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In this study the impact of sucrose accumulation in Sentinel-1 backscatter observations is
presented and compared to Planet optical observations. Sugarcane yield data from a
sugarcane plantation in Xinavane, Mozambique are used for this study. The database
contains sugarcane yield of 387 fields over two seasons (2018-2019 and 2019-2020). The
relation between sugarcane yield and Sentinel-1 VV and VH backscatter observation is
analyzed by using the Normalized Difference Vegetation Index (NDVI) data as derived from
Planet Scope optical imagery as a benchmark. The different satellite observations were
compared over time to sugarcane yield to understand how the relation between the
observations and yield evolves during the growing season. A negative correlation between
yield and Cross Ratio (CR) from Sentinel-1 backscatter was found while a positive
correlation between yield and Planet NDVI was observed. An additional modeling
study on the dielectric properties of the crop revealed how the CR could be affected
by sucrose accumulation during the growing season and supported the opposite
correlations. The results shows CR contains information on sucrose content in the
sugarcane plant. This sets a basis for further development of sucrose monitoring and
prediction using a combination of radar and optical imagery.

Keywords: cross ratio, sucrose accumulation, sugarcane, sentinel-1, yield prediction, planet NDVI, dielectric
properties

1 INTRODUCTION

Sugarcane is an important source for both sugar and ethanol production, where the quantity and quality of
soluble sugar in the plant, named sucrose, determines the final sugar yield. Sucrose production develops
over the season in the stem of the sugarcane plant (Wang et al., 2013). Sucrose accumulates in high
concentrations in the stem. Different sucrose concentrations have been reported by cultivars around the
world, ranging between 10 and 15 percent of fresh weight (Inman-Bamber, 2013).

Monitoring sugarcane and its sucrose content during the growing season can provide essential
information to several users, such as individual producers, sugarcane mills, or commodity traders
(Abdel-Rahman and Ahmed, 2008). This is because monitoring and yield forecasting helps to
evaluate production processes, adjust on-site management, and estimates the potential industrial
production (Bocca et al., 2015). Currently, the most commonmethod for yield estimation in the field
is still based on historical records and expert knowledge (Shendryk et al., 2021). Specialists estimate
yield based on visual assessment, basing their estimation on knowledge, historical yield data, land
characteristics, weather, and the manifestation of pests and diseases (Bocca et al., 2015).
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Previous studies have researched the relation between
sugarcane yield and vegetation indices computed from satellite
data (Bégué et al., 2010; Lofton et al., 2012; Morel et al., 2014;
Molijn et al., 2019). Common techniques are based on optical
indices (e.g. NDVI). For instance, Morel et al. (2014) found
integrated NDVI values over the growing season best related
to yield on a field scale. Fernandes et al. (2017) investigated how
NDVI timeseries and neural networks can be combined to predict
regional sugarcane yield in Brazil. Unfortunately, the integration
of new yield estimation techniques into the decision making
process of sugarcane production remains slow (Bocca et al.,
2015).

Few studies have focused on Synthetic Aperture Radar (SAR)
data and its relation to sugarcane or sucrose yield. Limited studies
have assessed the capability of SAR data to monitor sugarcane
biomass or estimate sugarcane yield. Shendryk et al. (2021)
focused on predicting yield with machine learning, where
Sentinel-1 data was used as a predictor variable. Molijn et al.
(2019) explored the suitability of Sentinel-1 data to monitor
biomass throughout the growing season. However, in none of
these studies was SAR data directly compared to a large yield
database.

This study will show how sucrose accumulation affects
Sentinel-1 backscatter. Sentinel-1 backscatter and Planet
optical data are used and compared. We start by assessing the
variation of different vegetation indices over the growing season.
Hereafter, the relationship of different vegetation indices to
sugarcane yield over the season is compared. Finally, a
modeling study was set up to mimic the impact of sucrose
accumulation on the dielectric constant. The modeling study
will provide explanation on the behavior of Sentinel-1 backscatter
and supports the potential to monitor potential sucrose yield with
satellite data.

2 Sugarcane Growth
Around the world sugarcane is grown in subtropical and tropical
conditions. While Brazil and India are the largest sugarcane
producers worldwide, accounting for 21 and 39% respectively
(FAO, 2021a), the continent of Africa accounts for five percent of
the total sugarcane production (FAO, 2021b). Where Brazil
produces sugarcane mostly under dryland conditions, the
majority of the sugarcane grown on the African continent is
sustained with irrigation (Dubb et al., 2017).

Sugarcane can be grown as a plant cane or ratoon crop
(Inman-Bamber, 2013). When sugarcane is grown as a ratoon
crop, it is not replanted annually but grown from the preceding
plant. As it is cost-effective, ratooning is the most common
practice within the sugarcane growing countries (Surendran
et al., 2016). Sugarcane is planted and harvested all year
round. Harvest dates depend on the sugar mill and ideally,
cane growth is planned to sustain maximum capacity (Bocca
et al., 2015).

Compared to other perennial crops, sugarcane has a relatively
long growing season and is harvested after a period of between 12
and 18 months. Physiological changes controlled by different
mechanisms define different growth stages. In general,
sugarcane growth is divided by the following four periods: an

initial stage (30 days), tillering stage (90 days), development stage
(150 days), and the final stage (90 days) (Doorenbos and Kassam,
1979; Silva et al., 2015). Throughout the analysis, we will refer to
these growth stages.

The initial stage is characterised by the germination of the
original stool. The onset of biomass growth and sucrose
accumulation coincides with the development of the leaf
canopy, during the tillering stage (Inman-Bamber, 2013).
During the development stage the sugarcane plant focuses
more on elongation of the stem, which is an important sink
for sucrose development (Cock, 2001; Inman-Bamber, 2013). In
the final stage, senescence is the dominant process (Martins et al.,
2016). During this process the leaves turn yellow as chlorophyll
content decreases. This process is combined with water loss in the
plant and therewith increases the sucrose concentration in the
plant (Bégué et al., 2010). In irrigated sugarcane, irrigation is
often stopped at the end of the season to maximize the
accumulation of sucrose (Inman-Bamber, 2013).

3 DATA AND METHODS

3.1 Field Data Acquisition
This study uses crop yield data from a sugarcane plantation
located on the banks of the lower Incomati river in Xinavane,
Mozambique (see Supplementary Material). The plantation
grows ratoon sugarcane under irrigated conditions in a
subtropical climate. From April to December, the local sugar
mill opens and the sugarcane fields are harvested (den Besten
et al., 2020, 2021). The focus of this research lies on 387 fields that
make up the majority of the area owned and grown by the
Tongaat Hulett group, where agricultural management is
centrally organized. The average field-size is approximately
20 hectares (den Besten et al., 2020). The sugarcane in the
plantation is planted in rows 1–1.5 m apart. The dominant
sugarcane varieties in the plantation are N25 and N23.

In the analysis, we use sugarcane yield data of season 2018-
2019 and 2019-2020. After harvest, trucks containing harvested
sugarcane are weighed and documented per field. After weighing,
several samples are tested for their sucrose content. This process
results in data per field on sugarcane yield (tons/hectare, TCH)
and sucrose yield (tons/hectare, TSH). The relation between
sugarcane and sucrose yield is linear for this plantation with a
correlation coefficient of 0.95 for 688 samples (see Figure 1B).
Because of this very high correlation and the fact that the sucrose
database is not complete, we focus during this study on the yield
data available for sugarcane as a proxy for its sucrose content to
maximize the number of available data points.

3.2 Satellite Data Acquisition and
Processing
For this analysis, time series per season were extracted for
different remote sensing products per field based on
harvesting dates. Time series dates were expressed in terms of
“days after ratooning” to allow for comparison between fields.
Time series of the field-averaged Sentinel-1 backscatters at VV
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and VH polarizations were used, as well as Planet’s NDVI
product.

3.2.1 Sentinel-1 Backscatter
Sentinel-1 data was processed by using the Sentinel Application
Platform (SNAP) toolbox (ESA, 2021b). During this process a
radiometric calibration and terrain correction are applied to convert
the data into normalized backscatter and correct for elevation
differences respectively. The Sentinel-1 satellites observed with
Synthetic Aperture Radar (SAR), captures backscatter at 5.405GHz
(C-band) at 5 × 20m spatial resolution. In southern Mozambique,
Sentinel-1 has a revisit frequency of approximately 12 days (ESA,
2021a). Only descending data from both Sentinel-1 platforms were
used of orbit number 6 and 79 to minimize observation geometry
effects (Vreugdenhil et al., 2018). Finally, the observations were
sampled at a 10 by 10m resolution.

Backscatter timeseries were extracted from Sentinel-1
observations for each field for VV and VH polarizations. In
addition, the cross ratio (CR) was calculated for each field. The
CR can be calculated by subtracting VH-VV on a logarithmic
scale. In previous researches CR was used to study vegetation
dynamics as it reduces the backscatter effect of soil moisture and
soil-vegetation interactions (Vreugdenhil et al., 2018; Khabbazan
et al., 2019). CR has been shown to increase with vegetation
growth and is, therefore, more representative of the scattering
associated with volume scattering from vegetation (Veloso et al.,
2017), while the individual VV and VH backscatters include a
stronger contribution of soil moisture from rain events as well as
irrigation.

3.2.2 Planet Fusion NDVI
The Normalized Difference Vegetation Index (NDVI) is a widely
used vegetation index. NDVI requires red and near-infra red
bands and is indicative of the chlorophyll content of a vegetated
surface (Rouse et al., 1974). Planet realizes daily global imaging in
optical spectrum, observing in RGB and near infra red at
approximately 3 m spatial resolution with commercial
satellites. For this study Planet’s NDVI fusion products was
used and up-scaled to Sentinel-1’s 10 m spatial resolution. The

Planet fusion product merges PlanetScope observations with
Sentinel-2, Landsat-8 and MODIS data (Houborg and
McCabe, 2018). The end result is a daily cloud free NDVI
timeseries. The new Planet data improves cross-sensor
inconsistencies due to variations in orbital configurations,
spectral responses, and radiometric quality. The CubeSat
ENabled Spatio-Temporal Enhancement Method (CESTEM)
creates a robust NDVI signal that can be used to observe
high-frequency vegetation dynamics (Houborg and McCabe,
2018; Aragon et al., 2021; Planet Labs Inc, 2020).

3.3 Sugarcane Data Analysis
The sugarcane yield and satellite data were used to understand the
effect of sucrose accumulation on different vegetation indices
retrieved with satellite data. In addition, a modeling study was
done to explain the effect of changes in the vegetation water
content as a result of sucrose accumulation on the dielectric
constant of vegetation.

3.3.1 Yield Analysis
First, the variation of NDVI and CR per field was assessed over
the growing season. To understand the behaviour of the two
vegetation indices in poor and good performing fields, the 10th
and 90th percentile of the sugarcane yield dataset for the season
2018-2019 and 2019-2020 was calculated. The 10th percentile was
found to be 50.0 TCH and the 90th percentile 108.7 TCH. The
average NDVI and CR over time was computed for the selected
fields below and above the chosen percentiles.

Second, the VV backscatter, VH backscatter, CR, and NDVI
were compared with yield over the growing season. The Pearson
correlation coefficient was computed for each day after ratooning
for average field values of the satellite derived products and the
final sugarcane yield. For each satellite product the 5-day moving
average of the correlation coefficient was plotted to understand
the changes over the growing season.

3.3.2 Modeling Study
To understand the effect of sucrose accumulation on radar
backscatter a modeling study was performed. Radar

FIGURE 1 | (A) Distribution of sugarcane yield for season 2018-2019 and 2019-2020. (B) Comparison sucrose yield and sugarcane yield (r � 0.95).
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backscatter of a canopy is determined by its dielectric
properties, size, shape, orientation, and roughness, and
the distribution of the canopy (Karam and Fung, 1989;
Steele-Dunne et al., 2017). The dielectric properties of
vegetation are described by the dual-dispersion model of
Ulaby and El-Rayes (1987). This is a model converting the
gravimetric water content into the complex dielectric
constant of vegetation (ϵv) (Meyer et al., 2019). Ulaby and
El-Rayes (1987) assumes ϵv is a mixture of three components:
a non-dispersive residual component (ϵr) [-], a free water
component (ϵfw) [-], and a bound water component (ϵb) [-].
Where bound water refers to the water molecules that are in a
solution, and free water means refers to water molecules not
in compound (Ulaby and El-Rayes, 1987). Ulaby and El-
Rayes (1987) define the dielectric constant of vegetation (ϵv)
as follows:

ϵv � ϵr + υfwϵfw + υbϵb (1)

Where υfw: volume fraction of free water [-] υb: volume fraction of
the bulk vegetation-bound water mixture [-]. All the components
depend on the gravimetric water content (Mg). Where Mg is the
gravimetric moisture content defined as the amount of water [g]
per wet biomass [g] (Meyer et al., 2019). The non-dispersive
residual component (ϵr) is estimated as:

ϵr � 1.7 − 0.74Mg + 6.16M2
g (2)

The free water and bound water component of the complex
dielectric constant of vegetation in Eq. 1 are defined as follows:

ϵfw � 4.9 + 75

1 + jf
18

− j
18σ
f

(3)

ϵb � 2.9 + 55

1 + jf
0.18( )

0.5 (4)

where f is the frequency [GHz], σ the ionic conductivity of free-
water solution [Sm−1], and j denotes the imaginary number. The
parameter σ was found to be constant (1.27 Sm−1) by Ulaby and
El-Rayes (1987). The difficulty of the model is to estimate the
distribution of free and bound water. With the help of lab
experiments Ulaby and El-Rayes (1987) found a relation
between the gravimetric moisture content and the υfw and υb:

υfw � Mg(0.55Mg − 0.076) (5)

υb � 4.64M2
g/(1 + 7.36M2

g) (6)

Literature on water content and sucrose development in
sugarcane over time is not abundant (Inman-Bamber, 2013).
However, a study by Muchow et al. (1996) reported on a field
experiment that documented the development of sucrose,
vegetation water, and dry vegetation over the growing
season. The location of the experiment was Australia and
sugarcane was grown as a ratoon crop under irrigated
conditions (Muchow et al., 1996). The experiment
entailed sampling of sugarcane on eight moments in the
growing season. From these results the gravimetric moisture
content was estimated by:

Mg � 1 −Msucrose −Mdry (7)

whereMsucrose is the fraction of sucrose of the total fresh biomass
and Mdry the fraction of dry weight of the fresh biomass. Data
from (Muchow et al., 1996) were used to model the effect of
temporal changes in Mg on the dielectric constant in vegetation.
This allows us to explain the observed changes in backscatter and
CR. In Table 1 the resulting υfw and υb can be found.

4 RESULTS

Figures 2A,B show the NDVI and CR per field during the
growing season, where panel A shows the NDVI and panel B
the CR. The red and green lines in Figure 2A and dots in
Figure 2B display the NDVI and CR observation values in
10th and 90th percentile fields considering crop yield. The
NDVI and CR of the fields with a yield below the 10th
percentile and above the 90th percentile are averaged to
compute the red and green lines, respectively. From Figure 2A
the 90th percentile NDVI development show an increase over the
growing season. The 90th percentile reaches a much higher NDVI
value. The 10th percentile NDVI development show lower values.
The difference between the 10th and 90th percentile line becomes
evident during the Development and Final stage, when the
biomass is fully developing. The results suggest good
performing fields develop high NDVI values over the growing
season and poor performing fields develop lower NDVI values.
Which is in line with previous research on NDVI and sugarcane
yield (Bégué et al., 2010; Pinheiro Lisboa et al., 2018).

Figure 2B shows an opposite signal compared to NDVI. The
CR development of 90th percentile line shows a decrease over the
growing season, starting in the Development stage. The average
CR values of the 10th percentile fields are more constant from the
end of the Tillering stage onward. Interestingly, the CR values of
the 10th percentile fields are higher than the 90th percentile fields
in the Development and Final stage. Combining with Figure 2A,
this suggests that good-performing fields are characterized by
high NDVI and low CR. Conversely, poor-performing fields are
characterized by low NDVI and higher CR values. To our
knowledge, this is the first such analysis of CR in sugarcane.
However, in other crops (e.g. corn) the CR increases over time as
a result of increase in vegetation water content (Vreugdenhil
et al., 2018).

Figure 3 visualizes the relation between different satellite
products and sugarcane yield over the growing season. The
satellite derived products assessed in Figure 3 are: VV, VH,

TABLE 1 | Free and bound water fractions after several moments in the growing
season. υb and υfw computed with field experiment results Muchow et al.
(1996).

Sampling
day

150 190 220 250 290 350 380 420

υfw 0.29 0.23 0.20 0.18 0.15 0.14 0.14 0.13
υb 0.52 0.50 0.49 0.48 0.45 0.45 0.45 0.44
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CR and NDVI. In Figure 3 the Pearson correlation over each day
in the growing season is calculated for the final yield and average
field value of the satellite derived product for all fields under

study. Figure 3 shows the correlation between sugarcane yield
and NDVI is increasing alongside the sugarcane development.
The highest correlation is 0.56 on 254 days after ratooning, at the

FIGURE 2 | (A)NDVI timeseries of the fields under study over the growing season. Each gray line corresponds to a single field. (B)Cross ratio timeseries of the fields
under study. The green and red dots display the average values of fields with a yield above the 90th percentile (>108.7 TCH) and below the 10th percentile (<50.0 TCH).
The bar below the figure indicates the length of the different crop stages.

FIGURE 3 | Pearson correlation with sugarcane yield for season 2019-2020 for VV and VH polarization, Cross ratio, and NDVI. The bar below the figure indicates
the length of the different crop stages.
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end of the Development stage. In the Final stage, the correlation
with yield declines. This is expected since, at this stage, dry-off
causes wilting of the sugarcane plant (see section 2).

VV and VH show a similar variation in their correlation to
yield throughout the growing season. The highest correlation for
VV is 0.50 on day 272 and 0.42 for VH on day 116. The
correlation to yield for VV and VH start to deviate from each
other during the Development stage. VV shows higher
correlations to yield compared to the VH, suggesting that VV
provides a better indicator of sugarcane growth than VH. This is
in contrast to other studies on broadleaf crops and tall leaf stems
(e.g. corn) which showed an increasing backscatter signal over the
growing season (Macelloni et al., 2001). Macelloni et al. (2001)
and Vreugdenhil et al. (2018) showed VH to be more sensitive to
crop growth indicators (i.e. Leaf Area Index, Vegetation Water
Content). However, the crops considered in those studies do not
accumulate sucrose over the growing season.

The CR shows a negative relationship with yield over time.
This is opposite to the relationship NDVI shows with yield over
time. Over the growing season the relation between CR and yield
shows an increasing negative correlation with a maximum
correlation of −0.47 on day 233. In particular, halfway through
the Tillering stage and towards the start of the Development
stage, the CR correlation shows a steep decline. Towards the end
of the Development stage, the correlation stablizes and remains
stable throughout the Final stage. The steep increase in negative
correlation between the yield and CR half way the Tillering stage
suggests a change in the sugarcane plant growth. Interestingly,

this coincides with the period in which the sugarcane plant starts
to accumulate sucrose (see section 2).

A modeling study was performed to investigate how sucrose
accumulation affects the dielectric constant, a key driver of the
radar backscatter. Data were used from a field campaign
conducted by Muchow et al. (1996), in which they
documented the development of sucrose, vegetation water, and
dry vegetation over the growing season. The data are visualized in
Figure 4, where the accumulation of sucrose is evident,
particularly during the Development stage.

The accumulation of sucrose within the plant lowers the total
gravimetric water content in the plant (section 3.2.2 and Eq. 1).
Based on the Dual Dispersion model of Ulaby and El-Rayes
(1987), this lowers the dielectric constant of vegetation
significantly, see Figure 4. Figure 4 shows how the dielectric
constant of vegetation, particularly the real part, decreases. This
decrease explains the decrease in backscatter, which in turn
explains the negative correlation between CR and yield.

It is worth noting that a change in the chemical composition of
stem water as a result of sucrose accumulation would also affect
the dielectric constant, a factor not explicitly considered in Eq. 6
(Ulaby and El-Rayes, 1987; McDonald et al., 2002). As sucrose is
bound to water, an increase in sucrose should increase the
amount of bound water (Moore and Botha, 2013). Bound
water has a lower dielectric constant than free water, as the
molecules are not free to rotate. Hence, accounting for the impact
of sucrose on the bound water fraction is likely to lead to a further
decrease in dielectric constant.

FIGURE 4 | Results of a field campaign by Muchow et al. (1996) and the influence of the change in distribution between bound and free particles on the dielectric
properties of vegetation. The bar below the figure indicates the length of the different crop stages.
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As a result of sucrose production within the sugarcane stem,
the combined effect of a changing water content and chemical
composition affects the backscatter signal through a decrease in
dielectric constant directly. This is different from NDVI, which
indicates the chlorophyll content of the vegetated surfaces (Rouse
et al., 1974). The link between chlorophyll content and sucrose
accumulation is indirect. The CR in particular has a distinctive
response to the sucrose development and, therefore, proves to
contain information on sucrose accumulation in the sugarcane
plant. In addition, the results support the CR to be more
representative of the scattering associated with the canopy, as
was found in other studies (Veloso et al., 2017; Vreugdenhil et al.,
2018; Khabbazan et al., 2019).

5 DISCUSSION

This study shows the relationship between sugarcane yield and
vegetation indices from Sentinel-1 backscatter and Planet NDVI.
The results show a negative correlation between the CR and
sugarcane yield over the growing season. Previous studies on the
CR reported the ability to observe changes in vegetation structure
and accumulation of fresh biomass (Veloso et al., 2017;
Vreugdenhil et al., 2018). However, no comparable studies
exist where the CR is compared to yield in sucrose
accumulating crops.

Contrary to the results using CR, NDVI develops a positive
correlation to yield over the growing season. In other words,
where good performing fields are characterized by low CR values
and high NDVI, poor performing fields are characterized by high
CR values and low NDVI. Other researchers have found positive
correlations with NDVI and sugarcane crop yield (Bégué et al.,
2010; Morel et al., 2014). In these studies the integral of NDVI
over the growing season was compared to final sugarcane yield or
the maximum value within a growing season. In addition, Bégué
et al. (2010) found lower NDVI values in the final stage for fields
with a higher sucrose content. This can be explained by the leaf
senescence, which causes the chlorophyll content to drop. And
could explain why the results show a decrease in correlation with
NDVI towards the end of the growing season.

A modeling study was used to show how the dielectric
constant of sugarcane is affected by the change in the
sugarcane’s internal composition (El-Rayes and Ulaby, 1987;
Ulaby and El-Rayes, 1987). Contrary to other crops, the
chemical composition of plant water in sucrose-producing
crops, like sugarcane, changes over the growing season.
Sucrose is produced from the Tillering stage through to the
Development stage. This decreases the amount of free water
and increases the bound water in the sugarcane stem over the
growing season (Wang et al., 2013, 2011). The combined effect of
a decrease in vegetation water content and change in chemical
composition of the vegetation water due to sucrose accumulation
in the sugarcane stem alters the backscatter signal (McDonald
et al., 2002).

The alteration of the backscatter signal is visible in the CR over
the growing season which shows a negative correlation to sucrose
yield. This shows the CR is able to observe sucrose accumulation

during the growing season. Hence, the CR is indicative of the
sucrose content in the sugarcane plant. To improve
understanding of the effect of sucrose accumulation on the
backscatter signal, more research should focus on the effect of
sucrose accumulation on the partitioning between free and bound
water in vegetation. Within the current estimation of gravimetric
moisture content in Ulaby and El-Rayes (1987) the development
of bound water in sucrose accumulating crops are
underestimated. The estimation of apportioning free and
bound water is currently based on, predominantly, corn leaf
experiments by Ulaby and El-Rayes (1987). More studies should
focus on experiments with sucrose accumulating vegetation (e.g.
agave).

In this study, we prove that CR computed with Sentinel-1
backscatter can be used to observe sucrose accumulation in
sugarcane. Although this study focuses on sugarcane, we foresee
that Sentinel-1 backscatter could also be of use to monitor quality
and/or sucrose accumulation in other crops (e.g. agave). In addition,
combining optical and backscatter observations is expected to be of
value for cropmonitoring and yield prediction. Future studies along the
same line, therefore, should focus on combining these different data
products.
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