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Abstract

This research investigates the application of Graph Neural Networks
(GNNs) for rating prediction in recommender systems, utilizing precision
matrices as graph filters. The focus is on movie recommendation, where
graph-based structures are especially relevant due to the importance of
user and item relationships. A leave-one-out masking strategy is employed
during training to ensure the model learns from all available training data.
The proposed model achieves a test root mean squared error (RMSE) of
approximately 0.95 on the MovieLens-100k dataset, performing reasonably
well compared to existing graph-based and matrix factorization methods.
While the model accurately predicts average ratings, it tends to overestimate
lower ratings. These results demonstrate the potential of precision-based
graph filters in GNNs but also reveal significant room for improvement
before reaching state-of-the-art performance. Future work may include
output calibration and sparsification of the precision matrix to enhance both
efficiency and predictive accuracy.

1 Introduction

Recommender systems are used to personalize content across almost all online
platforms, such as Netflix, Spotify, and Amazon, by predicting user preferences
for unseen items. There are numerous ways to approach this problem. In
recommender systems, there are two main approaches: the first is context-aware
recommendation, which examines the features of both users and items to predict
which other items the user might like. The second approach is the category
into which this paper falls: collaborative-filtering recommender systems. These
types of systems are based on previous interactions from the user themselves, as
well as from other users. This is often done by using mathematical concepts to
reduce the data and predict values for unknown user-item pairings. This paper
will specifically work with movie recommender systems. These systems attempt
to predict the rating, typically ranging from 1 to 5, that a user would give to
a specific movie. Traditional approaches usually leverage similarities between
users or items. This is frequently done using techniques such as Singular Value
Decomposition (SVD), Non-negative Matrix Factorization (NMF), or nearest-
neighbor algorithms, which are based on various similarity metrics (Jadon and
Patil 2024). However, accurately modeling these similarities, while maintaining
fast computation, especially in data-sparse environments, remains a key challenge.

To address this issue, recent papers have introduced coVariance Neural Networks
(VNNs), initially explored by Sihag et al. (2022). VNNs leverage covariance
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matrices as graph representations to encode statistical relationships inherent in
the data. These matrices are then used to create Graph Neural Networks (Wu et al.
2021). This approach uses covariance to represent the conditional dependence of
features. A promising adaptation is to use precision matrices instead, which are
the mathematical inverse of the covariance matrices. Precision matrices capture
conditional independence among variables, offering the potential for enhanced
modeling of intricate relationships.

The paper is structured as follows. Section 2 provides background information
and discusses related work. Section 3 presents the methodology, including the
model architecture and key design decisions. Section 4 details the experimental
setup, datasets, evaluation metrics, and implementation aspects. The results and
their discussion are presented in Section 5. Section 6 concludes the paper with a
summary of the main findings and suggestions for future research. Finally, Section
7 discusses responsible research practices and the reproducibility of results.

2 Background and Related Work

Numerous studies have explored the effectiveness of various recommender system
methodologies. Matrix factorization techniques, notably SVD and NMF, have
historically dominated due to their simplicity and efficiency (Koren, Bell, and
Volinsky 2009). However, recent advancements increasingly leverage graph-based
methods, particularly relevant for movie recommender systems, given their inherent
reliance on user-item relationships that can be effectively modeled using graphs.

Recently, significant progress has been made in movie recommendation using
hybrid graph-based approaches. Notably, the Graph-based Hybrid Recommen-
dation System (GHRS), proposed by Zamanzadeh Darban and Valipour (2022),
achieved state-of-the-art performance on the MovieLens datasets by integrating
user-rating similarities with demographic and location data. GHRS employs an
autoencoder to derive low-dimensional features, demonstrating superior accuracy
and effectively addressing cold-start scenarios. While their hybrid approach shows
promising results, their main downside is their reliance on demographic data.

A modern approach to these graph-based approaches is Graph Neural Networks
(GNN), which has demonstrated promising results in capturing complex user-item
interactions (Wu et al. 2021). A GNN is a type of neural network specifically
designed to handle data structured as a graph; this means that data can be reduced
to nodes and edges that represent the relationships between these nodes. These
GNNs operate by aggregating features from neighboring nodes and updating each
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node’s representation accordingly. These updated embeddings are subsequently
used for making predictions, thus effectively utilizing relational information.

Building upon this framework, coVariance Neural Networks (VNN) were intro-
duced by Sihag et al. (2022). VNNs are specialized GNNs that utilize covariance
matrices to initialize graphs, capturing statistical dependencies between variables.
This causes the edges of the graph to have weights related to the statistical
similarity among variables.

To further refine this approach, Cavallo, Gao, and Isufi (2024) extensively explored
sparsification techniques for correlation structures. Their comparative analysis
underlined the importance of managing noise in large datasets through methods
such as hard thresholding, soft thresholding, and stochastic sparsification. These
techniques have shown promising results but fall outside of the scope of this paper.

A promising yet underexplored variant of the VNN approach is the use of precision
matrices instead of covariance matrices. A precision matrix, defined as the inverse
of the covariance matrix, explicitly encodes conditional independence rather than
direct statistical dependence. This characteristic potentially reduces indirect
correlations, thereby refining the representation of user-item relationships and
reducing noise.

In addition to predictive accuracy, modern recommender systems increasingly
emphasize the importance of diversity and novelty in recommendations (Vargas
and Castells 2011; Castells, Hurley, and Vargas 2021). Incorporating these
aspects helps enhance user satisfaction and explore previously unseen yet relevant
content, thus enriching the overall user experience. Balancing diversity, novelty,
and accuracy remains a challenging task. Given the novelty of precision matrix-
based VNNs, this paper prioritizes an analysis of predictive accuracy, laying the
foundation for future exploration of diversity and novelty.

Despite notable advancements, research explicitly focusing on precision matri-
ces within the VNN framework remains scarce. Given the suitability of these
techniques for movie recommendation, it leaves the perfect gap for the following
research question:

How does a coVariance Neural Network (VNN) perform on the rating
prediction task when using the precision matrix as a graph collaborative
filter?
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3 Methodology

3.1 Overall Architecture

This research builds upon the open-source Graph Neural Network (GNN) frame-
work introduced by Sihag et al. (2022), which provides a general-purpose imple-
mentation for structured learning on graph-filtered data. During the research, as
few modifications as possible were made to this base architecture.

The model architecture consists of multiple graph convolutional layers, followed
by a multilayer perceptron (MLP). Each GNN layer applies a graph filter that
aggregates information from local neighborhoods in the graph. Specifically, given
input node features H(l) at layer l, the output of the next layer is computed as:

H(l+1) = σ

(
K−1∑
k=0

ÃkH(l)W
(l)
k

)

Here, Ã denotes the matrix used to propagate information across the graph, which
in our case is derived from the user–user precision matrix (unlike typical GNNs
that use binary or weighted adjacency matrices). K is the number of filter taps
(i.e., the maximum hop distance considered), W(l)

k is the trainable weight matrix
for the k-th filter tap at layer l, and σ(·) is a non-linear activation function, which
for this research was ReLu.

This formulation allows each GNN layer to capture multi-hop dependencies in
the graph, combining information from different levels of structural context. The
final output of the graph layers is passed through an MLP to compute a single
scalar prediction for user–item pairs.

3.2 Graph Construction

To encode user–user or item–item relationships, we construct graph structures
from the normalized rating matrix. Specifically, we compute the user-user precision
matrix by inverting a regularized covariance matrix, as described in the next
Section. This matrix is interpreted as the adjacency matrix for the GNN, capturing
conditional independence between entities.

By using the precision matrix instead of a raw similarity graph, the model
should learn from more informative structural patterns, which could improve
generalization over sparse or noisy data.
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3.3 Model Input

The model receives as input the full user–item rating matrix, normalized per
user as described in Section 4. For each prediction, a leave-one-out strategy is
employed where the input vector for the target movie masks the rating of a specific
user. The model then outputs a full vector of predictions for that movie, and the
masked rating is compared to its true value using the chosen loss function. This
loss can then be used to train the model.

To train the model efficiently, the leave-one-out strategy is combined with mini-
batching. Rather than processing a single masked movie vector at a time, each
batch contains multiple such vectors, typically from different movies. Do note
that the same movie may appear with different masked user ratings as well. The
model will simultaneously output predictions for all vectors in the batch. The
losses for the masked entries are then aggregated, and the total loss is used to
update the model weights through backpropagation.

This input strategy was chosen because it allows the model to learn from all entries
in the user-item matrix. By masking only a single target rating per input vector,
the model learns from the complete data context while focusing on one prediction
at a time. However, the approach is computationally demanding because each
forward pass predicts an entire movie vector, yet only one entry contributes to the
loss. In contrast, alternative strategies that mask multiple entries at once (e.g.,
10% of the vector) can speed up training by leveraging more known predictions
per pass, but may introduce noisier gradients and reduce the precision of learning.

During evaluation on the test data, the entire user–item rating matrix is fed into
the model, and a prediction is made for all user-movie pairs. These predictions
are compared with the held-out test ratings using the chosen evaluation metric.
This approach ensures that no ground-truth information from the test pair leaks
into the model input during inference.

3.4 Implementation Details and Scalability

All models and pipelines are implemented in PyTorch, using GPU acceleration via
the CUDA backend for scalable training and inference. Currently, all experiments
were conducted on the MovieLens 100k dataset; however, the implementation has
been designed with scalability in mind and generalizes to larger datasets, such as
MovieLens 1M or 10M. Larger datasets will increase training time and resource
requirements, but the use of mini-batching, parallel data loading, and hardware
acceleration will help keep training times acceptable.
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4 Experimental Setup

4.1 Evaluation Metrics

As described in the introduction, the primary focus of this research is on prediction
accuracy. For this extent, there are multiple options, but the most common ones
are RMSE and MAE:

• Root Mean Squared Error (RMSE): RMSE penalizes larger errors
more heavily and is computed as:

RMSE =

√√√√ 1

|T |
∑

(u,m)∈T

(
R̂u,m −Ru,m

)2

where T is the test set, Ru,m is the true rating, and R̂u,m is the predicted
rating.

• Mean Absolute Error (MAE): MAE provides a more interpretable,
linear measure of average prediction error:

MAE =
1

|T |
∑

(u,m)∈T

∣∣∣R̂u,m −Ru,m

∣∣∣
While Mean Absolute Error (MAE) was initially used during early experimentation
due to its ease of interpretation, Root Mean Squared Error (RMSE) is the standard
benchmark for movie recommender systems. Therefore, all results in this paper
are reported using RMSE.

Predicted ratings for the test set are obtained by feeding the full user–movie
matrix, constructed from the training and validation data, into the model. The
model then produces predicted ratings for all user–movie pairs. Each test data
point is evaluated by comparing its actual rating with the corresponding predicted
value using the chosen evaluation metric.

4.2 Data setup

4.2.1 Dataset

This paper focuses explicitly on predicting movie ratings using the MovieLens-100k
dataset. The MovieLens data sets were collected by the GroupLens Research
Project at the University of Minnesota (Harper and Konstan 2015). This specific
dataset consists of 100,000 unique user-movie pairings, each of which has a rating
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ranging from 1 to 5. When working with the full dataset, each user has rated at
least 20 movies, ensuring that there are enough data points to make predictions
for every user. MovieLens also provides simple demographic information for users
(age, gender, occupation, and zip code) and genre information for movies, but
these are not used by the model in this paper.

The MovieLens-100k dataset is commonly used for benchmarking recommender
systems, allowing straightforward comparison with existing methods. Despite
its widespread use, the dataset is relatively small and sparse, which limits the
generalizability of conclusions drawn from it to larger-scale settings.

4.2.2 Data-preprocessing

Prior to training the VNN, data preprocessing involves the following steps:

1. Train–Validation–Test Split: Ratings are randomly partitioned into
training (80%), validation (10%), and test (10%) sets, using a fixed random
seed for reproducibility. Alternatively, predefined splits provided by Movie-
Lens (80% training, 20% testing) can be used to compare the model against
benchmarks, which will be done in Section 5.

2. Normalization: User-specific z-score normalization is applied to the train-
ing ratings, centering ratings around each user’s mean and scaling by their
standard deviation. This normalization, which uses the means and standard
deviations of the training set, is consistently applied to both the validation
and test sets. Following is the mathematical description of these steps:

µu =
1

|Mu|
∑

m∈Mu

Ru,m, σu =

√√√√ 1

|Mu|
∑

m∈Mu

(Ru,m − µu)2 + ϵ,

where Mu is the set of movies rated by user u, and ϵ = 10−4 ensures
numerical stability.

The normalized user-item matrix is then constructed as follows:

Zu,m =
Ru,m − µu

σu

3. Precision Matrix Construction: A user–user precision matrix is com-
puted from the normalized rating matrix, capturing conditional dependencies
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between users. An analogous item–item precision matrix can similarly be
constructed. The procedure can be described as follows:

Given the normalized rating matrix Z ∈ Rnu×nm and mask M ∈ {0, 1}nu×nm ,
the user-user precision matrix is computed as follows.

First, we calculate the covariance matrix between users:

Cov =
ZZ⊤

C − 1
,

where C = max(MM⊤, 2) represents the co-rating counts between user
pairs, ensuring numerical stability.

Then, the precision matrix is obtained by adding a small regularization
term to the covariance matrix and inverting it:

P = (Cov + ϵI)−1, ϵ = 10−4.

4. Creating model input: We construct the model input by selecting,
for each data point, the corresponding row from the movie-user rating
matrix and temporarily masking out the rating of the user-item pair under
evaluation. The model then tries to predict this masked rating, and the
loss will be computed based solely on the difference between the predicted
and specific masked rating. This approach is commonly referred to as a
leave-one-out strategy.

5. Data loading: PyTorch DataLoaders are used to load and batch the
training and validation data efficiently.

This structured approach ensures consistent preprocessing across datasets and
prepares the data efficiently for training and evaluating the GNN model.

4.3 Hyperparameters

4.3.1 Description

The training of the model includes six key hyperparameters: batch size, learning
rate, loss function, dimNodeSignals, nFilterTaps, and dimLayersMLP. The first
three are standard across most deep learning models and are defined as follows:

• Batch size: Specifies the number of samples used to compute each gradient
update. Larger batch sizes improve training speed but may reduce accuracy.
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• Learning rate: Controls the step size in the gradient descent optimization
process. A smaller value ensures more stable convergence, while a larger
value may speed up training but risk overshooting minima.

• Loss function: Defines the objective the model minimizes. The most
common loss functions are the Mean Squared Error (MSE), the Root Mean
Squared Error (RMSE), and the Mean Absolute Error (MAE).

The remaining three hyperparameters are arrays of numbers, which specify the
architecture of the Graph Neural Network and the MLP layers at the end:

• dimNodeSignals: Specifies the dimensionality of the node feature vectors
at each GNN layer. For a given layer l, if dimNodeSignals[l] = d(l), then
each node is represented by a d(l)-dimensional embedding at that layer. The
first layer is fixed at 1 to match the input features, but subsequent layers
can be freely configured. Larger values of d(l) enable the model to learn
more expressive node representations, at the cost of increased parameter
count and computational load. Typical values range from 16 to 128, though
the choice can be adapted based on model capacity and dataset size.

• nFilterTaps: Indicates the number of "filter taps" in each GNN layer.
The value of nFilterTaps, specified by K, determines the receptive field
of the layer, allowing it to aggregate information from up to (K − 1)-hop
neighbors. For instance, K = 2 incorporates only immediate neighbors,
while K = 4 allows the layer to aggregate from nodes up to three hops
away. Typical values range from 2 to 5, providing a balance between local
structural information and computational efficiency. Although a separate
value can be defined for each layer, it is common to use the same number of
taps across all layers for consistency.

• dimLayersMLP: Defines the architecture of the multilayer perceptron (MLP)
applied after the final GNN layer. Each value in dimLayersMLP specifies
the number of hidden neurons in a fully connected layer, with the last value
always set to 1 to produce a scalar rating prediction. The first layer of
the MLP must match the output dimensionality of the final GNN layer,
i.e., it must be equal to the last value in dimNodeSignals. Deeper or
wider MLPs can model more complex, nonlinear interactions between node
embeddings, but also increase the number of parameters and the risk of
overfitting. Standard configurations include one or two hidden layers with
sizes ranging from 32 to 128 units. The structure can be adjusted based on
model complexity and the availability of data.
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4.3.2 Hyperparameter tuning

To determine the optimal values for the six primary hyperparameters, a grid search
was performed using ParameterGrid from the scikit-learn library. The search
was conducted over manually selected value ranges based on prior experiments
and architectural intuition. Each configuration was evaluated using validation
RMSE under the leave-one-out evaluation strategy described earlier.

The following configuration yielded the best balance between performance and
runtime; because of this, these values are used to calculate the final results:

• Learning rate: 0.002

• Batch size: 256

• Loss function: Mean Squared Error (MSE)

• dimNodeSignals: [1, 32, 64]

• nFilterTaps: [4, 4]

• dimLayersMLP: [64, 32, 16, 1]

5 Results and Discussion

5.1 Rating Prediction Performance

To evaluate the effectiveness of our proposed method, we report the RMSE on
the MovieLens-100k dataset using the standard 80/20 train–test split. Table 1
compares our model to a selection of benchmark methods, including classical
matrix completion and state-of-the-art graph-based recommender systems.

Model RMSE Ref
MC (2009) 0.973 (Candes and Recht 2008)
GMC (2014) 0.996 (Kalofolias et al. 2014)
GC-MC (2017) 0.905 (Berg, Kipf, and Welling 2017)
GHRS (2022) 0.887 (Zamanzadeh Darban and Valipour 2022)
MoRGH (2022) 0.881 (Ziaee, Rahmani, and Nazari 2024)
VNN (this work) 0.9496 —

Table 1: Benchmark results on MovieLens-100k (lower RMSE is better)

While our model does not outperform the most recent graph-based methods
in terms of RMSE, it demonstrates strong performance relative to the basic
benchmark methods, such as MC and GMC. Notably, our approach uses only
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inductive prediction, which means it does not rely on side information or exten-
sive pre-training, unlike the two state-of-the-art models (GHRS and MoRGH).
This highlights the potential of leveraging precision matrix structures in graph
construction for collaborative filtering tasks.

The prediction performance of 0.95 RMSE on the test data is not state-of-the-art;
however, it demonstrates that the model is capable of learning meaningful patterns
and producing reasonable rating estimates. For comparison, a baseline that always
predicts the global average rating yields an RMSE of approximately 1.2, while
using the user-specific mean improves this slightly to around 1.1.

5.2 Prediction Deviation Analysis

To better understand the model’s behavior, we analyze how predicted ratings
deviate from ground-truth values across the 20,000 test examples. These differences
were calculated by first rounding the prediction to the nearest integer and then
comparing it to the expected value. The majority of predictions (46.5%) are
exactly correct, and over 88% only deviate at most 1 rating point:

• Exact match (∆ = 0): 46.5%

• Off by 1: 41.8%

• Off by 2: 9.7%

• Off by 3 or more: 2.0%

A more detailed breakdown shown in a heatmap 1, shows systematic biases,
particularly for low ratings. For example, when the actual rating is 1, the model
often predicts 2 or 3, suggesting difficulty in recognizing strong dislike. Similarly,
ratings that should be 5 are frequently underpredicted as 4. These patterns are
common in recommender systems and result from models overfitting towards the
mean of the dataset.

Overall, the results indicate that while the model is capable of predicting user
ratings, it tends to overpredict, particularly struggling with lower ratings such as
1 and 2, which are rarely predicted accurately. The heatmap 1 reveals that the
model does detect lower-than-average ratings to some extent, but often defaults
to predicting a 3 rather than the dataset’s average of 4. This suggests that the
model is detecting that the rating is likely lower, but can’t produce the extremity.
One possible mitigation could involve post-processing the output, rather than
simply reversing the normalization step; one could apply a scaling transformation
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Figure 1: Heatmap of true and predicted ratings

that increases the likelihood of predicting more extreme values. Although such
adjustments were outside the scope of this project, they represent a promising
direction for improving prediction accuracy.

6 Conclusion and Future Work

6.1 Conclusion

This research explored the use of a Graph Neural Network (GNN) model leveraging
precision matrices as graph filters for the rating prediction task on the MovieLens-
100k dataset. Building upon the framework introduced by Sihag et al. (2022), the
model was adapted to work with the user-user precision matrix derived from the
user–item rating data. The model’s training employed a leave-one-out strategy to
maximize the learning.

Through extensive manual experimentation and hyperparameter tuning, the
proposed approach achieved a test RMSE of 0.9496, confirming that the model is
indeed capable of predicting movie ratings; however, it falls short of the state-
of-the-art. While the model shows strong performance, it tends to overpredict
lower ratings, rarely assigning scores of 1 or 2. The results suggest that the model
captures meaningful signals from the precision-based graph structure, but may
benefit from further techniques to better model rating extremes.
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6.2 Future Work

The model shows potential, and there are a few opportunities for further research:

Improved output calibration: Future work could explore post-processing
techniques to calibrate the output distribution further and enhance the prediction
of extreme values. This may include nonlinear scaling or loss reweighting strategies.

Using larger datasets: Applying the model to larger datasets, such as MovieLens
1M, would help assess scalability and generalization. This would enable more
robust comparisons with recent deep learning–based recommender systems.

Sparsification Techniques: Future work could look into sparsifying the pre-
cision matrix to reduce computational overhead while preserving its structural
information. Techniques such as soft/hard thresholding or stochastic sparsification
may enable more scalable training without compromising performance.

Broader Evaluation Metrics: Beyond RMSE, future studies could incorporate
other heuristics, such as diversity, novelty, and top-N recommendation metrics, to
assess the quality of predictions more comprehensively.

7 Responsible Research

7.1 Data privacy

This research utilizes the publicly available MovieLens 100k dataset, which contains
anonymous user–movie ratings. The dataset is released and maintained by
GroupLens for academic and non-commercial use, with all personally identifiable
information removed. As such, there are no concerns related to data privacy or
protection in this work.

7.2 Reproducibility

To ensure the reproducibility of results, all sources of randomness in the data
pipeline and model training process—such as weight initialization, data shuffling,
and batching—are explicitly seeded. By setting the random seed to 42, all
experiments can be replicated exactly, yielding consistent results across runs. The
final results were all archived using the hyperparameters stated in the experimental
setup.

The specific implementation pipeline used in this work is available at: https:

//github.com/VicVsl/VNN-recsys.
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Appendix: Use of AI Tools

During the development of this research project, various AI-assisted tools were
used to support the author. Their use was limited to supportive tasks and did
not replace any core scientific contributions. Specifically:

• GitHub Copilot was used for technical coding assistance, particularly
when working with PyTorch and SkLearn.

• ChatGPT was consulted to explore architectural and design decisions
for the pipeline and to debug the codebase. Additionally, ChatGPT was
prompted to develop ideas for structuring the paper and improve the clarity
of written content by rephrasing poorly worded paragraphs.

• Grammarly was used to correct spelling, grammar, and to improve sentence
flow in a few sections.

All results, analyses, and conclusions presented in the paper were determined and
verified independently by the author.
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