂2ξ2k︸ ︷︷ ︸
>0

k = 2, 3, . . . . (6.15)

The sign of the odd terms is alternating, neglecting 5th order and higher we obtain

sgn

(
ε
dI

dx

)
=

{
+ for δu < 0
− for δu > 0

, (6.16)

i.e. the magnitude is always underestimated. This is true, as long as the integration
interval is symmetric around the origin. This may not be the case for local shift
estimation in an area defined by σT .

Cross correlation

Cross-correlation is another popular method to estimate the shift between two
images. It is based on the shift property of the Fourier transformation. Let I2 be
the shifted version of I1

I1(x+ δx) = I2(x) , (6.3)

then their Fourier transforms are related as

Î1(ξ) = Î2(ξ)e
−iξ δx (6.17)

and
Î∗1 Î2

|Î1||Î2|
= e+iξ δx (6.18)

yields spatially a delta peak at the shift location δx. Equation (6.18) is spatially the
cross-correlation between I1 and I2 with subtracted means. This method is standard
only usable for integer pixel shifts, but can be extended to sub-pixel accuracy up
to 0.1 pixel [142].

In the study of flow phenomena a technique called Particle Image Velocimetry
(PIV) is used. It is mainly based on cross-correlation, although also tracking is
used in the field [141, 142, 143]. A sheet-of-light is shine on the flow, in which small
tracer particles where introduced. They reflect the light, which is recorded with

6(f, g)L2 :=
∫

IRn

fg∗
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a high speed camera. Each image (which can be up to 1024 × 1024) is divided in
smaller subregions, and then in corresponding windows cross-correlation is used to
estimate the shift in this window. A typical window, as a rule of thumb, should
contain about 7 particles to estimate the velocity accurately [141].

6.1.2 Motion as orientation in (x, t)-space

For the moment we will only consider a spot as our moving object. Let the spot
be located in an nD spatial image. Then the moving spot is located in a (n+ 1)D
spatio-temporal image. In the terms of special relativity, the spot is an event or
world point (x, t). The propagation of the spot described by the curve (x(t), t) is
then called a world line [111]. A moving spot in 2D will form a string of spaghetti
in the spatio-temporal 3D image. For 1D movement as shown in figure 6.1 the

(x,t)

(x,t)

ϕ

∆ x

t∆

t

x

0

1

u

Figure 6.1: Movement of a spot in 1D

velocity is

v =
∂x

∂t
≈ ∆x

∆t
= cotϕ, ϕ ∈ [0, 180◦] . (6.19)

An angle of ϕ = 900 corresponds to zero velocity and an angle of ϕ = 0◦ to infinite
velocity. We see the similarity with a Minkowski diagram, where an angle of 45◦

corresponds to v = c.

From this it is clear that motion appears as orientation in space-time images.
Conceptually different from the two time frame approach is the fact that the velocity
can be estimated directly as orientation instead of a discrete displacement. This
point of view also treats motion as continuous, which in turn enables us to develop
algorithms that can be checked analytically before quantization. Furthermore, there
are a few advantages coming along with the use of more than only two images as
a more robust and sub-pixel estimation of the velocity. Fourier domain analysis is
possible from; (x, t) to (k, ω).

There are four main approaches to obtain the velocity from the orientation in
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a spatio-temporal image: the gradient structure tensor, steered quadrature filters,
Fourier based and differential methods.

Gradient structure tensor

Directly from figure 6.1 we see that the gradient structure tensor (GST) is well
suited to estimated the velocity. The GST is a generic tool to analyze local dimen-
sionality (compare appendix A)

Ḡ := ∂α∂βI, α, β = 1, . . . n+ 1 . (6.20)

A moving point forms a line and a moving line a plane. The GST can detect these
structures and estimated their orientation. The detection is based on the ratio
of the eigenvalues, which is for lines λn−λn+1

λn+λn+1
as described in appendix A. The

orientation of the structure is returned and from it the velocity can be computed
in 1D as eq.(6.19). Now we make the step from 1D to nD movement. The spatio-
temporal image will be (n+1)D and an eigenvalue analysis of the GST will provide
the smallest eigenvector u along the world line (figure 6.1). We can retrieve the
components of the velocity vector as follows:

vi =
∂ui
∂t
≈ ∆ui

∆ut
1 ≤ i ≤ n . (6.21)

For 2D motion the eigenvector u is given by two angles in spherical polar coordinates
ϕ ∈ [−π, π] and ϑ ∈ [0, π/2]7

v =

(
cosϕ sinϑ

cosϑ
sinϕ sinϑ

cosϑ

)
. (6.22)

Even if the GST (or in fact any local dimensionality analysis) gives only orientation
information (see chapter 2 and appendix A) we can retrieve the sign of the velocity.
Here we assume the last component (time) to be positive, this introduces global
knowledge and allows us to make the step from orientation to direction. So we can
solve the discontinuity in an appropriated manner, i.e. do a point reflection of all
vectors u which have negative ut

ũ(x, t) =

{
−u ut < 0
u ut ≥ 0

. (6.23)

One of the first to use the structure tensor approach - not only for velocity estima-
tion - were Bigün et al. [11].

The acceleration in a (x, t)-image is the curvature of the trajectory

a = |v̇|T + |v|2κN . (4.24)

The curvature can be estimated as explained in chapter 4.
7The fact that only orientation information is present is expressed by restricting ϑ ∈ [0, π/2].
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Orientation selective quadrature filters

The main point here is to apply a set of velocity (orientation) selective filters to a
(x, t)-image and compare the filtered results. This approach is capable to distinguish
different orientations in a pattern that locally contains more than one orientation.
This is in contrast to the differential approaches discussed later. However, there
are a few conceptual problems involved in sampling of the orientation [42] chapter
3, which becomes even more complex in four or higher dimensions.

An approach by Knutsson [62] and later B̊arman [3] that is especially suited is
the use of orientation selective quadrature filters. A quadrature filter is formed by
the filter and its Hilbert transform, resulting in a phase invariant filter. The set of
filters should be similar to each other, and polar separable. Knutsson introduced
a set of directional quadrature filters [62]. In 3D Knutsson showed that 6 or 10
quadrature filters can be symmetrically placed in Fourier space [64]. Up to recently
the Hilbert transform was only well-defined for 1D, Felsberg and Sommer [36],
Larkin et al. [70] and Verbeek [125] proposed independently a multi-dimensional
Hilbert transform. Knutsson recently presented filters called ’loglets’ that combine
the multi-dimensional Hilbert transform with quadrature filters and introduce the
concept of a generalized phase [65].

Energy/Fourier domain techniques

Imaging an image sequence I(x, t) where all objects are moving in the same direction
with velocity v, which is described by

I(x, t) = I(x− vt) . (6.24)

This is the general solution of the dispersion-free wave equation ∆Ψ − 1
v∂

2
tΨ = 0

and therefore the Fourier transform of eq.(6.24) is

Î(k, ω) = (2π)−n/2Î(k)δ(kv + ω) . (6.25)

The velocity is then computed by the slope of the (hyper-) plane in which the
spectrum lies, which is given by the argument of the delta function. The slope
cannot be determined if the spectrum lies on a line (for spatially oriented patterns).
Only the velocity in the normal direction can be estimated here. This is known as
the aperture problem and it will show up again with the differential methods.
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Differential methods

This set of techniques computes the velocity from spatio-temporal derivatives. As-
sume that the intensity is conserved

dI(x, t)

dt
= 0 , (6.26)

then we obtain the flow equation

∇I · v + ∂tI = 0 , (6.27)

where ∇ = ∂i, i = 1 . . . n only operates on the spatial components. It is also known
as the gradient constraint equation [7] or brightness change constraint equation [55]
chapter 4. Eq.(6.26) is equivalent to eq.(6.3) when only two images are considered.

In eq.(6.26) we made the implicit assumption that the velocity is constant, i.e.
we start with a function I(x(t), t). Our estimated velocity will only be correct given
by eq.(6.27) if the velocity is constant. If we start also with a velocity dependency
I(x(t), ẋ(t), t) then we get

dI

dt
= ∂tI +∇Iv +∇Ia , (6.28)

from which we cannot extract the velocity estimation by a straightforward closed
form solution.

However, even with a constant velocity the flow eq.(6.27) is not sufficient to
retrieve all components of the velocity vector v. The flow equation for nD motion
is a scalar equation and contains n unknown vector components. In effect, the scalar
product ∇I · v = ‖∇I‖v⊥ and therefore we can only retrieve the motion normal
to the edge. This is called the aperture problem. We encountered this before in
the shift estimation for two images and also in the Fourier based approach. See
for example a paper by Florack et al. [38], which uses measurement duality into
forming a generalized flow constraint equation by including preprocessing filters.

In the following we will discuss different techniques to compute the full velocity
vector. They all impose another constraint on the image sequence I(x, t). Possi-
bilities are: to assume a global smoothness constraint, use several points in a small
neighborhood and assume that v = const. in this neighborhood or perform a local
modeling of the spatial structure, i.e. put a constraint on the second derivative
d∇I
dt = 0.

• Hessian or differential geometry modeling
Nagel [86] and Tretiak [121] were the first in using second order derivatives
to compute the optical flow. If we restrict the intensity in such a way that
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there should be no first order deformations, e.g. rotations and dilations, this
leads to

d∇I
dt

= 0 (6.29)

⇒ ∂ijI · v + ∂i∂tI = 0 . (6.30)

This is a stronger requirement than eq.(6.27) and is (in most cases) capable
of computing all velocity components. However, second order derivatives
are quite noise sensitive and need more regularization to compensate high
frequency noise. Therefore, second order approaches are generally assumed
to be less accurate than first order ones.

• Global smoothness constraint
This method is based on a paper of Horn and Schunck [52]. They combine
the gradient constraint from eq.(6.27) with a global smoothness constraint on
all components of the velocity with smoothness parameter λ

min
v

∫
dx (∇I · v + ∂tI)

2 + λ2(
∑
i

‖∇vi‖2) . (6.31)

The last term is equal to tr [∇vt∇v], where the nabla of a vector results in a
n× n tensor and is defined as ∇v := ∂ivj. Nagel [86, 87] uses, like Horn and
Schunck, a global constraint but on the orientation

min
v

∫
dx (∇I · v + ∂tI)

2 + α2tr [∇vt(BtWB)−1∇v] , (6.32)

where the matrix (BtWB) is defined in [87]. (BtWB)−1 is essentially the gra-
dient structure tensor, although the connection is not mentioned there. This
is similar to flow computations via anisotropic diffusion by Weickert [138].

• Weighted least-square fit of local first-order constraints
This constraint was proposed in the computation of optic flow by Lucas and
Kanade [75]. The velocity is assumed to be constant in a small neighborhood
V = (∆x,∆t), then we can use a least square estimation

min
v

1

V

∫
V

(∇Iv + ∂tI)
2 . (6.33)

Minimizing the above equation by setting the partial derivative with respect
to v to zero yields

∂ε

∂v
= ∇I∇Itv +∇I∂tI = 0 (6.34)

v = −(∇I∇It)−1∇I∂tI . (6.35)
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The integration over the volume is done by smoothing with a Gaussian with
σT over the tensor elements∇I∇It before inverting it. The spatial derivatives
have incorporated a smoothing of size σg and the time derivative a smooth-
ing of size σt. The same magnitude of all terms in eq.(6.35) is ensured by
smoothing ∇I∂tI with σT

v = −(∇I∇It)−1∇I∂tI . (6.36)

The first term in the equation is the formula for the GST, but it only contains
spatial derivatives (and smoothing in the time direction) and is not to be
confused with eq.(6.20). This formula is very similar to eq.(6.8) for the shift
equation from two images, the difference is replaced by the time derivative.

This method delivers accurate results even if the grey-value structure can-
not be described by a first-order Taylor expansion as long as the velocity is
constant. There is no systematic error [55] chapter 6.4. This is in contrast
to the shift estimation from two images only by first order Taylor estimation
as discussed before in eq.(6.8). The difference is, here we have the tempo-
ral derivative ∂tI in contrast to the finite difference I2 − I1 for the Taylor
approximation. The Taylor expansion incorporated in eq.(6.27) is not an
approximation of the structure as in eq.(6.4) but of the velocity field.

Suppose we have the following constant motion field: I(x, t) = I(x − ut).
From the flow equation (6.27) we get ∇I · u = −∂tI and substituting this in
eq. (6.36) we get

v̄ = −(∇I∇It)−1∇I∂tI (6.37)

= −(∇I∇It)−1−u∇I∇It (6.38)

= ū . (6.39)

This holds as long as the inverse (∇I∇It)−1 exists and the velocity is constant
in the smoothing window. For noise hampered optic flow the estimate is biased
towards lower values [55].

Furthermore, we address two other important points: density and confidence mea-
sure. Density is the fraction of the image where the optic flow is computed. For
some regions this is not possible without regularization, as the gradient based meth-
ods rely on gradient information. Imagine a moving square, only at the borders
gradient information is available, and only there the optic flow is computed. The
statement of the density is always needed when comparing two techniques. The
standard error measure is the average (per time step over the whole image) an-
gle between the theoretical and measured flow in degrees. A confidence measure
should also always be calculated for the whole spatio-temporal image. The differ-
ential methods rely on a local 1D image structure, if this is not the case (crossing
patterns, merging points) the velocity cannot be computed reliably.
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Orientation estimation in 4D data

Time sequences of 3D images yield huge amounts of data to process and store,
even if there are only a dozen time frames as in common biological applications. A
typical isotropic 4D images acquired in a confocal time series of a cell is of the size
256×256×100×20, (x, y, z, t). Given the data is recorded with 8 bits resolution the
memory needed to store the image is 125MB. For further computation of gradients
at least a resolution of 32 bits is needed (single float). Therefore the gradient alone
would need 2GB.

Here we discuss how the orientation (velocity) can be computed in a GST or
Lucas and Kanade implementation memory efficient. A state of the art i386 ar-
chitecture computer can only handle up to 3-4GB of memory. The GST Ḡ =
∂αI∂βI, α, β = 1 . . . 4 has 10 independent components from which the eigenvectors
and values can be calculated. For the computation of the individual components
of the GST only two gradient components are needed at a given time, further the
result is smoothed to achieve averaging over a neighborhood, scale σT (typical size
σT = (4, 4, 4, 1)). It is not necessary to store the elements of the GST Gαβ at the
original resolution, but it is sufficient to store a sub-sampled version by the factor
of σT without losing information [132]. This yields a major reduction in memory
use, needing only 104MB instead of 4.9GB to store the GST elements.

For linear structures (a moving point) the smallest eigenvector corresponds to
the orientation, see appendix A. We can compute it numerically by inverting the
GST and then use the power method to compute the largest eigenvalue of the
inverted GST [44] chapter 7. The maximal memory usage is:
max(4 ∗ vol(I), 29 ∗ vol(I)/vol(σT )), where we make explicit use of the symmetry
of the GST in the implementation.

A full eigenvalue analysis of this symmetric problem can be done numerically
using the cyclic Jacobi method [44] chapter 8. The eigenvalues are computed by
stepwise rotation of the initial matrix to bring it on diagonal form. Here we did not
code the involved matrix computations explicitly as being (anti)symmetric. There-
fore the memory requirements are 66 copies of the sub-sampled image. This is not
problematic as the computation of the structure tensor elements at full resolution
is the memory critical task. The procedure does not sort the eigenvalues, but this
can be done afterwords quite fast.

6.1.3 Conclusions

In the remainder of this thesis we will use the assumption of local constant velocity
and least squares fitting as proposed by Lucas and Kanade [75] or the GST. The
volume of constant intensity and velocity, defined by σT , is often easy to choose.
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If that fails one could use automatic scale selection by Lindeberg [74]. Niessen [89]
treats the scale selection problem especially for the problem of optic flow. As a
confidence measure for a local 1D neighborhood we will use the GST eigenvalues
λi of the (n+ 1)D spatio-temporal image (see appendix A)

c1D =
λn − λn+1

λn + λn+1
, λi ≥ λi+1 . (6.40)

Global approaches rely too strongly on the fit of the global constraint, i.e. if we as-
sume a smooth model by choosing a high smoothness parameter then the evaluation
of eq.(6.31) or (6.32) on the data also yields that.

The detection of 2D flow discontinuities has been discussed by Zetzsche and
Barth [152] with the help of 3D curvature operators. The fastest algorithm at
the moment is by Farnebäck [34]. Flow estimation of fluid can be done by using
more apriori knowledge by incorporating the appropriated boundary conditions.
Nakajima et al. used the continuity equation and the Navier-Stokes equation to
obtain the additional constraint to solve the flow equation (6.27) [88].

6.2 Global motion analysis using differential operators

on the flow field

Once the flow field is calculated by one of the methods described above, qualita-
tive and quantitative information can be extracted. Apart from the local velocity
(direction and magnitude), a vector field - static or time dependent - can have
qualitative global patterns. Next to simple translation there are four basic types of
variations as shown in figures 6.2a-d). They are source, drain, left and right turning
rotation. These measures describe non-local properties of a vector field. Mathe-
matically a source/drain is called a positive/negative divergence and a left/right

(a) (b) (c) (d)

Figure 6.2: Four basic types of a vector field. Central fields: a) Source, b) Drain;
Rotation: c) left/positive turning, d) right/negative turning
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turning a positive/negative curl or rotation. Let v be a C1 vector field over IR3,
then

div v = ∇ · v =
∑
i

∂iv
i , (6.41)

rot v = ∇× v =
∑
jk

εijk∂jv
k , (6.42)

with εijk the Levi-Civita permutation tensor [17]

εijk :=


0 for i = j, i = k, j = k

+1 for cyclic/even permutation of ijk
−1 for anti-cyclic/odd permutation of ijk

. (6.43)

The global descriptors, rotation and divergence, are computed locally by derivative
operators. A geometric interpretation of the divergence is given by the Gauss theo-
rem. It states that the flow through a closed surface S is the integrated divergence
of the enclosed volume V ∮

S
v · n̂ dS =

∫
V

div v dV . (6.44)

For the rotation or curl Stoke’s theorem gives that the flow through a surface S is
the integral of the field along (ds) the border of the surface ∂S∫

S
rot v · n̂ dS =

∮
∂S
v · t̂ ds . (6.45)

The normal unit vector is n̂ and the tangent vector t̂. A vector field can only be
written as a derivative of a potential function if its rotation vanishes [17]. A field
with rot v = 0 is often called irrotational. In particular, all gradient fields are
irrotational. The quantity rotation is proportional to the angular velocity.

In terms of image processing all these measures have to be evaluated at a certain
scale, given by the smoothing of the partial derivatives, defining the meaning of
global. A multi-scale approach can be used to find regions of different qualities,
as vortexes in a turbulent flow. A vortex is a critical point in the vector field (the
middle point of the rotation or divergence).

Let us investigate the filter response of the divergence and rotation operators
on a 2D flow field. In figure 6.3a) we show 50 randomly placed Gaussian blobs

which move away from the coordinate axes with different velocities (vmax ≤ 1 pixel
frame ,

thus satisfying the sampling criterion eq.(3.7), (3.33)). Here we can conclude from

vmax ≤ 1 pixel
frame that the signal is truly aliasing free, as we constructed the image

sequence. The size of the image is (x, y, t) = 128×128×50, where t = 15 is shown.
In figure 6.4b) 50 counter-clockwise rotating blobs with constant angular velocity
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(a) (b)

(c) (d)

Figure 6.3: a) Random placed blobs with 20dB noise in a image of size (x, y, t) =
(128, 128, 50), b) confidence measure c1D eq.(6.40), c) flow field at c1D > 0.7 with
σg = 1, σT = 2, d) divergence with σ = 20. All displays linear stretched.
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(a) (b)

(c) (d)

Figure 6.4: a) Random placed rotation blobs with 20dB noise in a image of size
(x, y, t) = (128, 128, 120), b) confidence measure c1D eq.(6.40) with σg = 1, σT = 2, c)
flow field, d) rotation/curl with σ = 20. All displays linear stretched.
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ω = 2π
120 are shown. The size of the image is (x, y, t) = 128 × 128 × 120, where

t = 60 is shown. Both time series are hampered with 20dB Gaussian noise.

In figures 6.3,6.4b) the confidence measure c1D, eq.(6.40) is shown and in c) the
flow is visualized at those points with high line-likeness (c1D > 0.7). The response of
the divergence and rotation is shown in d) which are calculated with σ = 20 (large
scale). The divergence gives the highest response in the center and high values
along the coordinate axes from which the blobs are moving away. The response
is positive indicating a source. The rotation is also positive, which indicates an
anti-clockwise rotation and yields a high response in the rotation center.

In figure 6.4b) the confidence for the blobs in the middle is higher than at the
image borders, this is in contrast to the confidence measure in figure 6.3b). Here we
must remember that the points in figure 6.4 rotate with a constant angular velocity
ω around the center. As the actual velocity is v = ωr, the velocity is increasing
linearly with the distance from the center, thus we have v < 1 pixel

frame for r . 20 and
proper sampling as required in eq.(3.33). Until r < 40, v < 2 the zero frequency
of the Fourier spectrum is not aliased. Only in the outermost part r > 40 all
frequencies are aliased. In figure 6.5 the (x, t)-images of the flows figure 6.3, 6.4a)
are shown. In the divergent case a) the blobs form lines in (x, t)-space, but in b)
blobs far from the center are too far apart in subsequent time slices to be seen as a
line (at the same scale as in the inner part), therefore the confidence in figure 6.4b)
is low at the image borders.

(a) (b)

Figure 6.5: (x, t)-image of a) diverging points, b) rotating points.
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6.3 Brownian motion

Small suspended particles in a solution move in a random manner in the absence
of any flow in the solution. Brown was the first to observe this motion under the
microscope of dissolved flower pollen [18]. The cause of this motion is the collision
of the suspended particles with the molecules of the solution. If you zoom in on
a certain particle then it will move randomly in all directions and the measured
displacement in fixed time intervals will vary greatly. On average one observes a
typical traveled distance λ, where there is no preferred direction. The probability
to find a particle in a certain position after a time t can either be calculated from
a random walk process [46] chapter 5 or as the solution to the diffusion equation.
The diffusion equation

(∂t −D∆)f(x, t) = 0 (6.46)

with diffusion constant D describes such a random motion. The fundamental solu-
tion for nD of eq.(6.46) is

f(x, t) =
Θ(t)

(2
√
Dtπ)n

e−
x2

4Dt , (D.3)

where Θ(t) is the is the Heaviside step function

Θ(t) :=

{
1 t ≥ 0
0 t < 0

. (6.47)

The average quadratic displacement (variance) is then

〈
x2
〉

=

∞∫
−∞

x2f(x, t) dx = 2nDt . (D.9)

See appendix D for a short derivation of these two equations. A relation between
the viscosity of the solvent medium η and the diffusion constant D of the dissolved
particles is given by the Einstein relation [32]

D =
kBT

6πηr
. (6.48)

The denominator is the friction coefficient µ = v
F of a sphere with radius r in a

fluid with laminar velocity v given by Stokes’ law.

As a consequence of the underlying physics Brownian motion cannot be sampled
correctly. However, here it is not of interest to measure the velocity between two
collisions but to estimate the parameters of this stochastic motion, i.e. the average
displacement over a longer period of time. From this displacement one of the



102 Motion in spatio-temporal images

following material constants D, η or r can be estimated. To do this, the positions
of many particles have to be estimated at time t0 and t0 +∆t, where ∆t should not
be chosen too small (after 30-60s in a water based solution particles with a radius
≈ 1µm should displace on average 6−9µm). The particles must be tracked in time
to establish correspondence over the time interval ∆t. Per particle the average

displacement
√
〈x2〉 is measured by subtracting the (sub-pixel) positions at frame

i and i+ ∆i.

The above described method is only applicable if before hand it is known that
the motion is Brownian. The recognition of Brownian motion or distinction from
motion with constant velocity or acceleration is not possible by investigation of one
time interval ∆t. The position has to analyzed as a function of time. If this reveals

a connection
√
〈x2〉 ∝

√
t, then we observe a diffusion process. The discrimination

between linear and square root behavior as a function of time cannot be made in
the region t ≈ 1, as the square root is nearly linear there.

As a side note we mention that the Nyquist noise of a resistor is caused by this
phenomenon and that thermal noise for example limits the precision of our ears
and other uncooled high precision apertures.



Chapter 7

Application 1: Flow patterns in
French bread during proofing8

Here an application is presented of optic flow measurements on the rising of bread
dough.

The crumb structure of bread is an important factor determining the percep-
tion of bakery products by the consumer. There is an interest in the controlled
manipulation of the bread crumb structure, however this requires insight into how
this aspect of the micro-structure evolves during the bread making process. Non-
invasive monitoring of gas cells is possible by X-ray tomography. This technique is
not able to observe gas cells with small diameters (< 1mm). Magnetic Resonance
Imaging (MRI) is a promising technique for the assessment of gas cell development
and anisotropy in the growth of the dough during proofing. At the Imaging Science
Institute, University Utrecht several time series of dough during proofing (rising)
I(x, y, t) = 256× 256× 20 were acquired.

We want to study how different forms of kneading (molding) bread dough af-
fects the crumb structure. With the help of MRI and image analysis we can give
experimental evidence for an existing micro-structural chemical model for the rising
of dough. The goal is to understand better how the proofing process works and to
make machine made bread have the same crumb structure as man made bread.

First we sketch briefly how the rising of dough is thought to be understood in
terms of chemistry. For a good readable summary we refer to the text book by
Barham chapter 8 [6]. Flour is made of two starch molecules which are polysaccha-
rides (long string-like molecules of sugar molecules). If water is added to the flour,
the proteins on the outside of the starch hydrate and become very sticky. If this

8The work of this chapter was carried out as part of a contract research for Unilever Research, Vlaardin-
gen in collaboration with the Imaging Science Institute, University Utrecht. The content of this chapter
has been published in: P.M. van Duynhoven, G.M.P. van Kempen, R. van Sluis, B. Rieger, P. Weegels,
L.J. van Vliet and K. Nicolay, Quantitative Assessment of Gas Cell Development during the Proofing of
Dough by Magnetic Resonance Imaging and Image Analysis, Cereal Chemistry, 80(4):360-369 2003 [31].
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sticky mass is moved along different starch complexes, then via the interaction of
the granule proteins gluten is formed. Gluten is a protein complex formed out of
many starch granules that is organized in layers. It is very elastic like a rubber sheet.
During rising CO2 is produced (by the added or natural abandoned yeast). This
gas blows up the gluten sheets like small balloons and rises the bread. Kneading is
essential in forming gluten as it stretches the protein molecules. If the dough is not
sufficiently kneaded then the gluten sheets are too weak (not enough connections
between different starch proteins are made), the little balloons will burst, and the
bread will not rise properly. Now, the more you knead the more gluten is formed,
the dough in turn will be stiffer, and the gluten sheets will be more isotropically
distributed through the dough. A stiffer dough will result mainly in a finer texture
and in an on average smaller gas bubble size. Hand kneading will introduce stress in
the gluten sheets when the dough is folded. These stress lines are removed by long
kneading or machine kneading. To overcome this problem in machine kneading the
molding can be done fast, leaving ruptures and internal stress in the gluten sheets.
This stress is persevered during rising as we will show.

7.1 Materials and methods

The experiments were conducted at MRI group of the Imaging Science Institute,
University Utrecht.

The dough recipe consisted of Baguepi flour with 2.1% salt, 3.2% yeast, 1.75%
bread improver (ex Astra Calve) and 54% water (added at 291K). The dough pieces
were blast frozen for 35 minutes at 241K, packed in sealed plastic bags, and subse-
quently stored at 253K, in a temperature controlled freezer. The dough pieces were
transported to the MRI facility, after being put on dry ice. After arrival at the
MRI facility the frozen dough pieces were again stored at 253K. Within 2 days, the
dough pieces were thawed at 277K, during an overnight period. Before the actual
measurement, the samples were wrapped in cellophane, and equilibrated at ambi-
ent temperature for one hour. The last procedure ensured that the dough piece
was at ambient temperature when the MRI measurement started, and prevented
condensation of atmospheric water directly on the sample. The dough sample was
carefully positioned and fixed on a sample holder using tape.

MRI experiments were performed using a Varian (Palo Alto, CA, USA) Inova
spectrometer (operating at a proton frequency of 200MHz), interfaced to an Oxford
40cm bore, 4.7Tesla magnet. A standard spin-echo pulse sequence was used to
acquire slices with a thickness of 3.0 mm. Typically, for a field-of-view of 40 × 40
or 70 × 70mm, 5 slices were acquired, with 0.1mm spacing, using an echo-time of
9ms and a data matrix of 256× 256 points. See figure 7.1 for 2 samples of dough,
which were subject to different molding stress. The upper images show the dough
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in its initial state and bottom images after proofing (rising).

7.2 Image analysis

A grey-level based image analysis approach was used to characterize the growth
behavior during proofing. In a first step the velocity field of the 2D time series
is obtained using optic flow as Lucas and Kanade [75], see also eq.(6.36). We
compensated for the decreasing intensity in time in the MRI slices. The obtained
flow field was then compared with a growth model. Our growth model vmodel
is an isotropic expansion model (see figure 7.2b)), where the growth takes place
perpendicular to the contour of the dough, taking the morphology of the dough
into account. For this propose we used a heuristic scalar dissimilarity measure dis,
which we defined as follows. First we computed for each position in every time

(a) (b)

Figure 7.1: Images (70 × 70mm) of dough pieces, molded with different degree of
stress, the top image shows the dough a t = 0 and the bottom after baking. a) slow
molding/deformation b) fast molding/deformation.
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slice the angle between the velocity vector and our model direction weighted by the
magnitude of the velocity. These angles are squared and averaged inside a horse
shoe like region (see figure 7.2a) and normalized for the size of this area

dis(t) =

∑
I

]2(vmodel, vmeas)‖vmeas‖w(x, t)∑
I
w(x, t)

, (7.1)

where the weight function is

w(x, t) =

{
1 for x ∈ horse shoe
0 otherwise

. (7.2)

The horse shoe like area is computed for each time step by segmenting the dough
and then eroding the binary image 20 times. We keep only the eroded part and
there discard the lower third. The reason to evaluate only the upper part of the
dough is that in this region the growth restraining influence of the surface on which
the dough lies is expected to be small, so deviation from the isotropic expansion
can be directly related to the stress contained in the dough during molding. The
estimated velocity magnitude from the optical flow acts as a confidence measure
for the dissimilarity measure, as it suppresses non reliable angles. To weight strong
deviation from the model more heavily we squared the angle between the observed
flow field and the model. The computed flow field is shown, for one time frame, in
figure 7.2 for samples with slow c) and fast d) molding. The angle of the model with
the flow field is shown in false color. As is illustrated in figure 7.3, the dissimilarity
measure dis is small for fast deformation and larger for slow deformation. Large
dissimilarity measures (i.e. a large deviation of isotropic growth) can be attributed
to the presence of internal stress in the dough. These stress lines are brought in the
dough by the manufacturing procedure, where dough slabs are rolled in a baguette
shape. Hence, if stress lines are present in the slab, they will be oriented in a spiral-
like manner in the resulting dough sample. In the case that the molding step does
not destroy the internal stress lines, the growth of the dough during proofing can
locally be restrained by their anisotropic distribution. As a result an anisotropy
in the growth will be observed and this is clearly the case for the slowly deformed
samples. However, fast deformation has resulted in loss of internal stress, as this
results in isotropic growth of the dough. The crumb structure is already defined at
an early stage of the bread-making process. Baking is only of minor influence on
the crumb structure.
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(a) (b)

(c) (d)

0◦ 180◦

Figure 7.2: a) Upper outer part of the dough being used for the dissimilarity measure,
b) Isotropic expansion model perpendicular to the contour, c,d) estimated velocity
field (upper image) and angel with the growth model in false color (bottom image),
c) slow molding, d) fast molding.
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Figure 7.3: Dissimilarity measure as a function of proofing time for dough’s with
different degrees of imposed molding stress. The non-connected points correspond to
slow molding, and the connected curves to fast deformation. The model was applied
on 2 duplicate dough samples, and sampled at 2 slices (5mm apart).

7.3 Conclusions

The combined use of MRI and image analysis allows us to draw conclusions on
proofing dough and the resulting crumb structure in bread. Our approach shows
that it can be successful to combine MRI and image analysis for the quantitative
and non-invasive monitoring of the proofing of dough, under relevant industrial
conditions. The influence of the molding stress on the rising behavior is made visible
with the help of the dissimilarity measure, eq.(7.1). The micro-structural theory
of internal stress preservation during proofing (rising) holds in our experiments.
Isotropic rising could be attributed to fast molding and anisotropic rising to slow
molding. More structural detail could be derived from the MRI data if they would
be recorded in 3D mode, since this would improve spatial resolution.



Chapter 8

Application 2: Evaporation induced
flow in nanoliter wells9

Here we present an image analysis and processing application of adaptive filtering,
optic flow and normalized convolution.

Drying of DNA spots on microarrays and spilled coffee yields ring-like stains,
because the outward flow transports dissolved particles to the border. Contact line
pinning and diffusion limited evaporation of a liquid sample are the two necessary
conditions to induce an outward directed liquid flow during evaporation. Evapora-
tion of liquid samples is a key problem in the development of microarray technology
(including labs-on-a-chip), especially in the case of open reactors. We have stud-
ied the process of evaporation in micromachined subnanoliter wells with a typical
radius of 75 − 150µm and a typical depth of 6µm using interference-contrast mi-
croscopy [69, 29]. With this microscope-based technique dynamic fringe patterns,
showing fringes of equal height, can be observed. Since the depth of the well is
only 6µ m, the liquid sample can be regarded as a thin film and the fringe patterns
are Newton rings. From these fringe patterns the shape of the air-liquid interface
can be retrieved using a temporal phase-unwrapping technique [29]. The rate-of-
change of these dynamic height profiles represents the total evaporation rate of the
liquid in the subnanoliter well. We have found that the total evaporation rate is
linearly proportional to the perimeter of the well [29]. We will present these exper-
imental results in the next section. This counterintuitive result is a consequence of
diffusion-limited evaporation. In the next section, we will briefly repeat the most
important results of this theory.

The theory of diffusion-limited evaporation predicts an outward directed flow

9This work was carried out is close collaboration with L.R. van den Doel who did all the experimental
work and the application of Deegan’s theory to the nanoliter wells. The content has been published
in: B. Rieger, L.R. van den Doel and L.J. van Vliet, Ring Formation in Nanoliter Cups: Quantitative
Measurements of Flow in Micromachined Wells, Physical Review E, 68(3):036312, 2003 [100]. New material
is presented in section 8.6.
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in a droplet, which transports dissolved particles to the perimeter of the droplet, a
phenomenon responsible for ring-like stains on flat surfaces: this is the explanation
for the formation of coffee rings [25, 26]. In macroscopic droplets this evaporation
induced flow field has been coarsely sampled by tracking microspheres only near the
edge of the droplet and only at the end of the evaporation process [26]. On the basis
of this theory we expected a similar outward directed liquid flow in our wells, but
this flow could not be observed with interference-contrast microscopy. In order to
visualize this flow field and to validate the theory of ring formation, we conducted
experiments in which subnanoliter wells were filled with a liquid in which fluores-
cent microspheres were introduced. The motion, including Brownian motion, of the
microspheres (radius 0.25µ m) during evaporation of the liquid sample was moni-
tored using digital fluorescence microscopy. The acquired digital recordings (image
sequences) clearly showed the transportation of the microspheres to the perimeter
of the well. Figure 8.1a) shows the distribution of the fluorescent microspheres
right after injection of the mixture in the well. Figure 8.1b) shows the trajectories
of the dissolved microspheres during evaporation. See also the cover of this thesis
for a color version of figure 8.1b). There the time is color coded from blue for the
inital stage to red for the end of the evaporation. All trajectories point outwards,
when observed over a long time (≈ 3 min.). When observed on a finer time-scale
(≈ s), the random behavior due to Brownian motion is clearly visible, but only
in the early stage of the evaporation process. Figure 8.1c) shows the microspheres
almost at the end of the evaporation process; practically all microspheres have been
transported to the edge of the well.

First, we summarize the most important aspects of diffusion-limited evaporation
regarding droplets. We will argue that these aspects are applicable to our nanoliter
wells. Second, we will discuss in detail the effects of the liquid flow on the micro-
spheres. Third, we will present a digital image analysis approach, using optic flow,
to measure the flow field. As the well contains a limited number (≈ 180) of micro-
spheres, we obtain a sparse spatio-temporal measurement space. The local velocity
(flow field) and a confidence value is computed from this measurement space. The
confidence is high at (x, y, t)-positions where a sphere is present and low elsewhere.
The confidence map allows for a transformation of the flow field v(x, y, t) into an
estimate of the radial velocity v̂(r, t) as a function of the radial position r and time
t. Finally, we will compare the measured flow field with the predicted flow field.

8.1 Diffusion-limited evaporation

Recently, the formation of ring stains in ”macroscopic” droplets, e.g. coffee droplets,
was explained by Deegan et al. as the result of contact line pinning at the edge
of the droplet, and evaporation-limited diffusion of molecules from the saturated
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Figure 8.1: a) The distribution of the microspheres (radius 0.25µ m) directly after
filling the circularly shaped well (radius 100µ m) with an evaporating ethylene-glycol
sample, b) the trajectories of the fluorescent beads (see also the cover of this thesis
for a color version). The grey-scale map represents time, c) the distribution of the
microspheres just before the meniscus (air-liquid interface) touches the ground in the
middle of the well and breaks. The instant t = 0 corresponds to the moment that
the meniscus is perfectly flat. The corresponding meniscus shape is illustrated next
to the grey-scale-map.

vapor layer to the environment [26, 25]. These two conditions are responsible for
the outward directed flow and explain our observations of the transportation of the
fluorescent microspheres as shown in figure 8.1.

Deegan et al. state that the rate limiting step of the evaporation process de-
termines the functional form of the local evaporation rate j(r) along the air-liquid
interface. If the evaporation process is diffusion limited, then the diffusion process
will rapidly attain a steady state: the diffusion equation reduces to the Laplace
equation. This results in a boundary value problem with boundary conditions
u = us (saturated vapor pressure) at the interface and u = u∞ (ambient vapor
pressure) far away from the interface, which can be solved analytically, under the
assumption that the shape of the droplet is a spherical cap. Deegan verified exper-
imentally that a spherical cap describes the shape of the air-liquid interface of a
droplet [26]. If the footprint of the droplet has a constant radius R and the height
in the center of the droplet is H(t) as a function of the time t, then it is straight-
forward to derive that the height h(r, t) of the interface at a distance r from the
center of the droplet is given by:

h(r, t) =
H2(t)−R2 +

√
H4(t)− 4H2(t)r2 + 2H2(t)R2 +R4

2H(t)
. (8.1)

Deegan et al. give a very good approximation for the analytical solution of the
boundary value problem given the geometry of the droplet defined in eq. (8.1):

j(r) ∝ 1√
1−

( r
R

)2 . (8.2)
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Equation (8.2) shows that the evaporation rate is strongly enhanced towards the
edge of the droplet. As a result, the loss of liquid at the edge due to evaporation
must be replenished by liquid from the bulk of the droplet. This induces an outward
directed liquid flow v(r, t). Given the expressions for the dynamic height of the air-
liquid interface of the droplet h(r, t) (eq.(8.1)), the (static) local evaporation rate
j(r) (eq.(8.2)), and the rate of change of the height in the center of the droplet, the
outward flow field v(r, t) as a function of the radial position r and time t follows
from a mass balance [26]:

v(r, t) = − 1

ρrh

r∫
0

dr′ r′

j(r′)
√

1 +

(
∂h

∂r′

)2
+ ρ

∂h

∂t

 , (8.3)

with ρ the liquid density. From this equation it is clear that a nonzero v arises when
there is a mismatch between the local evaporation rate j(r) and the rate of change
of the height profile h(r, t). There are three differences between our experiments
and the experiments of Deegan et al.

First, the geometry of the liquid sample in our circular wells differs from the
geometry of a droplet on a flat surface. The shape of the air-liquid interface is
measured using interference-contrast microscopy [69, 29]. With this microscope-
based technique, fringe patterns showing Newton rings are generated. The depth of
the wells is only 6µ m and the liquid sample in the well can therefore be regarded
as a thin film. Analysis of the fringe patterns acquired by interference-contrast
microscopy results in the height profile of the meniscus as a function of time [29].
Figure 8.2 shows nine (out of a large series) retrieved height profiles (solid lines)
of the air-liquid interface as a function of the radial position. The time difference
between two successive profiles is 20s. The dashed lines show the height profiles
computed from eq.(8.1) with R = 100µm and the best fit to the center

H(t) = (7.38µm− 6.13µm)− 0.042
µm

s
t . (8.4)

The depth of the well (estimated value 6.13µm) is added to h(r, t) to compute
the height of the air-liquid interface with respect to the bottom of the well. The
expression for H(t) follows from fitting a first-order polynomial to the measured
heights of the air-liquid interface in the center of the well. Figure 8.2 confirms that
the meniscus can be modeled by spherical caps. In other words: eq.(8.1) is valid
for the air-liquid interface of the liquid sample in our wells.

Second, we have used ethylene glycol for our experiments rather than water.
The evaporation process is extended to a time scale on the order of a few minutes
instead of a few seconds. With the technique of interference-contrast microscopy
we have found that the total evaporation rate for a circular well is constant in
time [29]. Furthermore, any thermal effect, cooling of the liquid due to evaporation,
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Figure 8.2: The measured height profiles of the meniscus (solid lines) and height
profiles representing spherical caps (dashed lines) obtained by fitting as a function of
evaporation time.

is negligible. The large silicon volume in which the well is fabricated is a source of
thermal energy that can easily compensate for any loss of thermal energy due to
evaporation, especially since the evaporation is such a slow process. Furthermore,
the total evaporation rate as a function of the well radius R is a linear function,
which implies that the evaporation process in our wells is indeed diffusion limited.

Third, at the start of our experiment, the meniscus is convex and the geometry
of the meniscus is identical to the geometry of a droplet on a flat surface. The fact
that we have a cylindrical liquid volume with a radius R and a depth of 6µm is not
important for the boundary value problem to be solved. No molecules can escape via
the bottom or via the side walls of the well, just as no molecules can escape through
the footprint of a droplet on the surface. At the start of our experiment, we have
the same geometry as Deegan et al., the same type of diffusion process, the same
boundary value problem and therefore the same form of the local evaporation rate.
In other words, at the start of our experiment eq.(8.2) is valid. Furthermore, since
a diffusion-limited evaporation process implies a static local evaporation rate [26]
(j(r, t) = j(r)), we conclude that this form is valid during the entire evaporation
process. Considering the three differences described above, we can still use the
expressions for the dynamic height of the air-liquid interface of the droplet h(r, t)
(eq.(8.1)), the (static) local evaporation rate j(r) (eq.(8.2)), and the rate of change
of the height in the center of the well (eq.(8.4)). The outward flow field v(r, t) as a
function of the radial position r and time t follows from eq.(8.3).

Figure 8.3a) shows the flow v(r, t) for a circular well (radius 100µm, depth
6.13µm) according to eq.(8.3). As can be seen in this figure, the flow in the initial
phase of the evaporation is very slow (≈ 0.1µm/s). At the end of the evaporation
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process the velocity of the flow increases (≈ 1µm/s, in figure 8.3a) the velocity is
clipped at 0.5µm/s for good visualization). Due to symmetry the velocity in the
center of the well is zero at all instants. Note that the theory predicts that the flow
at the edge of the well is not zero. Furthermore, the form of the local evaporation
rate in our wells is identical to the form in the case of droplets. The flow field in
our wells, however, is not identical to the flow field in a droplet. The difference
is the 6µm deep cylindrical volume in our wells. This keeps the flow field at the
edge of the well at some finite value, whereas in the case of a droplet, the flow field
at the edge of the droplet diverges (mathematically). Figure 8.2 suggests that the
change of the shape of the air-liquid interface is significant. This is not the case.
The minimum radius of curvature of the air-liquid interface, at the instant that the
meniscus hits the bottom of the well, is approximately 1.1cm. Compared to the
radius of the well, R = 150µm, the meniscus is practically flat during the complete
process of evaporation.

8.2 Motion of microspheres in the fluid

In this section, we will discuss if the microspheres are well suited to monitor the
flow. The first question is: are the spheres small enough, not to influence the flow
and to represent it accurately? Secondly, are they big enough, such that Brownian
motion is not a major effect? Finally, is the diameter of the spheres small enough
compared to the depth of the well?

1. The outward directed flow is laminar, since the Reynolds number
Re = ρvl

η � 1, with l a characteristic length, i.e. the radius of the micro-

spheres, v ≈ 1µm/s the velocity, η = 16.1 · 10−3Pas the viscosity of ethylene
glycol (C2H4(OH)2) at 298K [72] and ρ = 1.1 · 103kg/m3 the density of ethy-
lene glycol. Stokes’s law gives the friction force on a microsphere as

F = 6πrη(v − vk), (8.5)

with v the velocity of the fluid and vk the velocity of the sphere. From this
follows the acceleration of the sphere as v̇k = C(v − vk) with C = 9η

2ρkr2k
, with

ρk = 905kg/m3 the density of the microspheres (polypropylene). The velocity
of the fluid changes very slowly in time. Consequently, we assume v to be
constant and obtain

vk(t) = v(1− e−Ct), C = 8 · 10−5 · 1

r2k

m2

s
(8.6)

as the solution of the equation of motion with boundary condition vk(0) = 0.
For rk = 0.25µm we conclude that vk → v instantaneously. Whereas if the
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Figure 8.3: a) The predicted outward-directed flow field v(r, t) as a function of time
t and radial position r, b) the measured outward-directed flow field v̂(r, t), c) the
radial confidence field ĉ(r, t). The instant t = 0 corresponds to the moment that
the meniscus is perfectly flat. In the dashed region for small radial positions the
confidence is very low, because of the absence of microspheres. In the dashed region
for large radial positions the microspheres at rest do not represent the flow.
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constant C were on the order of unity (for rk ≈ 5mm), the time to reach
vk = 0.95v starting from initial rest would then be ≈ 5s.

2. The average quadratic displacement in three dimensions of a microsphere
due to Brownian motion in a static solution in a time-interval t is given by〈
x2〉 = 6Dt, withD the diffusion constant defined by the Einstein relation [32]

D =
kBT

6πηrk
. (6.48)

In our experimental setup we only observe the projected 2D displacement√〈
x2
ob

〉
rather than the real 3D displacement

√
〈x2〉. Their relation is given

by the stereological factor, the average projected displacement of all 3D dis-
placements

√〈
x2
ob

〉
=

1∫
0

√
1− z2 dz

1∫
0
dz

√
〈x2〉 =

π

4

√
〈x2〉 . (8.7)

Finally, we obtain
〈
x2
ob

〉
= 3

8π
2Dt ≈ 3.7Dt. Recall that

〈
x2〉 = 4Dt for 2D

Brownian motion. With the values for η and rk, we have D = 0.054µm2/s. In
the early stage of the evaporation v ≈ 0.1µm/s and we conclude that Brow-
nian motion is a significant effect, but Brownian motion becomes negligible
towards the end of the evaporation process with v > 1µm/s.

3. The choice for microspheres with a radius of 0.25µ m seems reasonable given
the depth of our wells (6µm). The particles are small enough that they
immediately drift with the flow. Smaller particles would be more influenced by
Brownian motion. Larger particles would reduce the contribution of Brownian
motion, but larger particles would strand at the bottom of the well early in the
evaporation process when the fluid level in the middle of the well decreases.

8.3 Imaging microspheres in the fluid

In the previous section we argued that the microspheres were suited to visualize
the flow from a transportation point of view. In this section we will discuss if
the microspheres can be imaged properly onto a detector and recorded, such that
the analysis of the acquired image sequence results in a good description of the
liquid flow. Figure 8.1a) clearly shows that not all microspheres are in focus. Right
below the center of the well some out-of-focus microspheres can be seen; instead
of a small bright spot, a bright and dark ring can be seen around a dimmer spot.
In microscopy the following approximation is used to describe the depth-of-focus
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(DOF ) for a quarter of a wavelength defocus error [149]:

DOF =
λ

4n

(
1−

√
1− NA2

n2

) . (8.8)

with λ = 605nm the emission wavelength of the Rhodamine-stained microspheres,
n = 1.43 the refractive index of ethylene glycol and NA = 0.75 the numerical
aperture of the objective used for microscopic imaging. This is the maximum
tolerance of defocusing without significant distortion of the image (which is in fact
the λ/4 criterion for the wave front distortion of the marginal ray of the lens).
Inserting these values in eq.(8.8) yields a total depth-of-focus (defocusing error
|∆z| < 5/4λ) of 1.5µm. If we position the focal plane at half the depth of our
wells, then the 6µ m depth of the wells implies a maximum defocusing error of one
wavelength disregarding evaporation. The out-of-focus microspheres in figure 8.1a)
may very well have this defocusing error. In our experiments, we have positioned
the focal plane below half the depth of the wells, since the height of the liquid
decreases during the evaporation process. This implies that during the evaporation
process the out-of-focus microspheres tend to move in focus. This can be seen in
figure 8.1c), where practically all microspheres are sharply imaged. The unsharpness
here is due to very fast motion at the instant that the meniscus hits the bottom of
the well. Equation 8.8 reduces for NA/n� 1 to the more well-know expression

DOF =
λn

4NA2 . (8.9)

Any analysis that requires sharply imaged objects, such as segmentation and
tracking of objects, as used by Deegan et al. [26], can only be applied in a short
time interval and for small changes in the height of the air-liquid interface. The
technique we propose takes these intensity fluctuations due to defocusing into ac-
count. Consequently, we can measure the flow field during the complete course of
evaporation and at all radial positions.

8.4 Image analysis

In this section we will present a grey-level based image analysis approach to estimate
the average radial velocity of the microspheres in the fluid. This approach does
neither require segmentation nor tracking of the individual microspheres.

One option to measure the flow is standard particle image velocimetry (PIV) [142].
PIV is used for monitoring and analyzing laminar and turbulent flow behavior
mainly in pipes, based on the cross correlation of subsequent images. PIV assumes
that many tracer particles are uniformly distributed in the fluid. Computation of
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the local shift between two successive images requires at least one particle to be
present in the interrogation window. For an image with a size of about 218×218µm2

(figure 8.1a) and about 180 visible dissolved microspheres, the correlation window
must be at least 16×16µm2. Note that the estimation of the correlation peak from
one marker is not very robust. Furthermore, the flow is not expected to be uniform
in larger windows, but radially diverging from the center of the well. Therefore
we conclude that we do not satisfy the assumptions necessary for robust velocity
estimation via PIV. The use of more markers in this micron scale flow study re-
sults in indistinguishable objects after imaging. Smaller microspheres do not emit
sufficient light for a reasonable signal to noise ratio. The average shift of a micro-
sphere between two successive images in our experiments is small (0.01–0.07 pixel
units) and PIV with sub-pixel interpolation can only obtain measurements with an
uncertainty of 0.1 pixel units [145]. Another possibility is to leave out several im-
ages in the sequence and compute the cross-correlation between them. This is not
necessary in our approach, therefore we can use all available images for improving
the signal-to-noise ratio allowing high precision velocity estimation.

A second option to measure the flow field is segmentation of the microspheres
and tracking over the course of the fluid evaporation. This is not very promising. As
discussed earlier we see all microspheres in a projection. Not all microspheres are
in the focal plane, therefore some of the microspheres appear blurred. This makes
segmentation a difficult task, that can be avoided by our grey-value approach.

The technique we propose uses optic flow [75], compare chapter 6.1.2 for a de-
tailed discussion on different methods to compute velocity in images. Optic flow
computes the velocity per pixel for the whole image sequences I(x, y, t). The trajec-
tories of the microspheres form spaghetti-like structures in I(x, y, t), see figure 8.4.
Where PIV uses only two successive images to compute the shift of the tracers, optic
flow uses more images. Velocity is interpreted as orientation in the spatio-temporal
image sequence. The use of several images simultaneously yields a higher precision
and accuracy for the velocity estimate. Optic flow starts from the assumption that
the intensity per object I(x, t) is conserved, such that

I(x, t) = I(x+ dx, t+ dt) . (8.10)

Assuming a uniform rectilinear motion v = const. we can use a first order Taylor
expansion of the right hand side and combine it with eq.(8.10) This yields the
well-known flow equation

∇I · v + ∂tI = 0 . (6.27)

This is a scalar equation, which does not allow the computation of all components
of v. This is known as the aperture problem. Expanding the constraint of constant
velocity to a small neighborhood V = (∆x,∆t), introduced first by Lucas and
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Kanade [75], we can solve eq.(6.27) for v using a least squares approach:

v(x, y, t) = − 1

V 2

∫
dV (∇I∇It)−1

∫
dV∇I∂tI . (6.36)

The images are recorded with a CCD camera and processed with a computer, thus
we deal with discrete signals rather than continuous functions. Equation (6.36)
therefore requires discrete derivatives. Finite differences of image values divided by
the pixel distance is not the ideal derivative for images [19, 83]. Gaussian derivative
filters (or at least approximations) are used ordinarily in image processing as they
combine noise suppression and localization in an optimal way [19, 83]. A discrete
derivative is computed with the help of a regularized derivative, as in distribu-
tion theory, i.e. using a convolution of the image with derivatives of Gaussians
characterized by their standard deviation σ. The parameter or scale σ defines the
smoothing. A larger σ results in a higher noise suppression and blurring. The effec-
tive width of a Gaussian filter is (−3σ, 3σ). Equation (6.36) involves three scales:
the spatial derivatives ∇(σg), the temporal derivative ∂t(σt), and the averaging in
V (σT ). We have set σg = 0.52µm, σt = 0.2s and σT = (2.6µm, 0.3s). The reason
for these choices is as follows: σg should be small enough to detect abrupt changes
in intensity transitions from the background intensity level to the object level. We
want a standard deviation of σt = 0.2s to average over several (≈ 18) successive
images. The regularization kernel σT has to be large since the structure is esti-
mated in a spatio-temporal neighborhood defined by σT . Our velocity estimation
is not critically dependent on the choice of the scale parameters, i.e. no fine tuning
is needed. A range of values will only lead to very small changes in the estimated
velocity.

Given the lowering of the meniscus during the evaporation, the changes of the
focal plane, and the Brownian motion in the axial direction, the microspheres drift
in and out of focus. This causes a varying recorded intensity per microsphere, which
is not compatible with the assumption of optic flow. An adaptive 1D filter along
the trajectories is applied before computing the optic flow to suppress noise and
to reduce the intensity variations without spurious blurring of the image [40, 4].
Figure 8.4 shows for some trajectories in a quarter of the well after pre-processing.
Adaptive filtering requires knowledge about the local structure in the image in
order to adapt to it. The orientations of the trajectories of the microspheres are
estimated by an eigenvalue analysis of the gradient structure tensor [66, 45, 61].
This is a generic tool to estimate the local structure and the dimensionality of the
structure in images. The gradient structure tensor is closely related to the inertia
tensor from classical mechanics. For line-like structures the eigenvector associated
with the smallest eigenvalue corresponds to the orientation of the trajectory and
the eigenvalues are distributed as λ1 ≈ λ2 � λ3. Furthermore, this permits the
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Figure 8.4: Iso-surface plot of the trajectories of microspheres in a quarter of the
well after 1D adaptive filtering. The time axis points upwards and we only show every
7th time frame of the (x, y, t) image.

computation of a robust normalized confidence field

c(x, y, t) =
λ2 − λ3

λ2 + λ3
, (8.11)

where c ≈ 1 for lines in the spatio-temporal image and zero elsewhere.

After adaptive filtering and optic flow estimation, the radial velocity needs to
be estimated against fluctuations of individual particle movements. The limited
number of particles result in a (x, y, t)-image that is sparsely filled with trajectories.
As a consequence, the velocity field v(x, y, t) only contains reliable data along/near
the trajectories, i.e. (x, y, t)-locations with high confidence. This is especially the
case in the center of the well near the end of the evaporation process, since most
of the microspheres that were present in the center at the start of the experiment
have been displaced to the border of the well by the liquid flow. In regions with
low confidence (few or no microspheres present) the velocity can be estimated by
normalized convolution [66, 144, 45], which interpolates the signal between parts of
high confidence. See figure 8.5 for an example of the use of normalized convolution
for interpolation purposes.
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Figure 8.5: Demonstration of interpolation using normalized convolution, a) original
signal s, b) signal confidence product s · c with some confidence c ∈ [0, 1], c) recon-

structed signal (s·c)∗w
c∗w with a Gaussian weight function w where ∗ is the convolution

operator.

The circular shape of our well justifies angular averaging of the radial compo-
nents of the velocities. Given the velocity field v(x, y, t), averaging over all mea-
surements in a ring between radius r and radius r + dr results in a more robust
estimate of v(r, t) and interpolation between measurements with high confidence
compensates for the sparse field. The averaging and interpolation are performed si-
multaneously. This requires the radial component of the velocity field to be weighted
with the confidence field, or vr(x, y, t) = (v(x, y, t) · r̂)c(x, y, t) with r̂ = r

|r| . The

combination of radial averaging and spatio-temporal interpolation on measurements
with high confidence uses the weight function w(x, y, t; r), which is a ring in the
xy-plane that has a Gaussian profile, as center point the center of the well (x0, y0, t),
and radius r:

w(x, y, t; r) = e
− 1

2σ2
xy

(√
(x−x0)2+(y−y0)2−r

)2

e
− t2

2σ2
t , (8.12)

where the temporal blurring is chosen to be much larger (in image pixels) than the
spatial blurring as the predicted velocity is very smooth along the time-dimension,
i.e. σt � σxy. This weight function is applied to the velocity field as well as to the
confidence field. The ratio of the two weighted fields gives an estimation for the
flow field at radius r:

v̂(r, t) =

∑
x,y,τ

vr(x, y, τ)w(x, y, t− τ ; r)∑
x,y,τ

c(x, y, τ)w(x, y, t− τ ; r)
. (8.13)

The operation with the weight function in eq.(8.13) is a scalar product in space and
a convolution in time. As the time and spatial components are separable and the
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ordering of summation can be interchanged we can rewrite eq.(8.13) to

v̂(r, t) =

∑
τ
w2(t− τ)

∑
x,y
vr(x, y, τ)w1(x, y; r)∑

τ
w2(t− τ)

∑
x,y
c(x, y, τ)w1(x, y; r)

, (8.14)

which allows for a convenient computational implementation. The radial confidence
field follows as

ĉ(r, t) =

∑
x,y,τ

c(x, y, τ)w(x, y, t− τ ; r)∑
x,y,τ

w(x, y, t− τ ; r)
. (8.15)

Figure 8.3b) shows the computed radial velocity distribution v̂(r, t). Figure 8.3c)
represents the confidence ĉ(r, t). In order to compare the predicted flow field with
the computed flow field, we plot them for different radii in a well with a radius of
100µm as shown in figure 8.6. Figure 8.7 shows the same comparison for a well
with a radius of 150µm.

The estimated velocity v̂ corresponds well with the predicted velocity, given the
fact that the estimate is based on sparse measurements. The microspheres move
towards larger radii during the evaporation and make the center of the well empty.
This empty region grows during the evaporation process. Thus, for small radii, it is
practically impossible to measure the velocity for t � 0. This explains the region
with low confidence in the lower left corner (small radial position at the end of the
experiment) in figure 8.3c). For large radial positions, at the sidewall of the well,
the spheres will collide against the wall, stop moving, and no longer represent the
flow.
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8.5 Conclusions

In this chapter we presented a method to measure the flow induced by an evaporat-
ing liquid sample in circular wells (R = 100µm, 150µm, depth = 6µm) and compare
the estimated flow field with the predicted flow field. The outward directed flow is
a consequence of the pinning of the liquid at the edge of the well in combination
with the diffusion-limited evaporation. Small (rk = 0.25µm) microspheres are used
to visualize the flow. The Brownian motion of the microspheres is only of influence
in the very early stages of the evaporation when the flow velocity is small. We
use optic flow to process the acquired image sequence and retrieve an estimate of
the flow field (velocity image). Together with a confidence measure we are able
to interpolate the relatively sparse measurement points in a generic manner. The
final estimate of the radial velocity v̂(r, t) is in good agreement with the theoretical
prediction, except at the side walls of the well.

Previous measurements of flow in droplets to support the theory have been lim-
ited to a small number of points in the lower right region of figure 8.3b). The novel
approach described here, which allows for a detailed quantitative verification of the
elegant theory of ring formation in pinned droplets (and wells), significantly out-
performs the earlier presented results, which has been coarsely sampled by tracking
microspheres only near the edge of macroscopic droplets and only at the end of the
evaporation process [26].

Methods and materials

A small volume of Rhodamine-stained microspheres (Fluospheres, Molecular Probes,
Leiden, The Netherlands, excitation wavelength: 580nm and emission wavelength
605nm) with a radius of 0.25µm was added to a droplet of pure ethylene glycol.
The experiments were performed on a Zeiss Axioskop microscope with a 20×/0.75
FLUAR objective and a fluorescence filter set from Zeiss (filter set #15, excitation:
BP 546/12, beam splitter: FT 580, emission: LP 590). A Sony DXC-960MD 3CCD
color video camera was mounted on the microscope via a 2.5× camera mount from
Zeiss. The CCD camera was attached to a Matrox Marval G200 AGP frame grab-
ber. Digital recordings were acquired at a frame rate of 15frames/s. For the well
with a radius of 100µm the acquired image sequence after cropping and resampling
was I(x, y, t) = 420×416×2849 voxels. From the cut-off frequency of a lens 2NA/λ
we get the Nyquist sampling criterion 4NA/λ = 4.95 samples/µm. This sampling
would be necessary to reconstruct the image correctly from an observation with
this lens system. However, we could only achieve a spatial sampling density of 1.92
samples/µm. We wanted to observe the whole well in one image, making a trade off
between the field of view and the sampling density. Nevertheless, we have one pixel
per 0.52µm which is a microsphere diameter. On the other hand the time sampling
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is very fine, the velocities are much smaller than one pixel per frame. The overall
sampling is sufficient for our analysis task. If we would use smaller microspheres
only image the PSF would be imaged.

For the well with a radius of 150µm the acquired image sequence after cropping
and resampling was I(x, y, t) = 473×384×3618 voxels. The spatial sampling density
was 1.29 samples/µm. In both cases the acquisition started when the meniscus was
convex. The instant t = 0 corresponding to a flat meniscus was at frame 711 for the
100µm well and at frame 513 for the 150µm well. Microarrays with different sized
wells were etched in silicon dioxide at DIMES (Delft Institute for Microelectronics
and Submicron Technology).

8.6 Brownian motion in nanoliter wells

In several experiments we investigate the Brownian motion of microspheres in nano-
liter wells. Brownian motion cannot be studied in the former experiments indepen-
dently of the outward directed flow. Even in the early phase of the evaporation the
flow is of the same order as the expected Brownian motion. Therefore we perform
experiments in which we fill the wells (R = 200µm, d = 40µm) with different aque-
ous solutions of ethylene glycol, add microspheres and then seal the wells by a glass
cover slip to prevent evaporation. This ensures that the liquid is stationary.

From the study of the Brownian motion it is possible to extract one of the
following quantities: the diffusion constant D, the viscosity of the medium η, the
radius of the spheres r or the temperature T . The connection between the random
motion of the microspheres and their average displacement is given by the diffusion
equation (6.46). The expected position of a tracer particle after a time t is the
initial position, but the variance of the observation is growing (linearly) with time〈

x2
〉

= 2nDt . (D.9)

Here we have to keep in mind that only the projected 3D Brownian motion is
observed and we have to apply the stereological factor π/4〈

x2
ob

〉
=

3

8
π2Dt . (8.7)

A connection between the macroscopic diffusion constant and the microscopic pa-
rameters is established by the Einstein relation [32]

D =
kBT

6πηr
. (6.48)

In our experiments we want to measure the diffusion constant via observations
of the variation of the displacement eq.(8.7) as a function of the radius of the
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microspheres and as a function of the viscosity of the aqueous solution of ethylene
glycol (C2H4(OH)2). Finally we can compare the measurements with the theoretical
values from eq.(6.48).

In figures 8.8a-d) we show typical images of wells filled with fluorescent mi-
crospheres. We used microspheres with radii of 55, 95, 280, 485 and 1050nm in
solutions ranging from pure water to pure ethylene glycol. For all experiments we
acquired in between 150 and 360 time frames (100-600s).

(a) (b)

(c) (d)

Figure 8.8: Images of different microspheres in aqueous solutions of ethylene glycol
in nanoliter wells (all displays log stretch). The image size is 1334 × 1024 pixels or
408 × 311µm2. a) square well with pure water r=95nm, b) round well with pure
ethylene glycol r=95nm, c) 10% ethylen glycol r=1050nm, d) 50% ethylen glycol,
r=55nm. For the processing a region of interest is manually selected such that the
well borders are excluded.
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8.6.1 Estimation algorithm

To estimate the displacement per tracer particle we have to follow the individual
particle over time and record its space-time position. In recorded images as in
figures 8.8a,b,d) there are many visible microspheres present (dependent on the
radius of the spheres). Tracking theses ’blobs’ is difficult if there is a high density
of blobs. In the following we will describe a straightforward and simple algorithm.
For more sophisticated tracking methods see for example [8, 20].

The first step in our algorithm is to segment the blobs from the background.
For larger microspheres the signal-to-noise-ratio (SNR) is good as there is a lot of
fluorescent material present, for smaller radii this decreases with the third power,
compare figure 8.8c) and d). As a preprocessing step to enhance the blobs, if
needed, we use a tophat filter I −maxf(minf(I)) [131]. Then a manually selected
threshold is applied to segment the objects. The objects in each time frame are
labeled automatically. Starting from all detected objects in the first time frame the
nearest object in the following time frame is located (within a search radius of a few
times the expected motion in this time interval). Due to merging or detection failure
of objects in time frames, this procedure can produce ambiguous paths. With a
post-processing step only unique paths are extracted, where at merging paths the
shortest path is considered. From theses paths the diffusion constant is calculated
from non-overlapping pairs at time points {i, i+∆t}, {i+∆t+1, i+2∆t+1}, . . . of
positions of an object. With this method several estimates for D can be obtained
from one tracer particle. A high number of pairs N is desirable to get a robust
estimate for the diffusion constant.

It is to be expected that the outlined algorithm will not work well under all
circumstances. The tracking will always choose the closest particle (which might
not be the right one). The tracking will fail or choose the wrong particle more often
for a high diffusion constant and for high densities of tracer particles. For these
cases the algorithm is to be expected to have a negative bias (underestimation of
the true displacement). Evaluation of the algorithm on simulated Brownian motion
of blobs in images has been done to verify this behavior.
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8.6.2 Evaluation

In table 8.1 we show the estimated diffusion constant for different aqueous solutions
of ethylene glycol. We show the values computed for pairs separated by ∆t ≈ 25s.
The number of initial tracers is given along with the number of pairs N used. We
display the mean and the 95% confidence interval in which the mean lies. The
statistics are based on the estimation of an unknown mean from N independent
normal distributed measurements (Student t-distribution). The estimated mean
µ lies with 1 − α probability within µ ± s√

N
tα/2(N − 1), where α = 0.05, N the

number of pairs, s the measured standard deviation and tα/2(N − 1) a tabulated
value for the left and right sided percentile of the Student t-distribution [17]. For
our measurements we have N & 20, tα/2(N − 1) ≈ 2.

In figure 8.9 we plot the estimates for Dr (scale invariant) as a function of 1/η
and forDη (viscosity invariant) as a function of 1/r. In general, the estimated values
for the macroscopic diffusion constant are in agreement with the microscopic theory.
A few measurements, however, stick out with a high overestimation {η = 1.0mPas,
r = 1050nm}, {η = 1.27mPas, r = 485nm} and {η = 3.8mPas, r = 55nm}. We
have no explanation for this overestimation. A leak in the sealing of the well by the
glass cover slip could be an explanation, but there is no visible flow in these time
series.

Finally, we investigate the estimation behavior as a function of the time ∆t,
which is correlated to the number of pairs N available from one measurement. In
figure 8.10 we plot this dependency for two experiments (η = 1.27mPas, r = 95nm
and η = 6.3mPas, r = 95nm). We see that the choice of ∆t is not critical for
the estimation. However, with increasing ∆t the number of pairs N is decreasing
resulting in a higher uncertainty of the mean.

8.6.3 Conclusions

We showed that a relative classification of diffusion constants is possible with an
image analysis technique based on an experiment in the line with the one by the
botanist Brown who noticed that pollen grains suspended in water jiggle about
under the lens of the microscope [18].

For our algorithm it is desirable to only have a few number of initial tracers
resulting in a low density so that the tracking will not fail. To compensate for a
lower number of pairs, the measurement time should be long, which enables more
independent estimates from the same tracer particle.

A different approach to measure the diffusion constant would be to introduce
one droplet of a colored liquid and to observe the spread of the droplet in time.
All the color particles are used as tracers of the diffusion and the tracking can
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Figure 8.9: Plots of the estimated diffusion constants of table 8.1. a) Dη as a
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Figure 8.10: Estimation of the diffusion constant for two experiments as a function
of ∆t which is correlated to the number of pairs N that can be extracted from the
data a) η = 1.27mPas, r = 95nm b) η = 6.3mPas, r = 95nm.

be omitted and replaced by an area/intensity measurement. In general, another
possibility – however not applicable to our problem – is to monitor a fixed volume
in time and count the number of tracers in it or measure the intensity from that
area if the intensity is proportional to the number of tracers. From the fluctuations
over time the diffusion constant can be calculated.

Materials and Methods

The experiments were performed with a Leica DM RXA confocal microscope,
20x/0.40 lens (in wide-field mode) with a Hamamatsu ORCA-ER C4742-95 CCD
camera. The images were recorded with 12 bpp resolution on 1344 × 1024 pix-
els. The sampling density was measured by placing a stage micrometer under the
microscope ∆x = ∆y = 0.304µm or 3.29 samples/µm. The microarray of wells
(R = 200µm, d=40µm) was placed on a cooling stage which kept the temperature
constant at T = 20◦C. Rhodamine-stained microspheres (Fluospheres, Molecular
Probes, Leiden, The Netherlands, λex = 580nm and λem = 605nm) were used as
tracer particles in the solution. Microarrays with wells were etched in silicon dioxide
at DIMES (Delft Institute for Microelectronics and Submicron Technology).



Chapter 9

Application 3: Group motion
correction applied to cell nuclear
motion10

Nowadays, confocal microscopy is used for the quantitative 4D imaging of spatio-
temporal processes in living cells. The transport of proteins in the cell during the
cell cycle is presumably a process that plays a role in RNA transcription and DNA
repair. Fluorescent labeling of such a protein reveals tens of moving spots in the
cell. This motion, however, is superimposed on the translation and rotation of the
cell as a whole. In this chapter we propose a fully automatic method to remove
this superimposed motion without first establishing point-to-point correspondence.
After removing the global motion the protein transport can be analyzed. The
correction method is robust against noise and different axial and lateral resolution
typical for confocal microscopy.

Acquisition and analysis of 4D image data (x, y, z, t) is an important tool in
molecular cell biology to study the function of certain proteins in dynamic cellular
processes such as RNA transcription/transport and DNA repair/replication. Fluo-
rescent labeling facilitates 4D imaging of specific proteins using confocal microscopy.
The targets show up as moving bright spots. Often their velocity, absolute or with
respect to each other, is of interest [8]. Superimposed on the spot motion itself is
the motion of the cell nucleus during the acquisition time (typically 30-120 min.).
We have developed an automatic procedure to estimate and remove the superim-
posed motion without the need to establish correspondence. The affine motion can
be separated into translation and rotation [111]. First the translation is estimated
via the center of mass motion and, secondly the rotation parameters are estimated
by constructing an intrinsic body system in each time frame via the inertia ten-
sor. Note that we learned from mechanics that translation and rotation can always

10The experimental work was done at the Leiden University Medical Center by C. Molenaar and R.W.
Dirks, which are part of the interdisciplinary project in which this thesis is carried out.
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be treated separately. Both techniques work on the grey-value information of the
image and do neither require tracking nor segmentation. The construction of an
intrinsic body system via the inertia tensor has the big advantage that the rotation
in 3D needs not to be done via the Euler angles. To compute the rotation matrix
from two given systems via the Euler angels is conceptually complex. A generic 3D
rotation R consists of three consecutive rotations in a 2D plane around the normal
axis. The generic rotation R = R1R2R3 obtained by matrix multiplication is not
commutative, requiring an iterative one-by-one method to estimate the rotation
angles. It is much easier to calculate the rotation matrix by combining the basis
transformation in two time frames to an unique intrinsic coordinate system induced
by the inertia tensor.

Often the correction for the cell motion is done by hand or by an algorithm that
requires segmentation and matching of the objects. Soo-Chang Pei et al. [97] have
presented another correspondences-less approach where they obtain the motion pa-
rameters via different order moments. However, they cannot give a confidence
measure if the algorithms fails. For symmetric bodies they fall back to a correspon-
dence based approach. Our algorithm can automatically detect symmetric body
constellations (for which the body system is not unique). As long as the body is
not a sphere we can reduce the problem’s dimensionality and solve the rotation by
an explicit 2D rotation, which is easily characterized by only one angle. Again we
can avoid the conceptual difficult Euler angles.

The goal of our approach is to compute the overall cell motion by observation
of the protein motion only. The hypothesis that we need to check is: do the
labeled protein spots move approximately the same as the cell nucleus (stain)? The
motion of the stain and spots cannot be entirely correlated as the spots have an
interesting biological function that we want to study. To test the hypothesis we
acquire protein spots and the cell nucleus at the same time by using two different
fluorescent markers and compute the motion parameter on both independently. If
these parameters show good correspondence we can conclude that our approach is
suitable. Furthermore, we want to study the effect of the correction on the motion
trajectories of the spots. An accelerated motion of the cell should be visible via a
curved spot trajectory in 4D before correction and a more straight trajectory after
correction.

9.1 Theory of motion parameter estimation

Using techniques based on the intensity of the image we are going to retrieve the
motion parameters of the affine transformation of the overall body motion without
establishing correspondence of special points. We assume that only a single struc-
ture of interest, for example a cell, is in the field of view during the acquisition time.
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Furthermore, shifting and rotating the acquired 3D time series is computationally
complex if the voxels are anisotropic, which is often the case in confocal microscopy
as the lateral resolution is about 3-5 times higher than the axial. Therefore, as a
preprocessing step the data is resampled to make the voxels isotropic.

9.1.1 Translation

If no movement of the individual spots and only movement due to drift of the
cell nucleus occurs then the motion of the center of mass of the spot image per-
fectly characterizes the drift. Biological mass (protein/DNA) in images is identified
through the intensity values I(x) of the measured fluorophores. As long as the
displacement of individual spots between two successive time frames is small, the
center of mass will not be effected significantly, as the number of bright (heavy)
spots is large. The center of mass is calculated in each time frame

xCM :=
1∑
I(x)

∑
I(x)x . (9.1)

After computation of the xCM for all time frames, we impose a shift on all images
such that their xCM coincide. We choose to shift all xCM to the image center. This
ensures that we keep maximal distance of the cell body to the images boundaries.
For image processing purposes it is desirable to avoid border effects of filtering
operation, which is practically achieved by a distance of ≈ 3 filter sizes of the object
from the border (at a distance of 3σ the Gaussian filters will only be marginally
influenced by the border).

After subtracting the center of mass motion we will correct for the rotation,
which is the second step in this registration technique.

9.1.2 Rotation

A suitable way to find the rotation of a body without identifying special points and
track them in time, is to construct a unique intrinsic coordinate system of the body
at every time step. Such a system is induced by the principal axes of the inertia
tensor [111]

Jµν :=
1∑
I(x)

∑
I(x)

(
x2δµν − xµxν

)
, (9.2)

where the coordinate origin is the center of mass and δµν is the Kronecker-delta [17].
The inertia tensor for images is normalized by the sum of the grey-values in contrast
to the inertia tensor used in classical mechanics [111, 56]. The inertia tensor is
real, symmetric and positive. Therefore it can be diagonalized by an orthonormal
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transformation D ∈ SO(n) as

DJD−1 = J̃ , (9.3)

where J̃ is diagonal. The eigenvectors of J form an orthogonal system and are
called principal axes. Furthermore, the eigenvalues of J have the following property:
λi ≥ 0 and the sum of any two eigenvalues is greater or equal than the remaining
one. We assume that J̃ can be considered constant between two successive time
frames. The rotation between two time frames t and t + 1 of a group of objects
described by their inertia tensor can be formulated with a rotation matrix R ∈
SO(n) as

RJtR
−1 = Jt+1 . (9.4)

In 3D one or two rotations around some axes are in general not enough to let an
object coincide. A possible way is the formulation by Euler angles as

R = R3′′(γ)R2′(β)R3(α) . (9.5)

The first rotation is about angle α around the initial 3-axis. The second about
angleβ around the intermediate 2-axis and the last about an angle γ around the
final 3-axis. The intervals for the angles are α ∈ [0, 2π], β ∈ [0, π], γ ∈ [0, 2π] [111]
11. Solving eq.(9.4) for R and the three Euler angels in closed-form is not feasible
with this rotation matrix

R =

 cos γ cosα− cos β sinα sin γ cos γ sinα+ cos β cosα cos γ sin β sin γ
− sin γ cosα− cos β sinα sin γ − sin γ sinα+ cos β cosα cos γ sin β cos γ

sin β sinα − sin β cosα cos β


(9.6)

Fortunately we are in the situation that the matrix under consideration J is real
and symmetric, so it can be diagonalized. For two time frames t and t + 1 we
compute

Jt = D−1
t J̃Dt (9.7)

Jt+1 = D−1
t+1J̃Dt+1 . (9.8)

Solving for J̃ we get
Jt+1 = D−1

t+1DtJtD
−1
t Dt+1 . (9.9)

The overall rotation matrix is

R = D−1
t+1Dt . (9.10)

For the actual computation we can use the orthogonality of R and D. This a major
advantage over the use of classical Euler rotation. This trick is only applicable where
an intrinsic body system can be constructed at each time frame independently.

11There is another definition of the Euler angles. The second rotation is then about the intermediate
1-axis. This convention is traditionally used in the mechanics of the rigid body. The angles are called
ψ, θ, φ and their relation with the other angles is φ = γ − π

2 (mod 2π), θ = β, ψ = α+ π
2 (mod 2π).
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9.1.3 Degeneration of the eigenvalue system; a confidence mea-
sure for correspondence

The computation of the rotation matrix R is unique as long as the eigenvalue
system of J is not degenerated. Let λ1 ≥ λ2 ≥ λ3 ≥ 0 be the eigenvalues of J and
λ2 + λ3 ≥ λ1 due to the definition of the inertia tensor. We propose a normalized
measure to indicate degeneration as

cdeg =
min(λ1 − λ2, λ2 − λ3)

λ1/3
∈ [0, 1] . (9.11)

Where cdeg = 1 indicates maximal variance in the distribution of the eigenvalues
and cdeg ↘ 0 indicates degeneration. The confidence measure can be interpreted
geometrically. Imagine the λi’s as distances in Euclidean space, then the condition

λi + λj ≥ λk, i, j, k ∈ {1, 2, 3} cyclic , (9.12)

is the triangle inequality, where cdeg ↘ 0 indicates symmetry of the triangle con-
structed by the line segments of length λi, as cdeg ↗ 1 the triangle becomes more

”asymmetric”. As long as λt1 corresponds to the same axis as λt+1
1 etc. the rota-

tion is computed correctly. If the initial eigensystem is not degenerated then the
correspondence can only be broken by a transition via degenerated state, which we
can detect.

If the body is truly symmetric, and not only the inertia, then for registration pur-
poses it does not matter how the body axes are chosen. If the inertia is symmetric
(two-fold degeneration) but the distribution of the spots is not, then we can resolve
the ambiguous coordinate system as follows. We project all spots onto the symme-
try plane reducing the dimensionality of the problem to 2D. By cross-correlation,
grey-value difference, 2D inertia tensor or Fourier-Mellin analysis [21, 117] applied
in this symmetry plane on two successive time frames, we obtain a 2D rotation
angle about the symmetry axis. The use of Euler angles is again circumvented by
projection and easy 2D rotation.

9.1.4 Stability of the eigenvalue analysis

Numerical eigenvalue analysis of noisy data is not very robust. In our case the
direction of corresponding eigenvectors in subsequent time frames should not flip.
A flip can be detected via the sign of the volume spanned by the eigen system {vi}
of J, i.e. sgn(det({vi})). To stabilize the computed eigen system we require the
system to have the same orientation for all time frames, i.e. either left or right
handed.
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9.1.5 Rotation of images

We want the rotation point of a 3D image to be the center of mass that we fixed
in section 9.1.1 to be the image center. The easiest way to do this is by translation
of the image about a vector v. A well known formalism in computer graphics to
combine a translation, rotation and another translation into one matrix operation
is through the concept of the homogeneous coordinates [49]. The translation can be
expressed in a matrix by

T =


1 0 0 −vx
0 1 0 −vy
0 0 1 −vz
0 0 0 1

 , T̃ =


1 0 0 vx
0 1 0 vy
0 0 1 vz
0 0 0 1

 . (9.13)

The rotation matrix R is expanded into a 4× 4 matrix

R̂ =


0

R 0
0

0 0 0 1

 . (9.14)

Combining these matrices the transformation of an old vector (x, y, z)t to a new
vector (x′, y′, z′)t becomes [49]

x′

y′

z′

·

 = T̃R̂T


x
y
z
·

 . (9.15)

For a rotation around the center of the image the translation vector must be chosen
half the image size.

The actual application to an image requires some more steps due to the quan-
tization of the image. For a given voxel in the output image there is in general no
associated voxel in the input image, so that value must be obtained through inter-
polation. Different methods of interpolation are known in the literature, as linear
(first order hold), bispline, cubic, etc.. In our case the simplest of them (linear),
already turned out to be sufficient.

9.1.6 Measure for rotations

The Euler angles do not give an easy interpretation of how much an object is rotated.
More intuitive measures for the amount/degree of rotation are the rotation matrix
R and the angles between corresponding pairs of eigenvectors of the inertia tensor
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(a) (b)

Figure 9.1: a) Stain H4-CFP, b) spots PML-YFP at time frame 8, z-slice 25.

J. For the rotation matrix the deviation from the unit matrix defines a measure
for rotation. For the eigenvectors of J the angles give a very good measure for the
rotation.

9.2 Application to real data

Three time series of 15 time frames each were recorded in a time-span of about
one hour. The image has two channels for two nuclear proteins (channels). The 3D
images are of size 256×256×31 voxels with a physical voxel size of 148×148×244nm
and were recorded with 8 bit integer values. The cells are not spheres in this
development stage, but rather flat, comparable to a bread dough before rising. The
cell is captured in an image of about 38 × 38 × 8µm. One protein (H4-CFP) is
distributed over the cell body, which we will refer to as stain. The other one (PML-
YFP) is localized at distinct spots, see figure 9.1. The acquisition of the stain along
with the spots in another channel enables us to test our correction algorithm.

9.2.1 Experimental setup

The living cell recordings where done by C. Molenaar and R.W. Dirks at the Leiden
University Medical Center.

Two nuclear proteins were visualized in living cells: Histon H4 and PML. The
DNA-helix in eukaryotic cells is highly condensed. The first degree of packaging
is formed by nucleosomes. About 146 base pairs are wrapped around protein oc-
tamers containing two copies of each of the four core histones, H2A, H2B, H3 and
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H4. The H3-H4 tetramer forms the inner core of the nucleosomes and these proteins
are stable bound to DNA. The PML protein is typically found concentrated in 20-
50 discrete nuclear spots, called PML bodies. The PML body has been associated
with several human disorders, such as acute promyelocytic leukemia and AIDS. The
molecular functions of PML bodies are not completely understood, but have been
ascribed roles in RNA transcription/transport and DNA repair/replication. Using
DNA-recombinant techniques, two auto fluorescent (AFP) fusion proteins were con-
structed: Histon H4-CFP and PML-YFP and expressed in human osteaosarcoma
cells (U-2 OS). The chimeric proteins mimic the function and localization of the
endogenous proteins and enable dynamic live cell imaging. Expression of Histon
H4-CFP results in a total nuclear staining and expression of PML-YFP in staining
of ≈ 30 PML bodies.

9.2.2 Methods: Cloning of GFP-fusion proteins

The cDNAs encoding PML and Histon H4 were generated by RT-PCR on cDNA
copied from mRNA isolated from human U-2 OS cells and cloned into the pECFP-
C1 or pEYFP-C1 vectors (Clontech, Palo Alto, CA).

9.2.3 Live cell imaging

The AFP-fusion proteins were transiently expressed in U-2-OS cells using DOTAP
(Roche Diagnostics GmbH). Cells were analyzed 24-48 h after transfection and
were selected for moderate expression and protein-specific localization. The tem-
perature of the cells was maintained at 37◦C using a heated ring surrounding the
culture chamber and a microscope objective heater (Bioptechs, Butler, PA). Images
were acquired on a Leica TCS/SP2 confocal microscope system using a 100× NA
1.4PL APO lens. The 457 nm and 514 nm lines of the Argon laser were used for
respectively CFP and YFP excitation. CFP and YFP were sequentially scanned to
avoid cross-talk through in the emission window.

9.2.4 Results

For all three time series and in both channels the degeneration confidence measure
(9.11) is cdeg > 0.75 ∀t, i.e. there is no transition via a symmetrical state. This
indicates that our approach is valid under real circumstances. In figures 9.2 and
9.4a) we have plotted for the series the computed center of mass shift and rotation
of the eigenvectors, figures 9.2, 9.4 and 9.6b-d), for the stain and spots. The shift
estimate of the stain and spots is in very good agreement. The overall shift is shown
in table 9.2. The rotation of corresponding eigenvectors between time frames is
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also well correlated. Therefore it is reasonable to say that the motion parameters
of the whole cell can be computed from the spots only, if they are distributed over
the whole cell. More important, it is not to be expected that the spot and stain
rotation is exactly the same. The spots move within the stain, but perform a motion
correlated to their biological activity, which we want to study. Even stronger, if the
stain and the spot motion would not differ at all, then the labeled spots, would not
have a biological interesting function, as they just stand still inside the nucleus. In
table 9.1 we show the computed correlation between the stain and spots rotation
of the different eigenvectors. We compute the correlation as the cosine of the angle
between the vectors and as the normalized difference between the vectors formed
by the rotation angle of the eigenvectors of the stain and the spots plotted in
figures 9.2, 9.4 and 9.6b-d). Furthermore, we see a strong correlation between the

Series 1 Series2 Series 3
ρ diff ρ diff ρ diff

corr(stain,spots) v1 0.79 0.37 0.88 0.31 0.80 0.35
corr(stain,spots) v2 0.81 0.36 0.88 0.34 0.83 0.32
corr(stain,spots) v3 0.93 0.24 0.94 0.24 0.89 0.24
corr(spots,spots) v1, v2 1.0 0.049 0.99 0.050 0.99 0.048

Table 9.1: Correlation between the spots and stain rotation for the different eigen-
vectors. Last row: Correlation between the first and second eigenvector of the spots.
ρ := vi(stain)·vi(spots)

‖vi(stain)‖‖vi(spots)‖ , diff:= ‖vi(stain)−vi(spots)‖
‖vi(stain)‖+‖vi(spots)‖ . A ρ close to one indicates good cor-

relation.

motion of the first v1 and second eigenvector v2 in figures 9.2, 9.4, 9.6b) and c).
They rotate more than v3 in figures 9.2, 9.4, 9.6d). The correlation between the v1
and v2 rotation comes from the flat shape of the cell. A typical cell is 4-5 times
wider than high. Based on this shape of cell we conclude therefore: v1 and v2
lie approximately in the xy-plane, i.e. the elongated direction of the cell, and v3
close to the axial direction. Thus the cell rolls little in the axial direction during
acquisition compared to the rotation in the lateral plane.

Shift stain Shift spots c̄1D before c̄1D after
Series 1 3.32µm 3.53µm 0.145 0.175
Series 2 4.32µm 4.31µm 0.145 0.187
Series 3 2.52µm 2.56µm 0.142 0.191

Table 9.2: Total shift of the center of mass computed form the stain and the spot
channels. The mean confidence c̄1D before and after the correction.
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Figure 9.2: Series 1: a) Shift of the center of mass in pixel, b) Rotation of the first
eigenvector in degrees between time frames, rotation of the second c) and third d)
eigenvector in degrees between time frames.
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Figure 9.3: Series 1: a) Histogram of c1D before correction, b) after correction, c)
κ̄before/κ̄after as a function of the regions with c1D higher than the threshold.
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Figure 9.4: Series 2: a) Shift of the center of mass in pixel, b) Rotation of the first
eigenvector in degrees between time frames, rotation of the second c) and third d)
eigenvector in degrees between time frames.
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Figure 9.5: Series 2: a) Histogram of c1D before correction, b) after correction, c)
κ̄before/κ̄after as a function of the regions with c1D higher than the threshold.
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Figure 9.6: Series 3: a) Shift of the center of mass in pixel, b) Rotation of the first
eigenvector in degrees between time frames, rotation of the second c) and third d)
eigenvector in degrees between time frames.
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Figure 9.7: Series 3: a) Histogram of c1D before correction, b) after correction, c)
κ̄before/κ̄after as a function of the regions with c1D higher than the threshold.
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9.2.5 4D measures

The result of the cell body motion on the spots has been studied as follows: Before
and after the motion parameter correction we compute a line-likeness measure in
the 4D image of the spots. We use

c1D =
l3 − l4
l3 + l4

∈ [0, 1] , (9.16)

as a normalized measure, where li ≥ li+1 ≥ 0 are the eigenvalues of the gradient
structure tensor [10, 60, 56, 61]

Ḡ := ∂αI∂βI , α, β = 1, . . . 4 (9.17)

applied to the 4D (x, t)-image, see appendix A. Here the overhead bar denotes
averaging over a local neighborhood.

In figures 9.3, 9.5 and 9.7 the histograms of the confidence measures are shown
before a) and after b) the correction. The peak position of the confidence histogram
before and after correction does not change. However, the mean confidence increases
about 20% for all series, compare also table 9.2. Furthermore, we investigate the
acceleration of the spots. A measure for the force/acceleration a is the curvature
of the 4D spot trajectory, compare section 4.6

a = |v̇|T + |v|2κ(s)N . (4.24)

The curvature is compute by eq.(4.7). In figures 9.3,9.5 and 9.7c) we show the
ratio of the average curvature κ̄ before and after the correction as a function of the
regions with a least a certain line-likeness value c1D. The mean curvature before
and after correction as a function of the confidence increases only slightly for higher
confidences. Therefore, we conclude that the corrected motion is not accelerated.
The cell does not roll on the stage as seen from the angles of the third eigenvector
and the drift in the water basin seems to be force free.

9.3 Conclusions

We presented a fully automatic algorithm to obtain motion parameters in 3D with-
out establishing correspondence of individual points. The inertia tensor provides a
robust intrinsic coordinate system in every time frame. This enable us to calculate
the rotation matrix by combining basis transformations to this intrinsic system, in-
stead of using the Euler angle formalism. A measure to detect failure of the rotation
correction is presented (9.11). The motion parameters can reliably be computed
from the spots. If it is possible the motion parameters of the stain observation
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should be used to correct the spot movement as the stain is not influenced by dis-
locations of labeled material. This automatic correction should be the first step
in analyzing the relative motion of individual spots. It enables us to only observe
the spots and at the same time to correct for the cell nucleus motion, which is an
experimental advantage.



Chapter 10

Conclusions

This thesis is devoted to measurements of local properties, especially orientation
and curvature, in multi-dimensional grey-value images and the possibility to com-
pute global shape properties from them. We aimed to derive sampling-error free
measures. Therefore, we used grey-value measurements throughout the thesis for
orientation and curvature. A measurement value is always accompanied by a con-
fidence value that indicates the trustworthiness of the measurement value. The
confidence is computed from the structure present in the image taking into account
the model assumptions of the measurement procedure. To unambiguously compute
curvature at all image position, we argue that the standard orientation representa-
tion is not suitable and show how a known solution to the orientation representation
problem can be extended to compute curvature reliably. In the following we fuse
all conclusions from the previous chapters into one global conclusion.

In chapter 2 we have reviewed how to map an orientation representation (dis-
continuity modulo π) to a continuous representation in arbitrary dimensions. We
generalized on the findings of Knutsson [63, 64]

M(x) =
xxt

‖x‖
(2.4)

and made a general scheme available to construct a basis (minimal set) from M ,
necessary to close the orientation representation in arbitrary dimensions. This is
advantageous because it reduces the dimensionality of the problem.

Following the approach of sampling-error free measurements in images, we have
elaborated on the closed orientation representation using its uniform stretch prop-
erty and developed a new curvature estimator for lines

κ =
1√
2

∥∥∥∥∂M(T )

∂T

∥∥∥∥ (4.7)
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and surfaces

|κ1,2| =
1√
2
‖∇v2,3M(v1)‖ . (5.12)

The principal tangent directions v1, v2 can be found using an eigenvalue analysis
of the Gradient Structure Tensor (GST). The curvature estimation formulas work
also for ridge-like structures where isophote curvature fails. Furthermore, they are
more robust against noise than the GST in parabolic coordinates. The formulas
are especially useful for patterns of lines or surfaces. Noise suppression while at
the same time computing the curvature on a small local scale is not possible using
isophote curvature. Higher noise suppression ultimately smooths out the pattern
of interest. The curvature estimator for surfaces is not unbiased, however, the error
remains small (ε < 7% for κ < 0.08). The estimation is dependent on the magnitude
of the curvature and the change of the curvatures in a local neighborhood. The
bias is qualitatively understood as a problem in the orientation estimation of the
GST leading to biased tangent and normal directions, but no analytic correction
term can be given (up to now).

From the principal curvatures, shape descriptors can be computed: the bending
energy

BE3D =

∫
κ2

1 + κ2
2 dA (5.7)

and the Euler characteristic χ∫
M

κ1κ2 dA = 2πχ(M) . (5.8)

The integration of the curvatures over the object surface is done by replacing the
infinitesimal area element dA by the sum of the erf-clipped gradient magnitude [132,
122],

dA↔ ‖∇Iclip‖ dV , (3.24)

which is an unbiased estimator.

Regarding velocity estimation, we have used optic flow as introduced by Lucas
and Kanade [75] for our applications as the involved parameters are given by the
knowledge of the structure at hand. A confidence measure can be computed from
the line-likeness obtained from the GST, as optic flow models the motion as a local
unimodal orientation distribution in (x, t)-space.

The rising behavior of bread dough was studied by optic flow computed on MRI
recordings made during rising. Two differently pre-processed doughs were studied.
We could demonstrate in which manner the internal stress imposed during kneading
on the dough, which is clearly visible in the end result, is preserved during proofing.
Isotropic rising could be attributed to fast moulding and anisotropic rising to slow
moulding.
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Evaporation of ethylene glycol in micron scale wells (”Labs on a chip”) has
been studied. We could verify quantitatively that the theory of diffusion limited
evaporation introduced by Deegan [25, 26] is applicable to these nano liter wells.
Furthermore, we could study the entire evaporation process in nearly the whole
well. To obtain these results, two image processing problems had to be overcome.
The flow field during the evaporation is visualized by introducing fluorescent mi-
crospheres in the liquid, which are recorded with a CCD camera mounted on a
microscope. First, we observe all microspheres (some unsharp) at all times in a
projection, which lead to a varying intensity and shape per microsphere in time.
We could compensate for this using adaptive 1D filtering along the motion tra-
jectory without unnecessary blurring [40, 4]. Second, the flow field can only be
measured accurately at position where microspheres are present, but even at those
locations the measurement can be faulty if the model assumptions of optic flow are
not met. We have estimated the line-likeness of the motion trajectories from the
GST as a confidence measure. Angular averaging of all measurements in a ring
(round wells) and at the same time performing a normalized convolution with the
confidence value, has resulted in a dense velocity estimation.

Finally, we have investigated the possibility to compute the affine motion pa-
rameters of a cell nucleus drifting on a microscope stage in an in-vivo confocal
microscopy application. The computation is based on the labeled material within
the nucleus and not on the nucleus itself. Establishing correspondence between
individual spots is not necessary in our approach as we compute the moments and
axis of inertia based on the spot distribution, which provides an intrinsic coordinate
system. This system can be registered very robustly, as the rotation matrix can be
obtained from the axis of inertia. The registration performed on the nucleus itself
and on the labeled material is working equally well. Practically, this means that
we only need to observe the labeled material and still can do a motion correction
for the cell nucleus as a whole without the need to use a stain.





Samenvatting

Structuur door middel van beweging

in nD beeldanalyse

Dit proefschrift behandelt het meten van lokale eigenschappen in meerdimensio-
nale grijswaarde beelden. Bijzondere aandacht wordt gegeven aan de representatie
van oriëntatie en het schatten van de kromming. Vervolgens bestuderen wij de
mogelijkheid globale vorm beschrijvende kenmerken te berekenen uit deze lokale
eigenschappen. Wij trachten meetmethoden zonder bemonsteringsfout af te lei-
den. Een dergelijke meetmethode toegepast op een juist bemonsterd beeld levert
hetzelfde resultaat op als de bemonstering van de analoge meting (hoofdstuk 3).

Er wordt een nieuw robuuste krommingsschatter voor lijnen (hoofdstuk 4) en
voor oppervlakten (hoofdstuk 5) in nD grijswaarde beelden gepresenteerd. Een
beter inzicht in, en een veralgemening van een door Knutsson gëıntroduceerde con-
tinue oriëntatie representatie, stelt ons in staat, de afgeleiden van het oriëntatieveld
te nemen, wat leidt tot een nieuwe krommingsschatter. In onze aanpak worden
beelden als meerdimensionale functies beschouwd en gaan wij ervan uit dat er in
die beelden lokaal slechts één oriëntatie aanwezig is. Er is geen parametrische
beschrijving nodig van de objecten. De kromming kan betrouwbaar in dalen en
op bergruggen worden berekend, daar waar de conventionele isophoot-krommings-
schatter in gebreke blijft. De isophoot-krommingsschatter kan gebieden met een
verdwijnende gradiënt niet aan omdat de kromming genormaliseerd wordt met de
grootte van de gradiënt. De lokale eigenschap kromming wordt gebruikt om glob-
ale eigenschappen als buigingsenergie en het Euler getal te schatten (hoofdstuk 4
en 5). De integratie over een objectoppervlak in een discrete representatie wordt
gerealiseerd door het optellen van de gradiënt magnitude in het hele beeld na soft-
clipping.

Deze lokale en globale meetmethoden zijn toepasbaar op tijdreeksen: (x, t)-
beelden. Hierin komt oriëntatie overeen met snelheid en kromming met versnelling.
Een aantal snelheidsschatters worden uiteen gezet (hoofdstuk 6) en voorts wordt
het verband tussen spatiële en temporele bemonstering bloot gelegd (hoofdstuk 3).

De ontwikkelde methoden worden in drie toepassingen gebruikt: 1) De beschrij-
ving van het dynamische gedrag van brooddeeg tijdens het rijzen daarvan, 2) een
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stromingsveldanalyse van de beweging van micro-bolletjes in nanoliter putten tij-
dens het verdampen van de vloeistof, waar zowel de vloeistofstroming als de Brownse
beweging aan de orde komen, 3) een biologische toepassing waarin met fluorescen-
tie gelabeld chromatine bestudeerd wordt in een levende cel met behulp van een
confocale microscoop. We presenteren een stabiele methode om de samengestelde
beweging van het chromatine in de cel te scheiden van de cel beweging. Dit maakt
een betere studie van de dynamica van chromatine mogelijk.



Appendix A

The gradient structure tensor

The Gradient Structure Tensor (GST) is a tool to analyse local structure in images
by its dominant orientation. It was introduced in the late 1980s by Bigün, Granlund,
Kass and Witkin [10, 60] and later adopted by Knutsson, Rao and Schunck [64, 98].
The concept is based on the idea that locally only a single dominant orientation
is present (the image is locally one-dimensional). A region with only one such
orientation is called a simple neighborhood [45, 11, 56]. It is defined by the property
that it is at least in one direction si shift invariant, i.e. for x ∈ IRn

I(x) = I(x+ s) where s = 0 expect at coordinates i . (A.1)

The i-th components can be omitted as they carry no information. The dimen-
sionality is therefore reduced to n− i. The concept of local is defined by the scales
σi, si ∈ [−σi, σi] for which eq.(A.1) holds. The coordinate directions si are linear
subspaces of constant grey-value. In the case of more than one local orientation
the GST will, in general, not find the correct response in the orientation histogram.
Other more advanced methods are needed. A possible solution yields the concept
of orientation space in 2D [42] and 3D [33].

The GST is defined as

Gαβ := ∂αI∂βI
t, Ḡαβ := ∂αI∂βIt, α, β = 1 . . . n , (A.2)

where the gradient ∂αI is computed at scale σg and the overlining indicates averag-
ing of the individual elements of Ḡ at scale σT . The tensor scale is usually chosen
in the range: 3σg ≤ σT ≤ 10σg. This suppresses gradients orientation contribu-
tions due to noise and yields a smooth, robust orientation output. This is also an
example for a multi-scale approach to images. Where σg is the scale of the local
detail, σT is the scale of the local organization. Averaging of gradient information
is possible in this representation as discussed in chapter 2.

As a remark, a structure tensor can also be constructed from other than gra-
dient filters. Angular separable quadrature filter can also be used as suggested by
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Gradient Hessian Quadrature
2D 2 3 6
3D 3 6 12 [64]
4D 4 10 24 [48]

nD n n(n+1)
2

Table A.1: Number of convolutions needed to compute the gradient, Hessian and
Quadrature filters per dimension.

Knutsson [63, 64, 42] based on the linear symmetry representation by Bigün and
Granlund [10]. Quadrature filters give response for even (ridge) and odd (edge)
structures at one time, whereas derivative filters only for odd structures. Here it is
not a drawback as luckily the GST approach lets us combine gradient information
without cancellation. For pure lines or line patterns the response of the quadrature
filters is twice as high as the GST response resulting in a better signal-to-noise
ratio. However, the GST has some implementation advantages especially in higher
dimensions as the number of angular separable filter increases faster than the num-
ber of convolutions needed to compute the gradient. In 3D six quadrature filters
are needed [64]. Each filter consists of a pair, therefore we need a total of twelve
convolutions. The GST derivatives need three and if we want to incorporate even
structures we can make use of second derivatives via the Hessian which are again
six convolutions, which is a total of nine convolutions. In table A.1 we summarize
the number of convolutions needed to compute the Gradient (odd), the Hessian
(even) and the Quadrature filters (even and odd responses). Mapping from the
gradient to the structure tensor is straightforward, for the quadrature filters this is
more complex.

The GST as friction

Another way to picture the GST is as the local mean squared friction that one
would feel rubbing over a smooth washboard where the friction is proportional to
the gradient magnitude in a certain orientation ~o. This was pointed out by Ver-
beek [123]. The locality is given by the averaging of G with σT . Across the ribs
gives a high friction, whereas sliding parallel to them is easy, compare figure A.1.
The orientations obtained by the eigenvalue analysis of the GST return the orien-
tation with the least and the highest friction, along and perpendicular to the ribs.
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across ribs: hard

parallel to ribs : easy

Figure A.1: The GST as the local mean squared friction in orientation o; ~otḠ~o.

The GST as the inertia of the gradients

The elementsGij represent gradient energy, and we are interested in the distribution
of this energy. The GST is symmetric by construction and semi-positive definite [42]
appendix B. Therefore Ḡ can be diagonalized and the eigenvalues are non-negative,
λi ≥ 0 [17]. The eigenvectors are the basis of a local coordinate system. This system
is much alike the intrinsic body system constructed by the inertia tensor [55, 111].
It is defined as

Jµν :=

∫
dx %(x)

(
x2δµν − xµxν

)
, µ, ν = 1, . . . n , (A.3)

in the center of mass system xCM := 1∫
dx %(x)

∫
dx %(x)x and where %(x) is the mass

density. This reads explicitly in 3D

J =

∫
d3x %(x)

 x2
2 + x2

3 −x1x2 −x1x3
−x2x1 x2

3 + x2
1 −x2x3

−x3x1 −x3x2 x2
1 + x2

2

 . (A.4)

The relation to the GST is

Jij = tr (Gij)δij −Gij . (A.5)

In figure A the gradient vectors at one position are shown, then the eigenvectors of
the GST correspond to the two principal directions of the ellipse shown in figure.
In this interpretation the inertia of the endpoint of the gradient vectors translated
to the a common origin is estimated by the GST. The step from the gradient
vectors to the endpoints removes the direction information from the process. The
eigenvectors of the GST do not contain direction information but only orientation
information. This has to be kept in mind when further processing of the eigenvectors
is desired. How to cope with the processing of orientation representation data has
been shown and comprehensively discussed in chapter 2. The estimated orientation
for symmetric neighborhoods is unbiased, as gradient contributions from one side of
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x

y

Figure A.2: The gradient structure tensor and the principal directions. The magni-
tudes of the principal axes are

√
λ1 and

√
λ2.

the symmetry axis (or symmetry plane) are balanced by their mirrored counterpart.
For asymmetric neighborhoods a small bias is introduced. The GST estimates the
’best’ orientation (in a least squares sense) [10, 14].

The GST as a projection operator

The GST can also be seen as a projection operator of a vector x onto an orientation
axis v̂ as pointed out by Verbeek [124]

Pv̂x := (v̂x)v̂ = (v̂v̂t)x . (A.6)

The projection operator is idempotent and independent of the sign of v̂. The
averaged GST Ḡ maximizes the mean square projection

x̂tP̄v̂x̂ = x̂tv̂v̂tx̂ = x̂tv̂v̂tx̂ = (x̂v̂)2 , (A.7)

where the projection is maximal when x is the eigenvector of Ḡ corresponding to the
largest eigenvalue. In linear algebra this is known as a optimization of a quadratic
form [17].

Confidence measures

The eigenvalues of Ḡ are a measure of the energy in the corresponding eigen direc-
tion. The trace of the GST is the total gradient energy. Thus groups of eigenvalues
that have about the same magnitude belong to one invariant subspace. The local di-
mensionality can therefore be described by the ratio between the eigenvalues. If the
signal energy is distributed over all dimensions equally, we encounter λi ≈ 0,∀i, or
isotropic noise (λi ≈ λi+1 6= 0 ∀i) or objects. In the following we will only consider
objects. Furthermore, we will sort the eigenvalues in decreasing size λi ≥ λi+1 ≥ 0.
For 2D and 3D contrast independent measures have been developed. A well-posed
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measure c is a continuous function of (a pair of) the eigenvalues, that has a range
of zero to one, c({λ}) ∈ [0, 1]. The response should be one for the desired subspace
and zero for the others. In 2D there is only one linear subspace, a line. Then we
have one large and one small eigenvalue, i.e. λ1 � λ2 and a measure is

c1D =
λ1 − λ2

λ1 + λ2
. (A.8)

Where c1D ↗ 1 for line like structures. In 3D there are two non-trivial subspaces,
1D line-like structures and 2D plane-like structures.

Subspace Eigenvalues Measure Description

1D λ1 ≈ λ2 � λ3
λ2−λ3
λ2+λ3

line-like structure

2D λ1 � λ2 ≈ λ3
λ1−λ2
λ1+λ2

plane-like structure

In 4D we have four eigenvalues and there are five pairs of eigenvalues. However,
by ordering the eigenvalues, in the case of pure integer dimensional subspaces,
for the confidence measure it is sufficient to count the number of large and small
eigenvalues, i.e. detect the position of ”�”. Logical pairs of eigenvalues thus
consists of pairs (λi, λi+1):

Subspace Eigenvalues Confidence measure

1D λ1 ≈ λ2 ≈ λ3 � λ4
λ3−λ4
λ3+λ4

2D λ1 ≈ λ2 � λ3 ≈ λ4
λ2−λ3
λ2+λ3

3D λ1 � λ2 ≈ λ3 ≈ λ4
λ1−λ2
λ1+λ2

The measure c1D = λ3−λ4
λ3+λ4

indicates the weakest line-likeness, through the ordering
of the eigenvalues. In another direction the line-likeness could be higher, if you think
for example of a line that is blurred in one direction only. Thus a linear combination
of λ2−λ4

λ2+λ4
and λ3−λ4

λ3+λ4
could take into account a possible sharper transition. For

the interpretation of a confidence image you have to keep in mind that it is only
meaningfully in those regions where (gradient) energy is present, i.e.

∑
λi.

One little drawback is the fact that the above mentioned confidence measures
over the different subspaces do not add up to one (or another constant like the
trace) ∑

i

ciD 6= const. . (A.9)

This indicates that not all possible structures are covered by the here defined ciD.
There is no measure for isotropic/pure noise regions for example.
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Curvature of space curves

Here we present the mathematics of differential geometry that describe space curves.
In 2D, the curvature of a curve in every point describes the shape of this curve com-
pletely. In 3D, a second parameter, the torsion, is needed to give a full description,
in 4D another and so forth. For a n-dimensional curve we know from the central
theorem of space curves, that for given curvatures κi, 1 ≤ i ≤ n − 1 there exists a
curve with these κi and any two such curves differ only by a translation followed
by a rotation (element of SO(n)). The curvatures therefore totally determine the
shape of a space curve but give no information about its position. This makes these
parameters well suited as curve descriptors. The curvature κ1 is a first order feature
of a nD curve.

Let I ⊆ IR be an interval, then a C1-mapping k : I → IRn is called a parameter
curve and k(I) is called a space curve. Let further t ∈ I be the parameter of k then
the tangent dk

dt =: k̇ exists for all curves. The arc length s(t) is

s(t) :=

t∫
t0

√
k̇2 dt̃ . (B.1)

Intermezzo

Motivation for the arc length formula
Let k be a nD space curve and k(t), t ∈ [a, b] a parametrization. We divide the
interval [a, b] in N pieces. Let us now approximate the arc length of k by straight
lines connecting consecutive points

s =
N∑
i

‖k(ti)− k(ti+1)‖ =
N∑
i

√√√√ n∑
j

[kj(ti)− kj(ti+1)]2 . (B.2)

From the mean value theorem we know that there exist t̃ji such that

kj(ti)− kj(ti+1) = k̇(t̃ji )(ti − ti+1), ti < t̃ji < ti+1, j = 1, 2, . . . n (B.3)
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In the transition N →∞ the sum becomes a Riemann integral, (ti− ti+1) becomes

dt and t̃ji = t, so

s =

tn∫
t0

dt

√√√√ n∑
j

k̇(t)2dt . (B.4)

This is another notation for

s(t) =

t∫
t0

‖k̇‖ dt̃ =

∫ t

t0

√
k̇2 dt̃ . (B.5)

end Intermezzo

If ds
dt =

√
k̇2 6= 0, ∀t, i.e. k is a regular curve then s → t and t → s are

valid parameter transformations. In the following s will be the arc length and ′

the derivative with respect to it. In this parametrization we have some favorable
properties

|k′| = 1, because k′
2

=

(
dk

dt

dt

ds

)2
=

(
k̇

1√
k̇2

)2

= 1 (B.6)

k′k′′ = 0, because
d

ds

(
k′

2
= 1

)
⇒ 2k′k′′ = 0. (B.7)

A local orthonormal basis can be constructed for a curve k : I → En if
k̇(t), k̈(t), . . . , k(n−1)(t) are linearly independent by :

v1(t) =
k̇(t)

|k̇(t)|
= k′(s), 2 ≤ i ≤ n− 1 (B.8)

vi =
ni(t)

|ni(t)|
with ni(t) = k(i)(t)−

i−1∑
j=1

[vj(t)k
(i)(t)]vj(t) (B.9)

vn ⊥ vi ∀i ≤ n− 1 . (B.10)

With the above definitions and the same prerequisites as for the orthonormal basis
we can write down the Frenet equations. For a parameter curve k : I → En there
exist unambiguous numbers κ1, . . . , κn−1 with:

v′1 = κ1v2 (B.11)

v′i = −κi−1vi−1 + κivi+1, for 2 ≤ i ≤ n− 1 (B.12)

v′n = −κn−1vn−1. (B.13)
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For a column vector V := (v1, . . . , vn) one can write V ′ = V K, with

K =



0 −κ1 0 · · · · · · 0
κ1 0 −κ2 · · · · · · 0
0 κ2 0 · · · · · · 0
...

...
...

...
...

...
0 0 0 · · · 0 −κn−1
0 0 0 · · · κn−1 0


. (B.14)

Here κi is the i-th curvature of the curve and κn−1 is called the torsion τ .

Sketch of the proof
This gives an insight into the symmetric structure of K. After the prerequisites
there exists a n dimensional basis ⇒ v′j is a linear combination of v1, . . . vn ⇒ ∃
a matrix K with V ′ = V K. vivk = δik ⇒ v′ivk + viv

′
k = 0 with v′i = vlK

l
i ⇒

vlK
l
ivk + vivlK

l
k = 0 = Kk

i +Ki
k, i.e. out of the orthonormality of {vi} we get the

skew symmetry Ki
k = −Kk

i . Through the iterative construction of {vi} we know:

vj ∈ [k̇, . . . k(j)], v′j ∈ [k̇, . . . k(j+1)] = [v1, . . . vj+1] ⇒ v′j = vsK
s
j with Ks

j = 0 for

s > j + 1 and together with Ki
k = −Kk

i we get Ki
l = 0 for i < l + 1�

In three dimensional space the Frenet formulas are:

T ′(t) = κN(t) (B.15)

N ′(t) = −κT (t) + τB(t) (B.16)

B′(t) = −τN(t), (B.17)

where T (t) ≡ v1 is the tangent of the curve, N ≡ v2 the normal and B(t) ≡ v3 the
binormal. So the curvature κ is the deviation from lineness and the torsion τ is the
deviation from flatness. Another definition for the curvature is therefore κ := dθ

ds ,
where θ is the angle of the curve to a reference vector.
The connection to the known osculating circle with radius R and the curvature
being 1/R is made by this theorem: a circle touching the curve k ⊂ En in ξ0 in
second order has radius 1/κ1, middle point m = ξ0 + 1/κ1v2 and lies in the plane
spanned by v1 and v2. Thereby it is unambiguously defined. The planes defined by
the three vectors T,N,B in a point k(s0) are called:

• the osculating plane for T,N ,

• the rectifying plane for T,B and

• the normal plane for N,B.

From v′1 = κ1v2 eq.(B.11) we see immediately how to compute the curvature
κ1 ≡ κ as v1 = k′ and from the iterative construction of the basis v2 = k′′/‖k′′‖
eq.(B.9) we obtain

κ = ‖k′′‖ . (4.2)
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Here we see that the curvature is always greater or equal to zero. Indeed for
space curves it does not make sense to speak of a signed curvature in a coordinate
independent description. In contrary to closed surfaces there is no border separating
two distinct parts of space. By choosing an origin one can speak of signed curvature
also for space curves.

Example: The circular helix, a parametrization is

k(t) = (r cos t, r sin t, ht), t ∈ IR , (B.18)

where h is the pitch, r the radius and the helix is winding around the z-axis.
With the parametrization of the curve and the arc length factor ds

dt =
√
r2 + h2 the

curvature and torsion can be computed with the help of the Frenet equations as
follows:

k′(s) =
dk

dt

dt

ds
=

1√
r2 + h2

 −r sin t
r cos t
h

 =: T (B.19)

k′′(s) =
dk′

dt

dt

ds
=

1

r2 + h2

 −r cos t
−r sin t

0

 (B.20)

κ := ‖k′′(s)‖ =
r

r2 + h2 (4.15)

N :=
k′′(s)

|k′′(s)|
=

 − cos t
− sin t

0

 (B.21)

B = T ×N =
1√

r2 + h2

 h sin t
−h cos t

r

 (B.22)

B′ =
dB

dt

dt

ds
=

1

r2 + h2

 h cos t
h sin t

0

 (B.23)

⇒ B′ = −τN ⇒ τ =
h

r2 + h2 . (B.24)

Example: The curvature of the elliptic helix e(t) = (a cos t, b sin t, ht) is easier
compute to with the help of the following formula

κ2 =
k̇2k̈2 − (k̇k̈)2

(k̇2)3
, (B.25)
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which can be derived as follows with ds/dt =
√
k̇2 and d2t/ds2 = −k̇k̈

(k̇2)2

κ2 = k′′
2

(B.26)

=

[
d2k

dt2

(
dt

ds

)2
+
dk

dt

d2t

ds2

]2

(B.27)

=

[
k̈

1

k̇2
− k̇ k̇k̈

(k̇2)2

]2

(B.28)

=
1

(k̇2)2

[
k̈2 − 2k̈k̇

k̇k̈

k̇2
+ k̇2 (k̇k̈)2

(k̇2)2

]
(B.29)

=
k̈2k̇2 − (k̈k̇)2

(k̇2)3
� (B.30)

Filling in the parametrization of the elliptic helix in eq.(B.25) we obtain

κ2 =
a2b2(sin4 t+ cos4 t) + 2a2b2 sin2 t cos2 t+ h2(a2 cos2 t+ b2 sin2 t)

(a2 sin2 t+ b2 cos2 t+ h2)3
. (B.31)

This formula reduces for h = 0 to the planar helix

κ =
ab

(a2 sin2 t+ b2 cos2 t)3/2
(B.32)

and for the a = b = r for the circular helix to eq.(4.15).





Appendix C

Curvatures on surfaces

Here the mathematics of differential geometry that describe surfaces in 3D are pre-
sented [39, 28]. We have adopted a formulation that can intuitively be transferred
to our approach where we deal with grey-value images as in chapter 5. As surfaces
in grey-level images can always be viewed as embedded (in the image), we use the
formalism of embedded manifolds M2 ⊂ IR3. Vectors will be printed bold oppo-
site to coordinates in this section only. In the following we will use the Einstein
summation convention, i.e. a summation is implied over any index that appears as
lower and upper index in a single term; for example:

∑
i aib

i = aib
i.

Let the surface M2 be parameterized by u1, u2. A curve x = x(t) that lies on
M2 can be expressed in the parametrization uα = uα(t), so x = x[u(t)] and

dx

dt
= xα

duα

dt
, xα :=

∂x

∂uα
, α = 1, 2 (C.1)

where xα form a basis of the tangent space to M2 at each point. The first funda-
mental form is then defined as

ds2 = 〈dx, dx〉 =
〈
xαdu

α,xβdu
β
〉

= gαβdu
αduβ , (C.2)

with the metric tensor gαβ =
〈
xα,xβ

〉
. A surface area element is then dA =√

det g du1 ∧ du2. Let N = x1×x2
‖x1×x2‖ be the unit normal to M2 and X a tangent

vector, then the derivative of N with respect to X is dN/dt = NαX
α,Nα :=

∂N/∂uα. Now if we define a linear transformation

b(X) := −NαX
α . (C.3)

then we can write down the Weingarten equations b(xα) = xαb
α
β = −Nβ. With b a

bilinear form B is associated by B(X,Y) = 〈X, b(Y)〉 = −
〈
xαX

α,NβY
β
〉
. Now

we can formulate the second fundamental form

B = bαβdu
αduβ, bαβ = gαγb

γ
β . (C.4)
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Form the definition of B we get

bαβ = −
〈
xα,Nβ

〉
. (C.5)

Because N is a normal vector 〈xα,N〉 = 0, and after differentiating we get another
expression for bαβ =

〈
xαβ,N

〉
. Here we see that B is symmetric.

Assume we have a space curve k on M2 given in arclength parametrization by
x(s), then the unit tangent is

T =
dx

ds
= xα

duα

ds
, xα :=

∂x

∂uα
, α = 1, 2 , (C.6)

compare figure C.1. The curvature κ of the space curve is given by the Frenet-

M

p

k

T

N

Figure C.1: Curvature on a surface

equations, with Ñ the unit normal of k, as dT
ds = κÑ,

dT

ds
= xαβ

duα

ds

duβ

ds
+ xα

d2uα

ds2
. (C.7)

The projection of κÑ along the surface normal N = x1×x2
‖x1×x2‖ is

〈
κÑ,N

〉
=

〈
xαβ,N

〉 duα
ds

duβ

ds
(C.8)

= bαβ
duα

ds

duβ

ds
= B(T,T) . (C.9)

The curvature is thus a function of the second fundamental B and only dependent
on the tangent. The principal curvatures in a point p are now defined as

κ1(p) = maxB(T,T) (C.10)

κ2(p) = minB(T,T) .
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The associated directions Tα are called principal directions. As mentioned above
B is symmetric, so the principal curvatures are the real eigenvalues of

b(Tα) = καTα , (C.11)

with corresponding eigenvectors T1,T2 and if the eigenvalues are not degenerated
(κ1 6= κ2) then the principal directions are orthogonal. The principal curvature are
therefore the magnitude of the change of the normal N in the principal directions
Tα or short in abstract notation

κα = ‖∇TαN‖ . (5.3)

Example: The spherical torus, generated by rotating a circle, radius r, around
an axis lying in the circle plane outside of the circle, radius R. A parametrization
is

((R + r cos v) cos u, (R + r cos v) sinu, r sin v) , (C.12)

with u, v ∈ [0, 2π]. The principal curvatures can be computed by hand to

κ1 = − cos v

R + r cos v
and κ2 = −1

r
. (C.13)

Example: Curvatures of an ellipsoid

(a cosu sin v, b sinu sin v, c cos v), u ∈ [0, 2π], v ∈ [0, π] . (C.14)

The principal curvatures are

K =
a2b2c2

[a2b2 cos2 v + c2 sin2 v(b2 cos2 u+ a2 sin2 u)]2
(C.15)

H =
abc(5(a2 + b2) + 6c2 − 3(a2 − b2) cos 2u) sin v

16[a2b2 cos2 v + c2 sin2 v(b2 cos2 u+ a2 sin2 u)]3/2| sin v|
+ (C.16)

(a2 + b2 − 2c2 + (a2 − b2) cos 2u) sin 3v

16[a2b2 cos2 v + c2 sin2 v(b2 cos2 u+ a2 sin2 u)]3/2| sin v|
κ1,2 = H ±

√
H2 −K (C.17)

Higher dimensional surfaces

Curvature is an intrinsic property of a surface V r or in other words: an ant walk-
ing on an apple can conduct local measurements and measure the deviation from
flatness. Therefore the concept of curvature does not need an embedding space Mn

and the curvature of a 2D surface does not change if the embedding space is three
or four dimensional.
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That being said, the proper treatment of surface properties in higher dimension
is substantial and requires mathematical concept and detail that is not within the
scope of this thesis. In general the curvature measure of a surface is given by the
Riemann curvature tensor or equally by the curvature 2-forms [39, 84]. They can
be computed directly from the metric (intrinsic).

Our approach to curvature of surfaces via eq.(5.3) requires tangents to the sur-
face and a normal. In image processing the embedding space is EuclideanMn = En.
If r = n− 1 there is a unique normal and n− 1 tangents and the GST provides a
method to find them. From them the n− 1 principal curvatures can be computed.
If r < n− 1 the normal space to the surface gives rise to more normal vectors. As
the curvatures at a point on the surface is only dependent on the tangent plane any
normal vector is sufficient to compute the sectional curvatures.



Appendix D

Diffusion equation

The general diffusion equation with diffusion constant D(x, t) = D is

(∂t −D∆)f(x, t) = δ(x, t) . (D.1)

Fourier-transformation along x yields

∂tf̂(ξ, t) +Dξ2f̂(ξ, t) = (2π)−n/2δ(t) (D.2)

[23]⇒ f̂(ξ, t) = (2π)−n/2Θ(t)e−Dtξ
2
, (D.3)

where Θ(t) is the Heaviside step function

Θ(t) :=

{
1 t ≥ 0
0 t < 0

. (6.47)

The fundamental solution f(x, t) is then obtained via inverse Fourier transformation

⇒ f(x, t) = (2π)−n/2Θ(t)F−1
ξ {e

−Dtξ2}(x) (D.4)

= · · · Fξ{e−Dtξ
2
}(−x) (D.5)

= · · · Fξ{e
− ξ2

2σ2 }(−x), σ2 =
1

2Dt
(D.6)

= · · ·σne−
1
2σ

2x2
(D.7)

=
Θ(t)

(2
√
πDt)n

e−
x2

4Dt . (D.8)

The second order moment of the distribution f(x, t) then becomes

〈
x2
〉

=

∫
x2f(x, t) dx = −(2π)n/2

d2f̂(ξ, t)

dξ2

∣∣∣
ξ=0

= 2nDt . (D.9)
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Appendix E

Proof of equations (4.7) and (5.12)

Here we show a proof that the proposed curvature estimators for lines eq.(4.7)
and surfaces eq.(5.12) are formally equal to the text book expressions eq.(4.2) and
eq.(5.3). We assume that the normal and tangent direction are estimated correctly.
In practice, however, the GST estimation of these direction is only unbiased for
constant curvature neighborhoods. It is to show that

(4.2) κ = ‖k′′‖ ←→ κ = 1√
2

∥∥∥∂M(T )
∂T

∥∥∥ (4.7)

(5.3) κ = ‖∇TN‖ ←→ κ = 1√
2
‖∇TM(N)‖ (5.12)

with M(v) = vvt/‖v‖ the Knutsson mapping. As the proof for the line formula is
very similar to the surface formula we will only show the latter. Furthermore, we
will use the index notation with summation over same indices, i.e.

∑
i aib

i = aib
i

and assume a normalized normal ‖N‖ = NlNl = 1. In this notation eq.(5.3) reads
κ2 =

∑
l[T

i∂iNl]
2, the Knutson mapping M(N) = NlNk and eq.(5.12) becomes

2κ2 =
∑
l,k

[T i∂iNlNk]
2 (E.1)

=
∑
l,k

N2
l (T

i∂iNk)
2 +N2

k (T
i∂iNl)

2 + 2NlNk(T
i∂iNk)(T

i∂iNl) (E.2)

=
∑
l

N2
l︸ ︷︷ ︸

=1

∑
k

(T i∂iNk)
2 +

∑
k

N2
k︸ ︷︷ ︸

=1

∑
l

(T i∂iNl)
2 (E.3)

+2
∑
l

Nl(T
i∂iNl)

∑
k

Nk(T
i∂iNk) (E.4)
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= 2
∑
l

[T i∂iNl]
2 + 2

[∑
l

Nl(T
i∂iNl)

]2

(E.5)

= 2
∑
l

[T i∂iNl]
2 + 2

[∑
l

T i∂i
1

2
N2
l

]2

(E.6)

= 2
∑
l

[T i∂iNl]
2

� (E.7)



Bibliography

[1] M. Aronsson. On 3D Fibre Measurement of Digitized Paper. PhD thesis,
Swedish University of Agricultural Science, Uppsala, Sweden, 2002. Referred
to on p.: 80

[2] H. B̊arman, G. H. Granlund, and H. Knutsson. Estimation of curvature in 3-D
images using tensor field filtering. In O. Faugeras, editor, Computer Vision –
ECCV90. Proceedings, 1990, pages 563–565. Springer-Verlag, 1990. Referred
to on p.: 64, 78

[3] H. B̊arman, L. Haglund, G. H. Granlund, and H. Knutsson. Estimation of
velocity, acceleration and disparity in time sequences. In Proc. Conf. Pattern
Recognition ICPR’91, pages 44–51, 1991. Referred to on p.: 91

[4] P. Bakker. Image structure analysis for seismic interpretation. PhD thesis,
Delft University of Technology, The Netherlands, 2002. Referred to on p.:
41, 58, 59, 81, 119, 149

[5] P. Bakker, P.W. Verbeek, and L.J. van Vliet. Confidence and curvature
estimation of curvilinear structures in 3-D. In ICCV’01 (Vancouver, Canada),
volume II, pages 139–144. IEEE, July 9-12 2001. Referred to on p.: 40, 41,
58

[6] P. Barham. The Science of Cooking. Springer, Berlin, Heidelberg, New York,
2001. Referred to on p.: 103

[7] J.L. Barron, D.J. Fleet, and S. Beauchemin. Performance of optical flow
techniques. International Journal of Computer Vision, 12(1):43–77, 1994.
Referred to on p.: 85, 92

[8] C.B.J. Bergsma, G.J. Streekstra, A.W.M. Smeulders, and E.M.M. Manders.
Velocity estimation of spots in 3d confocal images sequences of living cells.
Cytometry, 43(4):261–272, 2001. Referred to on p.: 33, 61, 128, 133

[9] M. Bezuijen. Improved sub-pixel shift estimation in 2d gray-value images.
Master’s thesis, Delft University of Technology, Delft, The Netherlands,
September 2003. Referred to on p.: 87

173



174 Bibliography

[10] J. Bigün and G.H. Granlund. Optimal orientation detection of lineasr symme-
try. In Proceedings of the IEEE first International Conference on Computer
Vision, pages 433–438, London, June 8-11 1987. IEEE Computer Society
Press. Referred to on p.: 9, 11, 14, 15, 20, 41, 67, 145, 153, 154, 156

[11] J. Bigün, G.H. Granlund, and J. Wiklund. Multidimensional orientation es-
timation with applications to texture analysis and optical flow. IEEE Trans-
action on Pattern Analysis and Machine Intelligence, 13(8):775–790, 1991.
Referred to on p.: 9, 11, 90, 153

[12] C.M. Bishop. Neural Networks for Pattern Recognition. Oxford University
Press, New York, 1998. Referred to on p.: 11

[13] R. van den Boomgaard. Affine invariant deformation curves a tool for shape
characterization. Image and Vision Computing, 17:375–380, 1999. Referred
to on p.: 66, 82

[14] R. van den Boomgaard and J. van de Weijer. Robust estimation of orientation
for texture analysis. In Texture 2002, The 2nd international workshop on
texture analysis and synthesis, pages 135–138, Copenhagen, Denmark, 1 June
2002. Referred to on p.: 156

[15] M. Boutin. Numerically invariant signature curves. International Journal of
Computer Vision, 40(3):235–248, 2000. Referred to on p.: 40

[16] P. Breton and S.W. Zucker. Shadows and shading flow fields. In Proc. IEEE
Conference on Computer Vision and Pattern Recognition - CVPR’96, pages
782–789, San Francisco, USA, 1996. Referred to on p.: 39, 44, 63

[17] I.N. Bronstein, K.A. Semendjajew, G. Musiol, and H. Mühlig. Taschenbuch
der Mathematik. Verlag Harri Deutsch, Thun, Frankfurt (Main), 4th edition,
1999. Referred to on p.: 14, 18, 43, 57, 97, 130, 135, 155, 156

[18] R. Brown. Additional remarks on active molecules. The Philosophical Maga-
zine and Annals of Philosophy, 6(34):161–166, 1829. Referred to on p.: 101,
130

[19] J. Canny. A computational approach to edge detection. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 8(6):679–697, November 1986.
Referred to on p.: 119

[20] A. Cavallo. Four Dimensional Particle Tracking in Biological Dynamic Pro-
cesses. PhD thesis, Ruprechts-Karls-Universität, Heidelberg, Germany, June
2002. Referred to on p.: 128



Bibliography 175

[21] Q. Chen, M. Defrise, and F. Deconinck. Symmetric phase only matched filter-
ing of Fourier-Mellin transforms for image registration and recognition. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 16(12):1156–
1168, 1994. Referred to on p.: 137

[22] D. Coeurjolly, S. Miguet, and L. Tougne. Discrete curvature based on oscu-
lating circle estimation. In C. Arcelli, L.P. Cordella, and G. Sanniti fi Baja,
editors, Visual Form 2001, volume 2059 of Lecture Notes on Computer Sci-
ence, pages 303–312, Capri, Italy, May 2001. Springer-Verlag. Referred to
on p.: 40, 60

[23] F. Constantinescu. Distributionen und ihre Anwendung in der Physik. Teub-
ner, Stuttgart, 1974. Referred to on p.: 169

[24] J.G. Daugman. Pattern and motion vision without laplacian zero-crossings.
Journal of the Optical Society of America A, 5(7):1142–1148, 1988. Referred
to on p.: 85

[25] R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, and T.A.
Witten. Capillary flow as the cause of ring stains from dried liquid drops.
Nature, 389:827–829, 1997. Referred to on p.: 110, 111, 149

[26] R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, and T.A.
Witten. Contact line deposits in an evaporating drop. Physical Review E,
62(1):756–765, 2000. Referred to on p.: 110, 111, 112, 113, 117, 125, 149

[27] N. Diehl and H. Burkhardt. Planar motion estimation with a fast converging
algorithm. In Proc. 8th Int. Conf. Pattern Recognition, ICPR’86, pages 1099–
1102, Paris, France, 1989. Referred to on p.: 86

[28] M.P. do Carmo. Differential Geometry of Curves and Surfaces. Prentice Hall,
New Jersey, 1976. Referred to on p.: 41, 64, 165

[29] L.R. van den Doel and L.J. van Vliet. Temporal phase unwrapping algorithm
for dynamic interference pattern analysis in interference-contrast microscopy.
Applied Optics, 40(25):4487–4500, 2001. Referred to on p.: 10, 109, 112

[30] J.S. Duncan, F.A. Lee, A.W.M. Smeulders, and B.L. Zaret. A bending energy
model for measurement of cardiac shape deformaty. IEEE Transactions on
Medical Imaging, 10(3):307–319, 1991. Referred to on p.: 56, 66

[31] P.M. van Duynhoven, G.M.P. van Kempen, R. van Sluis, B. Rieger,
P. Weegels, L.J. van Vliet, and K. Nicolay. Quantitative assessment of gas
cell development during the proofing of dough by magnetic resonance imaging
and image analysis. Cereal Chemistry, 80(4):360–369, 2003. Referred to on
p.: 103



176 Bibliography
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(Göteborg, Sweden), June 29 -July 2 2003. Referred to on p.: 153
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p.: 120

[145] C.E. Willert and M. Gharib. Digital particle image velocimetry. Experiments
in Fluids, 10:181–193, 1991. Referred to on p.: 118



186 Bibliography

[146] M. Worring and A.W.M. Smeulders. The accuracy and precision of curvature
estimation methods. In Proceedings of the 11th IAPR International Confer-
ence on Pattern Recognition, pages 139–142, The Hague, The Netherlands,
1992. IEEE Computer Society Press. Referred to on p.: 39

[147] M. Worring and A.W.M. Smeulders. Digital curvature estimation. CVGIP:
Image Understanding, 58(3):336–382, 1993. Referred to on p.: 39, 60

[148] I.T. Young, J.E. Walker, and J.E. Bowie. An analysis technique for biological
shape I. Information and Control, 25(4):357–370, August 1974. Referred to
on p.: 56, 66

[149] I.T. Young, R. Zagers, L.J. van Vliet, J. Mullikin, F.R. Boddeke, and H. Net-
ten. Depth-of-focus in microscopy. In K. A. Høgda, B. Braathen, and K. Heia,
editors, SCIA’93, Proceedings of the 8th Scandinavian Conference on Image
Analysis, pages 493–498, Tromsø Norway, May 25-28 1993. Norwegian Society
for Image Processing and Pattern Recognition. Referred to on p.: 117

[150] A.L. Yuille and T. Poggio. Scaling theorems for zero crossings. IEEE Transac-
tions on Pattern Recognition and Machine Intelligence, 8(1):15–25, January
1986. Referred to on p.: 85

[151] S. di Zenzo. A note on the gradient of a multi-image. Computer Vision,
Graphics and Image Processing, 33:116–125, 1986. Referred to on p.: 41, 67

[152] C. Zetzsche and E. Barth. Direct detection of flow discontinuities by 3d
curvature operators. Pattern Recognition Letters, 12:771–779, 1991. Referred
to on p.: 96



Curriculum vitae

Bernd Rieger was born in Landsberg am Lech, Germany, on the 3th of July, 1973.
In 1992 he graduated from the Dominikus-Zimmermann-Gymnasium in Landsberg
am Lech, where he started his community service at the Sozialstation St. Martin in
the same year. In the fall of 1993 he took up a study in physics at the Technische
Universität München, Germany and obtained his Masters Degree in 1999 from
the theoretical bio and molecule physics group under the supervision of Prof.Dr.
Fischer on the study of vibration relaxation of carbon monoxide on metal surfaces.
During his studies, he visited the Royal Institute of Technology, KTH, in Stockholm,
Sweden from August 1995 to July 1996 on an Erasmus exchange program.

In October 1999 he started a PhD at the Pattern Recognition Group of the
Delft University of Technology, The Netherlands on a project called ’4D grey-level
image processing’ under the supervision of Prof.dr.ir L.J. van Vliet. During his
PhD he worked for six month on a project in collaboration with Unilever Research,
Vlaardingen, The Netherlands, on time-dependent structural changes in low water
foods.

In January 2004 he joint the Max-Plank-Institute for Bio-physical Chemistry,
Department of Molecular Biology in Göttingen, Germany as a postdoctoral re-
searcher.

187





Acknowledgments

Es gibt nur eine Ausflucht vor der
Arbeit: Andere für sich arbeiten zu
lassen.
Immanuel Kant, 1724-1804

Credit to whom it belongs.

Lucas van Vliet for being a promoter like everybody would want one. Piet Verbeek
for having more ideas than I could handle. Michael van Ginkel for helping me with
whatever was necessary and for being a friend. The same is true for Cris Luengo
Hendriks who made DIPlib usable.

Geert van Kempen, John van Duynhoven and Gerard van Dalen from Unilever
Research, Vlaardingen for a very nice project together and to get a taste of the
real world. Partners in the 4D NWO project: Chris Molenaar (LUMC) and Erik
Manders (UvA) for a good collaboration and useful data sets.

Peter Bakker, Judith Dijk, Tuan Pham, Frank Faas and Kees van Wijk for creating
a good atmosphere in the room.

Richard van den Doel for bringing physics in my thesis. Dick de Ridder for a never
ending desire to go for a beer. The rest of PH AIO for being there. Ted Young for
being the boss. Heidi Dietrich and Yuval Garini for a nice day behind a microscope.

The support staff Ronald Ligteringen, Klara Schaafsma and Wim van Oel for being
supportive.

My sister Sabina Rieger for reading the introduction, conclusion and summary and
freeing it from mistakes in the English language.

Manon.

189


	Introduction 
	Problem
	Approach

	A systematic approach to nD orientation representation
	Requirements of a continous distance preserving mapping 
	The mapping
	The mapping in 2D
	The mapping in 3D

	Properties of the mappings
	Conclusions

	Sampling
	Reconstruction and measurement 
	Perfect reconstruction by ideal low-pass filtering
	Finite number of sample points
	Approximately band-limitation 
	Sum of samples
	From the sum of samples to global measurements 

	(x,t)-sampling 
	Introducing time band-limitation by spatial band-limitation
	The correspondence problem
	Time band-limitation by acquisition


	Curvature of n-dimensional space curves
	Curvature of space curves in grey-value images 
	The orientation field; a local orthonormal basis
	Discontinuity of the orientation field 
	Curvature in nD grey-value images
	The method in 2D

	Evaluation of the algorithm
	Test images
	Ring
	Torus 
	Circular helix
	Curvature along a curve

	Path length and bending energy 
	Comparison with the GST in parabolic coordinates 
	Comparison with a segmentation based approach
	Application 
	Conclusions

	Curvature and local shape descriptors of surfaces
	Curvature of surfaces in grey-value images
	The gradient structure tensor and the principal directions
	Estimation of the principal curvatures 
	Surface area estimation
	Solid objects from shells and the sign of curvature

	Evaluation of the algorithm
	Test images
	Curvature 
	Bending energy, Euler characteristic and surface area

	Application and comparison with existing work
	Torus test image
	Duplex board paper
	Seismic data

	Conclusions

	Motion in spatio-temporal images 
	Estimation of motion
	Displacement from two successive images
	Motion as orientation in (x,t)-space 
	Conclusions

	Global motion analysis using differential operators on the flow field
	Brownian motion

	Flow patterns in French bread during proofing
	Materials and methods
	Image analysis
	Conclusions

	Evaporation induced flow in nanoliter wells
	Diffusion-limited evaporation
	Motion of microspheres in the fluid
	Imaging microspheres in the fluid
	Image analysis
	Conclusions
	Brownian motion in nanoliter wells 
	Estimation algorithm
	Evaluation
	Conclusions


	Group motion correction applied to cell nuclear motion
	Theory of motion parameter estimation
	Translation 
	Rotation
	Degeneration of the eigenvalue system; a confidence measure for correspondence
	Stability of the eigenvalue analysis
	Rotation of images
	Measure for rotations

	Application to real data
	Experimental setup
	Methods: Cloning of GFP-fusion proteins
	Live cell imaging
	Results
	4D measures

	Conclusions

	Conclusions
	The gradient structure tensor 
	Curvature of space curves 
	Curvatures on surfaces 
	Diffusion equation
	Proof of equations (4.7) and (5.12)
	Bibliography

