
K arssiesH.J.

e X tended

I ncremental

N on-linear

C ontrol

A llocation

on the TU Delft Quadplane

XINCA
on the TU Delft Quadplane

by

H.J. Karssies
to obtain the degree of Master of Science

at the Delft University of Technology.

Student number: 4479742
Project duration: September 1, 2018 – Oktober 30, 2020
Thesis committee: Prof. G.C.H.E. de Croon TU Delft AE Control & Operations Chair

Ir. C. de Wagter TU Delft AE Control & Operations Supervisor
Dr. E.J.J. Smeur TU Delft AE Control & Operations Examiner
Dr. S. Speretta TU Delft AE Space Engineering External examiner

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface

A friend once told me that me and the end of my thesis are like some asymptotic function and its asymptote. I
was always getting closer to the end, without ever seeming to actually get there. Writing this thesis makes me
(and him probably as well) very glad to prove him wrong. It certainly has been a struggle from time to time,
but it seems I have actually made it in the end.

I started my thesis eagerly some amount of time in the past. With a slight lack of direction, I started to focus
on many things that were somehow related to my thesis. I spent hours on making animations, worked metic-
ulously on illustrations, and often got lost in other topics that later appeared to be slightly less relevant to my
thesis than I initially thought. They did however gain me a lot of valuable knowledge an brought me a lot of
joy during this phase of my thesis. Later in the process, I had to face myself a bit more. Working on a thesis
while doing some tough last courses and working about two days a week did not always prove to be ideal.
Then the Covid-19 pandemic kicked in right about when I wanted to start working on the actual quadplane.
It was then especially that I was really glad my supervisor Christophe de Wagter was clearly doing his abso-
lute best to enable me in continuing my work. Christophe, I had to learn throughout my thesis that my "zelluf
doen" attitude sometimes prevented me to move forward. I remember many times that I was surprised how
easily a meeting with you could get me going again. I think I should have asked for your insight more often,
but want to sincerely thank you for all the times your help got me moving again. I owe the same thanks to
Ewoud Smeur and Erik van der Horst, who have also spent a lot of time and effort to keep me going on crucial
moments.

The last couple of months have certainly been the toughest. By the time I started writing my scientific ar-
ticle, I was working a full time job while spending my evenings and weekends on my thesis. These condi-
tions certainly unabled me to pay my girlfriend the attention she deserves. Jacomijn, you have always been
a formidable girlfriend, but I am truly impressed by the way you have supported me these last couple of
months, and given me the space to do what I needed to do. I can’t thank you enough for always looking at
every new plot I made, or dealing with me when I was occasionally extremely grumpy. You have been the
absolutely biggest reason why I have never felt the slightest bit unhappy during this tough process. I am very
much looking forward to compensate for all the attention I have not given you the last couple of months.

I also want to thank some of my closest friends, some of which I have studied with intensively during my time
in Delft. Siebert, Matti, Liset, Berna, you as well have been great contributors to both my motivation to keep
going and much welcomed distractions between the hard work of the last couple of years. My biggest thanks
here goes to my "vague acquaintance" Rogier, who has been there with me the whole way since the beginning
of our bridging programme. Thanks for always finding the time to help me, give me your unsalted opinion,
but most importantly provide me with an exceptional and extremely valuable friendship that will hopefully
last a very long time.

Last but certainly not least, I want to thank the people that have known me the longest. Pap, mam, Stieneke,
Elise, you know how much I value my family above almost anything in life. This is because you have always
been such an endless and unconditional source of support and love, and still make me feel like coming home
whenever I visit either one you. Thanks for letting me try to make you proud of me, without ever giving me
the feeling I really have to.

Enough with the sentiments, it’s almost time for me to celebrate finishing this chapter of my life. Again,
thanks everyone! It’s been a hell of a ride. Enjoy reading my thesis and all the best to every one of you!

Jan Karssies
Delft, September 2020

iii

List of Figures

1 Overview of the quadplane’s nine actuators . 4
2 Simplified schematic UAV controller diagram . 4
3 A schematic representation of an INCA controller . 5
4 The Active Set Method performed on a hypothetical cost function with a two-dimensional input

space . 7
5 A schematic representation of a XINCA controller . 8
6 Simulation of a vertical quadplane takeoff and landing . 10
7 Simulation of a vertical quadplane takeoff and landing with actuator saturation 10
8 Simulation of forwards and backwards quadplane flight using both pitch increments and tail

rotor inputs . 11
9 The TU Delft Quadplane in the Cyberzoo for light tests . 11
10 Flight data comparison of forward flight simulation with INDI and XINCA 11
11 Flight profile comparison of forward flight simulation with INDI and XINCA 12
12 Vertical quadplane takeoff and landing . 13
13 Vertical quadplane takeoff and landing with actuator saturation 13
14 Forwards and backwards quadplane flight using both pitch increments and tail rotor inputs . . 13

2.1 UAV classification . 21
2.2 Overview of the quadplane’s nine actuators . 23

3.1 A schematic representation of a controller with inner and outer control loops 26
3.2 A schematic representation of a PID controller . 26
3.3 A schematic representation of an NDI controller . 27
3.4 A schematic representation of an INDI controller . 28
3.5 A schematic representation of an INCA controller . 28

4.1 The Active Set Method performed on a cost function with a two-dimensional input space 35
4.2 The Active Set Method performed on a cost function with a two-dimensional input space 35

5.1 A schematic representation of an XINCA controller . 37
5.2 Research planning . 38

v

List of Tables

1 CPU load estimations for different inner and outer loop controllers with different numbers of
INCA actuators . 12

A.1 Overview of simulations and flight experiments . 47

vii

List of Abbreviations

CPU Central Processing Unit

IMU Inertial Measurement Unit
INCA Incremental Non-linear Control Allocation
INDI Incremental Non-linear Dynamic Inversion

NDI Non-linear Dynamic Inversion

PID Proportional-Integral-Derivative
PWM Pulse Width Modulation

TU Delft Technische Universiteit Delft (Delft University of Technology)

UAV Unmanned Aerial Vehicle

VTOL Vertical Take-Off and Landing

XINCA Extended Incremental Non-linear Control Allocation

ix

Nomenclature

Actuator inputs

δ Control input
δrl f Left front rotor control input
δrr f Right front rotor control input
δrl r Left rear rotor control input
δrr r Right rear rotor control input
δrt Tail rotor control input
δa Aileron control input
δal Left aileron control input
δar Right aileron control input
δrl Left ruddervator control input
δrr Right ruddervator control input
δest Estimated actuator position
δpr ev Previous estimated actuator position
δ1 Control input for tail rotor
δ2 Control input for all inputs but tail rotor
δr Reference control input
δr1 Reference control input for tail rotor
δr2 Reference control input for all inputs but tail rotor
δp Preference control input
δ0 Current control input
δmi n Minimum control input
δmax Maximum control input
δ̇ Control input rate
δ̇max Maximum control input rate
∆δ Incremental control input
∆δr Incremental reference control input
∆δr1 Incremental reference control input for tail rotor
∆δr2 Incremental reference control input for all inputs but tail rotor
∆δp Incremental preference control input
∆δmi n Minimum incremental control input
∆δmax Maximum incremental control input
∆δk Incremental control input of current iteration
∆δk−1 Incremental control input of previous iteration
∆δvi olk

Saturated incremental control input of current iteration
∆δvi olk−1

Saturated incremental control input of previous iteration

Matrices

A Constraint matrix
Aact Active set constraint matrix
F State matrix
F Matrix used to rewrite quadratic program
G Inertial matrix
H Actuator effectiveness matrix
H1 Actuator effectiveness matrix as a function of actuator positions
H2 Actuator effectiveness matrix as a function of actuator rates

xi

xii Nomenclature

H+ Generalized Moore-Penrose or psuedo-inverse of the actuator effectiveness matrix
I Identity matrix
Q Quadratic programming objective matrix
W Weighting matrix
Wτ Control demand weighting matrix
Wδ Actuator weighting matrix

Other Greek Symbols

α First order actuator approximation coefficient
α Maximum step factor
γ Control objective scaling factor
λ Lagrange multiplier
λact Active set Lagrange multiplier
θ Pitch angle
∆θ Pitch angle increment
ρ Air density
τ Time constant
τ Achieved control
τc Control demand
τc1 Primary control demand
τc2 Secondary control demand
φ Roll angle
∆φ Roll angle increment
ω Attitude
ωe Attitude error
ωr Reference attitude

Other Latin Symbols

b Constraint vector
bact Active set constraint vector
bvi ol Saturated constraint vector
c Quadratic programming objective vector
CLα Lift coefficient
g Gravitational acceleration
g Vector used to rewrite quadratic program
Hact Actuator transfer function
J Cost function
K Gain
KD Derivative gain
K I Integral gain
KP Proportional gain
k Iteration number
m Vehicle mass
N Total number of iterations
∆ṗ Roll acceleration increment
∆q̇ Pitch acceleration increment
∆ṙ Yaw acceleration increment
S Wing surface area
T Vertical thrust
∆T Vertical thrust increment
t Time
∆t Time step
u Forward body velocity

Nomenclature xiii

v Virtual input
ve Virtual input error
v f Calculated current virtual input
vr Reference virtual input
x State
xe State error
xr Reference state
ẍ State acceleration
ẍr Reference state acceleration
ẍe Error in state acceleration
∆ẍ Longitudinal acceleration increment
z Position in the z-direction
∆ÿ Lateral acceleration increment
z̈ Vertical acceleration
∆z̈ Vertical acceleration increment

Other Symbols

® Hadamard (element-wise) vector divider

Contents

Preface . iii
List of Figures . v
List of Tables . vii
List of Abbreviations . ix
Nomenclature . xi

I Part I: Scientific Research Paper 1
1 Introduction . 3
2 The TU Delft Quadplane. 4
3 INCA . 5
4 INCA Optimisation . 5
5 XINCA . 7
6 Implementation . 8
7 Flight Simulations . 10
8 Flight Experiments . 11
9 Conclusions and Recommendations . 13

II Part II: Preliminary Research Report 17
1 Abstract . 19
2 Introduction . 21

2.1 UAV Classification 21
2.2 The Quadplane 22

3 Control Allocation . 25
3.1 The PID controller 26
3.2 The NDI controller 27
3.3 The INDI controller 27
3.4 The INCA controller 28

4 INCA Optimisation . 31
4.1 Generalised Inverse 31
4.2 Redistributed Pseudo-Inverse 32
4.3 Quadratic programming 32
4.4 The Active Set Method 33

5 Further Research and Experiments . 37
6 Conclusion. 39
Bibliography . 41

III Part III: Appendices 45
A Overview of simulations and flight experiments . 47
B Paparazzi Airframe Configuration File . 49
C Source code of the INCA module . 55
D Source code of the XINCA module . 69

xv

I
Part I: Scientific Research Paper

1

Extended Incremental Non-linear Control
Allocation on the TU Delft Quadplane

H.J. Karssies - Delft University of Technology

Abstract - This research presents an implementation of a novel controller design on an over-
actuated hybrid Unmanned Aerial Vehicle (UAV). This platform is a hybrid between a conven-
tional quadcopter and a fixed-wing aircraft. Its inner loop is controlled by an existing but mod-
ified control method called Incremental Non-linear Control Allocation or INCA. This controller
deals with the platform’s control allocation problem by minimising a set of objective functions
with a method known as the Active Set Method and avoids actuator saturation. For the vehi-
cle’s outer loop, a novel extension to INCA is presented, called Extended INCA or XINCA. This
method optimises one of the physical actuator’s command and the angular control demands
fed to the vehicle’s inner loop, based on linear reference accelerations. It does so while adapt-
ing to varying flight phases, conditions and vehicle states, and taking into account the aero-
dynamic properties of the main wing. XINCA has low dependence on accurate vehicle models
and requires configuration using only several optimisation parameters. Both flight simulations
and experimental flights are performed to prove the performance of both controllers.

1 Introduction

In the first two decades of this century, Unmanned
Arial Vehicle or UAVs have gained a tremendous
amount of popularity. Not only have they proven
to be valuable research platforms and entertaining
toys, they have also found many other applications in
fields like defence [1], surveillance [2], medical assis-
tance [3], transportation of both goods and humans
[4], agriculture [5], inspection [6], mapping [7], and
many others. The rising demand in UAVs stimulates
engineers and researchers to push the boundaries
of unmanned aviation, and often come up with the
most innovative of ideas.

Some challenges that are often faced in UAV design
are endurance, reliability, versatility and affordabil-
ity. Existing solutions often perform well on some but
not all of these aspects. Fixed wing aircraft like the
ones by Daibing et al. [8], Palermo and Vos [9] and Lee
et al. [10] for instance master endurance as a result
of the passive wing-induced lift that keeps them air-
borne. Rotorcraft on the other hand, like designs by
Zhiqiang et al. [11], Luukkonen [12] and Smeur et al.
[13], are much more versatile since they are able to
hover, takeoff and land vertically. They are also in-
expensive to produce, mechanically simple and easy
to control. Their powered generation of lift however
severely limits their endurance, and designs like the
conventional quadcopter typically have multiple sin-
gle points of failure. It is therefore that many re-
searchers have come up with hybrid platforms, that
aim to combine the best of different worlds.

Some examples of hybrid platforms include tilt ro-
tor/wing UAVs, tail sitters, transformable UAVs and
quadplanes. Tilt rotor/wing UAVs like designs by
Apkarian [14] and Takeuchi et al. [15] mechanically
change the orientation of their propulsion units in
order to either generate lift during vertical take off
and landing, or horizontal thrust while flying hori-
zontally with wing induced lift. Similarly, tail sitters
as discussed by De Wagter and Smeur [16] and Ar-
gyle et al. [17] change the orientation of the entire
vehicle during vertical take off and landing, before
slowly rotating back to their original orientation for
horizontal flight. This reduces the mechanical com-
plexity of the system, resulting in a more reliable,
lighter and cheaper platform, albeit at the cost of a
sensitivity to wind gusts. A completely different class
of hybrid UAVs are the ones that are transformable
like the one designed by Shaiful et al. [18]. By chang-
ing the configuration of the entire vehicle, they can
transform between very different types of UAVs, like
for instance a monocopter and a fixed wing aircraft.

Lastly, a common class of hybrid UAVs is formed by
quadplanes, like the one used as an experimental
platform for this research. Earlier designs include
those by Gunarathna and Munasinghe [19], Zhang
et al. [20], Orbea et al. [21], Tielin et al. [22] and Flores
and Lozano [23]. The quadplane has a static config-
uration with both upward facing rotors for vertical
take off and landing, and fixed wings with a horizon-
tal propulsion unit for horizontal flight. Despite the
added weight of flight phase specific actuators, its

3

4

mechanical simplicity makes this versatile and en-
during vehicle a promising research platform.

Making such a Quadplane fly as efficiently and safely
as possible poses a number of challenges. These
include dealing with large flight envelopes, over-
actuation, its non-linear nature, and its sensitivity to
wind gusts. The quadplane used for this research and
its control challenges are described in Section 2. An
existing control method called INCA is discussed in
Section 3, and its optimisation methods in Section 4.
A proposed extension of this control method, called
XINCA, is presented in Section 5. The implementa-
tion of the INCA and XINCA controllers on the TU
Delft Quadplane is shown in Section 6, and Sections
7 and 8 respectively present results from simulations
and test flights performed using this novel control
method. Lastly, Section 9 discusses the conclusions
and recommendations of this research.

2 The TU Delft Quadplane

As mentioned earlier, the quadplane is a hybrid of
a fixed wing aircraft and a quadcopter. A conven-
tional example of a quadplane is the one used for this
research, the TU Delft Quadplane. A schematic rep-
resentation of this platform is shown in Figure 1. It
shows the quadplane’s nine actuators: four upward
facing rotors that could be considered as the quad-
copter actuator set, and four control surfaces and a
tail rotor that could be considered the fixed wing ac-
tuator set. Having actuator sets to serve both verti-
cal and horizontal flight separately, quadplanes are
considered over-actuated. Literature shows that this
over-actuation is often dealt with by using only one
actuator set during specific flight phases, and only
briefly combining them during a transition phase be-
tween vertical and horizontal flight [19, 20, 21, 22].

xy
z

δrl r

δrr r

δrl f

δrr f

δrt

δal

δar

δrl

δrr

Figure 1: Overview of the quadplane’s nine actuators
(= quadcopter actuator set, = fixed wing actuator set)

UAV controllers often consist of cascaded outer and
inner loops, as shown in the simplified schematic
representation in Figure 2. The outer loop, some-
times also called the position or guidance loop, mea-
sures the vehicle’s deviation from its reference posi-
tion, and outputs a reference attitude needed to de-

crease this error. The inner loop, which is also known
as the attitude or stabilisation loop, in turn deter-
mines the error between this reference attitude and
the actual attitude, and uses that to allocate control
to suitable actuators. This allocation is quite straight-
forward when the vehicle is not over-actuated, like a
quadplane when only one actuator set is taken into
account. This is simply because a moment around
any one of the principal axes can only be achieved by
one specific combination of actuator inputs.

+ −
Controller

+ −
Controller System

xr xe θr θe δ

outer control loop
x inner control loopθ

Figure 2: Simplified schematic UAV controller diagram
(x = position, θ = attitude, δ = system input)

This research however hypothesises that quadplanes
could fly more efficiently when continuously assess-
ing each actuator’s suitability to satisfy a certain con-
trol demand. This assessment takes into account
each actuator’s effectiveness based on the system’s
states, but could also penalise large deviations from
preferred actuator positions. Such an optimisation
problem is known as a control allocation problem.
There are two main advantages of a well designed
control allocation algorithm. The first is that it can
minimise the control effort of a UAV, potentially re-
sulting in more efficient flight and enhanced flight
endurance. The other advantage is that when certain
actuators saturate, it can allocate control to other
actuators in order to still satisfy a given control de-
mand, resulting in safer and more reliable flight. The
control allocation method used in this research is
called Incremental Non-linear Control Allocation or
INCA, which solves the inner loop’s control allocation
optimisation problem and is presented in Chapter 3.

Another challenge in controlling quadplanes is
caused by the fundamentally different outer loop
dynamics of the quadplane during different flight
phases. When flying as a quadcopter for instance, a
change in pitch angle causes the quadplane to ac-
celerate in a longitudinal direction. When flying as
a fixed-wing aircraft however, a change in pitch will
cause the quadplane to either climb or descent. Fur-
thermore, the quadplane is over-actuated in its outer
loop as well as its inner loop, since it can control a
positive forward acceleration during hovering with
both its pitch angle as well as its tail rotor. The lat-
ter is often preferable, since negative pitching ma-
noeuvres might introduce an undesirable negative
wing-induced lift. A positive backwards acceleration
however is only achievable by pitching the quadplane
backwards. To address the challenges named above,

3. INCA 5

an extension of the INCA controller is presented in
Chapter 5, which performs an outer loop optimi-
sation similar to the INCA inner loop optimisation.
This method is called Extended Incremental Non-
linear Control Allocation, or XINCA for short.

3 INCA

Incremental Non-linear Control Allocation, or INCA
for short, is very promising control allocation algo-
rithm. It has already theoretically been demonstrated
on over-actuated vehicles like the Lockheed Mar-
tin Innovative Control Effector aircraft by Stolk [24].
Smeur et al. [25] have proven the control method
to be effective in actual flight on non-over-actuated
quadcopters. The architecture of INCA augments
a method called Non-linear Dynamic Inversion, or
NDI. NDI measures a vehicle’s states, and uses an ac-
curate model to predict angular and possibly linear
accelerations as a result of these states. Their differ-
ence with the vehicle’s desired accelerations is then
used to calculate appropriate control inputs using
reliable actuator models. A successful example of an
implementation of NDI is the work by Horn [26].

However effective, NDI highly relies on detailed and
accurate models of the vehicle it controls. A variation
on this approach provides a solution to this prob-
lem, and is called Incremental Non-linear Dynamic
Inversion, or INDI [25]. Instead of using a vehicle
model to predict its angular and linear accelerations
as a result of its states, it uses inertial measurement
data to simply observe these accelerations, resulting
in a controller that does not require accurate vehicle
models. Also in contrast to NDI, the measurements
used by INDI include all achieved control already,
including the actuator-induced accelerations of the
vehicle, but also effects of external forces caused for
instance by wind gusts. This results in a desired in-
cremental control demand instead of a total actuator
control demand, only containing yet to be achieved
control. As a consequence, the control effectiveness
needs not be as accurate as earlier, since the con-
troller will compensate for any unexpected effects
of the actuators. The controller is also less sensitive

to external influences. An example where INDI has
been proven successfully in quadcopter flight is pre-
sented by Höppener [27].

Both NDI and INDI invert actuator effectiveness
models in order to calculate appropriate actuator
commands. When dealing with over-actuated UAVs
however, it becomes inherently impossible to derive
appropriate actuator commands by simply inverting
these actuator effectiveness models. This is due to
the fact that any calculated actuator command solu-
tion is no longer singular, and for it there exist infinite
other solutions. INCA deals with this by expressing
this control allocation problem as an optimisation
problem, that needs to be solved by minimising a
certain cost function. While doing so, it can take
into account actuator constraints, preventing actua-
tor saturation. A schematic representation of INCA is
shown in Figure 3. Like an INDI controller, INCA uses
the difference between desired accelerations and in-
ertial measurements to determine an incremental
control demand, also known as the virtual input to
the INCA optimisation. The optimisation scheme
then calculates an optimal actuator increment to sat-
isfy the control demand as well as possible, based
on the actuators’ effectiveness at the vehicles cur-
rent state. Note that while the rotors’ effectiveness
is relatively constant, the effectiveness of any control
surfaces included in the INCA optimisation is pro-
portional to the square of the vehicle’s true air speed.
The effectiveness of these actuators should therefore
be re-calculated at each iteration of the INCA opti-
misation. The optimisation method itself is further
elaborated in Section 4.

4 INCA Optimisation

Let H be a matrix containing the linearised effective-
ness of all actuators, and τc the control demand that
will be used as virtual input to the INCA optimisa-
tion. An unconstrained control command increment
∆δ should then always satisfy the following equation:

H∆δ= τc (1)

Linear
Controller

INCA
Optimisation

Actuator
Dynamics

System

IMU

INCA controller

+ − + − + +

xr xe vr ve ∆δr δr δ x

δ

x

v

Figure 3: A schematic representation of an INCA controller
(x = state vector, v = virtual input, δ = control input vector)

6

When this increment is constrained by actuator limits
however, an error between the control demand and
the achieved control might occur, but should still be
aimed to be minimised. When also minimising con-
trol effort, i.e., the difference between actual actua-
tor increments∆δ and preferred actuator increments
∆δp , an objective function could be written in the fol-
lowing form:

mi n
∆δ

‖γWτ(H∆δ−τc)‖2 +‖Wδ(∆δp −∆δ)‖2 (2a)

subject to ∆δmi n ≤∆δ≤∆δmax and δ̇≤ δ̇max (2b)

where Wτ and Wδ are weighting matrices to prioritise
certain control demands and actuators over others,
and γ is a constant that prioritises one sub-objective
over the other. This type of objective function is
called a Quadratic Program, and can include as many
separate sub-objectives as needed. Quadratic Pro-
gramming is often used for Control Allocation prob-
lems. Härkegård [28] presents it as a suitable method,
and proves that it does indeed provide automatic re-
distribution of control in case of actuator saturation.
Stolk [24] and Höppener [27] both apply it, on a mod-
ern fighter jet and a quadcopter UAV respectively.
For easier processing, the objective function is of-
ten rewritten to a standardised quadratic form, with
which many solvers can easily work:

mi n
∆δ

∆δT Q∆δ+ cT∆δ (3a)

subject to A∆δ≤ b (3b)

where Q = FT F, c = 2FT g ,

F =
(
γWτH

Wδ

)
, g =

(
γWττc

Wδ∆δp

)
,

A =
(

I
−I

)
and

b =
(

min(δmax −δ0, δ̇max∆t)
−max(δmi n −δ0,−δ̇max∆t)

)

According to Gavin and Scruggs [29], when the
inequality constraints are treated as equality con-
straints (A = b instead of A ≤ b), the solution to the
optimisation problem is given by the following linear
system, as long as Q is a positive definite matrix and
A has full row rank [30]:[

Q AT

A 0

][
∆δ

λ

]
=

[−c
b

]
(4)

where λ is also know as the vector containing the
Lagrange multipliers. From this linear system, ex-
plicit solutions for both the optimal input increment

∆δ and Lagrange multipliers λ can be derived alge-
braically to:

∆δ=−Q−1(ATλ+ c) (5a)

where λ=−(AQ−1AT)−1(AQ−1c +b) (5b)

The values of the Lagrange multipliers are used later
to determine what constraints to release during the
optimisation process, and whether or not the solu-
tion has already reached its optimum.

Since the calculation of UAV control demands typi-
cally needs to be performed several hundred times
per second, the optimisation used in an INCA con-
troller needs to be as efficient as possible. Based
on control allocation research performed by Stolk
[24] and Höppener [27], the optimisation method
selected for this research is the Active Set Method.
This method is presented to require similar amounts
of computing power as competing methods do, like
the Redistributed Pseudo-Inverse method and the
Fixed-Point algorithm, yet with more accurate solu-
tions. The method also promises to scale efficiently
with larger amounts of actuators, which is validated
in Section 8. A detailed description of the Active Set
Method as provided by Harkegard [31] is summarised
below:

Step 1:

Choose a feasible starting point

Step 2:

Determine the active set of constraints, i.e.
all constraints at which a control command
saturates. Redefine the optimisation prob-
lem using only the active constraints as
equality constraints.

Step 3:

Calculate the Lagrange multipliers and solu-
tion to the redefined problem using Equa-
tions 5a and 5b.

Step 4:

If the solution is infeasible:
Correct the solution by taking the maximum
relative step from the previous to the new
solution without losing feasibility and deter-
mine the new active set of constraints.

Else if not all λ≥ 0:
Release the constraint corresponding to the
most negative value in λ from the active set
of constraints.

k
=

1,
2,

..
.,

N

5. XINCA 7

Else:
The optimal solution has been found.

Step 5:

Repeat from Step 3 with the new active set
of constraints while the optimal solution has
not been found.

Figure 4 shows an illustrative example of the pro-
cess described above for a hypothetical optimisation
problem with a constrained two-dimensional input
space. Choosing a suitable starting point for the Ac-
tive Set Method has a significant effect on the solver’s
efficiency. In control allocation however, a smart
starting point is always at hand, since each solution
is likely to be in the neighbourhood of the solution
of the previous time step. The Active Set Method
has a relatively low computational cost [31], and the
solver’s solution during each iteration always pro-
gresses towards the final solution of that time step.
This means that chances are small that the solver will
produce a most unsuitable solution if cut off shortly.
This results in the Active Set Method being very suit-
able for control allocation applications.

5 XINCA

One problem mentioned in Section 2 is the funda-
mentally different dynamics of a quadplane during
different flight phases. Vertical acceleration for in-
stance is achieved by increasing or decreasing ver-
tical thrust during hovering, but could be achieved
more efficiently during horizontal flight by pitching
up or down. Another complexity in quadplane con-
trol is that longitudinal acceleration during hovering
is typically achieved by pitching forwards an back-
wards, while forward longitudinal acceleration could
likewise be achieved by use of the quadplane’s tail ro-
tor. Furthermore, when pitching forward in order to

achieve forward acceleration, an undesirable down-
force could be induced by the wing’s negative angle
of attack, resulting in inefficient flight. To simplify
matters, hybrid UAVs like quadplanes are often con-
trolled in either a vertical, horizontal or transitional
flight mode. Separating these flight modes however
often results in sub-optimal flight control, not al-
ways using the most effective actuators at hand nor
making use of redundant actuators in case of actu-
ator saturation. To solve the problems mentioned
above, an extension to the INCA controller is pro-
posed in this research, called Extended Incremental
Non-linear Control Allocation or XINCA for short.

A XINCA controller is similar to an INCA controller,
except that its optimisation process is performed in
the system’s outer control loop. As seen in Figure 5, a
linear controller observes the error of the quadplane’s
position, and translates this error into linear refer-
ence accelerations. The error between these refer-
ence accelerations and measured accelerations pro-
vides the control demand to the XINCA optimisation
block. Like the INCA optimisation, the XINCA opti-
misation possesses several constrained actuators to
achieve this control demand with, albeit these XINCA
actuators do not only include physical actuators of
the platform, but also some of its attitude angles and
its vertical thrust command. In the case of this re-
search, the XINCA output includes the tail rotor com-
mand, the vertical thrust command, and the vehi-
cle’s pitch and roll commands. The tail rotor com-
mand is directly fed to the tail rotor itself. The thrust
command and two attitude angle commands serve
as input for the inner loop’s INCA optimisation. The
XINCA optimisation can, like the INCA optimisation,
be performed with the Active Set Method, again al-
lowing an additional sub-objective to minimise the
difference between the XINCA actuators and their
preferred positions.

Point Description
Active
constraints

1 Starting point None
2 Unconstrained optimum None

3
Best feasible solution in
direction of optimum

δ2 ≥ 0

4
Optimum with active set
as equality constraints

δ2 ≥ 0

5
Best feasible solution in
direction of optimum
and final solution

δ1 ≥ 0, δ2 ≥ 0

Figure 4: The Active Set Method performed on a hypothetical cost function J with a two-dimensional input space
(Constraints: 0 ≤ δ1 ≤ 1 and 0 ≤ δ2 ≤ 1, starting point: (δ1,δ2) = (0.8,0.2)

8

Linear
Controller

XINCA
Optimisation INCA

Optimisation

Actuator
Dynamics

System

IMU

+ − + − + −

+ +

+ +

xr xe ẍe ẍr
vr ve δr2∆δr2

δ

δ1

δ2

x

x

vẍ

∆δr1 δr1

Figure 5: A schematic representation of a XINCA controller
(x = state vector, v = virtual input, δ = control input vector)

The effectiveness of the XINCA actuators are also
highly dependent on the aircraft’s states. They there-
fore need to be re-assessed at every iteration in order
to ensure suitable outputs. As a result of this novel
controller method, an autonomous outer loop con-
troller or human operator only needs to control the
UAV’s linear accelerations, without ever having to
worry about varying flight conditions or flight modes
it might be in.

6 Implementation

The TU Delft Quadplane’s implementation of XINCA
is done by use of the open-source drone hardware
and software platform Paparazzi UAV [32]. The quad-
plane itself makes use of a Lisa/MX autopilot board.
Since this board can control a maximum of eight ac-
tuators, the quadplane’s two ailerons share one con-
trol command, making them respond symmetrically
yet in opposite direction. Note that this reduction in
actuator commands benefits the computational cost
of the INCA optimisation.

6.1 INCA

The INCA module in Paparazzi UAV is based on an
existing INDI module from a research by Smeur et al.
[25], which already makes use of an optimisation
module from another research, also by Smeur et al.
[13]. It is extended in order to include seven of the
quadplane’s eight actuators, and scale the effective-
ness of the three actuators that are control surfaces,
i.e. two separate ruddervators and and the combined
ailerons. The achieved control is calculated as fol-
lows: [

∆ṗ ∆q̇ ∆ṙ ∆z̈
]T = H∆δ (6)

where δ= [
δrl f δrr f δrr r δrl r δa δrl δrr

]T

The control effectiveness matrix H is separated into
two parts. H1 accounts for increments in actuator
inputs, and H2 accounts for counter torque effects
during the spin-up of the upwards facing rotors, such
that:

H = H1 +∆tH2 (7)

The actuator effectiveness matrices’ units are either
rads−2PPRZ−1 or ms−2PPRZ−1, where PPRZ stands
for Paparazzi actuator units ranging from -9600 for
bi-directional or 0 for mono-directional actuators to
9600. To prove INCA’s ability to handle inaccurate
actuator models because of its incremental nature,
only a simple approximation of the actuators’ effec-
tiveness is used to control the quadplane. This ap-
proximation is based on simple calculations using es-
timations of the quadplane’s inertial properties and
its actuators’ positions relative to its centre of gravity.
The resulting actuator effectiveness matrices are:

H1 = 10−3 ·

δrl f δrr f δrr r δrl r δa δrl δrr


11 −11 −11 11 0.15u2 0 0 ∆ṗ
9 9 −9 −9 0 0.11u2 −0.11u2 ∆q̇

−0.6 0.6 −0.6 0.6 0 −0.03u2 −0.03u2 ∆ṙ
−0.8 −0.8 −0.8 −0.8 0 0 0 ∆z̈

(8a)

H1 = 10−3 ·

δrl f δrr f δrr r δrl r δa δrl δrr


0 0 0 0 0 0 0 ∆ṗ
0 0 0 0 0 0 0 ∆q̇

−55 55 −55 55 0 0 0 ∆ṙ
0 0 0 0 0 0 0 ∆z̈

(8b)

where u ideally represents the true airspeed over the
control surfaces, which in this research is simplified
by the substitution of the forward body velocity, since
tests are performed in an indoor environment with-
out wind. Negative values of this velocity are replaced
by zero.

Since the quadplane’s actuators do not provide any
form of feedback, an estimation of the current actu-
ator positions needs to be performed for each time
step. This is done by a first order approximation with
a certain time constant τ:

Hact =
K

τs +1
(9)

6. Implementation 9

Each current actuator position is estimated as fol-
lows:

δest = δpr ev +α(δ−δpr ev) (10)

where α= 1−e−τ∆t

In this research, the time constants used for the four
upwards facing rotors are all 29 s−1, based on actu-
ator response measurements. For the control sur-
faces, an estimation of 100 s−1 is used. Looking at
Equations 2a and 2b: the optimisation parameters
are chosen as follows:

Wτ = di ag
[
100 100 1 1000

]
Wδ = di ag

[
10 10 10 10 1 1 1

]
γ= 10000

δp = di ag
[
0 0 0 0 0 0 0

]
The values of Wτ prioritise pitch and roll and espe-
cially thrust commands over the yaw command, Wδ

penalises the use of rotors over the use of control sur-
faces, and γ prioritises achieving the control demand
over minimising control effort. The actuator limits
are set to either 0 and 9600 for rotors or -9600 and
9600 for control surfaces, again expressed in PPRZ
units. The actuator rate limits are being discarded.

6.2 XINCA

The XINCA controller works in a similar manner as
the INCA controller, and is based on an existing outer
loop INDI module by Smeur et al. [33, 34]. This ex-
isting module uses the vertical thrust vector to con-
trol the quadplane’s position, by either changing this
thrust itself or changing its orientation by pitch or roll
increments. It is augmented by including a tail rotor
command as its fourth actuator. The achieved con-
trol is then calculated as follows:[

∆ẍ ∆ÿ ∆z̈
]T = H

[
vr δrt

]T
(12)

where vr =
[
∆θ ∆φ ∆T

]T

The XINCA controller’s actuator effectiveness highly
depends on the current state of the vehicle, and
needs to be recalculated at every time step. At low
speeds aerodynamics do not play a great role yet, so
it could be calculated as follows:

∆θ ∆φ ∆T δrt cθcφT −sθsφT sθcφ cθ ∆ẍ
H = 0 −cφT −sφ 0 ∆ÿ

−sθcφT −cθsφT cθcφ −sθ ∆z̈

(13)

where s and c represent the sine and cosine func-
tions respectively, and T represents the vertical spe-
cific force vector, which is estimated by taking the
quadplane’s vertical body acceleration and subtract-
ing the gravitational acceleration:

T = z̈ − g (14)

When flying at higher velocities however, the quad-
plane will start to behave more like a fixed-wing
aircraft. The incremental nature of the controller
will automatically decrease the vertical thrust as the
wings start to induce lift in order to maintain its ver-
tical reference acceleration. A more drastic change in
the quadplane’s dynamics is the effect of a change in
pitch, which starts to cause vertical acceleration. In
order to include and utilise these changing dynam-
ics, one term is added to the actuator effectiveness
matrix, such that its final form is as follows:

H =

∆θ ∆φ ∆T δrt


cθcφT −sθsφT sθcφ cθ ∆ẍ
0 −cφT −sφ 0 ∆ÿ

cφ

(
CLαρu2S

2m
− sθT

)
−cθsφT cθcφ −sθ ∆z̈

(15)

where CLα is the change in lift per change in angle
of attack, ρ is the air density, u again ideally is the
true airspeed, S is the quadplane’s wing surface area,
and m is the platform’s mass. Note that this ma-
trix effectiveness is only a simplified estimation with
which the XINCA controller should be able to appro-
priately control the quadplane. Looking at Equations
2a and 2b again: the XINCA optimisation parameters
are chosen as follows:

Wτ = di ag
[
10 10 1

]
Wδ = di ag

[
10 10 100 1

]
γ= 10000

δp = di ag
[
0 0 0 0

]
Wτ prioritises pitch and roll over thrust demands,
since unstable flight might be more dangerous than a
controlled descent. Wδ penalises the use of pitch and
roll and especially thrust commands with respect
to using the tail rotor, and γ once again prioritises
achieving the control demand over minimising the
control effort. The maximum pitch and roll angles
are set to 10◦, the vertical thrust limits to -9.0 and 9.0
ms−2, and the tail rotor’s limits to 0 and 9600 PPRZ
units. The actuator rate limits are again discarded.

10

To prevent the tail rotor hitting the ground, it is com-
pletely shut off for altitudes below 0.5 m with its ef-
fectiveness set to zero.

7 Flight Simulations

In order to prove XINCA’s performance before taking
flight, several simulations are performed. These sim-
ulations are executed within the Papparazzi UAV soft-
ware in order to fully assess the performance of the
actual code that will also fly on board of the quad-
plane. These simulation should mainly confirm three
hypotheses:

• The INCA controller chooses suitable actuators
in order to achieve stable flight

• The INCA controller chooses appropriate actu-
ators in case of actuator saturation in order to
maintain stable flight

• The XINCA controller chooses suitable actua-
tors for forward flight

Ideally, the fourth hypothesis to be confirmed states
that the XINCA controller controls vertical accelera-
tion with thrust increments during vertical flight, and
with pitch increments during horizontal flight. This
research however does not make use of an appropri-
ate simulation model including the dynamics of the
quadplane’s control surfaces, leaving this hypothesis
open for future research. For the same reason, the
control surfaces are excluded from the INCA optimi-
sation during the simulations.

−5

0

5

C
o

n
tr

o
ld

em
an

d
[m

s−
2

]

−∆z̈

1,000

1,100

1,200

1,300

A
ct

u
at

o
r

P
W

M
P

u
ls

e
Le

n
gt

h
[m

s]

δrl f

δrr f

δrr r

δrl r

δrt

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

Time [s]

Po
si

ti
o

n
[m

] −z

Figure 6: Simulation of a vertical quadplane takeoff and landing
using XINCA and INCA with five actuators

(= takeoff, = landing)

Figure 6 shows a simple simulation of a quadplane
taking off and landing right after. Indicated in the im-
age are the takeoff (green) and landing (red) phases.

The top plot shows the control demand the INCA
controller aims to achieve. The middle plot shows
the resulting actuator commands the INCA optimi-
sation allocates, expressed in the PWM pulse length
of a 400 Hz signal. The bottom plot shows the height
profile of the flight. The simulation proves that INCA
and XINCA can control a UAV in a stable manner.
Note that the upwards facing rotors are rotating at
their idle input level of 1100 ms before takeoff. As
mentioned before, the tail rotor is only active for alti-
tudes above 0.5 m.

In order to asses how well the INCA controller han-
dles actuator saturation, a second simulation is per-
formed with an artificial upper actuator limit slightly
higher the nominal throttle level needed for hover-
ing. The result can be seen in Figure 7. The figure
shows that saturation occurs during takeoff, and that
the low saturation limit also allows less fluctuation in
the actuator commands. The UAV does have some
trouble taking off, resulting in a slightly slower take-
off than in the simulation shown in Figure 6. The
INCA controller however effortlessly achieves stable
flight, since its pitch and roll commands are priori-
tised above its thrust and especially yaw commands.

−5

0

5

C
o

n
tr

o
ld

em
an

d
[m

s−
2

]

−∆z̈

1,000

1,100

1,200

1,300
Saturation

Limit

A
ct

u
at

o
r

P
W

M
P

u
ls

e
Le

n
gt

h
[m

s]

δrl f

δrr f

δrr r

δrl r

δa

0 5 10 15 20 25
0

0.5

1

1.5

Time [s]

Po
si

ti
o

n
[m

] −z

Figure 7: Simulation of a vertical quadplane takeoff and landing
with actuator saturation occurring at an actuator PWM pulse
length of 1310 ms using XINCA and INCA with five actuators

(= takeoff, = landing)

The third simulation aims to prove the applicability
of the XINCA controller. In this situation, the UAV
takes off after which it moves forwards, then twice
as far backwards, and then back to its initial position
where it lands. Figure 8 shows the results of this sim-
ulation, now with the control demand and position
shown in the x-direction. This time the green and
red areas show where the tail rotor is being activated
by the XINCA controller for acceleration and brak-
ing respectively. In the middle plot it becomes clear
that this happens exactly when expected. The tail ro-

8. Flight Experiments 11

tor is first activated to accelerate forward. The UAV
then uses pitch increments to brake and accelerate
backwards, after which it activates the tail rotor again
twice in order to brake and move forward again. Fi-
nally, it slows down using pitch increments and lands.

−0.5

0

0.5

C
o

n
tr

o
ld

em
an

d
[m

s−
2

]

∆ẍ

1,000

1,200

1,400

A
ct

u
at

o
r

P
W

M
P

u
ls

e
Le

n
gt

h
[m

s]

δrl f

δrr f

δrr r

δrl r

δrt

0 10 20 30 40 50

−5

0

5

Time [s]

Po
si

ti
o

n
[m

]

x

Figure 8: Simulation of forwards and backwards quadplane flight
using XINCA with both pitch increments and tail rotor inputs and

INCA with five actuators
(= forward acceleration by tail rotor, = tail rotor braking)

Two last simulations are performed to clearly illus-
trate the benefits of using XINCA over conventional
outer loop control methods. Both simulate forward
flight of the quadplane, equipped with an outer loop
INDI controller [33, 34] or the novel XINCA controller
respectively. Using the main wing’s aerodynamic
properties in combination with the quadplane’s pitch
angle and forward velocity, an estimation is made of
the hypothetical wing-induced lift force. The results
are shown in Figure 10. This figure shows the actuator
commands, pitch angle and lift force for both simu-

lations. The most evident difference can be seen in
the pitch angles. Where the INDI controller aggres-
sively pitches forward to achieve forward accelera-
tion, the XINCA controller proves to be able to min-
imise this negative pitch by using its tail rotor. This
difference is reflected in the lift force estimations,
where the XINCA controller manages to completely
avoid negative lift caused by pitching forward. The
INDI controller does inflict some negative lift, albeit
of small magnitude. Note that this downforce might
become more significant at larger velocities. The re-
sults of these last simulations are shown in Figure 11
as well, which plots flight profiles of both simulations
and indicates pitch angles and lift forces. Again, it is
clearly visible that the XINCA controller manages to
minimise forward pitch and therefore negative lift, in
contrast to the INDI controller.

8 Flight Experiments

Figure 9: The TU Delft Quadplane in the Cyberzoo for light tests

The last step to be taken is to prove the airworthiness
of both INCA and XINCA. This is done by equipping
the TU Delft Quadplane with both controllers, and
performing test flights in a controlled environment.
The tests take place in a TU Delft facility called the
Cyberzoo, which is a contained space equipped with

1,000

1,200

1,400

A
ct

u
at

o
r

in
p

u
t

[P
P

R
Z

u
n

it
s]

INDI

−5

0

5

A
tt

it
u

d
e

[◦
]

0 5 10 15 20 25

0

0.05

0.1

Time [s]

A
er

o
d

yn
am

ic
fo

rc
es

[N
]

XINCA

∆δrl f

∆δrr f

∆δrr r

∆δrl r

∆δrt

θ

0 5 10 15 20 25 30
Time [s]

Lift

Figure 10: Flight data comparison of forward flight simulation with INDI and XINCA

12

0

0.5

1

1.5
Min. α: -5.2◦

Min. lift: -0.015 N

Ve
rt

ic
al

p
o

si
ti

o
n

(w
it

h
IN

D
I)

[m
]

−1 0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

1.5

Min. α: -0.52◦, no negative lift

Horizontal position [m]

Ve
rt

ic
al

p
o

si
ti

o
n

(w
it

h
X

IN
C

A
)

[m
]

Figure 11: Flight profile comparison of forward flight simulation with INDI and XINCA showing wing-induced lift estimations
Note that illustrated angles of attack are magnified and force vectors are scaled using an arctangent function for readability

an optical position tracking system for precise vehi-
cle positioning. Figure 9 shows an image of the TU
Delft Quadplane in the Cyberzoo.

During initial attempts to fly the Quadplane with
both the INCA and XINCA controller, the vehicle of-
ten failed to respond to operator inputs, regularly
resulting in crashes. This problem is most proba-
bly attributable to a lack of computing power of the
quadplane’s Lisa/MX autopilot board, which uses a
32-bit STM32-F4 CPU running at 266 MHz. The first
measure to to reduce the computational cost of the
controllers is to run the optimisations of both the in-
ner and outer loops only once every second iteration
of the autopilot, which runs at a cycle frequency of
512 Hz. An existing system monitoring module in
Paparazzi has been used to estimate the autopilot’s
CPU loads with different configurations using this
reduced optimisation frequency. These configura-
tions include a combination of the INCA controller
with a lower cost outer loop controller, a combina-
tion of a lower cost inner loop quadcopter controller
with the XINCA controller, and a combination of both
the INCA and XINCA controllers. For configurations
using the INCA controller, the amount of INCA actua-
tors is varied to determine its effect on computational
cost. The results of these measurements can be seen
in Table 1. Note that these measurements are taken
on the quadplane itself, yet without taking off or fly-
ing.

Inner loop: INCA Other INCA

Outer loop: Other XINCA XINCA

IN
C

A
A

ct
u

at
o

rs

4 38% 32% 48%
5 46% 54%
6 54% 62%
7 62% 71%
8 74% 83%

Table 1: CPU load estimations for different inner and outer loop
controllers with different numbers of INCA actuators

Because of the Active Set Method, the numbers
clearly show a quasi-linear correlation between the
number of actuators and the CPU load, and that
the configuration with both INCA and XINCA does
indeed demand a lot of the autopilot’s computing
power. The fact that the maximum recorded CPU
load is still well below 100% can be explained by the
fact that the optimisation schemes only run once ev-
ery two cycles, resulting in an average load under
100%. The actual load during one optimisation cycle
might however require significantly more computing
power, resulting in unpredictable behaviour of the
quadplane. Especially some time-critical processes
need to be re-evaluated in order to perform well un-
der high CPU load. Ideally, the quadplane’s autopilot
board is to be replaced by one with sufficient com-
puting power. For this research however, flight tests
will be performed with either both INCA and XINCA
without any control surfaces, or INCA with all inner
loop actuators and a low cost outer loop controller.

Like the first simulation discussed in Section 7, the
first test flight aims to confirm that the INCA con-
troller chooses suitable actuators during flight. All
inner loop actuators are included in the optimisa-
tion, so the low cost outer loop controller is used for
this test. Since the Cyberzoo’s confined space only
allows for low velocity testing however, the controller
is not expected to allocate a significant amount of
control to the control surfaces. The results in Fig-
ure 12 confirm this. They show varying inputs for
the quadplane’s upwards facing rotors, due to a slight
asymmetrical configuration, but prove to success-
fully ensure a stable takeoff and landing. The control
surfaces only show minor variations as expected, ex-
cept the landing phase. As soon as the Quadplane
touches down, it becomes more or less static, result-
ing in an unachieved control demands. This causes
the rotors to saturate at their minimum values, after
which the control surfaces are saturated as well in a
maximum effort to satisfy the control demand.

9. Conclusions and Recommendations 13

−5

0

5

C
o

n
tr

o
ld

em
an

d
[m

s−
2

]

−∆z̈

1,000

1,200

1,400

1,600

A
ct

u
at

o
r

P
W

M
P

u
ls

e
Le

n
gt

h
[m

s] δrl f

δrr f

δrr r

δrl r

δa

δrl

δrr

0 2 4 6 8 10 12 14

0

2

4

Time [s]

Po
si

ti
o

n
[m

] −z

Figure 12: Stable quadplane takeoff and landing
using INCA with seven actuators

(= takeoff, = landing)

The difference in actuator inputs between different
rotors seen in the first flight can be exploited in the
second, where INCA’s resilience against actuator sat-
uration is being put to the test. The saturation level
is chosen in such a way that one actuator especially
saturates, in this case δrl r . Like with its correspond-
ing simulation, Figure 13 shows that INCA prioritises
its pitch and roll commands above its thrust and es-
pecially yaw commands, resulting in slower but sta-
ble takeoff. Saturating actuators however result in
the INCA optimisation having to perform more iter-
ations before it reaches its optimum, since the Active
Set Method has to explore the edges of the actuator
input space in multiple steps. This eventually results
in higher computational cost. This test is therefore
performed with the INCA controller using only four
actuators and a low cost outer loop controller.

0

10

20

C
o

n
tr

o
ld

em
an

d
[m

s−
2

]

−∆z̈

1,000

1,200

1,400 Saturation
Limit

A
ct

u
at

o
r

P
W

M
P

u
ls

e
Le

n
gt

h
[m

s]

δrl f

δrr f

δrr r

δrl r

0 2 4 6 8 10 12 14 16 18 20

0

1

2

3

Time [s]

Po
si

ti
o

n
[m

] −z

Figure 13: Stable quadplane takeoff and landing with actuator
saturation occurring at an actuator PWM pulse length of 1460 ms

using INCA with five actuators
(= takeoff, = landing)

The final performed flight is the one where the novel
XINCA module is being tested. For this flight, the
quadplane is controlled by both the INCA and XINCA
controllers that together allocate control to a total
of five rotors. The flight itself consists of a takeoff,
forward flight, backwards flight and landing. Figure
14 shows that the quadplane effortlessly manages to
perform this longitudinal manoeuvre. Peaks in the
tail rotor command show that this actuator is indeed
used for both forward acceleration and backwards
braking as expected.

0

0.5

1

C
o

n
tr

o
ld

em
an

d
[m

s−
2

]

∆ẍ

1,000

1,200

1,400

1,600
A

ct
u

at
o

r
P

W
M

P
u

ls
e

Le
n

gt
h

[m
s]

δrl f

δrr f

δrr r

δrl r

δrt

0 5 10 15 20 25 30 35

0

5

10

Time [s]

Po
si

ti
o

n
[m

]

x

Figure 14: Forwards and backwards quadplane flight
using XINCA with both pitch increments and tail rotor inputs

and INCA with five actuators
(= forward acceleration by tail rotor, = tail rotor braking)

9 Conclusions and Recommendations

As mentioned earlier, this research aims to prove
three hypotheses:

• The INCA controller chooses suitable actuators
in order to achieve stable flight

• The INCA controller chooses appropriate actu-
ators in case of actuator saturation in order to
maintain stable flight

• The XINCA controller chooses suitable actua-
tors for forward flight

During both the simulations and the actual test
flights all three have been confirmed, albeit with
some side notes. First of all, the existing INCA con-
troller performs well for both quadcopter and quad-
plane configurations. It proves to not require very
detailed models of its controlled vehicle, and the Ac-
tive Set Method makes it suitable for real-time op-
timisation at high frequencies. Recalculation of the
actuator’s effectiveness at every time step results in a

14

high automated adaptability to changing states and
conditions to ensure efficient flight control, using
the most suitable and efficient actuators available.
When optimising commands for too many actuators
however, this INCA controller is not efficient enough
to be used on the TU Delft Quadplane in its cur-
rent hardware configuration. Allocating control to
seven actuators while using a low cost outer loop
controller is at the edge of its computational capacity.
Future research on this specific platform therefore
requires hardware upgrades to achieve more com-
puting power.

INCA also proves to handle actuator saturation well.
Prioritising certain control demands over others suc-
cessfully ensures stable flight when saturation oc-
curs. This also makes platforms like the quadplane
more resilient towards decreased actuator effective-
ness as a result of damages, or to windy conditions
that could make it impossible for certain control de-
mands to be achieved.

Finally, the novel XINCA controller proves capable to
perform an optimisation in the outer control loop,
similar to the one in the INCA inner control loop. It
shows it can use a combination of increments in atti-
tude angles and actual actuators to achieve an outer
loop control demand containing increments in the
three linear accelerations. This method eliminates
the inefficient use of separated flight modes, result-
ing in better performance of hybrid vehicles.

Future research on the application of INCA on hy-
brid vehicles like the quadplane and the application
of XINCA in general should focus on their perfor-
mance during level flight, as this has not been suf-
ficiently addressed during this research. Outdoor
flights should serve two main research objectives.
One objective would be to assess how the quad-
plane allocates more control to its control surfaces,
as soon as it has an amount of forward airspeed mak-
ing them more effective. The other objective focuses
on XINCA, assessing its capabilities to adapt to the
different dynamics of a hovering quadplane and one
in forward flight. The hypothesis to be proved is that
reducing the required input of either a linear outer
loop controller or human operator to only linear to
be achieved reference accelerations is indeed bene-
ficial, and that XINCA performs well durng different
flight phases.

INCA has once again been proven promising in the
field of UAV control, especially for over-actuated ve-
hicles. Its novel extension called XINCA has shown
the potential to even further increase the capabilities
of hybrid UAVs. With proper research on both con-

troller designs they might prove to be suitable and
applicable to not only UAVs but innovative manned
vehicles as well. This could potentially contribute
significantly to a safer, more efficient and therefore
greener future of human aerial transportation.

Bibliography

[1] Elisabeth Bumiller and Thom Shanker.
War evolves with drones, some tiny as
bugs. The New York Times, Jun 2019. URL
https://www.nytimes.com/2011/06/20/
world/20drones.html.

[2] Amarjot Singh, Devendra Patil, and SN Omkar.
Eye in the sky: Real-time drone surveillance sys-
tem (dss) for violent individuals identification us-
ing scatternet hybrid deep learning network. In
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) Work-
shops, June 2018.

[3] A. Momont. Drones for good. Master’s thesis,
Delft University of Technology, 2014.

[4] Lilium, 2020. URL https://lilium.com/.

[5] U.M. Rao Mogili and B.B.V.L. Deepak. Review on
application of drone systems in precision agricul-
ture. Procedia Computer Science, 133:502–509,
2018. doi: 10.1016/j.procs.2018.07.063.

[6] Elisabeth Bumiller and Thom Shanker.
War evolves with drones, some tiny as
bugs. The New York Times, Jun 2019. URL
https://www.nytimes.com/2011/06/20/
world/20drones.html.

[7] Sasanka Madawalagama, Niluka Munasinghe,
S Dampegama, and L Samarakoon. Low cost
aerial mapping with consumer-grade drones. 10
2016.

[8] Zhang Daibing, Wang Xun, and Kong Weiwei. Au-
tonomous control of running takeoff and land-
ing for a fixed-wing unmanned aerial vehicle.
2012 12th International Conference on Control
Automation Robotics & Vision (ICARCV), 2012.
doi: 10.1109/icarcv.2012.6485292.

[9] Marco Palermo and Roelof Vos. Experimen-
tal aerodynamic analysis of a 4.6%-scale flying-
v subsonic transport. AIAA Scitech 2020 Forum,
May 2020. doi: 10.2514/6.2020-2228.

[10] D. Jin Lee, Byoung-Mun Min, Min-Jea Tahk, Hy-
ochoong Bang, and D.h Shim. Autonomous flight
control system design for a blended wing body.

https://www.nytimes.com/2011/06/20/world/20drones.html
https://www.nytimes.com/2011/06/20/world/20drones.html
https://lilium.com/
https://www.nytimes.com/2011/06/20/world/20drones.html
https://www.nytimes.com/2011/06/20/world/20drones.html

9. Conclusions and Recommendations 15

2008 International Conference on Control, Au-
tomation and Systems, 2008. doi: 10.1109/iccas.
2008.4694548.

[11] Bai Zhiqiang, Liu Peizhi, Wang Jinhua, and
Hu Xiongwen. Simulation system design of a
uav helicopter. 2011 International Conference
on Electric Information and Control Engineering,
2011. doi: 10.1109/iceice.2011.5778108.

[12] Teppo Luukkonen. Modelling and control of
quadcopter, Aug 2011.

[13] E.J.J. Smeur, D.C. Höppener, and C. De Wagter.
Prioritized control allocation for quadrotors sub-
ject to saturation. International Micro Air Vehicle
Conference and Flight Competition (IMAV), 2017.

[14] Jacob Apkarian. Attitude control of pitch-
decoupled vtol fixed wing tiltrotor. 2018 Interna-
tional Conference on Unmanned Aircraft Systems
(ICUAS), 2018. doi: 10.1109/icuas.2018.8453473.

[15] Ryuta Takeuchi, Keigo Watanabe, and Isaku Na-
gai. Development and control of tilt-wings for a
tilt-type quadrotor. 2017 IEEE International Con-
ference on Mechatronics and Automation (ICMA),
2017. doi: 10.1109/icma.2017.8015868.

[16] Christophe De Wagter and Ewoud J.J
Smeur. Control of a hybrid helicopter
with wings. International Journal of Micro
Air Vehicles, 9(3):209–217, Nov 2017. doi:
10.1177/1756829317702674.

[17] Matthew E. Argyle, Jason M. Beach, Randal W.
Beard, Timothy W. Mclain, and Stephen Morris.
Quaternion based attitude error for a tailsitter in
hover flight. 2014 American Control Conference,
2014. doi: 10.1109/acc.2014.6859324.

[18] Danial Sufiyan Bin Shaiful, Luke Thura Soe Win,
Jun En Low, Shane Kyi Hla Win, Gim Song Soh,
and Shaohui Foong. Optimized transition path
of a transformable hovering rotorcraft (thor).
2018 IEEE/ASME International Conference on Ad-
vanced Intelligent Mechatronics (AIM), 2018. doi:
10.1109/aim.2018.8452703.

[19] Janith Kalpa Gunarathna and Rohan Munas-
inghe. Development of a quad-rotor fixed-wing
hybrid unmanned aerial vehicle. 2018 Moratuwa
Engineering Research Conference (MERCon),
2018. doi: 10.1109/mercon.2018.8421941.

[20] Jian Zhang, Zhiming Guo, and Liaoni Wu. Re-
search on control scheme of vertical take-off and
landing fixed-wing uav. 2017 2nd Asia-Pacific
Conference on Intelligent Robot Systems (ACIRS),
2017. doi: 10.1109/acirs.2017.7986093.

[21] David Orbea, Jessica Moposita, Wilbert G.
Aguilar, Manolo Paredes, Rolando P. Reyes, and
Luis Montoya. Vertical take off and landing with
fixed rotor. 2017 CHILEAN Conference on Elec-
trical, Electronics Engineering, Information and
Communication Technologies (CHILECON), 2017.
doi: 10.1109/chilecon.2017.8229691.

[22] Ma Tielin, Yang Chuanguang, Gan Wenbiao, Xue
Zihan, Zhang Qinling, and Zhang Xiaoou. Analy-
sis of technical characteristics of fixed-wing vtol
uav. 2017 IEEE International Conference on Un-
manned Systems (ICUS), 2017. doi: 10.1109/icus.
2017.8278357.

[23] Gerardo Flores and R. Lozano. Lyapunov-based
controller using singular perturbation theory: An
application on a mini-uav. 2013 American Con-
trol Conference, 2013. doi: 10.1109/acc.2013.
6580063.

[24] A.R.J. Stolk. Minimum drag control allocation
for the innovative control effector aircraft. Mas-
ter’s thesis, Delft University of Technology, 2017.

[25] Ewoud J.J. Smeur, Qiping Chu, and Guido C.H.E.
De Croon. Adaptive incremental nonlinear dy-
namic inversion for attitude control of micro air
vehicles. 2015. doi: https://doi.org/10.2514/1.
G001490.

[26] Joseph Horn. Non-linear dynamic inversion
control design for rotorcraft. Aerospace, 6(3):38,
2019. doi: 10.3390/aerospace6030038.

[27] D.C. Höppener. Actuator saturation handling
using weighted optimal control allocation ap-
plied to an indi controlled quadcopter. Master’s
thesis, Delft University of Technology, 2017.

[28] Ola Härkegård. Dynamic control allocation us-
ing constrained quadratic programming. AIAA
Guidance, Navigation, and Control Conference
and Exhibit, May 2002. doi: 10.2514/6.2002-4761.

[29] Henri P. Gavin and Jeffrey T. Scruggs. Con-
strained optimization using lagrange multipliers.
CEE 201L. Uncertainty, Design, and Optimiza-
tion, 2020.

[30] Tor A. Johansen and Thor I. Fossen. Control al-
location—a survey. Automatica, 49(5):1087–1103,
2013. doi: 10.1016/j.automatica.2013.01.035.

[31] O. Harkegard. Efficient active set algorithms for
solving constrained least squares problems in air-
craft control allocation. Proceedings of the 41st
IEEE Conference on Decision and Control, 2002.,
2002. doi: 10.1109/cdc.2002.1184694.

16

[32] Pascal Brisset, Antoine Drouin, Michel Gorraz,
Pierre-Selim Huard, and Jeremy Tyler. The pa-
parazzi solution *. 10 2006.

[33] Ewoud J.J. Smeur, Qiping Chu, and Guido C.H.E.
De Croon. Cascaded incremental nonlinear dy-
namic inversion control for mav disturbance re-

jection. 2018. doi: https://doi.org/10.1016/j.
conengprac.2018.01.003.

[34] Ewoud J.J. Smeur, Qiping Chu, and Guido C.H.E.
De Croon. Gust disturbance alleviation with in-
cremental nonlinear dynamic inversion. 2016.
doi: https://doi.org/10.1109/IROS.2016.7759827.

II
Part II: Preliminary Research Report

as graded for the AE4020 Literature Study

17

1
Abstract

The report presents a literature research that was performed as part of a TU Delft Master Thesis at the fac-
ulty of Aerospace engineering. The objective of the thesis work is to assess the suitability of Incremental
Non-linear Control Allocation or INCA on the over-actuated TU Delft quadplane. This literature research fo-
cuses on gaining relevant knowledge about control allocation, quadplane controllers in general, and INCA
specifically. It addresses suitable optimisation techniques that can be used in control allocation, and proper
definitions of control allocation optimisation problems. Also, a proposal for further research is made.

19

2
Introduction

Over the last decade, Unmanned Aerial Vehicles (UAVs) have been gaining popularity at an incredible rate.
New applications are found almost every day, ranging from consumer to commercial and even military pur-
poses. Some examples of applications are reconnaissance, attack, film making, law enforcement, research,
surveillance, agriculture, construction and many more. While UAV technology advances, the requirements
for such platforms become more and more demanding. End users expect their UAVs to fly longer and over
larger distances, while flying ever smoother and more stable. They often have to be versatile and be able
to operate under harsh flight conditions. These and many other application-specific requirements push re-
searchers and developers to come up with innovative solutions, in terms of both airframe design and control
strategies. This has led to many different types of UAVs, each with its own advantages and disadvantages.

2.1. UAV Classification
An overview of some of the most common types of UAVs is given in Figure 2.1. One can see that the majority
of UAVs consist of rotorcraft and fixed wing UAVs.

Helicopter
[1]

Monocopter
[2]

Multicopter
[3, 4]

Ducted Fan
[5]

Autogyro/
Gyroplane [6]

Cyclogyro
[7]

Tilt Rotor/
Wing [8, 9]

Tail Sitter
[10, 11]

Transformable
[12]

Quadplane
[13, 14, 15, 16, 17]

Conventional
[18]

Blended
Wing [19, 20]

Thrust
Vectored [21]

Flapping
Wing [22]

Balloon
[23]

Zeppelin
[24]

Rotorcraft

Fixed
Wing

Other

UAVs

Figure 2.1: UAV classification

Rotorcraft make use of one or more rotors to generate lift. This provides them with VTOL capabilities, al-
lowing them to take off and land virtually anywhere. The most common types of rotorcraft would be the
conventional helicopter as researched by [1], and the multicopter (often quadcopter) as researched by [3, 4].
Possibilities of less conventional types of rotorcraft have also been explored, often in an attempt to satisfy
very mission specific requirements. Results are for instance the monocopter designed by Lembono et al. [2],
which mimics a single seed or samara from maple trees. This example proves to be mechanically simple, but
unsurprisingly challenging to control. Other less conventional types with their own advantages and disad-
vantages are ducted fan rotorcraft [5], autogyros, also known as gyrocopter or gyroplanes [6] and cyclogyros
[7].

Fixed wing UAVs resemble the conventional airplane design, using horizontal wings for lift generation and
control surfaces for attitude control. They often need an airstrip for takeoff and landing, but their wing-

21

22 2. Introduction

induced lift instead of active vertical thrust results in better endurance performance, i.e. longer flight ranges
and flight time. They often come in the conventional aircraft form with a fuselage, wings and stabilisers [18],
but sometimes also in the more progressive form of a blended wing aircraft [19, 20]. Occasionally, rotor-less
VTOL capabilities are incorporated into the design by means of thrust vectoring [21], where the thrust vector
of a power unit can be deflected towards its desired direction.

While completely distinct UAV platforms exist like flapping wing UAVs or ornithopers [22], hot air or helium
balloons [23] and zeppelins [24], the most relevant UAV platforms for this research are those hybrid between
rotorcraft and fixed wing UAVs. It appears that hybrid UAVs, like the TU Delft quadplane have gained quite
some popularity in recent years. They aim to combine the best of two worlds, namely the VTOL capabilities of
rotorcraft, and the endurance of fixed wing aircraft. This can for instance be achieved by tilting the aircraft’s
rotors or even its complete wing upwards, and back to their horizontal position during flight [8, 9]. This very
effective method is able to reduce the amount of rotors needed and wing-induced drag during vertical climb,
but at the cost of additional mechanically complexity, and therefore additional mass. Letting a winged air-
craft take off vertically can otherwise be achieved by letting the whole UAV take off from a vertical or tail
sitting orientation, and rotating the whole platform during climb towards a horizontal orientation [10, 11].
This provides the potential for mechanical simplicity, albeit that the UAV and its payload need to withstand
a vertical attitude. Another solution is a range of transformable UAV, which completely change its configura-
tion during flight in order to switch between vertical and horizontal flight. One remarkable example is the one
designed by Shaiful et al. [12], where the UAV takes off as a two-bladed rotor with active propulsion on each
of the blades. When transitioning to horizontal flight, one of the blades rotate around its own axis to form a
fixed wing together with the other blade, and provide propulsion in one longitudinal direction. The last type
of UAV from the overview in Figure 2.1 to discuss is the one being used in this research, the quadplane. This
platform will be discussed in the next section.

The amount of different hybrid UAV designs is remarkable. Every type has its own benefits, but also its draw-
backs. Researcher seem to be struggling to find one optimal platform. The reason is that harmonising the
dynamics of both vertical and horizontal flight is quite challenging. The dynamics of a rotorcraft is per defi-
nition quite different from those of fixed wing UAVs. Their conventional controllers are governed by control
laws that conflict when used together during a transition. In order to provide the yet non-existing solutions
to these problems, it is therefore important that research keeps being performed on novel controller types
for hybrid air frames. This way, this type of UAV will be able to fly longer, further and smoother. Occasion-
ally, companies scale up aircraft platforms that so far have only been unmanned, in order for them to carry
passengers. Good examples of such companies are Lilium [25] and Ehang [26]. Their products might eventu-
ally contribute towards an all-electric future of air transport, a reduction of car traffic and a more sustainable
environment. These kinds of platforms only exist because of immense amounts of UAV research preceding
them. Needless to say, ongoing research on quadplanes and UAVs in general remains not only of commercial
or scientific, but also of public interest.

2.2. The Quadplane
The quadplane masters both versatility and endurance without too much mechanical complexity. An exam-
ple is the one developed for research purposes by the Delft University of Technology’s MAVLab, henceforth
called the TU Delft quadplane. Its versatility results from the combination of a quadrotor and a fixed-wing
UAV, providing it with both Vertical Takeoff and Landing (VTOL) capabilities and efficient and enduring level
flight performance. Its simplicity is because of the fact that it is based on conventional UAV concepts, and
does not need to have mechanically complex parts like tilting wings or rotors. The latter also positively influ-
ences the total weight of the platform. It does however have some other additional mass, caused by redundant
actuators, proving the struggle to find an absolutely optimal hybrid UAV airframe.

The design of the TU Delft quadplane specifically is described by Aman [27]. The upward facing rotors are
attached to two longitudinal rods, reducing the amount of additional drag induced by these rotors. It is con-
trolled by nine actuators in total, as schematically illustrated in Figure 2.2. Four upwards facing rotors are
typically used for vertical takeoff, landing and hovering. A tail rotor, two ailerons and two ruddervators are
used for level flight. These sets will respectively be referred to as the quadcopter actuator set and the fixed

2.2. The Quadplane 23

wing actuator set.

xy
z

δrl r

δrr r

δrl f

δrr f

δrt

δal

δar

δrl

δrr
δrl f left front rotor
δrr f right front rotor
δrl r left rear rotor
δrr r right rear rotor
δrt tail rotor
δal left aileron
δar right aileron
δrl left ruddervator
δrr right ruddervator

Figure 2.2: Overview of the quadplane’s nine actuators
(= quadcopter actuator set, = fixed wing actuator set)

Because the quadplane has more actuators than it actually needs to control its attitude, it is called over-
actuated. An aircraft’s controller decides what actuators need to be activated and to what extent, in order to
achieve the desired moments or control demand acting on the system. For aircraft that are not over-actuated
this is straight-forward, as each of the degrees of freedom is typically being accounted for by only a single
actuator or set of actuators. One example is a conventional aircraft, which has elevators to control pitch,
ailerons to control roll and a rudder to control yaw. Another example is a quadcopter, which uses differential
thrust between front and aft rotors to control pitch, differential thrust between left and right rotors to control
roll and differential thrust between clockwise and counter-clockwise rotating rotors to control yaw. Control-
ling an over-actuated UAV however, is less straight-forward. A quadplane controller, for instance, constantly
needs to choose whether to use its quadcopter actuator set, its fixed wing actuator set or a combination of the
two to control its attitude. This can for example be based on the actuators’ effectiveness, which for control
surfaces heavily depends on forward airspeed.

Problems might also occur when the actuators have a higher control demand than they can satisfy. This is
called the saturation problem. This problem can potentially occur in every controlled system, but a quad-
plane is especially prone to it. An exemplary situation for both quadplanes in hover (only using their quad-
copter actuator set) and quadcopters could be when their controller has to satisfy multiple control demands
in pitch, roll, yaw and/or thrust. The active actuators are all involved in satisfying each of these demands.
Satisfying all of them could be more than certain actuators can handle, resulting in saturation of one or more
actuators and at least some control demands not being achieved. Another example that is specific to quad-
planes, is saturation that might occur when controlling the platform’s attitude in windy conditions while
hovering. Because of the large wing and control surfaces of the platform, large forces and moments caused
by wind can act on the system. Especially yawing forces caused by wind on the tail sector of the quadplane
are difficult to counter-act, as the quadplane’s quadcopter actuator set is least effective in yaw. This could be
compensated by taking bigger and more powerful rotors. This is however undesirable, since they add a lot
of extra weight to the system and increase drag during horizontal flight, although they are mostly used for
the relatively short take off and landing phases. A better solution would be to optimally use all actuators to
achieve control demands a well as possible, with a controller that is able to prioritise certain control demands
over others. It could potentially use quick attitude changes in order to gain control effectiveness in a desired
direction, for instance: a quadplane could quickly pitch, roll and pitch back sequentially in order to help sat-
isfy a control demand in yaw.

Choosing or combining multiple actuators to satisfy a certain control demand is called control allocation,
and will be discussed in Section 3. Often, some sort of optimisation method needs to be applied in order to
achieve optimal control allocation. Suitable methods for this purpose are described in Section 4. Further re-
search and experiments to be performed during the remainder of the thesis project are described in Section
5, and this literature research is concluded in Section 6

3
Control Allocation

When performing research on existing quadplane solutions, one can find a modest amount of beautifully de-
signed quadplanes. A first example is the one designed by Gunarathna and Munasinghe [13], who designed
adequate controllers for their hybrid platform, which is a modified fixed wing UAV. This quadplane has two
distinct controllers. One to control the its quadrotor actuator set during take-off, hovering and landing, and
one to control its fixed wing actuator set during horizontal flight. During a transition phase, it shortly uses
both controllers in order to gain speed and therefore wing-induced lift, or to slow down and compensate the
decrease in lift with the quadcopter actuator set.

A similar example is the quadplane designed by Zhang et al. [14], who distinguishes four different flight
modes: a multi-rotors mode, fixed-wing mode, and the front and back transition modes. This literature shows
challenges induced by simultaneously using two controllers during a transition phase. For instance, heading
control is quite different in the two main flight modes, potentially resulting in undesirable control behaviour
of the quadplane during transitioning. Also, the fixed-wing mode can produce high pitching angles during
transitioning, due to the lack of wing-induced lift. This could potentially result in the aircraft stalling and
becoming unstable.

Slightly different is the platform designed by Orbea et al. [15], although it could still be qualified as a quad-
plane. It is however different than the quadplanes discussed so far, in the sense that it does not feature hori-
zontal propulsion. The quadplane’s fixed wing only provides additional lift during horizontal flight. Because
of the forward pitching that quadrotor use to gain a forward acceleration, the wing is attached to the airframe
at a high inclination angle. This way, a positive wing-induced lift force is assured. Although this UAV techni-
cally is a quadplane, it is not over-actuated and could be controller by a single attitude controller.

Tielin et al. [16] provide an overview of different UAVs with VTOL capabilities. In their analysis of UAVs that
feature seperate power plant behaviour for hover" like a quadplane, they state that that these platforms have
two flight control systems, like most of the platforms named above. Only during some transition phase, their
actuators get combined to move from one mode to another. Constantly allocating control to all available ac-
tuators might improve overall effectiveness and efficiency. This topic will be further elaborated this section.

First, some background on controlling UAVs is required. A typical UAV controller consist of at least two con-
trol loops, as can be seen in Figure 3.1. The outer or position loop is used for guidance, and will aim to
compensate any positional errors. It does so by providing a reference attitude and a direct lift or thrust com-
mand to the inner or attitude loop, which is used for stabilisation of the UAV. This loop controls the attitude
of the UAV by directly controlling the UAV’s actuators [28].

This research focuses on the inner loop controller, the one that controls the UAVs attitude. Different existing
solutions will be presented in this section, starting with ones that are not able to deal with over-actuation,
and ending with Incremental Non-linear Control Allocation or INCA, which does.

25

26 3. Control Allocation

+ −

Outer Loop
Controller + −

Inner Loop
Controller

Actuator
Dynamics

System

Attitude
Sensors

xr xe ωr ωe δr δ x

Inner, stabilisation or attitude control loop
ω

Outer, guidance or position control loop

x

Figure 3.1: A schematic representation of a controller with inner and outer control loops
(x = state vector, ω = attitude vector, δ = control input vector)

3.1. The PID controller
Perhaps one of the most conventional controller methods is the Proportional-Integral-Derivative or PID con-
troller as described by Araki [29]. This controller takes a state error as input, and defines the reference control
input as a linear combination of the error itself, its integral and its derivative:

δr = KPωe +K I

∫
ωe +KD

dωe

d t
(3.1)

in which ωe could be an error in a certain attitude angle, and δr could be a corresponding reference control
input. The PID controller could be implemented in a system as depicted in Figure 3.2. An advantage of a PID
controller is that it somewhat anticipates on approaching a reference state, since it not only takes the state
error into account, but also the rate at which this error decreases. Also, the PID controller can compensate
any residual error since it takes the error integral into account as well. The main advantage however is that
a PID controller does not need a detailed model of the controlled system, and that it is directly applicable to
not just first order, but also second order systems.

Outer Loop
Controller

PID
Actuator

Dynamics
System

Attitude
Sensors

PID controller

+ − + −

xr xe ωr ωe δr δ x

ω

x

Figure 3.2: A schematic representation of a PID controller
(x = state vector, ω = attitude vector, δ = control input vector)

The PID controller only works when certain state errors correspond exclusively to certain control inputs. For
instance, ailerons can be used for roll control, elevators for pitch control and a rudder for yaw control. A
quadplane’s alternative is to link certain upwards facing rotor thrust differentials to the attitude errors. A PID
controller is however not able of making a smart choice between multiple available actuators. To use it in
the attitude control loop of over-actuated UAVs, one would need to switch between different PID controllers,
as done by Gunarathna and Munasinghe [13] and Zhang et al. [14]. A quadcopter controller could be used
to taking off, landing and hovering, and a fixed wing controller could be used for horizontal flight. Only in
a transition phase might these actuator be used simultaneously, for instance to gain forward velocity before
switching from the quadcopter to the fixed wing controller.

Another disadvantage of the PID controller is that it does not use any knowledge about the system to be con-
trolled. Controller gains are often tuned manually, in a trial-and-error kind of way. This is a tedious and time
consuming process, often resulting in sub-optimal performance. PID controllers in general are also not ca-
pable of taking actuator constraints into account, possibly resulting in saturated actuators and insufficient
control over the UAV in question. Lastly, PID controllers can only react to feedback of the system, while
model-based controllers, like the ones described later, can also incorporate some sort of prediction or feed-
forward.

3.2. The NDI controller 27

3.2. The NDI controller
Often, a mathematical description is known of the system to be controlled. This model might give a controller
designer a lot of information on how to best control its vehicle. Let for instance a system be described as a
linear state-space system:

v = Fx +Gτ (3.2a)

where τ= Hδ (3.2b)

In these equations, v conventionally contains the system’s angular accelerations, τ is the vector containing
the the actuator moments acting on the system, and δ is the control input vector. State matrix F, inertial ma-
trix G and actuator effectiveness matrix H are state and time dependant system matrices. An NDI controller
receives a so-called virtual input vr , and needs to output a control input vector that satisfies this demand.
It does so by first determining a control demand τc by inverting Equation 3.2a, and substituting this control
demand into Equation 3.2b, which is than in turn inverted:

τc = G−1(vr −Fx) (3.3)

δ= H−1τ (3.4)

A schematic representation of a system with an NDI controller is shown in Figure 3.3. The controller now has
based a control input solely on a the virtual input vr , state vector x and the mathematical model of the sys-
tem. An example of an NDI implementation in the one by Horn [30] on a quadcopter platform, and is used in
many other UAV systems. It eliminates tedious tuning of controller gains as encountered in PID controllers.
It does however require an accurate model of the system to be controlled. If certain dynamics of a system are
poorly modelled, the system might not be controlled as desired, or even become unstable. This might also be
the case when other moments than those taken into account in the model are acting on the system. Another
disadvantage of this method, is that it needs invertible actuator dynamics, which is per definition not the
case for over-actuated systems, where the number of actuators exceeds the number of degrees of freedom
the system has. To work around this in an NDI controller, one could group multiple actuators to share one
control input value, or disable certain actuators in certain flight modes. These methods would however be
sub-optimal, since they are not able to combine certain actuators. Lastly, the NDI controller in itself has no
way to take actuator constraints into account.

Linear
Controller G−1 H−1

Actuator
Dynamics

System

F(x, t)

NDI controller

+ − + −

xr xe vr ve τc δr δ x

x

v f

Figure 3.3: A schematic representation of an NDI controller
(x = state vector, v = virtual input, τ = control demand, δ = control input vector)

3.3. The INDI controller
In order to reduce the model dependency an NDI controller has, one can choose to substitute the system’s
model dynamics with measurements, so the only models that are required are those of the actuators. Vehi-
cles often have an Inertial Measurement Unit or IMU on board, which measures specific moments acting on
the system. Especially now, the convenience of using a virtual control input vr becomes clear. The amount
of angular accelerations that is yet to be achieved can be defined as the difference ve between this virtual
control input vr and measured specific moments v . Note that unlike an NDI controller, this ve denotes the
required error in angular accelerations to be compensated by actuator increments, and not the total desired

28 3. Control Allocation

angular accelerations to be compensated by absolute actuator positions. This is because the IMU sensors
also measure the effects of the current actuator positions. The calculated control input vector is thus also
incremental, and denoted as ∆δr . It is thereafter added to the current measured or estimated control input
δ. This incremental variation of the NDI method is unsurprisingly called Incremental Non-linear Dynamic
Inversion, or INDI. A diagram of a system with an INDI controller is shown in Figure 3.4.

Linear
Controller G−1 H−1

Actuator
Dynamics

System

IMU

INDI controller

+ − + − + +

xr xe vr ve τc ∆δr δr δ x

δ

x

v

Figure 3.4: A schematic representation of an INDI controller
(x = state vector, v = virtual input, τ = control demand, δ = control input vector)

The main advantage of this method is that it captures unmodelled or unanticipated dynamics by measuring
what states instead of trying to predict them. Not also does this mean that the model of the system’s dynamics
is not needed anymore, but also that the actuator model does not need to be very precise. The virtual input is
constantly compared to actual measurements, making sure that inaccuracies in the model will eventually be
compensated whenever possible. However, the inversion of the so-called actuator effectiveness matrix H still
prohibits proper application of the controller on over-actuated system such as the quadplane, for the same
reasons as an NDI controller. Höppener [31] shows an implementation of this method on a quadcopter. In
his thesis, he addresses actuator saturation as well. He proposes the use of a Weighted Least Squares or WLS
control allocation, which allows finding a optimal control input that respects actuator constraints. This ex-
tension to the INDI controller is called Incremental Non-linear Control Allocation or INDI, and is discussed
in the next chapter.

3.4. The INCA controller
Incremental Non-linear Control Allocation, or INCA, is based on the INDI controller. The only difference is
that the inversion of actuator effectiveness matrix H is replaced by a control allocation optimisation scheme,
as can be seen in Figure 3.5. This is because matrix H is per definition singular for over-actuated systems.
This is not the case for inertial matrix G, which typically is an invertible 3×3 matrix that correlates moments
acting on the system to angular accelerations.

Linear
Controller G−1 Control

Allocation

Actuator
Dynamics

System

IMU

INCA controller

+ − + − + +

xr xe vr ve τc ∆δr δr δ x

δ

x

v

Figure 3.5: A schematic representation of an INCA controller
(x = state vector, v = virtual input, τ = control demand, δ = control input vector)

What this control allocation optimisation actually encompasses depends greatly on the application of the
system. In any case, an objective function needs to be defined. Such an objective function could for in-
stance represent the amount of consumed energy, the amount of drag, the deviations of actuators from their
preferred position, or even a combination of those. An optimisation method could then attempt to find the
actuator set that minimises (or maximises) the objective function, based on actuator effectiveness matrix
H. Several researches have already theoretically applied this concept. Both Härkegård [32] and Stolk [33] use
constrained quadratic programming to solve the control allocation problem. Härkegård shows a hypothetical

3.4. The INCA controller 29

example of an application on a Simulink based realistic and over-actuated fighter aircraft model. Stolk theo-
retically applies an INCA controller on the also over-actuated Innovative Control Effector or ICE aircraft. The
previously mentioned Höppener [31] also uses quadratic programming in his INDI controller for the control
of a conventional quadcopter, basically making it an INCA controller as well.

INCA deals with challenges named earlier. There is no need for the tuning of gains, its model dependency is
supposedly low, and it is able to deal with the over-action of a quadplane. Its performance however depends
heavily on the efficiency of the optimisation method, which needs to be quick enough for online use. A vari-
ety of these methods will be discussed in Section 4.

4
INCA Optimisation

A controller that uses INCA might be supposed to solve the allocation problem at a rate in the same order of
magnitude as 100 Hz, resulting in a very short processing time per time step. This means the optimisation
method used has to be rather efficient and reliable. Various surveys provide a clear overview of different op-
timisation methods that are relevant for control allocation, like Stolk [33], Bodson [34], Harkegard [35] and
Johansen and Fossen [36]. This section is meant to elucidate methods from those surveys, found to be most
promising for use in an INCA controller.

4.1. Generalised Inverse
When the control allocation problem is defined without actuator constraints, it can be solved by using a
generalised inverse. A typical Control Allocation objective is to minimise the Weighted Least Squares or WLS
control effort, defined as the difference between actual and desired actuator positions, while satisfying the
control demand by some combination of actuator inputs:

mi n
∆δ

(∆δ−∆δp)T W(∆δ−∆δp) (4.1a)

subject to H∆δ= τc (4.1b)

where δp is the vector containing the preferred actuator positions, and W is a weighting matrix to prioritise
some actuators over others. Johansen and Fossen [36] state that as long as actuator effectiveness matrix H
has full rank, the solution can be found by:

∆δ= (I−GH)∆δp +Gτc (4.2a)

where G = W−1HT (HW−1HT)−1 (4.2b)

When W = I and δp = 0, the optimisation problem and it solution simply to the following form:

mi n
δ

1

2
∆δT∆δ (4.3a)

subject to H∆δ= τc (4.3b)

∆δ= H+τc (4.4a)

where H+ = HT (HHT)−1 (4.4b)

H+ is known as the Generalized Moore-Penrose or Psuedo-Inverse [37], and provides a simple algebraic so-
lution to the optimisation problem defined in Equation 4.1a. The main disadvantage of this method is that

31

32 4. INCA Optimisation

it doesn’t allow any actuator constraints to be used, and therefore often yields unfeasible solutions. Other
solvers are however often based on this method.

4.2. Redistributed Pseudo-Inverse
One solver that does handle actuator constraints uses a so-called Redistributed Pseudo-Inverse, or RPI for
short, and is described by Virnig and Bodden [38]. The problem ould be defined as follows:

mi n
∆δ

(∆δ−∆δp)T W(∆δ−∆δp) (4.5a)

subject to H∆δ= τc and ∆δmi n ≤∆δ≤∆δmax (4.5b)

The RPI method consists of an iterative process that solves a number of unconstrained sub-problems by
means of the previously described Generalised Inverse. It does so in the following manner:

Step 1 - Solve unconstrained problem

Calculate the solution to the unconstrained problem by means of the Generalised Inverse:

∆δk = (I−GH)∆δp +Gτc (4.6a)

where G = W−1HT (HW−1HT)−1 (4.6b)

Step 2 - Check feasibility and number of saturated actuators

Infeasible, not all actuators saturated:
Step 3 - Define sub-problem

If the solution is infeasible, all saturated actuators (actuators that
violate their constraints) are set to their maximum (or minimum)
value. These actuators will remain saturated in the final solu-
tion. Resulting forces and moments from these actuators are
subtracted from the control demand τc , which is then used in a
redefined sub-problem that only includes the remaining actua-
tors and corresponding constraints in an attempt to satisfy the
remaining control demand in the next iteration.

Feasible, or all
actuators saturated

The final solution is
found when either
the control demand
is satisfied, or all ac-
tuators are saturated.

k
=

1,
2,

..
.,

N

X

The method is easy to implement, and it guarantees a feasible solution. According to Stolk [33] however, it is
not guaranteed that this solver will find a solution that matches the control demand optimally.

4.3. Quadratic programming
When looking at control allocation solvers, three requirements need to be satisfied according to Buffington
[39]: feasibility (the solution needs to be achievable), deficiency (if not achievable, the solution needs to be
degraded to a achievable one) and sufficiency (there should only be one optimum). Section 4.1 shows that
especially feasibility and deficiency requirements are not necessarily met by a generalised inverse. To change
this, the WLS problem could be redefined to include the difference between control demand and the achieved
moments, again having actuator limits as constraints:

mi n
∆δ

‖Wτ(H∆δ−τc)‖2 +‖γWδ(∆δp −∆δ)‖2 (4.7a)

subject to δmi n ≤ δ≤ δmax and δ̇≤ δ̇max (4.7b)

4.4. The Active Set Method 33

where Wτ and Wδ are weighting matrices, and γ is a scaling factor to prioritise one sub-objective over an-
other, for instance control demand satisfaction versus minimum actuator deflection.. This type of objective
function is called a Quadratic Program, and can include as many separate sub-objectives as one might need.
Quadratic Programming is often used for Control Allocation problems. Härkegård [32] presents it as a suit-
able method, and Stolk [33] and Höppener [31] both apply it, on a modern fighter jet and a quadcopter UAV
respecitvely. For easier processing, the objective function is often rewritten in the following manner:

mi n
∆δ

‖Wτ(H∆δ−τc)‖2 +‖γWδ(∆δp −∆δ)‖2 = (4.8a)

mi n
∆δ

‖F∆δ− g)‖2 = (4.8b)

mi n
∆δ

√
∆δT FT F∆δ+2g F∆δ+ g T g = (4.8c)

mi n
∆δ

∆δT Q∆δ+ cT∆δ (4.8d)

where F =
(

WτH
γWδ

)
, g =

(
Wττc

γWδ∆δp

)
, Q = FT F and c = 2FT g (4.8e)

All actuator and actuator rate constraints can be captured in one expression, and adapted to their incremental
form as follows:

∆δ≤ δmax −δ0, ∆δ≥ δmi n −δ0, |∆δ| ≤ δ̇max∆t → A∆δ≤ b (4.9a)

where A =
(

I
−I

)
and b =

(
min(δmax −δ0, δ̇max∆t)

−max(δmi n −δ0,−δ̇max∆t)

)
, (4.9b)

where δ0 is the current actuator position. This results in a optimisation problem in a standardised quadratic
form, with which many solvers can easily work:

mi n
∆δ

∆δT Q∆δ+ cT∆δ (4.10a)

subject to A∆δ≤ b (4.10b)

According to Gavin and Scruggs [40], when the inequality constraints are treated as equality constraints (A = b
instead of A ≤ b), the solution to the optimisation problem is given by the following linear system, as long as
Q is a positive definite matrix and A has full row rank [36]:[

Q AT

A 0

][
∆δ

λ

]
=

[−c
b

]
(4.11)

where λ is also know as the vector containing the Lagrange multipliers. From this linear system, explicit
solutions for both the optimal input increment ∆δ and Lagrange multipliers λ can be derived algebraically
to:

∆δ=−Q−1(ATλ+ c) (4.12a)

where λ=−(AQ−1AT)−1(AQ−1c +b) (4.12b)

The signs of Lagrange multipliers will be used later to determine what constraints to release during the opti-
misation process, and whether the solution has already reached its optimum.

4.4. The Active Set Method
To deal with inequalities constraints like the ones needed for a typical control allocation problem, one often
needs an iterative solver. One example of such a solver is the Active Set Method. Both Stolk [33] and Höppener
[31] use it in their control allocation problems. A detailed description as provided by [35] is summarised be-
low:

34 4. INCA Optimisation

Step 1 - Choose feasible starting point

The solver’s efficiency greatly depends on it’s starting point. Often, the solution from the previous
time step is used, since the solution typically does not change significantly between time steps in
a control allocation problem.

Step 2 - Determine active set of constraints and redefine problem

All active constraints, i.e. constraints at which a control input saturates, will be treated as equality
constraints, except those released from the active set by the previous iteration. All other con-
straints are being disregarded for the rest of the iteration. The redefined problem is now expressed
as:

mi n
∆δ

∆δT Q∆δ+ cT∆δ (4.13a)

subject to Aact = bact (4.13b)

where the subscript "act" indicates the active set of constraints.

Step 3 - Calculate Lagrange multipliers and solution to redefined problem

The Lagrange multipliers and solution to the redefined problem are derived as follows:

λact = (Aact Q−1Aact
T)−1(Aact Q−1c +bact) (4.14)

∆δk = Q−1(AT
actλact + c) (4.15)

where the subscript "k" denotes the current iteration. The Lagrange multiplier vector λ contains
one value for each of the active constraints.

Step 4 - Check feasibility

If solution is infeasible:

Correct the solution by taking the maximum relative step α from
the previous to the new solution without losing feasibility:

∆δk =∆δk−1 +α(∆δk −∆δk−1) (4.16)

α= mi n((∆δvi olk−1
−bvi ol)®∆δvi olk

) (4.17)

where the subscript "vi ol" denotes saturated control inputs and
violated constraints, subscript "k" denotes the current iteration,
subscript "k − 1" denotes the previous iteration and ® is an
operator for Hadamard (element-wise) vector division [41].

Add the corresponding constraint to the active set of constraints.

If solution is feasible:

If all λ≥ 0:

The optimal so-
lution is found.

If not all λ≥ 0:

Release constraint
corresponding to the
most negative value
in λ from the active
set.

X

Step 5 - Repeat iteration

Repeat from Step 3 with the new active set of constraints and ∆δk =∆δk−1

k
=

1,
2,

..
.,

N

4.4. The Active Set Method 35

Point Description
Active
constraints

1 Starting point None
2 Unconstrained optimum None

3
Best feasible solution in
direction of optimum

δ2 ≥ 0

4
Optimum with active set
as equality constraints

δ2 ≥ 0

5
Best feasible solution in
direction of optimum
and final solution

δ1 ≥ 0, δ2 ≥ 0

Figure 4.1: The Active Set Method performed on a cost function J with a two-dimensional input space
(Constraints: 0 ≤ δ1 ≤ 1 and 0 ≤ δ2 ≤ 1, starting point: (δ1,δ2) = (0.8,0.2)

An example of solving a two-dimensional input space cost function with the Active Set Method is given in
Figure 4.1. It shows the procedure described above on a simplified example. It uses a starting point without
any active constraints, and shows how maximum steps towards the optimum are taken in order to ensure
feasibility. Another similar example is given in Figure 4.2. This example shows how constraints can become
active or be released during iterations. Note that this example takes more computational effort, since twice
releasing one of the constraints take two extra iterations with respect to the example in Figure 4.1. This shows,
that choosing a suitable starting point has a significant effect on the solver’s efficiency. In control allocation
however, a smart starting point is always at hand, since each solution is likely to be in the neighbourhood of
the solution of the previous time step.

Point Description
Active
Constraints

1 Starting point δ1 ≤ 1,δ2 ≤ 1

2
Optimum after releasing
constraint with most
negative Lagrange multiplier

δ2 ≤ 1

3
Best feasible solution
in direction of optimum

δ1 ≥ 0,δ2 ≤ 1

4
Optimum after releasing
constraint with most
negative Lagrange multiplier

δ1 ≥ 0

5
Best feasible solution in
direction of optimum
and final solution

δ1 ≥ 0,δ2 ≥ 0

Figure 4.2: The Active Set Method performed on a cost function J with a two-dimensional input space
(Constraints: 0 ≤ δ1 ≤ 1 and 0 ≤ δ2 ≤ 1, starting point: (δ1,δ2) = (1.0,1.0)

The Active Set Method has a relatively low computational effort, especially when it starts at a well-chosen
starting point. Furthermore, the solver’s solution during each iteration always progresses towards the final
solution of that time step. This means that chances are small that the solver will produce a very bad solution
if cut off shortly. This results in the Active Set Method being very suitable for control allocation applications.

5
Further Research and Experiments

While Incremental Non-linear Control Allocation has proven itself in theory and simulations, it hasn’t actually
flown yet, let alone on a quadplane. The proposed Master thesis research objective is therefore:

...to asses the suitability of Incremental Non-linear Control Allocation (INCA) on the over-actuated
TU Delft quadplane.

The first part of the research focuses on assessing the suitability of an INCA controller to control all nine actu-
ators of the TU Delft quadplane. Important factors are to research whether the controller is able to solve the
over-actuation problem, and whether the cost functions can be selected in such a way that the most sensible
solution is found. In order to also efficiently allocate control to the quadplane’s tail rotor thrust and full quad-
copter actuator set thrust, it might be interesting to include forces to the control demand vector used in the
INCA controller. This is partially because the quadcopter actuator set is used for both thrust and attitude con-
trol. When the INCA optimisation only includes attitude control, and thrust is added later, saturation might
occur. Taking both into consideration during the optimisation process should result in an optimal actuator
output with minimal saturation.

Linear
Controller G−1 Control

Allocation

Actuator
Dynamics

System

IMU

XINCA
Feedback

XINCA controller

+ − + − + + + +

xr xe vr ve τc1 τc
∆δr

ωr

δr δ x

δ

x

v

τc2

Figure 5.1: A schematic representation of an XINCA controller
(x = state vector, v = virtual input, τ = control demand, δ = control input vector)

A typical issue that should be resolved as well is that the quadplane sometimes has to choose between direct
control of its accelerations by using an available actuator in that direction, or indirect control by first changing
its attitude to deflect the thrust vector in the desired direction. An example would be to accelerate a quad-
plane forward directly like a fixed wing UAV by using its tail rotor, or indirectly like a quadcopter by pitching
forward and increasing thrust. Making such a choice however typically happens in the linear controller that
only tells the INCA controller to either pitch or move forward. In conventional quadplane controllers, this
would simply depend on the actuator set being used at that particular moment. In order to simplify the lin-
ear controller, the INCA optimisation could possibly be adapted to include optimising attitude angles. This
way, the linear controller only needs to tell the INCA controller to move forward, and the INCA controller can
weigh the option of using the tail rotor against pitching forward and increasing thrust. Attitude optimisa-
tion cannot be accomplished in linear controller itself, because the optimal attitude highly depends on what

37

38 5. Further Research and Experiments

forces and moments the available actuators need to generate in certain directions. They should therefore be
optimised in one combined optimisation process. A proposed name for a controller that does so is XINCA, or
Extended Incremental Non-linear Control Allocation. A conceptual diagram for this innovative XINCA con-
troller is shown in Figure 5.1. Here, the control allocation block calculates not only optimal control inputs, but
also optimal attitude angels. This feedback is processed into an additional control demand, which is added
to the original one.

These proposed focal points of the research translate into the following research questions:

Is INCA a suitable means for efficiently controlling the nine actuators of a quadplane?

– Does it solve the over-actuation problem?

– Does it provide sensible solutions in case of actuator saturation?

Is INCA able to work with a control demand that includes both angular and linear accelerations?

Can INCA optimise both attitude and position loops at the same time, by including the quadplane’s
attitude angles in the control input vector?

These questions should be addressed by a theoretical analysis of the proposed methods, combined with both
simulations of quadplane flights with specific control demands and physical test flights, performed on the
TU Delft quadplane. The proposed research planning is pictured in Figure 5.2.

January 2020

May 2020

One week

Quadplane Modelling

Initial Simulations in MATLAB/Simulink

INCA Implementation in MATLAB/Simulink

INCA Simulations in MATLAB/Simulink

INCA Implementation on TU Delft Quadplane

INCA Experiments on TU Delft Quadplane

XINCA Implementation in MATLAB/Simulink

XINCA Simulations in MATLAB/Simulink

XINCA Implementation on TU Delft Quadplane

XINCA Experiments on TU Delft Quadplane

Reporting

Final presentation

Figure 5.2: Research planning

6
Conclusion

The TU Delft quadplane is an over-actuated aircraft with both quadcopter and fixed-wing actuator sets. Sim-
ilar aircraft are often controlled in two distinct flight modes, in which they either behave like a conventional
quadcopter or a conventional fixed-wing aircraft. This way, occasional actuator saturation will not be com-
pensated by available redundant actuators. Also, without proper control allocation that considers all available
actuators at all times, the quadplane might not always choose the most efficient actuators available. When
flying forward in quadcopter mode, it will pitch forward and increase thrust instead of more efficiently using
its tail rotor.

Incremental Non-linear Control Allocation, or INCA for short, seems to be a suitable way of controlling the
TU Delft quadplane. It is supposed to deal with both over-actuation and saturation, and allocate control to
different actuators in an efficient manner. The allocation process is driven by a optimisation process, that is
repeated for every time step. Literature shows the Active Set Method to be quite capable of solving control
allocation problems at a high rate. It can optimise a multi-objective Quadratic Program, and is therefore able
to not only satisfy a control demand as well as possible, but also to minimise control effort. The Active Set
Method has the property of always improving its solution during its iterative process. This ensures that the
best solution found so far is always at hand, might the process be terminated prematurely. Literature shows
that the Active Set Method especially performs well if its initial guess is chosen well. In control allocation, the
different solutions between time steps can be assumed to vary only slightly over time. This way, the solution
of a previous time step is likely to be a very good estimation of the solution of the next time step.

The proposed research is focused on further assessing the suitability of INCA for use on the TU Delft quad-
plane. Important focal points are to determine whether such a controller actually solves the quadplane’s over-
action problem, provides sensible solutions in case of actuator saturation, and whether linear body forces
can be included in the linear controller’s control demand. Also, a extension of the current INCA controller
to include attitude angles in its optimisation is proposed to be investigated. This controller would be named
XINCA, or Extended Incremental Non-linear Control Allocation. Both numerical simulations and test flights
should be performed in order to prove the hypotheses.

39

Bibliography

[1] Bai Zhiqiang, Liu Peizhi, Wang Jinhua, and Hu Xiongwen. Simulation system design of a uav heli-
copter. 2011 International Conference on Electric Information and Control Engineering, 2011. doi:
10.1109/iceice.2011.5778108.

[2] Teguh Santoso Lembono, Jun En Low, Luke Soe Thura Win, Shaohui Foong, and U-Xuan Tan. Orientation
filter and angular rates estimation in monocopter using accelerometers and magnetometer with the
extended kalman filter. 2017 IEEE International Conference on Robotics and Automation (ICRA), 2017.
doi: 10.1109/icra.2017.7989527.

[3] Teppo Luukkonen. Modelling and control of quadcopter, Aug 2011.

[4] E.J.J. Smeur, D.C. Höppener, and C. De Wagter. Prioritized control allocation for quadrotors subject to
saturation. International Micro Air Vehicle Conference and Flight Competition (IMAV), 2017.

[5] Francesco Forte, Roberto Naldi, Andrea Serrani, and Lorenzo Marconi. Control of modular aerial robots:
Combining under- and fully-actuated behaviors. 2012 IEEE 51st IEEE Conference on Decision and Con-
trol (CDC), 2012. doi: 10.1109/cdc.2012.6425886.

[6] Yan Ma, Zhihao Cai, Ningjun Liu, and Yingxun Wang. System composition and longitudinal motion
control simulation of vehicular towed autogyro. 2016 IEEE Chinese Guidance, Navigation and Control
Conference (CGNCC), 2016. doi: 10.1109/cgncc.2016.7828926.

[7] Yoshiyuki Higashi, Takanori Emaru, Kazuo Tanaka, and Hua Wang. Development of a cyclogyro-based
flying robot with variable attack angle mechanisms. 2006 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, 2006. doi: 10.1109/iros.2006.282435.

[8] Jacob Apkarian. Attitude control of pitch-decoupled vtol fixed wing tiltrotor. 2018 International Confer-
ence on Unmanned Aircraft Systems (ICUAS), 2018. doi: 10.1109/icuas.2018.8453473.

[9] Ryuta Takeuchi, Keigo Watanabe, and Isaku Nagai. Development and control of tilt-wings for a tilt-type
quadrotor. 2017 IEEE International Conference on Mechatronics and Automation (ICMA), 2017. doi:
10.1109/icma.2017.8015868.

[10] Christophe De Wagter and Ewoud J.J Smeur. Control of a hybrid helicopter with wings. International
Journal of Micro Air Vehicles, 9(3):209–217, Nov 2017. doi: 10.1177/1756829317702674.

[11] Matthew E. Argyle, Jason M. Beach, Randal W. Beard, Timothy W. Mclain, and Stephen Morris. Quater-
nion based attitude error for a tailsitter in hover flight. 2014 American Control Conference, 2014. doi:
10.1109/acc.2014.6859324.

[12] Danial Sufiyan Bin Shaiful, Luke Thura Soe Win, Jun En Low, Shane Kyi Hla Win, Gim Song Soh,
and Shaohui Foong. Optimized transition path of a transformable hovering rotorcraft (thor). 2018
IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 2018. doi: 10.1109/
aim.2018.8452703.

[13] Janith Kalpa Gunarathna and Rohan Munasinghe. Development of a quad-rotor fixed-wing hybrid
unmanned aerial vehicle. 2018 Moratuwa Engineering Research Conference (MERCon), 2018. doi:
10.1109/mercon.2018.8421941.

[14] Jian Zhang, Zhiming Guo, and Liaoni Wu. Research on control scheme of vertical take-off and landing
fixed-wing uav. 2017 2nd Asia-Pacific Conference on Intelligent Robot Systems (ACIRS), 2017. doi: 10.
1109/acirs.2017.7986093.

41

42 Bibliography

[15] David Orbea, Jessica Moposita, Wilbert G. Aguilar, Manolo Paredes, Rolando P. Reyes, and Luis Montoya.
Vertical take off and landing with fixed rotor. 2017 CHILEAN Conference on Electrical, Electronics Engi-
neering, Information and Communication Technologies (CHILECON), 2017. doi: 10.1109/chilecon.2017.
8229691.

[16] Ma Tielin, Yang Chuanguang, Gan Wenbiao, Xue Zihan, Zhang Qinling, and Zhang Xiaoou. Analysis
of technical characteristics of fixed-wing vtol uav. 2017 IEEE International Conference on Unmanned
Systems (ICUS), 2017. doi: 10.1109/icus.2017.8278357.

[17] Gerardo Flores and R. Lozano. Lyapunov-based controller using singular perturbation theory: An appli-
cation on a mini-uav. 2013 American Control Conference, 2013. doi: 10.1109/acc.2013.6580063.

[18] Zhang Daibing, Wang Xun, and Kong Weiwei. Autonomous control of running takeoff and landing
for a fixed-wing unmanned aerial vehicle. 2012 12th International Conference on Control Automation
Robotics & Vision (ICARCV), 2012. doi: 10.1109/icarcv.2012.6485292.

[19] Marco Palermo and Roelof Vos. Experimental aerodynamic analysis of a 4.6%-scale flying-v subsonic
transport. AIAA Scitech 2020 Forum, May 2020. doi: 10.2514/6.2020-2228.

[20] D. Jin Lee, Byoung-Mun Min, Min-Jea Tahk, Hyochoong Bang, and D.h Shim. Autonomous flight control
system design for a blended wing body. 2008 International Conference on Control, Automation and
Systems, 2008. doi: 10.1109/iccas.2008.4694548.

[21] Z. Liu, S. Tang, M. Li, and J. Guo. Optimal control of thrust-vectored vtol uav in high-manoeuvering
transition flight. The Aeronautical Journal, 122(1250):598–619, 2018. doi: 10.1017/aer.2018.1.

[22] G. C. H. E. De Croon, M. Perçin, B.D.W. Remes, R. Ruijsink, and C. De Wagter. The DelFly: design, aero-
dynamics, and artificial intelligence of a flapping wing robot. Springer, 2016.

[23] Debora Grant and James Rand. The balloon assisted launch system - a heavy lift balloon. International
Balloon Technology Conference, 1999. doi: 10.2514/6.1999-3872.

[24] S. Bermudez I Badia, P. Pyk, and P.f.m.j. Verschure. A biologically based flight control system for a blimp-
based uav. Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2005. doi:
10.1109/robot.2005.1570579.

[25] Lilium, 2020. URL https://lilium.com/.

[26] Ehang|official site-drones anyone can fly, 2020. URL http://www.ehang.com/.

[27] Anthony Aman. Professional insertion internship report, Sep 2017.

[28] Tom Van Dijk. Crash course paparazzi 2019 autonomous flight with paparazzi - part 3, Feb
2019. URL https://github.com/tudelft/coursePaparazzi/raw/master/part3_autonomous_
flight_with_paparazzi.pdf.

[29] Mituhiko Araki. Pid control. Control Systems, Robotics, and Automation, 2:58–79, Oct 2009.

[30] Joseph Horn. Non-linear dynamic inversion control design for rotorcraft. Aerospace, 6(3):38, 2019. doi:
10.3390/aerospace6030038.

[31] D.C. Höppener. Actuator saturation handling using weighted optimal control allocation applied to an
indi controlled quadcopter. Master’s thesis, Delft University of Technology, 2017.

[32] Ola Härkegård. Dynamic control allocation using constrained quadratic programming. AIAA Guidance,
Navigation, and Control Conference and Exhibit, May 2002. doi: 10.2514/6.2002-4761.

[33] A.R.J. Stolk. Minimum drag control allocation for the innovative control effector aircraft. Master’s thesis,
Delft University of Technology, 2017.

[34] Marc Bodson. Evaluation of optimization methods for control allocation. AIAA Guidance, Navigation,
and Control Conference and Exhibit, Jun 2001. doi: 10.2514/6.2001-4223.

https://lilium.com/
http://www.ehang.com/
https://github.com/tudelft/coursePaparazzi/raw/master/part3_autonomous_flight_with_paparazzi.pdf
https://github.com/tudelft/coursePaparazzi/raw/master/part3_autonomous_flight_with_paparazzi.pdf

Bibliography 43

[35] O. Harkegard. Efficient active set algorithms for solving constrained least squares problems in aircraft
control allocation. Proceedings of the 41st IEEE Conference on Decision and Control, 2002., 2002. doi:
10.1109/cdc.2002.1184694.

[36] Tor A. Johansen and Thor I. Fossen. Control allocation—a survey. Automatica, 49(5):1087–1103, 2013.
doi: 10.1016/j.automatica.2013.01.035.

[37] K. Manjunatha Prasad and R.b. Bapat. The generalized moore-penrose inverse. Linear Algebra and its
Applications, 165:59–69, 1992. doi: 10.1016/0024-3795(92)90229-4.

[38] John Virnig and David Bodden. Multivariable control allocation and control law conditioning when
control effectors limit. Guidance, Navigation, and Control Conference, 1994. doi: 10.2514/6.1994-3609.

[39] James F. Buffington. Modular control law design for the innovative control effectors (ice) tailless fighter
aircraft configuration 101-3. AIAA Guidance, Navigation and Control Conference, Jan 1999. doi: 10.
21236/ada374954.

[40] Henri P. Gavin and Jeffrey T. Scruggs. Constrained optimization using lagrange multipliers. CEE 201L.
Uncertainty, Design, and Optimization, 2020.

[41] Gordon Wetzstein, Douglas Lanman, Matthew Hirsch, and Ramesh Raskar. Tensor displays. ACM Trans-
actions on Graphics, 31(4):1–11, Jan 2012. doi: 10.1145/2185520.2185576.

III
Part III: Appendices

45

A
Overview of simulations and flight

experiments

Description In
n

er
lo

o
p

co
n

tr
o

lle
r

O
u

te
r

lo
o

p

co
n

tr
o

lle
r

N
u

m
b

er
o

fu
se

d

ac
tu

at
o

rs

M
ax

im
u

m
ac

tu
at

o
r

P
W

M
p

u
ls

e
w

id
th

[m
s]

Fl
ig

h
t

d
es

ig
n

at
io

n

Si
m

u
la

ti
o

n
s

Vertical takeoff and landing INCA XINCA 5 1900 SIM_TOL

Vertical takeoff and landing

with actuator saturation
INCA XINCA 5 1310 SIM_SAT

Forward and backwards flight INCA XINCA 5 1900 SIM_FWD

First forward only

flight for comparison
INCA INDI 5 1900 SIM_COMP_INDI

Second forward only

flight for comparison
INCA XINCA 5 1900 SIM_COMP_XINCA

Fl
ig

h
te

xp
er

im
en

ts Vertical takeoff and landing INCA PID 7 1900 FLIGHT_TOL

Vertical takeoff and landing

with actuator saturation
INCA PID 5 1460 FLIGHT_SAT

Forward and backwards flight INCA XINCA 5 1900 FLIGHT_FWD

Table A.1: Overview of simulations and flight experiments

47

B
Paparazzi Airframe Configuration File

1 < !DOCTYPE airframe SYSTEM " . . / airframe . dtd">
2

3 <airframe name="Quadplane lisa_mx_2 . 1 pwm with XINCA and INDI on actuators excluding control surfaces ">
4

5 <description>
6 Quadplane:
7 − modified mini−talon with cobra 2814/16 Kv1050 running a 10x8 prop
8 − quad with KISS esc + cobra 2207/2450kv running 6x3 props
9 − This quadplane runs XINCA on i t s outer loop and INDI in i t s inner loop without using

10 i t s control surface in order to minimise computational e f f o r t
11 </ description>
12

13 < !−− FIRMWARE −−>
14

15 <firmware name=" r o t o r c r a f t ">
16

17 < t a r g e t name="ap" board=" lisa_mx_2 . 1 ">
18 < !−− MPU6000 i s configured to output data at 2kHz , but polled at 512Hz PERIODIC_FREQUENCY −−>
19 <module name=" radio_control " type="spektrum">
20 <define name="RADIO_MODE" value="RADIO_GEAR" />
21 <define name="RADIO_KILL_SWITCH" value="RADIO_AUX1" />
22 <define name="USE_KILL_SWITCH_FOR_MOTOR_ARMING" value="1" />
23 </module>
24 </ t a r g e t >
25

26 < t a r g e t name="nps" board="pc">
27 <module name="fdm" type=" jsbsim " />
28 <module name=" radio_control " type=" datalink " />
29 </ t a r g e t >
30

31 <module name=" actuators " type="pwm">
32 <define name="SERVO_HZ" value="400" />
33 <define name="USE_SERVOS_7AND8" />
34 </module>
35

36 <module name=" telemetry " type=" xbee_api " />
37 <module name="imu" type=" aspirin_v2 . 2 " />
38 <module name="gps" type=" datalink " />
39

40 <module name=" s t a b i l i z a t i o n " type=" inca ">
41 <define name="INDI_RPM_FEEDBACK" value="FALSE" />
42 </module>
43

44 <module name="guidance" type=" xinca " />
45

46 <module name=" ahrs " type=" int_cmpl_quat ">
47 <configure name="USE_MAGNETOMETER" value="FALSE" />
48 <define name="AHRS_GRAVITY_HEURISTIC_FACTOR" value="0" />
49 </module>
50

49

50 B. Paparazzi Airframe Configuration File

51 <module name=" ins " type="extended" />
52 <module name="geo_mag" />
53 <module name="sys_mon" />
54

55 </firmware>
56

57 < !−− COMMANDS −−>
58

59 <commands>
60 < axis name="ROLL" f a i l s a f e _ v a l u e ="0" />
61 < axis name="PITCH" f a i l s a f e _ v a l u e ="0" />
62 < axis name="YAW" f a i l s a f e _ v a l u e ="0" />
63 < axis name="THRUST" f a i l s a f e _ v a l u e ="0" />
64 </commands>
65

66 < !−− SERVOS −−>
67

68 <servos driver="Pwm">
69 <servo name="FRONT_LEFT" no="0" min="1000" neutral="1100" max="1900" />
70 <servo name="FRONT_RIGHT" no="1" min="1000" neutral="1100" max="1900" />
71 <servo name="BACK_RIGHT" no="2" min="1000" neutral="1100" max="1900" />
72 <servo name="BACK_LEFT" no="3" min="1000" neutral="1100" max="1900" />
73 <servo name="AILERONS" no="4" min="1000" neutral="1450" max="1900" />
74 <servo name="RUDDERVATOR_LEFT" no="5" min="1000" neutral="1450" max="1900" />
75 <servo name="RUDDERVATOR_RIGHT" no="6" min="1000" neutral="1450" max="1900" />
76 <servo name="FLYMOTOR" no="7" min="1000" neutral="1100" max="1900" />
77 </ servos>
78

79 < !−− COMMANDS LAWS −−>
80

81 <command_laws>
82

83 < !−− Quadcopter actuatortor set −−>
84 <set servo="FRONT_LEFT" value=" autopilot_get_motors_on () ? actuators_pprz [0] : −MAX_PPRZ" />
85 <set servo="FRONT_RIGHT" value=" autopilot_get_motors_on () ? actuators_pprz [1] : −MAX_PPRZ" />
86 <set servo="BACK_RIGHT" value=" autopilot_get_motors_on () ? actuators_pprz [2] : −MAX_PPRZ" />
87 <set servo="BACK_LEFT" value=" autopilot_get_motors_on () ? actuators_pprz [3] : −MAX_PPRZ" />
88

89 < !−− Fixed wing actuator set −−>
90 <set servo="AILERONS" value=" autopilot_get_motors_on () ? actuators_pprz [4] : 0" />
91 <set servo="RUDDERVATOR_LEFT" value=" autopilot_get_motors_on () ? actuators_pprz [5] : 0" />
92 <set servo="RUDDERVATOR_RIGHT" value=" autopilot_get_motors_on () ? actuators_pprz [6] : 0" />
93

94 < !−− T a i l rotor −−>
95 <set servo="FLYMOTOR" value=" (autopilot_get_motors_on () && −stateGetPositionNed_f ()−>z

>= GUIDANCE_XINCA_H_THRES) ? actuators_pprz [4] : −MAX_PPRZ" />
96

97 </command_laws>
98

99 < !−− SETTINGS −−>
100

101 <section name="IMU" p r e f i x ="IMU_">
102

103 < !−− Replace t h i s with your own c a l i b r a t i o n −−>
104 <define name="MAG_X_NEUTRAL" value="−102" />
105 <define name="MAG_Y_NEUTRAL" value="−69" />
106 <define name="MAG_Z_NEUTRAL" value="96" />
107 <define name="MAG_X_SENS" value=" 3.7163763222485424 " integer="16" />
108 <define name="MAG_Y_SENS" value=" 3.667894315633858 " integer="16" />
109 <define name="MAG_Z_SENS" value=" 4.040080277772171 " integer="16" />
110

111 <define name="BODY_TO_IMU_PHI" value=" 0 . " unit="deg" />
112 <define name="BODY_TO_IMU_THETA" value=" 0 . " unit="deg" />
113 <define name="BODY_TO_IMU_PSI" value=" 180. " unit="deg" />
114

115 </ section>
116

117 <section name="AHRS" p r e f i x ="AHRS_">
118

119 < !−− Delft magnetic f i e l d −−>
120 <define name="H_X" value=" 0.39049610 " />

51

121 <define name="H_Y" value=" 0.00278894 " />
122 <define name="H_Z" value=" 0.92060036 " />
123 <define name="USE_GPS_HEADING" value="1" />
124 <define name="HEADING_UPDATE_GPS_MIN_SPEED" value="0" />
125

126 < !−− For vibrat ing airfames −−>
127 <define name="GRAVITY_HEURISTIC_FACTOR" value="0" />
128

129 </ section>
130

131 <section name="INS" p r e f i x ="INS_">
132 <define name="USE_GPS_ALT" value="1" />
133 <define name="USE_GPS_ALT_SPEED" value="1" />
134 </ section>
135

136 <section name="STABILIZATION_ATTITUDE" p r e f i x ="STABILIZATION_ATTITUDE_">
137

138 < !−− Setpoints −−>
139 <define name="SP_MAX_PHI" value=" 45. " unit="deg" />
140 <define name="SP_MAX_THETA" value=" 45. " unit="deg" />
141 <define name="SP_MAX_R" value=" 90. " unit="deg/ s " />
142 <define name="DEADBAND_A" value="0" />
143 <define name="DEADBAND_E" value="0" />
144 <define name="DEADBAND_R" value="10" />
145

146 < !−− Reference −−>
147 <define name="REF_OMEGA_P" value="400" unit="deg/ s " />
148 <define name="REF_ZETA_P" value=" 0.85 " />
149 <define name="REF_MAX_P" value=" 400. " unit="deg/ s " />
150 <define name="REF_MAX_PDOT" value="RadOfDeg(8 0 0 0 .) " />
151

152 <define name="REF_OMEGA_Q" value="400" unit="deg/ s " />
153 <define name="REF_ZETA_Q" value=" 0.85 " />
154 <define name="REF_MAX_Q" value=" 400. " unit="deg/ s " />
155 <define name="REF_MAX_QDOT" value="RadOfDeg(8 0 0 0 .) " />
156

157 <define name="REF_OMEGA_R" value="250" unit="deg/ s " />
158 <define name="REF_ZETA_R" value=" 0.85 " />
159 <define name="REF_MAX_R" value=" 180. " unit="deg/ s " />
160 <define name="REF_MAX_RDOT" value="RadOfDeg(1 8 0 0 .) " />
161

162 </ section>
163

164 <section name="STABILIZATION_ATTITUDE_INCA" p r e f i x ="STABILIZATION_INDI_">
165

166 < !−− V i r t u a l input and actuator vector dimensions −−>
167 <define name="INDI_OUTPUTS" value="4" />
168 <define name="INDI_NUM_ACT" value="7" />
169

170 < !−− Actuator properties −−>
171 <define name="ACT_DYN_TAU" value=" { 29.0 , 29.0 , 29.0 , 29.0 , 100.0 , 100.0 , 100.0 } " />
172 <define name="ACT_IS_SERVO" value=" { 0 , 0 , 0 , 0 , 1 , 1 , 1 } " />
173 <define name="ACT_IS_THRUST" value=" { 1 , 1 , 1 , 1 , 0 , 0 , 0 } " />
174 <define name="ACT_IS_SURFACE" value=" { 0 , 0 , 0 , 0 , 1 , 1 , 1 } " />
175 <define name="ACT_RATE_LIMIT" value=" { 9600 , 9600 , 9600 , 9600 , 9600 , 9600 , 9600 } " />
176 <define name="ACT_PREF" value=" { 0 , 0 , 0 , 0 , 0 , 0 , 0 } " />
177 <define name="ACT_PRIORITIES" value=" { 10 , 10 , 10 , 10 , 1 , 1 , 1 } " />
178

179 < !−− Control e f f e c t i v e n e s s −−>
180 <define name="G1_ROLL" value=" { 11.0 , −11.0 , −11.0 , 11.0 , 0 .15 , 0 . 0 , 0.0 } " />
181 <define name="G1_PITCH" value=" { 9 . 0 , 9 . 0 , −9.0 , −9.0 , 0 . 0 , 0 .11 , −0.11} " />
182 <define name="G1_YAW" value=" { −0.60 , 0.60 , −0.60 , 0.60 , 0 . 0 , −0.03 , −0.03} " />
183 <define name="G1_THRUST" value=" { −0.80 , −0.80 , −0.80 , −0.80 , 0 . 0 , 0 . 0 , 0.0 } " />
184

185 < !−− Counter torque e f f e c t of spinning up a rotor −−>
186 <define name="G2" value=" {−55.0 , 55.0 , −55.0 , 55.0 , 0 . 0 , 0 . 0 , 0.0 } " />
187

188 < !−− Reference acceleration for a t t i t u d e control −−>
189 <define name="REF_ERR_P" value=" 200.0 " />
190 <define name="REF_ERR_Q" value=" 200.0 " />
191 <define name="REF_ERR_R" value=" 200.0 " />

52 B. Paparazzi Airframe Configuration File

192 <define name="REF_RATE_P" value=" 28.0 " />
193 <define name="REF_RATE_Q" value=" 28.0 " />
194 <define name="REF_RATE_R" value=" 50.0 " />
195

196 <define name="ESTIMATION_FILT_CUTOFF" value=" 4.0 " />
197 <define name="FILT_CUTOFF" value=" 5.0 " />
198

199 < !−− Adaptive Learning Rate −−>
200 <define name="USE_ADAPTIVE" value="FALSE" />
201 <define name="ADAPTIVE_MU" value=" 0.00001 " />
202

203 < !−−P r i o r i t y for each axi s (r o l l , pitch , yaw and thrust)−−>
204 <define name="WLS_PRIORITIES" value=" {100 , 100 , 10 , 1000} " />
205

206 < !−−Run every nth cycle −−>
207 <define name="NTH_CYCLE" value="1" />
208

209 </ section>
210

211 <section name="GUIDANCE_V" p r e f i x ="GUIDANCE_V_">
212 <define name="HOVER_KP" value="150" />
213 <define name="HOVER_KD" value="80" />
214 <define name="HOVER_KI" value="20" />
215 <define name="NOMINAL_HOVER_THROTTLE" value=" 0.5 " />
216 <define name="ADAPT_THROTTLE_ENABLED" value="TRUE" />
217 </ section>
218

219 <section name="GUIDANCE_H" p r e f i x ="GUIDANCE_H_">
220 <define name="MAX_BANK" value="20" unit="deg" />
221 <define name="USE_SPEED_REF" value="TRUE" />
222 <define name="PGAIN" value="50" />
223 <define name="DGAIN" value="100" />
224 <define name="AGAIN" value="70" />
225 <define name="IGAIN" value="20" />
226 </ section>
227

228 <section name="GUIDANCE_XINCA" p r e f i x ="GUIDANCE_XINCA_">
229

230 <define name="OUTPUTS" value="3" />
231 <define name="NUM_ACT" value="4" />
232

233 <define name="ACT_X_TAU" value="60" />
234 <define name="ACT_Z_TAU" value="29" />
235 <define name="U_PREF" value=" { 0 , 0 , 0 , 0} " />
236 <define name="W_ACC" value=" { 1 , 1 , 1} " />
237 <define name="W_ACT" value=" {10 , 10 , 10 , 1} " />
238 <define name="GAMMA" value="10000" />
239 <define name="H_THRES" value=" 0.3 " />
240

241 <define name="C_L_ALPHA" value=" 1.55 " />
242 <define name="C_X_TAIL_ROTOR" value="2" />
243 <define name="C_Z_THRUST" value="−3.2" />
244 <define name="MASS" value=" 3.0 " />
245 <define name="WING_SURFACE" value=" 0.24 " />
246

247 < !−−Run every nth cycle −−>
248 <define name="NTH_CYCLE" value="1" />
249

250 </ section>
251

252 <section name="NAV">
253 <define name="ARRIVED_AT_WAYPOINT" value=" 0.2 " unit="m" />
254 </ section>
255

256 <section name="BAT">
257 <define name="CATASTROPHIC_BAT_LEVEL" value=" 13.2 " unit="V" />
258 <define name="CRITIC_BAT_LEVEL" value=" 14.0 " unit="V" />
259 <define name="LOW_BAT_LEVEL" value=" 14.8 " unit="V" />
260 <define name="MAX_BAT_LEVEL" value=" 16.8 " unit="V" />
261 <define name="MILLIAMP_AT_FULL_THROTTLE" value="30000" />
262 </ section>

53

263

264 <section name="SIMULATOR" p r e f i x ="NPS_">
265

266 <define name="ACTUATOR_NAMES" value=" front_motor , right_motor , back_motor , left_motor , ai lerons ,
left_ruddervator , right_ruddervator , t a i l _ r o t o r " type=" s t r i n g [] " />

267 <define name="JSBSIM_MODEL" value="quadplane" type=" s t r i n g " />
268 <define name="SENSORS_PARAMS" value=" nps_sensors_params_default . h" type=" s t r i n g " />
269 <define name="NO_MOTOR_MIXING" value="TRUE" />
270

271 < !−− Mode switch on j o y s t i c k ch5 (numbering s t a r t s at zero) −−>
272 <define name="JS_AXIS_MODE" value="4" />
273

274 </ section>
275

276 <section name="AUTOPILOT">
277 <define name="MODE_MANUAL" value="AP_MODE_RC_DIRECT" />
278 <define name="MODE_AUTO1" value="AP_MODE_ATTITUDE_DIRECT" />
279 <define name="MODE_AUTO2" value="AP_MODE_NAV" />
280 <define name="NO_RC_THRUST_LIMIT" value="TRUE" />
281 </ section>
282

283 </ airframe>

C
Source code of the INCA module

This code is based on an existing Paparazzi UAV inner loop INDI module by Smeur et al. [1].

[1] Ewoud J.J. Smeur, Qiping Chu, and Guido C.H.E. De Croon. Adaptive incremental nonlinear dynamic
inversion for attitude control of micro air vehicles. 2015. doi: https://doi.org/10.2514/1.G001490.

1 /*
2 * Original module : Copyright (C) 2015 Ewoud Smeur <ewoud . smeur@gmail .com>
3 * Quadplane extension : Copyright (C) 2020 Jan Karssies <hjkarssies@gmail .com>
4 * MAVLab Delft University of Technology
5 *
6 * This f i l e i s part of paparazzi .
7 *
8 * paparazzi i s free software ; you can r e d i s t r i b u t e i t and/ or modify
9 * i t under the terms of the GNU General Public License as published by

10 * the Free Software Foundation ; e i ther version 2 , or (at your option)
11 * any l a t e r version .
12 *
13 * paparazzi i s distr ibuted in the hope that i t w i l l be useful ,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more d e t a i l s .
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with paparazzi ; see the f i l e COPYING. I f not , write to
20 * the Free Software Foundation , 59 Temple Place − Suite 330 ,
21 * Boston , MA 02111−1307, USA.
22 */
23

24 /* * @ fi le s t a b i l i z a t i o n _ a t t i t u d e _ q u a t _ i n d i . c
25 * @brief MAVLab Delft University of Technology
26 * This control algorithm i s Incremental Nonlinear Dynamic Inversion (INDI)
27 *
28 * This o r i g i n a l model i s an implementation of the publication in the
29 * journal of Control Guidance and Dynamics : Adaptive Incremental Nonlinear
30 * Dynamic Inversion for Attitude Control of Micro A e r i a l Vehicles
31 * http : / / arc . aiaa . org / doi /pdf /10.2514/1.G001490
32 *
33 * The adapation i s based on the following master t h e s i s :
34 * Extended Nonlinear Control Al location on the TU Delft Quadplane − H. J . Karssies
35 * http : / / repository . t u d e l f t . nl /
36 */
37

38 #include " firmwares / r o t o r c r a f t / s t a b i l i z a t i o n / s t a b i l i z a t i o n _ i n c a . h"
39 #include " firmwares / r o t o r c r a f t / s t a b i l i z a t i o n / s t a b i l i z a t i o n _ a t t i t u d e . h"
40 #include " firmwares / r o t o r c r a f t / s t a b i l i z a t i o n / s t a b i l i z a t i o n _ a t t i t u d e _ r c _ s e t p o i n t . h"
41 #include " firmwares / r o t o r c r a f t / s t a b i l i z a t i o n / stabi l izat ion_att i tude_quat_transformations . h"
42

43 #include "math/ pprz_algebra_float . h"
44 #include " s t a t e . h"
45 #include " generated / airframe . h"

55

56 C. Source code of the INCA module

46 #include "subsystems/ radio_control . h"
47 #include "subsystems/ actuators . h"
48 #include "subsystems/ abi . h"
49 #include " f i l t e r s / l o w _ p a s s _ f i l t e r . h"
50 #include " wls / wls_al loc . h"
51 #include <stdio . h>
52

53 // Factor that the estimated G matrix i s allowed to deviate from i n i t i a l one
54 #define INDI_ALLOWED_G_FACTOR 2.0
55

56 f l o a t du_min[INDI_NUM_ACT] ;
57 f l o a t du_max[INDI_NUM_ACT] ;
58 f l o a t du_pref [INDI_NUM_ACT] ;
59 f l o a t indi_v [INDI_OUTPUTS] ;
60 f l o a t indi_v_abs [INDI_OUTPUTS] ;
61 f l o a t * Bwls [INDI_OUTPUTS] ;
62 i n t num_iter = 0 ;
63 i n t num_cycle = 1 ; // Cycle count (r e s e t s every nth cycle)
64 # i f d e f STABILIZATION_INDI_NTH_CYCLE
65 i n t run_nth_cycle = STABILIZATION_INDI_NTH_CYCLE ; // Run every nth cycle
66 # else
67 i n t run_nth_cycle = 1 ; // Run every nth cycle
68 #endif
69 s t r u c t FloatVect3 speed_body ;
70

71 s t a t i c void lms_estimation (void) ;
72 s t a t i c void get_actuator_state (void) ;
73 s t a t i c void calc_g1_element (f l o a t dx_error , i n t 8 _ t i , i n t 8 _ t j , f l o a t mu_extra) ;
74 s t a t i c void calc_g2_element (f l o a t dx_error , i n t 8 _ t j , f l o a t mu_extra) ;
75 s t a t i c void calc_g1g2_pseudo_inv (void) ;
76 s t a t i c void bound_g_mat(void) ;
77 s t a t i c void sca le _su r face_ ef fe ct iv ene ss (void) ;
78

79 int32_t stabi l ization_att_indi_cmd [COMMANDS_NB] ;
80 s t r u c t ReferenceSystem reference_acceleration = {
81 STABILIZATION_INDI_REF_ERR_P ,
82 STABILIZATION_INDI_REF_ERR_Q ,
83 STABILIZATION_INDI_REF_ERR_R ,
84 STABILIZATION_INDI_REF_RATE_P ,
85 STABILIZATION_INDI_REF_RATE_Q ,
86 STABILIZATION_INDI_REF_RATE_R ,
87 } ;
88

89 # i f STABILIZATION_INDI_USE_ADAPTIVE
90 bool indi_use_adaptive = true ;
91 # else
92 bool indi_use_adaptive = f a l s e ;
93 #endif
94

95 # i f d e f STABILIZATION_INDI_ACT_RATE_LIMIT
96 f l o a t a c t _ r a t e _ l i m i t [INDI_NUM_ACT] = STABILIZATION_INDI_ACT_RATE_LIMIT ;
97 #endif
98

99 # i f d e f STABILIZATION_INDI_ACT_IS_SERVO
100 bool act_is_servo [INDI_NUM_ACT] = STABILIZATION_INDI_ACT_IS_SERVO ;
101 # else
102 bool act_is_servo [INDI_NUM_ACT] = { 0 } ;
103 #endif
104

105 # i f d e f STABILIZATION_INDI_ACT_IS_THRUST
106 bool a c t _ i s _ t h r u s t [INDI_NUM_ACT] = STABILIZATION_INDI_ACT_IS_THRUST ;
107 # else
108 bool a c t _ i s _ t h r u s t [INDI_NUM_ACT] = { 1 } ;
109 #endif
110

111 # i f d e f STABILIZATION_INDI_ACT_IS_SURFACE
112 bool act_is_surface [INDI_NUM_ACT] = STABILIZATION_INDI_ACT_IS_SURFACE ;
113 # else
114 bool act_is_surface [INDI_NUM_ACT] = { 0 } ;
115 #endif
116

57

117 # i f d e f STABILIZATION_INDI_ACT_PREF
118 // Preferred (neutral , l e a s t energy) actuator value
119 f l o a t act_pref [INDI_NUM_ACT] = STABILIZATION_INDI_ACT_PREF ;
120 # else
121 // Assume 0 i s neutral
122 f l o a t act_pref [INDI_NUM_ACT] = { 0 . 0 } ;
123 #endif
124

125 f l o a t act_dyn_tau [INDI_NUM_ACT] = STABILIZATION_INDI_ACT_DYN_TAU ;
126 f l o a t act_dyn [INDI_NUM_ACT] ;
127

128 /* * Maximum rate you can request in RC rate mode (rad/ s) */
129 # i fndef STABILIZATION_INDI_MAX_RATE
130 #define STABILIZATION_INDI_MAX_RATE 6.0
131 #endif
132

133 # i f d e f STABILIZATION_INDI_WLS_PRIORITIES
134 s t a t i c f l o a t Wv[INDI_OUTPUTS] = STABILIZATION_INDI_WLS_PRIORITIES ;
135 # else
136 // State p r i o r i t i z a t i o n {W Roll , W pitch , W yaw , TOTAL THRUST}
137 s t a t i c f l o a t Wv[INDI_OUTPUTS] = {1000 , 1000 , 1 , 10 0} ;
138 #endif
139

140 # i f d e f STABILIZATION_INDI_ACT_PRIORITIES
141 s t a t i c f l o a t Wu[INDI_NUM_ACT] = STABILIZATION_INDI_ACT_PRIORITIES ;
142 # else
143 // State p r i o r i t i z a t i o n {W Roll , W pitch , W yaw , TOTAL THRUST}
144 s t a t i c f l o a t Wu[INDI_NUM_ACT] = { [0 . . . INDI_NUM_ACT] = 1 } ;
145 #endif
146

147 // var iables needed for control
148 f l o a t a c t u a t o r _ s t a t e _ f i l t _ v e c t [INDI_NUM_ACT] ;
149 s t r u c t FloatRates angular_accel_ref = { 0 . , 0 . , 0 . } ;
150 f l o a t angular_acceleration [3] = { 0 . , 0 . , 0 . } ;
151 f l o a t actuator_state [INDI_NUM_ACT] ;
152 f l o a t indi_u [INDI_NUM_ACT] ;
153 f l o a t indi_du [INDI_NUM_ACT] ;
154 f l o a t indi_du_prev [INDI_NUM_ACT] ;
155 f l o a t g2_times_du ;
156

157 // var iables needed for estimation
158 f l o a t g1g2_trans_mult [INDI_OUTPUTS] [INDI_OUTPUTS] ;
159 f l o a t g1g2inv [INDI_OUTPUTS] [INDI_OUTPUTS] ;
160 f l o a t a c t u a t o r _ s t a t e _ f i l t _ v e c t d [INDI_NUM_ACT] ;
161 f l o a t a c t u a t o r _ s t a t e _ f i l t _ v e c t d d [INDI_NUM_ACT] ;
162 f l o a t estimation_rate_d [INDI_NUM_ACT] ;
163 f l o a t estimation_rate_dd [INDI_NUM_ACT] ;
164 f l o a t du_estimation [INDI_NUM_ACT] ;
165 f l o a t ddu_estimation [INDI_NUM_ACT] ;
166

167 // The learning rate per axi s (r o l l , pitch , yaw , thrust)
168 f l o a t mu1[INDI_OUTPUTS] = {0.00001 , 0.00001 , 0.000003 , 0.000002} ;
169 // The learning rate for the propeller i n e r t i a (scaled by 512 wrt mu1)
170 f l o a t mu2 = 0 . 0 0 2 ;
171

172 // other var iables
173 f l o a t act_obs [INDI_NUM_ACT] ;
174

175 // Number of actuators used to provide thrust
176 int32_t num_thrusters ;
177

178 s t r u c t Int32Eulers stab_att_sp_euler ;
179 s t r u c t Int32Quat stab_att_sp_quat ;
180

181 abi_event rpm_ev ;
182 s t a t i c void rpm_cb(uint8_t sender_id , uint16_t *rpm, uint8_t num_act) ;
183

184 abi_event thrust_ev ;
185 s t a t i c void thrust_cb (uint8_t sender_id , f l o a t thrust_increment) ;
186 f l o a t indi_thrust_increment ;
187 bool indi_thrust_increment_set = f a l s e ;

58 C. Source code of the INCA module

188

189 f l o a t g1g2_pseudo_inv [INDI_NUM_ACT] [INDI_OUTPUTS] ;
190 f l o a t g2 [INDI_NUM_ACT] = STABILIZATION_INDI_G2 ; // scaled by INDI_G_SCALING
191 f l o a t g1 [INDI_OUTPUTS] [INDI_NUM_ACT] = { STABILIZATION_INDI_G1_ROLL ,
192 STABILIZATION_INDI_G1_PITCH , STABILIZATION_INDI_G1_YAW ,

STABILIZATION_INDI_G1_THRUST
193 } ;
194 f l o a t g1g2 [INDI_OUTPUTS] [INDI_NUM_ACT] ;
195 f l o a t g1_est [INDI_OUTPUTS] [INDI_NUM_ACT] ;
196 f l o a t g2_est [INDI_NUM_ACT] ;
197 f l o a t g1_scaled [INDI_OUTPUTS] [INDI_NUM_ACT] ;
198 f l o a t g2_scaled [INDI_NUM_ACT] ;
199 f l o a t g 1 _ i n i t [INDI_OUTPUTS] [INDI_NUM_ACT] ;
200 f l o a t g 2 _ i n i t [INDI_NUM_ACT] ;
201

202 Butterworth2LowPass actuator_lowpass_f i l ters [INDI_NUM_ACT] ;
203 Butterworth2LowPass estimation_input_lowpass_fi l ters [INDI_NUM_ACT] ;
204 Butterworth2LowPass measurement_lowpass_filters [3] ;
205 Butterworth2LowPass estimation_output_lowpass_fi lters [3] ;
206 Butterworth2LowPass a cc e l e r a t i o n _ l o w p a s s _ f i l t e r ;
207

208 s t r u c t FloatVect3 body_accel_f ;
209 uint8_t max_iter_inca = 0 ;
210

211 void i n i t _ f i l t e r s (void) ;
212

213 # i f PERIODIC_TELEMETRY
214 #include "subsystems/ datalink / telemetry . h"
215 s t a t i c void send_indi_g (s t r u c t transport_tx * trans , s t r u c t l ink_device *dev)
216 {
217 pprz_msg_send_INDI_G (trans , dev , AC_ID , INDI_NUM_ACT, g1_est [0] ,
218 INDI_NUM_ACT, g1_est [1] ,
219 INDI_NUM_ACT, g1_est [2] ,
220 INDI_NUM_ACT, g1_est [3] ,
221 INDI_NUM_ACT, g2_est) ;
222 }
223

224 s t a t i c void send_inca (s t r u c t transport_tx * trans , s t r u c t l ink_device *dev)
225 {
226 pprz_msg_send_INCA (trans , dev , AC_ID , INDI_OUTPUTS, indi_v ,
227 INDI_NUM_ACT, indi_du ,
228 INDI_NUM_ACT, indi_u ,
229 &max_iter_inca) ;
230 max_iter_inca = 0 ;
231 }
232

233 s t a t i c void send_v_body (s t r u c t transport_tx * trans , s t r u c t l ink_device *dev)
234 {
235 f l o a t v_body [3] = { speed_body . x , speed_body . y , speed_body . z } ;
236 pprz_msg_send_V_BODY(trans , dev , AC_ID , 3 , v_body) ;
237 }
238

239 s t a t i c void send_ahrs_ref_quat (s t r u c t transport_tx * trans , s t r u c t l ink_device *dev)
240 {
241 s t r u c t Int32Quat * quat = stateGetNedToBodyQuat_i () ;
242 pprz_msg_send_AHRS_REF_QUAT(trans , dev , AC_ID ,
243 &stab_att_sp_quat . qi ,
244 &stab_att_sp_quat . qx ,
245 &stab_att_sp_quat . qy ,
246 &stab_att_sp_quat . qz ,
247 &(quat−>qi) ,
248 &(quat−>qx) ,
249 &(quat−>qy) ,
250 &(quat−>qz)) ;
251 }
252 #endif
253

254 /* *
255 * Function that i n i t i a l i z e s important values upon engaging INDI
256 */
257 void s t a b i l i z a t i o n _ i n d i _ i n i t (void)

59

258 {
259 // I n i t i a l i z e f i l t e r s
260 i n i t _ f i l t e r s () ;
261

262 AbiBindMsgRPM(RPM_SENSOR_ID, &rpm_ev , rpm_cb) ;
263 AbiBindMsgTHRUST(THRUST_INCREMENT_ID, &thrust_ev , thrust_cb) ;
264

265 f loat_vect_zero (a c t u a t o r _ s t a t e _ f i l t _ v e c t d , INDI_NUM_ACT) ;
266 f loat_vect_zero (a c t u a t o r _ s t a t e _ f i l t _ v e c t d d , INDI_NUM_ACT) ;
267 f loat_vect_zero (estimation_rate_d , INDI_NUM_ACT) ;
268 f loat_vect_zero (estimation_rate_dd , INDI_NUM_ACT) ;
269 f loat_vect_zero (a c t u a t o r _ s t a t e _ f i l t _ v e c t , INDI_NUM_ACT) ;
270 f loat_vect_zero (indi_du_prev , INDI_NUM_ACT) ;
271

272 // Calculate G1G2_PSEUDO_INVERSE
273 calc_g1g2_pseudo_inv () ;
274

275 // I n i t i a l i z e the array of pointers to the rows of g1g2
276 uint8_t i ;
277 for (i = 0 ; i < INDI_OUTPUTS; i ++) {
278 Bwls [i] = g1g2 [i] ;
279 }
280

281 // Remember the i n i t i a l matrices
282 f loat_vect_copy (g 1 _ i n i t [0] , g1 [0] , INDI_OUTPUTS * INDI_NUM_ACT) ;
283 f loat_vect_copy (g2_init , g2 , INDI_NUM_ACT) ;
284

285 // I n i t i a l i z e the estimator matrices
286 f loat_vect_copy (g1_est [0] , g1 [0] , INDI_OUTPUTS * INDI_NUM_ACT) ;
287 f loat_vect_copy (g2_est , g2 , INDI_NUM_ACT) ;
288

289 // I n i t i a l i z e the scaled matrices
290 f loat_vect_copy (g1_scaled [0] , g1 [0] , INDI_OUTPUTS * INDI_NUM_ACT) ;
291 f loat_vect_copy (g2_scaled , g2 , INDI_NUM_ACT) ;
292 sca le _su r face _ef fe ct iv e ne ss () ;
293

294 // Assume a l l non−servos are del iver ing thrust
295 num_thrusters = 0 ;
296 for (i = 0 ; i < INDI_NUM_ACT; i ++) {
297 num_thrusters += a c t _ i s _ t h r u s t [i] ;
298 }
299

300 // Calculate actuator alpha from f i r s t order time constant
301 for (i = 0 ; i < INDI_NUM_ACT; i ++) {
302 act_dyn [i] = 1 − exp(−act_dyn_tau [i] / (PERIODIC_FREQUENCY / run_nth_cycle)) ;
303 }
304

305 # i f PERIODIC_TELEMETRY
306 // register_periodic_telemetry (DefaultPeriodic , PPRZ_MSG_ID_INDI_G, send_indi_g) ;
307 register_periodic_telemetry (DefaultPeriodic , PPRZ_MSG_ID_INCA, send_inca) ;
308 register_periodic_telemetry (DefaultPeriodic , PPRZ_MSG_ID_V_BODY, send_v_body) ;
309 register_periodic_telemetry (DefaultPeriodic , PPRZ_MSG_ID_INDI_G, send_indi_g) ;
310 register_periodic_telemetry (DefaultPeriodic , PPRZ_MSG_ID_AHRS_REF_QUAT, send_ahrs_ref_quat) ;
311 #endif
312 }
313

314 /* *
315 * Function that r e s e t s important values upon engaging INDI .
316 *
317 * Don ’ t re set inputs and f i l t e r s , because i t i s unl ikely to switch s t a b i l i z a t i o n in f l i g h t ,
318 * and there are multiple modes that use (the same) s t a b i l i z a t i o n . Resetting the c o n t r o l l e r
319 * i s not so nice when you are f l y i n g .
320 * FIXME : I d e a l l y we should detect when coming from something that i s not INDI
321 */
322 void s t a b i l i z a t i o n _ i n d i _ e n t e r (void)
323 {
324 /* re set psi setpoint to current psi angle */
325 stab_att_sp_euler . psi = s tab i l i z at i o n_a tt i tu de _ge t_he ad i ng_i () ;
326

327 f loat_vect_zero (du_estimation , INDI_NUM_ACT) ;
328 f loat_vect_zero (ddu_estimation , INDI_NUM_ACT) ;

60 C. Source code of the INCA module

329 }
330

331 /* *
332 * Function that r e s e t s the f i l t e r s to zeros
333 */
334 void i n i t _ f i l t e r s (void)
335 {
336 // tau = 1/(2* pi *Fc)
337 f l o a t tau = 1.0 / (2 . 0 * M_PI * STABILIZATION_INDI_FILT_CUTOFF) ;
338 f l o a t tau_est = 1.0 / (2 . 0 * M_PI * STABILIZATION_INDI_ESTIMATION_FILT_CUTOFF) ;
339 f l o a t sample_time = 1.0 / PERIODIC_FREQUENCY;
340 // F i l t e r i n g of the gyroscope
341 i n t 8 _ t i ;
342 for (i = 0 ; i < 3 ; i ++) {
343 init_butterworth_2_low_pass (&measurement_lowpass_filters [i] , tau , sample_time , 0 . 0) ;
344 init_butterworth_2_low_pass (& estimation_output_lowpass_fi lters [i] , tau_est , sample_time , 0 . 0) ;
345 }
346

347 // F i l t e r i n g of the actuators
348 for (i = 0 ; i < INDI_NUM_ACT; i ++) {
349 init_butterworth_2_low_pass (& actuator_lowpass_f i l ters [i] , tau , sample_time , 0 . 0) ;
350 init_butterworth_2_low_pass (& estimation_input_lowpass_fi l ters [i] , tau_est , sample_time , 0 . 0) ;
351 }
352

353 // F i l t e r i n g of the accel body z
354 init_butterworth_2_low_pass (& accelerat ion_lowpass_f i l ter , tau_est , sample_time , 0 . 0) ;
355 }
356

357 /* *
358 * Function that ca l cu l a t e s the f a i l s a f e setpoint
359 */
360 void s t a b i l i z a t i o n _ i n d i _ s e t _ f a i l s a f e _ s e t p o i n t (void)
361 {
362 /* set f a i l s a f e to zero r o l l / pitch and current heading */
363 int32_t heading2 = s tab i l i z at i o n_a tt i tu de _ge t_he ad i ng_i () / 2 ;
364 PPRZ_ITRIG_COS(stab_att_sp_quat . qi , heading2) ;
365 stab_att_sp_quat . qx = 0 ;
366 stab_att_sp_quat . qy = 0 ;
367 PPRZ_ITRIG_SIN (stab_att_sp_quat . qz , heading2) ;
368 }
369

370 /* *
371 * @param rpy rpy from which to calculate quaternion setpoint
372 *
373 * Function that c al c u l at e s the setpoint quaternion from rpy
374 */
375 void s t a b i l i z a t i o n _ i n d i _ s e t _ r p y _ s e t p o i n t _ i (s t r u c t Int32Eulers * rpy)
376 {
377 // stab_att_sp_euler . psi s t i l l used in r e f . .
378 stab_att_sp_euler = * rpy ;
379

380 int32_quat_of_eulers (&stab_att_sp_quat , &stab_att_sp_euler) ;
381 }
382

383 /* *
384 * @param cmd 2D command in North East axes
385 * @param heading Heading of the setpoint
386 *
387 * Function that c al c u l a t e s the setpoint quaternion from a command in earth axes
388 */
389 void stabi l ization_indi_set_earth_cmd_i (s t r u c t Int32Vect2 *cmd, int32_t heading)
390 {
391 // stab_att_sp_euler . psi s t i l l used in r e f . .
392 stab_att_sp_euler . psi = heading ;
393

394 // compute sp_euler phi/ theta for debugging/ telemetry
395 /* Rotate horizontal commands to body frame by psi */
396 int32_t psi = stateGetNedToBodyEulers_i ()−>psi ;
397 int32_t s_psi , c_psi ;
398 PPRZ_ITRIG_SIN (s_psi , psi) ;
399 PPRZ_ITRIG_COS(c_psi , psi) ;

61

400 stab_att_sp_euler . phi = (−s_psi * cmd−>x + c_psi * cmd−>y) >> INT32_TRIG_FRAC ;
401 stab_att_sp_euler . theta = −(c_psi * cmd−>x + s_psi * cmd−>y) >> INT32_TRIG_FRAC ;
402

403 quat_from_earth_cmd_i(& stab_att_sp_quat , cmd, heading) ;
404 }
405

406 /* *
407 * @param a t t _ e r r a t t i t u d e error
408 * @param rate_control boolean that s t a t e s i f we are in rate control or a t t i t u d e control
409 * @param i n _ f l i g h t boolean that s t a t e s i f the UAV i s in f l i g h t or not
410 *
411 * Function that c al cu l a t e s the INDI commands
412 */
413 s t a t i c void stabil ization_indi_calc_cmd (s t r u c t Int32Quat * a tt_ e r r , bool rate_control , bool i n _ f l i g h t)
414 {
415

416 s t r u c t FloatRates r a t e _ r e f ;
417 i f (rate_control) { //Check i f we are running the rate c o n t r o l l e r
418 r a t e _ r e f . p = (f l o a t) radio_control . values [RADIO_ROLL] / MAX_PPRZ * STABILIZATION_INDI_MAX_RATE ;
419 r a t e _ r e f . q = (f l o a t) radio_control . values [RADIO_PITCH] / MAX_PPRZ * STABILIZATION_INDI_MAX_RATE ;
420 r a t e _ r e f . r = (f l o a t) radio_control . values [RADIO_YAW] / MAX_PPRZ * STABILIZATION_INDI_MAX_RATE ;
421 } e lse {
422 // calculate the v i r t u a l control (reference acceleration) based on a PD c o n t r o l l e r
423 r a t e _ r e f . p = reference_acceleration . err_p * QUAT1_FLOAT_OF_BFP(at t_ e r r −>qx)
424 / reference_acceleration . rate_p ;
425 r a t e _ r e f . q = reference_acceleration . err_q * QUAT1_FLOAT_OF_BFP(at t_ e r r −>qy)
426 / reference_acceleration . rate_q ;
427 r a t e _ r e f . r = reference_acceleration . e r r _ r * QUAT1_FLOAT_OF_BFP(at t_ e r r −>qz)
428 / reference_acceleration . rate_r ;
429

430 // Possibly we can use some bounding here
431 /*BoundAbs(r a t e _ r e f . r , 5 . 0) ; */
432 }
433

434 s t r u c t FloatRates * body_rates = stateGetBodyRates_f () ;
435

436 // calculate the v i r t u a l control (reference acceleration) based on a PD c o n t r o l l e r
437 angular_accel_ref . p = (r a t e _ r e f . p − body_rates−>p) * reference_acceleration . rate_p ;
438 angular_accel_ref . q = (r a t e _ r e f . q − body_rates−>q) * reference_acceleration . rate_q ;
439 angular_accel_ref . r = (r a t e _ r e f . r − body_rates−>r) * reference_acceleration . r ate_ r ;
440

441 g2_times_du = 0 . 0 ;
442 i n t 8 _ t i ;
443 for (i = 0 ; i < INDI_NUM_ACT; i ++) {
444 g2_times_du += g2 [i] * indi_du [i] ;
445 }
446 //G2 i s scaled by INDI_G_SCALING to make i t readable
447 g2_times_du = g2_times_du / INDI_G_SCALING ;
448

449 f l o a t v_thrust = 0 . 0 ;
450 i f (indi_thrust_increment_set && i n _ f l i g h t) {
451 v_thrust = indi_thrust_increment ;
452

453 //update thrust command such that the current i s c o r r e c t l y estimated
454 stabilization_cmd [COMMAND_THRUST] = 0 ;
455 for (i = 0 ; i < INDI_NUM_ACT; i ++) {
456 stabilization_cmd [COMMAND_THRUST] += actuator_state [i] * (f l o a t) a c t _ i s _ t h r u s t [i] ;
457 }
458 stabilization_cmd [COMMAND_THRUST] /= (f l o a t) num_thrusters ;
459

460 } e lse {
461 // incremental thrust
462 for (i = 0 ; i < INDI_NUM_ACT; i ++) {
463 v_thrust +=
464 (stabilization_cmd [COMMAND_THRUST] − a c t u a t o r _ s t a t e _ f i l t _ v e c t [i]) * Bwls [3] [i] ;
465 }
466 }
467

468 // The control objective in array format
469 indi_v [0] = (angular_accel_ref . p − angular_acceleration [0]) ;
470 indi_v [1] = (angular_accel_ref . q − angular_acceleration [1]) ;

62 C. Source code of the INCA module

471 indi_v [2] = (angular_accel_ref . r − angular_acceleration [2] + g2_times_du) ;
472 indi_v [3] = v_thrust ;
473

474 // The control objective in array format
475 indi_v_abs [0] = angular_accel_ref . p ;
476 indi_v_abs [1] = angular_accel_ref . q ;
477 indi_v_abs [2] = angular_accel_ref . r ;
478 indi_v_abs [3] = v_thrust ;
479

480 # i f STABILIZATION_INDI_ALLOCATION_PSEUDO_INVERSE
481 // Calculate the increment for each actuator
482 for (i = 0 ; i < INDI_NUM_ACT; i ++) {
483 indi_du [i] = (g1g2_pseudo_inv [i] [0] * indi_v [0])
484 + (g1g2_pseudo_inv [i] [1] * indi_v [1])
485 + (g1g2_pseudo_inv [i] [2] * indi_v [2])
486 + (g1g2_pseudo_inv [i] [3] * indi_v [3]) ;
487 }
488 # else
489 // Calculate the min and max increments
490 for (i = 0 ; i < INDI_NUM_ACT; i ++) {
491 du_min[i] = MAX_PPRZ * act_is_servo [i] − a c t u a t o r _ s t a t e _ f i l t _ v e c t [i] ;
492 du_max[i] = MAX_PPRZ − a c t u a t o r _ s t a t e _ f i l t _ v e c t [i] ;
493 du_pref [i] = act_pref [i] − a c t u a t o r _ s t a t e _ f i l t _ v e c t [i] ;
494 }
495

496 // Scale control surfaces with forward v e l o c i t y
497 scal e _su r face_ ef fe ct iv ene ss () ;
498

499 // WLS Control Al locator
500 uint8_t i t e r = wls_al loc (indi_du , indi_v , du_min , du_max, Bwls , indi_du_prev , 0 , Wv, Wu, du_pref , 10000 ,

10) ;
501 f loat_vect_copy (indi_du_prev , indi_du , INDI_NUM_ACT) ;
502 #endif
503

504 i f (i t e r > max_iter_inca) {
505 max_iter_inca = i t e r ;
506 }
507

508 // Add the increments to the actuators
509 float_vect_sum (indi_u , a c t u a t o r _ s t a t e _ f i l t _ v e c t , indi_du , INDI_NUM_ACT) ;
510

511 // Bound the inputs to the actuators
512 for (i = 0 ; i < INDI_NUM_ACT; i ++) {
513 i f (act_is_servo [i]) {
514 BoundAbs(indi_u [i] , MAX_PPRZ) ;
515 } e lse {
516 Bound(indi_u [i] , 0 , MAX_PPRZ) ;
517 }
518 }
519

520 //Don ’ t increment i f not f l y i n g (not armed)
521 i f (! i n _ f l i g h t) {
522 f loat_vect_zero (indi_u , INDI_NUM_ACT) ;
523 f loat_vect_zero (indi_du , INDI_NUM_ACT) ;
524 }
525

526 // Propagate actuator f i l t e r s
527 get_actuator_state () ;
528 for (i = 0 ; i < INDI_NUM_ACT; i ++) {
529 update_butterworth_2_low_pass(& actuator_lowpass_f i l ters [i] , actuator_state [i]) ;
530 update_butterworth_2_low_pass(& estimation_input_lowpass_fi l ters [i] , actuator_state [i]) ;
531 a c t u a t o r _ s t a t e _ f i l t _ v e c t [i] = actuator_lowpass_f i l ters [i] . o [0] ;
532

533 // calculate d e r i v a t i v e s for estimation
534 f l o a t a c t u a t o r _ s t a t e _ f i l t _ v e c t d _ p r e v = a c t u a t o r _ s t a t e _ f i l t _ v e c t d [i] ;
535 a c t u a t o r _ s t a t e _ f i l t _ v e c t d [i] = (estimation_input_lowpass_fi l ters [i] . o [0] −

estimation_input_lowpass_fi l ters [i] . o [1]) * PERIODIC_FREQUENCY;
536 a c t u a t o r _ s t a t e _ f i l t _ v e c t d d [i] = (a c t u a t o r _ s t a t e _ f i l t _ v e c t d [i] − a c t u a t o r _ s t a t e _ f i l t _ v e c t d _ p r e v) *

PERIODIC_FREQUENCY;
537 }
538

63

539 // Use online e f f e c t i v e n e s s estimation only when f l y i n g
540 i f (i n _ f l i g h t && indi_use_adaptive) {
541 lms_estimation () ;
542 }
543

544 /*Commit the actuator command*/
545 for (i = 0 ; i < INDI_NUM_ACT; i ++) {
546 actuators_pprz [i] = (int16_t) indi_u [i] ;
547 }
548

549 }
550

551 /* *
552 * @param enable_integrator
553 * @param rate_control boolean that determines i f we are in rate control or a t t i t u d e control
554 *
555 * Function that should be cal led to run the INDI c o n t r o l l e r
556 */
557 void s t a b i l i z a t i o n _ i n d i _ r u n (bool i n _ f l i g h t , bool rate_control)
558 {
559

560 /* compute the INDI command once every run_nth_cycle cycles */
561 i f (num_cycle < run_nth_cycle) {
562 num_cycle++;
563 return ;
564 }
565

566 /* Propagate the f i l t e r on the gyroscopes */
567 s t r u c t FloatRates * body_rates = stateGetBodyRates_f () ;
568 f l o a t rate_vect [3] = { body_rates−>p , body_rates−>q , body_rates−>r } ;
569 i n t 8 _ t i ;
570 for (i = 0 ; i < 3 ; i ++) {
571 update_butterworth_2_low_pass(&measurement_lowpass_filters [i] , rate_vect [i]) ;
572 update_butterworth_2_low_pass(& estimation_output_lowpass_fi lters [i] , rate_vect [i]) ;
573

574 // Calculate the angular acceleration via f i n i t e dif ference
575 angular_acceleration [i] = (measurement_lowpass_filters [i] . o [0]
576 − measurement_lowpass_filters [i] . o [1]) * PERIODIC_FREQUENCY;
577

578 // Calculate d e r i v a t i v e s for estimation
579 f l o a t estimation_rate_d_prev = estimation_rate_d [i] ;
580 estimation_rate_d [i] = (estimation_output_lowpass_fi lters [i] . o [0] − estimation_output_lowpass_fi lters [

i] . o [1]) * PERIODIC_FREQUENCY;
581 estimation_rate_dd [i] = (estimation_rate_d [i] − estimation_rate_d_prev) * PERIODIC_FREQUENCY;
582 }
583

584 /* a t t i t u d e error */
585 s t r u c t Int32Quat a t t _ e r r ;
586 s t r u c t Int32Quat * att_quat = stateGetNedToBodyQuat_i () ;
587 int32_quat_inv_comp(& at t_ e r r , att_quat , &stab_att_sp_quat) ;
588 /* wrap i t in the shortest direction */
589 int32_quat_wrap_shortest(& a t t _ e r r) ;
590 int32_quat_normalize(& a t t _ e r r) ;
591

592 /* compute the INDI command */
593 stabil ization_indi_calc_cmd (& at t_ e r r , rate_control , i n _ f l i g h t) ;
594

595 // Set the stab_cmd to 42 to indicate that i t i s not used
596 stabilization_cmd [COMMAND_ROLL] = 42;
597 stabilization_cmd [COMMAND_PITCH] = 42;
598 stabilization_cmd [COMMAND_YAW] = 42;
599

600 // Reset thrust increment boolean
601 indi_thrust_increment_set = f a l s e ;
602

603 // Reset cycle number
604 num_cycle = 1 ;
605

606 }
607

608 // This function reads rc commands

64 C. Source code of the INCA module

609 void s t a b i l i z a t i o n _ i n d i _ r e a d _ r c (bool i n _ f l i g h t , bool in_carefree , bool coordinated_turn)
610 {
611 s t r u c t FloatQuat q_sp ;
612 # i f USE_EARTH_BOUND_RC_SETPOINT
613 stabil ization_attitude_read_rc_setpoint_quat_earth_bound_f (&q_sp , i n _ f l i g h t , in_carefree ,

coordinated_turn) ;
614 # else
615 stabi l izat ion_att i tude_read_rc_setpoint_quat_f (&q_sp , i n _ f l i g h t , in_carefree , coordinated_turn) ;
616 #endif
617

618 QUAT_BFP_OF_REAL(stab_att_sp_quat , q_sp) ;
619 }
620

621 /* *
622 * Function that t r i e s to get actuator feedback .
623 *
624 * I f t h i s i s not a v a i l ab l e i t w i l l use a f i r s t order f i l t e r to approximate the actuator s t a t e .
625 * I t i s also possible to model rate l i m i t s (unit : PPRZ/loop cycle)
626 */
627 void get_actuator_state (void)
628 {
629 # i f INDI_RPM_FEEDBACK
630 f loat_vect_copy (actuator_state , act_obs , INDI_NUM_ACT) ;
631 # else
632 // actuator dynamics
633 i n t 8 _ t i ;
634 f l o a t UNUSED prev_actuator_state ;
635 for (i = 0 ; i < INDI_NUM_ACT; i ++) {
636 prev_actuator_state = actuator_state [i] ;
637

638 actuator_state [i] = actuator_state [i]
639 + act_dyn [i] * (indi_u [i] − actuator_state [i]) ;
640

641 # i f d e f STABILIZATION_INDI_ACT_RATE_LIMIT
642 i f ((actuator_state [i] − prev_actuator_state) > a c t _ r a t e _ l i m i t [i]) {
643 actuator_state [i] = prev_actuator_state + a c t _ r a t e _ l i m i t [i] ;
644 } e lse i f ((actuator_state [i] − prev_actuator_state) < −a c t _ r a t e _ l i m i t [i]) {
645 actuator_state [i] = prev_actuator_state − a c t _ r a t e _ l i m i t [i] ;
646 }
647 #endif
648 }
649

650 #endif
651 }
652

653 /* *
654 * @param ddx_error error in output change
655 * @param i row of the matrix element
656 * @param j column of the matrix element
657 * @param mu learning rate
658 *
659 * Function that ca l cu l a t e s an element of the G1 matrix .
660 * The elements are stored in a d i f f e r e n t matrix ,
661 * because the old matrix i s necessary to caclulate more elements .
662 */
663 void calc_g1_element (f l o a t ddx_error , i n t 8 _ t i , i n t 8 _ t j , f l o a t mu)
664 {
665 g1_est [i] [j] = g1_est [i] [j] − du_estimation [j] * mu * ddx_error ;
666 }
667

668 /* *
669 * @param ddx_error error in output change
670 * @param j column of the matrix element
671 * @param mu learning rate
672 *
673 * Function that c al c u l a t e s an element of the G2 matrix .
674 * The elements are stored in a d i f f e r e n t matrix ,
675 * because the old matrix i s necessary to caclulate more elements .
676 */
677 void calc_g2_element (f l o a t ddx_error , i n t 8 _ t j , f l o a t mu)
678 {

65

679 g2_est [j] = g2_est [j] − ddu_estimation [j] * mu * ddx_error ;
680 }
681

682 /* *
683 * Function that estimates the control e f f e c t i v e n e s s of each actuator online .
684 * I t i s assumed that disturbances do not play a large role .
685 * A l l elements of the G1 and G2 matrices are be estimated .
686 */
687 void lms_estimation (void)
688 {
689

690 // Get the acceleration in body axes
691 s t r u c t Int32Vect3 * body_accel_i ;
692 body_accel_i = stateGetAccelBody_i () ;
693 ACCELS_FLOAT_OF_BFP(body_accel_f , * body_accel_i) ;
694

695 // F i l t e r the acceleration in z axis
696 update_butterworth_2_low_pass(& accelerat ion_lowpass_f i l ter , body_accel_f . z) ;
697

698 // Calculate the d e r i v a t i v e of the acceleration via f i n i t e dif ference
699 f l o a t indi_accel_d = (a c c e l e r a t i o n_ l o w p a s s _ f i l te r . o [0]
700 − a c c e l e r a t i o n _ l o w p a s s _ f i l t e r . o [1]) * PERIODIC_FREQUENCY;
701

702 // scale the inputs to avoid numerical errors
703 f loat_vect_smul (du_estimation , a c t u a t o r _ s t a t e _ f i l t _ v e c t d , 0.001 , INDI_NUM_ACT) ;
704 f loat_vect_smul (ddu_estimation , a c t u a t o r _ s t a t e _ f i l t _ v e c t d d , 0.001 / PERIODIC_FREQUENCY, INDI_NUM_ACT) ;
705

706 f l o a t ddx_estimation [INDI_OUTPUTS] = { estimation_rate_dd [0] , estimation_rate_dd [1] , estimation_rate_dd
[2] , indi_accel_d } ;

707

708 // Estimation of G
709 // TODO: only estimate when du_norm2 i s large enough (enough input)
710 /* f l o a t du_norm2 = du_estimation [0] * du_estimation [0] + du_estimation [1] * du_estimation [1] +du_estimation

[2] * du_estimation [2] + du_estimation [3] * du_estimation [3] ; */
711 i n t 8 _ t i ;
712 for (i = 0 ; i < INDI_OUTPUTS; i ++) {
713 // Calculate the error between prediction and measurement
714 f l o a t ddx_error = − ddx_estimation [i] ;
715 i n t 8 _ t j ;
716 for (j = 0 ; j < INDI_NUM_ACT; j ++) {
717 ddx_error += g1_est [i] [j] * du_estimation [j] ;
718 i f (i == 2) {
719 // Changing the momentum of the rotors gives a counter torque
720 ddx_error += g2_est [j] * ddu_estimation [j] ;
721 }
722 }
723

724 // when doing the yaw axis , also use G2
725 i f (i == 2) {
726 for (j = 0 ; j < INDI_NUM_ACT; j ++) {
727 calc_g2_element (ddx_error , j , mu2) ;
728 }
729 } e lse i f (i == 3) {
730 // I f the acceleration change i s very large (rough landing) , don ’ t adapt
731 i f (fabs (indi_accel_d) > 60.0) {
732 ddx_error = 0 . 0 ;
733 }
734 }
735

736 // Calculate the row of the G1 matrix corresponding to t h i s axis
737 for (j = 0 ; j < INDI_NUM_ACT; j ++) {
738 calc_g1_element (ddx_error , i , j , mu1[i]) ;
739 }
740 }
741

742 bound_g_mat () ;
743

744 // Save the calculated matrix to G1 and G2
745 // u n t i l thrust i s included , f i r s t part of the array
746 f loat_vect_copy (g1 [0] , g1_est [0] , INDI_OUTPUTS * INDI_NUM_ACT) ;
747 f loat_vect_copy (g2 , g2_est , INDI_NUM_ACT) ;

66 C. Source code of the INCA module

748

749 # i f STABILIZATION_INDI_ALLOCATION_PSEUDO_INVERSE
750 // Calculate the inverse of (G1+G2)
751 calc_g1g2_pseudo_inv () ;
752 #endif
753 }
754

755 /* *
756 * Function that ca l cu l a t e s the pseudo−inverse of (G1+G2) .
757 */
758 void calc_g1g2_pseudo_inv (void)
759 {
760

761 //sum of G1 and G2
762 i n t 8 _ t i ;
763 i n t 8 _ t j ;
764 for (i = 0 ; i < INDI_OUTPUTS; i ++) {
765 for (j = 0 ; j < INDI_NUM_ACT; j ++) {
766 i f (i != 2) {
767 g1g2 [i] [j] = g1 [i] [j] / INDI_G_SCALING ;
768 } e lse {
769 g1g2 [i] [j] = (g1 [i] [j] + g2 [j]) / INDI_G_SCALING ;
770 }
771 }
772 }
773

774 //G1G2* transpose (G1G2)
775 // calculate matrix mult ipl ication of i t s transpose INDI_OUTPUTSxnum_act x num_actxINDI_OUTPUTS
776 f l o a t element = 0 ;
777 i n t 8 _ t row ;
778 i n t 8 _ t col ;
779 for (row = 0 ; row < INDI_OUTPUTS; row++) {
780 for (col = 0 ; col < INDI_OUTPUTS; col ++) {
781 element = 0 ;
782 for (i = 0 ; i < INDI_NUM_ACT; i ++) {
783 element = element + g1g2 [row] [i] * g1g2 [col] [i] ;
784 }
785 g1g2_trans_mult [row] [col] = element ;
786 }
787 }
788

789 // there are numerical errors i f the scal ing i s not r i g h t .
790 f l o a t _ v e c t _ s c a l e (g1g2_trans_mult [0] , 100.0 , INDI_OUTPUTS * INDI_OUTPUTS) ;
791

792 // inverse of 4x4 matrix
793 float_mat_inv_4d (g1g2inv [0] , g1g2_trans_mult [0]) ;
794

795 // scale back
796 f l o a t _ v e c t _ s c a l e (g1g2inv [0] , 100.0 , INDI_OUTPUTS * INDI_OUTPUTS) ;
797

798 //G1G2 ’ * G1G2inv
799 // calculate matrix mult ipl ication INDI_NUM_ACTxINDI_OUTPUTS x INDI_OUTPUTSxINDI_OUTPUTS
800 for (row = 0 ; row < INDI_NUM_ACT; row++) {
801 for (col = 0 ; col < INDI_OUTPUTS; col ++) {
802 element = 0 ;
803 for (i = 0 ; i < INDI_OUTPUTS; i ++) {
804 element = element + g1g2 [i] [row] * g1g2inv [col] [i] ;
805 }
806 g1g2_pseudo_inv [row] [col] = element ;
807 }
808 }
809 }
810

811 s t a t i c void rpm_cb(uint8_t __attr ibute__ ((unused)) sender_id , uint16_t UNUSED *rpm, uint8_t UNUSED num_act
)

812 {
813 # i f INDI_RPM_FEEDBACK
814 # i fndef ACTUATORS_PWM_H
815 i n t 8 _ t i ;
816 for (i = 0 ; i < num_act ; i ++) {
817 act_obs [i] = (rpm[i] − get_servo_min (i)) ;

67

818 act_obs [i] *= (MAX_PPRZ / (f l o a t) (get_servo_max (i) − get_servo_min (i))) ;
819 Bound(act_obs [i] , 0 , MAX_PPRZ) ;
820 }
821 # else
822 i n t 8 _ t i ;
823 for (i = 0 ; i < num_act ; i ++) {
824 act_obs [i] = (rpm[i] − get_servo_min_PWM (i)) ;
825 act_obs [i] *= (MAX_PPRZ / (f l o a t) (get_servo_max_PWM (i) − get_servo_min_PWM (i))) ;
826 Bound(act_obs [i] , 0 , MAX_PPRZ) ;
827 }
828 #endif
829 #endif
830 }
831

832 /* *
833 * ABI callback that obtains the thrust increment from guidance INDI
834 */
835 s t a t i c void thrust_cb (uint8_t UNUSED sender_id , f l o a t thrust_increment)
836 {
837 indi_thrust_increment = thrust_increment ;
838 indi_thrust_increment_set = true ;
839 }
840

841 s t a t i c void bound_g_mat(void)
842 {
843 i n t 8 _ t i ;
844 i n t 8 _ t j ;
845 for (j = 0 ; j < INDI_NUM_ACT; j ++) {
846 f l o a t max_limit ;
847 f l o a t min_limit ;
848

849 // Limit the values of the estimated G1 matrix
850 for (i = 0 ; i < INDI_OUTPUTS; i ++) {
851 i f (g 1 _ i n i t [i] [j] > 0 . 0) {
852 max_limit = g 1 _ i n i t [i] [j] * INDI_ALLOWED_G_FACTOR;
853 min_limit = g 1 _ i n i t [i] [j] / INDI_ALLOWED_G_FACTOR;
854 } e lse {
855 max_limit = g 1 _ i n i t [i] [j] / INDI_ALLOWED_G_FACTOR;
856 min_limit = g 1 _ i n i t [i] [j] * INDI_ALLOWED_G_FACTOR;
857 }
858

859 i f (g1_est [i] [j] > max_limit) {
860 g1_est [i] [j] = max_limit ;
861 }
862 i f (g1_est [i] [j] < min_limit) {
863 g1_est [i] [j] = min_limit ;
864 }
865 }
866

867 // Do the same for the G2 matrix
868 i f (g 2 _ i n i t [j] > 0 . 0) {
869 max_limit = g 2 _ i n i t [j] * INDI_ALLOWED_G_FACTOR;
870 min_limit = g 2 _ i n i t [j] / INDI_ALLOWED_G_FACTOR;
871 } e lse {
872 max_limit = g 2 _ i n i t [j] / INDI_ALLOWED_G_FACTOR;
873 min_limit = g 2 _ i n i t [j] * INDI_ALLOWED_G_FACTOR;
874 }
875

876 i f (g2_est [j] > max_limit) {
877 g2_est [j] = max_limit ;
878 }
879 i f (g2_est [j] < min_limit) {
880 g2_est [j] = min_limit ;
881 }
882 }
883 }
884

885 /* *
886 * Function that scales the control e f f e c t i v e n e s s of the control surfaces
887 */
888 void scal e _su r face_ ef fe ct i v ene ss (void)

68 C. Source code of the INCA module

889 {
890

891 // Get body v e l o c i t y v e l o c i t y (i d e a l l y airspeed v e l o c i t y)
892 s t r u c t FloatRMat * ned_to_body_rmat = stateGetNedToBodyRMat_f () ;
893 s t r u c t NedCoor_f * ned_speed_f = stateGetSpeedNed_f () ;
894 s t r u c t FloatVect3 speed_ned = { ned_speed_f−>x , ned_speed_f−>y , ned_speed_f−>z } ;
895 float_rmat_vmult(&speed_body , ned_to_body_rmat , &speed_ned) ;
896

897 // Bound measured forward speed for only large enough p o s i t i v e values
898 i f (speed_body . x < 0 . 1) {
899 speed_body . x = 0 ;
900 }
901

902 // I t e r a t e over actuators
903 i n t 8 _ t j ;
904 for (j = 0 ; j < INDI_NUM_ACT; j ++) {
905

906 // I f actuator i s control surface , scale with forward speed
907 i f (act_is_surface [j]) {
908 i n t 8 _ t i ;
909 for (i = 0 ; i < INDI_OUTPUTS; i ++) {
910 g1_scaled [i] [j] = g 1 _ i n i t [i] [j] * speed_body . x * speed_body . x ;
911 }
912 g2_scaled [j] = g 2 _ i n i t [j] * speed_body . x * speed_body . x ;
913 }
914

915 // I f actuator i s not a control surface , don ’ t scale
916 else {
917 i n t 8 _ t i ;
918 for (i = 0 ; i < INDI_OUTPUTS; i ++) {
919 g1_scaled [i] [j] = g 1 _ i n i t [i] [j] ;
920 }
921 g2_scaled [j] = g 2 _ i n i t [j] ;
922 }
923

924 }
925

926 // Save the calculated matrix to G1 and G2
927 f loat_vect_copy (g1 [0] , g1_scaled [0] , INDI_OUTPUTS * INDI_NUM_ACT) ;
928 f loat_vect_copy (g2 , g2_scaled , INDI_NUM_ACT) ;
929

930 // Recalculate G1G2_PSEUDO_INVERSE
931 calc_g1g2_pseudo_inv () ;
932

933 // Update the array of pointers to the rows of g1g2
934 uint8_t i ;
935 for (i = 0 ; i < INDI_OUTPUTS; i ++) {
936 Bwls [i] = g1g2 [i] ;
937 }
938

939 }

D
Source code of the XINCA module

This code is based on an existing Paparazzi UAV outer loop INDI module by Smeur et al. [1, 2].

[1] Ewoud J.J. Smeur, Qiping Chu, and Guido C.H.E. De Croon. Cascaded incremental nonlinear dynamic
inversion control for mav disturbance rejection. 2018. doi: https://doi.org/10.1016/j.conengprac.2018.
01.003.

[2] Ewoud J.J. Smeur, Qiping Chu, and Guido C.H.E. De Croon. Gust disturbance alleviation with incremental
nonlinear dynamic inversion. 2016. doi: https://doi.org/10.1109/IROS.2016.7759827.

1 /*
2 * Original module : Copyright (C) 2015 Ewoud Smeur <ewoud . smeur@gmail .com>
3 * XINCA extension : Copyright (C) 2020 Jan Karssies <hjkarssies@gmail .com>
4 *
5 * This f i l e i s part of paparazzi .
6 *
7 * paparazzi i s free software ; you can r e d i s t r i b u t e i t and/ or modify
8 * i t under the terms of the GNU General Public License as published by
9 * the Free Software Foundation ; ei ther version 2 , or (at your option)

10 * any l a t e r version .
11 *
12 * paparazzi i s distr ibuted in the hope that i t w i l l be useful ,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more d e t a i l s .
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with paparazzi ; see the f i l e COPYING. I f not , write to
19 * the Free Software Foundation , 59 Temple Place − Suite 330 ,
20 * Boston , MA 02111−1307, USA.
21 */
22

23 /* *
24 * @ fi le firmwares / r o t o r c r a f t /guidance/ guidance_indi . c
25 *
26 * A guidance mode based on Extended Incremental Nonlinear Control Al location
27 *
28 * Based on the papers :
29 * Cascaded Incremental Nonlinear Dynamic Inversion Control for MAV Disturbance Rejection
30 * https : / /www. researchgate . net / publication /312907985

_Cascaded_Incremental_Nonlinear_Dynamic_Inversion_Control_for_MAV_Disturbance_Rejection
31 *
32 * Gust Disturbance A l l e v i a t i o n with Incremental Nonlinear Dynamic Inversion
33 * https : / /www. researchgate . net / publication /309212603

_Gust_Disturbance_Alleviation_with_Incremental_Nonlinear_Dynamic_Inversion
34 *
35 * Extended Nonlinear Control Al location on the TU Delft Quadplane − H. J . Karssies
36 * http : / / repository . t u d e l f t . nl /
37 */
38 #include " generated / airframe . h"

69

70 D. Source code of the XINCA module

39 #include " firmwares / r o t o r c r a f t /guidance/ guidance_xinca . h"
40 #include "subsystems/ ins / i n s _ i n t . h"
41 #include "subsystems/ radio_control . h"
42 #include "subsystems/ actuators . h"
43 #include " s t a t e . h"
44 #include "subsystems/imu . h"
45 #include " firmwares / r o t o r c r a f t /guidance/guidance_h . h"
46 #include " firmwares / r o t o r c r a f t /guidance/guidance_v . h"
47 #include " firmwares / r o t o r c r a f t / s t a b i l i z a t i o n / s t a b i l i z a t i o n _ a t t i t u d e . h"
48 #include " firmwares / r o t o r c r a f t / autopilot_rc_helpers . h"
49 #include "mcu_periph/ sys_time . h"
50 #include " autopilot . h"
51 #include " s t a b i l i z a t i o n / s t a b i l i z a t i o n _ a t t i t u d e _ r e f _ q u a t _ i n t . h"
52 #include " firmwares / r o t o r c r a f t / s t a b i l i z a t i o n . h"
53 #include " f i l t e r s / l o w _ p a s s _ f i l t e r . h"
54 #include "subsystems/ abi . h"
55 #include " firmwares / r o t o r c r a f t /guidance/ wls / wls_alloc_guidance . h"
56

57 // The acceleration reference i s calculated with these gains . I f you use GPS,
58 // they are probably limited by the update rate of your GPS . The default
59 // values are tuned for 4 Hz GPS updates . I f you have high speed position updates , the
60 // gains can be higher , depending on the speed of the inner loop .
61 # i f d e f GUIDANCE_INDI_POS_GAIN
62 f l o a t guidance_indi_pos_gain = GUIDANCE_INDI_POS_GAIN ;
63 # else
64 f l o a t guidance_indi_pos_gain = 0 . 5 ;
65 #endif
66

67 # i f d e f GUIDANCE_INDI_SPEED_GAIN
68 f l o a t guidance_indi_speed_gain = GUIDANCE_INDI_SPEED_GAIN ;
69 # else
70 f l o a t guidance_indi_speed_gain = 1 . 8 ;
71 #endif
72

73 # i fndef GUIDANCE_INDI_ACCEL_SP_ID
74 #define GUIDANCE_INDI_ACCEL_SP_ID ABI_BROADCAST
75 #endif
76 abi_event accel_sp_ev ;
77 s t a t i c void accel_sp_cb (uint8_t sender_id , uint8_t f lag , s t r u c t FloatVect3 * accel_sp) ;
78 s t r u c t FloatVect3 indi_accel_sp = { 0 . 0 , 0 . 0 , 0 . 0 } ;
79 bool indi_accel_sp_set_2d = f a l s e ;
80 bool indi_accel_sp_set_3d = f a l s e ;
81

82 s t r u c t FloatVect3 sp_accel = { 0 . 0 , 0 . 0 , 0 . 0 } ;
83

84 s t a t i c void guidance_indi_f i l ter_actuators (void) ;
85

86 # i fndef GUIDANCE_INDI_FILTER_CUTOFF
87 # i f d e f STABILIZATION_INDI_FILT_CUTOFF
88 #define GUIDANCE_INDI_FILTER_CUTOFF STABILIZATION_INDI_FILT_CUTOFF
89 # else
90 #define GUIDANCE_INDI_FILTER_CUTOFF 3.0
91 #endif
92 #endif
93

94 f l o a t act_z = 0 ;
95 f l o a t act_x = 0 ;
96

97 Butterworth2LowPass f i l t _ a c c e l _ n e d [3] ;
98 Butterworth2LowPass r o l l _ f i l t ;
99 Butterworth2LowPass p i t c h _ f i l t ;

100 Butterworth2LowPass a c t _ z _ f i l t ;
101 Butterworth2LowPass a c t _ x _ f i l t ;
102

103 f l o a t control_increment [XINCA_NUM_ACT] ; // [dtheta , dphi , dact_z , dact_x]
104

105 f l o a t f i l t e r _ c u t o f f = GUIDANCE_INDI_FILTER_CUTOFF ;
106 f l o a t guidance_indi_max_bank = GUIDANCE_H_MAX_BANK;
107

108 f l o a t time_of_accel_sp_2d = 0 . 0 ;
109 f l o a t time_of_accel_sp_3d = 0 . 0 ;

71

110

111 s t r u c t FloatEulers guidance_euler_cmd ;
112 f l o a t act_z_in ;
113 f l o a t act_x_in ;
114

115 //XINCA s p e c i f i c parameters
116 i n t num_iter_xinca = 0 ;
117 i n t num_cycle_xinca = 1 ; // Cycle count (r e s e t s every nth cycle)
118 # i f d e f GUIDANCE_XINCA_NTH_CYCLE
119 i n t run_nth_cycle_xinca = GUIDANCE_XINCA_NTH_CYCLE; // Run every nth cycle
120 # else
121 i n t run_nth_cycle_xinca = 1 ; // Run every nth cycle
122 #endif
123

124 f l o a t G[XINCA_OUTPUTS] [XINCA_NUM_ACT] ;
125 f l o a t *B[XINCA_OUTPUTS] ;
126 f l o a t v_xinca [XINCA_OUTPUTS] ;
127 f l o a t u_xinca [XINCA_NUM_ACT] ;
128 f l o a t du_xinca [XINCA_NUM_ACT] ;
129 f l o a t du_min_xinca [XINCA_NUM_ACT] ;
130 f l o a t du_max_xinca [XINCA_NUM_ACT] ;
131 f l o a t du_pref_xinca [XINCA_NUM_ACT] ;
132 f l o a t du_prev_xinca [XINCA_NUM_ACT] ;
133

134 f l o a t c_l_alpha = GUIDANCE_XINCA_C_L_ALPHA;
135 f l o a t c_z_thrust = GUIDANCE_XINCA_C_Z_THRUST;
136 f l o a t c _ x _ t a i l _ r o t o r = GUIDANCE_XINCA_C_X_TAIL_ROTOR ;
137 f l o a t mass = GUIDANCE_XINCA_MASS;
138 f l o a t wing_surface = GUIDANCE_XINCA_WING_SURFACE;
139

140 # i f d e f GUIDANCE_XINCA_RHO
141 f l o a t rho = GUIDANCE_XINCA_RHO;
142 # else
143 f l o a t rho = 1 . 2 2 5 ;
144 #endif
145

146 # i f d e f GUIDANCE_XINCA_GRAVITY
147 f l o a t g r a v i t y = GUIDANCE_XINCA_GRAVITY;
148 # else
149 f l o a t g r a v i t y = 9 . 8 1 ;
150 #endif
151

152 # i f d e f GUIDANCE_XINCA_ACT_Z_TAU
153 f l o a t act_z_tau = GUIDANCE_XINCA_ACT_Z_TAU;
154 # else
155 f l o a t act_z_tau = 30;
156 #endif
157 f l o a t act_z_dyn ;
158

159 # i f d e f GUIDANCE_XINCA_ACT_X_TAU
160 f l o a t act_x_tau = GUIDANCE_XINCA_ACT_X_TAU;
161 # else
162 f l o a t act_x_tau = 60;
163 #endif
164 f l o a t act_x_dyn ;
165

166 # i f d e f GUIDANCE_XINCA_U_PREF
167 f l o a t u_pref [XINCA_NUM_ACT] = GUIDANCE_XINCA_U_PREF;
168 # else
169 f l o a t u_pref [XINCA_NUM_ACT] = { 0 , 0 , 0 , 0 } ;
170 #endif
171

172 # i f d e f GUIDANCE_XINCA_W_ACC
173 f l o a t W_acc[XINCA_OUTPUTS] = GUIDANCE_XINCA_W_ACC;
174 # else
175 f l o a t W_acc[XINCA_OUTPUTS] = {10 , 10 , 1 } ;
176 #endif
177

178 # i f d e f GUIDANCE_XINCA_W_ACT
179 f l o a t W_act [XINCA_NUM_ACT] = GUIDANCE_XINCA_W_ACT;
180 # else

72 D. Source code of the XINCA module

181 f l o a t W_act [XINCA_NUM_ACT] = {10 , 10 , 100 , 1 } ;
182 #endif
183

184 # i f d e f GUIDANCE_XINCA_GAMMA
185 f l o a t gamma_sq = GUIDANCE_XINCA_GAMMA;
186 # else
187 f l o a t gamma_sq = 10000;
188 #endif
189

190 # i f d e f GUIDANCE_XINCA_H_THRES
191 f l o a t h_thres = GUIDANCE_XINCA_H_THRES;
192 # else
193 f l o a t h_thres = 0 . 2 ;
194 #endif
195

196 uint8_t max_iter_xinca = 0 ;
197

198 s t a t i c void guidance_indi_propagate_fi l ters (s t r u c t FloatEulers * eulers) ;
199 s t a t i c void guidance_xinca_calcG_yxz (s t r u c t FloatEulers * euler_yxz) ;
200

201 # i f PERIODIC_TELEMETRY
202 #include "subsystems/ datalink / telemetry . h"
203 s t a t i c void send_xinca (s t r u c t transport_tx * trans , s t r u c t l ink_device *dev)
204 {
205 pprz_msg_send_XINCA (trans , dev , AC_ID , XINCA_OUTPUTS, v_xinca ,
206 XINCA_NUM_ACT, du_xinca ,
207 XINCA_NUM_ACT, u_xinca ,
208 &max_iter_xinca) ;
209 max_iter_xinca = 0 ;
210 }
211 #endif
212

213 /* *
214 * @brief I n i t function
215 */
216 void guidance_indi_init (void)
217 {
218 AbiBindMsgACCEL_SP(GUIDANCE_INDI_ACCEL_SP_ID, &accel_sp_ev , accel_sp_cb) ;
219

220 # i f PERIODIC_TELEMETRY
221 register_periodic_telemetry (DefaultPeriodic , PPRZ_MSG_ID_XINCA, send_xinca) ;
222 #endif
223 }
224

225 /* *
226 *
227 * Cal l upon entering indi guidance
228 */
229 void guidance_indi_enter (void)
230 {
231

232 act_z_dyn = 1 − exp(−act_z_tau / (PERIODIC_FREQUENCY / (f l o a t) run_nth_cycle_xinca)) ;
233 act_z_in = 0 ;
234 act_z = act_z_in ;
235

236 act_x_dyn = 1 − exp(−act_x_tau / (PERIODIC_FREQUENCY / (f l o a t) run_nth_cycle_xinca)) ;
237 act_x_in = 0 ;
238 act_x = act_x_in ;
239

240 f loat_vect_zero (du_prev_xinca , XINCA_NUM_ACT) ;
241

242 f l o a t tau = 1.0 / (2 . 0 * M_PI * f i l t e r _ c u t o f f) ;
243 f l o a t sample_time = 1.0 / (PERIODIC_FREQUENCY / (f l o a t) run_nth_cycle_xinca) ;
244 for (i n t 8 _ t i = 0 ; i < 3 ; i ++) {
245 init_butterworth_2_low_pass (& f i l t _ a c c e l _ n e d [i] , tau , sample_time , 0 . 0) ;
246 }
247

248 init_butterworth_2_low_pass (& r o l l _ f i l t , tau , sample_time , stateGetNedToBodyEulers_f ()−>phi) ;
249 init_butterworth_2_low_pass (& p i t c h _ f i l t , tau , sample_time , stateGetNedToBodyEulers_f ()−>theta) ;
250 init_butterworth_2_low_pass (& a c t _ z _ f i l t , act_z_tau , sample_time , act_z_in) ;
251 init_butterworth_2_low_pass (& a c t _ x _ f i l t , act_x_tau , sample_time , act_x_in) ;

73

252

253 }
254

255 /* *
256 * @param heading_sp the desired heading [rad]
257 *
258 * main indi guidance function
259 */
260 void guidance_indi_run (f l o a t * heading_sp)
261 {
262

263 // Only compute the XINCA command once every run_nth_cycle cycles
264 i f (num_cycle_xinca >= (f l o a t) run_nth_cycle_xinca) {
265 num_cycle_xinca = 1 ;
266 } e lse {
267 num_cycle_xinca += 1 ;
268 return ;
269 }
270

271 s t r u c t FloatEulers eulers_yxz ;
272 s t r u c t FloatQuat * statequat = stateGetNedToBodyQuat_f () ;
273 f loat_eulers_of_quat_yxz (& eulers_yxz , statequat) ;
274

275 // F i l t e r accel to get r id of noise and f i l t e r a t t i t u d e to synchronize with accel
276 guidance_indi_propagate_fi l ters (& eulers_yxz) ;
277

278 // Linear c o n t r o l l e r to find the acceleration setpoint from position and v e l o c i t y
279 f l o a t pos_x_err = POS_FLOAT_OF_BFP(guidance_h . r e f . pos . x) − stateGetPositionNed_f ()−>x ;
280 f l o a t pos_y_err = POS_FLOAT_OF_BFP(guidance_h . r e f . pos . y) − stateGetPositionNed_f ()−>y ;
281 f l o a t pos_z_err = POS_FLOAT_OF_BFP(guidance_v_z_ref − stateGetPositionNed_i ()−>z) ;
282

283 f l o a t speed_sp_x = pos_x_err * guidance_indi_pos_gain ;
284 f l o a t speed_sp_y = pos_y_err * guidance_indi_pos_gain ;
285 f l o a t speed_sp_z = pos_z_err * guidance_indi_pos_gain ;
286

287 // I f the acceleration setpoint i s set over ABI message
288 i f (indi_accel_sp_set_2d) {
289 sp_accel . x = indi_accel_sp . x ;
290 sp_accel . y = indi_accel_sp . y ;
291 // In 2D the v e r t i c a l motion i s derived from the f l i g h t plan
292 sp_accel . z = (speed_sp_z − stateGetSpeedNed_f ()−>z) * guidance_indi_speed_gain ;
293 f l o a t dt = get_sys_time_float () − time_of_accel_sp_2d ;
294 // I f the input command i s not updated a f t e r a timeout , switch back to f l i g h t plan control
295 i f (dt > 0 . 5) {
296 indi_accel_sp_set_2d = f a l s e ;
297 }
298 } e lse i f (indi_accel_sp_set_3d) {
299 sp_accel . x = indi_accel_sp . x ;
300 sp_accel . y = indi_accel_sp . y ;
301 sp_accel . z = indi_accel_sp . z ;
302 f l o a t dt = get_sys_time_float () − time_of_accel_sp_3d ;
303 // I f the input command i s not updated a f t e r a timeout , switch back to f l i g h t plan control
304 i f (dt > 0 . 5) {
305 indi_accel_sp_set_3d = f a l s e ;
306 }
307 } e lse {
308 sp_accel . x = (speed_sp_x − stateGetSpeedNed_f ()−>x) * guidance_indi_speed_gain ;
309 sp_accel . y = (speed_sp_y − stateGetSpeedNed_f ()−>y) * guidance_indi_speed_gain ;
310 sp_accel . z = (speed_sp_z − stateGetSpeedNed_f ()−>z) * guidance_indi_speed_gain ;
311 }
312

313 # i f GUIDANCE_INDI_RC_DEBUG
314 #warning "GUIDANCE_INDI_RC_DEBUG l e t s you control the accelerations via RC, but disables autonomous f l i g h t

! "
315 // for rc control horizontal , rotate from body axes to NED
316 f l o a t psi = stateGetNedToBodyEulers_f ()−>psi ;
317 f l o a t rc_x = −(radio_control . values [RADIO_PITCH] / 9600.0) * 8 . 0 ;
318 f l o a t rc_y = (radio_control . values [RADIO_ROLL] / 9600.0) * 8 . 0 ;
319 sp_accel . x = cosf (psi) * rc_x − s i n f (psi) * rc_y ;
320 sp_accel . y = s i n f (psi) * rc_x + cosf (psi) * rc_y ;
321

74 D. Source code of the XINCA module

322 // for rc v e r t i c a l control
323 sp_accel . z = −(radio_control . values [RADIO_THROTTLE] − 4500) * 8.0 / 9600.0;
324 #endif
325

326 // Calculate matrix of p a r t i a l d e r i v a t i v e s
327 guidance_xinca_calcG_yxz(& eulers_yxz) ;
328

329 s t r u c t FloatVect3 a _ d i f f = { sp_accel . x − f i l t _ a c c e l _ n e d [0] . o [0] , sp_accel . y − f i l t _ a c c e l _ n e d [1] . o [0] ,
sp_accel . z − f i l t _ a c c e l _ n e d [2] . o [0] } ;

330

331 // Bound the acceleration error so that the l i n e a r i z a t i o n s t i l l holds
332 Bound(a _ d i f f . x , −6.0 , 6 . 0) ;
333 Bound(a _ d i f f . y , −6.0 , 6 . 0) ;
334 Bound(a _ d i f f . z , −9.0 , 9 . 0) ;
335

336 // F i l t e r actuator estimation
337 guidance_indi_f i l ter_actuators () ;
338

339 // Minimum increment in pitch angle , r o l l angle , thrust and t a i l rotor input
340 du_min_xinca [0] = −guidance_indi_max_bank − p i t c h _ f i l t . o [0] ;
341 du_min_xinca [1] = −guidance_indi_max_bank − r o l l _ f i l t . o [0] ;
342 du_min_xinca [2] = (MAX_PPRZ − a c t _ z _ f i l t . o [0]) / c_z_thrust / XINCA_G_SCALING ;
343 du_min_xinca [3] = −a c t _ x _ f i l t . o [0] / c _ x _ t a i l _ r o t o r / XINCA_G_SCALING ;
344 du_min_xinca [3] = −10000;
345

346 // Maximum increment in pitch angle , r o l l angle , thrust and t a i l rotor input
347 du_max_xinca [0] = guidance_indi_max_bank − p i t c h _ f i l t . o [0] ;
348 du_max_xinca [1] = guidance_indi_max_bank − r o l l _ f i l t . o [0] ;
349 du_max_xinca [2] = − a c t _ z _ f i l t . o [0] / c_z_thrust / XINCA_G_SCALING ;
350 du_max_xinca [3] = (MAX_PPRZ − a c t _ x _ f i l t . o [0]) / c _ x _ t a i l _ r o t o r / XINCA_G_SCALING ;
351 du_max_xinca [3] = 10000;
352

353 // Preferred increment in pitch angle , r o l l angle , thrust and t a i l rotor input
354 du_pref_xinca [0] = u_pref [0] − p i t c h _ f i l t . o [0] ;
355 du_pref_xinca [1] = u_pref [1] − r o l l _ f i l t . o [0] ;
356 du_pref_xinca [2] = u_pref [2] − a c t _ z _ f i l t . o [0] / c_z_thrust / XINCA_G_SCALING ;
357 du_pref_xinca [3] = u_pref [3] − a c t _ x _ f i l t . o [0] / c _ x _ t a i l _ r o t o r / XINCA_G_SCALING ;
358

359 // Calculate v i r t u a l input
360 v_xinca [0] = a _ d i f f . x ;
361 v_xinca [1] = a _ d i f f . y ;
362 v_xinca [2] = a _ d i f f . z ;
363

364 // WLS Control Al locator
365 uint8_t i t e r = wls_alloc_guidance (du_xinca , v_xinca , du_min_xinca , du_max_xinca ,
366 B, du_prev_xinca , 0 , W_acc , W_act , du_pref_xinca , 10000 , 10) ;
367 f loat_vect_copy (du_prev_xinca , du_xinca , XINCA_NUM_ACT) ;
368

369 i f (i t e r > max_iter_xinca) {
370 max_iter_xinca = i t e r ;
371 }
372

373 AbiSendMsgTHRUST(THRUST_INCREMENT_ID, du_xinca [2]) ;
374

375 // Add increment in angles
376 guidance_euler_cmd . theta = p i t c h _ f i l t . o [0] + du_xinca [0] ;
377 guidance_euler_cmd . phi = r o l l _ f i l t . o [0] + du_xinca [1] ;
378 guidance_euler_cmd . psi = * heading_sp ;
379

380 //Add increment in thrust and t a i l rotor input
381 act_z_in = a c t _ z _ f i l t . o [0] + du_xinca [2] * c_z_thrust * XINCA_G_SCALING ;
382 Bound(act_z_in , 0 , 9600) ;
383

384 act_x_in = a c t _ x _ f i l t . o [0] + du_xinca [3] * c _ x _ t a i l _ r o t o r * XINCA_G_SCALING ;
385 Bound(act_x_in , 0 , 9600) ;
386

387

388 # i f GUIDANCE_INDI_RC_DEBUG
389 i f (radio_control . values [RADIO_THROTTLE] < 300) {
390 act_z_in = 0 ;
391 }

75

392 #endif
393

394 // Overwrite the thrust command from guidance_v
395 stabilization_cmd [COMMAND_THRUST] = act_z_in ;
396

397 //Bound euler angles to prevent f l i p p i n g
398 Bound(guidance_euler_cmd . phi , −guidance_indi_max_bank , guidance_indi_max_bank) ;
399 Bound(guidance_euler_cmd . theta , −guidance_indi_max_bank , guidance_indi_max_bank) ;
400

401 // set the quat setpoint with the calculated r o l l and pitch
402 s t r u c t FloatQuat q_sp ;
403 f loat_quat_of_eulers_yxz (&q_sp , &guidance_euler_cmd) ;
404 QUAT_BFP_OF_REAL(stab_att_sp_quat , q_sp) ;
405

406 u_xinca [0] = r o l l _ f i l t . o [0] ;
407 u_xinca [1] = p i t c h _ f i l t . o [0] ;
408 u_xinca [2] = a c t _ z _ f i l t . o [0] ;
409 u_xinca [3] = a c t _ x _ f i l t . o [0] ;
410

411 //Commit t a i l rotor command
412 i f (−stateGetPositionNed_f ()−>z >= h_thres) {
413 actuators_pprz [4] = act_x_in ;
414 } e lse {
415 actuators_pprz [4] = 0 ;
416 }
417

418 }
419

420 /* *
421 * F i l t e r the thrust , such that i t corresponds to the f i l t e r e d acceleration
422 */
423 void guidance_indi_f i l ter_actuators (void)
424 {
425 // Actuator dynamics
426 act_z = act_z + act_z_dyn * (act_z_in − act_z) ;
427 act_x = act_x + act_x_dyn * (act_x_in − act_x) ;
428

429 // Same f i l t e r as for the acceleration
430 update_butterworth_2_low_pass(& a c t _ z _ f i l t , act_z) ;
431 update_butterworth_2_low_pass(& a c t _ x _ f i l t , act_x) ;
432 }
433

434 /* *
435 * Low pass the accelerometer measurements to remove noise from vibrations .
436 * The r o l l and pitch also need to be f i l t e r e d to synchronize them with the
437 * acceleration
438 */
439 void guidance_indi_propagate_fi l ters (s t r u c t FloatEulers * eulers)
440 {
441 s t r u c t NedCoor_f * accel = stateGetAccelNed_f () ;
442 update_butterworth_2_low_pass(& f i l t _ a c c e l _ n e d [0] , accel−>x) ;
443 update_butterworth_2_low_pass(& f i l t _ a c c e l _ n e d [1] , accel−>y) ;
444 update_butterworth_2_low_pass(& f i l t _ a c c e l _ n e d [2] , accel−>z) ;
445

446 update_butterworth_2_low_pass(& r o l l _ f i l t , eulers−>phi) ;
447 update_butterworth_2_low_pass(& p i t c h _ f i l t , eulers−>theta) ;
448 }
449

450 /* *
451 * @param Gmat array to write the matrix to [3 x3]
452 *
453 * Calculate the matrix of p a r t i a l d e r i v a t i v e s of the pitch , r o l l and thrust .
454 * w. r . t . the NED accelerations for YXZ eulers
455 * ddx = G* [dtheta , dphi , dT]
456 */
457 void guidance_xinca_calcG_yxz (s t r u c t FloatEulers * euler_yxz)
458 {
459

460 // Get rotation matrix from NED to body coordinates
461 s t r u c t FloatRMat * ned_to_body_rmat = stateGetNedToBodyRMat_f () ;
462

76 D. Source code of the XINCA module

463 // Get v e r t i c a l body acceleration
464 s t r u c t FloatVect3 a_ned = { f i l t _ a c c e l _ n e d [0] . o [0] , f i l t _ a c c e l _ n e d [1] . o [0] , f i l t _ a c c e l _ n e d [2] . o [0] } ;
465 s t r u c t FloatVect3 a_body ;
466 float_rmat_vmult(&a_body , ned_to_body_rmat , &a_ned) ;
467

468 // Get forward body v e l o c i t y v e l o c i t y (i d e a l l y airspeed v e l o c i t y)
469 s t r u c t NedCoor_f * ned_speed_f = stateGetSpeedNed_f () ;
470 s t r u c t FloatVect3 speed_ned = { ned_speed_f−>x , ned_speed_f−>y , ned_speed_f−>z } ;
471 s t r u c t FloatVect3 speed_body ;
472 float_rmat_vmult(&speed_body , ned_to_body_rmat , &speed_ned) ;
473

474 // Upward estimate minus g r a v i t y i s an estimate of the thrust force
475 f l o a t T = a_body . z − g r a v i t y ;
476

477 // Get current a t t i t u d e angles
478 f l o a t sphi = s i n f (euler_yxz−>phi) ;
479 f l o a t cphi = cosf (euler_yxz−>phi) ;
480 f l o a t stheta = s i n f (euler_yxz−>theta) ;
481 f l o a t ctheta = cosf (euler_yxz−>theta) ;
482

483 // Calculate matrix components
484 G[0] [0] = ctheta * cphi * T ;
485 G[1] [0] = 0 ;
486 G[2] [0] = cphi * (c_l_alpha * 0.5 * rho * speed_body . x * speed_body . x * wing_surface / mass − stheta * T

) ;
487 G[0] [1] = −stheta * sphi * T ;
488 G[1] [1] = −cphi * T ;
489 G[2] [1] = −ctheta * sphi * T ;
490 G[0] [2] = stheta * cphi ;
491 G[1] [2] = −sphi ;
492 G[2] [2] = ctheta * cphi ;
493

494 // Only use t a i l rotor above threshold height
495 i f (−stateGetPositionNed_f ()−>z >= h_thres) {
496 G[0] [3] = ctheta ;
497 G[1] [3] = 0 ;
498 G[2] [3] = −stheta ;
499 } e lse {
500 G[0] [3] = 0 ;
501 G[1] [3] = 0 ;
502 G[2] [3] = 0 ;
503 }
504

505 for (i n t i = 0 ; i < XINCA_OUTPUTS; i ++) {
506 B[i] = G[i] ;
507 }
508

509 }
510

511 /* *
512 * ABI callback that obtains the acceleration setpoint from telemetry
513 * f l a g : 0 −> 2D, 1 −> 3D
514 */
515 s t a t i c void accel_sp_cb (uint8_t sender_id __attr ibute__ ((unused)) , uint8_t f lag , s t r u c t FloatVect3 *

accel_sp)
516 {
517 i f (f l a g == 0) {
518 indi_accel_sp . x = accel_sp−>x ;
519 indi_accel_sp . y = accel_sp−>y ;
520 indi_accel_sp_set_2d = true ;
521 time_of_accel_sp_2d = get_sys_time_float () ;
522 } e lse i f (f l a g == 1) {
523 indi_accel_sp . x = accel_sp−>x ;
524 indi_accel_sp . y = accel_sp−>y ;
525 indi_accel_sp . z = accel_sp−>z ;
526 indi_accel_sp_set_3d = true ;
527 time_of_accel_sp_3d = get_sys_time_float () ;
528 }
529 }

	Preface
	List of Figures
	List of Tables
	List of Abbreviations
	Nomenclature
	I Part I: Scientific Research Paper
	Introduction
	The tu Quadplane
	inca
	inca Optimisation
	xinca
	Implementation
	Flight Simulations
	Flight Experiments
	Conclusions and Recommendations

	II Part II: Preliminary Research Report
	Abstract
	Introduction
	UAV Classification
	The Quadplane

	Control Allocation
	The PID controller
	The NDI controller
	The INDI controller
	The INCA controller

	INCA Optimisation
	Generalised Inverse
	Redistributed Pseudo-Inverse
	Quadratic programming
	The Active Set Method

	Further Research and Experiments
	Conclusion
	Bibliography

	III Part III: Appendices
	Overview of simulations and flight experiments
	Paparazzi Airframe Configuration File
	Source code of the inca module
	Source code of the xinca module

