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Human-like control for offshore excavators

Marco Stijnman, Roel Kuiper, Jan-Willem van Wingerden, and David Abbink

Abstract—Offshore excavators are large hydraulically
driven machines which are difficult to control due to slow
dynamics, inherent nonlinearities, a varying environment
and complex kinematics. As digging is performed under
water, only limited visual feedback of the task can be
provided by means of a visualization interface. Operators
require an extensive amount of practice before being
capable of achieving sufficient and consistent performance.
Often, automation is implemented as a way of reducing
costs related to expensive operators and attaining consistent
performance. However, automation struggles with adapting
to unforeseen situations and a large task variety, which
are areas human operators excel in. Instead of attempting
to fully automate excavators, this thesis takes a more
human-centered approach, and focuses on the design and
evaluation of a human-like controller to partially automate
excavator operations, while assuming a human operator is
still present to trade or share control with. In order to
simultaneously deal with the various nonlinearities in the
system while providing human-like control this work pro-
poses the use of an Adaptive Model Predictive Controller,
whose underlying principles are similar to those of humans.

To determine whether the controller is indeed human-
like a complex excavator model including a realistic soil
model was developed and used to implement and tune the
controller. Finally, a simulator experiment was conducted
to compare the subjects and the controller in terms of per-
formance for various tasks and the control behavior simi-
larity for a well-trained task. Eight subjects controlled the
excavator model and performed four stages, starting with a
familiarization stage in which the subject got accustomed to
the system. The other three stages (easy, difficult, boulder)
featured a 9 m long target path, with conditions of varying
difficulty between stages. The controller showed 2 to 3 times
lower tracking errors for both the easy and difficult stage
while providing 1.5 to 5 times smoother inputs, but could
not overcome the unforeseen boulder whereas all subjects
could, showcasing the importance of having humans and
automation complement each other. Furthermore, a high
quality fit (VAF > 70%) was found between the boom
inputs of the subjects and the controller in the well-trained
easy stage, indicating human-like control.

Index Terms—Offshore excavator, adaptive model pre-
dictive control, extended kalman filter, human-like control

D.A. Abbink and R.J. Kuiper are with the Cognitive Robotics
Department and J.W. van Wingerden is with the Delft Center for
Systems & Control, Faculty of 3mE, Delft University of Technology,
Mekelweg 2, 2628 CD Delft, The Netherlands.

I. INTRODUCTION

N today’s world defined by speed and slim cost

margins automation is a hot topic. This is no different
for the dredging industry, which uses offshore excavators
in order to remove soil below the water’s surface. The
demand for automation arises due to the difficulty of
controlling these excavators. Offshore excavators are
characterized by slow dynamics, inherent nonlinearities,
a varying environment, and complex kinematics [1]. As
digging is performed under water, only limited visual
feedback of the task can be provided by means of a
visualization interface [2]. Furthermore, incorrect control
can damage the machine, increasing maintenance costs.
As such, only well-trained and thus expensive operators
are capable of attaining sufficient and consistent perfor-
mance.

Resolving these issues by automating these complex
machines continues to pose severe challenges [3]. Off-
shore excavators are located in environments in which
unforeseen disturbances can always occur, and it is not
always economically or physically possible to monitor
everything using sensors. Furthermore, these excavators
perform a variety of tasks which all require in-depth
knowledge, which is difficult to capture in robust control
algorithms. Human operators are much better than con-
trol algorithms at learning a large variety of tasks and
adapting to these unforeseen situations.

Instead of attempting to fully automate excavators,
this thesis takes a more human-centered approach, and
focuses on the design and evaluation of a human-like
controller to partially automate excavator operations,
while assuming a human operator is still present to trade
or share control with.

A. Human-centered automation: towards human-like
control

The interaction between man and machine has been
examined for decades and various human-factors scien-
tists have since then reiterated that the binary “either man
or machine” approach is unproductive [4] [5], and that
more interaction between both man and machine is nec-
essary. This principle is adopted in human-centered au-
tomation [6]. Essentially, this concept states that humans
and automation should understand each other’s intents,



and that system designers should attempt to automate
systems with this idea in the back of their minds, as
opposed to technology-centered automation in which the
human is essentially expected to handle whatever the
system designers did not manage to automate, without
much regard for the operator’s desires. By keeping the
human in the loop and informed about the automation at
all times, issues such as overreliance, loss of situational
awareness, complacency, and increased mental work-
load, which eventually lead to distrust/disuse [7]-[9] can
be avoided or alleviated. This design philosophy holds
regardless of the type of partial automation, whether it be
supervisory control [10] or shared control [11]; situations
in which the operator is uncertain about what the system
does or wants should be avoided.

However, especially in systems where both controller
and human share control and continuously work together
conflicts may occur. This phenomenon is reported in
various studies such as [12]-[14] and can have various
origins, such as the existence of differences in the
control strategy, control objective, or underlying control
structure of the human and the controller. A mismatch
in either one can mean the controller and operator do
not agree on the desired input to the system, leading
to increased control effort and mental workload and, if
mismatches persist, ultimately distrust/disuse. Designing
a more human-like controller using a human-centered
approach is therefore hypothesized to lead to a reduction
in the amount of conflicts [6].

An understanding of how humans control systems,
and hence an understanding on how to obtain a more
human-like controller, can be obtained from research
performed in the field of neuroscience. It has been shown
that humans create internal models when interacting
with systems, which are then stored in the cerebellum
[15] [16]. Upon interacting with a system for which an
internal model is present this model is recalled and used
to predict the behavior of this system. This enables the
central nervous system to utilize feed-forward control,
instead of having to only rely on feedback mechanisms.

Furthermore, humans do not only aim to minimize the
output error of the task they are performing, but also
take the amount of input effort they have to provide
to the system into consideration [17] [18]. This has
effects for the desired functionality of the controller;
achieving excellent reference tracking is meaningless if
the input varies wildly and is perceived as annoying by
the operator.

A control method that includes an internal model and
input weighting is thus likely to be a suitable method
for human-like control. One such method that contains
both of these characteristics is Model Predictive Control

Soil |«
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Controller * ¢ Est. pars
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Fig. 1: Block scheme of the control loop of the exca-
vator. The standard MPC is extended with the Extended
Kalman Filter and the internal model, used for parameter
adaptation.

(MPC), and an example of how both the operator and
MPC could be combined in the same control loop is
shown in Fig. 1. The switch indicates that the operator
and the MPC are evaluated separately in this study, but
could be replaced by a haptic interface [19] in future
work to enable shared control.

B. Model Predictive Control

Model Predictive Control is an advanced control
technique that incorporates an internal model in order
to predict the future behavior of the system, enabling
feedforward control [20]. Furthermore, by using weights
in the cost function emphasis can be shifted between per-
formance and control effort. This is essentially exactly
what human operators also do, making it a very suitable
method for human-like control.

Purely from the excavator’s perspective, MPC is also
a well suited control technique. The excavator uses
its joystick inputs to open or close hydraulic valves
which naturally cannot exceed their physical limits. This
introduces input constraints into the system. A major
advantage which MPC has is the possibility of incorpo-
rating constraints on the input, input rate of change, state,
or output, in contrast to simpler control methods such
as Linear-Quadratic Regulators (LQR) or Proportional-
Integral-Derivative (PID) controllers. These constraints
are taken into account during the optimization step of the
cost function, whereas other control methods calculate
the control inputs as if there were no constraints at
all. Furthermore, the possibility of tuning the trade-
off between input smoothness and performance is also
important for the system: frequent switching wears out
the large hydraulic valves faster, requiring costly main-
tenance.



However, in addition to being human-like the MPC
must also be capable of controlling the complex ex-
cavator. This aspect requires an extension of the MPC
algorithm, as standard MPC is not capable of accounting
for the various nonlinearities existent in the excavator.

C. Extension to Adaptive Model Predictive Control

While MPC is suitable for human-like control and can
incorporate input constraints, standard MPC only uses
a Linear Time Invariant (LTI) model of the excavator.
However, several nonlinear characteristics of the exca-
vator cause a change in the behavior of the excavator
which should be reflected in the LTI model. Firstly,
the inertia perceived by the boom arm depends on the
extension of the stick, creating a coupled effect between
the two arms. Secondly, the behavior of the hydraulic
cylinders driving the arms is direction dependent due
to differences between the piston-side and rod-side of
the cylinders. As a result, upwards motions are slower
than downwards motions. Finally, the transition between
water and soil drives a change in dynamics, and within
the soil fluctuations in soil strength can always appear
and are not a priori known.

The issue of incorporating these nonlinear character-
istics can be resolved by extending standard MPC with
online adaptation by using an Extended Kalman Filter
(EKF) [21]. The EKF utilizes a simplified, nonlinear
internal model in order to construct a one-step-ahead
prediction of the system. The predicted output is then
compared to the actual output to obtain the prediction
error. The parameters of this nonlinear internal model
are then adapted based on the prediction error in order
to converge the prediction to the real output. Afterwards,
a linearized version of this nonlinear model is passed to
the MPC. In this manner the MPC is provided with an
accurate LTI model suited for the current situation of
the excavator, enabling accurate predictions while still
allowing the use of relatively simple control algorithms.
The total control loop, consisting of the operator, the
excavator including its soil model, and the Adaptive
MPC can be seen in Fig. 1.

D. Thesis objective

Summarizing, it is hypothesized that Adaptive Model
Predictive Control can provide human-like guidance for
a complex excavator model by providing similar control
inputs as human operators, while attaining low tracking
errors. In order to validate this hypothesis several prob-
lems will be tackled during this thesis. First of all, a
complex excavator model is constructed which serves as
the system both the controller and the human operators

will control. Secondly, an adaptive MPC is designed
and evaluated for various test cases. Thirdly, a human
factors evaluation is performed in order to compare the
controller to the operator. Finally, the work is concluded
and the direction of future work is outlined.

II. EXCAVATOR MODEL

A complex excavator model must first be developed
as the system which will be controlled by both the
controller and the human operators. This excavator
model consists of three major components. These are
the mechanical system, the hydraulic system, and the
interaction with the soil. The inclusion of a hydraulic
system not only introduces the disparity between up-
wards and downwards motions, but also enforces input
constraints to be taken into account. Previous studies
instead applied the control input directly to the joint,
circumventing these issues [22] [23]. Studies that do
include the hydraulic system instead completely leave
the soil out of their scope [24]-[26].

A simplified drawing of the mechanical system of
an excavator from which the necessary dynamics and
kinematics can be derived is shown in Fig. 2, showcasing
the four linkages: the base, boom, stick and bucket.
These arms are brought into motion by the hydraulic
system, which translates the inputs given by the user to
forces on the joints of the excavator. Finally, the soil
interaction describes the forces that are applied on the
excavator as a result of moving through the soil.

A. Kinematics and dynamics

The forward kinematic equations are used to
determine the position of the endpoint (the tip of
the bucket) for known angles of the arms which are
necessary for the construction of the excavator model.
Similarly, the inverse kinematics are used to determine
the required link angles based on the desired trajectory

Base

Yo ¥

Fig. 2: Simplified schematic drawing of a typical excava-
tor, together with its local coordinate systems and angle
definitions. [22].
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of the endpoint. These angles can then be used as the
reference trajectory for the controller. The derivations
of these equations have been documented in work such
as [27].

The excavator dynamics relate the moments applied
to the joints to movement and can be described with the
equations of motion as listed in Eq. (1):

M(0)0+C(0,0)0+D(0)+G(0) = Qn(u,0,t)—Q(0,0,1)

ey
where 6 = [0y 01 0, 03]T as defined in Fig. 2, where
the subscript indicates the angle of joint ¢. The input
moments originating from the hydraulics are Q,(u, 0, t),
and the moments resulting from the soil interaction are
reflected with Q(6,6,t). M(0) is the inertial matrix,
C(#,0) contains the terms due to the Coriolis and cen-
tripetal effects, D(0) contains the terms due to friction,
and G(0) contains the terms due to gravity.

The derivations and full expressions for the matrices
M(#), C(0,6), D(f), and G(#) have been well docu-
mented in work such as [28] and [23]. Finally, during
this study only the digging motion in a 2D plane is
considered and thus rotations of the base will not be
taken into account.

B. Hydraulics

In Fig. 3 a schematic overview of a hydraulic cylinder
is shown, and its implementation will concisely be
explained here.

1) Hydraulic valves: By operating a joystick the
operator provides an input to a directional valve. Based
on the direction of the input, this valve either allows flow
from the pump into the piston side of the cylinder and
flow from the rod side into the tank, or flow into the
rod side of the cylinder and flow from the piston side
into the tank. The area A which the flow can inhabit
ranges from 0% to 100% of the total area of the valve,
corresponding to the magnitude of the input signal. An

important point to consider is that valves have a small
amount of overlapping area, which means a dead-band
phenomenon is present whenever a valve initially starts
opening up. The pump and tank are considered as a
constant source and sink of 300 and O bar, respectively.
The flow through a valve is represented as an orifice

flow:
2A
Q= C,A, /TP

where Cj is the discharge coefficient, A is the area of
the valve, Ap is the pressure difference over the valve,
and p is the density of the hydraulic fluid.

2) Hydraulic cylinders: Essentially, these hydraulic
cylinders function as large springs, where the bulk mod-
ulus B, of the hydraulic oil represents the stiffness of
the spring. This is part of the reason why controlling
these large excavators is so difficult; the operator does
not directly apply a moment on the excavator’s joints,
but instead can only compress or decompress these
hydraulic springs. Moreover, another difficulty between
the input/output relation originates from the behavior of
these hydraulic cylinders. Due to volumetric differences
between the piston-side and the rod-side of the cylinders,
upwards motions are slower than downwards motions.

The cylinders of the excavator are all double-acting
cylinders. The pressure generated in each side of the
cylinder can be calculated based on the bulk modulus:

2

V-V

P =B,
Vo

3)
Where for each side P is the pressure in the respective
side of the cylinder, B,, is the bulk modulus of the
hydraulic oil, Vj is the initial cylinder volume per side
for the current configuration and V' is the volume of the
hydraulic oil residing in the respective side. The flow Q,
obtained from the proportional valve and calculated in
the previous section, is integrated over time to calculate
V. This means that for every simulation step, for each
side of the cylinder, the initial volume is calculated
based on the position of the links of the excavator and
thus the extension of the rod. Then, any incoming or
outgoing flow is added to or subtracted from the current
volume. Increasing the amount of hydraulic oil while
not proportionally increasing the available space it can
inhabit will cause an increase in pressure, based on the
bulk modulus of the fluid. The total force exerted by the
rod can then be calculated:

F =P,;Aps — PrsAyg “)

pS



where the subscripts ps and rs indicate the piston side
and rod side, respectively.

Lastly, the kinematic equations necessary to relate the
force generated by the cylinder to the moment Q) it
exerts on its respective joint are very excavator specific.
The attachment point of the rod and the configuration of
the supporting linkage structure varies between different
types of excavators, and can be determined as a function
of a series of trigonometric equations. This same process
can be applied for other joystick inputs controlling dif-
ferent valves and cylinders, resulting in the hydraulically
generated torques on all the excavator’s joints.

C. Soil interaction

The forces resulting from the interaction with the soil
are based on the sand force model of [29]. This paper
provides formulas for the amount of force required to
penetrate different types of soil dependent on for instance
soil hardness, the cutting angle and the cutting depth.

The application of the forces on the excavator is
done by modelling three virtual spring-damper systems
located between the bucket and soil which is in contact
with the bucket, as depicted in Fig. 4.

During normal digging motion, the bucket applies
force on the forwards and downwards springs and
compresses them until they reach the amount of force
required to penetrate the soil. The springs then remain
compressed and move along with the tip of the bucket,
while exerting their maximum force on the bucket. When
the bucket reverses or leaves the soil, the springs are
decompressed. Furthermore damping is present, limiting
the velocity with which the bucket can move. The
combination of stiffness and damping provides a realistic
approach at modelling the soil interaction while still
being fairly simple.

In the backwards direction the spring/damper system
is much stronger, and only allows a limited amount
of movement. Furthermore the vertical spring provides
greater resistance when the bucket is attempting to
dig with an angle that is more than 45 degrees with
the horizontal. Both of these additions ensure realistic
digging by limiting digging motion misaligned with the
teeth.

D. Excavator model evaluation

In order to evaluate the model several characteristics
are reported in Table I and Table II, presenting an idea
of the behavior of the excavator. As seen in the Table II,
the position of the stick indeed has an influence on the
dynamics of the boom, significantly impacting the time
taken for a movement over the full range of motion.

P =20

Backwards spring/

F d ing/d
orwards spring/damper damper

Downwards spring/damper

Fig. 4: Schematic drawing of the interaction between
bucket and soil. Although drawn at different positions
for clarity, all forces are applied at the tip of the bucket.

TABLE I: Length, weight and range of motions of the
three arms of the excavator.

| Boom Stick Bucket
Length [m] 12.0 7.0 2.3
Weight [kg x 1000] 14.1 7.1 4.6
Range of motion [deg] | -46 to 62 | -148 to -34 | -99 to 50

This effect is visualized in Fig. 5, where, for a part of
the range of motion, the movement of the boom is shown
for various positions of the stick while the same input is
applied in all three cases.

Furthermore, Table II shows a large difference in the
movement durations between an upward and downward
motion. This effect is indeed reflected in Fig. 6, in which
the response of the boom as a result of two step inputs
in opposite directions are shown. The disparity between
downwards and upwards motions is clearly noticeable:
the angular velocity in downwards direction is more than

TABLE II: Movement durations in which the boom or
stick are provided with a maximum joystick input. The
reported times represent the time it took to cover the full
range of motion for the boom and the stick. Note that
since the position of the stick affects the dynamics of
the boom, two situations are reported: Stick Expanded
(S.E) and Stick Retracted (S.R).

Movement duration [s]

Boom Stick
Up Down Left | Right
45.1 (SEE) | 162 (SE) | 135 ‘ 14.2
359 (S.R) | 18.0 (S.R)
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Fig. 5: Non-linear effect of the stick position on the
boom dynamics. While the same input sequence (an up-
wards movement followed by a downwards movement)
is applied to the boom in all three cases, its output angle
varies depending on the extension of the stick. The three
stick positions are indicated in the top-left image.
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Fig. 6: Step responses of the boom for step responses
in upwards (upper subplot) and downwards (bottom
subplot) direction. The stick was fully extended in both
cases.

2.5 times as high as in the upwards direction. This figure
also highlights the fact that the excavator is controlled
using rate control, in which the inputs of the joystick
correspond to the angular velocity of their related arms.

E. Sub-conclusions on the excavator model

The excavator model constructed in this section ex-
hibits relevant and realistic (nonlinear) behavior in sim-
ulations, and was partially based on [23], whose de-
scriptive work on the dynamic model for excavators is
commonly used as a basis for other studies related to
excavators. In this thesis this dynamic model is extended
with a hydraulic system and a soil model, which includes
realistic spring-damper behavior extended from the work
of [29].

Previously performed studies lack either the inclusion
of a hydraulic system or a realistic soil model. Both
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of these components have consequential effects for the
dynamics of the system and thus for the determination of
a control method for the system, creating the need for a
controller capable of dealing with a varying environment
without having a priori knowledge.

IT1I. ADAPTIVE MODEL PREDICTIVE CONTROL

Model Predictive Control (MPC) is an advanced con-
trol technique that incorporates an internal model in
order to predict the future behavior of the system,
enabling feedforward control. Furthermore, by using
weights in the cost function emphasis can be shifted be-
tween performance and control effort. This is essentially
exactly what human operators also do, making it a very
suitable method for human-like control. In this thesis
standard MPC is extended using an Extended Kalman
Filter (EKF) in order to allow online adaptation.

In this section the internal model is first constructed,
followed by the implementation of the EKF. Then, the
implementation of the MPC algorithm is described and
finally evaluated for various scenarios.

A. Internal model

Due to the complexity and size of the excavator
model a simplified model must be created. This step is
necessary for the MPC since it predicts and optimizes
the system’s behavior over a certain amount of time at
each controller interval. An increase in internal model
complexity thus goes hand in hand with a large increase
in computational power demand.

In order to simplify the control aspect of this thesis
for both controller and human operators the bucket angle
is internally controlled using a simple P controller. The
bucket angle while cutting is generally kept around 45
degrees and since the dynamics of the bucket, which
is a lot smaller than the boom or the stick, are much
simpler a P controller is easily able to keep the bucket
at the desired angle. This leaves a two input/two output
system, having the boom and stick joystick commands
as input, and the boom and stick angles as output.

The simplified internal model was set up as shown
in Fig. 7 from which its equations of motion can be
derived using Euler-Lagrange equations. The two angles
0, and 65 were taken as the generalized coordinates ¢
and ¢o, corresponding to the boom and stick angle. Then,
defining ¢ = [q1 ¢2]7, the mapping of the coordinates
of the center of masses of both links r(z,z,60) =



Fig. 7: Schematic drawing of the simplified two-link
model used for the internal model.

[Ters Zeys 015 Teys Zey, 01 + 02])T from workspace to
generalized coordinates gives:

r= [Cos(ql)C1’ Sin(ql)ch qi1,

cos(q1) L1 + cos(q1 + g2)c2 &)
sin(q1) Ly + sin(qu + g2)c2, 1 + qa]”
By  defining the mass matrix M; as

diag(my, my, I, ma, ma, Is) the Kinetic energy T,
potential energy V' and Rayleigh dissipation function
D,. can be calculated as:

orT_ or
T= 0'5a_q Mia—q (6)
V =r(2)mig +r(5)mag @)
D, = 0.5(b1qg1? + bagn?) (8)

Where b; and by are the damping coefficients and
g1 and ¢» are the derivatives with respect to time of
the generalized coordinates ¢; and ¢o. By defining the
Lagrangian L =T — V the equations of motion can be
determined using Lagrangian mechanics:

d 0L 0L n oD,

dt ¢  Oq aq
This Euler-Lagrange equation can be translated into the
form of Eq. (1) by defining

= Qim )

o5k o9
Mim = . im 1) = 24
(q) 2 Cim(a,4) 94
_or ov oD, (10
Gim(q) T im (4) = 34

Qim = diag(kpmur, —ksiug)

where ky,,, and kg; are the input gains and u; and us are
the inputs produced by the joysticks for the boom and
stick, respectively. The desired angular accelerations can
then be determined from the equations of motion:

(11
and are then discretized using a zero-order hold with a
sampling frequency of 500 Hz to match the sampling
frequency of the simulated complex excavator.

Note that in order for the simplified model to mimic
the characteristic behavior of the excavator the effect
of the potential energy V' was removed. The pressure
built up in the excavator’s hydraulic cylinders keeps
the excavator stable at any point in the workspace even
when no inputs are applied, counteracting the effect of
gravity. To avoid the arms of the simplified model simply
falling down when no inputs are provided the effect of
the potential energy needs to be compensated for by a
term of equal magnitude but an opposite sign, which is
essentially the same as removing the potential energy
altogether.

The constructed internal model is a much more com-
pact model than the complex excavator, but can in its
current state not always accurately reflect the behavior
of the excavator due to its varying dynamics. The EKF
will be used to account for these variations.

G =M, (@) (—Cim(q,d)q —

B. Online parameter estimation with an Extended
Kalman Filter

It is clear that the simplified model presented in the
previous section is not yet ready to be handed over to
an MPC. Firstly, in this thesis linear MPC is used as
nonlinear MPC is much more computationally intensive,
while real-time applicability is desired. The nonlinear
effect which the position of the stick has on the inertia
of the boom as shown in Fig. 5 is still present in
the equations of motion in Eq. (11), which means the
simplified model will need to be linearized.

Furthermore, the necessity of removing any terms
related to soil interaction and the hydraulic system in
order to obtain a simple linear model demand additional
attention. One approach to deal with nonlinearities re-
sulting from the hydraulic system is system identification
on sets of input-output data such as in [25], however
in this work soil contact is left outside of the scope.
The issue with any techniques solely relying on a priori
information is their incapability of incorporating new
information. The first major issue is the fact that soil
is removed during digging operation. This means that
two subsequent identical motions will experience vastly
different interaction forces, as the first scoop already
removed the soil on this position. The second issue is
that soil properties are not known beforehand, and can
vary during the digging trajectory.



The approach used in this study is to let the input
gains kp,, and kg capture these effects by utilizing
online adaptation. The EKF approach as described in
e.g. [30] and [21] and shown in Eq. (12) is a very
suitable candidate for this study, as it utilizes the already
constructed internal model for its algorithm. Note that
during this study full state information is assumed,
alleviating the need for a state observer. However, if
necessary, this could be implemented by extending the
EKF to a Dual Extended Kalman Filter (DEKF), where
two separate Kalman filters are used for both state and
parameter estimation.

1) EKF description: The full EKF algorithm is shown
in Eq. (12) and can be split up in five major steps. For
clarity reasons the notations of time are shown in the
subscripts.

Time update:

0, =6}, (12a)
Eej,k = Eej,k—l (12b)
O = f(@p—1,ur—1,0;) (120)
Measurement update:

Kp =35 (C)T[Crz; (DT +2]7 (2d)
0F =0, + KPlyr — U] (12e)

Initially, the parameter estimate and its uncertainty
are set to the best a priori guess. In Eq. (12a) and Eq.
(12b) the previous timestep’s parameter estimate and
uncertainty are propagated. By using the state, input,
and estimated parameters at time £ — 1, in Eq. (12c¢)
the simplified model of Section III-A is then used to
predict the output at time k.

The Kalman gain in Eq. (12d) contains the term CY
which can be understood as the effect a change in one
of the parameters has on the output. This essentially
serves as the sensitivity of the parameter, and gives
the algorithm the knowledge needed to know whether
to increase or decrease the parameter, and how much
effect a change has. This term is derived by taking the
Jacobian of the nonlinear system w.r.t the parameters
of interest. Furthermore, the lower the measurement
uncertainty Y. the higher the kalman gain. In Eq. (12e)
the new parameters are determined using the previous
parameters, the Kalman gain and the error between the
estimated output and the real output. Note that while in
the more common approach the parameter uncertainty
would be reduced during the measurement step, in this
study it is kept constant as there is no “true” value
the parameters converge to, since the parameters are
continually changing.
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(a) Adaptation of the input gain of the stick during digging.
A: Initial situation. B: Excavator enters very soft soil, and the
gain is increased. C: Excavator continues digging in the soft
soil, gain remains fairly constant. D: Excavator encounters soil
with gradually increasing strength, and gain is decreased. E:
Excavator continues digging in hard soil, gain remains fairly
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(b) Actual stick output and four 5-seconds-ahead predictions of
the internal model, made at various points.

Fig. 8: Online adaptation of the stick input gain due to
the EKF (upper figure) and predictions of the internal
model compared to the real output (bottom figure).
Predictions F and H result in deviations from the real
output, which the EKF resolves by updating the input
gains, resulting in accurate predictions G and L.

2) EKF evaluation: In order to validate the internal
model and the online estimation its predicted outputs can
be compared with the outputs of the complex excavator
model. Note that no controller is present here, and a
predetermined input sequence is provided to both the
excavator and the internal model. Fig. 8 shows a situation
in which the excavator boom is kept still and the stick is
moved through the soil. The soil profile used is initially
very soft, but becomes much stronger after a few meters.

Using the denotation indicated in the middle subplot,
Fig. 8a shows that during A the system is initialized. At
the start of B the stick input is increased to 100% and
the stick enters the very soft soil, and continues digging
during C. At the start of D the harder patch of soil is
encountered, and digging is continued in the hard soil
during E. These situations cause the input gain kg to



adapt itself to fit the internal model to the actual situa-
tion. The actual output is indicated by the solid blue line
in Fig. 8b, and for reasons of clarity only four 5-seconds-
ahead predictions are shown. Prediction F attempts to
predict the motion of the stick, but its input gain is
too low to accurately reflect the situation. However, the
EKF adapts to the very soft soil by increasing the input
gain during B, and as a result prediction G matches the
output of the excavator. Similarly, at 7" = 15 seconds the
stronger soil is encountered, leading to more resistance
and thus a reduction in angular velocity, even though the
input is kept at its maximum. As seen by predictions
H and I, the model accounts for the change in soil
strength by adapting the input gain during D, correcting
the prediction error.

This approach adapts the input gains of the nonlinear
internal model to create a better approximation of the
current situation. Subsequently, the model is linearized
around its the current state and passed onwards to the
MPC.

C. Model Predictive Control implementation

The linearized internal model passed to the MPC by
the EKF can now be used to predict the future outputs
of the system. These predictions are shown in Egs.
(13) and (14), and their derivation is elaborated upon
in Appendix B-A. Note that the model is transformed
into an Incremental Input Output (IIO) representation,
which results in the optimization of Aw instead of wu,
allowing the penalization of the input rate instead of the
input magnitude. Furthermore, since the internal model is
linearized at every control interval, z(k) is always equal
to the trim state Z. This means the term M (z(k) — Z) is
always equal to 0. Using a controller sampling frequency
of 5 Hz, a value of IV 20 was chosen for the
prediction horizon, corresponding to a look-ahead time
of 4 seconds. Finally, the output at the trimmed position
¥ and the previous input u(k — 1) are stacked vectors
of length N, indicated by an emboldened symbol. The
predictions are:

Up =5+ M(x(k) —Z) + 1Au+ Pouk — 1) (13)
Where
Ip(k+1) Au(k)
Ip(k +2) Au(k +1)
gp = . Au = .
Jp(k+ N) Au(k+ N —1)
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CB 0 0
CAB +CB CB 0
b, = )
: 0
CAN-'B+CAN2B+...+CB CB
CA CB 0 0
CA? CAB CB 0
M= Oy =
. . . 0
CAYN CAN-'B CAMN—2B CB
(14)

The cost function used for the optimization contains
terms related to both the output error and the input effort,
where the emphasis between one and the other can be
shifted by using the weighting matrix A2, and is shown
in Eq. (15). The output error is the difference between
the predicted output 4, (k+j) and the reference r(k+ j)
at each timestep j = 1... N, whereas the input effort is
defined by how much the control input changes between
each timestep.

N

=D ((@pk+4) = r(k+ )"

Jj=1

(@p(k +35) —r(k+4)))

+Z (Au(k + 7)) N2 (Au(k + 7))

(15)
This cost function can be written in the standard
Quadratic Programming (QP) form (see Appendix B-B)

JMPC Au k’

;

1
J(Au, k) = §AuTHAu + FTAu (16)

where

H=2(T®, +)?)

a7
F=—1"0,+57®; +uk—1)" 0!,

Furthermore, there are two constraints on the input.
Firstly, the input is limited to a range of [Umin, Umax]
= [—1, 1], which for the IIO model translates to

—u(k — 1) + umin
_u(k - ]-) + Umin
]

—u(k — 1) + Umaz

P —u(k — 1) + Umaz
P} : :

—u(k — 1) + Umaz

(18)

—u(k — 1) 4+ umin

where



Au(k)
Au(k 4+ 1) + Au(k)

P = (19)

Au(k+N=1) + -+ Au(k)

Secondly, a control horizon constraint N, is in place

which forces the last N — N, inputs to remain constant,

reducing the amount of free variables the optimization

will have to take into account and thus lowering the

computational power required. A value of N, = 10 was

chosen, corresponding to half of the prediction horizon.
The total problem can then be formulated as

min  J(Au, k)
Au

Eq.(18),
Au(k+ N.+j) =0, j

S. t.

=0,...,N—N.—1

(20)
This was implemented in Matlab using a QP solver
based on the KWIK algorithm [31]. For every con-
troller interval a cold start is used which determines
the unconstrained solution, and then checks whether this
violates the constraints. If this is the case, an active
set method is used to determine which constraints are
relevant in the current solution space. This creates a
subset of inequalities to be used during the search, which
increases convergence speed.

D. Simulation task setup

In order to evaluate the controller three tasks of
various difficulty were constructed. All three tasks (A,
B1, B2) consist of a 9 meter long path where the first
and the last meter are reserved for entering and leaving
the soil, leaving a horizontal part of 7 meters. Each task
is performed at its own specific location, indicated in
Fig. 9a by the same name as the name of the task.

The main difference a change in digging position
makes is a change in how the boom should move in
order to compensate for the circular motion of the stick.
The easier task A is chosen such that at the center
of the digging path the stick is vertical as shown in
Fig. 9a, meaning that the horizontal path is split 50/50
for downwards or upwards boom compensation. As seen
in Fig. 9b this means that the necessary motion of the
boom is symmetrical. The more difficult tasks B1 and
B2 are a-symmetrical and have a 75/25 and 25/75 split,
respectively, increasing the complexity of the task.

Using these three tasks, three situations are evaluated
in order to understand how the controller functions
and what effect various tuning parameters have on the
performance. These situations are:
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(a) Visualization of the digging positions for the easy task (A)
and difficult tasks (B1 and B2). The initial soil is always flat,
and the desired paths are given by the dotted lines.
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(b) Boom angle reference for the three tasks.

Fig. 9: The three digging tasks A, B1 and B2 at their
respective locations. The bottom figure shows the differ-
ence in the reference for the boom angle as a result of
the change in digging positions.

o Situation 1: Task A, B1 and B2 with constant soil.
o Situation 2: Task B1 with variable soil, in which a
soft-to-hard soil transition occurs at two-thirds of
the digging path. The controller is evaluated once
with and once without parameter estimation.
« Situation 3: Task A with constant soil, with varying
values for input weights \2.
Note that for all three evaluated situations digging is
performed from right to left.

E. Simulation task results

1) Situation 1: Fig. 10 shows that the adaptive MPC
is capable of tracking the reference closely on all three
locations, without requiring additional tuning. In order
to quantify the tracking performance the commonly
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Fig. 10: Situation 1: MPC trajectories at the three loca-
tions with constant soil. The RMSE is 0.0242, 0.0420
and 0.0215 for tasks A, B1 and B2 respectively. Note that
for all three evaluated situations digging is performed
from right to left.
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Fig. 11: Excavator performance for task B1 with and
without parameter estimation. The endpoint trajectories
with (green) and without (red) parameter adaptation are
shown in the upmost subplot, and the input gain adap-
tations kp,,, and kg in the middle and bottom subplot,
respectively. The difference is RMSE is notable; 0.0621
with adaptation and 0.1351 without.

used Root Mean Square Error (RMSE) between the
reference and system output can be calculated for all
three situations and is indicated in the caption of Fig.
10. A visual representation of the determination of the
RMSE is provided in Appendix E, Fig. 24.

2) Situation 2: In order to assess the importance of
the parameter adaptation task B1 was performed with the
inclusion of a soft-hard soil transition. The initial input
gains kp,, and k. were 0.5¢°, for both the controller
with and without parameter adaptation. The excavator
initially enters soft soil on the right side of Fig. 11.
A clear difference in trajectory tracking can be seen
here, most notably resulting from the increase in both
gains ky,, and ks during the first half the digging path.
This adaptation leads to predictions that are closer to the
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(a) Endpoint trajectories for task A with various input weights.
RMSE is 0.0295, 0.0242, and 0.0476 for A*> = 0.00025, 0.0025,

and 0.025 respectively.
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(b) Boom and stick inputs for task A with various input weights.

Fig. 12: Situation 3: evaluation of the effect of varying
input weights. The endpoint trajectories (a) resulted from
the control inputs provided in (b), which were produced
with A2 = 0.00025 (blue), 0.0025 (green), and 0.025
(red). The differences in input smoothness are quantified
in Table III.

actual output, resulting in better trajectory tracking.

3) Situation 3: While reference tracking is usually the
most important task of a controller, the importance of
input effort should not be forgotten. This is especially
vital for this study as the eventual goal is to provide
human operator with useful guidance, which means high
frequent inputs are especially undesirable. In this situa-
tion controller behavior is evaluated for three different
values of the weighting term 2.

Fig. 12 shows that, as expected, performance de-
creases when the input weights are increased, as
smoother inputs are preferred. However, decreasing the
weights too much results in jittery behavior. As a result,
the RMSE as indicated in the caption of Fig. 12a is
lowest for A\? = 0.0025.

In order to objectively quantify the differences in
input smoothness a two-step filtering process was taken.
Firstly, interpolation was applied in order to remove the
effects of the discretization. Subsequently, a normalized
anti causal second order high-pass Butterworth filter with
a cutoff frequency of 0.5 Hz was applied. Fig. 22 in Ap-
pendix E shows an example of this approach. Essentially,
this approach de-trends the input signal while retaining



TABLE III: Situation 3: Absolute Mean (AM) and Stan-
dard Deviation (SD) of filtered input signals for various
A2, (Units: percentage points, abbreviated as %,,)

Input 1 Input 2
AM [%p]  SD [%p] AM [%p]  SD [%p)
AZ = 0.00025 4.30 6.23 4.35 7.02
A2 = 0.0025 0.65 1.07 0.83 1.74
A2 = 0.025 0.29 0.47 0.43 0.89

the frequencies of interest. From this remainder of the
data the Standard Deviation (SD) and absolute mean
(AM) were determined as an indicator of the smoothness
of the input signals and are shown in Table III. The
results show that an increase in A2 results in a lower SD
and AM, indicating smoother input signals.

FE. Discussion on the Model Predictive Controller

The simplified model defined in Section III-A was
used for two parts of the control algorithm. Firstly,
a linearized version was used as the internal model
on which the MPC based its algorithms. Secondly, the
nonlinear variant was used by Extended Kalman Filter
in order enable online adaptation. The combination of
these two techniques results in smooth inputs and a
low tracking error while still being computationally
simple, allowing real-time implementation. Furthermore,
this combination also makes the simplified model rather
robust. A relatively low-level simplified model can still
result in good performance, since the EKF aims to steer
it towards the behavior of the true system and can thus
reduce the influence of modelling errors.

The combination of the internal model and EKF was
validated using several test cases. Situation 1 tested the
MPC’s capability of controlling the system at several
different locations. This shows that the internal model
which is linearized at every controller interval can ap-
proximately describe the behavior of the excavator over
the whole workspace. Situation 2 showed the necessity
of the online parameter adaptation, demonstrating a two-
fold decrease in tracking error. Situation 3 focused on the
trade-off between performance and input effort present in
the MPC algorithm. An interesting effect is seen here;
there exists a point after which focusing less on input
effort does not result in an increase in performance. This
is most likely due to inaccuracies in the internal model.
Essentially, placing a large importance on performance
will result in aggressive inputs, relying almost solely
on the feed-forward predictions of the internal model.
Inaccuracies can thus result in overshooting and jittery
behavior. This is in its turn detrimental for the EKF,
as the dead-band phenomenon in the valves and the
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disparity between upward and downwards motions can
result in fluctuations in the parameter estimation.

This portrays some of the downsides of the implemen-
tation of the online adaptation for the MPC algorithm
used here. At every controller interval the current linear
model, using the current estimated parameters, is used
in order to determine its future input sequence. During
the execution of this algorithm the linear model stays
constant as future fluctuations of the parameters are
unknown, even though in reality the estimated param-
eters these vary. Furthermore, the parameter adaptation
is not instantaneous and as a result large, frequent input
variations deteriorate controller performance.

These issues could be resolved in future work by
implementing a learning algorithm, which could mem-
orize previous digging iterations and could provide a
more suitable model when frequent switching behavior
is present. This could provide the MPC with a reasonable
guess about future values of these estimated parameters.

G. Sub-conclusions on the Model Predictive Controller

From the results of the simulation tasks it can be con-
cluded that the MPC in combination with the Extended
Kalman Filter is able to control the complex excavator
model at various locations and for a priori unknown,
varying soil profiles. The results shown here indicate
that the MPC is capable of achieving low tracking
errors for various tasks while providing smooth inputs.
Furthermore as described in Section I, MPC is based on
similar underlying principles as human control.

These results, combined with the similarities on which
the control principles of both the MPC and the human
operator are based on show promising prospects for the
application of continuous guidance.

IV. HUMAN FACTORS EXPERIMENT

The goal of this excavator simulator experiment is
twofold. Firstly, the similarity between the control inputs
of the operators and the designed MPC are compared for
a well-trained situation (task A) in which the task was
relatively simple and operators received extensive train-
ing. This was assumed to enable operators to construct
a reasonably accurate internal model, and thus produce
accurate control inputs. Secondly, performance is com-
pared in terms of smoothness of the control inputs and
trajectory tracking error for tasks of varying difficulty
(tasks A, B1, and B2). Furthermore, the reaction to a task
where an unseen boulder was located on the trajectory
that would require an unintended deviation from the
target trajectory was compared.



A. Method

1) Participants: 8 participants (1 female), all
right-handed, between 23-57 years old (Mean = 28.5,
SD = 10.7) volunteered for the excavation simulator
experiment.

2) Apparatus: The experiment was conducted using
a type MPC270 Bachmann real-time computer, ensuring
a consistent match between simulation time and real
time. The complex excavator model described in Section
II was uploaded onto the Bachmann and connected
to the commercially available DipMate 2 visualiza-
tion software, version 3.20, developed by the company
SeaTools. An example of the visualization including
a reference and one completed trial is shown in Fig.
13. This visualization was shown on a Dell P2210 22
inch monitor with a refreshing rate of 60 Hz, while
the underlying simulation and data logging ran with
a sampling frequency of 500 Hz. The subjects were
tasked with controlling the excavator using a 2 Degree
of Freedom (DoF) Thrustmaster T.16000M joystick.

Fig. 13: DipMate simulation software including the
desired trajectory (green), water level (blue) and soil
profile after a trial (brown).

3) Experimental design: The total experiment con-
sisted of four stages which are shown in Fig. 14. Firstly,
the operator could get accustomed to the system in the
familiarization stage. Secondly, the operator entered the
easy stage in which the digging task was relatively sim-
ple due to the constant soil and the symmetric reference
(shown in Fig. 9) simplifying the calculation of the
inverse kinematics, which subjects subconsciously per-
form. Thirdly, the difficult stage was performed in which
the digging location and soil conditions varied. Lastly,
the final stage consisted of a single trial in which an
unseen boulder was inserted on the digging path, requir-
ing an unintended deviation from the target trajectory.
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Experiment setup

Eamiliarizati 30 trials:
amiliarization
Task A
/ [—— ——
Easy stage Practice Used for
* metrics
16 trials:
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¢ Counterbalanced
design: order
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between trials

Fig. 14: Setup of the experiment. All subjects follow the
same process, except for the difficult stage in which the
order of the tasks and types of soil varied per subject.
The 5 soil types used are indicated in Fig. 15.

During the easy and difficult stage a timer was shown
on the screen and subjects were tasked with completing
the digging trajectory between 20-25 seconds. Deviations
above or below this time led to the experimenter orally
motivating subjects to increase or decrease their digging
speed. Prior to the experiment an informed consent form
was signed, which explained the purpose, procedures
and provided various task instructions (Appendix I).
This instructed the subjects on how to use the joystick,
explained the order and length of the tasks. Furthermore,
it explained the subjects were expected to follow the
trajectory while staying within a time of 20-25 seconds
while avoiding backwards motions to correct for previ-
ous deviations from the trajectory. Subjects were allowed
to take breaks or terminate the experiment at any time
without negative consequences.

a) Familiarization stage: The familiarization was
structured in a set of 7 simple tasks, individually ex-
plained in Appendix C, performed subsequently. These
tasks aided the subject in developing a better understand-
ing of the system. This was especially necessary since
excavators are systems with which the general population
does not have any experience with. These tasks allowed
the subject to experience several characteristics of the
system. Firstly, the subjects were able to relate the direc-
tion of the movements of the excavator to the direction
in which they moved the joystick. Secondly, subjects
understood end-point (cartesian) control was not used,
and they would have to account for the circular motions
of both the boom and the stick while digging straight
lines. Thirdly, the effect low or high frequent inputs
had on the output of the excavator was experienced.



Finally, the subjects were able to get accustomed to the
visualization software.

b) Easy stage: task A: Performance and control
effort are considered to be the main driving factors
of motor learning [32], but it was shown that subjects
initially mostly optimize for performance, and that adap-
tation based on control effort is driven at a much slower
rate [33]. Furthermore, the idea behind satisficing control
[18] states that human operators attempt to obtain a sat-
isfactory performance level, but do not minimize perfor-
mance further if it requires too many resources (control
effort, mental workload). Based on this knowledge, task
A (see Fig. 9) was performed 30 times in the easy stage.
By performing this large amount of trials it was expected
that after the initial increase in performance deemed
satisfactory by the operator, the subjects would then
attempt to decrease their control effort while maintaining
a satisfactory level of performance.

In this task the location of the digging trajectory and
the strength of the soil was kept constant throughout
all 30 trials. Furthermore, the subjects were explained
that the first 10 trials were training trials, and that
their performance during these trials was not taken
into account. These trials provided the opportunity for
exploration in which subjects were able to wildly vary
their control strategies without negative consequences,
enabling them to get a better feeling for the system and
thus reducing the probability of them purely relying on
feedback. Finally, the last four trials are used for the
calculation of metrics, as it is assumed that the best
performance and control effort are achieved in the trials
in which the subjects have had the most experience with
the system.

c) Difficult stage: tasks Bl and B2: The next stage
of the experiment attempted to evaluate performance
and control effort for a new, more difficult task and
consisted of 16 trials which were evenly split up between
tasks B1 and B2. These tasks are indicated with red
(B1) and green (B2) lines in Fig. 9. As seen in Fig.
9b these two tasks require a-symmetrical movement of
the boom. Furthermore, variations in soil strength were
applied. The controller was compared to the humans
on both locations B1 and B2. However, while it is
necessary to obtain multiple repetitions of the desired
condition in order to reduce inherent human variability
for the comparison, too many repetitions would cause the
subjects to memorize the transition location and changes
in strength within the task. In order to avoid this, multiple
types of soil patterns were constructed as shown in Fig.
15. Only one type was evaluated as the ’desired’ soil
type for either task B1 or B2 (type 2 for task B1, type 3
for task B2), and the other soil types were implemented
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Fig. 15: The arrangement of 5 different soil types in
the difficult stage, for task B1 and B2. Both task Bl
and B2 consist of 8 trials, in which the frequency with
which each soil type was used for the respective task are
indicated by the rightmost numbers. Metrics of tasks B1
and B2 are evaluated for soil types 2 and 3, respectively,
where the 4 trials with soil types 1, 4 and 5 are only used
to introduce randomness to avoid memorization.

solely to create randomness and were not evaluated. In
total, each task thus consisted of 8 trials, of which 4
trials contained the ’desired’ type and of which the other
4 trials were one repetition of each of the other 4 soil
types. Finally, the order of these 16 trials was determined
using a counterbalanced latin square design.

d) Boulder stage: The final stage of the experiment
featured only 1 trial, performed on location A. An
impenetrable boulder was located halfway during the
digging path about which the subjects were uninformed.
Passing the 1 meter tall boulder required a deviation of
at least half a meter from the target trajectory to pass
under or over the boulder. No explanation was provided
to the subject, except the conformation that this was not
a simulation error, and that subjects were still expected
to complete the task.

4) Dependent measures: The metrics used can be
grouped according to their use for the two goals of the
experiment.

a) Similarity in task A: The similarity between the
MPC and the subjects is evaluated for the well-trained
task (A) only, in which operators are assumed to have
trained a decently accurate internal model, and can hence
provide accurate control inputs.

e The Variance Accounted For (VAF) [%] is used
to determine the degree of similarity between two
signals, ranging between 0% — 100%. The VAF
between the two signals v and up;pc and can be
constructed as:



var(u — uppc)
var(u)

VAF = max((1 — * 100%), 0)

2n
b) Performance: The performance is measured us-

ing two metrics, both of which have been used previously
for the simulation study.

o The Root Mean Square Error (RMSE) [m] indicates
the difference between the reference trajectory and
the performed trajectory. An example of its deter-
mination can be seen in Appendix E, Fig. 24.

The Standard Deviation of the control input (SD)
[percentage points, abbreviated as %] represents
the smoothness of the input signals. This metric was
calculated by first interpolating the input signals in
order to remove the effects of the discretization.
Subsequently, a normalized anti causal high-pass
second order Butterworth filter with a cutoff fre-
quency of 0.5 Hz was applied, remaining only with
the high frequent components of the input signals.
From this remainder the standard deviation was
taken. Fig. 22 in Appendix E shows an example
of this approach.

B. Results

1) Similarity in task A: Fig. 16 depicts the 4 final
trials of the best performing subject for task A, alongside
the performance of the MPC. Fig. 17a shows the desired
trajectory and the tracking performance of both the
subject and the MPC. The inputs provided to both the
boom and the stick the operator used to realise these
trajectories are shown in Fig. 16b and Fig. 16c. Note
that for clarity reasons the discretization effects of all
input signals are removed with a normalized anti causal
low-pass second order Butterworth filter with a cutoff
frequency of 5 Hz. Clearly, the MPC shows smaller
deviations from the target trajectory. The boom inputs
lead to two observations. Firstly, the MPC provides a
much smoother boom input than the subject. Secondly, a
clear similarity is present between the boom input of the
controller and the operator. This similarity is not present
in the stick inputs, which is not unexpected due to the
nature of the horizontal trajectory tracking task, in which
the position of the boom determines the tracking error
while the stick only controls the digging velocity.

The amount of variability still present in the pro-
vided inputs indicates that the subject is not yet trained
to the level of an expert. This is indeed reflected in
the performance of all other subjects during task A.
Learning curves plotted for both task accuracy and input
smoothness over all trials of the task show a very weak
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Fig. 16: Trajectories and control inputs of the last 4 trials
of subject 7 (the best performing subject in terms of
trajectory tracking errors) in task A. The three panels
show the endpoint trajectories of the bucket (a) and the
control inputs for the boom (b) and stick (c). The mean
(red) over the last four trials (dashed lines) are shown
against the controller (green). The vertical, dashed black
line indicates the start and end of the horizontal part
of the trajectory. Significant variability is still present,
however it is noticeable that the boom inputs of the MPC
and operator are quite comparable.
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Fig. 17: Similarly to Fig. 16, the three panels show the
endpoint trajectories of the bucket (a) and the control
inputs for the boom (b) and stick (c) for task A. The
mean of the last four trials of all subjects (red) and its
standard deviation (blue area) are compared against the
controller. The vertical, dashed black line indicates the
start and end of the horizontal part of the trajectory.

learning effect (Appendix D), indicating that even the
easier task was of considerable difficulty for the subjects.
This means an “expert” operator with which to compare
the controller is not present.

In order to attenuate the influence of human variability
and analyse whether the MPC and subjects do indeed
exhibit similar behavior even though a true expert is
not present, the inputs of the last 4 trials of each
subject are averaged and undesired high frequent noise is
smoothened using a 5 Hz low-pass filter. This is done for
individual subjects (as depicted for one subject with the
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TABLE IV: Control behavior similarity. The Variance
Accounted For (VAF) values between the controller and
the mean of the last 4 trials per subject and the total
group, for task A, are shown. The boom inputs show a
high quality fit while the stick inputs show a mismatch.

VAF [%]
Boom input | Stick input
Subject 1 71.0 0
Subject 2 80.4 0
Subject 3 46.3 0
Subject 4 66.8 0
Subject 5 69.6 0
Subject 6 0 0
Subject 7 75.4 0
Subject 8 76.3 0
Total group 73.1 0

red line in Fig. 16) and for the total group. The means of
the total group are plotted alongside their standard devi-
ation in Fig. 17. In order to more objectively determine
the similarity between the controller and the operator,
the VAF is used and reported in Table IV, showing
both the VAF scores per individual subject and for the
total group. While the stick inputs show a mismatch, a
high quality fit is found for the boom inputs for both
individual subjects and the group as a whole except for
Subject 6, who exerted a large amount of bang-bang
control (clarification: Appendix G, Fig. 30).

2) Performance: The performance metrics for all
three tasks are shown in Fig. 18. The adaptive MPC
shows better performance on all three tasks than human
operators. In terms of trajectory tracking, the controller
shows an RMSE that is 3.7, 3.4 and 2.2 times lower than
human operators for tasks A, B1 and B2 respectively. In
terms of control effort, the boom input especially shows a
large difference, while the differences for the stick input
are much more subtle. Human operators exhibit 5.5, 5.6
and 3.9 times as many input above a frequencies of 0.5
Hz for the boom and 2.1, 1.5 and 1.9 times as many for
the stick, for task A, B1 and B2 respectively. Finally, the
boulder task portrayed in Fig. 19 showed that without
any prior knowledge about the existence of a boulder
subjects were able to navigate past the obstacle, finish
the digging task and extract the bucket from the soil
(completion time in seconds: Mean = 23.9, SD = 4.6).
On the other hand, the controller got stuck on the boulder
and did not attempt to deviate from its pre-set trajectory.
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Fig. 18: RMSE and SD of both inputs for all tasks. Each individual red triangle represents the mean value of the
respective metric for the last 4 trials for one subject, for the respective task. The 95% Confidence Interval (CI) is
indicated with the blue lines. The MPC shows better trajectory tracking and smoother inputs for every task. The
Mean (M) and SD of the completion times of the average subject in seconds were: Mean = 19.4, SD = 1.74 (A),
Mean = 21.8, SD = 2.95 (B1), Mean = 17.8, SD = 1.80 (B2), whereas the controller had completion times of 19.5

(A), 19.9 (B1) and 18.1 (B2).
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Fig. 19: Boulder encounter for two typical subjects and
the controller. While the MPC gets stuck on the boulder,
human operators manage to surpass the obstacle.

C. Discussion on the human factors experiment

The aim of this human factors experiment was
twofold. It attempted to evaluate whether the MPC
controls the offshore excavator in a similar manner as
human operators, and whether it is capable of performing
better than the human.

1) Similarity: The results show a clear similarity
between the inputs provided to the boom. The VAF for
most individuals and the group is above 70%, indicating
a high quality fit. Subject 6 however shows a VAF of 0%,
which is due to the extreme use of bang-bang control
for this subject. The SD of the boom input for task A
of this subject indeed lies 2.3 standard deviations above
the group average, indicating that extremely wild inputs
were provided.

The results also show a clear mismatch exists between
the inputs provided to the stick. This, however, is not
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completely unexpected. The experimental task consisted
of a mostly horizontal path, which the subjects were
instructed to follow. The boom essentially provided the
lateral steering whereas the stick controlled the longitudi-
nal direction. This kind of task is therefore comparable to
car-driving, where the stick is thought of as the gas pedal
and where the boom is thought of as the steering wheel.
Various studies focus on the application of continuous
guidance to car-driving [34] [35] and the problem of
conflict reduction between controller and human [14]
[36]. However, all these studies demarcate the problem
by imposing a fixed driving speed, and only consider the
lateral aspect. This has considerable advantages which
are also apparent in this thesis: it de-couples the chal-
lenging control problem, allows for easier comparison
of the dependent variables of interest, and reduces the
variability between operators. The latter is perhaps the
most challenging issue with the longitudinal compo-
nent: individual operators may have different preferences
which may still all result in equally good trajectories, as
long as the lateral steering is performed adequately. As of
recently research towards developing individual models
for various types of operators [37] [38], however much
more research in this field is necessary before guidance
can be provided on both degrees of freedom.

2) Performance: The controller shows a more than
threefold reduction in trajectory tracking error for tasks
A and B1 and a twofold reduction for task B2. Moreover,



it does so while providing smoother inputs and thus
lower control effort; human operators exhibit 4 to 5
times as many inputs above a frequencies of 0.5 Hz
for the boom and 1.5 to 2 times as many for the stick.
Furthermore, it is seen that unforeseen variations in soil
strength affect both controller and operator, especially in
Task B2 which shows a large decrease in performance for
both controller and all subjects. This is most likely due
to a very difficult to deal with transition from hard soil to
very soft soil, leading to overshoot and wild, corrective
inputs.

Finally, the boulder task shows one of the major
advantages of keeping the human in the loop. While
the MPC does perform better than the human, it is only
capable of controlling the system in situations for which
it has explicitly been programmed. When an obstacle is
introduced that neither the MPC nor the human operators
have had any experience with, human operators are
capable of adapting on the fly whereas the controller
is not able to proceed. Until a point is reached in which
automation is so advanced and can truly control a system
for every possibly situation, human operators will be
needed. As argued in Section I, regardless of whether
the human and automation interact through continuous
guidance (shared control) or supervisory control, a more
human-centered approach is beneficial. Herein lies the
strength of human-like control as applied in this thesis:
by providing control that matches the operator’s intents,
the operator is hypothesized to understand the automa-
tion better, which could reduce the amount of conflicts
in a continuous guidance setting and reduce issues such
as a loss of situational awareness.

D. Sub-conclusions on the human factors experiment

The human factors experiment show that the Adaptive
MPC is capable of achieving up to 2-3 times more
accurate reference tracking while providing smoother
inputs, containing around 4-5 times (boom) and 1.5-
2 times (stick) fewer inputs above a frequency of 0.5
Hz than the subjects, on all three evaluated tasks.
Additionally, a high quality fit (VAF > 70%) is
found between the boom inputs of the subjects and the
controller, while a mismatch exists between the stick
inputs. The combination of achieving better performance
while providing human-like boom inputs makes for a
compelling argument towards applying the MPC for
continuous guidance, however currently guidance should
only be applied on the boom. Lastly, the necessity of
keeping the human in the loop is shown by a trial with
an unmovable disturbance. While the controller was not
able to proceed, all subjects were able to adapt to this
unforeseen disturbance and complete the task.
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V. CONCLUSIONS AND FUTURE WORK

1) In this work a human-centered approach to excavator
control is taken by focusing on the design and evaluation
of a human-like controller to partially automate excava-
tor operations.

a) A complex excavator model was constructed by ex-
tending a generic excavator model (based on literature)
with a hydraulic system and a soil model, and exhibits
relevant and realistic (nonlinear) behavior in simulations,
showing itself to be a more accurate reflection of a real
excavator than the approximate models currently used in
literature.

b) In order to provide human-like control, an adaptive
Model Predictive Controller was designed by combining
standard MPC and its internal model with an Extended
Kalman Filter in order to capture unmodelled and un-
foreseen behavior. The controller was evaluated in a
simulation environment, showing low reference tracking
errors and smooth inputs for various tasks, even when
unknown soil variations were applied.

¢) A comparison between the controller and human
operators was made in a human factors experiment,
which showed a high quality fit (VAF > 70%) be-
tween the boom inputs of the controller and subjects
for a well-trained task, indicating human-like control.
Furthermore, the adaptive MPC showed 2 to 3 times
lower tracking errors and 1.5 to 5 times smoother inputs
on all experimental tasks than the average subject. These
results show promising application aspects for the use
of Model Predictive Control for continuous guidance or
more human-like supervisory control.

2) Future work should consider enhancing the MPC by
allowing it to learn from previous digging iterations,
such that it is capable of predicting changes of dynamics
instead of solely relying on current information.

Moreover, while the boom inputs for both the subjects
and the controller are similar, the stick inputs show a
mismatch. This indicates that in future work guidance
should either only be considered for the boom input or
that additional research should be performed in order to
capture a human-like velocity profile, suitable for each
individual operator.

Lastly, a full-scale experiment in which continuous
guidance is applied through the use of for instance
Haptic Shared Control should be performed to examine
whether the guidance is indeed received as desirable,
now that this preliminary human factors experiment has
shown promising application aspects for the use of MPC
in human-like control.
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APPENDIX A
ADDITIONAL MODELLING EXPLANATIONS

A. Hydraulic equations

By assuming incompressible, laminar flow with negligible losses, the volumetric flow through the valve can be
calculated using Bernoulli’s equation

1 1
p1+§P%2=p2+§P%2 (22)

in addition to the continuity equation
g = A1V = A3V (23)

where ¢, is the theoretical volumetric flow rate. Rewriting gives

2(p1 —p2)/p

A= p2)/p 24
= (Ay/Ay)? 24

qv = Aa
By furthermore introducing the discharge coefficient Cy, p1 — po = Ap, the volumetric flow rate through the valve
can be calculated as

2A
Q = CyA, 73 (25)

B. Soil memory block

In order for subsequent digs to properly apply forces, the position of the soil and thus the position where the
bucket comes into contact with the spring/damper systems need to be updated accordingly. This is done in the
soil memory block. In this block the soil profile is stored and updated online to reflect the soil as the excavator is
digging through it.

As usually done in practice, it is assumed that before digging a scan is performed, such that the current profile
and depth of the seafloor is known. The horizontal axis of the seabed is then divided into blocks of 30 centimeters
to lower the computational power required. Each of these block is assigned a number i, ranging from 1 (far left of
the workspace) to 67 (far right of the workspace) for a workspace ranging from [0, 20] meters, where the excavator
is positioned at (0,0) and the maximum extension of the excavator is always below 20 meters. Before the first dig,
the a priori information is incorporated by assigning the initial depth to its respective block. During digging, the
x position of the tip of the excavator’s bucket indicates which block is active. If the excavator starts digging, its
current depth will exceed the memorized depth and the new depth will be stored for the respective block. In this
manner multiple scoops can be made while the position of the ground is continuously updated.

C. Water drag forces

Finally, drag forces as a result of moving through water are calculated by first determining which parts of the
excavator are submerged and applying the standard drag force equation F' = %CdpAV2 where the boom and stick
are assumed to have a rectangular surface area, while the bucket is modelled as a hollow hemisphere. This gives
drag coefficients C; of 1.05 and 1.42, respectively.
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APPENDIX B
MPC PROBLEM SETUP ELABORATION

In this appendix the implementation of the MPC algorithm is elaborated upon.

A. Prediction matrices

In it’s standard form a system’s state space description is:

z(k+1) = Az(k) + Bu(k)

(26)
y(k) = Cx(k)
Substituting to obtain the output prediction at k+1
ylk+1) =Cx(k+ 1) = C(Ax(k) + Bu(k)) 27

Using this approach, we can calculate multiple steps ahead based on these system matrices, the current state and
future input signals as:

z(k+2) = Ax(k + 1) + Bu(k + 1))

28
y(k+2) = Cx(k +2) = CAx(k + 1) + CBu(k +1) = CA?x(k) + CABu(k) + CBu(k + 1) %)
Which can be repeated for an N amount of predictions and written into matrix format:
y(k+1) ] [ CA T [ CB 0 0 0 0 ] u(k)
y(k+2) CA? CAB CB 0 0 0 u(k +1)
y(k +3) CA3 CA%B CAB CB 0 0 u(k +2)
: = : z(k)+ : : . . :
: : : : : B 0 0 :
ylk+ N —1) CAN-L CAN=2B CcAN=3B CAN-*B ... CB 0 u(k+ N —2)
y(k+N) | | CAN | |(CAN='B CAN—2B CAN=3B ... CAB CB] |u(k+N—1)]
(29)

However, the application of linearization changes this model from a model describing the entire workspace to a
model that is only valid locally, around the linearization point. To compensate, the output  and state z at the
trimmed position must be substracted from y and z. Normally, the same would be done for the input signal, but
due to the use of rate control this does not apply to the excavator. Furthermore, the rate with which the input
changes is of interest, as opposed to the magnitude. In order to allow optimization of Aw instead of u the system
must be translated to an Incremental Input Output (IIO) system which uses the input increment Aw.

First, the application of linearization translates the one-step ahead prediction of the standard state space to:

ylk+1) =g+ CA(xz(k) — ) + CBu(k) (30)

which, when rewritten to IIO form is:

yk+1) =g+ CA(z(k) — ) + CBAu(k) + CBu(k — 1) (€20
and similarly:
yk+2) =9+ CAQ(z(k) — %)+ (CAB + CB)Au(k) + CBAu(k + 1) + CABu(k — 1) (32)

Note how due to the usage of the input increment past values of Au appear multiple times. For example: Au(k)
affects y(k + 3) with a gain of (CA%B + CAB + CB). By repeating this for an N amount of predictions, and
writing into a matrix format, we obtain the equations as in Eq. (13).
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B. Translating the cost function to the standard QP format

MPC optimizes a cost function in order to determine its future input sequence. The cost function used in this
thesis is shown in Eq. (33) and contains two terms: output error and input effort. The output error is the difference
between the predicted output 3,(k + j) and the reference r(k + j) at each timestep j = 1... N, whereas the input
effort is defined by how much the control input changes between each timestep.

Jupo(Bu,k) = " ((Gp(k + 5) = r(k+ )" (Gp(k + §) = (k + 7))
o (33)
+ 3 (Aulk + 5)) "N (Auk + )
=0

However, this cost function must be rewritten in the standard Quadratic Programming (QP) form for the QP solver:
1
J(Au, k) = §AuTHAu + FTAu (34)

Note that only terms featuring Aw are relevant, and constant terms can be omitted. The determined expression for
the output predictions is:

Jp =¥ + M(2(k) — ) + ®1Au+ ®ou(k — 1) (35)

Note that since the system is linearized at every controller interval the term x(k) — &) is always 0. Substituting Eq.
(35) in Eq. (33), and writing the equation in matrix notation using the matrices as defined in Eq. (14) gives:

Jupc(Au, k) = (§ 4+ @1 Au+ dyu(k — 1) —r)T(F + ®1Au+ Pou(k — 1) —r)

36
+AuTAZAu (36)
By gathering terms featuring Awu:
Jupe(Au, k) = AuT(@T D1 + A2)Au+ (—r7®; + §7®; +uk — 1) 07 0,)T Au (37)
Which can be translated into the standard QP form of Eq. (34) by selecting:
H =2(97 &1 + \?
(07 @1 + A7) (38)

F=-1T0; +57®, +uk —1)" 0T,
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APPENDIX C
FAMILARIZATION STAGE TASKS

Using the denotation of Fig. 20 the familiarization tasks were, in order:

Fig.

Position the endpoint at A. Rotate the stick all the way left and back right using maximum input, while keeping
the boom still.

Position the endpoint at C. Rotate the boom all the way up and back down using maximum input, while
keeping the stick still.

Position the endpoint at A. Move the endpoint to B while tracking the horizontal line.

Position the endpoint at C. Move the endpoint to E while tracking the vertical line.

Position the endpoint at A. Move downwards and dig through the soil to see how the soil updates itself.
Position the endpoint at D. Move to F while providing maximum input to the boom, and track the vertical
line while providing smooth, low frequent stick inputs.

Position the endpoint at D. Move to F while providing maximum input to the boom, and track the vertical
line while providing wild, high frequent stick inputs.

Ustick

20: Schematic drawing of the familiarization task. The point of interest in all tasks P is the endpoint of the

bucket.
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APPENDIX D
LEARNING CURVES

Subject 1 Subject 2 Subject 3 Subject 4
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(b) Input SD for Task A with learning curves.

Fig. 21: Learning curves for the RMSE and input SD for task A. The learning curves were plotted by fitting an
exponential function ( [39]) of the form RMSE(n) = 5+ ae~"™ where S is the final asymptotic performance,
« is the initial performance, n is the trial number, and ~ is the rate of learning. Values of the learning parameters
and the quality of the fit are reported in Table V.
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0.0961
0.1462
0.1304
0.1816
0.1779
0.2626
0.1033
0.0927

RMSE
B 04
0.0851  1.1346
0.0661  0.2269
0.1118  9.7387
0.0930  0.0694
0.0726  0.2625
0.1562  0.6782
0.0698  0.4214
0.0630  0.1038

TABLE V: Learning parameters for task A.

Res
0.5857
0.4200
1.0103
1.6882
0.7602
1.3565
0.4928
0.7353

0.0695
0.0518
0.0796
0.0369
0.0440
0.1240
0.0499
0.0568

SD learning parameters

B
0.0678
0.0313
0.0542
0.0634
0.0458
0.1367
0.0413
0.0507

SD1
v
1.6992
0.0887
0.7083
8.4864
3.9383
17.7854
0.1143
0.1238
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Res
0.7071
0.3538
0.5834
0.5993
0.2571
1.8804
0.3509
0.5100

0.0451
0.0625
0.0356
0.0336
0.0546
0.0552
0.0243
0.0487

B
0.0307
0.0317
0.0207
0.0490
0.0462
0.0684
0.0339
0.0280

SD2

0.7271
0.2066
0.1099
7.2081
2.4672
15.0215
13.4343
0.1715

Res
0.3140
0.2343
0.2780
0.4485
0.3406
0.5958
0.2105
0.3473



APPENDIX E
DETERMINATION OF THE INPUT SMOOTHNESS METRIC SD AND THE PERFORMANCE METRIC RMSE

100~
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““““ HPF U1l
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Magnitude [%]

-40 | | | | | | | | | ]
8 9 10 11 12 13 14 15 16 17 18

Time [s]

Fig. 22: Subject: determination of the input smoothness. The original input signal is first interpolated to remove
discretization effects. Subsequently, a high pass filter with a cut-off frequency of 0.5 Hz was applied. Finally, the
standard deviation of this remainder is taken.
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Fig. 23: MPC: Determination of the input smoothness. The original input signal is first interpolated to remove
discretization effects. Subsequently, a high pass filter with a cut-off frequency of 0.5 Hz was applied.
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Fig. 24: RMSE determination for a trial. Visualization example with 100 points
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EXTRA FIGURES: COMPARISONS FOR TASK B1 AND B2, INPUT REVERSALS
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(c) Stick inputs

Fig. 25: Trajectories and control inputs of the last 4 trials of subject 7 in task B1 compared to the MPC. The three
panels show the endpoint trajectories of the bucket (a) and the control inputs for the boom (b) and stick (c).
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Fig. 26: Trajectories and control inputs of the last 4 trials of subject 7 in task B2 compared to the MPC. The three
panels show the endpoint trajectories of the bucket (a) and the control inputs for the boom (b) and stick (c).
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Fig. 27: Input reversals task A, for each subject and all trials. The learning curves were plotted by fitting an
exponential function ( [39]) of the form RMSE(n) = 3+ ae™ "™ where § is the final asymptotic performance, o
is the initial performance, n is the trial number, and + is the rate of learning.
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Fig. 28: Example of input reversal determination for one trial. An input signal (top plot) and its derivative (bottom
plot) are shown. Each zero crossing of the derivative of the input signal is counted as one input reversal.
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Fig. 29: Input reversals for both the controller and the subjects for the mean of the last 4 trials of all tasks.
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APPENDIX G
PERFORMANCE OF SUBJECT 6 FOR TASK A
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Fig. 30: Trajectories and control inputs of the last 4 trials of subject 6 in task A. The subject exerted a large amount
of bang-bang control, even after extended learning.
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APPENDIX H
FREQUENCY RESPONSE PLOTS
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(a) Multisine boom input constructed of 0.025, 0.05, 0.1, 0.5, 1 and 2 Hz sinusoids
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(b) Boom output as a result of the multisine input signal
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(c) Frequency domain plot of the input and detrended output.

Fig. 31: A multisine input signal (a) was provided to the boom, resulting in the boom output (b). The signal was
detrended to remove the influence of the up-down disparity. A frequency analysis of the input and output signals
(c) shows that due to the slow dynamics low frequencies dominate.
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APPENDIX |

Informed consent form for an offshore excavator
digging simulator study.

Researchers:

Marco Stijnman - MSc. Student

E-mail: M.J.Stijnman@student.tudelft.nl
Tel: +31648549339

Ir. R.J. Kuiper - Supervisor
E-mail: r.j.kuiper@tudelft.nl

dr.ir. D.A. Abbink - Supervisor
E-mail: d.a.abbink@tudelft.nl Figure 1. Offshore excavator

dr.ir. J.W. van Wingerden - Supervisor
E-mail: J.W.vanWingerden@tudelft.nl

Location:

TU Delft Faculty of Mechanical, Maritime and Materials Engineering
Haptics Lab 34 F-1-360

Mekelweg 2, 2628 CD Delft

This document provides information relevant for your participation in the digging simulator study.
Please read this information thoroughly before starting the experiment. Note that at any time during
the experiment you may ask for clarification of anything written here. Before each new task the
relevant information will orally be repeated to you. You are also free to request a break at any point
during the experiment.

Procedure:
In this experiment you will control an offshore excavator (see Figure 1) . The visualization software

(see Figure 3) used to display the excavator is identical to software actually used in the field. You will
perform multiple digging trials with various conditions using a 2 D.o.F joystick (Figure 2). Note that
you will not have to control the bucket, but will only manipulate the position of the boom and the
stick. Please take a look at Figure 3, where the boom and the stick are indicated. Moving the joystick
left moves the stick to the left and vice versa. Pulling the joystick Towards you will move the boom
Upwards and pushing the joystick Away from you will move the boom Downwards. This seemingly
counterintuitive movement comes from the fact that you would normally sit in the cabin, and pulling
the joystick towards you corresponds to pulling the boom up, and pushing the joystick away pushes

the boom away as well. Note that you will not be using end-point control here!.

Figure 2. Joystick Figure 3. Visualization software



Firstly, there will be a familiarization task where we will do various small tasks to get you a feel of
how the excavator moves. Note that in this trial the dynamics and soil forces of the excavator are
turned off, which means that the excavator in subsequent parts of the experiment will feel a bit
different. The set of small tasks to be performed will be listed upon the start of the familiarization
task.

Afterwards, with all dynamics turned on, there is a set of 10+20 trials for the first condition. This
condition will be the same for all 30 trials. In these first 10 trials performance is not important and
enable you to get some training with the excavator and the task. For the 20 subsequent tasks
performance is important.

Afterwards, you will perform a set of 17 more difficult tasks. In these tasks the position and type of
soil changes between tasks. Before starting this task | will show you the different positions on the
visualization software.

Task objective

Note that in all tasks the brown line corresponds to the soil. The green line is the desired trajectory of
the bucket, which you should aim to follow as closely as possible while trying to stay within a time
range of 20— 25 seconds as indicated by the timer on your screen. Try to perform the digging task in a
smooth motion; avoid going backwards to correct any errors you made. Finally, all tasks are possible
to finish.

Duration: The total experiment, including instructions, will take about an hour.

Risks or discomforts: None. If you feel unwell or uncomfortable in any way a pause can always be
taken.

Confidentiality: Names are not recorded, and you will be assigned a subject number. Your data will
be used for research purposes only.

Right to refuse or withdraw: You are free to stop the experiment at any time without having to
provide an explanation.

| have read and understood the information provided above and hereby I give permission to
process my data for this excavator experiment as described above. | voluntarily agree to

participate in this study.

Name of participant:

Signature: Date:
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