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Abstract
Health literacy, i.e. the ability to read and understand medical text, is a relevant component of public
health. Unfortunately, many medical texts are hard to grasp by the general population as they are
targeted at highly-skilled health professionals and use complex language and domain-specific terms.
Here, automatic text simplification making text commonly understandable would be very beneficial.
In this thesis we evaluate the state-of-the-art in automatic text simplification in the medical domain.
We train a Neural Machine Translation (NMT) system on aligned complex and simple sentences from
Wikipedia and Simple Wikipedia. As there are no publicly available aligned medical text simplification
corpora, we create one semi-automatically with the help of a domain expert and one fully automati-
cally using a novel monolingual alignment method introduced in this thesis. We analyse the effect of
in-domain data when training an NMT system. Furthermore, we describe two strategies for medical
term simplification in combination with NMT: 1) An extra pre-processing step that boosts medical term
simplification 2) A post-processing dictionary approach using the Open-Access and Collaborative Con-
sumer Health Vocabulary (CHV). We analyse the effect of both strategies separately. We let humans
evaluate the output on grammar, meaning preservation (from the complex sentence) and simplicity
(compared to the complex sentence).

Results show that an NMT trained on general aligned complex and simple sentences is able to
simplify medical sentences at the level of Simple Wikipedia. An NMT trained on medical sentences (in
addition to general sentences) in combination with the boosting strategy for medical term simplification
is able to translate moremedical concepts, but the output is not simpler than the NMT trained on general
sentences only. Interestingly, NMT in combination with the CHV did not boost simplicity, but had the
opposite effect.
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1
Introduction

As health care processes are getting more transparent and patients are getting more involved in their
health care, e.g. through patient portals, it becomes increasingly important that health care information
is understandable by patients to prevent misinterpretation. A report [78] by the World Health Organi-
zation (WHO) concluded that a majority of European citizens has insufficient health literacy (the ability
to read and understand health care information, make appropriate health decisions and follow health
instructions). One of the major causes of this low health literacy is that health care information contains
complex language and specific medical terminology and is often geared to health care professionals.
Low health literacy has been associated with poorer health [63] and higher mortality amongst (older)
adults [11].

One way to improve health literacy is simplifying medical text, to eliminate complex language and
translate specific medical terminology to laymen terms. To illustrate this, we provide an example from
Wikipedia and its (manually) simplified version from Simple Wikipedia in table 1.1. Observe that indeed
complex language (estimated prevalence rate in the general population) and medical terminology (in-
tracranial neoplasms) are simplified. However, manually simplifying the continuous stream of medical
content is not feasible and therefore an automatic text simplification approach is needed. In this thesis
we focus on the following research question:

RQ: To what extent can we use automated methods to simplify expert level health text to laymen
level?

Wikipedia Simple Wikipedia
Pituitary adenomas represent from 10% to
25% of all intracranial neoplasms and the es-
timated prevalence rate in the general popu-
lation is approximately 17%.

Pituitary adenomas represent from 10% to
25% of all brain tumors and is thought to hap-
pen in about 17% to 25% of most people.

Table 1.1: Two health sentences from (English) Wikipedia and Simple (English) Wikipedia

Current work in automated medical text simplification is mostly limited to simplifying medical termi-
nology, either by the generation of explanations (explanation generation), or by replacing these terms
with laymen terms or definitions (lexical simplification) [2, 12–15, 62, 65]. This ignores complex non-
medical terms and complicated sentence structures, which also hamper readability [80]. The state-of-
the-art in automated text simplification, Neural Machine Translation (NMT) [53, 74], shows promise to
solve this second problem, but requires large parallel corpora for training, which are lacking in the med-
ical domain. Recent work by Adduru et al. focused on the creation of such a medical text simplification
corpus [5]. Unfortunately, the resulting set is not publicly available.

As there are no publicly availablemedical text simplification corpora, we create a new aligned corpus
by semi-automatically filtering a set of aligned health-related sentences from an existing parallel text
simplification corpus. The resulting corpus consists of a few thousand aligned sentences, which is

1



2 1. Introduction

generally not enough for training neural models. That is why we introduce a simple novel language
independent monolingual text alignment method. The method aligns sentences from one source with
sentences (in the same language) from another source. The result is a parallel corpus. We show that
it can compete with more complex alignment methods that rely on additional sources like Word2Vec
models and Wiktionary, while the introduced method does not. We use it to align additional sentences
from Wikipedia disease articles with sentences from the corresponding Simple Wikipedia articles. The
NMT can learn simplification of domain-specific terminology more reliably as it gets more examples to
learn from. The resulting parallel datasets are made publicly available for future research1.

We train a state-of-the-art text simplification system (NMT) on aligned complex and simple sen-
tences. Since domain specialization (to the medical domain) is shown to improve translation quality in
regular NMT [67], we also analyse the effect of domain-specific training data (in the context of text sim-
plification). We compare an NMT system trained on general aligned sentences only to an NMT system
trained on additional aligned health sentences. In addition, we introduce two strategies for translating
medical terms to laymen terms. The first is an extra pre-processing step before training the NMT that
boosts medical term simplification. We reduce the medical vocabulary by replacing each medical con-
cept encountered in the complex text with a Concept Unique Identifier (CUI) from the Unified Medical
Language System (UMLS). Any textual variation of a concept is mapped (or normalized) to a single
CUI. Instead of a number of variations of one medical concept, only the CUI is part of the vocabulary,
which makes medical concepts less sparse. This can boost medical term translation. The second is a
post-processing dictionary approach using the Open-Access and Collaborative Consumer Health Vo-
cabulary (CHV), similar to previous work in medical text simplification [62]. The CHV connects laymen
terms to terms used by professionals. After translation we replace medical concepts that are left un-
translated with laymen terms from the CHV. We compare both strategies separately with vanilla NMT
to measure the effect of both isolated.

We constructed a general set and a medical set of aligned complex and simple sentences. Evalua-
tion is done in the medical domain (a test set of medical sentences). We discuss automatic evaluation
(with Simple Wikipedia as a reference) as well as human evaluation. We let humans rate generated
simplifications on grammar, meaning preservation from the original sentence and simplicity compared
to the original sentence.

Our contributions are summarized as follows:

1. We introduce a novel language independent monolingual text alignment method

2. We publish a medical text simplification corpus1

3. We show the effect of domain-specific training data on medical text simplification when training a
state-of-the-art automatic text simplification system (NMT)

4. We introduce a method to reduce the medical vocabulary to boost medical concept translation

5. We use the CHV for replacing medical terms with laymen terms in combination with NMT

6. We discuss automatic and human evaluation of NMT in the medical domain and compare the
output with manual simplifications from Simple Wikipedia

First, we give an overview of text simplification and medical text simplification research in chapters
2 and 3 respectively. Next, in chapter 4, we describe how we created a new medical text simplification
corpus. In chapter 5 we give an explanation of the NMT system we use and the two strategies for
medical concept simplification. Chapter 6 explains our first (exploratory) in-house evaluation. Next,
in chapter 7 we present and discuss results of that evaluation. Chapter 8 describes changes we did
based on the first evaluation. Chapter 9 describes the very similar external evaluation. Chapter 10
then presents and discusses the results of our second evaluation. Lastly, we end with conclusions in
chapter 11.

1http://research.mytomorrows.com

http://research.mytomorrows.com


2
Background: Text Simplification

In this chapter we give an overview of text simplification research. This chapter, together with the next
chapter about text simplification in the medical domain, serves as the foundation of our research. We
identify the state-of-the-art in both chapters and select and combine useful pieces from both based on
the specific challenges in the medical domain.

2.1. Introduction
Text simplification is the process of making text easier to understand, e.g. by reducing vocabulary or
grammatical complexity, while preserving its meaning (at some level which is important for the target
user). Text simplification approaches can be divided into three main categories:

• Lexical simplification

• Syntactic simplification

• Monolingual Machine translation

Lexical simplification is the replacement of difficult terms or phrases with easier synonyms. First, a
set of complex words is identified. Then, for each complex word, a set of candidate terms is generated,
regardless of the complex word sense. This stage is followed by word sense disambiguation, to elimi-
nate candidates that do not fit in the context. Lastly, these candidates are ranked on simplicity and the
top ranked term replaces the complex term. A general example is given in figure 2.1.

Syntactic simplification is the process of identifying sentences with complex grammatical structure
and replacing these with simpler ones. For example long sentences that can be split up into multiple
simple sentences and optionally reordered, paraphrased or even dropped. Four tasks are defined in
syntactic simplification: splitting, reordering, paraphrasing and deleting. Examples of common syn-
tactic structures are given in table 2.1. A typical example approach is given in figure 2.2. Note that
syntactic simplification / transformation is often done in combination with lexical simplification.

Construct Example sentence
Coordination I worked at home and he went to the office.
Subordination Before I go, I need to do the dishes.
Adjectival clause I go to the university, which is in Delft.
Participial phrase I, traveling by car, was fastest.
Appositive phrase Arthur, the mechanic, murders people.
Punctuation Arthur (fifty one years old) is not a real mechanic.
Passive phrase Bob was killed by Eve.

Table 2.1: Syntactic constructs with examples

3



4 2. Background: Text Simplification

Figure 2.1: Lexical simplification pipeline by example, from [69]

Lastly, monolingual machine translation is divided into Statistical Machine Translation (SMT) and
Neural Machine Translation (NMT). On a very basic level SMT models the translation of a foreign text
to e.g. English with the probability:

argmax 𝑝(𝑒|𝑓) = argmax 𝑝(𝑓|𝑒)𝑝(𝑒)

according to Bayes’ theorem, with 𝑝(𝑒) the language model and 𝑝(𝑓|𝑒) being the translation model.
The language model is the probability of a sentence 𝑒 occurring in a language, which can be learned
from a general domain corpus in that language. This is used for generating grammatical correct sen-
tences. The translation model is then learned from a parallel corpus by frequency counts. A decoder
then searches for the sentence 𝑒 that maximizes 𝑝(𝑓|𝑒)𝑝(𝑒). NMT uses a neural network to learn this
statistical model. An encoder-decoder model is often used, which encodes the input sentence to an
internal representation and decodes this to the translation in the target language, while maximizing the
probability that it is indeed a correct translation. Again, on a very basic level both SMT and NMT can
be applied to translate from English to Simple English.

Automatic text simplification is usually evaluated using humans that score the output on grammar
(fluency), meaning preservation (adequacy), and simplicity on a 1–5 Likert scale. In addition, text
simplification based on machine translation is often automatically evaluated using a traditional machine
translation metric BLEU [58] and a text simplification specific metric SARI [81].

We review the state-of-the-art in lexical simplification, syntactic simplification and machine transla-
tion for text simplification in sections 2.2, 2.3 and 2.4 respectively. We end with a discussion in section
2.5.

2.2. Lexical Simplification
As depicted in figure 2.1, lexical simplification consists of four tasks. This section gives a very brief
overview of each of the tasks, based on a recent survey on lexical simplification [57].

2.2.1. Complex Word Identification
Complex word identification (CWI) approaches fall into five categories:

• Simplify everything
Each token in the text is a candidate for substitution.
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Figure 2.2: Syntactic simplification pipeline by example, from [69]

• Threshold-based
A threshold-based system searches for a threshold given a simplification metric and a training
set. Word frequency is a popular metric.

• Lexicon-based
Domain-specific text simplification systems can use a lexicon. When a word exists in a lexicon, it
should be simplified. For example, in the medical domain the Unified Medical Language System
(UMLS) is often used.

• Implicit CWI
Each token in the text is a candidate for substitution, but only substitutions that replace a word
with a simpler word are applied.

• Machine learning based
A machine learning model is trained on an annotated training set.

In the shared task of complex word identification in 2016 [54] a new data set is constructed com-
bining the CW [68], LexMTurk [28] and Simple Wikipedia [32] corpora. Most submitted systems use
machine learning. Interestingly, Decision Trees and Ensemble methods outperform Neural Networks
in the task, but this may be due to the limited amount of training data. It turned out that word frequency
remains the most effective simplification metric.

In 2018 the data set from [83] is used, which includes annotated English, German and Spanish
sentences. In addition a French data set was collected. It was (again) concluded that “traditional feature
engineering-based approaches (mostly based on [word] length and frequency features) perform better
than neural network and word embedding-based approaches”.

2.2.2. Substitution Generation
The generation of substitution candidates can be done using

• thesauri, e.g. WordNet;

• parallel corpora, e.g. Simple Wikipedia and English Wikipedia or the Newsela corpus;

• or word embeddings, e.g. GloVe [59] or Word2Vec [50];

Most recent work uses (context-aware) word embeddings [55, 56]. A word embedding model is
trained on a corpus with words concatenated by their POS tag. Additionally, the model can be retrofitted
over synonym relations fromWordNet [55]. Then, a set of most similar words are selected as candidate
substitutions. Similarity is measured with cosine similarity. Furthermore, the Newsela corpus was used
after paragraph, sentence and word alignment [55].
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2.2.3. Sense Disambiguation
This stage selects from the set of candidates the set of words which fit in the context of the complex
word being simplified, which should maximize meaning preservation, but also grammatical correctness.
This stage can be divided in five categories:

• Select all candidates
Simply select all candidates generated in the previous stage and pass them on, i.e. no disam-
biguation.

• Explicit sense labelling
Model sense labelling as a classification task with labels from e.g. WordNet.

• Implicit sense labelling
Group words that appear in similar context based on a latent variable language model.

• Part-of-speech tag filtering
Select only candidates that have the same POS tag.

• Semantic similarity filtering
Select only candidates that have a high semantic similarity with the complex word.

Recent work on lexical simplification uses semantic similarity filtering [24, 55, 56]. Not only the co-
sine similarity between the complex word and the target word is used, but also the similarity between
the context around the complex word and the candidate [24]. Alternatively, a machine learning ap-
proach is used with context-aware word embedding features and generated training data based on the
hypothesis: “a given target complex word is the only word suitable to replace itself” [55, 56].

The problem can also be defined as an optimization problem with WordNet as a sense inventory
[4]. Note that the sense disambiguation is done on the complex word and subsequently substitution
generation is done with WordNet. Since this optimization problem is an NP-hard problem, two solutions
are proposed to find near-optimal solutions: simulated annealing [33] and D-Bees [3].

2.2.4. Substitution Ranking
The last stage is ranking the remaining candidates based on simplicity. Approaches fall in three cate-
gories:

• Frequency based
This is based on the assumption that more frequent words are easier. Frequencies come from
corpora, such as movie subtitles, English Wikipedia and Simple Wikipedia, Google 1T Corpus,
Microsoft N-gram Services and search engine results.

• Simplicity measures
Using some defined metric of simplicity, e.g. combining frequency and word length.

• Machine learning based
A machine learning based ranker is trained.

Each category has recent notable contributions. A frequency based approach using subtitles for
children and families was presented in [56]. A ranking based on simplicity measures, such as word em-
bedding similarities, frequencies, and informativeness, was presented in [24]. Lastly, a neural model for
substitution ranking was presented in [55]. The neural model reports the best results, but requires train-
ing data. The unsupervised ranking approach does not perform much worse though and outperforms
frequency based ranking.

2.3. Syntactic Simplification
Syntactic simplification simplifies whole sentences as opposed to only complex words or phrases. Four
(separate) tasks in syntactic simplification are splitting, reordering, paraphrasing and deleting (parts of)
complex sentences. We found that most approaches focus on splitting and deleting, while reordering
and paraphrasing is done implicitly (as a consequence of splitting and deleting) and is mostly limited
to lexical simplification, respectively.
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2.3.1. Splitting
Complex sentences can be split into multiple simple sentences, e.g. the complex sentence “The man,
carrying numerous books, entered the room.” can be split into two sentences “The man entered the
room.” and “He was carrying numerous books.”. Text is often parsed using the Stanford dependency
parser [34]. Hand-written rules are then applied to split sentences containing complex grammatical
structures [19, 20, 41, 45, 64, 70], as given in table 2.1. In addition, this is combined with automatically
learned lexical simplification rules [45, 70] from aligned sentences or a traditional lexical simplification
component [19, 20], as given in figure 2.1.

More recent approaches use an additional step when a complex pattern is detected. A detected
complex pattern is classified by a decision tree to predict a split [41]. The decision tree is trained on
Simple English Wikipedia triplets. Each triplet consists of the original sentence and the split version
consisting of two sentences (similar to the example given earlier). Similarly, a complexity checker and
confidence model are used for identifying sentences to simplify and for deciding whether the output is
good enough to show to the end-user respectively [64].

Lastly, Boxer [16] is used to parse a complex sentence to a Discourse Representation Structure
(DRS). Then each pair of event variables (i.e. node that describes an event) is a split candidate [52].
Split probabilities are learned from aligned sentences from English and Simple Wikipedia. Similarly,
[72] generates a sentence for each event mention. Additionally, pronominal entity mentions are re-
solved [72], using Stanford’s co-reference resolution tool [40]. This approach is combined with the
unsupervised lexical simplification approach introduced in [24].

2.3.2. Deleting
Irrelevant information can be deleted from sentences, which could make a sentence simpler. For ex-
ample, the sentence “A couple of years ago I published a tiny scientific article about text simplification
for the first time.” can be compressed to “A couple of years ago I published a scientific article about
text simplification.”, deleting the adjective tiny and the phrase “for the first time”. Note that we do not
consider sentence compression as a task on its own, but sentence deletion in the context of sentence
simplification. All work described in this subsection is accompanied with other simplification operations.

Discourse is used to delete irrelevant information [52, 72]. First, sentences are parsed to a graph
of discourse structure. Then, events are extracted. Prepositional phrases, adverbs, adjectives and
orphan words (words that do not belong to either sentence after a split) are candidate deletions [52].
Deletion probabilities are learned from Wikipedia. Alternatively, sentences that do not contain an event
mention are simply deleted [72].

A system that adds deletion to [70], compresses sentences by generating candidates that miss
parts of the sentence and that largely comply with English syntax. Then for each sentence the best
candidate is selected in a way that benefits the whole text (by linear programming) [46].

Machine learning approaches try to learn what to delete. An approach “using conditional random
fields over top-down traversals of dependency graphs that jointly predicts possible compressions and
paraphrases” is introduced here [9]. First, a dependency tree is constructed. Then, a top-down ap-
proach is used: The CRF predicts for each sub-tree whether it can be deleted, paraphrased or left. For
paraphrasing the Paraphrase Database (PPDB) [22] is used. For deleting the Google compression
data set is used. The problem can also be seen as a sequence labeling task [6]. Each word is labeled
as DELETE, ORIGINAL or REPLACE (and others, but only these are used). The labeling is done using
a “bidirectional recurrent neural network, with an initial embedding layer of size 300 and two hidden
LSTM (Long-Short Term Memory) layers of size 100” [6]. Training data is automatically generated
from aligned sentences. Words that were classified as DELETE are simply deleted and words with the
REPLACE label are replaced using a lexical simplification approach [55].

2.4. Monolingual Machine Translation
Machine translation can be used to translate from English to Simple English. Such systems learn from
parallel corpora, e.g. aligned Wikipedia and Simple Wikipedia sentences. While the previous sections
explicitly deal with lexical and / or (parts of) syntactic simplification, machine translation models both
implicitly based on training data.

Machine translation approaches fall into two main categories, namely Statistical Machine Transla-
tion (SMT) and Neural Machine Translation (NMT), which both are supervised approaches. Due to the
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lack of large parallel corpora for non-popular language pairs, a third category was introduced, namely
Unsupervised Machine Translation (both SMT and NMT).

2.4.1. Statistical Machine Translation
Early work that used SMT for text simplification observed that it mainly reorders and performs substitu-
tions and therefore proposed a hybrid system that “combines a model encoding probabilities for splitting
and deletion with a monolingual [phrase-based statistical] machine translation module which handles
reordering and substitution” [52]. After splitting and deleting, the phrase-based SMT substitutes words
and reorders parts of sentences. The SMT is implemented using the Moses toolkit1 and trained on
aligned Simple and English Wikipedia sentences.

Later, the impact of quality of the data set is investigated by training several phrase-based SMT
models on data sets with different sizes and sentence similarities [73]. It was concluded that quality has
a greater impact than quantity, i.e. models trained on carefully selected sentence pairs with moderate
similarity based on S-BLEU perform best, regardless of the training set size, which ranges from 2,000
to 10,000.

Xu et al. [81] propose to use their text simplification specific metrics when tuning a syntax-based
SMT system using the synchronous context-free grammar in the PPDB [22], which can be used directly
by a SMT decoder. The SMT is then tuned using manual simplification from workers from Amazon
Mechanical Turk, who provided multiple reference sentences, and the two new tuning metrics. The
system was implemented in the open source syntactic machine translation decoder Joshua2 [61] and
tested on a test set with 8 references from workers from Amazon Mechanical Turk. This test set is
re-used in later works, described in the next section.

2.4.2. Neural Machine Translation
More recently, machine translation moved to NMT. This work claims to be the first to apply NMT to
the problem of text simplification [53] and use the OpenNMT framework [35] to build the network. An
NMT architecture is used with “two LSTM layers, hidden states of size 500 and 500 hidden units, and
a 0.3 dropout probability”. Additionally, global attention with input feeding is used [44]. Furthermore,
two Word2Vec models are trained. One trained on Google news and the original English text and one
trained on Google news and the simplified English text. During translation beam search is applied
to find the best translation (i.e. sequence of words). Beam search is an approximation of the best
possible translation. At each step of the translation the 𝑘 most likely words are generated given the
input sentence. Here, 𝑘 is called the beam size. Then, the most likely sequence (i.e. translation) is
called hypothesis 1, the next hypothesis 2, etc. BLEU with NIST [10] smoothing and SARI [81] are then
used to select the best beam size and hypothesis using the validation set.

Later, this approach is combined with a semantic splitting algorithm [74]. Training data is first parsed
to the UCCA (Universal Cognitive Conceptual Annotation) [1] scheme using the TUPA parser [27]. Two
types of sentence structures are then split:

1. Parallel scenes, e.g. “He came back home and played piano” to “He came back home” and “He
played piano” [74]

2. Elaborate scenes, e.g. “He observed the planet which has 14 known satellites” to “He observed
the planet” and “Planet has 14 known satellites” [74]

After applying these split rules in the training data, the same NMT as [53] is trained on it. Hu-
man evaluation showed that this approach produces simpler and simpler structural output than [53].
Grammar and meaning preservation scores, as well as automatic metrics BLEU and SARI, are lower
though.

2.4.3. Unsupervised Machine Translation
Unsupervised machine translation does not need parallel data [38]. It learns from separate monolingual
corpora. Figure 2.3 shows the trade-off in training data size when training machine translation systems
(for translating from English to French). BLEU ranges from 0 to 100 and higher is better. To the best of
1http://www.statmt.org/moses/
2http://joshua-decoder.org/

http://www.statmt.org/moses/
http://joshua-decoder.org/
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our knowledge this has not yet been tested for the text simplification task (i.e. translating from English
to Simple English).

Figure 2.3: Comparison between supervised and unsupervised machine translation on WMT‘14 En-Fr, from [38]

2.5. Discussion
Lexical simplification is the identification of complex words and phrases and replacing themwith simpler
synonyms. In this chapter we discussed state-of-the-art approaches in lexical simplification. Frequency
and word length features are often used for identifying complex words. Context-aware word embedding
models are used for generating substitutions and word sense disambiguation. Ranking candidates with
a neural network shows best results, but requires training data. An (unsupervised) approach using
frequency on a subtitle corpus was also shown to be effective. Note that these approaches perform
single word simplification. While lexical simplification can especially be beneficial for people with a
limited vocabulary, e.g. second language learners, it does not alter the grammatical structure of the
text.

Syntactic simplification aims to split, delete, paraphrase and reorder complex sentences, based on
the identification of complex sentence constructs, like in table 2.1. However, approaches that eliminate
such structures by identifying complex sentences and splitting them into simpler ones rely on costly
and carefully constructed hand-written rules. Alternatively, discourse is used to split sentences, i.e. not
using hand-written rules and therefore not explicitly tackle complex structures, are showed to produce
more readable and simpler texts, while achieving similar grammar and meaning preservation scores
when compared to hand-written rules approaches [72]. Additionally, they are able to delete irrelevant
information. Syntactic simplification can also be seen as a sequence labeling task, but this is not
suitable for splitting sentences [6].

Machine translation models both lexical and syntactic simplification implicitly based on training data,
which is available on English and Simple English Wikipedia and the Newsela corpus. Machine transla-
tion can either be done with traditional Statistical Machine Translation or Neural Machine Translation,
both supervised and unsupervised. Most recent work in text simplification using machine translation
uses NMT, for which it is shown that it outperforms SMT approaches. Unsupervised machine transla-
tion has not been explored in the text simplification task.

In the next chapter we discuss text simplification specifically in the medical domain. We list the
state-of-the-art in the same three categories. Lastly, we end with a discussion how to combine useful
pieces from both chapters based on the specific challenges in the medical domain.





3
Background: Medical Text Simplification

In this chapter we describe the state-of-the-art in medical text simplification. First, we discuss chal-
lenges in the domain and how it is different from general text simplification. The chapter is further
outlined in sections describing the different approaches to text simplification in the medical domain.
In the discussion we make the comparison between medical and non-medical (previous chapter) text
simplification research. We conclude the chapter with how we can combine useful pieces from (gen-
eral) text simplification and medical text simplification based on the specific challenges in the medical
domain.

3.1. Introduction
There are many types of medical texts, such as clinical text found in Electronic Health Records (EHRs),
clinical trial results, medical research, drug labels and patient information leaflets. Such texts can
contain specific terminology, i.e. medical concepts. Simpler synonyms, i.e. terms that are generally
understood by the general public, cannot be found in typical resources such as WordNet and existing
parallel corpora, such as Wikipedia and Simple Wikipedia and the Newsela corpus. Moreover, medical
text in general, in addition to containing medical terminology not known to laymen, is acknowledged to
be too complex for laymen [80]. This was already illustrated in table 1.1.

This chapter follows the same structure as previous chapter. For each category of text simplification
we include a section about recent literature. We end the chapter with a discussion.

3.2. Lexical Simplification
A lot of research in medical text simplification focused on (medical) lexical simplification [2, 12–14, 62,
65], i.e. focusing on replacing professional medical terms by laymen terms. In this section we give an
overview of research that focused on (parts of) lexical simplification within the medical domain.

3.2.1. Complex Word Identification
In medical text complex words are usually medical concepts found in professional medical vocabularies
and terminologies. One approach simply checks for each word whether a simpler synonym exists in
Medical Subject Headings (MeSH) [2], which is a controlled vocabulary for indexing medical articles.
More recent approaches [12, 13, 62] use MetaMap [7] to detect medical concepts and map them to the
Unified Medical Language System (UMLS). UMLS is a metathesaurus, which contains unified entities
from different source vocabularies and terminologies.

All medical concepts identified by MetaMap can simply be considered as complex words [62]. Al-
ternatively, these concepts can be considered as candidates. These candidates are then ranked by
e.g. a Support Vector Machine [13] or a random walk algorithm [12]. Transfer learning was also applied
to detect important terms for lay language annotation [14]: Feature Space Augmentation (FSA) [17]
and Supervised Distant Supervision, based on [77]. FSA combines shared features from two domains
and the domain-specific features, while SDS minimizes error from two domains. The source-domain is
distantly supervised and the target-domain is the manually labeled data by experts. A log-linear model
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is then trained and ranking is based on output probabilities. Manually annotated data can be used for
training [13]. Others are distantly supervised by the Open-Access and Collaborative Consumer Health
Vocabulary (CHV), which is a vocabulary for health consumers, which contains laymen synonyms for
medical concepts, mined from medical forums and Q&A systems [12, 14]. Candidate terms that occur
in the CHV are assumed to be important for the patient.

Segura-Bedmar and Martínez developed a Named Entity Recognition system [66], based on a
dictionary-based approach, to detect medical concepts to be simplified. The dictionary is built from the
ATC system, CIMA, MedDRA and medical websites, such as MedlinePlus and other Spanish medical
websites.

3.2.2. Substitution Generation
Word2Vec models, trained on Wikipedia, can be used to generate substitutions for medical concepts
[65]. Semantically similar terms are selected as candidates, based on similarity between the candidate
and the original word and the candidate and the context around the original word. But, this brings the
limitation that candidates consist of one word only. To overcome this phrase embeddings are used in
addition to word embeddings, i.e. the average of all word embeddings of (noun) phrases that contain
at least one MedDRA word, keeping certain patterns of Part-of-Speech only. Similarity is calculated
using cosine similarity.

Alternatively, controlled vocabularies can be used. As was mentioned before, [2] simply replaces
all words that have a simpler synonym in MeSH with that synonym. When making use of MetaMap one
could leverage the mapping to the UMLS, where the CHV is part of. Each identified medical concept
is replaced with its CHV-preferred term, which, intuitively, should make text easier to comprehend for
health consumers [62]. The section below explains works dedicated to constructing and enriching such
vocabularies.

Consumer Health Vocabulary
A number of works has focused on constructing or enriching the CHV, which can be used for complex
word identification and substitution generation. Wikipedia is used to mine consumer and professional
health terms using a pattern-based approach [76]. Articles on Wikipedia often contain alternate forms,
abbreviations and synonyms. For example the article about Xerostomia begins with: “Xerostomia, also
known as dry mouth and dry mouth syndrome, is dryness in the mouth...”. They identified twelve
common linking phrases: also called, also known as, also referred to as, commonly called, commonly
known as, commonly referred to as, sometimes called, sometimes known as, sometimes referred to
as, also termed, previously known as and colloquially known as. First, only health / medical articles are
filtered. Then, from the title and the leading text paragraph, all bold faced, italicized and hyperlinked
phrases are identified as candidates. Next, terms should be labeled as consumer or professional. This
is done based on the common assumption that a term frequently used by laypersons and medical
professionals are likely consumer-preferred terms and professional terms respectively. MedHelp was
chosen as a consumer text corpus, while abstracts of articles published in scientific journals were
chosen as the professional text corpus. By manually evaluating 100 pairs, it was observed “that 89%
of the pairs are between synonymous or equivalent concepts”.

Other works focused on extracting new consumer health expressions only, i.e. not on extracting
new pairs. A co-occurrence analysis based approach is used to expand the CHV by learning from a
popular online health community – MedHelp [30]. It is based on the assumption that “two (or more)
words that tend to occur in similar linguistic context (i.e. to have similar co-occurrence patterns) tend to
resemble each other in meaning” [39]. CHV terms are used as seed terms. Then, candidate terms are
extracted using co-occurrence analysis and ranked based on the strength of the association between
seed and candidate. MedHelp was also used to extract consumer health expressions in [82]. First,
given a post, similar comments are selected using the Kullback-Leibler divergence of two topic vectors
computed with LDA. The top 𝑘 comments are merged together with the original post. On this key-
phrase extraction is applied, using frequent word sequences [84]. Such a sequence appears in at least
𝜎 documents and is initially a sequence of two that ends with a noun. Then, each iteration one word
is added, until the condition does not hold anymore. Only nouns and adjectives are kept. The posts
and comments are tagged using Stanford Part-of-Speech tagger [75]. Sequences are given a phrase
score and the top 𝑚 are considered consumer health expressions.

Lastly, Yahoo! Answers is used, specifically the question and the best answer, to extract health
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consumer expressions [26]. First, the text is split into sentences and tokens, including Part-of-Speech
tags using OpenNLP1. Tokens are normalized using the Lexical Variant Generation tool [48]. Stop
words are removed. N-grams up to 5 are extracted. N-grams that occur less than 5 in the data set
are also removed. Using fuzzy matching, n-grams are matched to the CHV, which are considered as
seed terms. Note that each CHV term is also normalized. Non-CHV terms are considered as candidate
terms. Seed terms are then clustered using K-means with Euclidean distance. Both word and context
features are used. The distance from a candidate term to the nearest cluster is the score of that term.
In addition, clusters are given a score based on their average TF of the terms belonging to that cluster.
Candidate terms are first sorted on cluster score, then on distance to nearest cluster.

3.2.3. Sense Disambiguation
Recall that this stage selects from the set of substitution candidates the set of substitutions which fit
in the context of the medical concept being simplified, which should maximize meaning preservation,
but also grammatical correctness. Just a few works actually focus on the whole lexical simplification
task [2, 62, 65], but only one has some sort of word sense disambiguation [65]. Note that a dictionary
approach using some vocabulary is not context aware. In [65] Word2Vec models are used to generate
candidate terms. Instead of just taking the synonym candidate which is semantically similar the most,
the context around the original word is also considered. The average of the cosine distance of all
context words and the synonym candidate is computed as this similarity [24] as well.

3.2.4. Substitution Ranking
For assessing if a synonym is actually easier, frequency analysis is often used. If a synonym is more
frequently occurring in a general corpus, then it is considered as easier [2]. [65] uses the degree of
informativeness, defined in [18], also using frequency analysis. Only if the candidate is less informative
than the original word it is replaced. The MetaMap approach simply selects the CHV-preferred term
[62].

3.2.5. Explanation Generation
Explanation generation can be seen as a variant of lexical simplification. It is the automatic generation
of explanations of complex words. Hence, this is different from lexical simplification, since complex
words are not simply replaced by simpler synonyms, but instead a whole sentence containing a(n)
explanation / definition is showed.

One study examined the effect of automated health explanations on older adults (rather than fo-
cusing on automatically generating these explanations) [47]. To identify medical concepts a controlled
vocabulary was created from the Plain Language Health Thesaurus and Medline Plus [21]. For each
term that appears in the vocabulary an explanation is given. Results showed that participants were
more satisfied and found the text more helpful. However, the ability to recognize over-the-counter
medication risks did not increase.

A later approach that focused on automatically generating explanations, i.e. lay definitions, for
medical terms, introduced NoteAid2 [15]. The proposed method is again two-fold: first identify medical
concepts, then link these concepts to laymen definitions. CoDeMed was developed to contain these
lay definitions. It was constructed using human efforts, but also by mining medical synonyms from
Wikipedia. They “used the interwiki links in pages on the Wikipedia Health tree to extract candidate
synonyms for medical terms”. These candidates are then ranked using cosine similarity between word
embeddings of the target term and its candidate term and pseudo-relevance feedback. For identifying
medical concepts MetaMap is used. These terms are then linked to terms in CoDeMed by dictionary
lookup by the second module called MedLink. An example output of the system is depicted in figure
3.1.

3.3. Syntactic Simplification
There is little work on automatic syntactic simplification in the medical domain. However, there is an
approach that focused on manually splitting noun phrases and investigating the effect of it [43], after
an initial validation which found that for easy texts noun phrase complexity is lower [42]. From the
1https://opennlp.apache.org/
2http://www.clinicalnotesaid.org/emrreadability/notesaid.uwm

https://opennlp.apache.org/
http://www.clinicalnotesaid.org/emrreadability/notesaid.uwm
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Figure 3.1: Example output of generated explanations, from [15]

Disease category on English Wikipedia all articles (8,247) were collected. Then sentences “containing
six or more nouns and at least one noun phrase containing two words (2-gram), three words (3-gram)
or four words (4-gram).” are selected, using the Berkeley Parser [60]. Sentences that contain medical
concepts or proper nouns were discarded and only sentences where the noun phrase is in the Google
Web Corpus are kept. Furthermore, only sentences are kept of which its constituents after splitting the
noun phrase occur more frequently in the Google Web Corpus (based on previous work that showed
familiar terms are easier to understand). An example is given: “the frequency of “motor nerve con-
duction velocities” is 791 (in the Google Web Corpus) and after splitting into “conduction velocities of
motor nerves” the frequency increases to 10,498 (conduction velocities) and 12,804 (motor nerves)
with an average of 11,650”. The approach was evaluated using Amazon Mechanical Turk, to measure
perceived and actual text difficulty. For measuring perceived difficulty workers were asked to rate sen-
tences on a 5-point Likert scale. For measuring actual difficulty an adjusted Cloze test was used: four
nouns were deleted from the sentence; workers were then asked to fill in the blanks through choosing
1 out of 4 options. It was concluded that splitting noun phrases did not make the sentences easier,
although they were perceived as easier. It was also concluded that term comprehension has a great
impact on overall comprehension through the inclusion of pseudowords (representing difficult words)
in the sentences. In fact, “when pseudowords were present, the perceived difficulty of the sentences
remained the same regardless of whether the noun phrase was split or not”, indicating the importance
of lexical simplification in the medical domain.

Other work looked at negation and the impact of it on text readability and the ability to predict text
difficulty based on it. A negation parser for medical text simplification is introduced [51]. Three types
of negation are detected: sentential (e.g. no, none, not), morphological (e.g. irrelevant, impossible,
limitless) and double negation (e.g. not impossible). Blogs and Simple Wikipedia represent easy med-
ical texts and PubMed, Cochrane, clinical trials and English Wikipedia represent difficult medical texts.
Results show that morphological negations occur less frequently in easy texts than in difficult texts.
This is possibly due to that e.g. “not clear” is more familiar to a reader than “unclear”, since “not” and
“clear” occur more frequently than “unclear”, and is therefore considered as easier. At the same time
that could be the reason that in easy text sentential negation occurs more frequently than in difficult
text.

3.4. Monolingual Machine Translation
Limited work has been done on machine translation for medical text simplification. One approach uses
Moses, an SMT system, to automatically simplify medical text on slide shows about breast cancer
for deaf people. The system was trained on Simple and English Wikipedia. However, “the resulting
simplified English paragraphs were imperfect and required a second manual step to be consistent
and accurate” [37]. But, after the two-step simplification method, it was concluded that deaf people
performed significantly better on a multiple choice quiz about the material.

Another approach focused on generating paraphrases with NMT and compare it to SMT [25]. Train-
ing data comes from the PPDB and SNOMED CT. The latter is a medical terminology, which contains
description terms for medical concepts. It was concluded that NMT performs on par with SMT, but
SMT tends to copy the input, while NMT introduces more novelty, meaning that it potentially produces
more useful output. It should however be noted that this approach focused on paraphrasing parts of
sentences and medical concepts, e.g. simplifying “contagious diseases” to “communicable diseases”,
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essentially performing lexical simplification only. Moreover, it was not evaluated on whole sentences,
but on PPDB paraphrases and medical concepts and description terms from SNOMED CT.

Lastly, a first attempt towards creating a medical text simplification data set is done in [5]. Sentences
from complex medical sentences and simple medical sentences are aligned using the mean of several
sentence similarity scores and the output of a “stacked bidirectional long short term memory (BiLSTM)
layers in a Siamese architecture” trained on Quora question pairs, and Paralex question pairs. Then, an
optimal threshold is searched. Sentences from 164 health articles fromWikipedia and SimpleWikipedia
are aligned, resulting in 1,491 sentence pairs. In addition, sentences from https://www.webmd.com
and https://www.medicinenet.com are aligned. Sentences from medicinenet are considered
complex and sentences from webmd are considered simple. A Google search with the titles of the
164 articles is done and sentences in the results from both websites are extracted and subsequently
aligned, resulting in 1,002 additional sentence pairs. The result is a (not publicly available) medical text
simplification parallel data set of 2,493 sentence pairs. It is used to train an NMT system. The system
was evaluated using traditional machine translation metrics only and not by human evaluators.

3.5. Discussion
Most work on medical text simplification focused on lexical simplification. More specifically, the focus
is on the replacement of medical concepts by laymen synonyms or expressions. For finding these
synonyms and expressions the CHV is used. However, it is found that this is incomplete and still too
difficult for laymen [62]. A word embedding approach was promising, since this has worked in the
general domain with great success [24], but, evaluation showed that it performs far worse than a basic
dictionary approach [65]. However, an “error analysis shows that some of the system answers might
be valid and simple synonyms, even though they are not the same as proposed by the gold-standard
corpus”. Therefore, a second evaluation using multiple synonyms for the gold-standard or perhaps
using humans is needed.

The generation of explanations of medical concepts was also explored, which is considered to be
a variant of lexical simplification. It was shown that readers were indeed more satisfied with explana-
tions of medical concepts, nonetheless not better at recognizing medication risks. A semi-automatic
system was built using human efforts and Wikipedia, but was only evaluated by physicians. One clear
advantage that explanation generation has over other simplification approaches is that it does not alter
the original text and hence it remains in its original state. Therefore, errors made by such a system do
not affect the readability of the text, while errors made by other approaches does. On the other hand,
the already complex and potentially long medical texts become even longer.

Since the CHV could play a vital role in medical lexical simplification, several work focused on en-
riching or constructing CHVs from user-generated content. While most work only extract laymen terms
and expressions, aiming to make CHVs more comprehensive for laymen, we found only one work that
adds new pairs of medical concepts and its laymen synonyms, aiming to make CHVs more complete.
Interestingly, the impact of such approaches on lexical simplification using the CHV was not evaluated
in these works. While lexical simplification is widely acknowledged to be very important for compre-
hension of medical text (due to the vocabulary gap between health professionals and consumers), it is
also acknowledged that lexical simplification alone is not sufficient for medical text simplification [80].

Yet few works investigated medical text simplification other than (only) simplifying professional med-
ical concepts. The (manual) splitting of complex noun phrases did not make medical text easier. Fur-
thermore, negations in medical texts were investigated, but nothing more than that. It was shown that
easier text contain less morphological negations than difficult text. An easy text contains for example
“not clear” instead of “unclear”, which is what a general lexical simplification approach based on fre-
quency would also produce. A preliminary work extracted a (fairly small not publicly available) medical
text simplification dataset from web-based knowledge sources and trained an NMT system on it, but
do not include human evaluation.

Given that

1. current work in (automatic) medical text simplification mainly focuses on simplifying medical ter-
minology only;

2. medical text can also benefit from simplifying complex non-medical terms and complicated sen-
tence structures;

https://www.webmd.com
https://www.medicinenet.com
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3. limited work is done on using state-of-the-art text simplification (NMT) in the medical domain

we focus in this thesis on evaluating the state-of-the-art in text simplification (NMT) in the medical
domain. It can learn to perform lexical simplification and syntactic simplification implicitly, based on
training data. We investigate the impact of two directions that intuitively should improve text simplifica-
tion capabilities of NMT in the medical domain:

1. Data: We want to learn the impact of domain-specific training data on text simplification, since it
improves translation quality in regular NMT [67]. As there is no publicly available medical text sim-
plification corpus, we create one and make it publicly available for future research3. We compare
NMT trained on general sentences with NMT trained on general and medical sentences.

2. Simplification of medical terms: We introduce an extra pre-processing step that boosts an NMT
to learn medical term simplification. We also evaluate NMT in combination with a dictionary
approach using the CHV for replacing medical terms with laymen terms.

All approaches are evaluated using automatic metrics and human evaluators. The latter, a common
practice in text simplification research, is not yet done in the medical domain for NMT. First, we need
to create a medical text simplification corpus, which is where the next chapter continues.

3http://research.mytomorrows.com

http://research.mytomorrows.com


4
Medical Text Simplification Corpus

In this chapter we describe how we created two new aligned medical text simplification datasets for
in-domain training, as there are no publicly available medical text simplification corpora. A medical
text simplification corpus may contain simplifications of medical terminology to laymen terms which an
NMT can learn. The first dataset ( ) is an expert-evaluatedmedical subset filtered from the aligned
Wikipedia corpus presented by Hwang et al. [29]. The second dataset ( ) is a novel dataset
created by automatically aligning sentences from disease articles on Wikipedia and Simple Wikipedia
using a novel alignment method.

4.1. Expert-evaluated
Our dataset is created using the aligned corpus presented in [29], which aligns sentences be-
tween Wikipedia and Simple Wikipedia. This initial corpus consists of manually and automatically
generated good and good partial aligned sentence pairs. The former defined as “the semantics of the
simple and standard sentence completely match, possibly with small omissions (e.g., pronouns, dates,
or numbers)” and the latter as “a sentence completely covers the other sentence, but contains an ad-
ditional clause or phrase that has information which is not contained within the other sentence”. In the
remainder of this section we will refer to the good sentence pairs as fully aligned and to the good partial
as partially aligned sentence pairs.

Our dataset is a subset of the corpus presented in [29]. We filter out the set of alignedmedical
sentences. We use a state-of-the-art medical named entity recognition (and linking) tool, QuickUMLS
[71], to determine whether a given sentence pair (complex - simple) is health related or not. Quick-
UMLS is an approximate dictionary matching algorithm which matches terms from text with terms in
the UMLS. We used QuickUMLS with the default setting for similarity threshold (0.7) and limited the
semantic types to Disease or Syndrome and Clinical Drug). We consider a sentence pair a candidate
medical sentence pair, when QuickUMLS recognizes at least one medical concept in either the com-
plex or the simple medical sentence (or both). After QuickUMLS processing, we provide the resulting
candidate medical sentence pairs to a domain expert for additional validation, i.e. to confirm whether
the sentence pair is indeed health-related. We designed an extremely simple web page, illustrated in
figure 4.1, for annotation. Each fully aligned and partially aligned sentence pair in [29] is run through
this approach, resulting in a filtered corpus of 2,267 fully aligned medical sentences and 3,148 partially
aligned sentences.

4.2. Automatically Aligned
Since a few thousand aligned sentences is generally not enough for training neural models, we describe
how we created a second medical text simplification dataset fully automatically in this section. We
propose a simple novel language independent monolingual text alignment method and demonstrate
it by aligning additional complex and simple health sentences from Wikipedia and Simple Wikipedia
disease articles. First, we describe the novel text alignment method. Next, we describe how we used
it to align additional health sentences. This results in our second dataset, .

17
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Figure 4.1: An extremely simple annotation tool

4.2.1. A Novel Monolingual Text Alignment Method
Given a sentence pair (complex - simple), we need some metric to measure how similar to each other
they are: a sentence similarity score. If the two sentences are highly similar, it is highly likely that they
are a valid alignment. We use the sentence BLEU score [58] as a sentence similarity score. The BLEU
score is used in machine translation to measure how good an output translation is by comparing it to a
reference or multiple. More specifically, it is measured by counting overlapping word n-grams. We do
not include the equation here, since it needs a lot of background insights. For more details we refer to
[58]. The score is between 0 and 1, with 1 being a perfect translation, i.e. the two sentences of a pair
are identical to each other (or in other words are a perfect alignment). In our sentence alignment we
use character n-grams up to 12 and uniform weight distribution, i.e. 1/12, since these settings gave
best results in the evaluation described below. In addition we use the NIST [10] smoothing function.
To the best of our knowledge, BLEU score has not been used before in the alignment task.

We compare BLEU alignment with our own implementation of maximum alignment, which was
considered to be the best alignment method among several in [31]. Given a sentence 𝑥 and 𝑦 a
sentence similarity simmax(𝑥, 𝑦) is calculated by aligning each word in 𝑥 with the most similar word
in 𝑦 and vice versa. Word similarity 𝜙(𝑥 , 𝑦 ) is calculated using pre-trained Google news Word2Vec
embeddings [49]. Word similarity threshold is set to 0.5, similar to [31]. Words in the input sentences
that are not in the vocabulary of the Word2Vec model are filtered out.

To evaluate the quality of the BLEU alignment for the sentence alignment task, we compare BLEU
alignment to our implementation of Maximum alignment and results reported by Kajiwara and Komachi
[31]. We use the manual alignment set from Hwang et al. [29] as evaluation set. This evaluation set
contains 67,853 candidate sentence pairs, judged by human annotators. 277 were considered fully
aligned, 281 partially aligned and 67,295 considered either not good enough partial alignments or bad
alignments. We test both methods in two binary classification scenarios:

1. Fully aligned sentences versus the rest

2. Fully and partially aligned sentences versus the rest

We search for the best threshold value 𝑡. A sentence pair with sentence similarity 𝑠 > 𝑡 is considered
an alignment, else it is not. Precision 𝑝, recall 𝑟 and 𝐹 score are then defined as follows:

𝑝 = |{correct alignments}| ∩ |{predicted alignments}|
|{predicted alignments}|

𝑟 = |{correct alignments}| ∩ |{predicted alignments}|
|{correct alignments}|

𝐹 = 2 ⋅ 𝑝 ⋅ 𝑟𝑝 + 𝑟 (harmonic mean of 𝑝 and 𝑟)

Figure 4.2 shows precision-recall curves of the two scenarios of both methods (our implementation).
Table 4.1 summarizes the figure, reporting maximum 𝐹 score and Area Under the Curve (AUC) (also
known as average precision). Maximum 𝐹 score is reached at a certain threshold 𝑡 for each alignment
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method 𝑚. It combines precision and recall scores. The AUC score is an overall measure over the
whole range of precision and recall. Note that the maximum of precision, recall, 𝐹 score and AUC is
1.

(a) Precision-recall curve of fully aligned vs. rest:
Maximum alignment (AUC=0.704) and BLEU align-
ment (AUC=0.714)

(b) Precision-recall curve of fully and partially
aligned vs. rest: Maximum alignment (AUC=0.611)
and BLEU alignment (AUC=0.484)

Figure 4.2: Precision-recall curves of Maximum alignment and BLEU alignment

For fully aligning sentences BLEU score performs on par (see figure 4.2a) with more complex sen-
tence alignment methods based on word embeddings [31] and Wiktionary [29]. Despite the poorer
performance on partial alignment (see figure 4.2b), it does not depend on pretrained embeddings or
external datasources to function. In addition, when aligning medical data, the vocabulary might con-
tain a lot of words that are not in the vocabulary of such external datasources, which may deteriorate
performance of approaches that use them. BLEU only looks at overlapping n-grams, which makes it
domain and even language independent. Next, we describe how we used BLEU to align additional
complex and simple health sentences.

Fully vs. rest Max 𝐹 AUC
BLEU alignment 0.717 0.714
Maximum alignment 0.687 0.704
Maximum alignment in [31] 0.717 0.730
Alignment used to align Wikipedia [29] 0.712 0.694

Fully and partially vs. rest
BLEU alignment 0.534 0.484
Maximum alignment 0.624 0.611
Maximum alignment in [31] 0.638 0.618
Alignment used to align Wikipedia [29] 0.607 0.529

Table 4.1: Max and AUC scores for identifying fully aligned and fully and partially aligned sentences

4.2.2. Additional Alignments
Because more in-domain data seems to have a positive effect on translation quality when training an
NMT [67], we demonstrate our proposed method for sentence alignment by aligning additional disease
articles fromWikipedia and Simple Wikipedia. Recent work, by Kajiwara and Komachi [31] and Adduru
et al. [5] focused on the creation of an aligned corpus fromWikipedia and Simple Wikipedia. The former
presented amethodology to create a general corpus, the latter amedical corpus. Kajiwara and Komachi
used a full dump of Wikipedia and Simple Wikipedia and aligned the articles with matching titles. Given
the goal of creating a general-purpose corpus, they did not attempt to select articles based on topic. In
their work, they identify a total of 126,725 Wikipedia articles with a matching Simple Wikipedia article
in the English language. In contrast, Adduru et al. present an approach to collect a specific subset of
medical Wikipedia articles. They manually selected a set of 164 articles, which they match to Simple
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Wikipedia articles with a matching title.
Manual collection of such a dataset seems unnecessarily cumbersome. Therefore, we propose an

approach using DBPedia [8] and select all English articles that fall in the dbo: Disease class. After
title matching to Simple Wikipedia, this gives us a set of 1,098 aligned articles. Analogous to Kajiwara
and Komachi, we extract the text from the Wikipedia and Simple Wikipedia articles, using the python
Wikipedia API 1 and tokenize into sentences using NLTK 3.3 2. This gave an average number of words
per sentence of 26.1 for the English articles and 19.5 for the simple articles. The average numbers of
sentences per article were 123.4 and 20.3, respectively. In comparison, Kajiwara and Komachi report
an average number of words per sentence of 25.1 for the normal articles and 16.9 for the simple articles
and an average numbers of sentences per article were 57.7 and 7.65, respectively. Medical articles
(normal and simple) seem to be longer and more complex (in terms of sentence length).

To align sentences from Wikipedia to Simple Wikipedia, we employ a two step approach: first we
setup candidate pairs, by combining each sentence from the English Wikipedia articles which each
sentence of the corresponding Simple Wikipedia article. This gives us a total of 3,660,064 candidate
pairs from the 1,098 articles. Secondly, we select the most similar pairs from the candidate pairs. Ka-
jiwara and Komachi employ pre-trained Word2Vec word embeddings to determine sentence similarity.
Similarly, Hwang et al. present a method that relies on Wiktionary [29]. When aligning sentences where
the distinctive (medical) terms are arguably very infrequent, such dependencies may not be wanted,
as also noted by Adduru et al., who use a classifier to identify matching sentences. In our alignment
method we use a simple metric, the sentence BLEU score, in the configuration described above, to
align sentences.

We only include fully aligned sentence pairs, where BLEU alignment shows good performance in
the evaluation. In the generation of the dataset, we include sentence pairs with a BLEU score above
a treshold of 0.29, which provided the maximum 𝐹 score during evaluation on the general domain
set. After filtering out sentences with MediaWiki mathematical formulas, we include 3,797 fully aligned
medical sentences. Table 4.2 shows example pairs with different BLEU scores.

Wikipedia Simple Wikipedia BLEU
Aspirin is an appropriate immediate treat-
ment for a suspected MI.

Aspirin is an early and important treatment
for a heart attack.

0.33

Many cases of croup have been prevented
by immunization for influenza and diphthe-
ria.

Immunization (vaccines) for influenza and
diphtheria can prevent croup.

0.43

Hypertension (HTN or HT), also known as
high blood pressure (HBP), is a long-term
medical condition in which the blood pres-
sure in the arteries is persistently elevated.

Hypertension or high blood pressure, is
a chronic medical condition in which the
blood pressure in the arteries is higher
than it should be.

0.52

In the case of psychotic patients the pre-
mier cause of auditory hallucinations is
schizophrenia.

The main cause of auditory hallucinations
in psychotic patients is schizophrenia.

0.63

All three types can be diagnosed by seeing
the parasites under the microscope.

All three types can be diagnosed by iden-
tifying the parasites under a microscope.

0.72

Uncomplicated infections can be diag-
nosed and treated based on symptoms
alone.

Simple infections can be diagnosed and
treated based on symptoms alone.

0.83

There are no effective antiviral drugs for
the common cold even though some pre-
liminary research has shown benefits.

There are no effective antiviral drugs for
the common cold, even though some pre-
liminary research has shown benefit.

0.93

Table 4.2: Example alignments using BLEU alignment

1https://pypi.org/project/wikipedia/
2http://www.nltk.org
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4.3. Overview
In sum, we introduced two new medical text simplification datasets: and . Our
dataset is derived from [29]. If we exclude from [29], we end up with non-health related aligned
sentences, which we consider as the set of aligned sentences. The dataset contains
our additional alignments of medical sentences from Wikipedia and Simple Wikipedia disease articles.
An overview is given in table 4.3.

Servan et al. showed that regular NMT already benefits from 500 domain-specific aligned sentences
[67]. Training on 5000 domain-specific aligned sentences showed an improvement of 10.5% in BLEU
points, a traditional metric for machine translation. However, note that domain specialization was not
investigated before for NMT in the context of text simplification.

Fully aligned 𝑁
152,538
2,267
3,797

Partially aligned
126,785
3,148

Table 4.3: An overview of the datasets





5
Neural Medical Text Simplification

Most current research on text simplification in the medical domain focuses on simplifying medical con-
cepts only. However, monolingual NMT has shown great potential in text simplification research but
has not been evaluated properly in the medical domain yet. Therefore, we replicate the state-of-the-
art NMT text simplification system of [53] and evaluate it on our expert-curated dataset. This system
outperformed phrase-based [79] and syntax-based statistical machine translation [81] approaches, as
well as an unsupervised lexical simplification approach [24].

We train a system on the set only and call it . To investigate the effect of the
health related aligned sentences, we train a second system on , and

. Note that because we train on both fully and partially aligned sentences, we expect that the NMT
learns to delete irrelevant parts of sentences and keep the core meaning only. Furthermore, because
we have a relatively small amount of aligned health sentences and medical concepts are therefore
sparse, we propose two strategies for translating medical concepts. They can be used (independently)
in combination with NMT.

1. We introduce a method that groups semantically similar medical concepts so medical concepts
will become less sparse

2. We use the Open-Access and Collaborative Consumer Health Vocabulary (CHV) for replacing
professional medical terms with laymen terms

Recall that the CHV is a vocabulary for health consumers, which contains laymen synonyms for
medical concepts, mined from medical forums and Q&A systems [12, 14]. First, we describe the NMT
system itself. Next, we describe the two strategies for simplifying medical concepts.

5.1. Neural Text Simplification
We implemented the NMT system in OpenNMT1, an open source framework for NMT. The architecture
consists of two LSTM layers, states of size 500 and 500 hidden units and a 0.3 dropout probability. An
NMT system learns embeddings of source and target words (and may use pre-trained embeddings as
a starting point). A source and target vocabulary size 𝑣 is chosen for which embeddings are learned
and retrieved. The most frequent 𝑣 unique words are in the vocabularies. Note that an NMT system
can only learn translations from words that are in the source vocabulary to words that are in the target
vocabulary. The vocabulary size is pruned to 50,000 in both the source and target language. Word
embedding size is set to 500. uses pre-trained Word2Vec embeddings from the Google
News corpus [49] of size 300, while uses pre-trained Word2Vec embeddings of size 200,
trained on 10,876,004 English abstracts of biomedical articles from PubMed [36]. The remaining part
(of the total size of 500) is learned during training of the NMT (while the pre-trained part remains fixed).
Lastly, the decoder uses global attention with input feeding [44]. The system is trained for 20 epochs,
using a SGD optimizer and an initial learning rate of 1.0. Then we select the best model based on
1http://opennmt.net/
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perplexity on the validation set. After epoch 9, the learning rate decay is 0.7, i.e. learning_rate =
learning_rate * learning_rate_decay.

Simplification is learned on sentence level on a word basis. The input is a complex sentence and
the output is a simple sentence. The input is tokenized into tokens (or words). Since the output is also
a sequence (i.e. the order of words matters) we use beam search is used to find the best prediction
given the input. Beam search is an approximation of the best possible translation. At each step of the
translation the 𝑘 most likely words are generated given the input sentence. Here, 𝑘 is called the beam
size. Then, the most likely sequence (i.e. translation) is called hypothesis 1, the next hypothesis 2, etc.
For each system we will evaluate both hypotheses 1 and 2 and a beam size of 12, since the system
that performed most changes and highest percentage of correct ones in [53] used a beam size of 12
as well. Moreover, we found that hypothesis 1 was often too conservative, i.e. copying the input too
much, while hypothesis 2 performed more changes.

5.2. Translating Medical Concepts
In this section we describe how we combined two strategies for medical concept translation with NMT.
The relatively small amount of aligned health sentences makes medical concepts sparse and it is
therefore hard for the NMT to learn simplifications for them. The two strategies are used on top of

. We call the resulting system , which will become clear in the next
sections.

5.2.1. Grouping Semantically Similar Medical Concepts
As an extra pre-processing step before training (and translating with) we replace each
medical concept encountered in the complex text in and with a Concept Unique Iden-
tifier (CUI) from the Unified Medical Language System (UMLS). We group medical concepts that have
the same CUI to a single token. Recall that the UMLS is a metathesaurus, which contains unified
entities from different source vocabularies and terminologies. We used QuickUMLS [71] with a sim-
ilarity threshold of 0.7, a value for which highest F1-scores were achieved in [71], to detect medical
concepts and link them to a CUI. QuickUMLS measures string similarity between words from the input
and instances from the UMLS. An n-gram with a similarity higher than the threshold is considered a
medical concept. For each detected concept we take the best match’s CUI according to QuickUMLS
and replace the concept with this CUI. An example is given below (Wikipedia sentence followed by the
same sentence with medical concepts replaced by their CUI):

• Coronary artery disease (CAD) also known as atherosclerotic heart disease, coronary heart dis-
ease, or ischemic heart disease (IHD), is the most common type of heart disease and cause of
heart attacks.

• C1956346 (CAD) also known as C0010054, C0010054, or C0151744 (C0151744), is the most
common type of C0018799 and cause of C0027051.

This approach reduces the (medical) vocabulary (and medical concept sparsity), since any textual
variation of a concept is mapped, normalized or grouped to a single CUI. This way all variations are
reduced to the same single token and also the references for each concept are now aggregated. For
example, atherosclerotic heart disease and coronary heart disease are both replaced with C0010054.
Note that a valid laymen translation can be (for both) heart disease.

5.2.2. Adding a Dictionary Approach for Out of Vocabulary Medical Concepts
Note that we include the 50,000 most frequent words in the source and target vocabulary (so we have
enough reference translations for each word in the vocabulary). This may cause that some CUIs are
not in the source vocabulary and are therefore not translated. To overcome this, we replace CUIs that
are out of vocabulary (OOV) with their CHV-preferred term, if it exists, or copy the original source token.
Remember that QuickUMLS assigns a CUI from the UMLS and that the CHV is part of the UMLS. Each
CHV term has a CUI. This way we can get the corresponding CHV-preferred term based on the CUI.
An example is given below:

He suffered from a {myocardial infarction}C0027051.
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The CUI C0027051 is assigned tomyocardial infarction by QuickUMLS (becausemyocardial infarc-
tion is in the UMLS). Then, in the MRCONSO table in the UMLS we can get the corresponding CHV
term. The MRCONSO table contains terms with their source vocabulary linked to their CUI. A simplified
view of this table is given in table 5.1.

CUI VOCAB STR
C0027051 ... ...
C0027051 MSH myocardial infarction
C0027051 ... ...
C0027051 CHV heart attack
C0027051 ... ...

Table 5.1: A simplified view of the MRCONSO table in the UMLS.

To translate OOV CUIs, we make use of a phrase-table, which can be pre-constructed before trans-
lation. Each entry in the phrase-table contains a CUI with its CHV-preferred term or its original source
token. In the example above the pair C0027051 and heart attack is added to this phrase-table. Instead
of substituting out of vocabulary words with source words that have the highest attention weight, a
possible translation in the phrase-table is looked up. If C0027051 is OOV then it is replaced by heart
attack from the phrase-table. This way the output does not contain any raw CUI.
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Exploratory Evaluation

Text simplification is typically automatically evaluated and evaluated by humans. Automatic evaluation
is based on a reference test-set drawn from our dataset. Note that Wikipedia sentences are the
input sentences and Simple Wikipedia sentences are the references. We automatically evaluate each
proposed system with hypothesis 1 and 2 selection strategies (the most likely simplification and the
second most likely one), as well as the identity function (just copying the input). Results of automatic
evaluation are used to get a first impression of the performance of the systems. Humans evaluated
simplified sentences on grammar correctness, meaning preservation from the complex sentence and
simplicity compared with the complex sentence. Again, we evaluate each proposed system with hy-
pothesis 1 and 2 selection strategies, but in this case, also Simple Wikipedia, since we do not need a
reference for human evaluation. We do need Wikipedia as input, to measure how much meaning is
preserved and how much simpler the output is. An overview of systems we evaluate is given in table
6.1. We randomly select 350 sentences as test set and 500 as validation set (to select to best model)
from the dataset. Automatic evaluation is done on the test set. Human evaluation is done in the
first 70 sentences of the test set (since human evaluation is rather costly).

System Automatic evaluation Human evaluation
Identity (Wikipedia) ✓ ✗
Simple Wikipedia ✗ ✓

✓ ✓
✓ ✓

Table 6.1: An overview of systems we evaluate

Next, we describe how automatic and human evaluation are executed, with their corresponding
metrics.

6.1. Automatic Evaluation
Text simplification is typically automatically evaluated using a traditional machine translation metric
BLEU [58] and a text simplification specific metric SARI [81]. BLEU compares the output against refer-
ences and produces a score between 0 and 1, with 1 representing a perfect translation (i.e. identical to
one of the references). In our evaluation we use word n-grams up to 4. However, when used for simpli-
fication, it has to be handled with care as it is not uncommon that the source sentences (fromWikipedia)
and the reference sentences (from Simple Wikipedia) are identical or very similar as Wikipedia editors
just copied them over without or only with minor modifications. Therefore, a machine simplification
which just keeps the source sentence as-is often has high BLEU scores, but is not simpler.

Hence, a specific text simplification metric was introduced in [81], called SARI, which compares
System output Against References and against the Input sentence. It focuses on lexical simplification,
i.e. replacing complex words and phrases with simpler alternatives. “It explicitly measures the good-
ness of words that are added, deleted and kept by the systems” [81], by comparing the output with the

27
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Grammar
5 The output is meaningful and there are no grammatical mistakes
4 The output contains one or two minor errors, but the meaning can be easily understood
3 The output contains several errors, but it is still possible to understand the meaning
2 The meaning of the output is hard to understand due to many grammar errors
1 The meaning of the output is impossible to understand due to being ungrammatical
Meaning preservation
5 The output has the same meaning as the original sentence (it is allowed that it misses some

irrelevant parts of the original sentence)
4 The core meaning of the output is the same as the original sentence, but with subtle differ-

ences
3 The output contains part of the relevant information of the original sentence, but misses

another part of relevant information of the original sentence
2 The output has very different meaning than the original sentence
1 It is impossible to compare
Simplicity
2 The output is syntactically and lexically simpler than the original sentence
1 The output is easier to understand due to minor changes, e.g. word replacement
0 The output is as difficult as the original sentence
-1 The output is harder to understand than the original sentence due to incorrect minor changes
-2 The output is impossible to understand

Table 6.2: Guidelines for in-house annotation

source and the reference or multiple. SARI combines several aspects of adding and deleting words
into a single numeric measure: the terms added by the simplification algorithm with respect to if they
are also added in the reference simplification; and the terms removed by the simplification algorithm
also with respect to if they are removed in the reference, and the terms which are kept stable between
the reference and a simplification.

In sum, BLEU score is an indication how close a translation is to the reference, while SARI measures
the correctness of changes (adding and deleting) and unchanged phrases (what phrases were kept
unchanged correctly) when compared to the original input and the reference. The results will give an
indication of how well systems are able to simplify health sentences onWikipedia with SimpleWikipedia
as a reference.

6.2. Human Evaluation
As both metrics used in the automatic evaluation are insufficient to fully describe the capabilities of
machine simplification, such evaluation needs to be accompanied by a human evaluation. To this
end, we obtain feedback on simplified sentences focusing on grammar, meaning preservation (both
measured on a 1-5 Likert scale), and simplicity (on a scale of -2 to 2, with negative values representing
that the text has become more complex). This follows the setup outlined in [53]. An evaluator is
presented with a sentence pair (complex, simple) and asked to give the scores.

We asked three in-house non-medical people from myTomorrows to score these sentences on a
simple web page, illustrated in figure 6.1. We based our annotation guidelines on [72]. We slightly
edited the guidelines, since their focus was on splitting (and deleting parts of) sentences, while our
system mainly replaces words and deletes parts of sentences. The guidelines are outlined in table 6.2.
Note that an exact copy of the input gets a score of 5, 5 and 0 for grammar, meaning preservation and
simplicity respectively.

6.3. Expectations
The system should be able to simplify a complex health sentence in general. That is,
delete irrelevant content and keep the core meaning of the sentence only (which is learned from partial
alignments). This should be reflected by SARI’s delete component. The system
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should be able to add more (domain-specific) terms that are also in the reference, since it can translate
more domain-specific terms due to the additional in-domain training data. Moreover, the translation
of medical concepts to laymen terms is boosted by the semantic grouping of medical concepts and
the CHV. Depending on how much content is deleted BLEU score should increase compared the just
copying the input.

Human evaluation firstly answers the question howmuch simpler SimpleWikipedia is thanWikipedia,
which is helpful, since we used it as a reference in automatic evaluation. It also answers how much
meaning the automatically aligned Simple Wikipedia sentences preserve, compared to the Wikipedia
sentences. Next, we compare how close the proposed systems come to Simple Wikipedia. The

system should be able to simplify a complex health sentence in general (with a certain loss of
meaning preservation). The should improve simplicity by, in addition to general
simplifications, translating medical terms to laymen terms.

Figure 6.1: The annotation web page for in-house myTomorrows laymen
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Results and Discussion I

This chapter gives an overview of and discusses automatic and human evaluation of the proposed
systems:

•

•

To briefly sum up, is an NMT system trained on general Wikipedia and aligned Simple
Wikipedia sentences. is in addition trained on domain-specific data. Also, before
training (and translating), semantically similar medical concepts are grouped. For medical concepts that
are not in the vocabulary (and are therefore not translated) we use the Open-Access and Collaborative
Consumer Health Vocabulary (CHV). This is a vocabulary for health consumers, which contains laymen
synonyms for medical concepts, mined from medical forums and Q&A systems [12, 14]. Note that we
include Simple Wikipedia in our human evaluation.

7.1. Automatic Evaluation
In table 7.1, SARI, along with its three components, and BLEU scores are reported. The scores repre-
sent if the system is actually modifying the text, and how it relates to the test set reference sentences.
“Identity” does not perform any text simplification, but simply uses the source sentence. This tells us
how similar the source is to the reference. It serves as calibration scores for SARI and BLEU; e.g., not
simplifying anything results in a BLEU score of 0.53 and a SARI score of 21.56. Both hypothesis 1 and
2 of (i.e. choosing the most likely or second likely simplification) are able to improve SARI
scores. The main difference between them is that hypothesis 2 deletes phrases with higher precision
than hypothesis 1. Both hypotheses of show comparable numbers for keeping and
deleting terms, but a slightly higher number for adding terms. This may be because of the additional
terms (medical concepts) is translating. BLEU scores of the identity and hypothesis
1 are highest. This may be due to that in hypothesis 1 is often producing the
exact same sentence. The others are less conservative, i.e. perform more changes, which reduces
BLEU.We showed that the NMT systems indeed improve SARI scores and therefore we expect that the
output is simpler than the input. slightly increased SARI over the baseline (due to
its 𝐹add component). Therefore, we expect that simplicity scores will be at least similar to the baseline.

7.2. Human Evaluation
Three laymen provided feedback on the first 70 sentences of the test set with respect to grammar,
meaning preservation, and simplicity, as is described in chapter 6.

Table 7.2 shows that produces decent grammar and meaning preservation scores and
indeed simplifies the text. However, scores show that grammar, meaning preser-
vation and simplicity scores are all lower than . We assume that this is due to

replacing out of vocabulary concepts with their CHV-preferred terms (which are expert curated
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Approach SARI 𝐹add 𝐹keep 𝑃del BLEU
Identity 21.56 0.00 64.68 0.00 53.07

, h-1 28.14 1.91 60.37 22.15 54.78
, h-2 32.73 2.03 55.82 40.34 44.51

, h-1 32.27 2.24 57.10 37.47 47.48
, h-2 33.92 2.96 54.93 43.88 44.37

Table 7.1: Evaluations with automatic metrics

simplified terms) instead of substituting them with source words that have the highest attention weight.
While we assumed that using these expert term simplifications should perform well, also previous re-
search concluded that “some CHV-preferred terms can be above the level of consumers’ comprehen-
sion” [62].

Approach G M S
Simple Wikipedia 4.91 4.24 0.53

, h-1 4.85 4.30 0.22
, h-2 4.49 3.87 0.23

, h-1 4.23 3.82 -0.05
, h-2 4.19 3.76 -0.05

Table 7.2: Human evaluation scores. G:Grammar, M:Meaning preservation, S:Simplicity

7.3. Example Translations
Two (random) example translations are given in table 7.3 and table 7.4. The first example shows that
all systems are able to simplify the input and produce a grammatical correct sentence. The second
example is more interesting, since it shows two things:

1. It shows that the automatic alignment of Wikipedia and Simple Wikipedia is not always perfect,
from which meaning preservation can clearly suffer.

2. It shows that inserting a CHV-preferred term (cell count instead of Cells) decreases grammatical
correctness and does not make the sentence simpler, while does not suffer from this.

7.4. Discussion
While the results were unexpected, it is unable to identify what caused the deterioration of performance
of compared to . This is due to the fact that we did a number of things
at the same time:

1. Adding domain-specific data

2. Replacing medical concepts with CUIs

3. Using the CHV to replace medical terms with laymen terms

Again, each component above should intuitively boost performance, but this was not the case.
To measure the effect of each step we need to evaluate each step separately. We want to measure
the effect of domain-specific training data. We also want to know the effect of grouping semantically
similar medical concepts and using the CHV individually. Therefore, we add a second evaluation of the
following systems:

1. - NMT trained on , and , i.e. we only add domain-specific
data with respect to
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Source Sentence G M S
Wikipedia On the second stage, as abnormal new blood

vessels (neovascularisation) form at the back of
the eye as a part of proliferative diabetic retinopa-
thy (PDR), they can burst and bleed (vitreous
hemorrhage) and blur vision, because the new
blood vessels are weak.

- - -

Simple Wikipedia As new blood vessels form at the back of the
eye as a part of proliferative diabetic retinopathy
(PDR), they can bleed (ocular hemorrhage) and
blur vision.

4.67 3.00 1.00

, h-1 The new blood vessels (neovascularisation) form
at the back of the eye as a part of proliferative
diabetic retinopathy (PDR).

5.00 2.67 1.00

, h-2 On the second stage, the new blood vessels
(neovascularisation) form at the back of the eye
as a part of proliferative diabetic retinopathy
(PDR).

4.67 3.33 0.67

, h-1 They can burst and bleed. 3.67 2.00 0.33
, h-2 In the second stage, the blood vessels are weak. 5.00 2.33 0.33

Table 7.3: Example translations from different systems with their scores. G:Grammar, M:Meaning preservation, S:Simplicity

2. - The same as , but with grouping of semantically similar medical
concepts in the complex text during training (and translation)

3. - The same as , but with untranslated medical terms replaced by
CHV-preferred terms

This way we can better measure the effect of the separate steps we took specifically for the medical
domain. However, this does not explain the deterioration of performance. Since it is very reasonable
to assume that domain-specific training data does not deteriorate performance we rule this out.

It is also reasonable that, assuming we grouped medical concepts correctly and replaced medical
concepts with the correct CUI, CUI replacement should not really affect the NMT. Because for the NMT
it does not matter whether it sees coronary artery disease or C1956346 or x, except that it becomes
one token instead of three. In addition, recall that CUI replacement should group the same medical
concepts in different terms, boosting the learning of medical concept translation to Simple Wikipedia
terms. However, we might have assigned the wrong CUI to a medical concept, which impacts CUI
translation learning and certainly CHV-preferred term replacement.

Source Sentence G M S
Wikipedia Cells found in a ganglion are called ganglion

cells, though this term is also sometimes used
to refer specifically to retinal ganglion cells.

- - -

Simple Wikipedia In another usage, ganglion cells are found in the
retina of the vertebrate eye.

3.33 2.33 0.33

, h-1 These cells are called ganglion cells. 4.67 3.00 1.67
, h-2 This is called ganglion blood cells. 3.00 2.33 0.00

, h-1 cell count found in a ganglion are called ganglion
cells, though this term is also sometimes used to
refer specifically to retinal ganglion.

3.00 3.33 -1.00

, h-2 cell count found in a ganglion are called ganglion
cells.

2.67 2.67 -0.67

Table 7.4: Example translations from different systems with their scores. G:Grammar, M:Meaning preservation, S:Simplicity.
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Each medical concept detected by QuickUMLS with a similarity higher than a threshold of 0.7 is
replaced by its CUI from the UMLS. However, it may be the case that a term has multiple matches in
the UMLS and hence it could have multiple CUIs. A medical concept can have a different meaning
in context 𝑎 than in context 𝑏. Take for example the medical abbreviation HT, which can mean hy-
pertension or hyperthyroidism. The UMLS might contain two instances of HT (for hypertension and
hyperthyroidism) each with its own CUI. We simply took the best match (with highest similarity). In the
case of a tie (i.e. matches with the same similarity, HT in this toy example) we randomly take one,
which obviously is not always correct. To select the correct one, one should include a word sense dis-
ambiguation stage. A wrong CUI replacement in itself does not really effect the NMT, because it learns
an embedding for a term (whatever it may be). However, when dealing with multiple occurrences of a
CUI, a wrong CUI in a group of correct CUIs could indeed influence the embedding learning. Moreover,
if selected a wrong CUI we replace it with the wrong laymen term from the CHV. We assume that this is
the reason that the performance of deteriorated. In the next chapter we therefore
revise CUI replacement.
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Grouping Semantically Similar Medical

Concepts Revisited
In the previous chapter we argued that we might have assigned the wrong Concept Unique Identifier
(CUI) from the Unified Medical Language System (UMLS) to medical concepts. A medical concept can
havemultiplemeanings, depending on the context around it. Continuing with the example from previous
chapter, HT can mean hypertension or hyperthyroidism. Each of them may have an instance HT in
the UMLS, with a different CUI. QuickUMLS returns all matches with a similarity higher than a certain
threshold. Previously, we simply took the best match. In the case of a tie (multiple explanations with the
same similarity) we randomly took one. In this chapter we describe a medical concept disambiguation
method.

8.1. Disambiguation
QuickUMLS simply uses a string similarity between n-grams from the input sentence and UMLS in-
stances and returns the UMLS instances that have a similarity higher than a certain threshold. If
QuickUMLS returns exactly one instance, there is no need for disambiguation. If it returns multiple,
we make use of two aligned sentences. For example, a sentence 𝑎 and its simplification 𝑏. Sentence
𝑎 might only mention HT, while in the simplified sentence 𝑏 HT is translated to hypertension. Then we
know that HT in sentence 𝑎 is hypertension and not hyperthyroidism. The toy example below illustrates
this:

1. The patient was suffering from HT during his surgery.

2. The patient showed signs of hypertension during surgery.

Using the second aligned sentence, we now know that HT refers to hypertension. Note that we do
not necessarily need to use an aligned sentence, we can also use the sentence itself. Consider the
following (real world) example from Wikipedia:

• Hypertension (HTN or HT), also known as high blood pressure (HBP), is a long-term medical
condition in which the blood pressure in the arteries is persistently elevated.

Because hypertension is mentioned in the same sentence HT probably refers to hypertension.
In sum, given a sentence 𝑎, in which we want to replace medical concepts with CUIs, take a second

aligned sentence 𝑏 (remember that it is possible that 𝑏 is equal to 𝑎). For each concept 𝑐 , in 𝑎 get the
set of explanations 𝑒 , from QuickUMLS. For each concept 𝑐 , in 𝑏 get the set of explanations 𝑒 , from
QuickUMLS. Then, for each concept 𝑐 , , if the intersection between 𝑒 , and 𝑒 , for any 𝑗 is exactly
one, the intersection of size 1 is added to the list of candidates 𝑙. Note that it can be the case that an
intersection of size 1 occurs for multiple values of 𝑗, e.g. HT may have an intersection of explanations
of size 1 with hypertension and HTN. If there is exactly one unique explanation 𝑒 in 𝑙 then we assign
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explanation 𝑒 to concept 𝑐 , . Finally, concept 𝑐 , in 𝑎 is replaced with the CUI of explanation 𝑒. The
procedure is outlined in algorithm 1.

Input: a, b
Output: a
concepts_a = quickumls(a);
concepts_b = quickumls(b);
foreach 𝑐 , ∈ concepts_a do

candidates = [];
𝑒 , = get_explanations(𝑐 , );
foreach 𝑐 , ∈ concepts_b do

𝑒 , = get_explanations(𝑐 , );
intersection = 𝑒 , ∩ 𝑒 , ;
if |intersection| == 1 then

candidates.append(intersection);
end

end
if |unique(candidates)| == 1 then

a = replace(a, 𝑐 , , candidates.pop());
end

end
Algorithm 1: Concept disambiguation in sentence 𝑎, using a second (aligned) sentence 𝑏

8.1.1. Training
Recall from 5.2.1 that before training we replace all medical concepts with a CUI in the complex sen-
tences. Different than before, we also replace medical concepts found in the set of sentences.
We only replace a medical concept when we know we selected the correct CUI, as described above.
We use Simple Wikipedia as a set of second sentences for disambiguation. We make use of the fact
that our training data consists of aligned (complex and simple) sentences. The resulting system is
called .

8.1.2. Translation
Before translation, we also need to replace medical concepts with CUIs (since we trained

on CUIs), but we do not have the Simple Wikipedia aligned sentence. We can use automatically
generated simplifications from the already trained NMT systems ( and ). We
can also use the complex sentence itself, i.e. the identity. To avoid that we introduce CUIs that are
OOV, we simply only replace medical concepts with CUIs that are in vocabulary. Table 8.1 shows how
many CUIs we were able to disambiguate using different sources (and how many of them were in
vocabulary). During testing we chose to use the identity to disambiguate CUIs.

Source Disambiguated CUIs In vocabulary
Identity 708 621

, h-1 703 619
, h-2 701 617
, h-1 707 621
, h-2 705 618

Table 8.1: Number of disambiguated CUIs that are in vocabulary using different sources.

8.2. Post-Translation Dictionary Approach
Instead of constructing a phrase-table that we use during translation for out of vocabulary medical
concepts (see 5.2.2), we replace medical concepts after translation. We replace medical concepts that
are left after translation. We replace medical concepts in the output of with laymen terms
from the Open-Access and Collaborative Consumer Health Vocabulary (CHV) using its CUI. Similar
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to , we use the original complex sentence (the identity) for disambiguation. Table 8.2
shows how many CHV terms we replaced in the output of . The resulting system is called

.

Source Number of CHV-preferred terms inserted
, h-1 487
, h-2 421

Table 8.2: Number of CHV-preferred terms we inserted after translation with .
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Amazon Mechanical Turk Evaluation

In the discussion of our exploratory evaluation we mentioned we needed a second evaluation. We
evaluate the same baseline, trained on . We add an evaluation of .
This systems only differs in what training data it is trained on. It is in addition trained on medical sen-
tences. Next we evaluate and . These two systems aim at translating
medical concepts to laymen terms. We evaluate these separately to measure the performance of both
separately. In sum, we evaluate the following systems:

• (Automatically aligned) Simple Wikipedia

• - State-of-the-art Neural Text Simplification trained on the dataset

• - State-of-the-art Neural Text Simplification trained on the , and
datasets

• - , but with semantically similar medical concepts grouped and re-
placed by their Concept Unique Identifier (CUI) before training and translating

• - , but with medical concepts in the output replaced by Open-Access
and Collaborative Consumer Health Vocabulary (CHV) terms

We again let humans evaluate the output of all systems. We ask three Amazon Mechanical Turk
workers to rate grammar of the complex sentence 𝑔𝑐 (1-5), grammar of the simple sentence 𝑔𝑠 (1-5) of
the output, meaning preservation𝑚 (1-5) of the output from the input and how much simpler 𝑠 (-2-2) the
output is than the input on a Likert scale, similar to what we did before. A pair 𝑝 is defined as the input
(complex sentence) and the output of a system. Each sentence pair 𝑝 is evaluated by three unique
workers on Amazon Mechanical Turk. For each sentence pair 𝑝 we take the average of the scores
given by the three workers for each metric, resulting in 𝑔𝑐 , 𝑔𝑠 , 𝑚 and 𝑠 . Because we evaluate all
systems on the same set of sentences, we can do a Paired Sample 𝑡 Test on 𝑔𝑐, 𝑔𝑠,𝑚 and 𝑠 to find out
whether there is a significant difference between two systems. We randomly selected 70 sentences
from the test set. Note that we evaluate hypothesis 1 and 2 (themost likely simplification and the second
most likely one) for each system (except for Simple Wikipedia). This results in (4 ∗ 2 + 1) ∗ 70 = 630
sentences / tasks on Amazon Mechanical Turk. The sentences are published in one batch and the
sentences are served in a random order. This way workers cannot know the origin of the sentence.

We made sure we made the task as simple as possible. Each metric has its own question with its
own predefined answers (representing the Likert scale). The set of questions and answers (given a
sentence pair) is shown in figure 9.1.
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Figure 9.1: Set of questions and answers on Amazon Mechanical Turk
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Results and Discussion II

10.1. Experimental Setup
In order to test to what extent we can use automated methods to simplify expert level health text to
laymen level (main research question, see chapter 1) we evaluated four methods (chapter 9):

1. - State-of-the-art Neural Text Simplification trained on the dataset

2. - State-of-the-art Neural Text Simplification trained on the , and
datasets

3. - , but with semantically similar medical concepts grouped and re-
placed by their Concept Unique Identifier (CUI) before training and translating

4. - , but with medical concepts in the output replaced by Open-Access
and Collaborative Consumer Health Vocabulary (CHV) terms

In addition we evaluated Simple Wikipedia, to measure how close automatic simplifications are to
manual simplifications. In this section we describe a setup for answering a number of sub-questions,
which ultimately enables us to answer the main research question.

1. What is the effect of domain-specific training data on medical text simplification when using the
State-of-the-art in Neural Text Simplification?
We compare performance of to performance of . These systems only
differ in what training data is used.

2. What is the effect of grouping semantically similar medical concepts to boost medical concept
simplification on medical text simplification when using the State-of-the-art in Neural Text Simpli-
fication?
We compare performance of to and to .
Before training and translating with , medical concepts are semantically grouped,
which boosts medical concept simplification.

3. What is the effect of using a post-translation dictionary approach for medical concept simplification
using the Open-Access and Collaborative Consumer Health Vocabulary (CHV) on medical text
simplification when using the State-of-the-art in Neural Text Simplification?
We compare performance of to and to

. The only difference between and is that does
an extra step after translation. After translation medical concepts that are still in the output are
replaced by laymen synonyms from the CHV.

4. How close can our automated methods for medical text simplification get to manually simplified
medical sentences from Simple Wikipedia?
We compare each system’s performance against performance of Simple Wikipedia.
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As explained in the previous chapter, we measure performance by asking Amazon Mechanical Turk
workers to rate complex and simple sentence pairs on:

• the grammar of the input and output (1-5 Likert scale)

• how much meaning the output preserves from the input (1-5 Likert scale)

• how much simpler the output is than the input (-2-2 Likert scale)

In addition, we report three metrics that help interpret ratings from Amazon Mechanical Turk work-
ers:

• The average length in words of output sentences

• The total number of translated medical concepts
A medical concept is considered translated if it has an overlap of exactly one CUI with a medical
concept in the source sentence and their terms are different.

• The total number of exact copied sentences from the input

We created a test set of 350 sentences, which is a random subset of fully aligned sentence pairs
from the dataset. We randomly selected 70 sentences from the test set for evaluation on
Amazon Mechanical Turk. We run each system on the same 70 sentences, so that we can use a
Paired Sample 𝑡 Test to measure whether differences between two systems are significant. For each
system we consider the two most likely outputs (h-1 and h-2). We compare h-1 of system 𝑎 to h-1 of
system 𝑏 and h-2 of system 𝑎 to h-2 of system 𝑏.

10.2. Results and Discussion
10.2.1. Effect of Domain-Specific Training Data
In this subsection we compare performance of to performance of to answer
the sub-question: What is the effect of domain-specific training data on medical text simplification when
using the State-of-the-art in Neural Text Simplification?

We expect that training on domain-specific data, in addition to general data, will increase meaning
preservation and simplicity scores and will not effect grammar. The NMT trained on general data can
mostly delete parts of sentences to make a sentence simpler, since it does not know how to simplify
most (domain-specific) terms. The NMT trained on medical data in addition to general data has more
medical terms in its vocabularies (see table 10.1) and is therefore able to translate them (rather than
deleting), arguably boosting meaning preservation and simplicity. This translates into the following
hypotheses:

• Grammar:

– 𝐻 ∶ 𝜇 = 0
– 𝐻 ∶ 𝜇 ≠ 0 (two-tailed)

• Meaning preservation:

– 𝐻 ∶ 𝜇 = 0
– 𝐻 ∶ 𝜇 > 0 (one-tailed, meaning preservation scores of is higher)

• Simplicity:

– 𝐻 ∶ 𝜇 = 0
– 𝐻 ∶ 𝜇 > 0 (one-tailed, simplicity scores of is higher)

Results are given in table 10.2. We indeed cannot reject the null hypothesis for grammar for both
h-1 and h-2. Meaning preservation of in h-1 is significantly higher than that of ,
but not in h-2. Simplicity of is actually lower than that of (the opposite effect
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Approach Source vocabulary Target vocabulary
4462 4265
4794 4658

Table 10.1: This table shows howmanymedical terms are in the source and target vocabularies of and .

of what we expected). Therefore, for simplicity we did an additional two-tailed 𝑡 Test. The difference in
h-1 is significant and in h-2 not.

The difference in meaning preservation in h-1 can be explained by the fact that pro-
duces 256 out of 350 exact copies of the input versus 215 out of 350 exact copies of . In h-2
there is no difference in meaning preservation, because in h-2 both systems are mostly deleting parts
of sentences. The number of exact copies could also explain the unexpected difference in simplicity
scores, i.e. copying the input does not make the sentence simpler. Moreover, although
has more medical terms in its vocabularies (see table 10.1), it does not translate more medical terms.
This may be due to the fact that a (valid) translation of a medical concept can be the medical concept
itself. In that case it is not counted as a translation. It could be that Simple Wikipedia contains the same
medical concepts as Wikipedia, i.e. there is no translation, which the has learned.

In sum, training on domain-specific content increases meaning preservation, but decreases simplic-
ity in h-1. This is probably because produces a lot of exact copies. In h-2, both systems
are mostly deleting and hence there is no difference in performance observed.

h-1 G M S Words Translated
medical
concepts

Exact copies

4.41 3.94 0.55 20.86 30 215
4.55 4.49 0.28 23.10 34 256

𝜇 0.14 0.55** -0.27*
h-2

4.31 3.81 0.61 18.61 34 45
4.35 3.81 0.58 19.22 31 56

𝜇 0.04 0.00 -0.03

Table 10.2: * . (two-tailed), ** . . Results of vs. . G:Grammar of simple sentence,
M:Meaning preservation, S:Simplicity.

10.2.2. Effect of Semantically Grouping Medical Concepts
In this subsection we compare performance of to and to

to answer the sub-question: What is the effect of grouping semantically similar medical
concepts to boost medical concept simplification on medical text simplification when using the State-
of-the-art in Neural Text Simplification?

vs.
Compared to , translates more medical concepts, since we grouped se-
mantically similar medical concepts, which makes them less sparse. This may have a positive effect
on simplicity. Therefore we have the hypotheses:

• Grammar:

– 𝐻 ∶ 𝜇 = 0
– 𝐻 ∶ 𝜇 ≠ 0 (two-tailed)

• Meaning preservation:

– 𝐻 ∶ 𝜇 = 0
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– 𝐻 ∶ 𝜇 ≠ 0 (two-tailed)
• Simplicity:

– 𝐻 ∶ 𝜇 = 0
– 𝐻 ∶ 𝜇 > 0 (one-tailed, simplicity scores of is higher)

Results of vs. are given in table 10.3. There indeed is no difference in
grammar for both h-1 and h-2 and in meaning preservation in h-2. In h-1 there is a significant difference
in meaning preservation. However, this may be due to that in h-1 is copying 256 out of
350 test sentences vs. 177 out of 350 by . Simplicity scores of are
not significantly higher than that of , although translates more medical
concepts. However, we did not assess the correctness and quality of these translations. It could be
that these translations are only slightly different (e.g. from singular to plural, or a different spelling).

In sum, translation of medical concepts is indeed boosted in . However, it does
not change the performance of medical text simplification. In h-1 meaning preservation is significantly
lower, but probably due to the extremely high number of exact copies of .

h-1 G M S Words Translated
medical
concepts

Exact copies

4.55 4.49 0.28 23.10 34 256
4.45 4.07 0.41 21.86 92 177

𝜇 -0.10 -0.42* 0.13
h-2

4.35 3.81 0.58 19.22 31 56
4.31 3.88 0.51 20.29 115 45

𝜇 -0.04 0.07 -0.07

Table 10.3: * . . Results of vs. . G:Grammar of simple sentence, M:Meaning preserva-
tion, S:Simplicity.

vs.
Compared to , meaning preservation (due to the ability to translate domain-specific terms
rather than deleting) and simplicity should be higher (due to translating medical terms to laymen terms).
This translates into the following hypotheses:

• Grammar:

– 𝐻 ∶ 𝜇 = 0
– 𝐻 ∶ 𝜇 ≠ 0 (two-tailed)

• Meaning preservation:

– 𝐻 ∶ 𝜇 = 0
– 𝐻 ∶ 𝜇 > 0 (one-tailed, meaning preservation scores of is higher)

• Simplicity:

– 𝐻 ∶ 𝜇 = 0
– 𝐻 ∶ 𝜇 > 0 (one-tailed, simplicity scores of is higher)

Results of vs. are given in table 10.4. There are no significant differ-
ences between any of the metrics in h-1 and h-2, while we expected that meaning preservation and
simplicity of were higher. However, the way of simplifying of and

seems different. While produces shorter sentences, translates
more medical terms. This may indicate that deleting parts of sentences equally simplifies a medical
sentence as translating medical terms. Either way, we lose as much meaning in the process.
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h-1 G M S Words Translated
medical
concepts

Exact copies

4.41 3.94 0.55 20.86 30 215
4.45 4.07 0.41 21.86 92 177

𝜇 0.04 0.13 -0.14
h-2

4.31 3.81 0.61 18.61 34 45
4.31 3.88 0.51 20.29 115 45

𝜇 0.00 0.07 -0.10

Table 10.4: Results of vs. . G:Grammar of simple sentence, M:Meaning preservation, S:Simplicity.

10.2.3. Effect of Post-Translation Dictionary Approach
In this subsection we compare performance of to and to

to answer the sub-question: What is the effect of using a post-translation dictionary ap-
proach for medical concept simplification using the Open-Access and Collaborative Consumer Health
Vocabulary (CHV) on medical text simplification when using the State-of-the-art in Neural Text Simpli-
fication?

vs.
Recall that we replace medical concepts that are still in the output after translation with
with laymen terms from the CHV and call the resulting system .

Compared to only simplicity should be boosted, since the only thing we do is replacing
medical concepts with laymen synonyms.

• Grammar:

– 𝐻 ∶ 𝜇 = 0
– 𝐻 ∶ 𝜇 ≠ 0 (two-tailed)

• Meaning preservation:

– 𝐻 ∶ 𝜇 = 0
– 𝐻 ∶ 𝜇 ≠ 0 (two-tailed)

• Simplicity:

– 𝐻 ∶ 𝜇 = 0
– 𝐻 ∶ 𝜇 > 0 (one-tailed, simplicity scores of is higher)

Results of vs. are given in table 10.5. Grammar in both h-1 and h-2
is significantly lower. Meaning preservation is significantly lower in h-1. Simplicity is also lower, while
we expected it would be higher. We therefore ran an extra two-tailed 𝑡 Test. The difference in h-1 is
significant.

vs.
Compared to meaning preservation (due to the ability to translate domain-specific terms
rather than deleting) and simplicity (due to replacing medical concepts with laymen synonyms) should
be boosted. This translates into the following hypotheses:

• Grammar:

– 𝐻 ∶ 𝜇 = 0
– 𝐻 ∶ 𝜇 ≠ 0 (two-tailed)

• Meaning preservation:
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h-1 G M S Words Translated
medical
concepts

Exact copies

4.55 4.49 0.28 23.10 34 256
4.23 4.05 0.07 23.46 307 103

𝜇 -0.32*** -0.44**** -0.21*
h-2

4.35 3.81 0.58 19.22 31 56
4.05 3.71 0.40 19.54 263 16

𝜇 -0.30** -0.10 -0.18

Table 10.5: * . (two-tailed), ** . , *** . , **** . . Results of vs.
. G:Grammar of simple sentence, M:Meaning preservation, S:Simplicity.

– 𝐻 ∶ 𝜇 = 0
– 𝐻 ∶ 𝜇 > 0 (one-tailed, meaning preservation scores of is higher)

• Simplicity:

– 𝐻 ∶ 𝜇 = 0
– 𝐻 ∶ 𝜇 > 0 (one-tailed, simplicity scores of is higher)

Results of vs. are given in table 10.6. Grammar is significantly lower
in h-2. Meaning preservation is not different. In both h-1 and h-2 simplicity is significantly lower, while
we expected it to be higher. We tested significance with a two-tailed 𝑡 test.

Using the CHV after translation does not improve simplicity. In fact, simplicity scores go down (in
both comparisons). Moreover, grammar scores of the output also go down (also in both comparisons).
It may be because we are replacing non-medical terms with terms from the Open-Access and Collab-
orative Consumer Health Vocabulary (CHV) in some cases. Remember that we used QuickUMLS to
recognize medical concepts. We set the string similarity threshold to 0.7, which may in some cases
introduce false positives. This may hurt grammar and simplicity. In addition, it can also be that CHV
terms are still too difficult for laymen [62].

h-1 G M S Words Translated
medical
concepts

Exact copies

4.41 3.94 0.55 20.86 30 215
4.23 4.05 0.07 23.46 307 103

𝜇 -0.18 0.11 -0.48***
h-2

4.31 3.81 0.61 18.61 34 45
4.05 3.71 0.40 19.54 263 16

𝜇 -0.26** -0.10 -0.21*

Table 10.6: * . (two-tailed), ** . , *** . (two-tailed). Results of vs. .
G:Grammar of simple sentence, M:Meaning preservation, S:Simplicity.

10.2.4. Comparison with Simple Wikipedia
We compare each system with (by human written) simplifications from Simple Wikipedia to answer the
sub-question: How close can our automated methods for medical text simplification get to manually
simplified medical sentences from Simple Wikipedia?

Keep in mind that sentences from Wikipedia and Simple Wikipedia are automatically aligned. The
test set is a random subset of our expert curated dataset . It consists of fully aligned sentence
pairs (Wikipedia and Simple Wikipedia) only. Note that sentence pairs in were selected based
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on medical relevance and not on quality of alignment. Automatic alignment is not perfect (𝑝 = 0.798,
𝑟 = 0.599, 𝐹 = 0.685) [29], which may have an effect on meaning preservation and arguably on
simplicity.

We want to find out whether our systems can simplify medical text at the level of Simple Wikipedia.
For each metric for SimpleWikipedia vs. all our systems (h-1 and h-2) we test the following hypotheses:

• 𝐻 ∶ 𝜇 = 0
• 𝐻 ∶ 𝜇 ≠ 0 (two-tailed)

Results of Simple Wikipedia and the differences of all our systems compared with Simple Wikipedia
are reported in table 10.7. We identify three systems that are in all three metrics not significantly
different from Simple Wikipedia:

• , h-1

• , h-1

• , h-2

Earlier, we already saw that is mostly deleting parts of sentences to simplify a sentence,
while is translating medical concepts (rather than mostly deleting). Also, systems in h-
2 tend to delete more than in h-1. These three systems reach the level of SimpleWikipedia according to
our metrics (but keep in mind that Simple Wikipedia is automatically aligned). Interestingly, the system
that uses the CHV for replacing medical concepts with laymen synonyms does not reach this level and
has the lowest scores of all in all metrics (except in h-1 for meaning preservation).

G M S Words Translated
medical
concepts

Exact copies

Wikipedia 26.11
Simple Wikipedia 4.54 3.90 0.44 21.25 53 58

h-1
𝜇 -0.13 0.04 0.11 20.86 30 215
𝜇 0.01 0.59**** -0.16 23.10 34 256
𝜇 -0.09 0.17 -0.03 21.86 92 177
𝜇 -0.31** 0.15 -0.37*** 23.46 307 103

h-2
𝜇 -0.23* -0.09 0.17 18.61 34 45
𝜇 -0.19 -0.09 0.14 19.22 31 56
𝜇 -0.23* -0.02 0.07 20.29 115 45
𝜇 -0.49**** -0.19 -0.04 19.54 263 16

Table 10.7: * . , ** . , *** . , **** . . Results of Simple Wikipedia compared with all systems.
G:Grammar of simple sentence, M:Meaning preservation, S:Simplicity.

10.3. Example Translations
Below in table 10.8 and 10.9 we present two examples. Each example consists of the input (Wikipedia),
Simple Wikipedia and the output of all systems (h-1 and h-2). The first example shows that the systems
are able to produce simpler output by preserving key information in the sentence only. The workers
indeed find that these sentences are simpler (a score of 1.33) and meaning preservation <= 4. There
is however no difference between the systems’ output. For example, the CHV term for typhoid fever is
typhoid fever. Workers score a copy of the complex as not simpler (0 and -0.33).

In the second example and more or less copy the input. ,
h-1 simplifies common cold to just cold. replaces asymptomatic (false positive) with
asymptomatic HIV infection, incorrectly, which has an impact on simplicity, according to the workers.
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Approach Sentence G G M S
Wikipedia However, at the age of 18, he predeceased

his father when he died of typhoid fever.
- - - -

Simple Wikipedia However, he died before his father because
of typhoid fever.

4.33 5.00 3.67 0.00

, h-1 However, at the age of 18, he predeceased
his father when he died of typhoid fever.

3.67 4.67 3.67 -0.33

, h-2 He died of typhoid fever. 4.33 5.00 3.33 1.33
, h-1 However, at the age of 18, he predeceased

his father when he died of typhoid fever.
5.00 5.00 5.00 0.00

, h-2 He died of typhoid fever. 4.00 5.00 4.00 1.33
, h-1 He died of typhoid fever. 4.67 5.00 4.00 1.33
, h-2 However, at the age of 18, he predeceased

his father when he died of typhoid fever.
4.00 5.00 4.67 -0.33

, h-1 However, at the age of 18, he predeceased
his father when he died of typhoid fever.

4.67 4.67 5.00 0.00

, h-2 He died of typhoid fever. 3.33 3.33 3.00 1.33

Table 10.8: Example translations from different systems with their scores. G :Grammar of the complex sentence, G :Grammar
of the simple sentence, M:Meaning preservation, S:Simplicity.

10.4. Threats to Validity
There are a number of threats to validity. Starting with the data, we assume that Wikipedia contains
complex language and Simple Wikipedia contains simple language. Especially in the medical domain
this might be debatable, given the results of . The questions remain whether medical
Wikipedia articles contain expert level health text and whether the corresponding Simple Wikipedia
articles contain the laymen translation.

Next, we used Amazon Mechanical Turk workers to evaluate the output of our systems. There
is always a risk that workers did not care for the task, but completed the task as fast as possible.
Also, workers might misinterpreted the task. However, we quantitatively (table 10.7) and qualitatively
(table 10.8 and 10.9) checked the scores and they seem to be valid. For example, the grammar of
human written text (Simple Wikipedia) approaches 5 (maximum score) and Simple Wikipedia is indeed
considered simpler. The scores in the examples are also more or less what one would expect. We did
not include a statistical analysis to filter out particular workers or sentences that seem suspicious.

Lastly, results indicate that outputs are indeed simpler. But, we did not include an analysis of the
effect of it. The goal is that medical texts become more accessible for laymen. The sentences are
simpler than the original input, but are people now better at understanding the medical content? This
is a question that our results cannot answer.
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Approach Sentence G G M S
Wikipedia A number of the viruses that cause the

common cold may also result in asymp-
tomatic infections.

- - - -

Simple Wikipedia A number of the viruses that cause the
common cold may also result in no symp-
toms.

5.00 5.00 4.67 0.67

, h-1 A number of the viruses that cause the
common cold may also result in asymp-
tomatic infections.

5.00 5.00 5.00 0.00

, h-2 A number of the virus that cause the com-
mon cold may also result in asymptomatic
infections.

4.67 5.00 4.00 0.33

, h-1 A number of the viruses that cause the
common cold may also result in asymp-
tomatic infections.

5.00 5.00 5.00 0.00

, h-2 A number of viruses that cause the com-
mon cold may also result in asymptomatic
infections.

4.67 4.67 4.33 0.33

, h-1 A number of the viruses that cause the cold
may also result in asymptomatic infections.

5.00 5.00 4.33 0.00

, h-2 A number of the viruses that cause the
common cold may also result in asymp-
tomatic infections.

4.00 4.67 4.00 0.67

, h-1 A number of the viruses that cause the
common cold may also result in asymp-
tomatic HIV infection infections.

4.33 4.33 4.33 -1.00

, h-2 A number of viruses that cause the com-
mon cold may also result in asymptomatic
HIV infection infections.

4.33 4.00 3.33 0.00

Table 10.9: Example translations from different systems with their scores. G :Grammar of the complex sentence, G :Grammar
of the simple sentence, M:Meaning preservation, S:Simplicity.





11
Conclusions

In this thesis we focused on the following research question:

RQ: To what extent can we use automated methods to simplify expert level health text to laymen
level?

First, we identified the state-of-the-art in general text simplification. We showed that Neural Machine
Translation (NMT) shows most promise in performing both lexical and syntactic simplification. It learns
from parallel corpora, such as alignedWikipedia and SimpleWikipedia and the Newsela corpus. Based
on training data, it can (implicitly) learn to perform lexical simplification (replacing complex words with
simpler words) and syntactic simplification (reorder and delete parts of sentences).

In the medical domain, research focused mainly on lexical simplification (replacing medical con-
cepts with laymen synonyms and generating laymen explanations of medical concepts). While lexical
simplification is widely acknowledged to be very important for comprehension of medical text (due to
the vocabulary gap between health professionals and consumers), it is also acknowledged that lexical
simplification alone is not sufficient for medical text simplification [80]. State-of-the-art in general text
simplification, NMT, might actually be a suitable technique to do both. This is still relatively unexplored
in the medical domain. A preliminary work [5] extracted a (fairly small not publicly available) medical
text simplification dataset from web-based knowledge sources and trained an NMT system on it, but do
not include human evaluation, a common practice in text simplification research. In this thesis we used
NMT to learn text simplification from aligned Wikipedia and Simple Wikipedia, published our datasets
for future research and included a proper human evaluation.

We evaluated NMT in two directions: data and medical terms. To investigate the effect of adding
domain-specific training data, we created a medical set of aligned sentences for in-domain training
and testing. We semi-automatically filtered health sentences from an existing Wikipedia - Simple
Wikipedia aligned corpus, using the knowledge of an in-house domain expert. Additionally, we used a
novel method for aligning additional complex and simple health sentences from Wikipedia and Simple
Wikipedia disease articles. For medical term simplification, we introduced two strategies. One is boost-
ing the NMT itself to learn translations of medical concepts to medical concepts on Simple Wikipedia
(arguably laymen terms). The second is a dictionary approach using the Open-Access and Collabora-
tive Consumer Health Vocabulary (CHV) that is used after translation. Untranslated medical concepts
in the output are then replaced by terms from the CHV. We measured the effect of adding domain-
specific training data when training an NMT and of the two medical term simplification strategies in
combination with NMT.

Workers on Amazon Mechanical Turk evaluated the original complex sentence on grammar and the
output on grammar, meaning preservation (from the complex sentence) and simplicity (compared to
the complex sentence). Adding domain-specific data did not make the output text simpler, but caused
the NMT to produce more exact copies. In fact, NMT trained on general data produced simpler output,
due to producing the shortest sentences, but with the logical loss of meaning. The boosting of learning
translations of medical concepts indeed boosted the number of medical concept translations. Output
sentences are longer than NMT trained on general data, but of the same simplicity (and meaning
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preservation). It could indicate that translating medical concepts is as beneficial as deleting parts of
sentences and keeping the core meaning only. Replacing untranslated medical concepts with CHV-
preferred terms also did not boost simplicity. It actually makes grammar, meaning preservation and
simplicity worse. It may be because we were not strict enough in matching terms from the text with
terms from the UMLS or that CHV-preferred terms are still too difficult for laymen.

In sum, to answer the research question, we can use the state-of-the-art in general text simplification
(NMT) to simplify expert level health text. It can learn lexical and syntactic simplification implicitly from
training data. An NMT system trained on simplifications from general Wikipedia and Simple Wikipedia
articles produced the simplest output, but mainly due to making the sentence shorter. Adding domain-
specific data, in combination with a boosting strategy for learning medical concept translation, indeed
causes the NMT system to translate more medical concepts, but scores are similar. It does delete less
content, but meaning preservation was not different though. An NMT system trained on general data
only is already able to simplify expert level health text to the level of Simple Wikipedia. The questions
remain whether the original input (Wikipedia) is actually at expert level and whether Simple Wikipedia
(and the output of our systems) is at laymen level.

11.1. Recommendations
We concluded that an NMT system trained on general Wikipedia and Simple Wikipedia articles already
produces simplifications similar to that of SimpleWikipedia. However, it mainly does so by deleting parts
of sentences (and keeping the coremeaning). It does not translatemedical concepts. Themedical NMT
systemwith boosting strategy does translate medical concepts and also produces simplifications similar
to that of Simple Wikipedia. The question remains whether deleting parts of sentences or translating
medical concepts is more important. It seems that Simple Wikipedia does not translate a lot of medical
concepts either, but does not delete as much as the general system does.

Depending on how much in-domain data one can gather, we recommend to use an NMT system
trained on general Wikipedia articles only. Apparently, there is not much translation of professional
medical concepts on Wikipedia to laymen synonyms on Simple Wikipedia. If for example, additional
in-domain data can be gathered (ideally from which we know it is understandable by laypersons), e.g.
layperson summaries of clinical trial results [23], we should always compare a system trained on this
in-domain data to one trained on general data.

11.2. Future Work
Future work can continue in several directions. Obviously, future work may test the suitability of
Wikipedia and Simple Wikipedia for (medical) text simplification. Research that answers questions
like:

• How are non-medical Wikipedia articles simplified compared to medical Wikipedia articles?

• Is there a translation of medical concepts to laymen terms on Simple Wikipedia?

Alternatively, one could align other in-domain data, train a system on it and compare it to our existing
systems.

Another direction is to continue with using an NMT for learning medical concept translations. With
QuickUMLS we can annotate known medical concepts and link them to the UMLS. We can use an NMT
to learn translations of those concepts, in e.g. Simple English, that do not yet exist in the UMLS. In
other words, we can learn new laymen terms for known medical concepts. Conveniently, these laymen
terms are then also immediately linked to a CUI in the UMLS.

At last there remains one open question: Are people after automatic simplification better at un-
derstanding the medical content? This was out of scope for this thesis. Future work may include an
additional evaluation that answers this question.
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ABSTRACT
Health literacy, i.e. the ability to read and understandmedical text, is
a relevant component of public health. Unfortunately, manymedical
texts are hard to grasp by the general population as they are tar-
geted at highly-skilled professionals and use complex language and
domain-speci�c terms. Here, automatic text simpli�cation making
text commonly understandable would be very bene�cial. However,
research and development into medical text simpli�cation is hin-
dered by the lack of openly available training and test corporawhich
contain complex medical sentences and their aligned simpli�ed ver-
sions. In this paper, we introduce such a dataset to aid medical text
simpli�cation research. The dataset is created by �ltering aligned
health sentences using expert knowledge from an existing aligned
corpus and a novel simple, language independent monolingual
text alignment method. Furthermore, we use the dataset to train
a state-of-the-art neural machine translation model, and compare
it to a model trained on a general simpli�cation dataset using an
automatic evaluation, and an extensive human-expert evaluation.
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Applied computing → Consumer health; Health care informa-
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1 INTRODUCTION
The rapid increase of health information on the internet has re-
sulted in more patients turning to the Internet as their �rst source
of health information. In a recent structural review, Tan and Goon-
awardene found that patients consult the internet primarily to be
actively involved in the decision making related to their health [29].
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While �nding more evidence of positive impact on decision making
and the patient-physician relation from online health information
searches, Tan and Goonawardene warn that information found on
the internet "has the potential to misguide patients and make them
excessively anxious". Moreover, they observe that discrepancies be-
tween a physician’s advice and a patient’s conclusions from online
information can erode the patient-physician relationship, which
could limit timely access to care.

In a 2018 report [31] by the World Health Organization, contex-
tualize these warnings, by concluding that a majority of European
citizens has insu�cient health literacy (the ability to read and un-
derstand healthcare information, make appropriate health decisions
and follow health instructions). The report stipulates that one of the
major causes of this low health literacy is that health information
is often inaccessible to the general public because the literacy de-
mands of health information and the literacy skills of average adults
are mismatched, the information is often poorly written, poorly
designed and/or geared to an highly sophisticated audience. One
way to improve health literacy is by simplifying (online) medical
text, to match the literacy level and vocabulary of average adults.

To illustrate this, we provide an example from Wikipedia, and
its simpli�ed version from Simple Wikipedia below.

• Pituitary adenomas represent from 10% to 25% of all intracra-
nial neoplasms and the estimated prevalence rate in the
general population is approximately 17%.

• Pituitary adenomas represent from 10% to 25% of all brain
tumors and is thought to happen in about 17% to 25% of most
people.

Observe that the Wikipedia editors simplify text on two levels:
(1) complicated medical terminology (intracranial neoplasms) is
replaced by simpler terms and (2) complicated non-medical sen-
tence structures (estimated prevalence rate in the general population)
are simpli�ed. There is an rapidly increasing body of online medi-
cal texts, such as electronic health records, clinical trials, medical
research, drug labels and patient information lea�ets. This rapid
increase makes manual simpli�cation unfeasible.

Therefore, in this paper, we focus on the following research
question:

RQ: To what extent can we use automated methods to simplify
expert level health text to laymen level?

Current work in automated medical text simpli�cation is mostly
limited to simplifying medical terminology, either by the gener-
ation of explanations (explanation generation), or by replacing
these terms with laymen terms or de�nitions (lexical simpli�ca-
tion) [1, 5–8, 24, 25]. This ignores complex non-medical terms and
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complicated sentence structures, which also hamper readability
[33]. The state-of-the-art in automated text simpli�cation, Neural
Machine Translation [22, 28], shows promise to solve this second
problem, but requires large parallel corpora for training, which
are lacking in the medical domain. Recent work by Adduru et al.
focused on the creation of such a medical text simpli�cation corpus
[2]. Unfortunately, the resulting set is not publicly available.
Original Contribution As there are no publicly available medical
text simpli�cation corpora, we create a new aligned corpus by �rst
semi-automatically �lter a set of aligned health-related sentences
from an existing parallel text simpli�cation corpus. In addition,
we introduce a language independent monolingual text alignment
method and use it for aligning additional health sentences from
Wikipedia and Simple Wikipedia disease articles. The resulting data
set is made publicly available for future research1. Furthermore,
we propose a method using the state-of-the-art Neural Machine
Translation for medical text simpli�cation, which can both sim-
plify general text but also learns to translate medical concepts into
simpler terms. We perform experiments with that method on the
�ltered health sentences. We report results of quantitative evalua-
tions, and a qualitative one.

2 RELATEDWORK
In this section we discuss relevant work on text simpli�cation in
the medical domain. We �rst discuss lexical simpli�cation, text
simpli�cation which focuses on the replacement of complex terms.
Secondly, we discuss syntactic simpli�cation: simpli�cation which
focuses on the replacement of complicated sentence structures and
conclude with combined approaches: text simpli�cation which tar-
gets both the replacement of complicated terms and the replacement
of complicated structures.

Lexical simpli�cationMost work onmedical lexical simpli�ca-
tion is focused on the usage of large vocabularies, most prominently
the Uni�ed Medical Language System (UMLS) [4] to replace expert
medical terms with consumer oriented synonyms. The UMLS is a
meta-thesaurus, which contains uni�ed entities from a large num-
ber of medical vocabularies (such as SnomedCT [9], MeSH [18] and
CHV [37]). In summary, the state-of-the-art in lexical simpli�ca-
tion is recognizing UMLS concepts from text and replacing them
with a consumer-oriented synonym from the Consumer Health
Vocabulary [37], an open access collection of consumer oriented
synonyms for medical concepts. Despite signi�cant e�orts to au-
tomatically enrich and correct the Consumer Health Vocabulary
from user-generated data [11, 13, 30, 36], evaluation of the e�ect of
using these terms on the perceived simplicity of medical text by the
lay population is lacking and recent work by Xie et al. articulates
that medical concept replacement alone is not su�cient for medical
text simpli�cation [33].

Syntactic simpli�cationThere is little work investigatingmed-
ical syntactic simpli�cation in isolation. Leroy et al. investigate the
(manual) splitting of complex noun phrases to improve readability
of long sentences. However, they conclude that this approach does
not necessarily improve readability and recommend that sentences
should only be split when the split phrases "feel more natural" [17].
Furthermore, negations in medical texts were investigated and it
1available at https://research.mytomorrows.com/

was shown that easier text contains less morphological negations
than di�cult text [21]. An easy text contains for example “not clear”
instead of “unclear”, which could e�ectively be solved by a lexical
simpli�cation tool based on frequency analysis.

Combined approachesMonolingual machine translation, i.e.
machine translation algorithms trained on a parallel corpus in the
same language, have shown great promise in recent years. Such
systems learn how to translate complex language into simple lan-
guage, when trained of a parallel corpus of complex and simple
sentences. In theory, such a translation combines lexical and syn-
tactic simpli�cation. Most prominent is the progress in Neural
Machine Translation [22], which has demonstrated to achieve state-
of-the-art performance on text simpli�cation tasks for common
language. Neural Machine Translation relies on the availability of
a large parallel corpus for training and evaluation purposes. For
common language, publicly available corpora are available from
aligned Wikipedia and Simple Wikipedia sentences, the Parallel
Wikipedia Simpli�cation (PWKP) corpus [38] and a more recent
corpus presented Hwang et al. [12] and from news articles, the
Newsela corpus [34].

Algorithms trained on these datasets perform well on general
language simpli�cation, but have been shown to perform poorly
on medical text simpli�cation [2, 16]. For instance, an (statistical)
algorithm trained on the PWKP dataset for simplifying cancer and
other health text produced output that was “imperfect and required
a second manual step to be consistent and accurate” [16].

To successfully employ Neural Machine Translation on health
text, we would need a health speci�c parallel corpus. Unfortunately
such a corpus is not available and, a �rst attempt by Adduru et al. to
creating one [2] showed that this is not as easy as it seems. Adduru
et al. used an array ofmethods to automatically align sentences from
the medical subset of Wikipedia and Simple Wikipedia, as well as
https://www.webmd.com and https://www.medicinenet.com. The
result is a -proprietary- medical text simpli�cation corpus of 2,493
sentence pairs. Adduru et al. present an automated evaluation of
a Neural Machine Translation algorithm on these data, but do not
include an human evaluation.

3 DATA
In this section we present two datasets we created for text sim-
pli�cation in the medical domain. The �rst dataset (������) is an
expert-evaluated medical subset �ltered from the aligned wikipedia
corpus presented by Hwang et al. [12]. It is focusing on reliable
high-quality sentence alignments such that it can be used as a test
set for benchmarking. The second dataset (���������) is a novel
dataset created by automatic collection of aligned sentences from
the medical subset of Wikipedia. Here, the focus lies on having
a large dataset which can serve as training data, but we accept
smaller losses in quality resulting from the automatic alignment.

3.1 ������ dataset
Our ������ dataset is created using the aligned corpus presented
in [12] as a baseline, which aligns sentences between Wikipedia
and SimpleWikipedia. As the corpus does not focus on a particular
domain, only few medical sentences are covered which motivates
the creation of our ������ dataset. This initial corpus consists

https://www.webmd.com
https://www.medicinenet.com
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of manually and automatically generated good and good partial
aligned sentence pairs, the former de�ned as "the semantics of
the simple and standard sentence completely match, possibly with
small omissions (e.g., pronouns, dates, or numbers)" and the latter
as "a sentence completely covers the other sentence, but contains
an additional clause or phrase that has information which is not
contained within the other sentence". In the remainder of the paper
we will refer to the good sentence pairs as fully aligned and to the
good partial as partially aligned sentence pairs.

To generate the ������ dataset, we use a state-of-the-art medical
named entity recognition tool, QuickUMLS [26] to sentences which
may contain a medical topic from the fully aligned and partially
aligned datasets. QuickUMLS is an approximate dictionary match-
ing algorithm which matches terms from text with synonyms in the
UMLS. We used QuickUMLS with the default setting for similarity
threshold (0.7) and limited the semantic types toDisease or Syndrome
and Clinical Drug). We consider a sentence pair a candidate medical
sentence pair, when QuickUMLS recognizes at least one medical
concept in either the complex or the simple medical sentence. After
QuickUMLS processing, we provided the resulting candidate medi-
cal sentence pairs to a domain expert for additional validation, i.e.
to con�rmwhether the sentence pair is indeed health-related. Using
this approach, we created a �ltered corpus of 2,267 fully aligned
medical sentences and 3,148 partially aligned sentences.

3.2 ��������� dataset
In addition to the labour-intensive manual �ltering, we created a
pipeline to automatically create an aligned dataset from Wikipedia
and Simple Wikipedia, which allows the dataset to be much larger
in size with slight losses in quality. In principle, such a pipeline
has 2 distinct steps: (1) Collection of relevant articles and their
related simpli�ed version, (2) Splitting the articles in sentences and
aligning them into pairs.

Finding relevant articles Recent work, by Kajiwara and Ko-
machi [14] and Adduru et al. [2] focused on the creation of an
aligned corpus from Wikipedia and Simple Wikipedia. The former
presented amethodology to create a general corpus, the latter amed-
ical corpus. Kajiwara and Komachi used a full dump of Wikipedia
and Simple Wikipedia and aligned the articles with matching ti-
tles. Given the goal of creating a general-purpose corpus, they did
not attempt to select articles based on topic. In their work, they
identify a total of 126,725 Wikipedia articles with a matching Sim-
ple Wikipedia article in the English language. In contrast, Adduru
et al. present an approach to collect a speci�c subset of medical
Wikipedia articles. They manually selected a set of 164 articles,
which they match to Simple Wikipedia articles with a matching
title. Manual collection of such a dataset seems unnecessarily cum-
bersome. We propose an approach using DBPedia [3] and select
all articles that fall in the dbo: Disease class. After title matching to
Simple Wikipedia, this gives us a set of 1,098 aligned articles.

Splitting and aligning Analogous to Kajiwara and Komachi,
we extract the text from the Wikipedia and Simple Wikipedia arti-
cles, using the python Wikipedia API 2 and tokenize into sentences

2https://pypi.org/project/wikipedia/

using NLTK 3.3 3. This gave an average number of words per sen-
tence of 26.1 for the normal articles and 19.5 for the simple articles.
The average numbers of sentences per article were 123,4 and 20,3,
respectively. In comparison, Kajiwara and Komachi report an aver-
age number of words per sentence of 25.1 for the normal articles
and 16.9 for the simple articles and an average numbers of sentences
per article were 57.7 and 7.65, respectively. Medical articles (simple
and normal), seems to be longer and more complex (in terms of
sentence length).

To align sentences from Wikipedia, to Simple Wikipedia, we em-
ploy a two step approach: as the �rst we setup candidate pairs, by
combining each sentence from the normal articles which each sen-
tence of the related simple article. This gives us a total of 3,660,064
candidate pairs from the 1,098 articles. Adduru et al. report 818,520
candidate pairs from 164 articles, demonstrating that their manually
collected set contains longer articles than ours (3333.4 candidate
pairs per article in our set versus 4991 candidate pairs per article
in their set). Secondly, we select the most similar pairs from the
candidate pairs. In order to do this, Kajiwara and Komachi employ
pre-trained Word2Vec word embeddings to determine sentence
similarity. Similarly, Hwang et al. present a method that relies on
Wiktionary [12]. When aligning sentences where the distinctive
(medical) terms are arguably very infrequent, such dependencies
may not be wanted, as also noted by Adduru et al. who use a
clasi�er to identify matching sentences. In our alignment task, we
propose a simple metric, the BLEU score [23] to select matching
sentences. The BLEU score is used commonly to evaluate Machine
Translation algorithms, by comparing the similarity between the
output of a translation algorithm to references sentence. In short,
BLEU does this by by counting overlapping word n-grams. For the
sake of brevity, we refer to Papineni et al.[23] for details on the
method. To the best of our knowledge, we’re the �rst to employ
BLEU for a sentence alignment task. To evaluate the quality of the
BLEU alignment for the sentence alignment task, we compare BLEU
alignment to the Maximum alignment reported by Kajiwara and
Komachi[14], using the manual alignment set from Hwang et al.
[12] as evaluation set. This evaluation set contains 67,853 candidate
sentence pairs, judged by human annotators. 277 were considered
fully aligned, 281 partially aligned and 67,295 considered either not
good enough partial alignments or bad alignments.

We test both methods in two sentence alignment scenarios: (1)
Full alignment: Fully aligned sentences versus the rest and (2) Partial
alignment: Fully and partially aligned sentences versus the rest.

Table 1 reports maximum F1-score and AUC for both methods
in both scenarios. We observe that BLEU alignment performs on
par with Maximum alignment for fully aligned sentences, but per-
formance is worse on partially aligned sentences. In �gure 1 we
report the precision-recall curve for the fully aligned scenario.

We observe that BLUE alignment provides a useful method when
performing sentence alignment on highly domain speci�c text. De-
spite the poorer performance on partial alignment, it does not
depend on pretrained embeddings or external datasources to func-
tion. In addition, when aligning medical data, the vocabulary might
contain a lot of words that are not in the vocabulary of pre-trained
Word2Vec models or not in Wiktionary, which may deteriorate

3http://www.nltk.org
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Figure 1: Precision-recall curves of Maximum alignment
and BLEU alignment

Fully vs. rest Max F1 AUC
BLEU alignment 0.717 0.714
Maximum alignment in [14] 0.717 0.730
Alignment used to align Wikipedia [12] 0.712 0.694

Fully and partially vs. rest
BLEU alignment 0.534 0.484
Maximum alignment in [14] 0.638 0.618
Alignment used to align Wikipedia [12] 0.607 0.529

Table 1: Max F1 andAUC scores for identifying fully aligned
and fully and partially aligned sentences

performance of approaches that use such sources. BLEU only looks
at overlapping n-grams, which makes it language independent.

In the ��������� dataset, we only only include fully aligned
sentence pairs, where BLEU alignment shows good performance in
the evaluation. In the generation of the dataset, we include sentence
pairs with a BLEU score above a treshold of 0.29, which provided
the maximum F1 score during evaluation on the general domain
set. After �ltering out sentences with MediaWiki mathematical
formulas, we include 3,797 fully aligned medical sentences. In table
2 we present example aligned sentences from this set.

4 NEURAL TEXT SIMPLIFICATION
Most current research on text simpli�cation in the medical domain
focuses on simplifying medical concepts only. However, mono-
lingual NMT has shown great potential in text simpli�cation re-
search but has not been applied to the medical domain yet. There-
fore, we replicate the state-of-the-art NMT text simpli�cation sys-
tem of [22] as a baseline, and evaluate it on our expert-curated
dataset. This system outperformed phrase-based [32] and syntax-
based statistical machine translation [35] approaches, as well as
an unsupervised lexical simpli�cation approach [10]. Furthermore,
we design a second NMT model which uses a combination of our
��������� and other datasets, and replacing medical concepts
with identi�ers.

4.1 Training and Evaluation sets
For the setup of our experiments, we rely on the general dataset
presented by Hwang et al.[12] and combine this with the ������

Wikipedia Simple Wikipedia BLEU
Spinal tumors are neo-
plasms located in the
spinal cord.

Spinal tumors is a form of
tumor that grows in the
spinal cord.

0.39

Aspirin is an appropriate
immediate treatment for a
suspected MI.

Aspirin is an early and
important treatment for a
heart attack.

0.33

Table 2: Example alignments using BLEU alignment

and ��������� datasets described in the previous section. This
gives us 4 datasets:

• Fully aligned health sentences fhealth - Filtered and ex-
pert evaluated fully aligned health sentences from fwiki:
2,267 sentences.

• Partially aligned health sentences phealth - Filtered and
expert evaluated partially aligned health sentences from
pwiki: 3,148 sentences.

• Fully aligned general domain sentences fgeneral = fwiki�
fhealth: 152.538 sentences.

• Partially aligned general domain sentences pgeneral =
pwiki � phealth: 126.785 sentences.

4.2 Baseline
We implemented the baseline system in OpenNMT4, an open source
framework for NMT. The architecture consists of two LSTM layers,
states of size 500 and 500 hidden units and a 0.3 dropout probability.
The vocabulary size is pruned to 50,000 in both the source and
target language. Word embedding size is set to 500. We used pre-
trained Word2Vec embeddings from the Google News corpus [20]
of size 300. The remaining part is learned during training of the
NMT (while the pre-trained part remains �xed). Lastly, the decoder
uses global attention with input feeding [19]. The system is trained
for 15 epochs, using a SGD optimizer and an initial learning rate of
1.0. After epoch 9, the learning rate decay is 0.7, i.e. learning_rate
= learning_rate * learning_rate_decay.

At translation time beam search is used to �nd the best predic-
tion given the input. Beam search is an approximation of the best
possible translation. At each step of the translation the k most likely
words are generated given the input sentence. Here, k is called the
beam size. Then, the most likely sequence (i.e. translation) is called
hypothesis 1, the next hypothesis 2, etc. We will evaluate both hy-
pothesis setting in the next section. The system that performed
most changes and highest percentage of correct ones in [22] used a
beam size of 12. This system is trained on general domain corpus,
i.e. fgeneral + pgeneral.

4.3 Medical+CHV Replacement
Our second NMT system (MED-CHV) we evaluate in this paper
follows a similar architecture as the baseline, but is trained on a
combination of the general corpus and our health-related corpora
(minus the corpus which is used as a test set): fgeneral + pgeneral +
fhealth + phealth + fBLEU-health

In addition, we replace each medical concept encountered in the
complex text with a Concept Unique Identi�er (CUI) from UMLS.
4http://opennmt.net/
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This approach reduces the (medical) vocabulary (and medical con-
cept sparsity), since any textual variation of a concept is mapped (or
normalized) to a single CUI, aggregating the references for each con-
cept. For example, atherosclerotic heart disease and coronary heart
disease, which are synonyms, are both replaced with C0010054. Fur-
thermore, it enables us the replace CUIs with their CHV-preferred
term if the CUI is not part of the source vocabulary of the NMT
(i.e. rare medical concepts / CUIs). We used QuickUMLS [26] with
a similarity threshold of 0.7, a value for which highest F1-scores
were achieved in [26], to detect medical concepts and link them to
a CUI. For the decoder we use pre-trained Word2Vec embeddings
of size 200, trained on 10,876,004 English abstracts of biomedical
articles from PubMed [15].

Note that we include the 50,000 most frequent words in the
source and target vocabulary (so we have enough reference trans-
lations for each word in the vocabulary). This may cause that some
CUIs are not in the source vocabulary and are therefore not trans-
lated. To overcome this, we replace CUIs that are out of vocabulary
with their CHV-preferred term, if it exists, or copy the original
source token. To do this, we make use of a phrase table, which can
be pre-constructed before translation. Each entry in the phrase-
table contains a CUI with its CHV-preferred term or its original
source token. Instead of substituting out of vocabulary words with
source words that have the highest attention weight, a possible
translation in the phrase-table is looked up. This way the output
does not contain any raw CUI.

5 EVALUATION
In this evaluation, we focus on the question of how well does NMT-
based text simpli�cation work in the medical domain. For our �rst
experiment, we rely on an automated evaluation approach based
on a reference test-set drawn from our ������ dataset. The second
evaluation relies on human evaluators, and focuses on simplicity,
understandability, and correctness of simpli�ed sentences.

We randomly select 500 and 350 sentences as validation set and
test set respectively from fhealth. Automatic evaluation is done on
the test set of size 350. Human evaluation is done in the �rst 70
sentences of the test set (since human evaluation is rather costly).

Automatic Evaluation: Text simpli�cation is typically auto-
matically evaluated using a traditional machine translation metric
BLEU [23] and a text simpli�cation speci�c metric SARI [35].

BLEU compares the output against references and produces a
score between 0 and 1, with 1 representing a perfect translation
(i.e. identical to one of the references). In our evaluation we use
word n-grams up to 4. However, when used for simpli�cation, it
has to be handled with care as it is not uncommon that the source
sentences (from Wikipedia) and the reference sentences (from Sim-
ple Wikipedia) are identical or very similar as Wikipedia editors
just copied them over without or only with minor modi�cations.
Therefore, a machine simpli�cation which just keeps the source
sentence as-is often has high BLEU scores, but is not simpler.

Hence, a speci�c text simpli�cation metric was introduced in
[35], called SARI, which compares System outputAgainstReferences
and against the Input sentence. It focuses on lexical simpli�cation,
i.e. replacing complex words and phrases with simpler alternatives.
“It explicitly measures the goodness of words that are added, deleted

and kept by the systems” [35], by comparing the output with the
source and the reference or multiple. SARI combines several as-
pects of adding and deleting words into a single numeric measure:
the terms added by the simpli�cation algorithm with respect to if
they are also added in the reference simpli�cation; and the terms
removed by the simpli�cation algorithm also with respect to if they
are removed in the reference, and the terms which are kept stable
between the reference and a simpli�cation.

For this experiment, we evaluate the baseline system and the
MED-CHV system, both with hypothesis 1 and 2 selection strategies
(i.e., choose themost likely simpli�cation and the secondmost likely
one.) Furthermore, we consider an “Identity" simpli�cation which
just copies the source sentences without modifying.

Human Evaluation: As both metrics used in the automatic
evaluation are insu�cient to fully describe the capabilities of ma-
chine simpli�cation, such evaluation need to be accompanied by a
human evaluation. To this end, we obtain feedback on simpli�ed
sentences focusing on grammar, meaning preservation (both mea-
sured on a 1-5 Likert scale), and simplicity (on a scale of -2 to 2,
with negative values representing that the text has become more
complex). This follows the setup outlined in [22]. An evaluator is
presented with a sentence pair (complex, simple) and asked to give
the scores. We base our annotation guidelines on [27]. We slightly
edited the guidelines, since their focus was on splitting (and delet-
ing parts of) sentences, while our system mainly replaces words
and deletes parts of sentences.

6 RESULTS AND DISCUSSION
In this section we report results of automatic and human evaluation.

Automatic Evaluation: In table 4, SARI, along with its three
components, and BLEU scores are reported. The scores represent
if the system is actually modifying the text, and how it relates
to the test set reference sentences. “Identity" does not perform
any text simpli�cation, but simply uses the source sentence. This
tells us how similar the source is to the reference. It serves as
calibration scores for SARI and BLEU; e.g., not simplifying anything
results in a BLEU score of 0.53 and a SARI score of 21.56. Both
hypothesis 1 and 2 of the baseline (i.e. choosing the most likely
or second likely simpli�cation) are able to improve SARI scores.
The main di�erence between them is that hypothesis 2 deletes
with higher precision than hypothesis 1. Both hypotheses of the
MED-CHV show comparable numbers for keeping and deleting
terms, but a slightly higher number for adding terms. This may
be because of the additional terms (medical concepts) the medical
NMT is translating. BLEU scores of the identity and the baseline’s
hypothesis 1 are highest. This may be due to that in hypothesis 1
the baseline is often producing the exact same sentence. The others
are less conservative, i.e. perform more changes, which reduces
BLEU. We showed that the NMT systems indeed improve SARI
scores and therefore we expect that the output is simpler than the
input. The medical NMT slightly increased SARI over the baseline
(due to its Fadd component). Therefore, we expect that simplicity
scores will be at least similar to the baseline.

Manual Evaluation: Three laymen provided feedback on the
�rst 70 sentences of the test set with respect to grammar, meaning
preservation, and simplicity.
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Source Sentence
Wikipedia Coronary artery disease ( CAD ) also known as atherosclerotic heart disease , coronary heart disease , or

ischemic heart disease ( IHD ) , is the most common type of heart disease and cause of heart attacks .
Simple Wikipedia Atherosclerosis is a form of heart disease .
Baseline, h-1 Coronary artery is the most common type of heart disease .
Baseline, h-2 Coronary artery is a type of disease .
Medical input C1956346 ( CAD ) also known as C0010054 , C0010054 , or C0151744 ( C0151744 ) , is the most common type of

C0018799 and cause of C0027051 .
MED-CHV, h-1 {coronary artery disease}copied is the most common type of {heart disease}NMT .
MED-CHV, h-2 {coronary artery disease}copied is the most common type of {heart disease}NMT and cause of {heart attack}NMT.
Table 3: Example translations from di�erent systems, medical concepts in MED-CHV are replaced with their CUI.

Approach SARI Fadd Fkeep Pdel BLEU
Identity 21.56 0.00 64.68 0.00 53.07
Baseline, h-1 28.14 1.91 60.37 22.15 54.78
Baseline, h-2 32.73 2.03 55.82 40.34 44.51
MED-CHV, h-1 32.27 2.24 57.10 37.47 47.48
MED-CHV, h-2 33.92 2.96 54.93 43.88 44.37

Table 4: Evaluations with automatic metrics

Table 5 shows that the baseline produces decent grammar and
meaning preservation scores and indeed simpli�es the text. How-
ever, MED-CHV scores show that grammar, meaning preservation
and simplicity scores are all lower than the baseline. We assume
that this is due to MED-CHV replacing out of vocabulary concepts
with their CHV-preferred terms (which are expert curated simpli-
�ed terms) instead of substituting them with source words that
have the highest attention weight. While we assumed that using
these expert term simpli�cations should performwell, also previous
research concluded that “some CHV-preferred terms can be above
the level of consumers’ comprehension” [24].

Example translations are given in table 3. Note that the input
of medical NMT is the Wikipedia sentence with medical concepts
replaced with their CUI. Common medical concepts, such as heart
disease (C0018799) and heart attack (C0027051), are part of the
vocabulary and correctly translated by the NMT. Coronary artery
disease (C1956346) is neither part of the vocabulary, nor a CHV-
preferred term exists for it. Therefore, the source term is copied.

7 CONCLUSION AND FUTUREWORK
Automated Medical Text Simpli�cation can be a cornerstone tech-
nology to address insu�cient health literacy. However, research
into this domain is hampered by the lack of open training and
test corpora. Therefore, in this paper we introduced such an open
corpus which is based on the widely available Wikipedia-Simple
Wikipedia text simpli�cation corpus, and expanded with additional

Approach G M S
Simple Wikipedia 4.91 4.24 0.53
Baseline, h-1 4.85 4.30 0.22
Baseline, h-2 4.49 3.87 0.23
MED-CHV, h-1 4.23 3.82 -0.05
MED-CHV, h-2 4.19 3.76 -0.05

Table 5: Human evaluation scores. G:Grammar, M:Meaning
preservation, S:Simplicity

aligned sentences focusing on the medical domain. This corpus
was created based on �ltering with a medical expert from an exist-
ing aligned dataset, and by a novel simple, language independent
monolingual text alignment method.

We used this corpus to evaluate two Neural Machine Translation
models: one was trained on the aligned Wikipedia corpus (base-
line), the other one was in addition trained on our corpus, but with
medical terms replaced by their UMLS Concept Unique Identi�ers.
We assumed that the replacement would further boost performance.
Both models were evaluated automatically and manually focusing
only on the medical subset of the test data set we created. During
automatic evaluation, it could be shown that the baseline performs
fewer changes to sentences when simplifying. However, in the man-
ual human-driven evaluation, it became clear that changing too
many parts of the sentence can be detrimental, and that the base-
line sentences were judged to be more understandable and simpler.
We assume that this can be attributed to the act of replacing out
of vocabulary medical concepts with their CHV-preferred terms.
We therefore assume that training only with our extended dataset
without additional replacements should yield superior performance.
Due to the extreme costs of manually evaluating simpli�cation re-
sults, this experiment will be covered in our future work. While this
result was disappointing, it shows that automatic text simpli�cation
is a di�cult task which demands future research.

In summary, we contributed a novel and open test and training
dataset of aligned sentences focused on medical text simpli�cations,
which easily allows such future research. Furthermore, we could
show that even training a Neural Machine Translation model on a
non-specialized corpus can still yield acceptable results in a complex
domain like medical texts, clearly hinting at the potential of future
endeavours.
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